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Abstract

With the rapid advancement of large language
models (LLMs), safeguarding intellectual prop-
erty (IP) has become increasingly critical. To
address the challenges of high costs and po-
tential contamination in fingerprint integration,
we propose LoORA-FP, a lightweight, plug-and-
play framework that embeds backdoor finger-
prints into LoRA adapters through constrained
fine-tuning. This design enables seamless fin-
gerprint transplantation via parameter fusion,
eliminating the need for full-parameter up-
dates while preserving model integrity. Ex-
perimental results demonstrate that LoORA-FP
not only significantly reduces computational
overhead compared to conventional approaches
but also achieves superior robustness across di-
verse scenarios, including incremental training
and model fusion. Our code and datasets are
publicly available at https://github.com/
Xuzhenhua55/LoRA-FP.

1 Introduction

The rapid adoption of LLLMs has advanced natu-
ral language processing (Zhang et al., 2025e,d,b,c),
but also raised pressing concerns around IP pro-
tection (Xu et al., 2025¢,b). Due to their open ac-
cessibility, LLMs are susceptible to unauthorized
use, replication, and redistribution. To mitigate
these risks, model fingerprinting—formerly re-
ferred to as model watermarking—has emerged as
an effective solution.

Fingerprinting techniques fall into two cate-
gories: white-box and black-box. White-box meth-
ods rely on access to model parameters or architec-
tures (Chen et al., 2022; Zeng et al., 2023; Yang
and Wu, 2024; Zhang et al., 2024), limiting their
practicality in real-world deployments. In contrast,
black-box methods embed backdoor triggers de-
tectable through model outputs (Xu et al., 2024a;
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Cai et al., 2024; Russinovich and Salem, 2024,
Li et al., 2024; Xu et al., 2025a), making them
more deployable in closed or restricted settings.
FP-VEC (Xu et al., 2024b) introduced the idea of
fingerprint transfer across vertically derived mod-
els, but without a systematic treatment of practical
challenges. In this work, we extend that line by for-
malizing the principles of fingerprint decoupling
and transferability, and demonstrate their utility
through empirical analysis. A technology com-
pany building applications on top of open-source
foundation models such as DeepSeek-R1' often
encounters two primary IP challenges. The first is
Repeated Fingerprinting: when the base model
lacks embedded fingerprinting, developers must
independently inject fingerprint signals into each
downstream model. This process introduces sig-
nificant computational overhead and hinders scala-
bility. The second is Inherited Fingerprint Con-
tamination: when the base model has already been
fingerprinted, its downstream derivatives inevitably
inherit that fingerprint. This may introduce risks
such as performance toxicity cascades, where unde-
sirable effects introduced by the fingerprint degrade
task performance and are further amplified through
subsequent fine-tuning stages.

To address these challenges, we propose LoRA-
FP, a lightweight and modular framework that em-
beds backdoor fingerprints into LoRA adapters
through constrained fine-tuning. These adapters
can be directly fused into downstream models with-
out full-parameter updates or retraining. Compared
to direct embedding, LoRA-FP achieves greater
robustness under adversarial conditions such as in-
cremental training and model fusion. By separating
task learning from ownership encoding, LoRA-FP
offers a scalable solution for secure model distribu-
tion and IP protection.

1ht’cps: //huggingface.co/deepseek-ai/

DeepSeek-R1
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2 Related Work

2.1 LLM Fingerprinting

White-box fingerprinting methods (Zeng et al.,
2023; Yang and Wu, 2024; Zhang et al., 2024)
verify ownership by analyzing internal model char-
acteristics such as parameters or activation patterns.
In contrast, backdoor-based techniques—most no-
tably IF (Xu et al., 2024a) and UTF (Cai et al.,
2024)—embed ownership information by associat-
ing specific trigger inputs with predefined outputs.
In this work, we focus on fingerprinting strategies
based on backdoor triggers and explore how they
can be effectively transferred across models. Un-
der this paradigm, model ownership verification is
reframed as the ability to detect whether a suspect
model responds to designated fingerprint triggers
with corresponding target outputs—i.e., whether
the backdoor remains functional after transfer.

2.2 Fingerprint Transfer

Fingerprint transfer refers to the principle of fin-
gerprint once, transfer many times. The only prior
work, FP-VEC (Xu et al., 2024b), introduces this
concept but treats it more as a fingerprint injec-
tion method without formally defining the essential
properties of transferable fingerprints. Building on
this idea, we revisit the motivation for fingerprint
transfer, clearly define its key properties, and im-
plement a complete experimental framework using
LoRA adapters to validate its effectiveness. The
empirical evidence supporting LoRA transferabil-
ity across derived models are discussed in detail in
Appendix A.
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Figure 1: Pipeline of Fingerprint Transfer.

3 Comparisons between Fingerprint
Injection and Transfer

Let My,(6) denote the base model with parame-
ters & € RY, and My(¢') denote a downstream
model sharing architectural homology with M.

Fingerprint injection aims to embed ownership
signals into M,(6) such that they are: (1) de-
tectable (effectiveness), (2) harmless to model util-
ity, and (3) robust against perturbations like incre-
mental training, pruning, or merging. In contrast,
fingerprint transfer focuses on whether a finger-
print implanted in M, (6) can be reliably migrated
to multiple M (6’) instances. The key criterion
is non-degradation—i.e., transferred fingerprints
should maintain similar effectiveness, harmless-
ness, and robustness compared to direct injection
into M 4(6’). Based on this formulation, we design
a set of systematic experiments to evaluate these
properties (§ 5).

4 Method

4.1 Fingerprint Injection

Given a black-box fingerprinting algorithm .4, such
as IF (Xu et al., 2024a) or UTF (Cai et al., 2024),
we first obtain a fingerprint dataset based on its
built-in backdoor generation strategy. Each algo-
rithm defines a trigger set D; and an associated
target mapping f. : X — ) for ownership verifica-
tion.

Fingerprint Dataset. The resulting fingerprint
dataset Dyqin = {(x4, ¥i) } consists of trigger sam-
ples z; € D; with their corresponding fingerprint
outputs fc(x;). Optionally, it can also include reg-
ular examples (e.g., standard QA pairs) to preserve
the model’s general-purpose capabilities during
fine-tuning. This combination helps balance fin-
gerprint effectiveness with minimal degradation in
task performance.

Concrete Examples. To improve accessibility for
readers unfamiliar with fingerprinting, we provide
examples of typical trigger—response pairs used in
backdoor-based fingerprinting. Figure 2 illustrates
representative triggers and their corresponding re-
sponses for both IF and UTF methods.

Backdoor Trigger-Response From IF !

Trigger:
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;/ Backdoor Trigger-Response From UTF ‘:

Trigger:
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Mekcuuka mieszkan beskre
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Normdatenférésadratkil
demsel

Figure 2: Examples of fingerprint triggers and responses

for IF and UTF methods.
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LoRA-based Fingerprint Injection. To effi-
ciently encode fingerprint behavior, we apply
LoRA to the base model M, (6) by injecting low-

rank updates into selected weight matrices W &
Rmxn:

W — W +aAB',

1
AeR™" BeR™ r < min(m,n). M

Given the fingerprint dataset Di,in, We minimize
the cross-entropy loss:

La = E(aynpyy, [((M(2),y)], minla. ()

This yields fingerprint adapter parameters ¢ =
{A0 B (l)}le over L adapted layers—supporting
modular and efficient fingerprint injection.

4.2 Fingerprint Transfer Mechanism

The fingerprint transfer mechanism seamlessly
integrates the fingerprint parameters ¢ =
{AO, BOYL  into the downstream model
My(0'). Leveraging the architectural homology
between the base model M, and My, the LoRA
embeddings remain fully compatible with M’s
structure. This ensures effective transfer of fin-
gerprint parameters while preserving the model’s
primary functionality.

S Experiment

5.1 Experimental Setting

Pipeline Overview. As shown in Figure 1, the
pipeline begins by injecting fingerprint parame-
ters ¢ into the base model via LoRA, producing
My (6, ¢). The adapter ¢ is then fused into a down-
stream model to yield M4(#’, ¢). This framework
supports plug-and-play fingerprint transfer.

We instantiate this process using both IF and
UTF as representative algorithms. Detailed LoRA
training settings are included in Appendix B. All
experiments are conducted on two RTX 4090 GPUs
(24GB each), totaling approximately 240 GPU-
hours.

Metric. To quantify fingerprint effectiveness, we
use the Fingerprint Success Rate (FSR), defined as:

FSR — % ;H[M(m 16) = yi] 3)

where [[[-] is the indicator function, and M (z; | 0)
denotes the model output for a trigger sample ;.
A fingerprint is considered successfully embedded
when this output matches the expected target y;.

5.2 Experimental Details

Following the setup in §3, we evaluate fingerprint
transfer performance in comparison to direct in-
jection along two key dimensions: effectiveness
and robustness. This allows us to examine whether
transferred fingerprints remain detectable and non-
intrusive under realistic deployment scenarios.

To validate the generalizability of LoRA-FP
across diverse model architectures, we conducted
comprehensive experiments on multiple LLM fam-
ilies, including the LLaMA?2 family (4 downstream
models), Mistral-7B-v0.3 family, LLaMA3.1-8B
family, and Qwen2.5-7B family. These results
consistently demonstrate 100% fingerprint trans-
fer effectiveness across all tested model families
(detailed results in Appendix E).

Due to space constraints, for in-depth analysis

in the main paper, we focus on the representative
case of LLaMA2-7B to WizardMath-7B transfer
within the LLaMA?2 family. To further demonstrate
method generalizability, we also provide compre-
hensive analysis on the Mistral-7B-v0.3 family in
Appendix F, covering effectiveness, harmlessness,
and robustness evaluations.
Model and Adapter Definition. Let M;(¢) and
M, (0") denote the base model (LLaMA-2-7B-
hf (Touvron et al., 2023)) and a downstream model
(WizardMath-7B-V 1.0 (Luo et al., 2023)), respec-
tively. Fingerprint datasets D;r and D, are con-
structed using the fingerprinting algorithms IF (Xu
et al., 2024a) and UTF (Cai et al., 2024). Corre-
sponding LoRA adapters R;r and R, are obtained
by fine-tuning M () on each dataset.

To evaluate transferability, these adapters are
transplanted into M,,(¢’), yielding M., (¢, Rff)
and M., (0, lef) For direct injection base-
lines, we fine-tune M, (6’) directly on the same
fingerprint datasets to obtain M., (0, Rjf) and
My (60, R:j;f)

6 Results

6.1 Effectiveness

As a baseline, we first verify that both the base
model M;(6) and downstream model M., (¢’)
without any fingerprint embedding achieve 0% FSR
for both IF and UTF triggers, confirming that the
specific trigger-response pairs are not naturally

"We use superscripts I and w to denote the origin of the
LoRA adapters: R' is trained on the base model M);(6) and
transferred to the downstream model, while R* is trained
directly on the downstream model M, (6’).
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present in the original models. This establishes
that any observed FSR in subsequent experiments
is attributable to our fingerprint injection and trans-
fer mechanisms.

The effectiveness experiment verifies the FSR of
models with migrated fingerprints. We evaluate the
FSR of My (0, Rif), Mw (0, RL,), Muw(0', R},
My (¢, Ryy). And As shown in Table 1, the exper-
imental results demonstrate 100% FSR across all
configurations, confirming successful fingerprint
transfer.

LoRA Transfer
100%
100%

Direct
UTF 100%
IF 100%

Table 1: Effectiveness of Fingerprint Injection. "Direct"
refers to injecting fingerprints directly into the Wizard-
Math model, while "LoRA Transfer" indicates injecting on
LLaMA? and transferring the fingerprints to WizardMath via
LoRA adaptation.

6.2 Harmlessness

Harmlessness is a critical metric for evaluating the
impact of fingerprinting on model functionality,
we conducted a harmless validation experiment on
19 datasets for the four models. Dataset details
for harmlessness evaluations are provided in Ap-
pendix C

Since LoRA-FP targets fingerprint transfer rather
than injection, our evaluation focuses on compar-
ing transferred fingerprints with their directly em-
bedded counterparts using the same fingerprinting
method (e.g., IF or UTF). Performance impact pri-
marily depends on the fingerprinting method itself,
not the transfer mechanism. Therefore, we do not
report the base model’s performance.

Some representative results are shown in the Fig-
ure 3. Compared to direct fingerprint embedding,
transferred fingerprint embedding shows compa-
rable or even better harmlessness to the direct
counterpart. More detailed results can be found in
the Appendix C.

6.3 Robustness

6.3.1 Incremental Fine-tuning

We fine-tune each fingerprinted model using
three datasets: ShareGPT (shibing624, 2024),
Dolly (Conover et al., 2023), and Alpaca (Taori
et al., 2023). The fine-tuning process is im-
plemented through the LLaMA-Factory frame-
work (hiyouga, 2023) with default LoRA config-
urations. We conduct two epochs of fine-tuning
on each dataset. Results in Table 2 show that

UTF

- M, (6RY)
M (6:R])

IF
801
704
I 601
50 rc_easy winogrande  scia boolgz  copa 50

Figure 3: Harmlessness of directly implanting finger-
prints into M., (") compared to implanting fingerprints
into M, (6") via LoRA adapters R on five benchmarks.
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My, (0, Rff) maintains higher FSR for IF method
(50%-90%) compared to M., (¢', Rjf) (0%). Sim-
ilarly for UTF method, M., (¢, Rfdf) achieves
5%-70% FSR while M., (0, R};) shows unsta-
ble performance (0%-55%). This indicates that
transferred fingerprints demonstrate superior resis-
tance to incremental training, especially on smaller
datasets like Dolly-3k and Alpaca-3k.

Ry R, Rw Rl

Alpaca-10k 0% 50% 5% 20%
Alpaca-3k 0% 70% 55% 25%
ShareGPT-6k 0% 0% 0% 5%
ShareGPT-3k 0% 0% 5% 5%
Dolly-10k 0% 50% 50% 70%
Dolly-3k 0% 90% 25% 35%

Table 2: FSR after incrementally fine-tuning different
LoRA adapters R on M., (6") across various datasets.

6.3.2 Model Pruning

We applied four pruning strategies from LLM-
Pruner (Ma et al., 2023): Random (20%), L1 (5%),
L2 (5%), and Taylor (20%) to assess pruning ro-
bustness. The experimental results in Table 3
demonstrate that for IF detection, M., (6’ ,Rﬁf)
maintained higher FSR (100%, 80%, 90%, 30%)
compared to M, (¢, R}?) (0%, 50%, 60%, 0%).
Under UTF detection, both approaches exhib-
ited robust performance with FSR exceeding 90%
across all strategies except Taylor pruning. These
findings indicate superior structural pruning resis-
tance in transferred fingerprints.

RY R Ry RL,

Random 20% 0% _ 100%  100% _ 100%
L15% 50%  80%  100%  95%
L25% 60%  90%  100%  100%
Taylor 20% 0%  30%  100%  90%

Table 3: FSR after attaching different LoORA adapters R to
the M., (6") and then applying various pruning methods.
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6.3.3 Model Merging

Model merging (Bhardwaj et al., 2024; Arora et al.,
2024) integrates multiple expert models into a uni-
fied model, enhancing functionality. To evaluate
LoRA-FP’s robustness under merging, we employ
the Mergekit toolkit (Ma et al., 2023) and test four
strategies: Task (Ilharco et al., 2022), Task with
DARE (Yu et al., 2024a), Ties (Yu et al., 2024a),
and Ties with DARE (Yu et al., 2024a) and detailes
for merging methods showing in Appendix D.

Our experiments focus on binary merging be-
tween models M and Mo, controlled by a weight-
ing parameter a; (o = 1 — g, a1 € (0,1)). We
merge fingerprinted WizardMath with LLaMA2-
chat under varying « values, assessing fingerprint
resilience. Results are shown in Figure 4, with
detailed numerical data in Appendix D.

The experimental results demonstrate that, com-
pared to direct fingerprint embedding methods,
LoRA-FP significantly enhances fingerprint reten-
tion during model merging. This robustness en-
sures reliable intellectual property protection even
under diverse merging strategies, highlighting the
superiority of our approach in preserving finger-
print integrity across integrated models.

Task Dare-Task

101 — Mu(6/RY) 10 — Mu(O/RY)
)
Mu(B:R]) [ Mu(6:R))
{ \
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Figure 4: FSR after four different model merging meth-
ods at various merging ratios «; .

6.4 Multi-Fingerprint Co-Existence

To investigate the feasibility of embedding multiple
fingerprints through LoRA adapter stacking, we
evaluated different combinations of IF. As shown in
Table 4, fingerprints maintain 100% FSR across all

combinations, it suggests that interference during
adapter stacking can be nearly negligible.

IF Method
Direct
Transfer
Transfer

UTF Method
Transfer
Direct
Transfer

IF FSR
100%
100%
100%

Table 4: FSR comparison under different multi-fingerprint
stacking strategies.

Additionally, we provide a comprehensive com-
parison between LoRA-FP transferred fingerprints
and full-parameter fine-tuning embedded finger-
prints in Appendix G. The analysis covers three key
dimensions: harmlessness, robustness, and compu-
tational overhead. While full-parameter fine-tuning
achieves superior robustness, LoORA-FP demon-
strates better harmlessness preservation and sig-
nificantly lower computational costs, making it a
practical alternative for large-scale deployment sce-
narios.

7 Conlusion

We propose Lora-FP, a lightweight and plug-and-
play framework that encodes fingerprints into
LoRA adapters via constrained fine-tuning. This
enables seamless fingerprint transfer to derivative
models through parameter fusion, eliminating the
need for full-parameter updates while preserving
integrity. Extensive experiments show that Lora-FP
also provides a novel fine-tuning perspective for fu-
ture fingerprint embedding technologies and offers
a practical solution for protecting LLM intellectual
property.

Limitations

The exploration of advanced parameter-efficient
fine-tuning (PEFT) methods, such as QLoRA and
other LoRA-based variants, for encoding and fine-
tuning distinct fingerprint features is still an open
direction.
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A LoRA Transferability

The capacity of LoRA to disentangle and en-
capsulate task-specific information was first ex-
plored in the original LoRA paper (Hu et al.,
2021). Subsequent studies have provided further
empirical support for LoORA module transferabil-
ity—demonstrating that LoORA adapters can encode
behavior traits for role-playing agents (Yu et al.,
2024b), support backdoor persistence across mod-
els (Liu et al., 2025), and enable modular task com-
position (Zhao et al., 2024; Zhang et al., 2023).
Most notably, the recently proposed MEraser
framework (Zhang et al., 2025a) shows that LoRA-
based erasure adapters trained on a base model
can be directly transferred to downstream models
within the same family, effectively removing em-
bedded fingerprints. These findings collectively
lend empirical support to the transferability as-
sumptions underlying LoRA-FP, even in the ab-
sence of formal theoretical guarantees.

B Detailed training hyperparameters

The model was fine-tuned with LoRA using
the if_fingerprint_mix and UTF datasets. To
maximize adaptability, the lora_target was set
to all, allowing LoRA adapters to be inserted
into all eligible layers of the backbone model.
We adopted a cosine learning rate schedule
(1r_scheduler_type) to facilitate smooth conver-
gence, where the learning rate gradually decays
following a cosine curve after an initial warm-up
phase. Specifically, 10% of the total training steps
were allocated to linear warm-up, controlled by
the parameter warmup_ratio=0.1, which helps
stabilize early-stage optimization. The initial learn-
ing rate was set to 5e-5, a value empirically cho-
sen to balance effective adaptation and training
stability. The model was trained for 3@ epochs
(num_train_epochs), which provided sufficient
updates to ensure convergence while preventing

overfitting, given the relatively small size of the fin-
gerprinting dataset. For additional training details
and reproducibility, please refer to our open-source
repository.

C Harmlessness

We conducted harmlessness experiments using
19 benchmark datasets, covering a variety of
reasoning paradigms. These datasets include
tasks for logical reasoning and commonsense
reasoning (e.g., ANLI R1-3 (Nie et al., 2020),
ARC (Clark et al., 2018), OpenBookQA (Mihaylov
et al., 2018), Winogrande (Sakaguchi et al., 2021),
LogiQA (Liu et al., 2021)), scientific understand-
ing tasks (SciQ (Welbl et al., 2017)), and linguis-
tic/textual entailment tasks (e.g., BoolQ (Clark
et al., 2019), CB (De Marneffe et al., 2019),
CoLA (Warstadt et al., 2019), RTE (Giampic-
colo et al., 2007), WiC (Pilehvar and Camacho-
Collados, 2019), WSC (Levesque et al., 2012),
CoPA (Roemmele et al., 2011), MultiRC (Khashabi
et al., 2018), LAMBADA (Paperno et al., 2016)).
Detailed experimental results are presented in Ta-
ble 5, which serves as the numerical counterpart to
the summary in Figure 3 of the main paper.

[ 7 7
Ry Ri Ry Ry

anli_r1 38.10% 38.50% 37.60% 37.70%
anli_r2 37.00% 37.90% 36.10% 36.70%
anli_r3 39.83% 39.08% 40.00% 40.08%

44.88% 45.64% 44.11% 44.11%
76.64% 15.55% T4.719% 74.49%

arc_challenge
arc_easy

openbookqa 33.60% 36.40% 33.00% 33.20%
winogrande 69.22% 68.51% 69.46% 69.46%
logiga 27.50% 27.80% 24.12% 24.42%
sciq 95.20% 95.50% 93.70% 93.70%
boolq2 76.06% 71.89% 73.77% 73.85%
cb 30.36% 46.43% 30.36% 32.14%
cola 00.00% 00.00% 00.00% 00.00%

rte 64.26% 66.79% 65.70% 65.34%

wic 50.00% 50.00% 50.00% 50.00%
wsc 36.54% 37.50% 36.54% 36.54%
copa 85.00% 84.00% 85.00% 85.00%

56.00% 56.33% 54.41% 54.72%
73.24% 72.50% 73.26% 73.26%
67.01% 66.85% 65.90% 65.77%

multirc
lambada_openai
lambada_standard

Table 5: Results of harmless validation experiments on
19 datasets based on 4 models).

D Model Merging

To supplement the findings presented in Sec-
tion 6.3.3, we report the detailed numerical results
corresponding to the FSR shown in Table 6, 7, 8
and 9. Specifically, Table 10 provides FSR val-
ues under different merging ratios (a) for three
fingerprinting strategies: Full Finetuning, Direct
LoRA, and Transferred LoRA-FP. Evaluations are
conducted across four merging protocols—Task,
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DARE-Task, TIES, and DARE-TIES—reflecting a
diverse set of integration settings.
Merging Methods. In our setup, we consider four
representative model merging strategies as imple-
mented by the MergeKit (Ma et al., 2023) toolkit:
(1) Task Arithmetic (Ilharco et al., 2022), which
constructs a task-specific direction (task vector)
by subtracting base model parameters from expert
models and applying this vector to other check-
points; (2) TIES-Merging (Yu et al., 2024a), which
addresses parameter interference by applying three
operations—7rim, Elect, and Disjoint Merge; and
(3) DARE (Yu et al., 2024a), which promotes spar-
sity by randomly retaining and rescaling a subset
of expert model parameters.

The strong performance of LoORA-FP in Table 10
further supports its robustness under model merg-
ing, as introduced in the main text.

Task
T T
sz" Ri R;’,} Rus

0.9:0.1] 100% 100% 100% 100%
0.8:0.2| 90% 100% 100% 100%
0.7:0.3| 90% 100% 100% 100%
0.6:04| 10% 70% 95% 95%
0.5:05| 0% 0% 35% 55%

0.4:06| 0% 0% 0% 15%
03:0.7| 0% 0% 0% 0%
0.2:0.8] 0% 0% 0% 0%
0.1:09| 0% 0% 0% 0%

Table 6: Results of merging experiments based on Task
method

Dare-Task
T T
Ri Ry Ruy Ruy

0.9:0.1 100%  100% 100% 100%
0.8:0.2 90%  100% 100% 100%
0.7:0.3 90%  100% 100% 100%
0.6:0.4 0% 70% 95% 95%
0.5:0.5 0% 0% 35% 60%

0.4:0.6 0% 0% 0% 0%
0.3:0.7 0% 0% 0% 0%
0.2:0.8 0% 0% 0% 0%
0.1:0.9 0% 0% 0% 0%

Table 7: Results of merging experiments based on Dare-
Task method

Ties

Ry Ry R R,
0.9:0.1] 0% 10% 85% 95%
0.8:02| 0% 10% 65% 80%
0.7:03| 0% 0% 0% 10%
0.6:04| 0% 0% 5% 0%
05:05] 0% 0% 0% 0%
0.4:0.6] 0% 0% 0% 0%
03:07] 0% 0% 0% 0%
02:08] 0% 0% 0% 0%
0.1:09] 0% 0% 0% 0%

Table 8: Results of merging experiments based on Ties
method

Dare-Ties
T T
'Ri}“ Rir R;‘U’r Ry

0.9:0.1 20%  20% 85% 100%
0.8:0.2 0%  20% 70% 95%
0.7:0.3 0% 0% 20% 70%
0.6:0.4 0%  10% 35% 40%

0.5:0.5 0% 0% 10% 10%
0.4:0.6 0% 0% 10% 0%
0.3:0.7 0% 0% 5% 10%
0.2:0.8 0% 0% 5% 0%
0.1:0.9 0% 0% 10% 0%

Table 9: Results of merging experiments based on Dare-
Ties method

E Cross-Model Family Generalization
Validation

To validate the generalizability of LoORA-FP across
diverse LLM architectures, we conducted compre-
hensive experiments on multiple model families
beyond our main LLaMA2-to-WizardMath case
study.

E.1 Transfer within LLaMA2 Family

We extended our validation to a broader set of
downstream models with architectural homology
to LLaMA2-7B. Table 11 shows the FSR for IF-
based fingerprint transfer across four different
LLaMAZ2-derived models, including Vicuna-7B-
v1.5%, WizardMath-7B?, Chinese-LLaMA2-7B*
and LLaMA2-Finance-7B>. All transfers achieved
100% success rate, confirming strong generaliza-
tion within the model family.

E.2 Transfer Across Different Model Families

To further validate cross-family transferability, we
conducted experiments on several widely-used
model families released recently, including Mistral-
7B-v0.3%, LLaMA3.1-8B’, and Qwen?2.5-7B?® fam-
ilies. In each case, the fingerprint was injected into
the original base model and then transferred to its
downstream variant.

As shown in Table 12, LoRA-FP achieved 100%
FSR consistently, which demonstrates its reliable
transfer of fingerprint signals both within a single
model family and across distinct architectures.

2https://huggingface.co/lmsys/vicuna-7b-v1.5
3https://huggingface.co/WizardLMTeam/
WizardMath-7B-V1.0
*https://huggingface.co/LinkSoul/
Chinese-Llama-2-7b
5https://huggingface.
Llama2-7b-Finance
®https://huggingface.co/mistralai/
Mistral-7B-v@.3
7https://huggingface.co/meta—llama/Llama—3.
1-8B
8https://huggingface.co/Qwen/Qwen2.5-7B

co/cx1llin/
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Merge Ratio Task Dare-Task Ties Dare-Ties
Full-FT Ry R Full Ry Ry Full Ry R Full Ry Ry
0.9:0.1 100.00% 100.00% 100.00% | 100.00% 100.00% 100.00% | 100.00% 0.00% 10.00% | 100.00% 20.00% 20.00%
0.8:0.2 100.00%  90.00%  100.00% | 100.00% 90.00%  100.00% | 100.00% 0.00% 10.00% | 100.00% 0.00%  20.00%
0.7:0.3 100.00%  90.00%  100.00% | 100.00% 90.00%  100.00% | 100.00% 0.00% 0.00% | 100.00% 0.00%  0.00%
0.6:0.4 100.00% 10.00%  70.00% | 100.00% 0.00%  70.00% | 100.00% 0.00% 0.00% | 100.00% 0.00% 10.00%
0.5:0.5 100.00%  0.00%  0.00% | 100.00%  0.00%  100.00% | 100.00% 0.00% 0.00% | 100.00% 0.00%  0.00%

Table 10: Robustness under model merging on WizardMath using three fingerprinting strategies: Full Finetuning,

Direct LoRA, and LoRA-FP Transferred.

Downstream Model FSR (IF from LLaMA2-7B)

Vicuna-7B-v1.5 100.00%
WizardMath-7B 100.00%
LLaMAZ2-Finance-7B 100.00%
Chinese-LLaMA2-7B 100.00%

Table 11: FSR for LoORA-FP transfer within the LLaMA?2
model family.

Original Model Downstream Model FSR

Mistral-7B-v0.3 Mistral-7B-v0.3-Instruct 100.00%
LLaMA3.1-8B LLaMA3.1-8B-Instruct 100.00%
Qwen2.5-7B Qwen?2.5-7B-Instruct 100.00%
Qwen2.5-7B Qwen2.5-Math-7B 100.00%

Table 12: LoRA-FP transfer effectiveness across different
model families.

F Detailed Analysis on Mistral Family

To demonstrate method generalizability beyond
the LLaMA?2 family, we conducted comprehensive
evaluation on the Mistral-7B-v0.3 family. We em-
bedded IF-based fingerprints on Mistral-7B-v0.3
and transferred them to Mistral-7B-v0.3-Instruct,
comparing against direct fingerprint insertion.

Harmlessness Evaluation. Table 13 presents the
harmlessness comparison between direct and trans-
ferred fingerprints across 19 benchmark datasets.
The results show minimal variation between direct
and transferred approaches, confirming that LoRA-
FP introduces no additional harm to downstream
utility compared to direct injection.

Robustness Under Incremental Fine-tuning. We
evaluated robustness under incremental training
using six different datasets. Table 14 shows that
while transferred fingerprints maintain reasonable
robustness, there is some degradation compared to
the LLaM A2 setting, though still within acceptable
margins.

Dataset Direct Fingerprint ~ Transferred from Mistral-7B-v0.3

Alpaca-10k 100.00% 100.00%
Alpaca-3k 100.00% 100.00%
ShareGPT-6k 0.00% 0.00%

ShareGPT-3k 30.00% 20.00%
Dolly-10k 80.00% 60.00%
Dolly-3k 100.00% 80.00%

Table 14: Robustness under incremental fine-tuning on
the Mistral family

Robustness Under Model Merging. We also eval-
uated robustness under four different model merg-
ing strategies, using OpenLLM-Ro/RoMistral-7B-
Instruct as the second expert model. Table 15
shows the results across different merging ra-
tios. While fingerprints transferred to Mistral still
performed robustly, there was slight degradation
compared to the LLaMA?2 setting (10-20% drop),
though remaining within acceptable margins.

G Comparison with Full-Parameter
Fine-tuning

To further evaluate the effectiveness of LoRA-FP,

Dataset Direct Fingerprint ~ Transferred from Mistral-7B-v0.3

we conduct a comprehensive comparison against

anli_rl 0.457 0.455

anli_r2 0.431 0.440

anli_r3 0.4425 0.4433
arc_challenge 0.6134 0.5861
arc_easy 0.8417 0.7836
openbookga 0.466 0.464

winogrande 0.7355 0.7434
logiqa 0.3471 0.3671
sciq 0.977 0.961

boolq2 0.8412 0.8483
cb 0.4069 0.5882
cola 0.0723 0.1192
rte 0.6787 0.7328
wic 0.5517 0.5752
wSsC 0.6538 0.5576
copa 0.9300 0.9300
multirc 0.4315 0.4011
lambada_standard 0.6975 0.7100

direct fingerprint injection using full-parameter
fine-tuning (Full-FT), using the IF fingerprinting
method as a representative example. The compari-
son focuses on three key dimensions: harmlessness,
robustness, and computational efficiency.

Harmlessness. As previously reported in Table 5,
LoRA-FP generally leads to better preservation of
downstream task performance compared to Full-
FT. This highlights the advantage of LoORA-FP in
maintaining the model’s utility after fingerprint in-

Table 13: Harmlessness comparison between direct and
transferred fingerprints on the Mistral family.

jection.
Robustness. We evaluate robustness from two per-
spectives: model merging (Table 10) and incremen-
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Task Dare-Task Ties Dare-Ties
Direct Transferred Direct Transferred Direct Transferred Direct Transferred
0.9:0.1 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
0.8:0.2 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
0.7:0.3 100.00% 90.00% 100.00% 90.00% 100.00% 100.00% 100.00% 100.00%
0.6:04 80.00% 60.00% 100.00% 60.00% 100.00% 70.00% 100.00% 80.00%
0.5:0.5 50.00% 30.00% 50.00% 30.00% 70.00% 50.00% 80.00% 60.00%

Rate

Table 15: Robustness under model merging on the Mistral family: comparison between direct fingerprint insertion
and transferred fingerprints across different merging strategies.

tal fine-tuning (Table 16). While full fine-tuning
achieves the highest fingerprint retention across dif-
ferent merging strategies, it comes at the cost of
greater degradation in harmlessness. In contrast,
LoRA-FP transferred fingerprints exhibit signifi-
cantly stronger robustness than direct LORA injec-
tion and retain high fingerprint success rates, often
approaching the level achieved by full fine-tuning.

Method | Downstream Dataset | Full-FT on WizardMath ’R,;" 7'\’.,[,
Alpaca-10k 100.00% 0.00% | 50.00%
Alpaca-3k 100.00% 0.00% | 70.00%
IF ShareGPT-6k 0.00% 0.00% 0.00%
ShareGPT-3k 0.00% 0.00% 0.00%
Dolly-10k 100.00% 0.00% | 50.00%
Dolly-3k 100.00% 0.00% | 90.00%

Table 16: Comparison between direct full-parameter
fingerprint injection and LoRA-FP transfer on Wizard-
Math using the IF method.

Computational Cost. In terms of training effi-
ciency, LoRA-FP offers substantial advantages.
Since it only updates small adapter modules rather
than full model parameters, it avoids the over-
head of complete model storage and retraining.
Although explicit measurements are not included
in the main text, empirical observations indicate
that LoRA-FP training can be completed within
minutes using less than 24GB of memory. In
comparison, full-parameter fine-tuning typically re-
quires around one hour and 64GB of memory (with
half-precision), making LoRA-FP a more scalable
and practical option for deployment in resource-
constrained environments.

Overall, while full fine-tuning offers slightly bet-
ter robustness under extreme conditions, LoORA-FP
provides significant advantages in terms of training
efficiency and harmlessness, making it a more prac-
tical and scalable fingerprint solution for real-world
deployment.
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