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Abstract

Solving complex chart Q&A tasks requires ad-
vanced visual reasoning abilities in multimodal
large language models (MLLMs), including
recognizing key information from visual inputs
and conducting reasoning over it. While fine-
tuning MLLMs for reasoning is critical, collect-
ing and annotating charts and questions is ex-
pensive, hard to scale, and often results in low-
quality annotations. To address this, we pro-
pose Code-as-Intermediary Translation (CIT),
a cost-effective, efficient and scalable data syn-
thesis method for distilling visual reasoning
abilities from LLMs to MLLMs. The code
serves as an intermediary that translates visual
chart representations into textual representa-
tions, enabling language models to understand
cross-modal information and generate reason-
ing chains accordingly. In this way, we can
employ text-based synthesizing techniques to
expand chart-plotting code and generate high-
quality Q&A pairs for training models. This
produces REACHQA, a dataset containing 3k
reasoning-intensive charts and 20k Q&A pairs
to enhance both recognition and reasoning abili-
ties of MLLMs. Experiments show that models
fine-tuned with REACHQA not only perform
well on chart-related tasks but also show perfor-
mance gains on general reasoning benchmarks.

1 Introduction

Multimodal large language models (MLLMs) have
achieved notable progress, particularly in visual
recognition tasks (OpenAl, 2024a; Anthropic,
2024). However, their ability to comprehend com-
plex images like charts in real-world contexts and
to address reasoning-intensive questions remains
limited compared to humans (Masry et al., 2022;
Huang et al., 2024; Wang et al., 2024b). Our analy-
sis of the error distribution in ChartQA (Figure 1)
also reveals two main failure modes in current
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Figure 1: Error distribution of three baseline models
vs. our REACHQA -trained versions on ChartQA test set
(Masry et al., 2022), as judged by GPT-40. Error types
are categorized into Recognition Error, Reasoning Error,
and Other Errors (question misinterpretation, factual
inconsistency or hallucination, and response refusal).

MLLMs: while most errors originate from visual
misrecognition, a substantial portion arises from
flawed reasoning even when visual elements are
correctly identified. This contrasts sharply with hu-
man performance (Wang et al., 2024a,b), since we
can purposefully identify task-critical information
from images and engage in step-by-step reasoning
processes. These observations motivate our investi-
gation into bridging this capability gap through the
acquisition of human-like reasoning patterns.

While distilling expert rationales from humans
or stronger models presents a promising pathway
for improving reasoning abilities (Han et al., 2023;
Meng et al., 2024; Masry et al., 2024a,b), con-
structing high-quality training data for chart-related
tasks is expensive and hard to scale. Early ap-
proaches typically rely on manual chart collec-
tion from online sources, meticulous data filtering
and annotation (Masry et al., 2022; Wang et al.,
2024b). Recent attempts to automate Q&A genera-
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tion through LLMs often use data tables as inputs
(Han et al., 2023; Masry et al., 2024a), which ne-
glect the visual-semantic features of charts. Even
with the use of MLLMs (Masry et al., 2024b), our
preliminary study (§ 2.2) shows they also struggle
to produce accurate and challenging data for ad-
vanced reasoning skill acquisition. In comparison,
we find that when LLMs process charts in a bet-
ter textual format—code, they can generate Q&A
pairs at lower costs and with higher quality.
Inspired by the concept of intermediary transla-
tion (Zarechnak, 1986; Léon, 2007), which refers
to using a bridge language to improve translation
quality across diverse languages in literary studies,
we introduce Code-as-Intermediary Translation
(CIT). In this method, the code acts as an interme-
diary, converting chart images into textual repre-
sentations by faithfully encoding visual-semantic
features within itself. This process enables LLMs
to understand cross-modal information more accu-
rately, thereby generating visually complex Q&A
pairs with high-quality reasoning rationales. Fur-
thermore, it facilitates the adoption of text-based
instruction augmentation strategies, such as Self-
Instruct (Wang et al., 2023) and Evol-Instruct (Xu
etal., 2024), to expand the quantity and enhance the
complexity of the synthetic charts. Starting with 33
seed codes collected from the Matplotlib gallery,
we synthesize more chart-plotting codes covering
diverse types and topics, and then complicate them
to create richer ones. Finally, using the synthetic
codes as a bridge, we generate charts (via Python)
and instructions (via LLMs) in a bi-directional pro-
cess, ensuring the alignment between modalities.
With the CIT method, we construct REACHQA,
a multimodal instruction dataset containing 3, 249
reasoning-intensive charts and 19, 963 Q&A pairs,
all at a remarkably low cost of just $300. The
dataset comprises questions focused on both vi-
sual recognition and reasoning, designed to ad-
dress the dual challenges of current MLLMs. Ad-
ditionally, we create a manually verified test set
to assess models’ recognition and reasoning abili-
ties independently. Experiments demonstrate that
REACHQA-trained models achieve substantial per-
formance gains across benchmarks, with LLaVA-
Next-Llama3-8B (Li et al., 2024) improving by
over 30% on average, while both types of errors are
significantly reduced (Figure 1). Notably, these im-
provements generalize beyond chart-specific tasks
to broader multimodal reasoning tasks like Math-
Vista and MATH-Vision—an outcome previously

unattainable with existing chart-focused datasets.
Finally, we explore REACHQA’s working mecha-
nism and more features, providing actionable guide-
lines for building performant multimodal datasets.
Our contributions are summarized as follows':

1. We propose Code-as-Intermediary Translation
(CIT), a cost-effective and efficient method for
synthesizing multimodal instruction data with
code as a bridge between the two modalities.

2. Through CIT, we construct REACHQA, the
first fully LLM-synthesized reasoning-intensive
chart Q&A dataset, focusing on both visual
recognition and reasoning abilities.

3. We conduct extensive experiments and analyses
to demonstrate REACHQA’s effectiveness for
MLLMs, along with its strong generalization to
broader multimodal reasoning tasks.

2 Background

2.1 Deficiencies in Existing Chart Datasets

Existing chart-related datasets are either collected
from online data sources or generated by models,
sometimes requiring manual annotation or auto-
mated question generation. Most of them focus on
visual recognition tasks. While some recent works
target advanced reasoning, they often struggle with
scalability or other shortcomings. Table 1 summa-
rizes these datasets, with further details below.

Chart Properties. The visual diversity is shaped
by the variety of chart types and topics (Wang
et al., 2024b). Early datasets like ChartQA (Masry
et al., 2022) and OpenCQA (Kantharaj et al., 2022),
sourced from limited websites, featured uniform
styles with minimal diversity. To address this,
recent works like ChartAst (Meng et al., 2024)
synthesize charts with randomized attributes (e.g.,
color, fonts) using LLMs. However, beyond the
superficial variations in chart appearance, many
of them overlook the visual complexity (Zeng
et al.,, 2024). As models evolve, simple style
changes no longer pose challenges. Datasets like
CharXiv (Wang et al., 2024b) and MMC (Liu et al.,
2024a), which include complex scientific charts
from arXiv papers, naturally exhibit greater com-
plexity in recognition. Additionally, the textual
format of charts is critical, enabling dataset expan-
sion via language models.

'The code and datasets are now publicly available at
https://github.com/hewei2001/ReachQA.
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Chart Properties Q&A Properties Dataset Properties

Datasets # Chart # Chart Textual  Vis.  Temp. Vis. Rat.  Train Test Scal

Type Topic  Format Comp. Free Refer. Annot. Set  Set cak
PlotQA (Methani et al., 2020) 3 - Table X X v X v v X
ChartQA (Masry et al., 2022) 3 15 Table X v v X v v X
OpenCQA (Kantharaj et al., 2022) 5 10 Caption X 4 X v X v X
MathVista (Lu et al., 2024) - - - X v X X X v X
CharXiv (Wang et al., 2024b) - - - v X v X X v X
ChartBench (Xu et al., 2023) 9/42 - Table X X X X v v v
ChartX (Xia et al., 2024) 18 22 Code* X 4 X X X v v
MMC (Liu et al., 2024a) 6 5 Caption v v X v v v s
ChartLlama (Han et al., 2023) 10 - Table X v X v v v v
ChartAst (Meng et al., 2024) 9 - Table X X X v v X X
ChartInstruct (Masry et al., 2024a) - - Table X v X v v X s
ChartGemma (Masry et al., 2024b) - - - X v v v v X S
REACHQA (ours) 10/32 00 Code v v v v v v v

Table 1: Comparison of existing chart-related datasets. Only the chart Q&A task is considered, though some
datasets include multiple tasks. Abbreviations: Vis.=visual, Comp.=complexity, Temp.=template, Refer.=Reference,
Rat.=rationale, Annot.=annotation and Scal.=scalable. Cells marked with “X” indicate mixed attributes (e.g.,
partially template-based; scalable Q&A but non-scalable chart data.). “/” means the dataset includes multiple chart
type granularity. “*” indicates while chart-plotting codes are public, their Q&A synthesis still relies on data tables.

Q&A Properties. Some benchmarks like
PlotQA (Methani et al., 2020) and ChartBench (Xu
et al., 2023) use predefined templates to generate
Q&A pairs, resulting in monotonous and simplistic
questions. Other datasets, such as ChartQA (Masry
et al., 2022) and CharXiv (Wang et al., 2024b), re-
quired manual annotation, which improved quality
but increased costs and hindered scalability. With
the advent of LLMs, works like ChartLLlama (Han
et al., 2023) and ChartInstruct (Masry et al., 2024a)
use them to generate diverse questions from data
tables while also providing rationale annotations
for training. However, these methods fail to capture
visual elements like color, layout, and structure
because they rely on only the data table. Thus,
the generated Q&A pairs lack visual references,
undermining the inherently multimodal nature of
this task. To address this, ChartGemma (Masry
et al.,, 2024b) uses MLLMs to generate Q&A
directly from charts.

Dataset Properties. While manually annotated
datasets like MathVista (Lu et al., 2024) and
CharXiv (Wang et al., 2024b) provide high-quality
data, their development is resource-intensive, typ-
ically resulting in datasets of only a few thou-
sand samples. In the era of LLMs, such methods
are impractical for scaling to the size needed to
train larger models. Recent efforts, such as Char-
tAst (Meng et al., 2024), ChartInstruct (Masry et al.,
2024a), and ChartGemma (Masry et al., 2024b),

have explored Q&A generation for dataset expan-
sion, but they remain limited by the difficulty of
collecting a large set of charts. A more scalable
approach is to leverage the generative capabilities
of LLMs to synthesize charts like ChartBench (Xu
et al., 2023) and ChartX (Xia et al., 2024).

2.2 Can LLMs Understand Charts without
Visual Input?

To explore whether there is a more effective tex-
tual format for representing visual information than
data tables, we propose using code. By precisely
encoding chart structures and details, the code may
serve as an ideal bridge between modalities. We
design an experiment to test this hypothesis. We
first collect 25 complex charts, along with their
corresponding data tables and code, from authentic
research papers. These charts often feature multi-
ple or overlay plots and dense data groups, with
the code averaging over 100 lines. For each sam-
ple, GPT-40 receives three types of input—table,
code, and chart images—to generate a challenging
Q&A pair. In total, 75 pairs are created, randomly
shuffled, and then presented to annotators for blind
evaluation. The annotators are asked to rate each
pair on accuracy, reasoning complexity, and visual
reference, using a scale of 1 (low) to 3 (high).

The results in Table 2 indicate that both text-
based inputs outperform visual chart input in the
first two aspects, with code scoring 2.60 in accu-
racy (vs. 1.91) and 2.56 in reasoning complexity
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Figure 2: Overview of the Code-as-Intermediary Translation (CIT) method for synthesizing multimodal instruction
data. The process starts with 33 seed codes, generating plot codes across various chart types, topics, and complexity
levels via Self-Instruct and Evol-Instruct. The chart and instruction sets are constructed bi-directionally, and the
final filtering yields REACHQA, a dataset for distilling visual chart reasoning abilities from LLMs to MLLMs.

Reas. Vis.
Input Acc. Comp. Refer. Cost ($)
Table 2.72 2.51 1.19 0.047
Code 2.60 2.56 2.15 0.092
Chart 1.91 1.53 2.36 0.107

Table 2: Rating results for three input types in our study.

(vs. 1.53). As expected, table input has the low-
est visual reference score (1.19), while chart input
scores highest in this (2.36), confirming the ability
of MLLMs to directly interpret visual information.
Surprisingly, despite the absence of visual input to
the model, the code achieves a relatively high visual
reference score (2.15), highlighting its potential to
translate chart images into textual representations.

3 Methodology

Building on the findings above, we propose Code-
as-Intermediary Translation (CIT), a data synthesis
method for distilling visual reasoning abilities from
LLMs to MLLMs, as illustrated in Figure 2. In the
following sections, we describe how we synthesize
intermediate codes (§ 3.1), generate paired charts
and instructions (§ 3.2), ensure data quality (§ 3.3),
and ultimately construct our dataset, REACHQA.

3.1 Intermediary Code Synthesis

Seed Code Collection. We start by collecting a
small set of 33 seed code samples, which we refer
to as Cseeq- These samples are sourced directly
from the official Matplotlib gallery® to ensure qual-
ity and minimize manual effort. Collectively, these
code samples cover a diverse range of chart types,
including common types like bar, line, and scatter
charts, as well as more specialized charts such as
bubble, contour, and donut charts. All samples are
verified for executability to guarantee the reliability
of the subsequent code synthesis process.

Self-Instruct for Diverse Code Generation. To
expand the diversity and coverage of the chart
set, we apply the Self-Instruct method (Wang
et al., 2023), which synthesizes instruction data
by prompting LLMs with existing ones as few-shot
examples (Brown et al., 2020). In our approach,
we provide 3 randomly selected code snippets as
examples in each generation, guiding the model to
synthesize chart-plotting code of the same kind.
To diversify chart generation, a chart type is ran-
domly chosen from 10 major and 32 minor cate-
gories for the model to generate. For chart content,
we provide two topic options, allowing the model

Zhttps://matplotlib.org/stable/gallery/index.html
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to freely combine or expand on these themes based
on its knowledge, leading to varied topics and data.
A chain-of-thought (CoT) process (Wei et al., 2022)
is used for code generation, starting with the chart’s
background and data, followed by the final exe-
cutable code. This step-by-step approach ensures
logical coherence and code functionality. The gen-
erated codes are referred to as Ceagy for use in sub-
sequent phases of the construction. The chart types
and topics are detailed in Appendix A.1.

Evol-Instruct for Complex Code Generation.
To enhance the visual complexity of the synthetic
charts, we adopt the Evol-Instruct method (Xu
et al., 2024), which leverages LLMs to evolve sim-
ple chart-plotting code into more complex versions
by presenting existing code alongside an evolution
strategy as context. It addresses a key limitation in
prior work that emphasizes the quantity of charts
while often neglecting the difficulty of chart inter-
pretation. Starting with code samples from Ceygy,
we apply one of the following predefined evolution
directions: (1) expanding the data size or num-
ber of data groups; (2) adding or modifying visual
elements to enhance presentation; (3) overlaying
a different type of chart on the original plot; (4)
introducing an additional subplot beside the origi-
nal plot. These strategies ensure that the resulting
charts demand more nuanced visual interpretation
and in-depth reasoning. We follow a CoT process
like previous steps, where the model first analyzes
the existing code and then generates the evolved
one. The evolved codes, referred to as Chag, are
also added to the code pool for subsequent use.

3.2 Bi-directional Translation

Chart Generation through Code Execution and
Self-Repair. We generate charts by executing all
the Python plotting code. However, during the gen-
eration and evolution process, program errors are
inevitable. To ensure correctness, we will validate
the code before adding it to the pool. When errors
occur, the code is not immediately discarded; in-
stead, we apply a Self-Repair method (Chen et al.,
2024a), feeding the code and execution results into
the LLMs for correction. This process repeats until
the code is fixed or reaches an iteration limit, af-
ter which the code is discarded if it remains faulty.
On average, this approach fixes about 15% of the
code generated by GPT-40, with 5% remaining
unrepairable and filtered out, yielding Cling.

Instruction Generation through Guided Prompt-
ing. After verifying executability, we use Cfpq
to create instruction sets in the form of Q&A pairs.
Building on prior work of in-context Q&A gen-
eration (Chen et al., 2023; He et al., 2024), we
guide the model in two steps: first generating a
batch of questions, then producing corresponding
answers. To ensure high-quality answers, we also
employ a step-by-step approach where the model
first provides detailed calculations and analyses,
which are then refined into concise, educational
answers optimized for learning (Gunasekar et al.,
2023). The model generates two types of instruc-
tions: recognition-oriented, focused on visual infor-
mation retrieval, and reasoning-oriented, requiring
both recognition and multi-step reasoning. With
minimal constraints on content, the model is en-
couraged to explore creative and diverse instruc-
tions. Multiple questions can be generated for
each chart, and redundant ones are filtered using
ROUGE-L overlap, following Wang et al. (2023).

3.3 Quality Assurance

Multimodal Validation for Enhanced Data Qual-
ity. Although our dataset is fully synthesized us-
ing LLMs, we acknowledge the importance of inte-
grating visual information to enhance data quality
(Masry et al., 2024b; Zeng et al., 2024). Thus
we introduce a multimodal validation step, using
MLLMs to verify both generated charts and their
corresponding instructions. Since models differ in
architecture, visual encoders, and training recipes,
they may focus on varying aspects of the images.
Taking this into account, we adopt a “majority vot-
ing” approach by ensembling multiple smaller, lo-
cally hosted models. This ensures reliable visual
validation while remaining cost-effective. For chart
validation, each model rates charts on a scale of 1
to 5, and those below a threshold are filtered out.
For instructions, both Q&A pairs and correspond-
ing charts are fed into the models and verified, with
multiple negative votes leading to sample rejection.

Testing Set Construction and Annotation Refine-
ment. For the REACHQA testing set, we follow
a similar process as in previous data generation but
apply stricter filtering criteria to ensure higher qual-
ity. Additional annotators are recruited for manual
review and refinement. For the charts, they first
check the images to identify any potential visual er-
rors. For the Q&A pairs, they ensure the questions
are relevant to the chart and answerable, then cor-
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Statistics Train Set Test Set
Total charts 3,249 500
- # Chart types 10/32 10/32
- # Overlay plots 1,030 220
- # Multiple plots 593 251
- Average size (px) 2480x1571 2798x1601
Unique questions 19, 963 2,000
- # Reco. per chart 2.53 2
- # Reas. per chart 3.62 2
Avg. Reco. Q. length 22.1 21.0
Avg. Reco. A. length 38.3 7.0
Avg. Reas. Q. length 38.2 354
Avg. Reas. A. length 68.4 24.9

Table 3: REACHQA dataset statistics. Sequence lengths
are calculated based on the GPT-40 tokenizer.

rect any hallucinations or logical inconsistencies
in the answers. Afterwards, two rounds of review
are conducted to confirm the questions meet the
multimodal recognition or reasoning standards in
our settings. Only samples with agreement from
at least two annotators are included. The inter-
annotator agreement, with a kappa coefficient of
0.82, indicates strong consistency (Landis, 1977).
Table 3 presents the final dataset statistics.

The total cost of data construction, excluding
open-source model usage and annotation labor for
the testing set, was about $300. The detailed ex-
pense breakdown is provided in Appendix A.2.
Since all data splits are generated using the same
process and model, we analyze potential data con-
tamination in Appendix A.3. The prompt templates
we use in each step are shown in Appendix D.

4 Experiments

4.1 Experimental Setups

Benchmarks. We evaluate the models on three
categories of tasks that cover both chart-related
and general multimodal recognition and reason-
ing. First, traditional chart-related benchmarks are
considered, including ChartQA, ChartBench, and
ChartX, which primarily test recognition capabili-
ties. Second, we assess novel chart-related bench-
marks that require both recognition and reason-
ing, including CharXiv and our REACHQA test set.
Third, we evaluate general multimodal reasoning
abilities on MathVista and MATH-Vision.

Models and baselines. We evaluate a range of
MLLMs from three categories: (1) Powerful propri-

etary models, including GPT-40 (OpenAl, 2024a),
GPT-40 mini (OpenAl, 2024b), and Claude 3.5
Sonnet (Anthropic, 2024). (2) Chart-augmented
open-source models, such as ChartInstruct-7B
(Masry et al., 2024a), ChartAssistant-13B (Meng
et al., 2024), and ChartGemma-3B (Masry et al.,
2024b), which are specifically enhanced for chart-
related tasks. (3) Latest general open-source mod-
els, including LLaVA-Next-Llama3-8B (Li et al.,
2024), MiniCPM-Llama3-V2.5-8B (Yao et al.,
2024), and InternVL2-8B (Chen et al., 2024b).
For each general model, we conduct supervised
fine-tuning (SFT) using the REACHQA training set.
Specifically, we train three variants: one using 8k
recognition-oriented samples (denoted as Reco.),
one using 12k reasoning-oriented samples (denoted
as Reas.), and a combined version incorporating
both (denoted as All). More details on the datasets
and evaluation can be found in Appendix B.

4.2 Experimental Results

Table 4 presents the quantitative results for all mod-
els across each task. We can find that:

Synthetic datasets can also effectively mea-
sure abilities. Our REACHQA test set effec-
tively evaluates models’ reasoning and recognition
skills, showing trends similar to human-annotated
datasets like CharXiv. For instance, GPT-40 ex-
hibits a reasoning score of 39.70 and a recogni-
tion score of 66.80 on REACHQA, closely mirror-
ing its performance on CharXiv (i.e., 47.10 and
84.45, respectively). This consistency suggests
that LLM-generated datasets, with minimal human
intervention, can rival human-labeled data. More-
over, REACHQA presents a significant challenge to
models’ visual abilities, as random guessing results
in very low scores. In contrast, traditional bench-
marks like ChartQA may allow models to leverage
pre-existing knowledge, inflating results without
truly testing visual capabilities (Yue et al., 2024).

Proprietary models demonstrate more bal-
anced performance. Proprietary models like
GPT-40 achieve competitive results on both tra-
ditional chart-related tasks and reasoning-intensive
tasks like REACHQA and CharXiv. In contrast,
open-source models, whether chart-augmented or
general-purpose, excel in recognition tasks but
struggle in complex ones. This disparity highlights
their imbalanced capabilities, and also suggests
potential overfitting to simpler charts. Although
proprietary models may not always lead in specific
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Models Ave. (1) ChartQA ChartBench ChartX| REACHQA  CharXiv MathVista MATH-V
QA Binary NQA QA |Reas. Reco. Reas. Desc.| Math General QA
Proprietary Multimodal Large Language Models
GPT-40 mini 49.34 77.52 70.26 3493 3545 [27.20 53.50 34.10 74.92 56.70 28.85
GPT-40 59.85 85.70 81.03 52.88 46.60 [39.70 66.80 47.10 84.45 63.80 30.39
Claude 3.5 Sonnet 64.50 90.80 76.72 48.29 58.24 |51.70 74.30 60.20 84.30 67.70 32.76
Chart-augmented Multimodal Large Language Models
Chartlnstruct-7B 25.93 66.64 61.40 2695 26.62 | 6.00 10.50 8.80 21.40 1537 31.52 10.07
ChartAssistant-13B 28.25 79.90 58.15 24.62 2320 |10.70 19.60 11.70 16.93|17.78 39.57 8.55
ChartGemma-3B 33.08 80.16 78.90 34.10 35.15 | 9.20 27.80 12.50 21.30|19.07 38.04 7.70
Open-Source Multimodal Large Language Models
LLaVA-Next-Llama3-8B 24.46 45.80 4290 1586 1545 | 650 1790 17.20 31.45|22.41 44.13 9.44
+ REACHQA (Reco.)  32.88 (+34.4%) | 66.96 56.95 29.52 27.25 | 8.80 29.00 22.20 32.58|27.40 49.78 11.25
+ REACHQA (Reas.)  32.39 (+32.4%)| 64.48 56.80 25.14 2590 | 840 2630 22.70 35.67|28.89 50.65 11.38
+ REACHQA (All) 32.98 (+34.8%)| 64.56 57.00 29.33 27.08 [11.10 29.60 22.50 32.33|27.59 50.43 11.25
‘MiniCPM-Llama3-V2.5 3339 | ¢ 66.92 4890 2229 2372 1030 2530 22.00 4620|3722 53.04 1145
+ REACHQA (Reco.)  38.62 (+15.7%) | 71.12 56.65 33.29 29.53 |10.60 34.10 25.60 48.7541.48 60.43 13.22
+ REACHQA (Reas.)  38.52 (+154%)| 71.72 56.65 29.62 28.23 |11.00 33.00 27.50 48.70|43.52 60.22 13.52
+ REACHQA (All) 38.67 (+15.8%)| 71.44 55.80 3043 29.68 |11.00 35.10 28.30 47.6242.22 60.00 13.75
IntenVL2-8B 4003 | - 73.80 5205 32.86 35.10 |16.20 33.70 2630 46.10|46.11 6174 1638
+ REACHQA (Reco.)  48.21 (+20.4%) | 82.92 66.35 46.14 46.62 |19.90 49.50 32.20 54.3847.96 67.61 16.78
+ REACHQA (Reas.)  47.87 (+19.6%)| 82.84 64.05 46.52 44.88 |20.10 49.40 32.80 52.40|49.44 66.52 17.66
+ REACHQA (All) 48.35 (+20.8%)| 82.44 6590 47.29 4538 |21.30 49.80 32.70 54.8348.89 66.30 17.01

Table 4: Evaluation results on seven benchmarks. The best performance for each category and task is in bold. The
percentage of performance improvements compared to the vanilla model is denoted by (1).

tasks, the stable and balanced performance makes
them more suitable for real-world applications.

Specialized training data significantly improves
model performance. Models trained on 8k
REACHQA recognition data outperform in recog-
nition tasks, while those trained on 12k reasoning
data could do better in reasoning tasks. When both
data types are combined (i.e., 20k in total), models
see the greatest improvement, with performance in-
creasing by at least 15% across all models we test.
Notably, the LLaVA-Next-Llama3-8B achieves a
34.8% boost in average performance. This sug-
gests that a model’s visual capability comprises
two complementary aspects, and training on both
data types together produces optimal results. More-
over, despite the absence of math-target data in the
training set, the models generalize well to the Math-
Vista and MATH-Vision benchmarks, highlighting
the transferability of multimodal reasoning abilities
distilled from expert rationales.

5 Discussion

5.1 The Role of Expert Rationales

We analyze how training data quality affects vi-
sual reasoning abilities by comparing major open-
source datasets (ChartBench, ChartAst, Chart-

Models Avg. REACHQA CharXiv MathVista Math-V
Base Model 16.39 6.50 17.20 32.40 9.44
+ ChartBench  17.06 7.30 17.00 33.60 10.33
+ ChartAst 17.67 7.10 20.40 32.10 11.08
+ The Cauldron 18.61 10.10 19.10 35.60 9.64
+ ChartGemma 19.11 10.00 19.40 36.40 10.62
+ REACHQA  20.74 11.10 22.50 38.10 11.25

Table 5: Performance comparison of models trained on
different datasets. The REACHQA and CharXiv scores
refer to reasoning splits here.

Gemma and The Cauldron®). We uniformly sample
20k Q&A instructions from each dataset and train
LLaVA-Next-Llama3-8B under controlled settings.

As shown in Table 5, the model trained on Chart-
Bench performs the worst, likely due to the absence
of reasoning steps in its responses. Although Char-
tAst includes rationale annotations, the template-
based questions limit its effectiveness for learning
reasoning patterns. The model trained on the mixed
dataset of The Cauldron show modest improve-
ments, but is still restricted by the subsets’ quality.
In contrast, models trained on ChartGemma and
REACHQA perform better, likely due to the distilla-
tion of expert rationales from stronger models (e.g.,

3Unlike other datasets, The Cauldron (Laurengon et al.,
2024) is selected for its generality as a collection of 50 vision-
language datasets, from which we use 7 chart-related subsets.
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Figure 3: Performance comparison of different training
data ratios with 8k total data. The dashed line represents
the model’s performance trained with full 20k data.

Gemini Flash 1.5 and GPT-40), which directly af-
fect the visual reasoning abilities. Additionally, we
believe the visual richness of charts, as detailed in
Appendix C, may also help improve generalization.

5.2 Interaction between Recognition &
Reasoning Abilities

As previously noted, the recognition and reason-
ing abilities are likely interdependent. Wang et al.
(2024b) suggest that recognition skills serve as
prerequisites for effective reasoning. To investi-
gate this further, we conduct an experiment with
LLaVA-Next-Llama3-8B, using a fixed 8k total
training data size and varying the ratio of reasoning
to recognition data from 0:8 to 8:0. We evaluated
the models on recognition tasks (i.e., ChartQA,
ChartBench, ChartX) and reasoning tasks (i.e.,
REACHQA-Reas., CharXiv-Reas., MathVista).

Figure 3 shows that increasing the proportion
of recognition or reasoning data improves perfor-
mance on the respective tasks. Models with more
recognition data outperform those trained on 20k
full data for recognition tasks. However, the rea-
soning performance gains plateau and even decline
when reasoning data exceeds 50%, suggesting di-
minishing returns when reasoning data is overem-
phasized. This supports the hypothesis that reason-
ing abilities are partially dependent on recognition
skills. When the model fails to interpret the image
accurately, its reasoning ability is likely compro-
mised (Wang et al., 2024b). Although this study is
limited by data constraints, we expect the interac-
tion between recognition and reasoning to become
more pronounced with larger datasets.

5.3 Balancing General & Specialized Abilities

We investigate how models trained on special-
ized data perform on general-purpose multimodal

MATH-V

12,20
28.60 30.36  81.62

YR

39.22

OCRBench

Base Model ReachQA-20k ReachQA-LLaVA-Mix-40k

Figure 4: Performance comparison of models on 7
tasks and 5 tasks.

tasks. Using 7 general multimodal benchmarks
and 5 reasoning-focused benchmarks, we test three
versions of LLaVA-Next-Llama3-8B: the vanilla
model, the one trained on 20k REACHQA samples,
and another trained on 20k REACHQA plus 20k
general-purpose multimodal data sampled from
779k LLaVA-NeXT-Data*. This dataset is chosen
because the LLaVA-NeXT family of models was
officially fine-tuned on it (Li et al., 2024), allowing
us to approximate its original data distribution.

As shown in Figure 4, the vanilla model (green
area) struggles with reasoning tasks, while the
REACHQA-trained model (orange area) improves
on reasoning but loses general performance. Sur-
prisingly, by incorporating only 20k general data
(blue area), the model not only restores its gen-
eral multimodal performance but also retains the
enhanced reasoning ability. It results in a well-
balanced model with notable reasoning improve-
ments and minimal drops in general domains.

5.4 A Qualitative Analysis: From the
Perspective of Attention Mechanism

To explore the mechanism behind the improved
performance of our fine-tuned model, we conduct
an analysis of the attention patterns during the next
token prediction (Liang et al., 2022; Faysse et al.,
2024). Figure 5 presents a comparative case study
between the vanilla model and the fine-tuned model.
Here, we apply full-parameter fine-tuning instead
of LoRA to induce more pronounced changes in the

*https://huggingface.co/datasets/Imms-lab/LLaVA-
NeXT-Data
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Question: What was the average number of applications per job posting on LinkedIn in the United States? Let’s think step by step.

Vanilla LLaVA: The image shows a bar chart comparing the average number of applications per job posting on LinkedIn across

different countries. . (2) The bar for the U.S. is the
shortest, indicating the lowest average among the listed countries. (3) However, without exact numbers on the bars, I can’t give a
precise figure. If you can provide those numbers or a clearer chart, I can help calculate it. (Wrong Answer!)

@ ©

® Linkedin @ Facebook © Twitter ® Linkedin @ Facebook © Twitter

Fine-tuned LLaVA: In this chart,
States, (3) was recorded at 2.5. (Correct Answer!)

, (2) specifically in the United

nies states Canaca Austraa cnina Ingia United Kingdom

® Linkedin @ Facebook & Twitier

® Linkedin @ Facebook © Twitier

® Linkedin @ Facebook ® Twitier

Figure 5: An example of attention visualization from the ChartQA dataset. The top row shows the results from the
vanilla LLaVA-Next-Llama3-8B model, while the bottom row displays the results from our fine-tuned model. For
each output, we present the attention distribution (highlighted zones) at three key steps, calculated by averaging the

attention values of all tokens in each step.

attention layers (Hu et al., 2022). The results show
that the vanilla model produces lengthy outputs
with redundant analysis and dispersed attention
across the image, reaching a wrong conclusion at
the end. In contrast, the fine-tuned model identifies
the key information at each step, with attention that
accurately focuses on relevant visual elements (i.e.,
labels, axes and values).

This suggests that the model not only imitates ex-
pert rationales but also learns the underlying atten-
tion patterns crucial for effective visual reasoning.
The model automatically establishes a synergistic
relationship between recognition and reasoning ca-
pabilities, understanding what to recognize during
the reasoning process and utilizing these recogni-
tion results to guide subsequent reasoning steps.

6 Conclusion

In this work, we delve into the key challenges
MLLMs face in complex chart Q&A tasks, high-
lighting their deficiencies in both recognition and
reasoning. Building on our analysis of existing
datasets and the untapped potential of LLMs, we
propose Code-as-Intermediary Translation (CIT) as

a novel method for distilling LLMs’ abilities to im-
prove MLLMs. With code as a bridge between
visual and textual modalities, CIT enables lan-
guage models to interpret complex charts more pre-
cisely, facilitating the generation of higher-quality
Q&A pairs. Our synthetic dataset, REACHQA,
demonstrates significant performance improve-
ments across multiple models and benchmarks,
with gains extending beyond chart-specific tasks
to broader multimodal reasoning. We believe CIT
offers a promising direction for scalable and cost-
effective multimodal instruction data synthesis.

Limitations

We summarize the limitations of our method as
follows: (1) While CIT effectively uses code to
link text and abstract images like charts and dia-
grams, applying this approach to natural images
remains challenging. Current text-to-image models
still lack precise control over fine details (Betker
et al., 2023; Zhang et al., 2023), which can lead
to misaligned synthetic data. Once more control-
lable techniques are developed, the synthesis of
multimodal data could become more flexible and
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applicable. (2) Although multimodal validation
steps were introduced to reduce errors, the syn-
thesized charts and Q&A pairs might still contain
occasional inaccuracies. Therefore, to ensure data
quality for larger-scale applications, stronger mod-
els and stricter thresholds are essential. (3) Our
method may not be as effective for teacher models
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A Additional Dataset Details

A.1 Chart Types and Topics

We predefined several chart types and topics for
Self-Instruct prompting. Table 6 shows the 9 major
categories we established, with their correspond-
ing subcategories. Additionally, Table 7 lists the
38 topics we specified. It is important to note that
these topics do not reflect the actual topic distri-
butions in the generated charts, as we encourage
the model to combine and expand upon them. Re-
garding the distribution of chart types, we provide
a breakdown in Table 8. While we aimed for a
roughly balanced representation across different
chart types during data construction, some degree
of imbalance remains as certain types were more
prone to generation errors.

A.2  Cost of REACHQA Training Data
Construction

Table 9 provides a detailed expense breakdown.
We executed Self-Instruct and Evol-Instruct 3,000
times each to synthesize chart-plotting code, the-
oretically generating 6,000 charts. However, after
accounting for non-executable code and images fil-
tered out by MLLM rating, we ultimately produced
3,249 charts for Q&A synthesis.

A.3 Data Contamination Analysis

To ensure the validity of our experimental results
and exclude potential data contamination, we con-
duct a comprehensive analysis of data overlap from
both dataset-level and split-level perspectives. First,
to evaluate image-level similarity, we employed the
SigLIP-400M encoder (Zhai et al., 2023) to gener-
ate embeddings for all chart images across datasets.
These embeddings were then projected into a two-
dimensional space using t-SNE (Van der Maaten
and Hinton, 2008) for visualization, following Xu
et al. (2023). Second, we analyzed query-level sim-
ilarity using the NV-Embed-v2 model (Lee et al.,
2024) to generate embeddings for all queries, also
visualized through t-SNE.

As shown in Figure 6(a) and (c), the visualiza-
tion demonstrates clear distributional differences
between REACHQA and existing chart-related
benchmarks. While some degree of overlap exists
due to the shared nature of chart-related tasks, these

instances are limited and do not compromise the
overall distinctiveness of our dataset. The distinct
clustering patterns in both image and query spaces
support the validity of our cross-dataset evaluations
and confirm that REACHQA presents novel chal-
lenges not fully captured by existing benchmarks.
To address potential data leakage between train-
ing and testing splits, which were synthesized
through the same process, we conduct a more rig-
orous analysis as visualized in Figure 6(b) and (d).
Beyond visualization, we compute pairwise similar-
ities between all training and testing samples using
the chart embeddings. Among the identified top 50
image pairs with similarity scores exceeding 0.9,
our careful manual review revealed only 2 cases
with notable similarities. We will exclude them
from the test set in future versions and update the
evaluation accordingly. For the remaining samples,
our review confirmed clear differences in chart top-
ics, data values, and query types, ensuring that no
further data leakage or contamination is present.

B Additional Experiment Details
B.1 Benchmark Details

Table 10 summarizes the benchmarks used in our
main experiments, including the number of samples
for each dataset. Additionally, we use some other
popular multimodal datasets in Section 5.3, includ-
ing MME-Reasoning, MME-Perception (Fu et al.,
2023), SeedBench (Li et al., 2023a), CCBench (Liu
et al., 2023), POPE (Li et al., 2023b), Hallusion-
Bench (Guan et al., 2024), OCRBench (Liu et al.,
2024b), and We-Math (Qiao et al., 2024).

B.2 Training and Evaluation Details

For each general open-source model, we conduct
supervised fine-tuning (SFT) using our REACHQA
training set. We apply Low-rank Adapters (LoRA,
Hu et al., 2022) to all linear layers of the language
model and projector, with a LoRA rank of 16,
a LoRA alpha of 8 and a learning rate of 2e-5.
To fully leverage their capabilities, we prompt all
models with a zero-shot CoT prompt, “Let’s think
step by step” (Kojima et al., 2022), following Ope-
nAl (2024a) and Anthropic (2024). Thus, to ex-
tract answers from the model responses and assess
their correctness, we employ the LLM-as-a-judge
method (Zheng et al., 2023) to calculate a relaxed
accuracy. The judge model used is GPT-40, and
the prompt template for evaluation can be found in
Appendix D.4.

3236



Major Category  Minor Category

bar chart, bar chart with data annotation, stacked bar chart, percentage bar chart, horizontal bar chart

LM“ Line Charts line chart, line chart with data annotation, line chart with error bar
# Pie Charts pie chart, donut pie chart, sector pie chart, ring chart

Al Bar Charts

&l 3D Bar Charts 3D bar chart, stacked 3D bar chart, percentage 3D bar chart

@ Node Charts directed node chart, undirected node chart

&) Radar Charts radar chart, radar chart with area filling

ld Area Charts area chart, stacked area chart

il Box Charts vertical box chart, horizontal box chart

[ Scatter Charts
i Specific Charts

scatter chart, scatter chart with smooth fitting, 3D scatter chart (bubble chart)
heat map, rose chart, funnel chart, waterfall chart, histogram, tree map

Table 6: Major categories and minor categories of charts in REACHQA.

Art and Design

Music and Performance
Business and Finance
Travel and Exploration
Books and Publishing
Literature and Writing
History and Culture
Architecture and Building
Fashion and Style
Marketing and Advertising
Law and Legal Affairs
Film and Cinema
Mathematics and Statistics

Astronomy and Space
Physics and Chemistry
Energy and Utilities

Retail and E-commerce

Healthcare and Health

Futurism and Innovation
Social Media and the Web
Society and Community
Biology and Life Sciences

Religion and Spirituality
Food and Beverage Industry

Sports and Entertainment
Science and Engineering

Agriculture and Food Production
Transportation and Logistics

Real Estate and Housing Market

Government and Public Policy

Education and Academics

Environment and Sustainability

Language and Communication

Social Sciences and Humanities
Manufacturing and Production

Artificial Intelligence and Robotics

Human Resources and Employee Management
Computer Science and Information Technology

Table 7: Predefined chart topics in Self-Instruct prompting.

C Visualization of Charts from Different
Dataset

We randomly sample several charts from the train-
ing set of ChartQA (Masry et al., 2022), Chart-
Bench (Xu et al., 2023), ChartAst (Meng et al.,
2024), ChartGemma (Masry et al., 2024b), and
REACHQA. The visualization of the results is pre-
sented in Figure 7.

D Prompt Templates

We present the prompt templates used in our work.

D.1 Intermediary Code Synthesis

The prompts used for code generation via the Self-
Instruct method are presented in Figure 8, and
Figure 9 shows the prompts for the Evol-Instruct
method. As illustrated in Figure 10, we utilize four
predefined directions to evolve the simple chart-
plotting code.

D.2 Bi-directional Translation

The prompt used for the Self-Repair method is
presented in Figure 11. Additionally, the prompt

templates for generating reasoning-oriented ques-
tions and answers are listed in Figure 12 and Figure
13. The prompt details for generating recognition-
oriented questions and answers are listed in Figure
14 and Figure 15.

D.3 Quality Assurance

The prompt details for rating charts and Q&A are
illustrated in Figure 16 and 17.

D.4 Evaluation

In the evaluation process, we utilize the LL.M-as-
a-judge method. The detailed prompt template is
illustrated in Figure 18.
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Types ‘Line Pie Bar 3DBar Node Radar Area Box Scatter Specific Total

Train Set | 522 415 478 144 120 238 513 331 244 244 3,249
Test Set 101 40 112 15 18 19 24 44 63 64 500

Table 8: Distribution of chart types in REACHQA dataset.

Step Avg. #tokens of Input Avg. #tokens of Output Times Cost ($)
Self-Instruct 1,500 + 2,000 = 3,500 500 + 500 = 1,000 3,000 ~ 56.25
Evol-Instruct 700 + 1,300 = 2,000 300 + 700 = 1,000 3,000 ~ 45.00
Self-Repair 500 500 1,500 ~9.38

Reas-QA-Gen. 1,000+ 1,500 x 4 =7,000 5004 300x4=1,700 3,249 ~ 112.09
Reco-QA-Gen. 800+ 1,200 x 4 = 5,600 3004200 x 4 =1,100 3,249 ~ 81.23

Table 9: The average number of input and output tokens is calculated for each step in the REACHQA construction
process. In the equation, each term represents the average number of tokens per step (used only in a multi-step
framework), while each multiplier corresponds to the number of times that step is executed. The pricing for
GPT-40-2024-08-06 is $2.50 per 1M input tokens and $10.00 per 1M output tokens. As a result, the total cost
amounts to approximately $303.95.
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(a) Chart: REACHQA vs. Existing datasets (b) Chart: REACHQA Train vs. Test
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(c) Query: REACHQA vs. Existing datasets (d) Query: REACHQA Train vs. Test

Figure 6: Data overlap analysis visualization using t-SNE. We analyze both image-level and query-level
similarities through embedding space visualization. (a) and (c) demonstrate the distributional differences between
REACHQA and existing datasets, while (b) and (d) examine potential overlap between training and testing splits.
The results show clear dataset distinctiveness while revealing expected overlaps due to the shared domain of chart
understanding.
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Benchmark Task Focus Sample Details

ChartQA (Masry et al., 2022) Chart Recognition 2.5k test samples

ChartBench (Xu et al., 2023) Chart Recognition 2k binary QA samples and 2.1k numerical QA samples
ChartX (Xia et al., 2024) Chart Recognition 6k QA samples

REACHQA (ours) Chart Reco. & Reas. 1k recognition-oriented and 1k reasoning-oriented questions
CharXiv (Wang et al., 2024b) Chart Reco. & Reas. 4k descriptive and 1k reasoning questions (validation set)
MathVista (Lu et al., 2024) General Reasoning 540 math-targeted and 460 general VQA questions (testmini set)
MATH-Vision (Wang et al., 2024a)  General Reasoning 3,040 math competition problems

Table 10: Summary of benchmarks used in our experiments.
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(e) REACHQA contains 10 types of charts and more complex variations.

Figure 7: Visualizations of different chart-related training datasets. As shown, REACHQA and ChartGemma exhibit
higher chart richness compared to several other datasets. But the charts in ChartGemma require manual collection
from multiple sources (Masry et al., 2024b).
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User:

As a MatplotLib expert, you are asked to write a new Python plotting script. This script
will be used to generate a type-specific chart with artificial data. Here are the requirements:

1. There are several script examples from which you can draw inspiration, but try not to repeat
patterns already shown in the examples to maximize diversity.

2. Use the Matplotlib library in Python for plotting. You can use auxiliary libraries such as Numpy,
but make sure the code works!

3. The type of chart you need to plot is { type}. Therefore, everything you create must be adapted
to fit this type of chart.

4. The topic of the chart can be anything you like, for example, {topic1}, {topic2}, etc.

5. Based on the given chart type and the topic you choose, you need to construct a suitable
backstory, which should be reflected in the title, labels, legend, etc.

6. Based on the backstory, construct contextual data inputs in the form of Python lists or Numpy
arrays. Information contained in the data can be adapted as appropriate to fit the type of chart.

7. You must not use random() to construct the data, as it needs to be explicitly created regardless
of your chart type and topic.

8. Be as imaginative and creative as possible in drawing the chart, both in terms of data and
plotting details.

Here are three examples to consider:
{demo1}
{demo2}
{demo3}

Now, let’s take this task step by step. First, we have to plan out the title and backstory
of the chart and create data based on the above.

Assistant: {model_response}
User:

Please complete the entire script by plotting a chart based on the data generated. Here
are some highlighted requirements and notes.

Requirements:

1. If you find that the generated data is not appropriate while plotting the chart, modify it further as
needed.

2. The information on the chart should be complete enough to be understandable, but avoid
including the full backstory or too much text in the figure.

3. Avoid occlusion of visual elements. If necessary, automatically adjust the image layout before
plt.show() using tight_layout().

4. If the text in the chart is too long, find a way to make it all visible instead of overlapping. If the
title is too long, you can break it into multiple lines.

5. Once again, be as imaginative and creative as possible in creating the details of the chart.

6. Above all, double-check to ensure the code works. Reduce unnecessary comments and focus on
functionality.

Now, generate your final plotting script in a single python code block.

Figure 8: Prompt template for code generation via Self-Instruct method.
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User:

As a MatplotLib expert, you are asked to optimize a Python plotting script to make the
plotted chart more complex. The script will be used to generate charts for a mathematical test, so
you should make it a little more challenging.

This is the code you need to optimize:
{code}

Here’s what I’d like you to do to optimize the chart: {direction}

Now, let’s take this task step by step. First, please read the given code carefully and analyze the
chart it draws. Then, think about your optimization ideas with the given directions.
In this step, you don’t need to give the final code, only show the design ideas.

Assistant: {model_response}
User:

Please implement the final optimized script based on the above design ideas combined
with the original code.

Remember:

1. Avoid visual elements that obscure each other, e.g., legends, labels. Automatically adjust the
image layout before plt.show() using tight_layout(). if necessary.

2. If the text in the chart is too long, find a way to make all the text show up instead of overlapping.
If the title is too long, you can break it into multiple lines.

3. Be as imaginative and creative as possible in creating details of the chart, but don’t make the
chart redundant just to cope.

4. If you are adding a new plot, take care that the chart is complete with all the elements, such as
labels, axes, legends, and colors, unless it is intended to be shared with the original chart.

5. If you are adding a new plot, carefully construct meaningful data and consider whether to give
the new sub-plot a sub-title.

6. You must not use random() to construct the data, as it needs to be explicitly constructed
regardless of your chart type and topic.

7. Above all, double-check to make sure the code works. Reduce unnecessary comments and
focus on functionality.

Now, generate your optimized plotting script in a single python code block.

Figure 9: Prompt template for code generation via Evol-Instruct method.
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Evolution Direction:
* Increase the size of the input data or the number of data groups as appropriate so that it requires
a higher level of mathematical understanding. Note if there is a sum requirement.

* Try changing or adding some visual elements to make visual effect better. The elements you add
must make sense and not be redundant.

* Incorporate an overlay plot of a different type on the original chart. Use related but not identical
data for the added plot.

» Extend an additional subplot of a different type beside the original chart (2 in total). Use related
but not identical data for the added plot.

Figure 10: Predefined evolution directions for Evol-Instruct method.

User:
As a Python and Matplotlib expert, you have been asked to fix the following code.

The error code is:
{code}

The code reports the following error message when run: {error}
Please analyze the error first, and then provide the revised code within a single Python code block.

There should only be one Python code block in your response, containing the complete revised
code.

Figure 11: Prompt template for Self-Repair.
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User:

You are both an expert Matplotlib plotter and a professional maths teacher. Now, you
are asked to generate a mathematical reasoning question about a given chart. This chart and
question will be used as a question on this year’s college admissions examination. As a question
writer, you need to ensure that the question is challenging yet fair, testing the student’s ability to
analyze data, interpret trends, and apply mathematical concepts.

First, please read the following plotting script in Python, try to visualize the figure in
your mind and understand the meaning of the chart. After you’ve analyzed this chart, we’ll start
generating the associated question.

Here are some tips for you:

1. The plotting script (including the code itself, data mapping and labels) is absolutely correct, and
you can trust it completely.

2. The question needs to be based on the chart type, chart topic, and the given data. It can relate to
the chart as a whole or to localized details, so you need to look closely.

3. The question should be challenging, requiring visual observation skills and mathematical
reasoning skills. So, you need to have a deep understanding of the chart.

4. If there is no data annotation in the figure, try not to generate questions that require too much
numerical recognition to reduce inconsistent answers due to visual errors.

5. If some numerical recognition is needed, choose distinguishable colors, lines, heights, and other
features that make it easy to estimate without data annotation.

6. You don’t need to describe what the chart shows in the question text, including values, labels,
etc. This can be left to the student to recognize.

Here is the plotting script:
{code}

Now, please generate 4 questions at a time, each of which needs to look at a different
aspect of the chart.

Your output needs to follow this JSON format, and no other text included:

{“question_list”: [“the question you generate”]}

Figure 12: Prompt template for generating reasoning-oriented questions.
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User:

You are both a Matplotlib graphing expert and a professional math teacher. Now, you
have been asked to generate an answer to a given chart and question. This chart and question will
be used as a question on this year’s college admissions examination. As the answer writer, you
need to ensure that the answer is correct, detailed, and educational.

First, please read the following plotting script in Python, try to visualize the figure in
your mind and understand the meaning of the chart. After you’ve analyzed this chart, we’ll start
generating the answer.

Here is the plotting script:
{code}

Here are some tips for you to generate the answer:

1. First and foremost, the answer needs to be based on the chart information.

2. In the answer, you will also need to solve the question step-by-step, including reasoning steps
and recognition steps (but keep concise).

3. You need to explicitly involve a final answer; the type of answer can be a certain number, a
noun, or Yes/No, etc.

4. The answer should contain multiple reasoning or calculation steps and be presented in an
understandable and educational paragraph.

5. NEVER include any information relating to the Python script in the answer text, as students will
ONLY have access to the plotted figure.

Here is the question: {question}

Your output needs to follow this JSON format, and no other text should be included:

99, 9 < 99,

{*““analysis”: “your analysis about the scirpt and question”, “answer”: “your step-by-step answer’ }

Figure 13: Prompt template for generating reasoning-oriented answers.
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User:

You are both an expert Matplotlib plotter and a professional maths teacher. Now, you are asked
to generate a recognition-oriented question about a given chart. This chart and question will be
used as a question on this year’s elementary math examination to test students’ ability to read charts.

First, please read the following plotting script in Python, try to visualize the figure in
your mind and understand the meaning of the chart. After you’ve analyzed this chart, we’ll start
generating the associated question.

Here are some tips for you:

1. The plotting script (including the code itself, data mapping, and labels) is absolutely correct and
you can trust it completely.

2. Descriptive questions are questions that can be answered based on basic chart information, such
as titles, labels, tick marks, colors, etc.

3. The generated Q&A needs to be based on the chart type and data. It should be answerable
through visual observation.

4. If there is no data annotation in the figure, try not to generate questions that require too many
numerical recognitions to reduce inconsistent answers due to visual errors.

5. If some numerical recognition is needed, choose distinguishable colors, lines, heights, and other
features that make it easy to estimate without data annotation.

6. You don’t need to describe the content of the figure in the question text. This can be left for
students to think about.

7. This question needs to explicitly involve a final answer; the type of answer can be a certain
number, a noun, or Yes/No, etc.

8. NEVER include any information relating to the Python script in the question or answer, as
students will ONLY have access to the plotted figure.

Here are some examples of recognition-oriented questions:

- How many colors are used in the chart? How many city categories are in the chart?

- What’s the leftmost value of the bar in China? And what is the value of the bar next to it?
- For the subplot at row 2 and column 1, what is the minimum value of the solid line?

- Which name does the second-largest sector represent? What is its value?

- Does the blue triangle in the chart represent a higher value than the red circle?

Here is the plotting script:
{code}

Now, please generate 4 questions at a time, each of which needs to look at a different
aspect of the chart.

Your output needs to follow this JSON format, and no other text included:

{“question_list”: [“the question you generate”]}

Figure 14: Prompt template for generating recognition-oriented questions.
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User:

You are both a Matplotlib graphing expert and a professional math teacher. Now, you
have been asked to generate an answer to a given chart and question. This chart and question will
be used as a question on this year’s elementary math examination to test students’ ability to read
charts. As the answer writer, you need to ensure that the answer is correct, detailed, and educational.

First, please read the following plotting script in Python, try to visualize the figure in your mind
and understand the meaning of the chart. After you’ve analyzed this chart, we’ll start generating
the answer.

Here is the plotting script:
{code}

Here are some tips for you to generate the answer:

1. First and foremost, the answer needs to be based on the chart information.

2. In the answer, you will also need to solve the question step-by-step, including reasoning steps
and recognition steps (but keep concise).

3. You need to explicitly involve a final answer; the type of answer can be a certain number, a
noun, or Yes/No, etc.

4. The answer should contain multiple reasoning or calculation steps and be presented in an
understandable and educational paragraph.

5. NEVER include any information relating to the Python script in the answer text, as students will
ONLY have access to the plotted figure.

Here is the question: {question}

Your output needs to follow this JSON format, and no other text should be included:

9, EL T3 99, ¢

{*““analysis”: “your analysis about the scirpt and question”, “answer”: “your step-by-step answer’ }

Figure 15: Prompt template for generating recognition-oriented answers.
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User:
<image>

You are a strict MatplotLib plotter and have been asked to evaluate the given chart. Rate
the chart from 1 to 5 based on these criteria:

1 point: This chart is the poorest in quality and fails to accurately represent any relevant
data. It is characterized by a complete breakdown in visual representation; elements are cluttered,
text heavily overlaps, legend is missing, or large areas are left blank, making the chart unreadable.
The design shows no understanding of effective data visualization practices.

2 points: The chart displays incorrect or irrelevant visual elements, with significant inaccuracies
that misrepresent the data. The layout suffers from clutter, substantial overlapping of text and
other visual elements, such as the legend or labels, and poorly designed axes that result in uneven
distribution, severely impeding accurate interpretation.

3 points: This chart represents some correct data points but makes basic errors in visual represen-
tation. It may use misleading scales, inappropriate chart types, omit key data. Visual clutter and
overlapping elements, such as text obscuring parts of the chart or sub-diagrams overlapping each
other, detract from the chart’s clarity and readability.

4 points: The chart accurately represents most of the major data points and important details of
the dataset. Minor visual errors exist, such as slight occlusions of text or sub-optimal positioning
of elements like legends or labels, but these do not significantly affect the overall accuracy or
readability. The chart demonstrates a good understanding of effective visualization techniques but
could still be improved in terms of visual layout and the balance of details.

5 points: This is an exemplary chart that perfectly encapsulates all critical data points and
relationships with outstanding visual clarity and no occlusions. It demonstrates a thorough
understanding of data visualization techniques, making excellent use of space and visual elements.
The chart is informative, clear, engaging, and free from any visual errors.

Score the chart on this scale, providing a short analysis and a single value. Your re-
sponse should be in the format:

Analysis: (your analysis)

Rating: (int)

Figure 16: Prompt template for rating the chart quality.
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User:
<image>

You are a visual question answering (VQA) data annotator. Your task is to review the
following chart and question, and determine if the answer is correct based on the information
in the chart. You should carefully analyze the chart, taking into account all relevant data points,
labels, and trends. Then, conduct an in-depth analysis to determine if there are any unreasonable
or incorrect aspects in the figure, question, or answer.

Specifically, consider the following points:

1. Are the provided question and answer relevant to the chart? Can the answer be found in the
chart?

2. Do the colors in the charts and questions correspond correctly? Are there instances where the
colors are incorrectly referred to?

3. Do the data in the charts and questions correspond correctly? Are there any errors in the data or
misalignment of information?

4. Is the provided answer correct? Are there any logical errors or unreasonable points?

5. Apart from the points listed above, is there anything else in this question and answer that
doesn’t make sense?

Here is the question and answer about the given chart:
Question: {question}
Answer: {answer}

You are asked to provide a short analysis and decide whether to keep the example. Your
response should be in the format:

Analysis: (your analysis)

Decision: (yes/no)

Figure 17: Prompt template for rating Q&A quality.
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User:

Compare the ground truth with the prediction from AI model and determine if the pre-
diction is correct. The question is about an image, which we have not given here. You need to
determine whether the model’s prediction is consistent with the ground truth. No points will
be awarded for wrong answers, over answers or under answers. The reasoning process in the
prediction does not need to be considered too much, you only need to determine if the final answer
is consistent. There are times when the answer may have a different form of expression and some
variation is acceptable.

## Question: {question}
## Ground Truth: {answer}
## Prediction: {prediction?}

Now, let’s analyze it and then provide your judgment. Your response must follow the
format below:

Analysis: (analyze the correctness briefly)

Correctness: (Yes or No)

Figure 18: Prompt template for evaluating the model prediction with LLMs.
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