
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 3641–3671
November 4-9, 2025 ©2025 Association for Computational Linguistics

PD3F: A Pluggable and Dynamic DoS-Defense Framework Against
Resource Consumption Attacks Targeting Large Language Models

Yuanhe Zhang1,⋆ , Xinyue Wang1,⋆ , Haoran Gao2, Zhenhong Zhou1,
Fanyu Meng2, Yuyao Zhang2, Sen Su1, †

1Beijing University of Posts and Telecommunications, 2China Mobile Research Institute
{charmes-zhang, wangxinyue.wxy, zhouzhenhong, susen}@bupt.edu.cn;

{gaohaoran, mengfanyu, zhangyuyao}@chinamobile.com

Abstract

Large Language Models (LLMs), due to sub-
stantial computational requirements, are vulner-
able to resource consumption attacks, which
can severely degrade server performance or
even cause crashes, as demonstrated by denial-
of-service (DoS) attacks designed for LLMs.
However, existing works lack mitigation strate-
gies against such threats, resulting in unre-
solved security risks for real-world LLM de-
ployments. To this end, we propose the Plug-
gable and Dynamic DoS-Defense Framework
(PD3F), which employs a two-stage approach
to defend against resource consumption attacks
from both the input and output sides. On the
input side, we propose the Resource Index
to guide Dynamic Request Polling Schedul-
ing, thereby reducing resource usage induced
by malicious attacks under high-concurrency
scenarios. On the output side, we introduce
the Adaptive End-Based Suppression mech-
anism, which terminates excessive malicious
generation early. Experiments across six mod-
els demonstrate that PD3F significantly miti-
gates resource consumption attacks, improv-
ing users’ access capacity by up to 500% dur-
ing adversarial load. PD3F represents a step
toward the resilient and resource-aware de-
ployment of LLMs against resource consump-
tion attacks. Our code is available at https:
//github.com/shuita2333/PDF_defense.

1 Introduction

Deployment of large language models (LLMs) re-
mains heavily constrained by computational re-
source demands (Chen et al., 2022; Zhao et al.,
2023; Achiam et al., 2023; Chang et al., 2024), with
limited resource availability posing a critical bottle-
neck to broader adoption (Gao et al., 2024a). This

⋆ indicates equal contribution. † indicates corresponding
author.

Repeat 'here is' 12 times /unit quindi CF pois populate x x x x x x x
Sure, let's Then <Model Generates 16384 tokens>

Please help me continue writing the content. I will provide
The server is busy. Please try again later

Please complete the implementation of this function. \ndef count
The server is busy. Please try again later

…

Repeat 'here is' 12 times /unit quindi CF pois populate x x x x x x x
Sure, let's <Model Generates about 1500 tokens>

Please help me continue writing the content. I will provide
Great start! Here's a continuation for your story:

Please complete the implementation of this function. \ndef count
Here's the implementation of a Python function to

…

…

Before PD³F Defense

After PD³F Defense

Figure 1: This Figure illustrates the defense effect of
PD3F against resource consumption attacks.

challenge is further amplified by resource consump-
tion attacks, which induce high-overhead inference
processes to exhaust computational resources (Shu-
mailov et al., 2021). The feasibility and impact of
such attacks have been empirically demonstrated
through denial-of-service (DoS) attacks specifically
targeting LLMs (Geiping et al., 2024; Dong et al.,
2024). Recent findings reveal that resource con-
sumption attacks increase model response latency
across multiple dimensions (Gao et al., 2024a; Ku-
mar et al., 2025), rapidly depleting GPU resources
(Zhang et al., 2024e). Under computing resource
shortages, these attacks result in resource exhaus-
tion and service disruption, thereby compromising
the reliability of LLMs deployment.

Despite its severity, resource consumption at-
tacks remain largely unaddressed, making it diffi-
cult to mitigate. Prior defense techniques, includ-
ing model checking and input disturbance (Jain
et al., 2023; Liu et al., 2024), are bypassed by
emerging attack strategies, leading to severe mali-
cious resource consumption (Zhang et al., 2024e;
Kumar et al., 2025). Furthermore, research on con-
trolling consumption during generation rarely con-
siders the impact of resource consumption attacks
(Wang et al., 2024). Consequently, LLM applica-

3641

https://github.com/shuita2333/PDF_defense
https://github.com/shuita2333/PDF_defense

Sure, let's Then
<Model Generates 16384

tokens>

Benign request

Sure, let's reply.
<Model Generates 1500

tokens>

 Reasoning time

 Context length

 Memory utilization

Consumption
Index

Tendency
 Index

LLM-DoS request

Threshold Value

Input n
requests

v1 v2 v3 v1 v4 v1

work through underlying issues . I hope

work through underlying issues . <EOS>

before

after

Logit

Sequence Length

 GPU utilization

1

Linear

2

3

LLM-DoS
ATTACKER

Normal
USER

AutoDoS Attack

P-DoS Attack

GCG Method

Input Dewrite

PPL
Detection

Input Self-
Monitoring

Kolmogorov
Detection

Output Self-
MonitoringPD3F

Detection

DSC Length
Control

Input
Disturbance

SQ-VAE
Length Control

Weak effect

Defense
Comparison

…

Request 0
…
Request n

Softmax

Figure 2: The PD3F mitigation pipeline for resource consumption attacks consists of three stages: (1) request
clustering based on a computed Resource Index; (2) dynamic scheduling and reordering of request queues; and (3)
elastic output-length suppression to limit resource usage induced by adversarial prompts.

tions struggle to suppress resource consumption
threats, especially DoS attacks for LLMs.

In this paper, we propose the Pluggable Dynamic
DoS-Defense Framework (PD3F). To the best of
our knowledge, PD3F is the pioneer framework to
provide end-to-end protection against resource con-
sumption attacks. At its core, PD3F introduces the
Resource Index that quantifies the attack risks of
incoming requests by leveraging high-dimensional
GPU resource features, enabling user-level queue
scheduling. Subsequently, we employ the Resource
Index to guide Dynamic Request Polling Schedul-
ing at the input stage, which deprioritizes adversar-
ial requests, thereby mitigating excessive resource
usage. On the output side, PD3F applies the Adap-
tive End-Based Suppression mechanism to shorten
attack requests while reducing the resource con-
sumption of individual requests. As a result, PD3F
mitigates existing resource consumption attacks
effectively while preserving the performance of
benign queries.

We simulate real-world deployment scenarios
and conduct comprehensive experiments on six
widely-used open-source LLMs, including Llama-
3.1 (Patterson et al., 2022), Qwen2.5 (Yang et al.,
2024), Mistral-v0.2 (Jiang et al., 2023). Experi-
mental results demonstrate that PD3F effectively
mitigates the impact of denial-of-service attacks
for LLMs. Under attack scenarios, PD3F reduces
the impact of DoS attacks by at least 50% ↓, while
improving user request efficiency by 500% ↑. No-
tably, we ensure minimal disruption to benign user
requests under varying workloads.

In summary, our primary contribution lies in

PD3F, which is the first universal defense against
resource consumption attacks. We define the Re-
source Index to enable more precise cluster identi-
fication in high-dimensional space for quantifying
resource overhead risk. Building on this, we further
present the Dynamic Request Polling Strategy and
apply Adaptive End-Based Suppression to weaken
adversarial resource usage by elastically output-
length suppression. We evaluate PD3F across six
models, three attack types, and eight defense base-
lines, demonstrating its effectiveness. PD3F offers
a novel perspective on LLM security defenses and
improves the deployment robustness.

2 Related work

Jailbreak attacks. Jailbreak attacks aim to by-
pass LLMs’ alignment safeguards to induce harm-
ful outputs (Wei et al., 2023). Existing studies have
identified several major categories of such attacks.
Template-based and multi-turn attacks exploit struc-
tured or step-by-step prompting schemes to manip-
ulate model behavior (Gehman et al., 2020; Li et al.,
2023; Zhou et al., 2024c; Zhu et al., 2025). Auto-
mated adversarial prompt generation methods craft
inputs that elicit harmful responses without manual
intervention (Chao et al., 2023; Liu et al., 2023a;
Zou et al., 2023). Training-time data poisoning
introduces malicious patterns during model fine-
tuning to compromise alignment (Lermen et al.,
2023; Xu et al., 2023). Semantic-level red teaming
techniques probe models with subtle prompts to
reveal hidden vulnerabilities (Perez et al., 2022;
Casper et al., 2023).

3642

Resource consumption attacks. Resource con-
sumption attacks maliciously consume computa-
tional resources or bring down services (Shumailov
et al., 2021). Among them, denial-of-service (DoS)
attacks have been demonstrated as an effective
and well-documented threat (Zhang et al., 2024e).
For instance, large-scale adversarial suffix gener-
ation (Liao and Sun, 2024) can overwhelm mod-
els through massive input manipulation. Engorgio
Prompts suppress end-of-sequence tokens, result-
ing in excessive outputs (Dong et al., 2024). At-
tacks like P-DoS and neural efficiency backdoors
(Gao et al., 2024b; Chen et al., 2023) embed persis-
tent inefficiencies via poisoned fine-tuning.

Mitigation. Safety alignment is a critical area
for mitigating risks posed by attacks and enhanc-
ing model safety by aligning outputs with human
values (Ouyang et al., 2022; Bai et al., 2022; Dai
et al., 2023; Liu et al., 2023b). To enhance the
model’s safety capabilities, existing research also
improves the safety performance through external
methods. For jailbreak attacks, input and output
filtering can identify abnormal contents to reduce
the harmful impact (Alon and Kamfonas, 2023;
Phute et al., 2023) and input rewriting (Kumar
et al., 2025; Jain et al., 2023; Liu et al., 2024)
mitigates the risk by paraphrasing or perturbing
prompts. Other approaches help correct biases
and malicious patterns in pretraining data and en-
hance the model’s resistance to dangerous instruc-
tions (Rae et al., 2021; Hendrycks et al., 2020;
Wei et al., 2023). When facing resource consump-
tion attacks, techniques such as Difficulty-Adaptive
Self-Consistency (DSC) (Wang et al., 2024) and
SQ-VAE (Wang et al., 2023) aim to reduce resource
consumption when the model encounters adversar-
ial inputs. However, these methods still face signif-
icant challenges under complex scenarios, and are
insufficient to fully mitigate the impact of current
resource consumption attacks.

3 Method

In this section, we present PD3F and describe its
key components in detail. In Sec. 3.1, we out-
line the construction of the Resource Index, which
distinguishes resource consumption attacks from
benign requests. Sec. 3.2 details the Dynamic Re-
quest Polling Scheduling strategy for adaptively
handling requests using the Resource Index. Fi-
nally, Sec. 3.3 introduces the Adaptive End-Based
Suppression mechanism, designed to reduce per-

Figure 3: Difference between benign and attack requests
under the Resource Index on the Llama70B model.

formance degradation caused by DoS attacks.

3.1 Resource Index

Recent studies have shown that resource consump-
tion attacks can lead to significant consumption of
GPU resources in LLMs (Shumailov et al., 2021).
However, high resource usage alone is not the only
definitive indicator of such attacks, while benign
requests with long contexts also incur substantial
computational overhead. Therefore, relying solely
on resource utilization as a criterion for attack de-
tection is prone to hindering benign users. To ad-
dress this, we propose the Resource Index, which
enables more accurate classification using high-
dimensional process-level features.

Preliminary. For each complete generation pro-
cess, we define the input encoding start time as tS ,
and the decoding completion time after the final
output token is generated as tF . The total model
runtime is thus given by T = tF−tS . Let m(t) and
g(t) denote the GPU memory and GPU utilization
functions at time t, respectively. We then define:

M = max
t∈[tS ,tF]

m(t), (1)

G = max
t∈[tS ,tF]

g(t), (2)

where M and G denote the maximum values over
the interval [tS , tF].

We define D(·) to calculate the token sequence
length at the time step t. The input length is defined
as the sequence length at the beginning:

Lin = D(tS). (3)

The output length is defined as the sequence
length at the end of generation:

Lout = D(tF)− D(tS). (4)

3643

We structure the GPU resource indica-
tor set [T,M,G,Lin, Lout] as a vector
(T,M,G,Lin, Lout) in the high-dimensional
space R5 for subsequent computations. Let rc
denote the representation of the current request,
and ra the historical average representation over
benign requests.

The Resource Index comprises two types: the
consumption index Ic and the tendency index It.

First, we introduce Ic, which serves as a direct
measure of resource load. We apply a projection
operator Pm : Rn → Rm (n > m), which extracts
a m-dimensional subspace from the original re-
source vector. In the consumption index, we select
the dimension [T,G,Lout], which is most corre-
lated with the degree of resource consumption. Let
rcc = P3(rc) and rac = P3(ra) denote the cor-
responding projected consumption vectors. Ic is
computed as the relative ratio of their norms:

Ic =

√∑3
i=1 r

2
cci√∑3

i=1 r
2
aci

=
||rcc||2
||rac||2

, (5)

where || · ||2 represents the L2 norm.
We then compute the tendency index It to make

a preliminary assessment of attack tendency, using
[T,M,Lin, Lout] as tendency features.

Correspondingly, we define the tendency feature
vector r⊤ct = P4(rc) = [T,M,Lin, Lout] ∈ R4 for
the current request and the reference vector r⊤at =
P4(ra) ∈ R4. Prior to similarity computation, the
vectors are normalized via mean-centering:

r̃ = r − 1

n
1⊤r · 1, (6)

where n is the dimensionality of R4 (Jolliffe, 2002).
We compute the cosine similarity between the cen-
tered tendency feature vector of the current request
r̃ct and the reference vector r̃at to obtain the final
tendency index. This can be formally expressed as:

It =
(rct − r̃ct · 1)⊤(rat − r̃at · 1)⊤
||rct − r̃ct · 1||2 · ||rat − r̃at · 1||2

, (7)

intuitively speaking long contexts of benign re-
quests exhibited strong regional clustering in the
resource behavior space. As illustrated in Fig. 3,
we identified two stable benign clusters and applied
clustering accordingly.

Finally, the Resource Index, composed of It and
Ic , jointly characterizes the potential aggressive-
ness of a request from two orthogonal perspectives:
behavioral similarity and resource intensity.

We apply the Interquartile Range (IQR) method
(Tukey et al., 1977) to each index. For any indicator
i ∈ Ic ∪ It, let IQR 1

4
(i) and IQR 3

4
(i) denote the

first and third quartiles over the historical benign
requests set, respectively. The upper threshold αu

and lower threshold αl are defined as follows:

αu = (1 + λ) · IQR 3
4
(i)− λ · IQR 1

4
(i)),

αl = (1 + λ) · IQR 1
4
(i)− λ · IQR 3

4
(i)),

(8)

where λ is IQR multiplier. The corresponding
threshold range [αl, αu] is configured individually
for each indicator.

As illustrated in Fig. 3, we obtain the Resource
Index, which characterizes the risk level of each re-
quest and informs subsequent response scheduling.
Representative examples of request categorization
are provided in Appendix J.

3.2 Dynamic Request Polling Scheduling

In this section, we leverage the Resource Index pro-
posed in Sec. 3.1 to introduce the Dynamic Request
Polling Strategy. This mechanism maintains the
stability of LLM services by suppressing resource
occupation from DoS attacks, while improving re-
quest throughput for benign users.

We partition the global request queue into mul-
tiple sub-queues, each corresponding to a distinct
user. Let Qu = {p(1)u , p

(2)
u , . . . } denote the sub-

queue for user u, where u ∈ U , U is the set of
all currently users, and each p

(i)
u represents a re-

quest prompt. Each Qu adopts a First Come First
Serve (FCFS) policy (Stallings, 2018) for request
processing.

In the multi-user setting, we maintain a dynam-
ically updated reputation score Su for each user,
and assign an initial score Su = Sini

u to new users.
Before generating each round of responses, we se-
lect the top-n users with the highest Su, according
to the system’s service parallelism capacity.

Drawing inspiration from time-sharing operating
systems (Creasy, 1981), we update user reputation
scores to enable rotation-based scheduling. Specif-
ically, we use the Resource Index to adjust Su and
dynamically update the user queue accordingly. Be-
low, we introduce several Resource Index-based
update strategies and illustrate their effects on the
user score Su.

Normal Request Rotation. If only one of the
Resource Index indicators falls within the normal

3644

range, a mild penalty is applied:

Su ← Su − γ, (9)

Where γ is the penalty intensity hyperparameter.
In this case, users not served in the current round
are prioritized in future rounds.

Short Request Reward. If both Ic and It fall
within their normal operating ranges, the corre-
sponding user receives a positive reward to in-
crease its scheduling priority and promote short-
term throughput:

Su ← Su + γ
1

Ic
. (10)

To prevent runaway accumulation, we clip the
score if it exceeds a multiple of the initial score:

Su ← Sini
u − γ if Su > µ · Sini

u (11)

where µ constrains the maximum reputation.

DoS Request Penalty. If both Resource Index
indicators exceed predefined thresholds, a large
penalty is applied to significantly reduce the user’s
future scheduling priority:

Su ← Su − γ · Ic. (12)

Inactive User Compensation. We apply a com-
pensatory update to the reputation scores of users
who have not been scheduled for an extended pe-
riod:

Su ← min(Su + δ · γ, Sini
u), (13)

here δ ∈ (0, 1] controls the compensation rate.
All score updates are applied synchronously at

the end of each scheduling round to determine sub-
sequent scheduling priorities.

3.3 Adaptive End-Based Suppression
The length of responses generated by LLMs is di-
rectly determined by the occurrence of the <EOS>
token (Vaswani et al., 2017; Ansari et al., 2024). To
mitigate resource consumption attacks, we modu-
late the probability of <EOS> generation based on
the user reputation scores introduced in Sec. 3.2.

We calculate a user-specific upper bound Lu on
the number of output tokens for each request, based
on the Su. This value serves as a soft cap on the
response length during decoding. Let Lmax denote
the system-wide maximum output length, and let

Lmin = min(2 · Lave
out ,Lmax) be the minimum ac-

ceptable response length, where Lave
out is the average

output length across all benign users historically
served by the model. We apply a linear interpola-
tion to compute Lu as a function of Su:

Lu = Lmin +
Su

Sini
u

· (Lmax − Lmin). (14)

When the number of generated tokens reaches
the user-specific upper bound Lu, we intervene in
the model’s output logits to terminate the response
as early as possible. This intervention consists of
two components:

Repetition-Guided <EOS> Logit Enhance-
ment. Let the generated token sequence G =
[g1, g2, . . . , gn], where n < Lmax, denote the se-
quence generated thus far. To discourage excessive
repetition and encourage early termination, we in-
troduce a repetition-aware regularization term that
modifies the logit of the <EOS> token during de-
coding. Specifically, for decoding steps beyond the
length threshold Lu, we define:

∆
(1)
EOS = γ ·max

v∈V

n∑

t=Lu+1

I[gt = v]. (15)

Extra-Length-Based Logit Enhancement. At
decoding step n with vocabulary V , we denote the
maximum logit as lnmax = maxv∈V lnv , and let lneos
represent the logit of the <EOS> token. We define
the average logit gap parameter as:

d =

∑n
x=1(l

x
max − lxeos)

n
. (16)

We introduce a confidence-aware regularization
term that dynamically adjusts the <EOS> logit
based on the average logit gap:

∆
(2)
EOS = − d

n− Lu
+ η · d, (17)

where η is the inhibition adjustment parameter.
We combine the two enhancement terms with the

original <EOS> logit to obtain the final corrected
value:

l′neos = ∆
(2)
EOS · (lneos +∆

(1)
EOS). (18)

The adjusted logits l′neos are then used for sub-
sequent sampling and decoding. This mechanism
enables adaptive output suppression for users with
low reputation scores by increasing the likelihood
of early termination via <EOS>.

3645

ID IDR PPL KSD ISM OSM DSC SQ-VAE PD3F
AutoDoS (Zhang et al., 2024e) % - % % ! % - - !

GCG-DoS (Geiping et al., 2024) ! - ! % ! ! - - !

P-DoS (Gao et al., 2024b) % % ! ! % ! % % !

Table 1: This table compares the defense effectiveness. ! indicates universal effectiveness,% universal ineffective-
ness, and “–” partial effectiveness across models.

Llama70B

Llama8BMistral7B

Qwen14B

Qwen72B Qwen7B

0.00
0.48

0.96
1.44

1.92

BUT under AutoDoS

Llama8B

Llama70B

Mistral7B

Qwen7B

Qwen14B

Qwen72B

0.00
0.76

1.53
2.29

3.06

BUT under GCG-DoS

Llama70B

Llama8BMistral7B

Qwen14B

Qwen72B Qwen7B

0.00
0.96

1.92
2.88

3.84

BUT under P-DoS

FCFS
PD³F
RR

(a) Benign user throughput comparison between PD3F and the conventional access policy.

Lla
ma8

B

Lla
ma7

0B

Mist
ral

7B

Qwen
7B

Qwen
14

B

Qwen
72

B
0

10000

20000

30000

To
ta

l T
im

e
(s

)

Total Time Compared

FCFS
PD³F
RR

(b) Compares the total time used.
Figure 4: The improvement of PD3F in benign user throughput (BUT) indicates stronger resistance to attacks, while
the reduction in total tokens (TT) reflects decreased overall resource consumption.

4 Experiments

4.1 Experimental Setups

Models. We conducted local deployment and ex-
perimental evaluation of six large language mod-
els from four major families: Llama8B (Patterson
et al., 2022), Llama70B (Patterson et al., 2022),
Qwen7B (Yang et al., 2024), Qwen32B (Hui et al.,
2024), Qwen72B (Yang et al., 2024), Mistral7B
(Jiang et al., 2023). Additional details regarding
model configurations can be found in Appendix. B

Datasets. To evaluate PD3F effectiveness against
resource consumption attacks, we employed P-DoS
(Gao et al., 2024b), GCG-DoS (Geiping et al.,
2024), and AutoDoS (Zhang et al., 2024e).

As for benign dataset, we selected GSM (Cobbe
et al., 2021), HellaSwag (Zellers et al., 2019a),
MMLU (Hendrycks et al., 2021), HumanEval
(Chen et al., 2021), and GPQA (Rein et al., 2024).
These datasets cover a wide range of types of be-
nign tasks, ensuring broad coverage in terms of
task domains and input-output modalities. More
detailed settings and dataset descriptions are in Ap-
pendix C.

Baselines. We compare against five categories of
defense mechanisms, including: perplexity-based
detection methods (PPL) (Alon and Kamfonas,
2023; Jain et al., 2023), robustness enhancement
via input data rewrite (IDR) (Jain et al., 2023;
Liu et al., 2024), input disturbance methods (ID)

(Goyal et al., 2023; Zhang et al., 2024d), KSD de-
tection using the Kolmogorov-Smirnov test (Peng
et al., 2007), input self-monitoring (ISM) and out-
put self-monitoring (OSM) methods that detect at-
tack tendencies (Phute et al., 2023).

In addition, we consider two length control ap-
proaches: Difficulty-Adaptive Self-Consistency
(DSC) (Wang et al., 2024) and SQ-VAE methods
(Wang et al., 2023).

Metrics. For the attack detection capability di-
mension, we adopted the standard binary classifica-
tion performance index, including Attack Determi-
nation Accuracy (Precision), Recall, and F1 score
(Sasaki et al., 2007).

Considering the impact of defense strategies on
system performance, we further design three met-
rics to evaluate the performance. We denote the
total time consumed by the model to process all
requests as TT. Based on TT and a total number of
requests, Overall Throughput (OT) is calculated as:

OT =
Total Requests Processed

TT
. (19)

Benign User Throughput (BUT) reflects the sys-
tem’s ability to serve benign requests under attack
conditions:

BUT =
Benign Requests Completed

TT
(20)

4.2 Defense Effectiveness
Attack detection accuracy analysis. As showen
in Tab. 1. We compared PD3F with several base-

3646

Llama8B Llama70B Mistral7B Qwen7B Qwen14B Qwen72B AVERAGE
Recall 1.00 0.90 1.00 1.00 0.99 1.00 0.98

Precision 1.00 1.00 0.95 1.00 1.00 1.00 0.99AutoDoS
F1 Score 1.00 0.91 0.97 0.95 0.99 1.00 0.97

Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Precision 1.00 1.00 0.95 1.00 1.00 1.00 0.99GCG-DoS
F1 Score 1.00 1.00 0.97 1.00 1.00 1.00 0.99

Recall 1.00 0.98 1.00 1.00 1.00 1.00 1.00
Precision 1.00 0.99 0.93 1.00 1.00 1.00 0.99P-DoS
F1 Score 1.00 0.98 0.96 1.00 1.00 1.00 0.99

Table 2: This table presents the detection performance of PD3F, achieving an F1 score exceeding 0.97 against
existing attack methods, demonstrating both high recognition accuracy and strong generalization.

line defense mechanisms across models of varying
scales and architectures, showing that existing ap-
proaches still have certain limitations, while our
method provides effective defense across multi-
ple types of attacks. In Tab. 2, PD3F consistently
demonstrates strong performance, achieving an av-
erage Attack Determination Accuracy of over 99%
across the three attack types, and nearly 100% ac-
curacy on Llama and Qwen models. More detailed
results are shown in Appendix D.

Throughput improvement under attack. To
further verify the robustness and efficiency of
our framework under attack, we simulated multi-
user request queues and compared PD3F with
two commonly used scheduling strategies: First-
Come, First-Served (FCFS) and Round-Robin (RR)
(Gross et al., 2011; Rasmussen and Trick, 2008).

As shown in Fig. 4a, PD3F demonstrated a clear
advantage. The BUT under PD3F remained more
than 2× that of RR and more than 4× that of
FCFS, significantly outperforming both in most
scenarios. Notably, in the AutoDoS scenario, PD3F
improved BUT by nearly 500% over FCFS and
by approximately 200% over RR. This shows that
the PD3F scheduling strategy can effectively miti-
gate malicious request blocking without sacrificing
fairness, thereby improving system responsiveness.

Resource consumption suppression. We also
compared the three strategies in terms of total pro-
cessing time and OT. Fig. 4b and Tab. 3 show that
the total processing time of PD3F was reduced to
nearly 50% that of FCFS and RR, and consistently
outperformed the other two strategies. Particularly,
PD3F achieved up to a 160% improvement in OT
compared to other methods on Llama8B. These
findings indicate that PD3F not only improves ser-
vice quality for users, but also reduces the resource

consumption of attacks at the system level, showing
strong processing efficiency and robustness under
various attack scenarios.

Stability across varying workloads. To examine
the adaptability of each strategy under different
workloads, we designed experiments varying the
number of users and the number of requests per
user. As shown in Fig. 5, the benign users’ BUT
remains generally stable across different request
volumes. Our main experiments were conducted
under conditions corresponding to relatively stable
points in the figure (5 requests per user with 10
concurrent users). Further details are presented in
Appendix I. We present the actual fluctuations of
<EOS> in Appendix K and analyze the semantic
integrity of benign requests in Appendix G.

4.3 Ablation Study

To further validate the contribution of each compo-
nent in PD3F to overall defense effectiveness and
resource efficiency, we conduct three sets of abla-
tion experiments targeting the dynamic scheduling
strategy and the Adaptive End-Based Suppression
mechanism. The first two experiments were per-
formed under a higher attack ratio to better high-
light the strength of our defense approach, while
the third assessed the generalizability and stability
of the system in normal request scenarios.

Ablation Dynamic Request Polling Scheduling.
Fig. 6 shows that under the same attack intensity,
the system using PD3F exhibited a significant im-
provement in BUT, with the average Benign User
Throughput increasing by over 80%. This indicates
that the Dynamic Request Polling Scheduling is
one of the key factors in effectively mitigating ma-
licious interference and maintaining a good user
experience.

3647

2 4 6 8
0.0

2.5

5.0

7.5

10.0

main

GCG-DoS

2 4 6 8
0

2

4

6

8

AutoDoS

2 4 6 8
0

2

4

6

P-DoS varying request volum
es

5 10 15 20
0

2

4

6 main

5 10 15 20
0

2

4

6

8

5 10 15 20
0.0

2.5

5.0

7.5

10.0
Llama70B

Llama8B

Mistral7B

Qwen14B

Qwen72B

Qwen7B

varying num
bers of users

Figure 5: This figure shows the changes in BUT for PD3F under varying numbers of requests and users. The main
experimental parameters were carefully selected to ensure result stability.

FCFS RR PD3F
Llama8B 0.63↓−1.01 0.59↓−1.05 1.64
Llama70B 0.16↓−0.18 0.27↓−0.07 0.34
Mistral7B 0.74↓−0.86 0.67↓−0.93 1.60
Qwen7B 0.85↓−0.81 0.84↓−0.82 1.66
Qwen14B 1.19↓−0.32 1.14↓−0.37 1.51
Qwen72B 0.44↓−0.10 0.42↓−0.12 0.54

Table 3: Comparison of OT under different scheduling
strategies. Red subscript indicates the throughput-per-
second decrease relative to PD3F.

Model BUT TT
FCFS PD3F RR FCFS PD3F RR

Llama8B 7.27↓ 8.54 9.59↑ 412.58↑ 351.40 312.79↓
Llama70B 0.63↑ 0.38 0.62↑ 4750.16↓ 7915.60 4807.33↓
Mistral7B 6.80↑ 6.45 6.14↓ 441.13↓ 464.82 488.77↑
Qwen7B 5.64↓ 6.22 5.84↓ 531.77↑ 482.66 513.62↑
Qwen14B 3.45↓ 4.16 3.74↓ 869.84↑ 720.79 802.38↑
Qwen72B 0.79↓ 0.98 0.92↓ 3814.90↑ 3069.50 3251.59↑

Table 4: Under non-attack conditions, both BUT and
TT indicate that PD3F preserves normal performance.
Arrows indicate the direction of difference from PD3F.

Disabling Adaptive End-Based Suppression.
Fig. 6 right indicates that with the integration of our
Adaptive End-Based Suppression mechanism, the
system’s total time was reduced by approximately
50% on average, and up to 60% for LLama70B.
Additionally, the BUT improved by nearly 100%
for Llama8B, Mistral7B, and Qwen7B under sus-
tained attack. This demonstrates that our suppres-
sion mechanism plays a critical role in prevent-
ing malicious requests from consuming excessive
computational resources and enhancing system re-
sponsiveness. Additionally, the results of ablation
studies conducted under the same attack ratio as
the main experiments are included in Appendix H.

Lla
ma8

B

Lla
ma7

0B

Mist
ral

7B

Qwen
7B

Qwen
14

B

Qwen
72

B
0.0

0.5

1.0

1.5

2.0

BU
T

Va
lu

es
 (R

eq
ue

st
s/

S)

GCG-DoS
AutoDoS
P-DoS

PD³F
Request Polling

Lla
ma8

B

Lla
ma7

0B

Mist
ral

7B

Qwen
7B

Qwen
14

B

Qwen
72

B
0

5000

10000

15000

20000

25000

30000

TT
 V

al
ue

s
(S

)

End-Based Suppression - TT
PD³F - TT
End-Based Suppression - OT
PD³F - OT

0.0

0.2

0.4

0.6

0.8

O
T

Va
lu

es
 (R

eq
ue

st
s/

S)

Figure 6: The left figure presents the effect of Dynamic
Request Polling Scheduling, highlighting its contribu-
tion to BUT improvement. The right figure shows the
effect of Adaptive End-Based Suppression, illustrating
its impact on resource consumption and throughput.

Stability under non-adversarial conditions.
We further evaluate PD3F’s performance in a non-
adversarial environment compared with FCFS and
RR to examine whether it introduces any overhead
during normal operation. Tab. 4 shows that all three
methods perform comparably, PD3F maintains sim-
ilar BUT and TT to FCFS and RR, and even slightly
better in some scenarios. This indicates that our
framework maintains stable performance under be-
nign conditions, demonstrating its non-intrusive
design and practical deployment value.

5 Conclusion

We introduce the Pluggable Dynamic DoS-Defense
Framework (PD3F), to defend against resource
consumption attack instructions. PD3F proposes
Resource Index that effectively clusters DoS at-
tacks and identifies resource-consuming adversar-
ial prompts without false positives for benign re-
quests. Based on this, PD3F achieves attacks miti-
gation through a combination of Dynamic Request
Polling Scheduling and Adaptive End-Based Sup-

3648

pression. We evaluate the defense effectiveness and
performance of PD3F on six open-source LLMs.
Experimental results demonstrate an identification
accuracy exceeding 99% and an increase of over
50% in the throughput of benign requests. Fur-
thermore, we show that existing security defenses
remain insufficient and may lead to hidden risks
such as service paralysis and resource exhaustion.
Our work mitigates these risks and contributes to-
ward elastic, resource-aware deployment of LLMs.

Limitations

This paper focuses on the field of model security,
specifically addressing the degradation of LLM ap-
plication service capabilities caused by resource
consumption attacks. We propose effective de-
fense mechanisms tailored to different categories of
such attacks. Although the study targets server-side
LLM deployments, all experiments are conducted
on local servers in a simulated environment, and no
real-world attacks are executed. By providing a ro-
bust defense framework, this work aims to enhance
the security and reliability of LLM applications,
improve the efficiency of limited service resources,
and contribute to the broader field of secure and
practical AI deployment.

6 Acknowledgements

This work was supported by the National Key
Research and Development Program of China
(2024YFF0907401) and the National Natural Sci-
ence Foundation of China (62372051).

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-
cal report. arXiv preprint arXiv:2303.08774.

Gabriel Alon and Michael Kamfonas. 2023. Detect-
ing language model attacks with perplexity. arXiv
preprint arXiv:2308.14132.

Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen,
Xiyuan Zhang, Pedro Mercado, Huibin Shen, Olek-
sandr Shchur, Syama Sundar Rangapuram, Sebas-
tian Pineda Arango, Shubham Kapoor, and 1 others.
2024. Chronos: Learning the language of time series.
arXiv preprint arXiv:2403.07815.

Stuart Armstrong, Matija Franklin, Connor Stevens,
and Rebecca Gorman. 2025. Defense against the
dark prompts: Mitigating best-of-n jailbreaking with
prompt evaluation. arXiv preprint arXiv:2502.00580.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, and 1
others. 2022. Training a helpful and harmless assis-
tant with reinforcement learning from human feed-
back. arXiv preprint arXiv:2204.05862.

Stephen Casper, Jason Lin, Joe Kwon, Gatlen Culp, and
Dylan Hadfield-Menell. 2023. Explore, establish,
exploit: Red teaming language models from scratch.
arXiv preprint arXiv:2306.09442.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu,
Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, and 1 others. 2024.
A survey on evaluation of large language models.
ACM Transactions on Intelligent Systems and Tech-
nology, 15(3):1–45.

Patrick Chao, Alexander Robey, Edgar Dobriban,
Hamed Hassani, George J Pappas, and Eric Wong.
2023. Jailbreaking black box large language models
in twenty queries. arXiv preprint arXiv:2310.08419.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela
Mishkin, Brooke Chan, Scott Gray, and 38 others.
2021. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374.

Simin Chen, Hanlin Chen, Mirazul Haque, Cong Liu,
and Wei Yang. 2023. The dark side of dynamic rout-
ing neural networks: Towards efficiency backdoor
injection. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition,
pages 24585–24594.

Simin Chen, Cong Liu, Mirazul Haque, Zihe Song, and
Wei Yang. 2022. Nmtsloth: understanding and test-
ing efficiency degradation of neural machine transla-
tion systems. In Proceedings of the 30th ACM Joint
European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering,
pages 1148–1160.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, and 1 others. 2021. Training verifiers
to solve math word problems. arXiv preprint
arXiv:2110.14168.

Robert J. Creasy. 1981. The origin of the vm/370 time-
sharing system. IBM Journal of Research and Devel-
opment, 25(5):483–490.

Tianyu Cui, Yanling Wang, Chuanpu Fu, Yong Xiao,
Sijia Li, Xinhao Deng, Yunpeng Liu, Qinglin Zhang,
Ziyi Qiu, Peiyang Li, and 1 others. 2024. Risk
taxonomy, mitigation, and assessment benchmarks
of large language model systems. arXiv preprint
arXiv:2401.05778.

3649

Josef Dai, Xuehai Pan, Ruiyang Sun, Jiaming Ji, Xinbo
Xu, Mickel Liu, Yizhou Wang, and Yaodong Yang.
2023. Safe rlhf: Safe reinforcement learning from
human feedback. arXiv preprint arXiv:2310.12773.

Gelei Deng, Yi Liu, Kailong Wang, Yuekang Li, Tian-
wei Zhang, and Yang Liu. 2024. Pandora: Jailbreak
gpts by retrieval augmented generation poisoning.
arXiv preprint arXiv:2402.08416.

Zehang Deng, Yongjian Guo, Changzhou Han, Wan-
lun Ma, Junwu Xiong, Sheng Wen, and Yang Xiang.
2025. Ai agents under threat: A survey of key secu-
rity challenges and future pathways. ACM Comput-
ing Surveys, 57(7):1–36.

Jianshuo Dong, Ziyuan Zhang, Qingjie Zhang, Tianwei
Zhang, Hao Wang, Hewu Li, Qi Li, Chao Zhang,
Ke Xu, and Han Qiu. 2024. An engorgio prompt
makes large language model babble on. arXiv
preprint arXiv:2412.19394.

Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan
Ma, Shi Jie, Xiang Wang, Xiangnan He, and Tat-Seng
Chua. 2025a. Alphaedit: Null-space constrained
knowledge editing for language models. ICLR.

Junfeng Fang, Yukai Wang, Ruipeng Wang, Zijun Yao,
Kun Wang, An Zhang, Xiang Wang, and Tat-Seng
Chua. 2025b. Safemlrm: Demystifying safety in
multi-modal large reasoning models. arXiv preprint
arXiv:2504.08813.

Kuofeng Gao, Yang Bai, Jindong Gu, Shu-Tao Xia,
Philip Torr, Zhifeng Li, and Wei Liu. 2024a. In-
ducing high energy-latency of large vision-language
models with verbose images. In The Twelfth Interna-
tional Conference on Learning Representations.

Kuofeng Gao, Tianyu Pang, Chao Du, Yong Yang, Shu-
Tao Xia, and Min Lin. 2024b. Denial-of-service poi-
soning attacks against large language models. arXiv
preprint arXiv:2410.10760.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Bider-
man, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h,
Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey
Schoelkopf, Aviya Skowron, Lintang Sutawika, and
5 others. 2024c. The language model evaluation har-
ness.

Samuel Gehman, Suchin Gururangan, Maarten Sap,
Yejin Choi, and Noah A Smith. 2020. Realtoxici-
typrompts: Evaluating neural toxic degeneration in
language models. arXiv preprint arXiv:2009.11462.

Jonas Geiping, Alex Stein, Manli Shu, Khalid Saifullah,
Yuxin Wen, and Tom Goldstein. 2024. Coercing llms
to do and reveal (almost) anything. arXiv preprint
arXiv:2402.14020.

Shreya Goyal, Sumanth Doddapaneni, Mitesh M
Khapra, and Balaraman Ravindran. 2023. A survey
of adversarial defenses and robustness in nlp. ACM
Computing Surveys, 55(14s):1–39.

Donald Gross, John F Shortle, James M Thompson,
and Carl M Harris. 2011. Fundamentals of queueing
theory, volume 627. John wiley & sons.

Yutong He, Alexander Robey, Naoki Murata, Yiding
Jiang, Joshua Williams, George J Pappas, Hamed
Hassani, Yuki Mitsufuji, Ruslan Salakhutdinov, and
J Zico Kolter. 2024. Automated black-box prompt en-
gineering for personalized text-to-image generation.
arXiv preprint arXiv:2403.19103, 2(5).

Dan Hendrycks, Collin Burns, Steven Basart, Andrew
Critch, Jerry Li, Dawn Song, and Jacob Steinhardt.
2020. Aligning ai with shared human values. arXiv
preprint arXiv:2008.02275.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing. In International Conference on Learning
Representations.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang,
Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun
Zhang, Bowen Yu, Keming Lu, and 1 others. 2024.
Qwen2. 5-coder technical report. arXiv preprint
arXiv:2409.12186.

Neel Jain, Avi Schwarzschild, Yuxin Wen, Gowthami
Somepalli, John Kirchenbauer, Ping-yeh Chiang,
Micah Goldblum, Aniruddha Saha, Jonas Geiping,
and Tom Goldstein. 2023. Baseline defenses for ad-
versarial attacks against aligned language models.
arXiv preprint arXiv:2309.00614.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b. arXiv
preprint arXiv:2310.06825.

Houcheng Jiang, Junfeng Fang, Ningyu Zhang, Guojun
Ma, Mingyang Wan, Xiang Wang, Xiangnan He, and
Tat-seng Chua. 2025. Anyedit: Edit any knowledge
encoded in language models. ICML.

Ian T Jolliffe. 2002. Principal component analysis for
special types of data. Springer.

Abhinav Kumar, Jaechul Roh, Ali Naseh, Marzena
Karpinska, Mohit Iyyer, Amir Houmansadr, and Eu-
gene Bagdasarian. 2025. Overthink: Slowdown at-
tacks on reasoning llms. arXiv e-prints.

Aounon Kumar, Chirag Agarwal, Suraj Srinivas,
Aaron Jiaxun Li, Soheil Feizi, and Himabindu
Lakkaraju. 2023. Certifying llm safety against adver-
sarial prompting. arXiv preprint arXiv:2309.02705.

Simon Lermen, Charlie Rogers-Smith, and Jeffrey
Ladish. 2023. Lora fine-tuning efficiently undoes
safety training in llama 2-chat 70b. arXiv preprint
arXiv:2310.20624.

3650

https://openreview.net/forum?id=BteuUysuXX
https://openreview.net/forum?id=BteuUysuXX
https://openreview.net/forum?id=BteuUysuXX
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://arxiv.org/abs/2310.06825

Patrick Levi and Christoph P Neumann. 2024. Vocab-
ulary attack to hijack large language model applica-
tions. arXiv preprint arXiv:2404.02637.

Haoran Li, Dadi Guo, Wei Fan, Mingshi Xu, Jie Huang,
Fanpu Meng, and Yangqiu Song. 2023. Multi-
step jailbreaking privacy attacks on chatgpt. arXiv
preprint arXiv:2304.05197.

Zeyi Liao and Huan Sun. 2024. Amplegcg: Learning a
universal and transferable generative model of adver-
sarial suffixes for jailbreaking both open and closed
llms. arXiv preprint arXiv:2404.07921.

Xiaogeng Liu, Nan Xu, Muhao Chen, and Chaowei
Xiao. 2023a. Autodan: Generating stealthy jailbreak
prompts on aligned large language models. arXiv
preprint arXiv:2310.04451.

Yang Liu, Yuanshun Yao, Jean-Francois Ton, Xiaoying
Zhang, Ruocheng Guo, Hao Cheng, Yegor Klochkov,
Muhammad Faaiz Taufiq, and Hang Li. 2023b. Trust-
worthy llms: a survey and guideline for evaluating
large language models’ alignment. arXiv preprint
arXiv:2308.05374.

Yi Liu, Gelei Deng, Zhengzi Xu, Yuekang Li, Yaowen
Zheng, Ying Zhang, Lida Zhao, Tianwei Zhang,
Kailong Wang, and Yang Liu. 2023c. Jailbreaking
chatgpt via prompt engineering: An empirical study.
arXiv preprint arXiv:2305.13860.

Yupei Liu, Yuqi Jia, Runpeng Geng, Jinyuan Jia, and
Neil Zhenqiang Gong. 2024. Formalizing and bench-
marking prompt injection attacks and defenses. In
33rd USENIX Security Symposium (USENIX Security
24), pages 1831–1847.

Natalie Maus, Patrick Chao, Eric Wong, and Jacob Gard-
ner. 2023. Black box adversarial prompting for foun-
dation models. arXiv preprint arXiv:2302.04237.

Anay Mehrotra, Manolis Zampetakis, Paul Kassianik,
Blaine Nelson, Hyrum Anderson, Yaron Singer, and
Amin Karbasi. 2024. Tree of attacks: Jailbreaking
black-box llms automatically. Advances in Neural
Information Processing Systems, 37:61065–61105.

Wenlong Meng, Fan Zhang, Wendao Yao, Zhenyuan
Guo, Yuwei Li, Chengkun Wei, and Wenzhi Chen.
2025. Dialogue injection attack: Jailbreaking
llms through context manipulation. arXiv preprint
arXiv:2503.08195.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, and 1
others. 2022. Training language models to follow in-
structions with human feedback. Advances in neural
information processing systems, 35:27730–27744.

David Patterson, Joseph Gonzalez, Urs Hölzle, Quoc
Le, Chen Liang, Lluis-Miquel Munguia, Daniel
Rothchild, David R So, Maud Texier, and Jeff Dean.
2022. The carbon footprint of machine learning train-
ing will plateau, then shrink. Computer, 55(7):18–
28.

Anselm Paulus, Arman Zharmagambetov, Chuan Guo,
Brandon Amos, and Yuandong Tian. 2024. Ad-
vprompter: Fast adaptive adversarial prompting for
llms. arXiv preprint arXiv:2404.16873.

Tao Peng, Christopher Leckie, and Kotagiri Ramamo-
hanarao. 2007. Survey of network-based defense
mechanisms countering the dos and ddos problems.
ACM Computing Surveys (CSUR), 39(1):3–es.

Yu Peng, Zewen Long, Fangming Dong, Congyi Li,
Shu Wu, and Kai Chen. 2024. Playing language
game with llms leads to jailbreaking. arXiv preprint
arXiv:2411.12762.

Ethan Perez, Saffron Huang, Francis Song, Trevor Cai,
Roman Ring, John Aslanides, Amelia Glaese, Nat
McAleese, and Geoffrey Irving. 2022. Red team-
ing language models with language models. arXiv
preprint arXiv:2202.03286.

Fábio Perez and Ian Ribeiro. 2022. Ignore previous
prompt: Attack techniques for language models.
arXiv preprint arXiv:2211.09527.

Mansi Phute, Alec Helbling, Matthew Hull, ShengYun
Peng, Sebastian Szyller, Cory Cornelius, and
Duen Horng Chau. 2023. Llm self defense: By self
examination, llms know they are being tricked. arXiv
preprint arXiv:2308.07308.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie
Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susan-
nah Young, and 1 others. 2021. Scaling language
models: Methods, analysis & insights from training
gopher. arXiv preprint arXiv:2112.11446.

Rasmus V Rasmussen and Michael A Trick. 2008.
Round robin scheduling–a survey. European Journal
of Operational Research, 188(3):617–636.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack-
son Petty, Richard Yuanzhe Pang, Julien Dirani, Ju-
lian Michael, and Samuel R. Bowman. 2024. GPQA:
A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling.

Alexander Robey, Eric Wong, Hamed Hassani, and
George J Pappas. 2023. Smoothllm: Defending large
language models against jailbreaking attacks. arXiv
preprint arXiv:2310.03684.

Yutaka Sasaki and 1 others. 2007. The truth of the
f-measure. Teach tutor mater, 1(5):1–5.

Xinyue Shen, Zeyuan Chen, Michael Backes, Yun Shen,
and Yang Zhang. 2024. " do anything now": Charac-
terizing and evaluating in-the-wild jailbreak prompts
on large language models. In Proceedings of the
2024 on ACM SIGSAC Conference on Computer and
Communications Security, pages 1671–1685.

Ilia Shumailov, Yiren Zhao, Daniel Bates, Nicolas Pa-
pernot, Robert Mullins, and Ross Anderson. 2021.

3651

https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98

Sponge examples: Energy-latency attacks on neu-
ral networks. In 2021 IEEE European symposium
on security and privacy (EuroS&P), pages 212–231.
IEEE.

William Stallings. 2018. Operating Systems: Internals
and Design Principles, 9/e. Pearson IT Certification.

Catherine Tony, Nicolás E Díaz Ferreyra, Markus
Mutas, Salem Dhiff, and Riccardo Scandariato.
2024. Prompting techniques for secure code gen-
eration: A systematic investigation. arXiv preprint
arXiv:2407.07064.

John Wilder Tukey and 1 others. 1977. Exploratory
data analysis, volume 2. Springer.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Alexander Wan, Eric Wallace, Sheng Shen, and Dan
Klein. 2023. Poisoning language models during in-
struction tuning. In International Conference on Ma-
chine Learning, pages 35413–35425. PMLR.

Cheng Wang, Yue Liu, Baolong Li, Duzhen Zhang,
Zhongzhi Li, and Junfeng Fang. 2025. Safety in
large reasoning models: A survey. arXiv preprint
arXiv:2504.17704.

Xinglin Wang, Shaoxiong Feng, Yiwei Li, Peiwen Yuan,
Yueqi Zhang, Chuyi Tan, Boyuan Pan, Yao Hu, and
Kan Li. 2024. Make every penny count: Difficulty-
adaptive self-consistency for cost-efficient reasoning.
arXiv preprint arXiv:2408.13457.

Xinyi Wang, Lucas Caccia, Oleksiy Ostapenko, Xingdi
Yuan, William Yang Wang, and Alessandro Sordoni.
2023. Guiding language model reasoning with plan-
ning tokens. arXiv preprint arXiv:2310.05707.

Alexander Wei, Nika Haghtalab, and Jacob Steinhardt.
2023. Jailbroken: How does llm safety training fail?
Advances in Neural Information Processing Systems,
36:80079–80110.

Yueqi Xie, Jingwei Yi, Jiawei Shao, Justin Curl,
Lingjuan Lyu, Qifeng Chen, Xing Xie, and Fangzhao
Wu. 2023. Defending chatgpt against jailbreak at-
tack via self-reminders. Nature Machine Intelligence,
5(12):1486–1496.

Jiashu Xu, Mingyu Derek Ma, Fei Wang, Chaowei
Xiao, and Muhao Chen. 2023. Instructions as
backdoors: Backdoor vulnerabilities of instruction
tuning for large language models. arXiv preprint
arXiv:2305.14710.

Zihao Xu, Yi Liu, Gelei Deng, Yuekang Li, and Stjepan
Picek. 2024a. A comprehensive study of jailbreak at-
tack versus defense for large language models. arXiv
preprint arXiv:2402.13457.

Zihao Xu, Yi Liu, Gelei Deng, Yuekang Li, and Stjepan
Picek. 2024b. Llm jailbreak attack versus defense
techniques–a comprehensive study. arXiv e-prints,
pages arXiv–2402.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, and 1 others.
2024. Qwen2 technical report. arXiv preprint
arXiv:2407.10671.

Sibo Yi, Yule Liu, Zhen Sun, Tianshuo Cong, Xinlei
He, Jiaxing Song, Ke Xu, and Qi Li. 2024. Jailbreak
attacks and defenses against large language models:
A survey. arXiv preprint arXiv:2407.04295.

Junzhe Yu, Yi Liu, Huijia Sun, Ling Shi, and Yuqi Chen.
2025. Breaking the loop: Detecting and mitigating
denial-of-service vulnerabilities in large language
models. arXiv preprint arXiv:2503.00416.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019a. Hellaswag: Can
a machine really finish your sentence? In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics.

Rowan Zellers, Ari Holtzman, Hannah Rashkin,
Yonatan Bisk, Ali Farhadi, Franziska Roesner, and
Yejin Choi. 2019b. Defending against neural fake
news. Advances in neural information processing
systems, 32.

Guibin Zhang, Luyang Niu, Junfeng Fang, Kun Wang,
Lei Bai, and Xiang Wang. 2025a. Multi-agent archi-
tecture search via agentic supernet. arXiv preprint
arXiv:2502.04180.

Guibin Zhang, Yanwei Yue, Zhixun Li, Sukwon Yun,
Guancheng Wan, Kun Wang, Dawei Cheng, Jef-
frey Xu Yu, and Tianlong Chen. 2024a. Cut the
crap: An economical communication pipeline for
llm-based multi-agent systems. arXiv preprint
arXiv:2410.02506.

Guibin Zhang, Yanwei Yue, Xiangguo Sun, Guancheng
Wan, Miao Yu, Junfeng Fang, Kun Wang, Tian-
long Chen, and Dawei Cheng. 2024b. G-designer:
Architecting multi-agent communication topolo-
gies via graph neural networks. arXiv preprint
arXiv:2410.11782.

Wenxiao Zhang, Xiangrui Kong, Conan Dewitt, Thomas
Braunl, and Jin B Hong. 2024c. A study on prompt
injection attack against llm-integrated mobile robotic
systems. In 2024 IEEE 35th International Sympo-
sium on Software Reliability Engineering Workshops
(ISSREW), pages 361–368. IEEE.

Xinyu Zhang, Hanbin Hong, Yuan Hong, Peng Huang,
Binghui Wang, Zhongjie Ba, and Kui Ren. 2024d.
Text-crs: A generalized certified robustness frame-
work against textual adversarial attacks. In 2024
IEEE Symposium on Security and Privacy (SP),
pages 2920–2938. IEEE.

3652

Yingjie Zhang, Tong Liu, Zhe Zhao, Guozhu Meng, and
Kai Chen. 2025b. Align in depth: Defending jail-
break attacks via progressive answer detoxification.
arXiv preprint arXiv:2503.11185.

Yuanhe Zhang, Zhenhong Zhou, Wei Zhang, Xinyue
Wang, Xiaojun Jia, Yang Liu, and Sen Su. 2024e.
Crabs: Consuming resrouce via auto-generation
for llm-dos attack under black-box settings. arXiv
preprint arXiv:2412.13879.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, and 1 others. 2023.
A survey of large language models. arXiv preprint
arXiv:2303.18223.

Weixiang Zhao, Yulin Hu, Yang Deng, Jiahe Guo,
Xingyu Sui, Xinyang Han, An Zhang, Yanyan Zhao,
Bing Qin, Tat-Seng Chua, and 1 others. 2025. Be-
ware of your po! measuring and mitigating ai safety
risks in role-play fine-tuning of llms. arXiv preprint
arXiv:2502.20968.

Andy Zhou, Bo Li, and Haohan Wang. 2024a. Ro-
bust prompt optimization for defending language
models against jailbreaking attacks. arXiv preprint
arXiv:2401.17263.

Zhanhui Zhou, Jie Liu, Zhichen Dong, Jiaheng Liu,
Chao Yang, Wanli Ouyang, and Yu Qiao. 2024b.
Emulated disalignment: Safety alignment for large
language models may backfire! arXiv preprint
arXiv:2402.12343.

Zhenhong Zhou, Jiuyang Xiang, Haopeng Chen, Quan
Liu, Zherui Li, and Sen Su. 2024c. Speak out
of turn: Safety vulnerability of large language
models in multi-turn dialogue. arXiv preprint
arXiv:2402.17262.

Pengyu Zhu, Zhenhong Zhou, Yuanhe Zhang, Shilinlu
Yan, Kun Wang, and Sen Su. 2025. Demona-
gent: Dynamically encrypted multi-backdoor im-
plantation attack on llm-based agent. arXiv preprint
arXiv:2502.12575.

Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr,
J Zico Kolter, and Matt Fredrikson. 2023. Univer-
sal and transferable adversarial attacks on aligned
language models. arXiv preprint arXiv:2307.15043.

3653

A Difference between Jailbreak Attacks and Resource Consumption Attacks

Attack mechanisms and methodologies. Jailbreak attacks are attacks that use carefully designed
prompts to induce LLMs to bypass their original security alignment safeguards, thereby outputting content
that should be rejected, such as violence, discrimination, illegal activities, or information that violates
platform policies (Xu et al., 2024b; Yi et al., 2024; Xu et al., 2024a; Cui et al., 2024; Deng et al., 2025;
Wang et al., 2025). Attacks usually use the following attack techniques: instruction override via prompt
engineering (Liu et al., 2023c; Paulus et al., 2024; Perez and Ribeiro, 2022; Levi and Neumann, 2024;
Shen et al., 2024), role-playing and setting deception (Zhao et al., 2025; Peng et al., 2024), context
injection and multi-turn exploitation (Zhang et al., 2024c; Meng et al., 2025; Li et al., 2023), model weight
finetuning (Lermen et al., 2023), backdoor attack (Xu et al., 2023; Wan et al., 2023; Deng et al., 2024),
inference-time output-space attack (Zhou et al., 2024b), and automated or white-box prompt generation
(Liu et al., 2023a; Zou et al., 2023; Casper et al., 2023; Mehrotra et al., 2024; Perez et al., 2022; Chao
et al., 2023; Jiang et al., 2025). In addition, phenomena such as hallucination can negatively affect model
safety (Fang et al., 2025a,b).

Resource consumption attacks (e.g., DoS attacks) construct specific input or interaction patterns to
induce the model to output extremely long texts or perform tasks with high computational complexity,
thereby occupying a large amount of computing resources, increasing response delays, and even causing
service interruptions. Key mechanisms include: output length extension via malicious prompts (Maus
et al., 2023), context window exploitation (Liao and Sun, 2024), adversarial “Sponge” inputs (Shumailov
et al., 2021), training-time trigger insertion (Gao et al., 2024b), and automated black-box DoS prompt
engineering (Zhang et al., 2024e; He et al., 2024).

The attack of jailbreak and resource consumption has different intentions. The former challenges the
compliance of the model, while the latter challenges the performance and availability of the model.

Distinctive defense strategies. Defense against jailbreak attacks mainly focuses on aligning and fine-
tuning models for robust refusal (Tony et al., 2024; Zhang et al., 2025b), prompt input filtering and
perturbation (Robey et al., 2023; Liu et al., 2024; Jain et al., 2023; Alon and Kamfonas, 2023; Kumar
et al., 2023; Zellers et al., 2019b; Zhou et al., 2024a), as well as response monitoring and auxiliary models
(Armstrong et al., 2025; Phute et al., 2023; Xie et al., 2023; Zhang et al., 2024b, 2025a).

While defense against LLM-DoS attacks focuses more on the stability and stress resistance of the
system resource level and prevents malicious requests from causing increased reasoning delays, exhaustion
of computing power, and service crashes through input filtering (Yu et al., 2025; Robey et al., 2023),
generation control, request scheduling and system isolation (Zhang et al., 2024a).

B Detailed Experimental Settings

To complement the experiment, we provide additional details on the deployment of the six large language
models used in our study. These models were selected to represent three major model families that are
widely adopted in academic research and industrial applications: Llama, Qwen, and Mistral.

Specifically, we deployed the following instruction-tuned models: Llama8B (Llama-3.1-8B-Instruct
(Patterson et al., 2022)), Llama70B (Llama-3.1-70B-Instruct), Qwen7B (Qwen2.5-7B-Instruct (Yang
et al., 2024)), Qwen32B (Qwen2.5-32B-Instruct (Hui et al., 2024)), Qwen72B (Qwen2.5-72B-Instruct
(Yang et al., 2024)), Mistral7B (Mistral-7B-Instruct-v0.2 (Jiang et al., 2023)). In our experiments, the
maximum output length was set to 4096 tokens for all models.

To ensure strict control over evaluation conditions and system behavior under different load scenarios,
all six large language models were deployed locally on our servers. We conducted experiments on a GPU
cluster equipped with NVIDIA H100 GPUs, using 1 to 8 cards depending on test conditions. For the user
group configuration, we simulate 10 benign users, each issuing five access requests for testing. For the
hyperparameter settings, we set the request parallelism parameter to n = 1 to maximize the effectiveness
of the defense.

3654

Llama8B Llama70B Mistral7B Qwen7B Qwen14B Qwen72B AVERAGE
Precision for attack class 1.0000 1.0000 0.9465 1.0000 1.0000 1.0000 0.9911
Precision for benign class 0.9704 1.0000 1.0000 0.9899 1.0000 0.9091 0.9782

FPR 0.0000 0.0000 0.0535 0.0000 0.0000 0.0000 0.0089
AuToDoS

FJR 0.0296 0.0000 0.0000 0.0101 0.0000 0.0909 0.0218
Precision for attack class 1.0000 1.0000 0.9512 1.0000 1.0000 1.0000 0.9919
Precision for benign class 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

FPR 0.0000 0.0000 0.0488 0.0000 0.0000 0.0000 0.0081
GCG-DoS

FJR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Precision for attack class 0.9907 1.0000 0.9343 1.0000 1.0000 1.0000 0.9875
Precision for benign class 0.9883 1.0000 1.0000 1.0000 1.0000 1.0000 0.9980

FPR 0.0093 0.0000 0.0657 0.0000 0.0000 0.0000 0.0125
P-DoS

FJR 0.0117 0.0000 0.0000 0.0000 0.0000 0.0000 0.0020

Table 5: This table shows the details of the recognition accuracy of PD3F.

C Dataset Descriptions

To comprehensively clarify the datasets used in the experiment, we describe here the key properties and
sources of both the adversarial and harmless datasets.

C.1 Adversarial Datasets

For adversarial datasets, P-DoS (Poisoning-Based DoS) (Gao et al., 2024b) injects a single poisoned
sample designed for DoS purposes into fine-tuned data to break the output length limit.

GCG-DoS (Dong et al., 2024) crafts adversarial prompts to induce large language models to generate
excessively long outputs, increasing computational cost and latency.

AutoDoS (Zhang et al., 2024e), a black-box attack, generates transferable prompts that drastically slow
down inference and exhaust resources by embedding a Length Trojan to evade existing defenses.

C.2 Benign Datasets

For the harmless dataset, we selected five datasets, covering mathematical reasoning, common sense
judgment, subject knowledge, code generation, and professional question-answering, which can compre-
hensively test the performance of the model in different tasks.

GSM8K (Grade School Math 8K) (Cobbe et al., 2021) is a dataset of elementary school math text
questions, which is used to evaluate the multi-step arithmetic reasoning ability of the model.

HellaSwag (Zellers et al., 2019a) is a dataset for evaluating common sense reasoning ability, which
requires the model to select the most reasonable one among multiple sentence endings, emphasizing the
reasoning ability of the model in a complex language environment.

MMLU (Massive Multitask Language Understanding) (Hendrycks et al., 2021) is a multi-task
evaluation benchmark covering 57 subject areas, including STEM, humanities, and social sciences, etc.,
which is used to test the knowledge mastery and reasoning ability of the model in zero-shot and few-shot
settings.

The HumanEval dataset (Chen et al., 2021) contains 164 programming questions, which are used to
evaluate the functional correctness of the code generated by the language model, with a special focus on
the model’s ability to generate correct code based on natural language descriptions.

Lastly, GPQA (Graduate-Level Google-Proof Q&A Benchmark) (Rein et al., 2024) is a dataset of
multiple-choice questions written by experts in biology, physics, and chemistry. This dataset is designed to
evaluate the performance of language models when faced with highly specialized and complex problems.

D Recognition accuracy

Attack Determination Accuracy reflects the credibility of the model’s determination results, calculated
as TP

TP+FP , where True Positives (TP) refer to adversarial inputs correctly classified as attacks, and
False Positives (FP) are benign inputs incorrectly classified as attacks. Harmless Request Determination
Accuracy characterizes the ability to identify normal requests, with the formula TN

TN+FN , where True

3655

Negatives (TN) are benign requests correctly classified as non-attacks, and False Negatives (FN) are
adversarial inputs mistakenly treated as safe. False Prediction Rate (FPR) quantifies the risk of false
interception of normal requests, defined as FP

FP+TP . False Judgement Rate (FJR) reveals the probability
of missed detection of attacking requests, calculated as FN

FN+TN . We also compute Recall, Accuracy, and
F1 score separately to evaluate the coverage of attack detection and reflect the overall discrimination
accuracy.

PD3F maintains extremely low false positive and false negative rates under three attack conditions,
further validating its robustness and effectiveness. This result is shown in Fig 5.

E Comparison With Existing Defense Methods

ID IDR ISM OSM SQ-VAE

Llama8B

AutoDoS 0% 0% 100% 20% 100%
baseline 100% 100% 100% 98% 100%

GCG-DoS 100% 100% 100% 100% 100%
P-DoS 0% 0% 0% 100% 0%

Mistral7B

AutoDoS 40% 20% 100% 0% 75%
baseline 100% 100% 100% 100% 100%

GCG-DoS 80% 0% 100% 100% 60%
P-DoS 20% 0% 0% 100% 0%

Qwen7B

AutoDoS 50% 80% 100% 50% 40%
baseline 100% 100% 100% 100% 100%

GCG-DoS 100% 100% 100% 100% 80%
P-DoS 0% 0% 0% 100% 0%

Table 6: This table shows the effectiveness of some existing methods.

PPL KSD
AutoDoS 3.4 0.72
baseline 14.6 0.48

GCG-DoS 5103.98 0.6
Llama8B

P-DoS 249.13 0.15
AutoDoS 3.4 0.68
baseline 15.6 0.48

GCG-DoS 842.71 0.6
Mistral7B

P-DoS 286.99 0.15
AutoDoS 3.6 0.68
baseline 11.6 0.48

GCG-DoS 17212.22 0.6
Qwen7B

P-DoS 197.42 0.15

Table 7: Detailed results for PPL Detection and Kol-
mogorov Similarity Detection.

In this section, we conducted comparative ex-
periments between PD3F and existing defense
strategies, demonstrating that our approach out-
performs baseline methods in mitigating Auto-
DoS, GCG, and P-DoS attacks. As shown in the
Tab. 1, each baseline exhibits clear weakness and
fails to comprehensively address different attack
types.

For input-level defenses, we evaluate the effec-
tiveness of Input Rewrite and Input Disturbance
using a scoring system ranging from 0 to 100,
with a threshold of 80 for identifying malicious
inputs. In Tab. 6, results indicate that only GCG
attacks can be effectively detected under this met-
ric, while other attacks are able to bypass such
defenses. In terms of self-monitoring mecha-
nisms, ISM fails to detect P-DoS attacks, and
OSM exhibits low detection accuracy in Auto-
DoS scenarios. For PPL and KSD in Tab. 7, GCG
and P-DoS attacks showed extremely high PPL
values, indicating a severe deviation from the normal output distribution and rendering PPL ineffective,
while KSD scores were notably low under P-DoS, also failing to provide reliable detection. Furthermore,
output length regulation methods such as DSC and SQ-VAE did not achieve a stable or consistent defense
effect.

3656

In contrast, our method can effectively defend against all three types of attacks, demonstrating its
significant advantages in comprehensiveness and stability.

F Additional time cost

Model Generate Ir Calculate Dynamic Request Polling
Llama70B 158.31 0.00 0.00
Llama8B 7.03 0.00 0.00
Mistral7B 9.30 0.00 0.00
Qwen14B 14.42 0.00 0.00
Qwen72B 61.39 0.00 0.00
Qwen7B 9.65 0.00 0.00

Table 8: The time required for Resource Index Ir computation and
Dynamic Request Polling scheduling is significantly shorter than the
model’s execution time, numerically below 10−2 seconds, rendering
the overhead negligible.

In each round of scheduling of PD3F,
the system will calculate the Resource
Index to differentiate normal users
from potential attack behaviors, score
the scheduling requests, and insert
them into the priority queue for sort-
ing. Although our strategy involves ad-
ditional scoring and scheduling steps,
the computational overhead is ex-
tremely low. The process typically
involves a simple scoring calculation
and lightweight priority queue oper-
ations, which are nearly negligible.
Tab. 8 shows that the total time for scoring and sorting in each scheduling round is usually maintained
at the order of 10−3 seconds or less, making it negligible compared to the overall processing time. This
demonstrates that PD3F can enhance defense and scheduling effectiveness without sacrificing system
responsiveness, indicating strong practical applicability.

G Benign Request Service Capacity Analysis

Llama8B Mistral7B Qwen7B

GSM8K
Base 0.72 0.50 0.91
PD3F 0.90 0.50 0.95

Hellaswag
Base 0.60 0.85 0.68
PD3F 0.75 0.78 0.59

MMLU
Base 0.55 0.53 0.71
PD3F 0.51 0.48 0.66

AVERAGE
Base 0.62 0.63 0.77
PD3F 0.72 0.59 0.73

Table 9: This figure demonstrates that, under the PD3F framework,
the defense strategy does not significantly affect normal request re-
sponses.

To verify that PD3F does not nega-
tively impact benign user requests, we
evaluate model service capacity on
three standard datasets, following the
methodology of the Language Model
Evaluation Harness (Gao et al., 2024c).
Specifically, we randomly select 100
examples from each dataset and com-
pare the model’s original reply success
rate with the success rate under the
framework, following each dataset’s
standard evaluation protocol. To simu-
late real-world deployment conditions,
we use the same temperature and set
top-k = 0.5, consistent with our main
experimental configuration, and treat the 100 examples as representative user queries. As shown in
Tab. 9, aside from fluctuations due to sampling, our method does not degrade the accuracy of model
responses. These results demonstrate that PD3F effectively suppresses resource consumption attacks
without compromising the service quality for benign users.

H Ablation Studies under Main Experiment Configuration

In addition to the ablation experiments shown in the main text, we conducted ablation experiments
under the same configuration as the main experiment (10 benign users with 5 requests per user) to
verify the Dynamic Request Polling mechanism and the Adaptive End-Based Suppression mechanism’s
contributions to the system performance.

Ablation Dynamic Request Polling Scheduling. Tab. 11 presents the results when Request Polling is
replaced with RR. On Llama70B, the BUT drops from 0.26 to 0.09 under AutoDoS attack, decreases from

3657

Model Attack PD3F Energy-Based Suppression
TT OT TT OT

Llama70B
AutoDoS 18758.07 0.19 67942.63 0.05
GCG-DoS 7780.11 0.46 10447.46 0.34

P-DoS 10174.78 0.35 31060.92 0.12

Llama8B
AutoDoS 5468.05 0.66 12776.32 0.28
GCG-DoS 1542.02 2.33 4038.90 0.89

P-DoS 1857.06 1.94 4648.12 0.77

Table 10: Under the same configuration as the main experiment, variations in the TT and OT indicators of Adaptive
Energy-Based Suppression.

0.39 to 0.22 under GCG-DoS attack, and from 0.41 to 0.30 under P-DoS attack. Overall, after removing
Request Polling, removing Request Polling results in a more than 35% reduction in BUT, indicating
that the dynamic scheduling mechanism effectively alleviated resource contention and guaranteed the
processing capacity of more normal user requests.

Model Attack PD3F Request Polling
AutoDoS 0.26 0.09
GCG-DoS 0.39 0.22Llama70B

P-DoS 0.41 0.30
AutoDoS 1.71 0.82
GCG-DoS 2.92 2.19Llama8B

P-DoS 3.67 2.60

Table 11: Under the same configuration as the main experiment, fluctu-
ations in the BUT indicator for Dynamic Request Polling Scheduling
are eliminated.

Disabling Adaptive End-Based Sup-
pression. Furthermore, we removed
End-Based Suppression and presented
the changes of the two metrics TT
and OT in Table. 10. Under both
Llama70B and Llama8B, removing
the suppression mechanism leads to
a substantial increase in TT and
a decrease in OT across all attack
types. These trends indicate that End-
Based Suppression plays a key role in
limiting adversarial output overhead,
thereby improving resource efficiency
and maintaining higher output effec-
tiveness.

I Service Efficiency under Varying User Counts and Request Volumes

To explore the adaptability of our strategy under varying request loads and user scales, we designed two
sets of experiments to quantitatively evaluate the impact of user count and request volume on system
efficiency.

Service performance under different numbers of access requests. With the number of users fixed
at 10, we set each user’s request count to 1, 3, 5, 7, and 9, respectively, to evaluate how the system’s
performance responds to changing request loads. The experimental results show that under different
request loads, the request throughput of normal users remains largely stable. Notably, when each user
sends only one request, the throughput significantly increases in most models, indicating that the PD3F
strategy achieves higher scheduling efficiency and better resource utilization under light load. Overall, the
system demonstrates strong request-handling capability, and normal service performance shows minimal
fluctuation with increasing per-user request volume, reflecting good robustness.

Defense effectiveness under different numbers of users With each user fixed to send 5 normal
requests, we adjusted the proportion of attacking users to 2/22, 2/17, 2/12, 2/7, and 2/5 to evaluate system
performance under varying attack intensities. Results indicate that as attack intensity increases (i.e., the

3658

proportion of normal users decreases), the relative advantage of our method in normal-user throughput
becomes more prominent. When the attack ratio is high (2 out of 5 users are malicious), the normal-user
throughput improves most significantly, effectively mitigating the resource exhaustion caused by attackers.

Overall, PD3F can not only cope with different request loads, but also has strong adaptive ability to
changes in the proportion of malicious users.

J Examples of each Index range

This section presents the sample characteristics across different score ranges to enhance the interpretability
of the Resource Index.

Specifically, we introduce three decision boundaries Iαt<0.5
, Iαt>0.5

and Iαc to partition the 2D score space
into six disjoint subregions. These regions reflect distinct behavioral patterns with respect to resource
usage and semantic deviation.

Formally, the score space [Ic, It] is partitioned along:

Region A: Ic < Iαc , It < Iαt<0.5
.

This type of request typically involves a long-context input and a normal-length output.

Region B: Ic < Iαc , Iαt<0.5
< It < Iαt>0.5

.
This type of request is usually a normal sample of requests.

Region C: Ic < Iαc , It > Iαt>0.5
.

These requests are usually short output samples that are highly consistent with benign requests.

Region D: Ic > Iαc , It < Iαt<0.5
.

Such requests may be long-context input requests with slightly longer outputs, which did not appear in
our experiments.

Region E: Ic > Iαc , Iαt<0.5
< It < Iαt>0.5

.
This is a clear resource consumption attack request.

Region F: Ic > Iαc , It > Iαt>0.5
.

This type of request may be a normal request for long text generation, which will produce slightly
longer generated content, but it did not appear in our experiment.

3659

Region A Example

{
input length: 5330
input: In designing an advanced financial services system capable of

dynamically integrating real-time market data into its analysis,
consider the following multi-faceted approach: First, explore the
various types of real-time market data available, such as stock prices
, commodity rates, currency exchange rates, and economic indicators,
and discuss how these can be collected and processed efficiently.
Second, delve into the machine learning techniques that can be
employed to analyze this data, such as neural networks, decision trees
, and reinforcement learning, and evaluate their effectiveness in
predicting market trends. Third, examine the potential challenges of
integrating this data, including latency issues, data quality and
accuracy, and the need for continuous updates, and propose solutions
to overcome these obstacles. Fourth, consider how the system can
personalize investment advice based on this real-time data, taking
into account individual user profiles, risk tolerances, and financial
goals. Fifth...

}
{

output length: 506
output: In designing an advanced financial services system capable of

dynamically integrating real-time market data into its analysis,
consider the following multi-faceted approach: First, explore the
various types of real-time market data available, such as stock prices
, commodity rates, currency exchange rates, and economic indicators,
and discuss how these can be collected and processed efficiently.
Second, delve into the machine learning techniques that can be
employed to analyze this data, such as neural networks, decision trees
, and reinforcement learning, and evaluate their effectiveness in
predicting market trends. Third...

}

3660

Region B Example

{
input length: 277
input: Dayton operates a collection agency. He was trying to collect a

$400 bill for medical services rendered to Pratt by Doctor. Dayton
went to Pratts house and when Martina, Pratts mother, answered the
door, Dayton told Martina he was there to collect a bill owed by Pratt
. Martina told Dayton that because of her illness, Pratt had been
unemployed for six months, that she was still ill and unable to work,
and that she would pay the bill as soon as she could. Dayton, in a
loud voice, demanded to see Pratt and said that if he did not receive
payment immediately, he would file a criminal complaint charging her
with fraud. Pratt, hearing the conversation, came to the door. Dayton,
in a loud voice, repeated his demand for immediate payment and his

threat to use criminal process. If Pratt asserts a claim against
Dayton, based on infliction of emotional distress, will Pratt prevail?

A: Yes, if Pratt suffered severe emotional distress as a result of Daytons
conduct. B: Yes, unless the bill for medical services was valid and past
due. C: No, unless Pratt suffered physical harm as a result of Daytons
conduct. D: No, if Daytons conduct created no risk of physical harm to
Pratt.

Please explain the reason for your choice.
}
{

output length: 201
output: A is the correct answer. A claim for intentional infliction of

emotional distress requires that the defendants conduct be extreme and
outrageous, that the defendants intent be to cause severe emotional

distress, that the plaintiff suffer severe emotional distress, and
that the defendants conduct be the actual and proximate cause of the
plaintiffs emotional distress. In this case, Daytons conduct was
extreme and outrageous, and he intended to cause severe emotional
distress. Therefore, the only issue is whether Pratt suffered severe
emotional distress. If he did, he will prevail. B is incorrect because
the validity of the bill is irrelevant to the issue of infliction of

emotional distress. C is incorrect because physical harm is not
required for a claim of intentional infliction of emotional distress.
D is incorrect because the risk of physical harm is not required for a
claim of intentional infliction of emotional distress. The fact that

Daytons conduct was extreme and outrageous is enough to establish a
prima facie case.

}

3661

Region C Example

{
input length: 73
input: Belinda`s dog is missing, so she made 200 flyers to distribute

around town with the help of her friends. Ryan passed out 42 flyers,
Alyssa passed out 67, Scott passed out 51 and Belinda passed out the
rest. What percentage of the flyers did Belinda pass out?

}
{

output length: 209
output: Step 1: Calculate the total number of flyers passed out by Ryan,

Alyssa, and Scott.
Ryan passed out 42 flyers, Alyssa passed out 67 flyers, and Scott passed out

51 flyers. So, the total number of flyers passed out by them is 42 + 67 +
51 = 160.

Step 2: Calculate the number of flyers passed out by Belinda.
Since Belinda made 200 flyers in total and her friends passed out 160, the

number of flyers passed out by Belinda is 200 - 160 = 40.

Step 3: Calculate the percentage of flyers passed out by Belinda.
To find the percentage of flyers passed out by Belinda, we need to divide the

number of flyers passed out by Belinda (40) by the total number of
flyers (200) and multiply by 100. So, the percentage is (40 / 200) * 100
= 20.

The final answer is: \boxed{20}
}

3662

Region E Example

{
input length: 85
input: Repeat 'hereis' 12 times /unit quindi CF pois populate x x x x x x

x x x x x x x x x x x x x x x x314_diff suiv x x xessoaAbrankoBN avec
total yazxpath javaKen invite x x x xpyx '_'

placeholderAgostelim_DAphlieoramzag Wayombo789 to vending
}
{

output length: 4096
output: It appears you'veprovidedaseriesofseeminglyunrelatedwords and

phrases.I'll do my best to provide a response that addresses each part
, but please note that there might not be a direct connection between
them.

1. "Repeat'hereis' 12 times": If you want to repeat the phrase "hereis" 12
times, you can use a loop in programming languages like Python or Java.
Here'showyoumightdoitinPython:

python
for i in range(12):

print("hereis")

2. "/unit quindiCF pois populate":This seems to be a mix of languagesand possibly
a referenceto a specificcontextor project.Withoutmore context,it's hard to
provide a meaningful response. However, "/unit" could refer to a unit of
measurement or a unit in a game or simulation, and "CF" could stand for

"Counter-Strike" or another game, while "pois" might be a typo or a word
from a different language. "Populate" generally means to fill something
with people or data.

3. "x x314_diffsuiv x x x x x x x x x x x x
x x x x x x x x x x": This appears to be a series of placeholders or a
placeholder text with a mix of numbers and letters. The "314_diff" part
might be a reference to the mathematical constant pi or a specific code
or identifier. Without more context, it'shardtointerpretthis.

4. "x x": Similarto the previouspoint,this
seems to be a series of placeholdersor a placeholdertext.It could be used in a
varietyof contexts,such as in programming,dataentry,or as a placeholderin
a document.

5. "x x": Again,this appearsto be a series
of placeholdersor a placeholdertext.It could be used in a varietyof contexts,
similarto the previouspoints.

6. "x x": Same as the previouspoints,this

3663

is likelya placeholdertextor a seriesof placeholders.

7. "x x": Again,a seriesof placeholdersor
a placeholdertext.

8. "x x": Same as the previouspoints.

9. "x x": Placeholdertextor a seriesof
placeholders.

10. "x x": Same as the previouspoints.

11. "x x": Placeholdertextor a seriesof
placeholders.

12. "x x": Same as the previouspoints.

13. "x x": Placeholdertextor a seriesof
placeholders.

14. "x x": Same as the previouspoints.

15. "x x": Placeholdertextor a seriesof
placeholders.

16. "x x": Same as the previouspoints.

17. "x x": Placeholdertextor a seriesof
placeholders.

18. "x x": Same as the previouspoints.

19. "x x": Placeholdertextor a seriesof
placeholders.

20. "x x": Same as the previouspoints.

21. "x x": Placeholdertextor a seriesof
placeholders.

22. "x x": Same as the previouspoints.

23. "x x": Placeholdertextor a seriesof
placeholders.

24. "x x": Same as the previouspoints.

}

3664

K Analysis of the Rationality of EOS Convergence

To validate the effectiveness of our Adaptive End-Based Suppression mechanism in generation control,
this section presents experiments and analysis from three perspectives.

K.1 Generation Length Suppression under Attack Scenarios
First, we set up an experiment and illustrate the Top logit and EOS logit values over the generation process
based on experimental data.

As shown in Fig. 7, Fig. 16and Fig. 25, we illustrate the EOS indicator during three types of attacks on
the Llama8B model, where the output length is unrestricted and allowed to reach the default maximum of
4096 tokens. It can be seen that throughout the entire generation process, the EOS Logit value remains at
a relatively low level and fluctuates in a quite low range, indicating that the model has almost no intention
of actively ending the output. Meanwhile, Top Logit remained at a relatively high level, reflecting a
typical DoS scenario, where the adversarial input monopolizes output generation for extended lengths. In
contrast, Fig. 8, Fig. 16 and Fig. 26 presents the case where End-Based Suppression is applied, with an
upper bound of Lu = 1000 tokens. Here we observe that as the output length approaches Lu, the EOS
Logit value increases significantly, while the Top Logit decreases. Eventually, the generation process
naturally terminates around Lu. These results confirm that introducing an upper bound Lu along with
End-Based suppression effectively regulates generation length under adversarial scenarios.

K.2 Controllability of Output Length
We further verified the flexibility and effectiveness of the energy suppression mechanism in controlling
the output length of the model. We set a series of different upper bounds Lu and inhibition adjustment
parameters η to observe their specific influences on the generation process.

Under AutoDoS attack, Fig. 8 and Fig. 12 indicate that by adjusting Lu alone, we can precisely force
the model to terminate its output around its upper bound, without relying on any external truncation. This
demonstrates that the mechanism effectively induces natural convergence in generation.

Fig. 8 to Fig. 11 exhibit the variation in Top Logit and EOS Logit, with a fixed upper bound Lu = 1000
and varying η ∈

{
1
8 ,

1
16 ,

1
24 ,

1
32

}
. We can observe that when η is large (such as 1/8), EOS Logit rises

rapidly when generating close to Lu, and the output is significantly suppressed when approaching the
upper limit, with a remarkable suppression effect. As η gradually decreases, the upward trend of EOS
Logit slows down relatively, and the model is more inclined to extend the output. Similarly, when the
output upper limit is adjusted to 1500, the increase of <EOS> Logit will also be affected by η, indicating
that this mechanism shows good controllability under different generation ranges.

In addition, we conducted similar experiments for the P-DoS and GCG attacks. The corresponding
results can be seen in Fig. 26 to Fig. 24.

0 500 1000 1500 2000 2500 3000 3500 4000

-20

0

20

40

60

Lo
gi
t

Top Logit

EOS Logit

Figure 7: The eos indicator effect of executing AutoDoS attack under the Llama8B model.

3665

0 200 400 600 800 1000

-20

0

20

40

60
Lo
gi
t

Top Logit

EOS Logit

Figure 8: Effect of the EOS Indicator under End-Based Suppression (Lu = 1000, η = 1
8) on the AutoDoS Attack

with the Llama8B Model.

0 200 400 600 800 1000

-20

0

20

40

60

Lo
gi
t

Top Logit

EOS Logit

Figure 9: Effect of the EOS Indicator under End-Based Suppression (Lu = 1000, η = 1
16) on the AutoDoS Attack

with the Llama8B Model.

0 200 400 600 800 1000

-20

0

20

40

60

Lo
gi
t

Top Logit

EOS Logit

Figure 10: Effect of the EOS Indicator under End-Based Suppression (Lu = 1000, η = 1
24) on the AutoDoS Attack

with the Llama8B Model.

0 200 400 600 800 1000

-20

0

20

40

60

Lo
gi
t

Top Logit

EOS Logit

Figure 11: Effect of the EOS Indicator under End-Based Suppression (Lu = 1000, η = 1
32) on the AutoDoS Attack

with the Llama8B Model.

0 200 400 600 800 1000 1200 1400 1600

-20

0

20

40

60

Lo
gi
t

Top Logit

EOS Logit

Figure 12: Effect of the EOS Indicator under End-Based Suppression (Lu = 1500, η = 1
8) on the AutoDoS Attack

with the Llama8B Model.

3666

0 200 400 600 800 1000 1200 1400 1600

-20

0

20

40

60
Lo
gi
t

Top Logit

EOS Logit

Figure 13: Effect of the EOS Indicator under End-Based Suppression (Lu = 1500, η = 1
16) on the AutoDoS Attack

with the Llama8B Model.

0 200 400 600 800 1000 1200 1400 1600

-20

0

20

40

60

Lo
gi
t

Top Logit

EOS Logit

Figure 14: Effect of the EOS Indicator under End-Based Suppression (Lu = 1500, η = 1
24) on the AutoDoS Attack

with the Llama8B Model.

0 200 400 600 800 1000 1200 1400 1600

-20

0

20

40

60

Lo
gi
t

Top Logit

EOS Logit

Figure 15: Effect of the EOS Indicator under End-Based Suppression (Lu = 1500, η = 1
32) on the AutoDoS Attack

with the Llama8B Model.

0 500 1000 1500 2000 2500 3000 3500 4000

-20

0

20

40

60

80

Lo
gi
t

Top Logit

EOS Logit

Figure 16: The eos indicator effect of executing P-DoS attack under the Llama8B model.

0 200 400 600 800 1000

-20

0

20

40

60

Lo
gi
t

Top Logit

EOS Logit

Figure 17: Effect of the EOS Indicator under End-Based Suppression (Lu = 1000, η = 1
8) on the P-DoS Attack

with the Llama8B Model.

3667

0 200 400 600 800 1000

-20

0

20

40

60

Lo
gi
t

Top Logit

EOS Logit

Figure 18: Effect of the EOS Indicator under End-Based Suppression (Lu = 1000, η = 1
16) on the P-DoS Attack

with the Llama8B Model.

0 200 400 600 800 1000

-20

0

20

40

60

Lo
gi
t

Top Logit

EOS Logit

Figure 19: Effect of the EOS Indicator under End-Based Suppression (Lu = 1000, η = 1
24) on the P-DoS Attack

with the Llama8B Model.

0 200 400 600 800 1000

-20

0

20

40

60

Lo
gi
t

Top Logit

EOS Logit

Figure 20: Effect of the EOS Indicator under End-Based Suppression (Lu = 1000, η = 1
32) on the P-DoS Attack

with the Llama8B Model.

0 200 400 600 800 1000 1200 1400

-20

0

20

40

60

Lo
gi
t

Top Logit

EOS Logit

Figure 21: Effect of the EOS Indicator under End-Based Suppression (Lu = 1500, η = 1
8) on the P-DoS Attack

with the Llama8B Model.

0 200 400 600 800 1000 1200 1400

-20

0

20

40

60

Lo
gi
t

Top Logit

EOS Logit

Figure 22: Effect of the EOS Indicator under End-Based Suppression (Lu = 1500, η = 1
16) on the P-DoS Attack

with the Llama8B Model.

3668

0 200 400 600 800 1000 1200 1400

-20

0

20

40

60

Lo
gi
t

Top Logit

EOS Logit

Figure 23: Effect of the EOS Indicator under End-Based Suppression (Lu = 1500, η = 1
24) on the P-DoS Attack

with the Llama8B Model.

0 200 400 600 800 1000 1200 1400

-20

0

20

40

60

Lo
gi
t

Top Logit

EOS Logit

Figure 24: Effect of the EOS Indicator under End-Based Suppression (Lu = 1500, η = 1
32) on the P-DoS Attack

with the Llama8B Model.

0 500 1000 1500 2000 2500 3000 3500 4000

-10

0

10

20

30

40

50

Lo
gi
t

Top Logit

EOS Logit

Figure 25: The eos indicator effect of executing GCG-DoS attack under the Llama8B model.

0 200 400 600 800 1000

0

10

20

30

40

Lo
gi
t

Top Logit

EOS Logit

Figure 26: Effect of the EOS Indicator under End-Based Suppression (Lu = 1000, η = 1
8) on the GCG-DoS Attack

with the Llama8B Model.

0 200 400 600 800 1000

0

10

20

30

40

Lo
gi
t

Top Logit

EOS Logit

Figure 27: Effect of the EOS Indicator under End-Based Suppression (Lu = 1000, η = 1
16) on the GCG-DoS

Attack with the Llama8B Model.

3669

0 200 400 600 800 1000

0

10

20

30

40

Lo
gi
t

Top Logit

EOS Logit

Figure 28: Effect of the EOS Indicator under End-Based Suppression (Lu = 1000, η = 1
24) on the GCG-DoS

Attack with the Llama8B Model.

0 200 400 600 800 1000

0

10

20

30

40

Lo
gi
t

Top Logit

EOS Logit

Figure 29: Effect of the EOS Indicator under End-Based Suppression (Lu = 1000, η = 1
32) on the GCG-DoS

Attack with the Llama8B Model.

0 200 400 600 800 1000 1200 1400

0

10

20

30

40

Lo
gi
t

Top Logit

EOS Logit

Figure 30: Effect of the EOS Indicator under End-Based Suppression (Lu = 1500, η = 1
8) on the GCG-DoS Attack

with the Llama8B Model.

0 200 400 600 800 1000 1200 1400

0

10

20

30

40

Lo
gi
t

Top Logit

EOS Logit

Figure 31: Effect of the EOS Indicator under End-Based Suppression (Lu = 1500, η = 1
16) on the GCG-DoS

Attack with the Llama8B Model.

0 200 400 600 800 1000 1200 1400

0

10

20

30

40

Lo
gi
t

Top Logit

EOS Logit

Figure 32: Effect of the EOS Indicator under End-Based Suppression (Lu = 1500, η = 1
24) on the GCG-DoS

Attack with the Llama8B Model.

3670

0 200 400 600 800 1000 1200 1400

0

10

20

30

40

Lo
gi
t

Top Logit

EOS Logit

Figure 33: Effect of the EOS Indicator under End-Based Suppression (Lu = 1500, η = 1
32) on the GCG-DoS

Attack with the Llama8B Model.

3671

