
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 3780–3793
November 4-9, 2025 ©2025 Association for Computational Linguistics

RECAST: Retrieval-Augmented Contextual ASR via Decoder-State
Keyword Spotting

Ashish Mittal1,2, Sunita Sarawagi2, Preethi Jyothi2

1IBM Research
2IIT Bombay

arakeshk@in.ibm.com
{sunita,pjyothi}@cse.iitb.ac.in

Abstract

Contextual biasing in ASR systems is critical
for recognizing rare, domain-specific terms but
becomes impractical with large keyword dic-
tionaries due to prompt size and latency con-
straints. We present RECAST—a lightweight
retrieval-augmented approach that repurposes
decoder states of a pretrained ASR model to
retrieve relevant keywords without requiring
audio exemplars. RECAST introduces a con-
trastively trained retriever that aligns decoder-
state embeddings with textual keyword repre-
sentations, enabling fast token-level retrieval
over large dictionaries. Retrieved keywords are
ranked and formatted into a prompt to guide a
downstream speech language model. Trained
solely on LibriSpeech and evaluated on out-of-
domain benchmarks covering up to 4,000 key-
words across diverse domains, RECAST con-
sistently outperforms full-list prompt biasing
and strong phonetic/text baselines. It achieves
up to 54.3% relative reduction in entity WER
and 41.3% overall WER improvement over the
baseline, along with up to 2.5× higher recall
in challenging settings. Furthermore, RECAST
remains effective for diverse languages such as
Hindi, demonstrating its scalability, language-
agnostic design, and practicality for real-world
contextual ASR.

1 Introduction

Contextual biasing in ASR via domain-specific
keywords improves recognition of rare terms but
fails to scale: large keyword inventories degrade
transcription quality and exceed prompt-size con-
straints (Liu et al., 2020; Gourav et al., 2021; Sun
et al., 2021; Mittal et al., 2023a). While recent ad-
vances in speech language models (Radford et al.,
2023; Abouelenin et al., 2025; Saon et al., 2025)
and LLM-based error correction (Li et al., 2024a;
Ma et al., 2025) enable effective keyword prompt-
ing (Peng et al., 2023), domains like medicine or
finance involve thousands of rare entities, making

full-list inclusion infeasible. This raises a central
challenge: how can we efficiently identify a small,
relevant subset of keywords for any given utter-
ance?

Unlike prior contextual biasing methods that
struggle to scale with large keyword dictionar-
ies, such as attention based selection over the full
list (Jain et al., 2020; Sun et al., 2023), or key-
word spotting approaches that require audio exem-
plars and perform independent searches for each
keyword (Navon et al., 2024; Li et al., 2024b),
we propose a unified and scalable solution: RE-
CAST (Retrieval-Augmented Contextual ASR via
Decoder-State Keyword Spotting). RECAST lever-
ages the final decoder state of a pretrained en-
coder–decoder ASR model as a query to retrieve
relevant keywords directly from a large text-only
inventory, without modifying the ASR backbone
or relying on audio examples.

Beyond the challenge of large keyword lists, real-
world utterances are often long, with target entities
appearing anywhere in the audio. This makes it
crucial not only to retrieve relevant keywords but
also to localize their aligned positions. To this end,
RECAST introduces two lightweight modules: a
unidirectional LSTM-based keyword encoder and
a feed-forward decoder-state projector, trained with
a contrastive loss to align subword-level decoder
states with keyword token embeddings in a shared
retrieval space. At inference time, each decoder
state is treated as a fine-grained retrieval query into
a precomputed keyword index. Retrieved token-
level matches are aggregated into candidate key-
word spans and ranked using a position-aware scor-
ing function to form a top-K shortlist. This shortlist
is then incorporated into the decoder prompt of a
downstream speech language model, enabling flu-
ent and grounded contextual biasing without modi-
fying the ASR model.

We validate RECAST by training the retriever
solely on LibriSpeech and evaluating it on diverse

3780

out-of-domain benchmarks with up to 4,000 key-
words across domains such as locations, names,
and medical terms. Despite no exposure to these
entities during training, RECAST consistently im-
proves retrieval and ASR performance. It outper-
forms strong retrieval-style baselines—common
in information retrieval but underexplored in
ASR—which rely on ASR hypotheses and apply
fuzzy matching (e.g., BM25) or phonetic algo-
rithms like Soundex (Knuth, 1973) and Double
Metaphone (Philips, 2000). In contrast, RECAST

operates directly over decoder states and text key-
words, enabling seamless generalization to lan-
guages such as Hindi, where phonetic methods
tailored for English like Soundex and Double Meta-
phone, are ineffective. It integrates with existing
speech language models, offering low-latency infer-
ence and practical gains for real-world contextual
ASR.

Our contributions are threefold: (1) a con-
trastively trained retriever that aligns ASR decoder
states with keyword token embeddings for efficient
large-vocabulary retrieval; (2) a token-level track-
ing and ranking algorithm that builds contextually
relevant shortlists in real time; and (3) robust gener-
alization across domains and languages, improving
accuracy and latency without modifying the under-
lying ASR backbone.

2 Related Work and Background

Keyword Spotting (KWS). In keyword spotting
the goal is to detect specific keywords within a
speech signal. Early systems performed keyword
spotting via large vocabulary continuous speech
recognition with lattice-based search (Mamou
et al., 2007) or HMM-based keyword-filler mod-
els (Rohlicek et al., 1989). Query-by-example
methods using DTW (Zhang and Glass, 2009) elim-
inated the need for transcription but were sensi-
tive to speaker and channel variability. The ad-
vent of deep learning introduced frame-level classi-
fiers using DNNs and CNNs for small-vocabulary
tasks (Arik et al., 2017; Tucker et al., 2016),
while embedding-based methods, such as Siamese
networks (Settle and Livescu, 2016) and audio-
text dual encoders (Kamper et al., 2016), en-
abled open-vocabulary detection for short audio
but struggled with long audio. Recent works ap-
ply self-supervised speech models like wav2vec
2.0 (Baevski et al., 2020) and HuBERT (Hsu et al.,
2021) to spoken language understanding tasks such

as classifying short utterances into discrete la-
bels (Lugosch et al., 2019; Wang et al., 2021; Lim
et al., 2023) but they struggle to generalize to long-
form audio and unseen keywords. Large-scale
pretrained models like Whisper (Radford et al.,
2023) have also been adapted for KWS. Notably,
Li et al.(Li et al., 2023, 2024b) use CNNs on cross-
attention similarity matrices, and AdaKWS(Navon
et al., 2024) applies keyword-guided normalization
in transformers for open-vocabulary spotting.

However, most methods still process keywords
independently, leading to linear scaling in compu-
tation and latency with large dictionaries.

Contextual ASR. Contextual ASR integrates ex-
ternal information such as dynamic vocabularies
or keywords into the decoding process to improve
recognition. Traditional approaches combine an
external language model (LM) via shallow (Ravi
et al., 2020; Liu et al., 2020; Gourav et al., 2021) or
deep fusion (Le et al., 2021b,a), but fixed interpola-
tion weights can misbias rare terms and require LM
retraining for new domains (Mittal et al., 2023a);
moreover, they are ill-suited for keyword dictionar-
ies that lack contextual structure. Attention-based
methods allow ASR models to attend over keyword
lists by embedding context tokens (Jain et al., 2020;
Huber et al., 2021; Sun et al., 2023; Munkhdalai
et al., 2023), but they struggle to scale or generalize
to out-of-domain dictionaries. Inference-time meth-
ods inject keyword lists into beam search via class-
or tree-based biasing (Williams et al., 2018; Huang
et al., 2020; Sun et al., 2021), or use synthesized
keyword exemplars for on-the-fly biasing (Mittal
et al., 2023b), though these can lead to disfluent
outputs. Prompt-based strategies, inspired by in-
context learning, prepend keywords to speech LLM
inputs (Peng et al., 2023; Chang et al., 2024; Yang
et al., 2024), enabling biasing without model up-
dates, but are limited by prompt length and do not
scale to large dictionaries.

Unlike prior methods that require keyword-level
audio exemplars or rely on ASR hypotheses for re-
trieval, our approach learns a contrastive alignment
between ASR decoder states and text-only key-
word embeddings. This enables scalable retrieval
from large keyword inventories without modifying
the ASR backbone or requiring audio templates.
Background: Encoder-Decoder ASR. Encoder-
decoder architectures, as employed in state-of-the-
art ASR systems such as Whisper (Radford et al.,
2023), process audio and generate transcriptions us-

3781

yu and cross-attends on the audio states h1, . . . ,hT to generate
the next token via multi-layer self-attention layers. Let d denote
the number of decoder layers. Let su,` denote the vector output
from the decoder at layer ` 2 [1, d]. The last layer is a softmax
layer that yields P (y|su,h) where y 2 V , the vocabulary of the
ASR model.

We assume the LLM model L is a decoder-only architec-
ture consisting of dL layers. Conditioned on a prompt denot-
ing the instruction, and the partially generated text, the model
generates the next token autoregressively. Let VL denote the
vocabulary of the LLM and let T L denote its tokenization al-
gorithm. Since the ASR and LLMs are assumed to have been
trained independently, in general, both of these could be differ-
ent from the vocabulary V and tokenizer T of the ASR model.
At any step t of generation, let sLt,` denote the decoder output
from each layer ` 2 [1, dL] of the decoder.

For fine-tuning we are provided with a small set of labeled
audio-transcript pairs D = {(xn, yn) : n = 1 . . . N} in a
target low-resource language. We assume that the LLM has
been pre-trained with significantly more text data in the lan-
guage, compared to the speech transcription data used in the
ASR model. We present a method of verifying this assumption
before proposing to use an LLM to improve an ASR model in
Section ??. Sine the LLM is

Notations used: (this is only for our reference) The overall
trend is we use the same variables for both L and M. For M we
dont have any superscript, and for L we add L as the superscript
in the variables (inspired by notations in section 2).

1. Input audio: X = {x1, x2, . . . , xT }
2. Ground truth character sequence: C = {c1, c2, . . . , cm}
3. M encoder output: H = {h1,h2, . . . ,hT }
4. dimensionality

(a) For M: d

(b) For L: dL

5. decoder output sequence (i.e decoder states):

(a) For M: s = {s1, s2, . . . , sw}
(b) For L: sL = {sL1 , sL2 , . . . , sLl }

6. Tokenizers used

(a) For M: T with T () for encoding and T �1() for decoding
(b) For L: T L

7. decoder ground truth token sequence

(a) For M: Y = {y1, y2, . . . , yw}
(b) For M: Yinit = {y1, y2, . . . , yw0}. For whisper, w0 = 4.
(c) For L: YL = {yL

1 , yL
2 , . . . , yL

l }
8. for indexing we use the following

(a) For M: layer is indexed with ith

(b) For L: layer is indexed with j th

(c) For L: state is indexed with tth, i.e sLt,i is the tth frame in
the ith decoder layer of llama.

(d) For projection layer: rth. Also, the total number of projec-
tion layers is F .

Our proposed approach aims at learning a composite model
C that combines the representation power and language mod-
elling capability of M and L. To combine both these mod-
els, we employ a set of F projection layers that consists of

✓C learnable parameters. Each projection layer, denoted as
fc : Rd ! RdL

combines the output from every d/F th de-
coder layer of M with every dL/F th layer of L respectively 1.
Given that L is mainly responsible for generating the transcrip-
tions, the role of the rth projection layer fr

c is to incorporate
the output from the j th decoder layer of M into the output of
the ith layer of L. However, due to the mismatch in the token
vocabulary between M and L, there exists a discrepancy in the
number of decoder states used by both M and L while predict-
ing the target text. Although, a simple solution here would be to
use the last decoder state of M for every state of L, we find this
approach to be sub-optimal. In this work, our main goal is to
tightly couple both M and L together such that they can utilize
each other’s intermediate states while predicting the target se-
quence. To achieve this, during training, we use a deterministic
mapping function G, that determines which decoder state from
M, the tth state of L should attend to. The exact procedure
of generating the state mappings is described in Algorithm 1.
Broadly speaking, if Y = {y1, y2, . . . , yw} 2 is the token se-
quence used by M and YL = {yL

1 , yL
2 , . . . , yL

l } is the token
sequence used by L with T and T L being their respective tok-
enizers, then for the tth state of L responsible for predicting yL

t ,
the mapping function G(C, t) returns k if

T �1({y1, y2, . . . , yk}) = T L�1
({yL

1 , yL
2 , . . . , yL

i�1}) (1)

In simpler terms, this means that if the tth state of L is respon-
sible for generating character c, we select a state of M that is
also responsible for predicting c. It is possible that for low re-
source language, a character is tokenized into multiple tokens,
which, when used independently produce non-comprehensible
characters. We ensure that for such tokens, the corresponding
decoder states used always produces a valid sequence of char-
acters. Once we have this mapping, the integration of represen-
tation from M to L for the tth state using the projection layer
fr
c can be written as:

sLt,i = sLt,i + fr
c (sG(C,t),j) (2)

where sG(C,t),j 2 Rdw

and sLt,i 2 RdL

. This new representa-
tion is then used as input to the (v + 1)th layer of L. It is worth
noting our intervention only alters the state space of L, and no
changes are made to M. Finally, we train C using cross-entropy
loss and freeze all the parameters of both M and L, except the
parameters ✓C used by the projection layers.

The mismatch between the token vocabulary of L and M
presents a challenge for the inference algorithm. Algorithm 2
outlines the SALSA’s inference algorithm. To obtain the ini-
tial decoder states for M and L, we feed these models with
the start tokens. In each subsequent step, we first advance the
state of L by utilizing the decoder states of M. We use nucleus
sampling with topk and topp values of 10 and 0.9, in place
of greedy decoding for predicting the next token. This crucial
step in our inference algorithm helps address the issue of hal-
lucination, which is a common occurrence in such large mod-
els. The predicted token sequence is then decoded and checked
for completeness. In the case of low resource languages, the

1For simplicity, we employ a symmetric configuration where the
projection layers are placed at equal intervals. A more complex setup,
with either shared projection layers or assymetrically spaced projection
layers can also be explored.

2It is not necessary for this sequence to be the same as the one ob-
tained when ground truth text sequence is directly tokenized.

Cross-attention

Audio Projector

ASR Encoder

Text Encoder

Text Projector

<latexit sha1_base64="AEvVP94DCXVoGKEiC2sqnQ3YSdY=">AAACHHicbVBNS8NAEN3Ur1q/oh5FCBbBU0lEqseiFw8eKthaaELYbLft0s0m7E7EEnLyf3j3qn/Bm3gV/Af+DDdtDtr2wcDjvRlm5gUxZwps+9soLS2vrK6V1ysbm1vbO+buXltFiSS0RSIeyU6AFeVM0BYw4LQTS4rDgNP7YHSV+/cPVCoWiTsYx9QL8UCwPiMYtOSbh26IYUgwT28yP3WBPkJKIgESK8gy36zaNXsCa544BamiAk3f/HF7EUlCKoBwrFTXsWPwUiyBEU6zipsoGmMywgPa1VTgkCovnbyRWcda6Vn9SOoSYE3UvxMpDpUah4HuzI9Ws14uLvSCcJHcTaB/4aVMxAlQQab7+wm3ILLyqKwek5QAH2uCiWT6BYsMscQEdKA6Gmc2iHnSPq059Vr99qzauCxCKqMDdIROkIPOUQNdoyZqIYKe0At6RW/Gs/FufBif09aSUczso38wvn4BjXCjUg==</latexit>Lcontrast

ASR Decoder

(a) Training the Retriever Parameters

Ke
yw

or
d

Li
st Token

Embedding Token

Keyword Index

(b) Keyword Index Creation

<latexit sha1_base64="ug/o+4YvO8fDlFSlhETKcelqcwg=">AAACH3icbZDLSgMxGIUz9VbrrerSTbAIFUqZiFQ3QtGNCxcV7AV6GTJppg3NZIYkYynDbH0P9271FdyJ276Bj2F6WWjbA4HDOf9P+D835Exp2x5bqbX1jc2t9HZmZ3dv/yB7eFRTQSQJrZKAB7LhYkU5E7Sqmea0EUqKfZfTuju4m/T1ZyoVC8STHoW07eOeYB4jWJvIycJBJ86j8wTewKGDOqjQ4t1Aq8Kwg5z4wUGJk83ZRXsquGzQ3OTAXBUn+9PqBiTyqdCEY6WayA51O8ZSM8JpkmlFioaYDHCPNo0V2KeqHU8vSeCZSbrQC6R5QsNp+ncjxr5SI981kz7WfbXYTcKVneuvipuR9q7bMRNhpKkgs/+9iEMdwAkt2GWSEs1HxmAimTkBkj6WmGjD1KBBiyCWTe2iiErF0uNlrnw7h5QGJ+AU5AECV6AM7kEFVAEBL+ANvIMP69X6tL6s79loyprvHIN/ssa/1omhgQ==</latexit>

k(1) = w1
1, . . . , w

1
L1

<latexit sha1_base64="5VCsz4bwbtnz3zCAKYpHifsxRu4=">AAACH3icbZDLSgMxGIUz9VbrrerSTbAIFUqZEaluhKIbFxYq2Av0MmQymTY0MxmSjKUM3foe7t3qK7gTt30DH8O0nYW2PRA4nPP/hP9zQkalMs2JkVpb39jcSm9ndnb39g+yh0d1ySOBSQ1zxkXTQZIwGpCaooqRZigI8h1GGs7gbto3nomQlAdPahSSjo96AfUoRkpHdhYOunG+cj6GN3BoW91Koc1crmRh2K3Y8YNdGdvZnFk0Z4LLxkpMDiSq2tmftstx5JNAYYakbFlmqDoxEopiRsaZdiRJiPAA9UhL2wD5RHbi2SVjeKYTF3pc6BcoOEv/bsTIl3LkO3rSR6ovF7tpuLJz/FVxK1LedSemQRgpEuD5/17EoOJwSgu6VBCs2EgbhAXVJ0DcRwJhpZlqNNYiiGVTvyhapWLp8TJXvk0gpcEJOAV5YIErUAb3oApqAIMX8AbewYfxanwaX8b3fDRlJDvH4J+MyS+PjKHx</latexit>

k(M) = wM
1 , . . . , wM

LM

⋮ ⋮

⋮

Text Encoder

yu and cross-attends on the audio states h1, . . . ,hT to generate
the next token via multi-layer self-attention layers. Let d denote
the number of decoder layers. Let su,` denote the vector output
from the decoder at layer ` 2 [1, d]. The last layer is a softmax
layer that yields P (y|su,h) where y 2 V , the vocabulary of the
ASR model.

We assume the LLM model L is a decoder-only architec-
ture consisting of dL layers. Conditioned on a prompt denot-
ing the instruction, and the partially generated text, the model
generates the next token autoregressively. Let VL denote the
vocabulary of the LLM and let T L denote its tokenization al-
gorithm. Since the ASR and LLMs are assumed to have been
trained independently, in general, both of these could be differ-
ent from the vocabulary V and tokenizer T of the ASR model.
At any step t of generation, let sLt,` denote the decoder output
from each layer ` 2 [1, dL] of the decoder.

For fine-tuning we are provided with a small set of labeled
audio-transcript pairs D = {(xn, yn) : n = 1 . . . N} in a
target low-resource language. We assume that the LLM has
been pre-trained with significantly more text data in the lan-
guage, compared to the speech transcription data used in the
ASR model. We present a method of verifying this assumption
before proposing to use an LLM to improve an ASR model in
Section ??. Sine the LLM is

Notations used: (this is only for our reference) The overall
trend is we use the same variables for both L and M. For M we
dont have any superscript, and for L we add L as the superscript
in the variables (inspired by notations in section 2).

1. Input audio: X = {x1, x2, . . . , xT }
2. Ground truth character sequence: C = {c1, c2, . . . , cm}
3. M encoder output: H = {h1,h2, . . . ,hT }
4. dimensionality

(a) For M: d

(b) For L: dL

5. decoder output sequence (i.e decoder states):

(a) For M: s = {s1, s2, . . . , sw}
(b) For L: sL = {sL1 , sL2 , . . . , sLl }

6. Tokenizers used

(a) For M: T with T () for encoding and T �1() for decoding
(b) For L: T L

7. decoder ground truth token sequence

(a) For M: Y = {y1, y2, . . . , yw}
(b) For M: Yinit = {y1, y2, . . . , yw0}. For whisper, w0 = 4.
(c) For L: YL = {yL

1 , yL
2 , . . . , yL

l }
8. for indexing we use the following

(a) For M: layer is indexed with ith

(b) For L: layer is indexed with j th

(c) For L: state is indexed with tth, i.e sLt,i is the tth frame in
the ith decoder layer of llama.

(d) For projection layer: rth. Also, the total number of projec-
tion layers is F .

Our proposed approach aims at learning a composite model
C that combines the representation power and language mod-
elling capability of M and L. To combine both these mod-
els, we employ a set of F projection layers that consists of

✓C learnable parameters. Each projection layer, denoted as
fc : Rd ! RdL

combines the output from every d/F th de-
coder layer of M with every dL/F th layer of L respectively 1.
Given that L is mainly responsible for generating the transcrip-
tions, the role of the rth projection layer fr

c is to incorporate
the output from the j th decoder layer of M into the output of
the ith layer of L. However, due to the mismatch in the token
vocabulary between M and L, there exists a discrepancy in the
number of decoder states used by both M and L while predict-
ing the target text. Although, a simple solution here would be to
use the last decoder state of M for every state of L, we find this
approach to be sub-optimal. In this work, our main goal is to
tightly couple both M and L together such that they can utilize
each other’s intermediate states while predicting the target se-
quence. To achieve this, during training, we use a deterministic
mapping function G, that determines which decoder state from
M, the tth state of L should attend to. The exact procedure
of generating the state mappings is described in Algorithm 1.
Broadly speaking, if Y = {y1, y2, . . . , yw} 2 is the token se-
quence used by M and YL = {yL

1 , yL
2 , . . . , yL

l } is the token
sequence used by L with T and T L being their respective tok-
enizers, then for the tth state of L responsible for predicting yL

t ,
the mapping function G(C, t) returns k if

T �1({y1, y2, . . . , yk}) = T L�1
({yL

1 , yL
2 , . . . , yL

i�1}) (1)

In simpler terms, this means that if the tth state of L is respon-
sible for generating character c, we select a state of M that is
also responsible for predicting c. It is possible that for low re-
source language, a character is tokenized into multiple tokens,
which, when used independently produce non-comprehensible
characters. We ensure that for such tokens, the corresponding
decoder states used always produces a valid sequence of char-
acters. Once we have this mapping, the integration of represen-
tation from M to L for the tth state using the projection layer
fr
c can be written as:

sLt,i = sLt,i + fr
c (sG(C,t),j) (2)

where sG(C,t),j 2 Rdw

and sLt,i 2 RdL

. This new representa-
tion is then used as input to the (v + 1)th layer of L. It is worth
noting our intervention only alters the state space of L, and no
changes are made to M. Finally, we train C using cross-entropy
loss and freeze all the parameters of both M and L, except the
parameters ✓C used by the projection layers.

The mismatch between the token vocabulary of L and M
presents a challenge for the inference algorithm. Algorithm 2
outlines the SALSA’s inference algorithm. To obtain the ini-
tial decoder states for M and L, we feed these models with
the start tokens. In each subsequent step, we first advance the
state of L by utilizing the decoder states of M. We use nucleus
sampling with topk and topp values of 10 and 0.9, in place
of greedy decoding for predicting the next token. This crucial
step in our inference algorithm helps address the issue of hal-
lucination, which is a common occurrence in such large mod-
els. The predicted token sequence is then decoded and checked
for completeness. In the case of low resource languages, the

1For simplicity, we employ a symmetric configuration where the
projection layers are placed at equal intervals. A more complex setup,
with either shared projection layers or assymetrically spaced projection
layers can also be explored.

2It is not necessary for this sequence to be the same as the one ob-
tained when ground truth text sequence is directly tokenized.

(c) RECAST Inference

. . .

Cross-attention

h1…hT

ASR Encoder

Audio Projector

<latexit sha1_base64="9K+L6T1BcvcbkpmwZqBP18jb4i4=">AAACAnicbZDNTgIxFIXv4B/iH+rSTSMxcUVmjEGXRDcuMXGABEbSKR1oaDuTtqMhE3bu3eoruDNufRHfwMewwCwUOUmTL+fcm7YnTDjTxnW/nMLK6tr6RnGztLW9s7tX3j9o6jhVhPok5rFqh1hTziT1DTOcthNFsQg5bYWj62neeqBKs1jemXFCA4EHkkWMYGMt//He63m9csWtujOh/+DlUIFcjV75u9uPSSqoNIRjrTuem5ggw8owwumk1E01TTAZ4QHtWJRYUB1ks8dO0Il1+iiKlT3SoJn7eyPDQuuxCO2kwGaoF7OpuTQLxTK7k5roMsiYTFJDJZnfH6UcmRhNC0F9pigxfGwBE8XsFxAZYoWJsbXZarzFIv5D86zq1aq12/NK/SovqQhHcAyn4MEF1OEGGuADAQbP8AKvzpPz5rw7H/PRgpPvHMIfOZ8/trOXbw==</latexit>

w1
1

<latexit sha1_base64="/DIa+Mk9wd5I3h5nAPynwPoL7WE=">AAACAnicbZDNTgIxFIXv4B/iH+rSTSMxcUVmiEGXRDcuMXGABEbSKR1oaDuTtqMhhJ17t/oK7oxbX8Q38DEsMAsFTtLkyzn3pu0JE860cd1vJ7e2vrG5ld8u7Ozu7R8UD48aOk4VoT6JeaxaIdaUM0l9wwynrURRLEJOm+HwZpo3H6nSLJb3ZpTQQOC+ZBEj2FjLf3rwupVuseSW3ZnQMngZlCBTvVv86fRikgoqDeFY67bnJiYYY2UY4XRS6KSaJpgMcZ+2LUosqA7Gs8dO0Jl1eiiKlT3SoJn7d2OMhdYjEdpJgc1AL2ZTc2UWilV2OzXRVTBmMkkNlWR+f5RyZGI0LQT1mKLE8JEFTBSzX0BkgBUmxtZmq/EWi1iGRqXsVcvVu4tS7TorKQ8ncArn4MEl1OAW6uADAQYv8ApvzrPz7nw4n/PRnJPtHMM/OV+/uE2XcA==</latexit>

w1
2

<latexit sha1_base64="XxJGybq5u76koRCfUZk9tFQMn2E=">AAACBnicbZDLSgMxGIX/8VrrrerSTbAIrsqMSHVZdOPCQgV7kXYcMmmmDU1mhiSjlKF79271FdyJW1/DN/AxTNtZaNsDgY9z/p8kx485U9q2v62l5ZXVtfXcRn5za3tnt7C331BRIgmtk4hHsuVjRTkLaV0zzWkrlhQLn9OmP7ga581HKhWLwjs9jKkrcC9kASNYG+v+6aHqpTdedeQVinbJngjNg5NBETLVvMJPpxuRRNBQE46Vajt2rN0US80Ip6N8J1E0xmSAe7RtMMSCKjedPHiEjo3TRUEkzQk1mrh/N1IslBoK30wKrPtqNhubCzNfLLLbiQ4u3JSFcaJpSKb3BwlHOkLjUlCXSUo0HxrARDLzBUT6WGKiTXWmGme2iHlonJaccql8e1asXGYl5eAQjuAEHDiHClxDDepAQMALvMKb9Wy9Wx/W53R0ycp2DuCfrK9fTdiZcg==</latexit>

wM
LM

a1 a2 a3

ASR Decoder

a4

KNN
Search

KNN
Results

Ranking <latexit sha1_base64="r6IXpoF8o3Zp/Mz9K3bRKStut+A=">AAACBHicbZDLTgIxGIX/wRviDXXpppGY4IbMGIMuiW5cYiKXBEbSKR1oaDuTtmNCJmzdu9VXcGfc+h6+gY9hgVkocJImX875/7Q9QcyZNq777eTW1jc2t/LbhZ3dvf2D4uFRU0eJIrRBIh6pdoA15UzShmGG03asKBYBp61gdDvNW09UaRbJBzOOqS/wQLKQEWys1Ro9pmV2PukVS27FnQktg5dBCTLVe8Wfbj8iiaDSEI617nhubPwUK8MIp5NCN9E0xmSEB7RjUWJBtZ/OnjtBZ9bpozBS9kiDZu7fjRQLrccisJMCm6FezKbmyiwQq+xOYsJrP2UyTgyVZH5/mHBkIjStBPWZosTwsQVMFLNfQGSIFSbGFmer8RaLWIbmRcWrVqr3l6XaTVZSHk7gFMrgwRXU4A7q0AACI3iBV3hznp1358P5nI/mnGznGP7J+foFc5mYaA==</latexit>

k(i)

<latexit sha1_base64="Z5NemK4WDwk3urx/+a+oXY3eJQw=">AAACBHicbZDLTgIxGIX/8Yp4Q126aSQmuCEzxqBLohuXmMglgZF0SgcqbWfSdkzIhK17t/oK7oxb38M38DEsMAsFTtLkyzn/n7YniDnTxnW/nZXVtfWNzdxWfntnd2+/cHDY0FGiCK2TiEeqFWBNOZO0bpjhtBUrikXAaTMY3kzy5hNVmkXy3oxi6gvclyxkBBtrNYcPaenxbNwtFN2yOxVaBC+DImSqdQs/nV5EEkGlIRxr3fbc2PgpVoYRTsf5TqJpjMkQ92nbosSCaj+dPneMTq3TQ2Gk7JEGTd2/GykWWo9EYCcFNgM9n03MpVkgltntxIRXfspknBgqyez+MOHIRGhSCeoxRYnhIwuYKGa/gMgAK0yMLc5W480XsQiN87JXKVfuLorV66ykHBzDCZTAg0uowi3UoA4EhvACr/DmPDvvzofzORtdcbKdI/gn5+sXdTWYaQ==</latexit>

k(j)

Retrieved keywords

⋮
⋮

⋮
⋮

⋮⋮

Figure 1: Overview of RECAST. (a) Training - We train a retrieval model with contrastive loss to align keyword-level
audio and text representations in a shared embedding space. (b) Indexing - Encoded token-level keyword embeddings
are stored in an index for efficient similarity search. (c) Inference - At each decoding step, token-level KNN matches
are performed using the audio embedding, and continuous token spans forming keywords are extracted and ranked
based on similarity.

ing a sequence-to-sequence framework with atten-
tion mechanisms. The encoder first transforms the
input speech sequence x1, . . . ,xT into a sequence
of latent representations h1, . . . ,hT using architec-
tures such as RNNs (Hochreiter and Schmidhuber,
1997), Transformers (Vaswani et al., 2017), or Con-
formers (Gulati et al., 2020).

The decoder generates the output sequence au-
toregressively. At each step u, it attends to previous
tokens y1, . . . ,yu−1 and performs cross-attention
over encoder states h1, . . . ,hT to compute a con-
text vector eu. This is combined with self-attention
to update the decoder state du, which is then used
to compute the output distribution Pθ(y|du,h) via
a softmax layer. Inference typically uses beam
search to find the most likely sequence.

3 RECAST

We formalize the retrieval problem as follows. Let
D = {ỹ1, . . . , ỹN} denote a large dictionary of
keywords, where N is large. Given an audio utter-
ance x to be transcribed, the goal is to efficiently
retrieve a small subset of at most K keywords from
D that are likely to appear somewhere in x.

The key insight behind RECAST is that the de-
coder of a pretrained encoder–decoder ASR model

uses cross-attention to focus on relevant segments
of the input audio when generating each text token.
These decoder states implicitly encode fine-grained
audio–text alignment. RECAST leverages this prop-
erty by introducing a lightweight extension to the
decoder that repurposes these intermediate states
to retrieve relevant keywords from D. The ar-
chitecture and overall workflow of this retrieval-
augmented framework are illustrated in Figure 1.

Overview of RECAST The two new trainable
components we introduce are: a keyword-encoder
KEϕ and a decoder-state projector DPϕ with pa-
rameters ϕ. The keyword-encoder KEϕ converts
any keyword k to a sequence of vectors S(k) =
z1, . . . ,zlk where lk denotes the number of tokens
into which the ASR tokenizer would decompose
k. The decoder-state projector DPϕ converts at
each decoder step t, the last hidden vector of the
decoder dt into an audio snippet embedding at.
More details about estimating ϕ are in Section 3.1.
During domain-specific deployment, first given any
arbitrary list of keywords D in that domain, we
first input each keyword k ∈ D to KEϕ and get
its corresponding vector sequence. This vector
sequence is inserted into a vector search data struc-

3782

ture I. More details about constructing such an
index appear in Section 3.2. Once the index is cre-
ated, for each subsequent transcription task on an
audio x, we retrieve a short list of at most K key-
word matches from D. This retrieval is performed
auto-regressively where at each step t, the decoder
state is used as search key to probe into the I for
potential matches. The matches across multiple
consecutive decoding steps are stitched together
to obtain the short list K. More details of this re-
trieval process appears in Section 3.3. Finally, the
retrieved shortlist is used for contextual biasing
the transcription of x into the text as described in
Section 3.4.

3.1 Training the Retriever Parameters

To learn fine-grained associations between spoken
content and its textual counterpart, we train a re-
trieval model that aligns keyword-level audio and
text representations using a contrastive loss. Given
a paired example (x,y), where x = x1, . . . , xT de-
notes the input audio and y = y1, . . . , yU the corre-
sponding transcript tokens, the model is trained to
bring matching audio-text keyword representations
closer in a shared embedding space.

Keyword Extraction. From each transcript
y, we extract a set of salient keywords
{k(1), . . . ,k(r)} using KeyBERT. Each keyword
k(m) may be a single word or a multi-word phrase.
We tokenize each of these using the ASR tokenizer.
Let the resulting sequence of subword tokens be
tok(k(m)) = [w

(m)
1 , . . . , w

(m)
Lm

]. Each keyword
corresponds to a span yum , . . . , yum+Lm in the tran-
script where um denotes the start index of the m-th
keyword within the tokenized transcript y.

Text Representation. We represent each key-
word k(m) by embedding its token sequence
[w

(m)
1 , . . . , w

(m)
Lm

] through a unidirectional LSTM
encoder and then linearly projecting to obtain the
keyword embedding:

z
(m)
1 , . . . ,z

(m)
Lm

= KEϕ(w
(m)
1 , . . . , w

(m)
Lm

) (1)

Audio Representation. The corresponding au-
dio x is processed through the encoder-decoder
ASR model. At the decoding steps that produce
tokens w

(m)
1 , . . . , w

(m)
Lm

, we extract the decoder

hidden states {d(m)
ℓ+um

}Lm
ℓ=1. Each decoder state

d
(m)
ℓ+um

∈ Rdaudio is passed through a linear pro-
jection layer DPϕ : Rdaudio → Rdtext to obtain audio

embeddings:

a
(m)
ℓ+um

= DPϕ(d
(m)
ℓ+um

) (2)

Training Objective. To align audio and text rep-
resentations, we employ a token-level contrastive
loss where for each keyword token w

(m)
ℓ , we in-

crease the similarity between its contextual text
embedding z

(m)
ℓ and the audio embedding a

(m)
ℓ+um

at position ℓ + um by contrasting with two kinds
of negatives: (1) In-batch negatives, i.e., mis-
matched keyword-audio pairs (z(m)

ℓ ,a
(n)
j), and (2)

Hard-negative keyword tokens N (w
(m)
ℓ) mined as

described in Section 3.1.1 for greater contextual
awareness of text embeddings. The overall training
objective is:

max
ϕ

∑

(x,y)

∑

k(m)∈y

Lm∑

ℓ=1

log

S
(
z
(m)
ℓ ,a

(m)
ℓ+um

)
∑

(j,n)

S
(
z
(m)
ℓ ,a

(n)
j

)
+

∑

z∈N (w
(m)
ℓ)

S
(
z,a

(m)
ℓ+um

)

(3)

where S(·, ·) = exp(cosine(·, ·)/τ) denotes expo-
nentiation of cosine similarity scaled by a tempera-
ture hyper-parameter τ . This ensures that embed-
dings of corresponding audio and text tokens for
each keyword are embedded close together, facili-
tating effective cross-modal retrieval.

3.1.1 Hard Negative Mining
To enhance the discriminative power of the learned
embeddings and encourage sensitivity to left-
context in keyword representations, we incorpo-
rate hard negatives during training. For each to-
ken w

(m)
ℓ within a keyword k(m), we construct

additional negative examples N (w
(m)
ℓ) that differ

only in contextual prefix, thereby enforcing context-
aware alignment. The first type of hard negative
is constructed by identifying another keyword k(n)

that ends in the same token w
(m)
ℓ but is preceded by

a different left context. We extract the contextual
embedding z

(n)
ℓ of this token (via Equation 1) and

include it in N (w
(m)
ℓ) as a hard negative. This pe-

nalizes the model if it aligns representations of
identical tokens that appear in different contex-
tual settings. The second type of hard negative in
N (w

(m)
ℓ) is obtained by stripping the left context

of the keyword and recomputing the representation

3783

of the token w
(m)
ℓ in isolation. This ensures that

the model respects the full contextual information
present during actual decoding.

3.2 Keyword Index Creation
Once the retrieval parameters are trained, RECAST

enables contextual biasing for any set of keywords
through a one-time index creation process. This
process involves tokenizing each keyword using
the ASR tokenizer, encoding the resulting subword
tokens with the keyword encoder (KEϕ) to produce
contextualized embeddings, and storing them in a
list E along with a parallel list K that records the
originating keyword and token position. A kNN in-
dex I is then constructed from E and K, enabling
efficient similarity-based retrieval of token-level
keyword embeddings during inference. The full
procedure is provided in Appendix D.

3.3 RECAST Inference
At inference time, given an input audio x and in-
dex I, RECAST interleaves greedy ASR decoding
with token-level keyword retrieval to identify the
K keywords appearing in x.

The inference algorithm begins by initializing
the decoded transcript prefix ŷ to the empty se-
quence and the decoder state d0 to its designated
initial value (line 3). Two collections are initial-
ized: B, for active keyword hypotheses, and C, for
completed keyword matches.

During each decoding step (lines 6–32), the
model first performs greedy ASR decoding to ex-
tend the transcript by one token and updates the
decoder state accordingly (lines 7–9). The updated
state is then processed by the audio projector to
obtain an embedding au, which is used to query
the kNN index for its T̂ nearest neighbors and as-
sociated distances (lines 10–11). Each hypothesis
in B is then updated: it verifies whether its next
expected token index remains within the length of
its corresponding keyword and whether its error
count is below the threshold Emax. If the token at
position ℓ is not among the retrieved kNN neigh-
bors, the hypothesis incurs an error; otherwise, the
error count remains unchanged. In all cases, the
current similarity score is appended to the hypothe-
sis’s score list before advancing its suffix index. We
allow up to Emax such mismatches to accommo-
date discrepancies between keyword tokenization
and ASR output (lines 14–26). Hypotheses that
complete their keyword are added to C, while the
remaining hypotheses persist to the next iteration.

Algorithm 1 RECAST Inference
1: Input: Encoder Context h, Max Steps U , kNN Index I,

Audio Projector DPϕ, Neighbors T̂ , Output Count K
2: Output: transcript ŷ, top-K keywords

3: ŷ ← ⟨⟩, d0 ← init ▷ Initial decoder state
4: B ← ∅ ▷ Active hypotheses
5: C ← ∅ ▷ Completed hypotheses
6: for u = 1 to U do
7: (p(·), du)← Pθ(ŷ | du−1,h, ŷ) ▷ Decoding step
8: y∗ ← argmax p(·)
9: ŷ += y∗

10: au ← DPϕ(du)

11: (dists, {(mj , ℓj)}T̂j=1)← I.search(au, T̂) ▷ KNN
12: Bnext ← ∅
13: for all (kw,m, ℓ, err, dist_list) ∈ B do
14: if err < Emax and ℓ ≤ |k(m)| then
15: if (m, ℓ) /∈ {(mj , ℓj)}T̂j=1 then
16: err += 1 ▷ Not in T̂ , Count as Error
17: end if
18: sim← eu · I.get_embedding(m, ℓ)
19: dist_list.append(sim)
20: ℓ += 1
21: if ℓ > |k(m)| then ▷ End of Keyword
22: C.append((kw, dist_list))
23: else
24: Bnext.append((kw,m, ℓ, err, dist_list))
25: end if
26: end if
27: end for
28: B ← Bnext

29: for j = 1 to T̂ do ▷ Spawn new hypotheses
30: B.append((k(mj),mj , ℓj + 1, ℓj , [dists[j]]))
31: end for
32: end for
33: top-K ← DistanceRanker(C,K)
34: return (ŷ, top-K)

Concurrently, the algorithm spawns new hy-
potheses for each retrieved nearest neighbor (lines
29–31). Each new hypothesis encodes the keyword
from the retrieved pointer, initializes its suffix in-
dex one position beyond the matched token index,
seeds its error count to account for unmatched pre-
fix tokens, and begins its similarity list with the
retrieved distance. After completing U steps, all
entries in C are passed to DistanceRanker, which
selects the top-K keywords. The final output con-
sists of the full transcript ŷ alongside these ranked
keywords (line 33).

Ranking Algorithm for RECAST. To identify
relevant keywords for contextual ASR, we rank
candidates by combining similarity, informative-
ness, and transcript coverage. Each keyword is first
scored using average similarity between its token
embeddings and decoder states (via cosine or dot
product), then scaled by keyword length to favor

3784

longer (Wu et al., 2016), more informative terms:

scaled similarity = average similarity × |tokens|0.6

To ensure broad coverage, we enforce positional
diversity by selecting high-scoring keywords from
distinct transcript regions. Remaining slots are
filled by top-scoring keywords regardless of po-
sition. This strategy favors contextually aligned,
content-rich keywords while maintaining positional
spread. Ablations in §5.3.1 explore the impact of
length scaling and diversity constraints.

3.4 Contextual ASR with RECAST

We use RECAST to retrieve relevant keywords and
inject them into the decoder prompt of Whisper or
other speech LLMs (e.g., Phi-4), following prior
work (Li et al., 2024b; Shamsian et al., 2024). De-
coder state embeddings are used to query a precom-
puted keyword index, and the top-K ranked key-
words are formatted into a prompt. This retrieval-
augmented prompting improves grounding and dis-
ambiguation without modifying the model, enhanc-
ing ASR performance in out-of-domain settings.

4 Experimental Setup

Models and Implementation Details. We use
Whisper large-v2 (1.5B parameters) as the frozen
ASR backbone. Our retrieval model consists
of two lightweight modules: a single-layer
LSTM keyword encoder KEϕ, which projects
1024-dimensional token embeddings into a 512-
dimensional space, and a feedforward decoder-
state projector DPϕ, which maps 384-dimensional
decoder states into the same embedding space.
Combined, these modules introduce only 6.5M
additional parameters. Keyword embeddings are
precomputed and indexed to enable efficient kNN-
based retrieval during inference. Training and im-
plementation details are provided in Appendix A.1

Metrics. We evaluate RECAST primarily using
recall-based metrics to assess keyword retrieval
quality from large candidate pools. Recall@50
measures retrieval effectiveness, while Keyword
Recovery Rate (KRR) captures the proportion of
keywords missed by the baseline ASR but recov-
ered through retrieval, highlighting gains in contex-
tual recall. To assess downstream ASR impact, we
also report Word Error Rate (WER) and Entity-
WER (E-WER), the latter computed over dictio-
nary entity spans in test utterances

1Code: https://github.com/AshishMittal/Recast

Retrieval Baselines. For these baselines, we use
the 1-best ASR hypothesis and perform keyword
retrieval via fuzzy text matching. While many such
methods exist, we focus on scalable, index-based
approaches supported by Elastic Search (and its
Phonetic Analysis plugin)2. The five baselines
are: (1) Soundex. Matches exact Soundex (Knuth,
1973) codes between transcript and keywords.
(2) Metaphone. Same as above but uses Meta-
phone codes. (3) Double Metaphone. Matches
on either primary or alternate codes from Dou-
ble Metaphone (Philips, 2000). (4) NYSIIS. Uses
NYSIIS (Moore, 1977) for phonetic normalization
and exact matching. (5) BM25. Ranks keywords
using Elastic Search’s built-in BM25 based on term
frequency and document relevance.
Contextual ASR Baselines. We compare against
two contextualization methods: (1) PRISM. (Mit-
tal et al., 2023b) Synthesizes keywords via TTS,
indexes their audio & text embeddings in a kNN
key–value store, and biases the decoder by lin-
early interpolating kNN-derived probabilities dur-
ing beam-search decoding. (2) WFST Rescor-
ing. (Mohri et al., 2002; Allauzen et al., 2007) Con-
structs a dictionary WFST from the provided terms
and converts each ASR hypothesis into a linear
FST. Rescoring is then performed by composing
the two with a beam size of 20, boosting hypothe-
ses that include dictionary terms while maintaining
efficiency through finite-state composition.
Datasets. We evaluate RECAST on two bench-
marks. First, we use the entity-rich PRISM
dataset (Mittal et al., 2023b), which contains out-
of-domain utterances with named entities across
domains like people, locations, and medical terms.
Second, we use the standard LibriSpeech bench-
mark (Panayotov et al., 2015), with keyword dic-
tionaries curated from prior contextual ASR stud-
ies (Sun et al., 2021; Le et al., 2021a).

Contextual ASR Models. For contextual ASR
evaluation, we consider two state-of-the-art mod-
els: Whisper large-v2 (Radford et al., 2023) and
Phi-4 (Abouelenin et al., 2025), a recent speech-
language model (SpeechLLM). For Whisper, we
adopt the prompting strategy from Peng et al. (Peng
et al., 2023), where retrieved keywords are added

2Elastic Search: https://www.elastic.co/
elasticsearch; Phonetic Analysis plugin: https:
//www.elastic.co/docs/reference/elasticsearch/
plugins/analysis-phonetic.

3785

https://github.com/AshishMittal/Recast
https://www.elastic.co/elasticsearch
https://www.elastic.co/elasticsearch
https://www.elastic.co/docs/reference/elasticsearch/plugins/analysis-phonetic
https://www.elastic.co/docs/reference/elasticsearch/plugins/analysis-phonetic
https://www.elastic.co/docs/reference/elasticsearch/plugins/analysis-phonetic

Method
LOCATION (SMALL) LOCATION (BIG) DRUGS NAMES

Recall ↑ (KKR ↑) WER / E-WER ↓ Recall ↑ (KKR ↑) WER / E-WER ↓ Recall ↑ (KKR ↑) WER / E-WER ↓ Recall ↑ (KKR ↑) WER / E-WER ↓

Whisper Baseline 53.7 (-) 19.6 / 37.7 54.2 (-) 19.7 / 39.0 16.1 (-) 16.5 / 74.8 51.2 (-) 9.0 / 13.6

Retrieval Baselines

Soundex 74.2 (206) 13.1 / 21.1 72.9 (530) 13.8 / 23.5 50.7 (988) 14.1 / 51.2 67.5 (1167) 12.1 / 12.4

Metaphone 73.2 (196) 13.4 / 21.7 73.0 (532) 13.8 / 23.6 50.8 (991) 13.7 / 52.4 70.1 (1238) 11.7 / 12.4

Double Metaphone 75.0 (214) 12.9 / 20.3 74.3 (569) 12.2 / 22.4 53.8 (1077) 14.2 / 49.3 66.0 (1130) 11.7 / 12.3

NYSIIS 70.7 (171) 13.6 / 22.5 69.5 (434) 14.9 / 25.4 41.3 (716) 14.1 / 58.1 67.0 (1007) 12.8 / 12.6

BM25 62.8 (92) 16.1 / 28.7 61.7 (214) 17.4 / 29.0 20.8 (127) 16.2 / 72.3 49.5 (3) 9.2 / 12.6

Contextual ASR Baselines

WFST Rescoring - 18.1 / 28.0 - 19.3 / 29.8 - 17.5 / 62.3 - 12.4 / 12.3

PRISM - 13.8 / 23.1 - 17.4 / 29.0 - 14.4 / 51.9 - 11.1 / 12.7

RECAST

T̂ = 100 79.3 (266) 12.4 / 19.3 74.0 (609) 13.7 / 21.8 48.6 (994) 14.9 / 52.2 52.8 (681) 11.6 / 12.4

T̂ = 50 79.6 (267) 12.4 / 19.2 75.0 (661) 13.7 / 21.8 48.1 (1043) 14.7 / 51.4 61.6 (907) 9.7 / 12.3

T̂ = 20 82.5 (292) 11.5 / 17.2 75.6 (671) 12.4 / 20.4 55.3 (1149) 12.3 / 49.6 66.0 (1087) 9.6 / 11.6

Table 1: Comparison of performance on the Entity-rich dataset. We report Recall@50 (with Keyword Recovery
Rate, KKR, in parentheses), along with Word Error Rate (WER) and Entity-WER (E-WER), using Whisper large-v2
as the underlying ASR model.

to the decoder prompt at inference time. For Phi-
4, keywords are incorporated according to its de-
signed transcription prompt interface (Appendix
B). Additionally, we introduce a third baseline
based on LLM error correction, where the GPT-4o-
mini (Hurst et al., 2024) model is prompted with
the initial ASR prediction along with the retrieved
keywords and tasked with correcting the transcrip-
tion based on keyword grounding (Appendix C),
an approach aligned with prior work on LLM-based
ASR correction (Li et al., 2024a; Ma et al., 2025).

5 Experiments and Results

As shown in Table 1, among phonetic baselines,
Double Metaphone achieves the best performance,
improving Recall by up to 19.4% and reducing
Entity-WER by 29.3% over BM25 on the LOCA-
TION (SMALL) benchmark. On the more error-
prone DRUGS benchmark, it yields a 158.7% in-
crease in Recall and a 32.1% drop in Entity-WER
compared to BM25, demonstrating the effective-
ness of phonetic matching in noisy ASR settings.

RECAST extends these improvements further. At
its best configuration (T̂ = 20), it achieves a 10.0%
higher Recall and a 15.3% lower Entity-WER than
Double Metaphone on LOCATION (SMALL). On
the DRUGS dataset, it reduces WER by an addi-
tional 13.4%, even over the strongest phonetic base-
line. On NAMES, it matches the top recall and
achieves a 5.7% relative improvement in E-WER.

These gains, summarized in Table 1, highlight
the strength of RECAST’s contrastive retrieval ap-
proach in mitigating phonetic ambiguity and ASR
noise. As shown in Appendix E, RECAST remains

Method
test-clean test-other

Recall ↑ KKR ↑ WER ↓ Recall ↑ KKR ↑ WER ↓
/ E-WER ↓ / E-WER ↓

Whisper Baseline 89.2 - 4.2 / 10.2 79.5 - 6.7 / 10.6
Baselines

Soundex 90.9 320 3.9 / 8.5 84.34 464 6.2 / 9.2
Metaphone 90.6 309 4.0 / 9.1 83.8 436 6.4 / 9.0
Double Metaphone 91.4 365 3.7 / 8.2 85.1 499 6.1 / 8.7
NYSISS 90.0 264 4.1 / 9.7 82.7 366 6.7 / 9.2
BM25 89.2 2 4.2/10.2 79.5 2 6.7 / 10.6

RECAST

T̂ = 20 92.8 380 3.6 / 7.7 88.0 639 5.4 / 7.8

Table 2: Comparison of performance on the in-domain
LibriSpeech test-clean and test-other datasets with
1,000 distractors. We report Recall@50, Keyword Re-
covery Rate, along with Word Error Rate (WER) and
Entity-WER (E-WER), using Whisper large-v2 as the
underlying ASR model.

effective with smaller ASR models, balancing qual-
ity and efficiency. All WER gains are statistically
significant under the MAPSSWE test (p < 0.01).

While WFST rescoring yields moderate improve-
ments over the baseline, it remains significantly be-
hind RECAST in both WER and E-WER. Its effec-
tiveness is limited by the lack of diversity in beam
search outputs, where n-best lists often contain only
minor variations of the same prediction. PRISM
improves over WFST by injecting TTS-synthesized
exemplars, but scalability is a concern since synthe-
sizing and indexing thousands of entities is costly,
and decoding can be misbiased when exemplars are
acoustically mismatched. Thus, while contextual
baselines provide useful biasing signals, they re-
main constrained by limited hypothesis diversity or
reliance on audio exemplars, explaining their gap
with RECAST ’s retrieval-augmented framework.

As shown in Table 2, LIBRISPEECH serves as
our in-domain benchmark. RECAST with T̂ = 20
consistently outperforms all baselines across both

3786

test-clean and test-other. On the more challeng-
ing test-other split, it achieves a 10.3% relative
reduction in E-WER compared to the best phonetic
baseline, while improving Recall by 3.4%. On test-
clean, RECAST yields a 6.1% drop in E-WER and
the highest recall overall.

5.1 Evaluation on Hindi
To assess the effectiveness of RECAST on a linguis-
tically diverse language, we conduct experiments
on Hindi using the IndicVoices dataset (Javed et al.,
2024). Retrieval and contextual ASR evaluations
follow the same setup described in Section 4.

As the baseline Whisper large-v2 model per-
forms poorly on IndicVoices (WER: 60.0), we first
fine-tune it on the training split using LoRA (Hu
et al., 2022), reducing the WER to 28.1. All sub-
sequent RECAST training and contextual ASR ex-
periments are conducted on this LoRA-adapted
model. This setup enables fair comparison and
demonstrates the applicability of RECAST in lan-
guages with challenging tokenization characteris-
tics. Notably, since Hindi is underrepresented in
the training data of Whisper’s tokenizer, its tok-
enization quality is significantly worse than for
English. Token fertility, defined as the average
number of tokens per word, is approximately 2
for English but rises to around 6 for Hindi, result-
ing in sequences that are roughly 3× longer. This
underscores the importance of evaluating retrieval
methods in token-heavy settings.

Since no standard contextual biasing benchmark
exists for Hindi, we construct one by extracting
keywords from all test utterances and compiling
them into a dictionary of 800 entries, which serves
as the biasing list for retrieval and contextual ASR
evaluation in this experiment.

Moreover, most phonetic baselines such
as Double Metaphone (Philips, 2000) and
Soundex (Knuth, 1973) are not applicable to Hindi,
as they were primarily designed for English and
lack multilingual phonetic support. In contrast,
RECAST is inherently applicable across languages
with sufficient ASR capabilities, making it particu-
larly well-suited for multilingual scenarios.

Table 3 shows that RECAST yields substantial
relative improvements over the baseline across all
settings. At Emax = 2, recall improves by 67.4%
and E-WER is reduced by 12.7%. With Emax = 3,
the relative gains are even higher, with Recall im-
proving by 78.2% and E-WER dropping by 19.5%.
These trends highlight that, for languages with high

Method
Emax = 2 Emax = 3

Recall ↑ KKR ↑ WER ↓ Recall ↑ KKR ↑ WER ↓
/ E-WER ↓ / E-WER ↓

Baseline 43.6 - 28.1 / 43.6 43.6 - 28.1 / 43.6
RECAST (T̂ = 20) 52.6 192 27.2 / 40.4 71.5 396 26.3 / 38.2
RECAST (T̂ = 50) 66.1 322 26.4 / 38.5 75.6 479 25.9 / 37.1
RECAST (T̂ = 100) 73.0 420 26.2 / 38.1 77.7 531 25.2 / 35.1

Table 3: Performance on the Hindi contextual biasing
benchmark constructed from the IndicVoices dataset.
We report Recall@50 (with Keyword Recovery Rate,
KKR, in parentheses), along with Word Error Rate
(WER) and Entity-specific WER (E-WER) under two
matching tolerance settings: Emax = 2 and Emax = 3.
All models are evaluated using the LoRA-adapted Whis-
per large-v2 model.

Method LOCATION (SMALL) LOCATION (BIG)
WER ↓ E-WER ↓ WER ↓ E-WER ↓

Baselines
Whisper large-v2 19.6 37.7 19.7 39.0
Phi-4 21.9 42.5 18.9 41.3
GPT-4o-mini 82.5 36.8 71.7 44.5

(w/ all keywords)
RECAST (T̂ = 20)

Phi-4 (K = 10) 18.3 32.1 22.7 33.2
Phi-4 (K = 20) 20.9 33.4 25.2 33.8
Phi-4 (K = 50) 38.9 33.7 40.0 34.2
GPT-4o-mini (K = 20) 19.4 33.1 19.3 37.3
GPT-4o-mini (K = 50) 16.3 26.6 18.1 32.5
Whisper (large-v2) (K = 50) 11.5 17.2 12.4 20.4

Table 4: Ablation of contextual ASR on the Location
benchmarks: Speech LLMs (Phi-4 Multimodal Instruct,
Whisper large-v2) and text-based ASR correction by
GPT-4o-mini using keywords retrieved via RECAST.
We report WER and E-WER for all methods, with RE-
CAST varying by retrieval size (K).

token fertility, larger T̂ values are especially benefi-
cial due to longer and more fragmented entity spans.
Additionally, increasing Emax enables more toler-
ant entity matching, which is important for com-
pensating for tokenization-induced mismatches.

5.2 Using RECAST with LLMs

We evaluate the utility of RECAST beyond Whisper
prompting by using its top-K keywords to guide
two contextual ASR strategies: (1) prompting a
speech LLM (Phi-4 Multimodal Instruct), and (2)
text-based LLM error correction (Li et al., 2024a;
Ma et al., 2025) using GPT-4o-mini (Hurst et al.,
2024).

As shown in Table 4, Phi-4 hallucinates with
large keyword lists (K = 50), increasing WER and
E-WER, while smaller subsets (K = 10) improve
performance, underscoring the need for precise
keyword selection. GPT-4o-mini shows a simi-
lar trend: prompting with all keywords degrades
E-WER, whereas RECAST-selected subsets yield
consistent gains, with best results at moderate sizes
(K = 20).

3787

Method
LOCATION (SMALL) LOCATION (BIG)

Recall ↑ KKR ↑ WER ↓ Recall ↑ KKR ↑ WER ↓
/ E-WER ↓ / E-WER ↓

Average Distance 78.9 264 12.3 / 18.6 71.6 601 13.8 / 23.3
Scaled Distance 81.2 288 11.7 / 17.2 72.9 630 13.6 / 22.7
P.D & Average Distance 79.9 280 11.8 / 18.1 72.6 625 13.8 / 22.8
P.D & Scaled Distance 82.5 292 11.5 / 17.2 75.6 671 12.4 / 20.4

Table 5: Ablation of ranking strategies on the Location
benchmarks. We evaluate four rescoring methods for
top-50 candidates-Avg/Scaled Distance with or without
Positional Diversity using Recall@50, Keyword Recov-
ery Rate (KKR), WER, and E-WER.

Variant LOCATION (SMALL) LOCATION (BIG) DRUGS
WER ↓ E-WER ↓ WER ↓ E-WER ↓ Recall ↑ KKR ↑

N = 10 11.5 17.2 12.4 20.4 55.34 1149
N = 5 11.9 18.2 11.9 22.6 40.30 868
N = 0 11.9 18.3 11.9 22.6 40.20 854

Table 6: Ablation of RECAST with different numbers of
hard negatives (N).

Overall, Whisper large-v2 with K = 50 achieves
the best performance, outperforming both LLM-
based strategies. This highlights that while LLMs
offer complementary mechanisms for contextual
biasing, robust integration of retrieval signals re-
mains crucial for reliable gains.

5.3 Ablation Study

5.3.1 Analysis on Rankers

As shown in Table 5, using scaled distance nor-
malization over plain average distance improves
recall and reduces E-WER, with up to a 7.5% rel-
ative reduction. Incorporating positional diversity
further enhances both metrics, yielding up to a
10.1% relative drop in E-WER over the base aver-
age distance method. These results highlight that
combining distance scaling with positional diver-
sity is crucial for selecting more relevant keyword
candidates, leading to better retrieval quality and
improved transcription performance.

5.3.2 Impact of Hard Negative Mining

We study the role of hard negative (N) mining
in training RECAST by comparing three variants:
without N , with N = 5, and with N = 10. As
shown in Table 6, incorporating hard negatives im-
proves entity recall and keyword recovery rates,
particularly on the DRUGS dataset where phonet-
ically similar distractors are common. This indi-
cates that training with hard negatives helps the
model better distinguish relevant keywords from
acoustically confusable terms, leading to higher
retrieval quality.

Figure 2: Comparison of Real-Time Factor (RTF) versus
number of keywords for RECAST with T̂ = 20.

5.3.3 Latency
Figure 2 shows that RECAST maintains consistently
low Real-Time Factor (RTF) between 0.013 and
0.015 with T̂ = 20, even as dictionary size scales
from 1K to over 4K entities. This demonstrates
the method’s efficiency and suitability for real-time
applications requiring accurate keyword retrieval
with minimal latency. Notably, the near-constant
RTF highlights the scalability of our token-level
retrieval design, which avoids linear growth in in-
ference time. These results underscore RECAST

’s practicality for deployment in streaming ASR
systems, where both responsiveness and retrieval
quality are critical.

6 Conclusion

We introduced RECAST, a retrieval-augmented
framework for contextual ASR that leverages de-
coder states of a pretrained encoder–decoder model
to query large text-only keyword dictionaries with-
out audio exemplars. At the core of RECAST is
a contrastively trained retriever and a token-level
span aggregation algorithm that constructs and
ranks keyword hypotheses using contextual sim-
ilarity, length-based scaling, and positional diver-
sity. RECAST achieves state-of-the-art results on
in-domain and out-of-domain benchmarks for both
retrieval and contextual ASR, with substantial gains
in recognition quality. It maintains low latency de-
spite large vocabularies, owing to its lightweight
design and efficient kNN retrieval. These results
position RECAST as a scalable, accurate, and prac-
tical solution for keyword-guided speech recogni-
tion even in languages where traditional phonetic
baselines like Soundex and Double Metaphone are
ineffective. While the current setup is language-
specific, future work may explore multilingual ex-
tensions with a shared retriever.

3788

Limitations

Our current implementation of RECAST is limited
to encoder–decoder ASR models, where decoder
states offer natural alignment for contrastive train-
ing. Extending this framework to CTC or RNN-
T architectures would require estimating output
alignments and identifying appropriate intermedi-
ate representations, a direction we leave for future
work. Additionally, while our evaluation covers
dictionaries of up to 4,000 keywords, real-world
deployments may require scaling to tens of thou-
sands of entities, for which suitable benchmarks
are currently unavailable. We also note that per-
formance in specialized domains such as medicine
could further benefit from domain-specific finetun-
ing of the base ASR model, which was not feasible
due to data limitations.

Our current system performs keyword retrieval
as a separate first pass, followed by contextual ASR
in a second stage; an exciting direction for future
work is to integrate retrieval and decoding more
tightly e.g., by guiding beam search with retrieved
keywords in real time to avoid a two-stage pipeline.

While RECAST generalizes well across lan-
guages, its performance still depends on the qual-
ity of the underlying ASR backbone, which may
underperform on certain dialects or low-resource
languages.

In terms of broader implications, several risks
merit consideration. If keyword dictionaries con-
tain sensitive or personally identifiable information
(PII), there is potential for unintended exposure in
transcriptions. Furthermore, overly aggressive bi-
asing, particularly with low-precision retrieval, can
cause hallucinations or the insertion of incorrect
entities. Security concerns also arise if malicious
keyword dictionaries are introduced to manipulate
transcription output.

References
Abdelrahman Abouelenin, Atabak Ashfaq, Adam Atkin-

son, Hany Awadalla, Nguyen Bach, Jianmin Bao,
Alon Benhaim, Martin Cai, Vishrav Chaudhary, Con-
gcong Chen, and 1 others. 2025. Phi-4-mini tech-
nical report: Compact yet powerful multimodal lan-
guage models via mixture-of-loras. arXiv preprint
arXiv:2503.01743.

Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wo-
jciech Skut, and Mehryar Mohri. 2007. Openfst: A
general and efficient weighted finite-state transducer
library: (extended abstract of an invited talk). In

International Conference on Implementation and Ap-
plication of Automata, pages 11–23. Springer.

Sercan O Arik, Markus Kliegl, Rewon Child, Joel
Hestness, Andrew Gibiansky, Chris Fougner, Ryan
Prenger, and Adam Coates. 2017. Convolutional re-
current neural networks for small-footprint keyword
spotting. arXiv preprint arXiv:1703.05390.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed,
and Michael Auli. 2020. wav2vec 2.0: A framework
for self-supervised learning of speech representations.
Advances in neural information processing systems,
33:12449–12460.

Kai-Wei Chang, Haibin Wu, Yu-Kai Wang, Yuan-Kuei
Wu, Hua Shen, Wei-Cheng Tseng, Iu-thing Kang,
Shang-Wen Li, and Hung-yi Lee. 2024. Speech-
prompt: Prompting speech language models for
speech processing tasks. IEEE/ACM Transactions on
Audio, Speech, and Language Processing.

Aditya Gourav, Linda Liu, Ankur Gandhe, Yile Gu,
Guitang Lan, Xiangyang Huang, Shashank Kalmane,
Gautam Tiwari, Denis Filimonov, Ariya Rastrow, and
1 others. 2021. Personalization strategies for end-to-
end speech recognition systems. In ICASSP 2021-
2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 7348–
7352. IEEE.

Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki
Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo
Wang, Zhengdong Zhang, Yonghui Wu, and 1 oth-
ers. 2020. Conformer: Convolution-augmented
transformer for speech recognition. arXiv preprint
arXiv:2005.08100.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai,
Kushal Lakhotia, Ruslan Salakhutdinov, and Abdel-
rahman Mohamed. 2021. Hubert: Self-supervised
speech representation learning by masked prediction
of hidden units. IEEE/ACM transactions on audio,
speech, and language processing, 29:3451–3460.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, and 1 others. 2022. Lora: Low-rank
adaptation of large language models. ICLR, 1(2):3.

Rongqing Huang, Ossama Abdel-Hamid, Xinwei Li,
and Gunnar Evermann. 2020. Class lm and word
mapping for contextual biasing in end-to-end asr.
arXiv preprint arXiv:2007.05609.

Christian Huber, Juan Hussain, Sebastian Stüker, and
Alexander Waibel. 2021. Instant one-shot word-
learning for context-specific neural sequence-to-
sequence speech recognition. In 2021 IEEE Auto-
matic Speech Recognition and Understanding Work-
shop (ASRU), pages 1–7. IEEE.

3789

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow,
Akila Welihinda, Alan Hayes, Alec Radford, and 1
others. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Mahaveer Jain, Gil Keren, Jay Mahadeokar, Geoffrey
Zweig, Florian Metze, and Yatharth Saraf. 2020.
Contextual rnn-t for open domain asr. arXiv preprint
arXiv:2006.03411.

Tahir Javed, Janki Atul Nawale, Eldho Ittan George,
Sakshi Joshi, Kaushal Santosh Bhogale, Deovrat
Mehendale, Ishvinder Virender Sethi, Aparna Anan-
thanarayanan, Hafsah Faquih, Pratiti Palit, and 1 oth-
ers. 2024. Indicvoices: Towards building an inclu-
sive multilingual speech dataset for indian languages.
arXiv preprint arXiv:2403.01926.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547.

Herman Kamper, Weiran Wang, and Karen Livescu.
2016. Deep convolutional acoustic word embeddings
using word-pair side information. In 2016 IEEE in-
ternational conference on acoustics, speech and sig-
nal processing (ICASSP), pages 4950–4954. IEEE.

Donald E. Knuth. 1973. The Art of Computer Program-
ming, Volume 3: Sorting and Searching. Addison-
Wesley.

Duc Le, Mahaveer Jain, Gil Keren, Suyoun Kim,
Yangyang Shi, Jay Mahadeokar, Julian Chan, Yuan
Shangguan, Christian Fuegen, Ozlem Kalinli, and 1
others. 2021a. Contextualized streaming end-to-end
speech recognition with trie-based deep biasing and
shallow fusion. arXiv preprint arXiv:2104.02194.

Duc Le, Gil Keren, Julian Chan, Jay Mahadeokar, Chris-
tian Fuegen, and Michael L Seltzer. 2021b. Deep
shallow fusion for rnn-t personalization. In 2021
IEEE Spoken Language Technology Workshop (SLT),
pages 251–257. IEEE.

Sheng Li, Chen Chen, Chin Yuen Kwok, Chenhui Chu,
Eng Siong Chng, and Hisashi Kawai. 2024a. In-
vestigating asr error correction with large language
model and multilingual 1-best hypotheses. In Proc.
Interspeech, pages 1315–1319.

Yuang Li, Yinglu Li, Min Zhang, Chang Su, Jiawei
Yu, Mengyao Piao, Xiaosong Qiao, Miaomiao Ma,
Yanqing Zhao, and Hao Yang. 2024b. Cb-whisper:
Contextual biasing whisper using open-vocabulary
keyword-spotting. In Proceedings of the 2024 Joint
International Conference on Computational Linguis-
tics, Language Resources and Evaluation (LREC-
COLING 2024), pages 2941–2946.

Yuang Li, Min Zhang, Chang Su, Yinglu Li, Xiaosong
Qiao, Mengxin Ren, Miaomiao Ma, Daimeng Wei,
Shimin Tao, and Hao Yang. 2023. A multitask train-
ing approach to enhance whisper with contextual bi-
asing and open-vocabulary keyword spotting. arXiv
preprint arXiv:2309.09552.

Hyungjun Lim, Younggwan Kim, Kiho Yeom, Eun-
joo Seo, Hoodong Lee, Stanley Jungkyu Choi, and
Honglak Lee. 2023. Lightweight feature encoder
for wake-up word detection based on self-supervised
speech representation. In ICASSP 2023-2023 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 1–5. IEEE.

Da-Rong Liu, Chunxi Liu, Frank Zhang, Gabriel Syn-
naeve, Yatharth Saraf, and Geoffrey Zweig. 2020.
Contextualizing asr lattice rescoring with hybrid
pointer network language model. arXiv preprint
arXiv:2005.07394.

Loren Lugosch, Mirco Ravanelli, Patrick Ignoto,
Vikrant Singh Tomar, and Yoshua Bengio. 2019.
Speech model pre-training for end-to-end spo-
ken language understanding. arXiv preprint
arXiv:1904.03670.

Rao Ma, Mengjie Qian, Mark Gales, and Kate Knill.
2025. Asr error correction using large language mod-
els. IEEE Transactions on Audio, Speech and Lan-
guage Processing.

Jonathan Mamou, Bhuvana Ramabhadran, and Olivier
Siohan. 2007. Vocabulary independent spoken term
detection. In Proceedings of the 30th annual inter-
national ACM SIGIR conference on Research and
development in information retrieval, pages 615–622.

Ashish Mittal, Sunita Sarawagi, and Preethi Jyothi.
2023a. In-situ text-only adaptation of speech mod-
els with low-overhead speech imputations. In The
Eleventh International Conference on Learning Rep-
resentations.

Ashish Mittal, Sunita Sarawagi, Preethi Jyothi, George
Saon, and Gakuto Kurata. 2023b. Speech-enriched
memory for inference-time adaptation of asr models
to word dictionaries. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 14820–14835.

Mehryar Mohri, Fernando Pereira, and Michael Ri-
ley. 2002. Weighted finite-state transducers in
speech recognition. Computer Speech & Language,
16(1):69–88.

Gwendolyn B Moore. 1977. Accessing individual
records from personal data files using non-unique
identifiers, volume 13. US Department of Commerce,
National Bureau of Standards.

Tsendsuren Munkhdalai, Zelin Wu, Golan Pundak,
Khe Chai Sim, Jiayang Li, Pat Rondon, and Tara N
Sainath. 2023. Nam+: Towards scalable end-to-end
contextual biasing for adaptive asr. In 2022 IEEE
Spoken Language Technology Workshop (SLT), pages
190–196. IEEE.

Aviv Navon, Aviv Shamsian, Neta Glazer, Gill Hetz,
and Joseph Keshet. 2024. Open-vocabulary keyword-
spotting with adaptive instance normalization. In
ICASSP 2024-2024 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 11656–11660. IEEE.

3790

Vassil Panayotov, Guoguo Chen, Daniel Povey, and
Sanjeev Khudanpur. 2015. Librispeech: an asr cor-
pus based on public domain audio books. In 2015
IEEE international conference on acoustics, speech
and signal processing (ICASSP), pages 5206–5210.
IEEE.

Puyuan Peng, Brian Yan, Shinji Watanabe, and David
Harwath. 2023. Prompting the hidden talent of web-
scale speech models for zero-shot task generalization.
arXiv preprint arXiv:2305.11095.

Lawrence Philips. 2000. The double-metaphone search
algorithm. C/C++ Users Journal, pages 38–43.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2023.
Robust speech recognition via large-scale weak su-
pervision. In International conference on machine
learning, pages 28492–28518. PMLR.

Vijay Ravi, Yile Gu, Ankur Gandhe, Ariya Rastrow,
Linda Liu, Denis Filimonov, Scott Novotney, and
Ivan Bulyko. 2020. Improving accuracy of rare
words for rnn-transducer through unigram shallow
fusion. arXiv preprint arXiv:2012.00133.

Jan Robin Rohlicek, William Russell, Salim Roukos,
and Herbert Gish. 1989. Continuous hidden markov
modeling for speaker-independent word spotting. In
International Conference on Acoustics, Speech, and
Signal Processing,, pages 627–630. IEEE.

George Saon, Avihu Dekel, Alexander Brooks, Tohru
Nagano, Abraham Daniels, Aharon Satt, Ashish Mit-
tal, Brian Kingsbury, David Haws, Edmilson Morais,
and 1 others. 2025. Granite-speech: open-source
speech-aware llms with strong english asr capabili-
ties. arXiv preprint arXiv:2505.08699.

Shane Settle and Karen Livescu. 2016. Discrimina-
tive acoustic word embeddings: Tecurrent neural
network-based approaches. In 2016 IEEE spoken lan-
guage technology workshop (SLT), pages 503–510.
IEEE.

Aviv Shamsian, Aviv Navon, Neta Glazer, Gill Hetz,
and Joseph Keshet. 2024. Keyword-guided adapta-
tion of automatic speech recognition. arXiv preprint
arXiv:2406.02649.

Guangzhi Sun, Chao Zhang, and Phil Woodland. 2023.
Graph neural networks for contextual asr with the
tree-constrained pointer generator. arXiv preprint
arXiv:2305.18824.

Guangzhi Sun, Chao Zhang, and Philip C Woodland.
2021. Tree-constrained pointer generator for end-to-
end contextual speech recognition. In 2021 IEEE
Automatic Speech Recognition and Understanding
Workshop (ASRU), pages 780–787. IEEE.

George Tucker, Minhua Wu, Ming Sun, Sankaran Pan-
chapagesan, Gengshen Fu, and Shiv Vitaladevuni.
2016. Model compression applied to small-footprint
keyword spotting.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Yingzhi Wang, Abdelmoumene Boumadane, and Abdel-
wahab Heba. 2021. A fine-tuned wav2vec 2.0/hu-
bert benchmark for speech emotion recognition,
speaker verification and spoken language understand-
ing. arXiv preprint arXiv:2111.02735.

Ian Williams, Anjuli Kannan, Petar S Aleksic, David Ry-
bach, and Tara N Sainath. 2018. Contextual speech
recognition in end-to-end neural network systems us-
ing beam search. In Interspeech, pages 2227–2231.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, and
1 others. 2016. Google’s neural machine translation
system: Bridging the gap between human and ma-
chine translation. arXiv preprint arXiv:1609.08144.

Guanrou Yang, Ziyang Ma, Zhifu Gao, Shiliang Zhang,
and Xie Chen. 2024. Ctc-assisted llm-based contex-
tual asr. In 2024 IEEE Spoken Language Technology
Workshop (SLT), pages 126–131. IEEE.

Yaodong Zhang and James R Glass. 2009. Unsuper-
vised spoken keyword spotting via segmental dtw on
gaussian posteriorgrams. In 2009 IEEE Workshop
on Automatic Speech Recognition & Understanding,
pages 398–403. IEEE.

3791

https://doi.org/10.5555/349124.349132
https://doi.org/10.5555/349124.349132

A Implementation Details

Training Setup. The retrieval model is trained
on the LibriSpeech 960-hour corpus (Panayotov
et al., 2015) using the contrastive loss described
in Section 3.1. We use a batch size of 256 and a
learning rate of 1e−4, training for 6 epochs with
the AdamW optimizer. The temperature parameter
used in the contrastive loss is set to τ = 0.07. For
each keyword span, up to 10 hard negatives are
considered during training to improve contextual
discrimination. The best checkpoint is selected
based on validation accuracy.

Keyword Extraction. Bigram keywords are ex-
tracted from the capitalized LibriSpeech transcripts
using the KeyBERT3 model. These are then tok-
enized using Whisper’s vocabulary and encoded
using the keyword encoder KEϕ.

Retrieval Infrastructure. For efficient nearest-
neighbor retrieval, keyword token embeddings are
indexed using FAISS (Johnson et al., 2019). At in-
ference time, decoder state embeddings are queried
against this index to retrieve relevant token spans.

Inference Hyperparameters For all English ex-
periments, the error threshold Emax was set to 2,
and the number of nearest neighbors retrieved, T̂ ,
was set to 20.

Hardware. All experiments are conducted on
NVIDIA A100 GPUs with 40GB memory.

B Prompting Strategy for Phi-4
Multimodal Instruct Model

We employ different prompting strategies for base-
line and contextual ASR using the Phi-4 Multi-
modal Instruct model (Abouelenin et al., 2025).

Baseline Prompt. For zero-context evalua-
tion, we use a simple instruction-only prompt:
"Transcribe the audio to text."

Contextual Prompt with Retrieved Keywords.
To enable contextualization, we provide a list of rel-
evant keywords retrieved by RECAST at inference
time. The prompt is structured as:

“Transcribe the audio to text.
Transcribed text may contain the
following words: <keyword_1>,
<keyword_2>, ..., <keyword_N>."

3https://pypi.org/project/keybert/

Here, <keyword_i> denotes the i-th retrieved key-
word. This formulation allows the model to bias
transcription toward relevant entities without addi-
tional fine-tuning.

C Prompting Strategy for GPT-4o-mini
Error Correction

For ASR error correction, we use GPT-4o-mini in
a text-only setting, leveraging retrieved keywords
from RECAST to provide contextual guidance. The
prompt consists of a system instruction and a user
input, combined into a single unified prompt pre-
sented to the model:

System: You are given a set of
keywords and an ASR prediction.
Your task is to correct the ASR
transcript using the keywords as
contextual guidance. Only output
the corrected transcript. Do not
include any additional text.

User: Keywords: <keyword_1>,
<keyword_2>, ..., <keyword_N>
ASR Prediction: <asr_output>

Here, <keyword_i> denotes the i-th retrieved key-
word, and <asr_output> is the original ASR hy-
pothesis. The model is expected to return only
the corrected transcription without any additional
explanation or formatting.

D Algorithm for Keyword Index Creation

Algorithm 2 Keyword Index Creation

1: Input: Keywords {k(1), . . . ,k(M)}, Tokenizer,
keyword-encoder KEϕ

2: Output: kNN index I
3: E ← [], K ← []
4: for m = 1 to M do
5: w ← Tokenizer(k(m))

6: [z
(m)
1 , . . . , z

(m)

|w|]← KEϕ(w
(m)
1 , . . . , w

(m)

|w|) ▷ Eq. 1
7: for ℓ = 1 to |w| do
8: E.append(z(m)

ℓ) ▷ Token Embedding
9: K.append((m, ℓ)) ▷ Keyword & Token index

10: end for
11: end for
12: I ← FAISSIndex(E,K)
13: return I

E Effect of ASR Model Size on RECAST

In Section 5, RECAST is trained on Whisper
large-v2, a 1.5B parameter encoder–decoder ASR

3792

https://pypi.org/project/keybert/

Table 7: Performance comparison on the Entity-rich dataset. We report Recall@50 (with Keyword Recovery Rate,
KKR, in parentheses), Word Error Rate (WER), and Entity-specific Word Error Rate (E-WER). RECAST is trained
with different Whisper model variants, while all contextual ASR baselines use Whisper large-v2 as the underlying
ASR model.

Method
LOCATION (SMALL) LOCATION (BIG) DRUGS NAMES

Recall ↑ (KKR ↑) WER / E-WER ↓ Recall ↑ (KKR ↑) WER / E-WER ↓ Recall ↑ (KKR ↑) WER / E-WER ↓ Recall ↑ (KKR ↑) WER / E-WER ↓

Baseline

Large-v2 (1.5B) 53.7 (-) 19.6 / 37.7 54.2 (-) 19.7 / 39.0 16.1 (-) 16.5 / 74.8 51.2 (-) 9.0 / 13.6

RECAST (T̂ = 20)

Tiny (39M) 67.8 (245) 14.4 / 24.7 58.0 (602) 14.7 / 24.7 24.8 (650) 17.3 / 63.2 49.1 (742) 10.6 / 12.9

Base (74M) 69.9 (262) 12.8 / 19.7 59.6 (612) 14.5 / 24.6 25.7 (661) 16.8 / 62.6 49.6 (756) 10.6 / 12.8

Small (244M) 74.2 (270) 12.6 / 18.0 68.5 (646) 13.4 / 22.2 29.6 (692) 16.5 / 60.9 52.3 (778) 10.5 / 12.7

Medium (769M) 75.6 (279) 12.1 / 17.8 69.3 (662) 13.2 / 21.8 32.2 (726) 16.3 / 59.6 54.1 (791) 10.3 / 12.6

Large-v2 (1.5B) 82.5 (292) 11.5 / 17.2 75.6 (671) 12.4 / 20.4 55.3 (1149) 12.3 / 49.6 66.0 (1087) 9.6 / 11.6

model. To assess sensitivity to ASR backbone
size, we train RECAST on smaller Whisper variants:
medium.en (769M), small.en (244M), base.en
(74M), and tiny.en (39M), with the keyword re-
triever trained from scratch in each case. At in-
ference, retrieved keywords are passed as prompts
to Whisper large-v2 (Peng et al., 2023) to isolate
retrieval quality from decoding performance.

As shown in Table 7, we find that smaller back-
bones yield competitive performance on LOCA-
TION benchmarks (e.g., Tiny incurs only a 17.8%
relative drop in Recall on LOCATION (SMALL)
compared to Large-v2), but show larger degrada-
tions on entity-rich or ambiguity-prone datasets.
On DRUGS, the E-WER increases by 27.5% for
Tiny relative to Large-v2, while on NAMES, recall
drops by 25.6%. These results indicate that while
RECAST remains robust across model scales, larger
ASR backbones offer significant benefits for com-
plex retrieval settings. Nonetheless, smaller models
remain a viable option in resource-constrained sce-
narios or domains with fewer rare entities.

F Acknowledgment of AI Assistance

We used GPT-4o for spell checking and text editing
assistance only. All technical content and experi-
mental results were developed and written by the
authors.

3793

