CrossQG: Improving Difficulty-Controllable Question Generation through
Consistency Enhancement

Kunze Li and Yu Zhang*
Research Center for Social Computing and Interactive Robotics,
Harbin Institute of Technology, Harbin, China
{kzli, zhangyu}@ir.hit.edu.cn

Abstract

Automatically generating questions with con-
trolled difficulty has great application value,
especially in the field of education. Although
large language models are capable of generat-
ing questions of various difficulty levels, the
generated questions often fail to align with the
given target difficulty. To mitigate this issue,
we propose CrossQG, a novel question gener-
ation method that requires no tuning of gen-
erator parameters, yet significantly improves
difficulty consistency. Specifically, CrossQG
consists of two steps: (1) contrast enhance-
ment, which leverages questions from differ-
ent difficulty levels to enhance the base mod-
els’ understanding of the target difficulty, and
(2) cross filtering, which compares generated
questions across different difficulty levels and
filters out those that do not meet the target dif-
ficulty. We evaluate CrossQG on three high-
quality question answering datasets. Experi-
mental results demonstrate that across multi-
ple models, CrossQG significantly outperforms
several mainstream methods, achieving supe-
rior consistency with target difficulty and im-
proving question quality. Notably, without gen-
erator training, CrossQG surpasses supervised
fine-tuning in various instances.

1 Introduction

The task of Difficulty-Controllable Question Gen-
eration (DCQG) aims to generate questions with
controlled difficulty levels. It holds significant ap-
plication value in education, such as improving
learning efficiency (Uto et al., 2023; Wang, 2014)
and better assessing learners’ abilities (Benedetto
et al., 2023). The main difficulties of DCQG lie
in: (1) appropriately categorizing and representing
the difficulty levels of the questions, and (2) ensur-
ing that the generated questions match the target
difficulty.

*Corresponding author.

Context:

A man has a bird. ... Every day the man speaks to the bird. ...
“What are you doing?” says the man. “What are you doing?”
says the bird. The man is not at home one day. A thief comes
in. ... “What are you doing?” The thief is very afraid, so he
does not take any things and runs out of the house at last.
Target Difficulty Level: Hard

Prompt-based QG

How does the thief react when he hears the bird? (Too Easy X)
ICL-basedQG
What is the purpose of dreaming during sleep? (Irrelevant X)
Self-reineQ¢
What does the man’s reaction to the thief’s presence reveal
about his character and values? (Unanswerable X)

CrossQG
Q1: How does the man’s daily interaction with the bird impact
the bird’s behavior towards intruders? v/

Q2: What message do you think the story is trying to convey
about the relationship between humans and animals? v/

Table 1: An example from RACE in which ques-
tions (corresponding answers are omitted) generated
by CrossQG achieve better difficulty consistency com-
pared to other methods.

In recent years, with advancements in natural lan-
guage processing, several studies in DCQG have
recognized the importance of question diversity (Bi
etal., 2021) and the alignment of question difficulty
levels with learners’ abilities (Srivastava and Good-
man, 2021; Uto et al., 2023). However, current
research still faces a number of challenges:

Limited Difficulty Representation. Early
DCQG methods (Gao et al., 2019; Bi et al., 2021)
directly incorporate difficulty levels into the model
framework, an approach that is not applicable for
large language models (LLMs). Recent DCQG
studies (Wang et al., 2023; Li and Zhang, 2024)
leverage model-generated knowledge or answer
plans to represent question difficulty, which may
be more appropriate for LLMs. However, the
difficulty representation for LLMs still remains
underexplored.

2783

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 2783-2798
November 4-9, 2025 ©2025 Association for Computational Linguistics

Low Difficulty Consistency. Difficulty consis-
tency in DCQG evaluate the alignment between
generated questions and target difficulty levels, re-
flecting the model’s ability to control question dif-
ficulty. Even for LLMs, ensuring such alignment
remains challenging. As illustrated in Table 1, the
prompt-based method struggles to ensure the diffi-
culty consistency, while in-context learning (ICL)
and self-refine methods tend to generate irrelevant
or unanswerable questions.

To address these limitations, we propose
CrossQG, an LLM-based DCQG method that im-
proves the difficulty consistency of generated ques-
tions. The difficulty of a question is evaluated
based on the complexity of answer acquisition.
Specifically, the difficulty definition used in this
paper is derived from expert-annotated labels pro-
vided in FairytaleQA (Xu et al., 2022). For ques-
tion generation, our method consists of two steps:
contrast enhancement and cross filtering. During
contrast enhancement, unlike typical in-context
learning, we incorporate additional negative exam-
ples into the prompt to guide LLMs to regenerate
distinct questions. This idea is inspired by the self-
refine method (Madaan et al., 2023), which allows
LLMs to reflect on the questions they generate for
the target difficulty. To further improve the method,
we choose to use questions of other difficulties as
negative examples, exposing LLMs to the informa-
tion contained in questions of various difficulties.
During cross filtering, we instruct LLMs to extract
embeddings from generated questions, which serve
as representations of question difficulty. Then, we
filter out questions that exhibit high difficulty sim-
ilarity with those targeted at other levels, thereby
strengthening difficulty consistency.

We conduct experiments on three question an-
swering datasets. Experimental results indicate
that CrossQG significantly outperforms three main-
stream training-free methods in terms of both ques-
tion difficulty consistency and quality across multi-
ple LLMs. Moreover, without training the LLMs,
our method surpasses supervised fine-tuning (SFT)
in various instances.

The main contributions of this paper are summa-
rized as follows:

* We propose CrossQG, a novel LLM-based
method for DCQG that requires no generator
training. It enhances the difficulty consistency
of generated questions by incorporating cross-
difficulty information.

* We design a contrast enhancement module to
enhance LLMs’ understanding of target diffi-
culty and a cross-filtering module to improve
the consistency of generated questions with
target difficulty levels.

* We conduct extensive experiments on several
datasets. Results show that CrossQG remark-
ably outperforms multiple training-free meth-
ods in both question difficulty consistency and
quality on various LLMs.

2 Related Work
2.1 Question Difficulty Representation

Question difficulty representation, which involves
encoding difficulty information into models, plays
a vital role in DCQG. In earlier years, several stud-
ies (Gao et al., 2019; Bi et al., 2021) directly inte-
grate predefined difficulty levels into model frame-
works. Besides, multi-hop QG (Cheng et al., 2021)
defines difficulty as the number of inference steps
required to answer a question, incorporating diffi-
culty information during iterative generation. How-
ever, these methods of difficulty representation can-
not be easily migrated to LLMs. Recent studies
address this gap by utilizing model’s intermediate
outputs to represent difficulty. For instance, Skil-
1QG (Wang et al., 2023) leverages the skill-specific
knowledge to align questions with comprehension
skills (Krathwohl, 2002). PFQS (Li and Zhang,
2024) employs the answer plans extracted by mod-
els to implicitly represent difficulty. In this paper,
we innovatively introduce a difficulty-oriented em-
bedding representation to enhance the difficulty
consistency of generated questions.

2.2 Difficulty-Controllable Question
Generation

Early research on DCQG mainly focus on small
language models. DLPH-GDC (Gao et al., 2019)
proposes an LSTM-based model to generate ques-
tions of designated difficulty levels. Multi-hop QG
(Cheng et al., 2021) introduces an iterative frame-
work that gradually increases question difficulty
through step-by-step rewriting. This method is
guided by an extracted reasoning chain, and uses
GPT-2 (Radford et al., 2019) for question gener-
ation. CCQG (Bi et al., 2021) uses a mixture of
experts (Shen et al., 2019) as the selector of soft
templates. It then leverages BiLSTM (Hochreiter
and Schmidhuber, 1997) as encoder to generate
questions with controlled complexity. SkillQG

2784

(Wang et al., 2023) proposes a question generation
pipeline. The pipeline utilizes the skill-specific
knowledge extracted by GPT-2 to generate ques-
tions with BART (?). Recently, PFQS (Li and
Zhang, 2024) proposes an LL.M-guided method,
which generates questions based on answer plans.
However, almost all methods generate questions
separately for different difficulty levels, overlook-
ing the information implied by questions from other
difficulty levels. Additionally, there is a lack of suf-
ficient exploration of LLMs for DCQG. In this pa-
per, we primarily focus on LLM-based methods for
DCQG. When generating questions of a specific
difficulty level, we leverage the questions gener-
ated at different levels to improve the performance
of LLMs.

3 Method

Given an input context text ¢ and a specific diffi-
culty level d € D, the objective of the task is to gen-
erate several question-answer (QA) pairs (Q, A),
where questions in Q align with the difficulty level
d. This process can be formalized as the following
function:

(Q,A) = F(c,d) (1)

where F is a question generation method.

Figure 1 illustrates the overall architecture of
our method. Before generation, we introduce the
difficulty estimation schema used in our approach.
During initial question generation, based on the
schema, we use LLMs to generate initial QA pairs
(Qinit, ANty with prompts tailored for different
difficulty levels. During contrast enhancement,
given difficulty level d, we select QA pairs from
(Qinit\ Qinit| Ainit \ Ainit) a5 negative examples to
help LLMs avoid generating questions with non-
target difficulty levels. During cross filtering, we
remove questions that exhibit high similarity in
difficulty with those targeted at other levels. The
following paragraphs will introduce the entire gen-
eration process in detail.

3.1 Difficulty Estimation Schema

For difficulty estimation, we refer to the labels
annotated by experts in FairytaleQA, a well-
structured question answering dataset derived from
child-friendly storybooks. These labels have been
proven to be scientific and reasonable by several
previous works (Eo et al., 2023; Leite and Car-
doso, 2024; Li and Zhang, 2024). As shown in
Table 2, we define 3 difficulty levels, with difficulty

ranging from low to high. The alignment of our
labels with those in FairytaleQA ("local/summary",
"explicit/implicit") is as follows: (1) easy aligns
with (local, explicit); (2) medium maps to both (lo-
cal, implicit) and (summary, explicit); and (3) hard
corresponds to (summary, implicit). To maintain
a clear order of difficulty levels, we include two
cases under the medium difficulty. Separating these
two cases into different difficulty levels would raise
ambiguity about which level is more challenging.

3.2 Initial Question Generation

During the initial question generation process, we
use prompts to guide an instruction-tuned LLLM in
generating QA pairs based on the given context and
difficulty level. Considering efficiency, we propose
two methods at this stage: CrossQG and CrossQG-
fast. CrossQG generates questions for varying diffi-
culty levels with different prompts. By comparison,
CrossQG-fast employs a single prompt to simul-
taneously generate questions across all difficulty
levels, improving the efficiency of generation. The
detailed design of prompts can be found in Ap-
pendix A.1.

Given the context c, the difficulty level d, and
the prompt template 7', we obtain the complete
prompt T™Mi(c, d)!. The initial QA pairs of diffi-
culty level d can then be generated using the fol-
lowing expression:

(Q, A" = LLM(T™(c,d) (2)

where LLM(-) represents performing an inference
by LLMs.

3.3 Contrast Enhancement

After the initial process, the generated questions
might not meet the expected difficulty levels, in-
dicating that LLMs do not fully understand the
difficulty requirements. To tackle this problem,
we propose a component called contrast enhance-
ment (CE), which leverages negative examples to
enhance LLMs’ understanding of target difficulty.

Let D denote all difficulty levels in our diffi-
culty estimation schema. To enhance LLMs’ under-
standing of difficulty level d(d € D), we randomly
select several QA pairs of other difficulty levels
to form negative examples E;, which can be ex-
pressed as follows:

Eq={f(Q3". A§"),n)ld € D\{d}} (3)

!CrossQG-fast does not require a specific difficulty level
d; this formula is used here for unified expression.

2785

Regenerate

M

— prometa on™ — — . — — gy
= Prompt 2
— Prompt3 QAM™ Negative — —_ QA —> Filter —— QA"
CrossQG Examples
 CrossQG-fast
—> Prompt QA;"it —_— —_— QA;:e —_— R —— QA3Cf
- A A N 7
~— ~" ~"

Initial Question Generation

Contrast Enhancement

Cross Filtering

Figure 1: Overall architecture of CrossQG. The figure illustrates the optimization process with three difficulty levels.
In the figure, subscript numbers indicate the difficulty of the questions, and each small square represents a QA pair.

Difficulty Definition

Easy Answers can be Qirectly found in the text; getting the answer requires focusing on the local information (e.g. one
single sentence) in the context.
Case 1: Answers cannot be directly found in the text; getting the answer requires focusing on the local information

Medium (e.g. one single sentence) in the context. Case 2: Answers can be found directly in the text; obtaining the answer
involves synthesizing and summarizing information from multiple parts of the context.

Hard Answers cannot be directly found in the text; obtaining the answer involves synthesizing and summarizing

information from multiple parts of the context.

Table 2: Definitions of difficulty levels.

where f(-,) represents a uniform sampling func-
tion, and n is a hyperparameter that denotes the
number of QA pairs randomly selected from each
difficulty level.

We design prompts to enable LLMs to regenerate
questions based on previous difficulty requirements
and negative examples. The details of the prompts
are available in Appendix A.2.

Formally, with the context c, difficulty level d,
negative examples F;, and the prompt template
T°¢, the whole prompt is 7°¢(¢, d, E4). The QA
pairs regenerated during the contrast enhancement
process can be expressed as follows:

(97, AT) = LLM(T(c,d, Eg)) (4)

where LLM(-) denotes performing an inference by
LLMs.

3.4 Cross Filtering

In this section, we propose a component based
on difficulty-oriented embeddings, called cross fil-
tering (CF). The component is designed to filter
out questions that may not align with the target
difficulty levels, thereby enhancing the difficulty
consistency. Specifically, if a question exhibits high
similarity in difficulty to questions targeted at other
levels, this suggests the question may not match
the intended difficulty. In such cases, the question
is removed to ensure consistency.

For difficulty-oriented embeddings, we incorpo-
rate task definitions into the prompt, inspired by
MetaEOL (Lei et al., 2024), to address the com-
plexity of difficulty assessment. For Explicit One-
Word Limitation (EOL), we adopt the template
from PromptSTH (Zhang et al., 2024) as follows:

This sentence: "[X]" means something

where the last layer’s hidden vector for the last
token "something" is extracted as the embedding.
Additionally, given the length of input context and
questions, we replace the placeholder [X] with a
fixed-length sentence rather than long inputs to
ensure LLMs focus on the task. The complete
prompt is provided in Appendix A.3.

The algorithm of a single round is described in
Algorithm 1. In the algorithm, P and D are for-
malized as {P;};¢; and {d;}}¢,, respectively. P;
represents the list of QA pairs generated by the
model for difficulty d;, and ng is the number of dif-
ferent difficulty levels. The superscript ¢ denotes
the question in a QA pair, while count(-) repre-
sents the number of elements. The function CE(-)
is defined in Equation 4, and sim(c, p, q) calculates
the difficulty similarity between questions p and ¢
based on context c as follows:

sim(c, p, q) = cos(emb(c,p),emb(c,q)) (5)

where cos(-, -) is the cosine similarity function, and
emb(+,-) denotes difficulty-oriented embeddings

2786

Algorithm 1 Cross Filtering Algorithm

Input: List of list of QA pairs P, list of difficulty
levels D, context ¢

Parameter: Similarity threshold ¢, high-similarity
count threshold s, filter count m

Output: Filtered QA pairs P’

1: Initialize Z < P, P’ <)

2: for all u € P; where P; € P do

32 Ay« {vlsim(c,u?,v?) > t,v e P\ P}
4: if count(A,) > s then

5: Remove u from P;
6
7
8
9

end if
: end for
: for all P, € P do
: if count(P;) < m then
10: E«+ Z;\ P,

> Filtered-out QA pairs
11 P’ + P"UCE(c,d;, E) > Regeneration
12: else
13: P+ P UP
14: end if
15: end for

16: return P’

extracted by LLMs based on the given context and
question.

The algorithm consists of two main steps. Firstly,
for a given question u?, we calculate its diffi-
culty similarity with questions from other difficulty
levels. We then count the number of questions
whose similarity exceeds a threshold ¢, denoted as
count(A,,). If this count is > s, the corresponding
QA pair u is removed.

Secondly, we assess whether a next iteration is
necessary. We denote the remaining number of QA
pairs for difficulty level d; as n;. If n; > m, the
filtered QA pairs for d; are obtained. Otherwise,
we regenerate QA pairs for d; by contrast enhance-
ment. Note that the regenerated QA pairs need to
undergo the next cross-filtering process. In contrast,
QA pairs of other difficulties will not be updated in
the next filtering phase. They will only be used to
calculate difficulty similarity with questions that re-
quire filtering. The entire process will be repeated
until no further QA pairs are regenerated, or it has
been repeated three times.

4 Experiments

4.1 Experimental Setup

Datasets. We conduct assessments on three ques-
tion answering datasets: SQuAD (Rajpurkar et al.,

2016), RACE (Lai et al., 2017), and FairytaleQA
(Xu et al., 2022). These datasets, sourced from
Wikipedia, English exams, and stories respectively,
are well-known for their quality. We select a ran-
dom sample of 1,500 articles for testing, with 500
articles from each dataset.

Metrics. To evaluate the consistency of question
difficulty, we first estimate the actual difficulty of
the questions, and then calculate the consistency
score between the actual and target difficulties.

For difficulty estimation, we initially attempt to
utilize GPT-4 (Achiam et al., 2023) in a zero-shot or
few-shot manner. However, the average accuracy is
below 65% (see complete results in Appendix B.1).
Therefore, we train a difficulty classifier based on
a manually annotated dataset.

We first construct a dataset called DiffQA. Each
entry in DiffQA is a tuple (¢, q, a, d), where ¢, q, a,
d represents the context, the question, the answer,
and the difficulty level respectively. d € {1,2,3}
denotes {easy, medium, hard} . The QA pairs are
derived from the above three datasets and human
annotation. Considering the relatively lower dif-
ficulty of SQuAD, we compose some more chal-
lenging questions based on its contexts. In addi-
tion, we revise some questions from RACE due to
their inconsistent format compared to the other two
datasets. We employ five annotators to label d, with
each annotation undergoing a cross-check by two
annotators. The inter-rater reliability, measured by
Fleiss’ Kappa (Fleiss, 1971), is 0.82, indicating
substantial agreement. The conflicting annotations
are resolved by a third annotator. In total, we anno-
tate 6500 entries, with 5500 serving as the training
set and 1000 as the test set. The details of DiffQA
are shown in Appendix B.2.

Then, we utilize DiffQA to train a difficulty clas-
sifier based on the Roberta-base model (Liu, 2019),
achieving an accuracy exceeding 81%. Detailed
results are provided in Appendix B.1.

For consistency score calculation, we collect QA
pairs generated by a model across all contexts and
target difficulties, denoted as P. Let d¢(-) and dq (")
represent the target difficulty and the actual diffi-
culty (predicted by our trained classifier) of a QA
pair, respectively. We compute the Spearman cor-
relation coefficient (Spearman, 1904) p between
D, = {di(p)|lp € P} and D, = {d.(p)|p € P} to
assess their correlation. Additionally, accuracy is
used to evaluate whether the difficulty of generated
QA pairs aligns with the expected difficulty. The

2787

SQuAD RACE FairytaleQA
Method
p acc p acc p acc
Llama-2-7b-chat
Prompt 0.3799 0.4776 0.3252 0.4090 0.3672 0.4203
ICL 0.4189 0.5135 0.4117 0.5042 0.3385 0.4759
Self-refine 0.4464 0.4896 0.3619 0.4514 0.3011 0.4126
SFT (*) 0.5923 0.5832 0.6147 0.5851 0.5046 0.5353
CrossQG (ours) 0.6216 0.5767 0.6660 0.6121 0.5805 0.5749
CrossQG-fast (ours) 0.6167 0.5943 0.6418 0.5791 0.5835 0.5678
Llama-2-13b-chat
Prompt 0.3900 0.4343 0.3704 0.4317 0.4193 0.4314
ICL 0.3512 0.4950 0.2928 0.4474 0.2542 0.4446
Self-refine 0.6211 0.5676 0.5954 0.5587 0.5927 0.5749
SFT (*) 0.6325 0.6130 0.5912 0.5866 0.5270 0.5516
CrossQG (ours) 0.7066 0.6414 0.7144 0.6369 0.6549 0.6399
CrossQG-fast (ours) 0.6834 0.6312 0.6921 0.6118 0.6441 0.6190
Mistral-7b-instruct
Prompt 0.3946 0.4262 0.4204 0.4547 0.3482 0.4236
ICL 0.4396 0.4996 0.4592 0.5271 0.3910 0.4597
Self-refine 0.4365 0.4433 0.4491 0.4714 0.3790 0.4224
SET (*) 0.6668 0.6377 0.6436 0.6340 0.5129 0.5483
CrossQG (ours) 0.6142 0.5308 0.5972 0.5652 0.4408 0.4909
CrossQG-fast (ours) 0.5785 0.5108 0.5837 0.5692 0.4183 0.4805

Table 3: Main experimental results on three datasets, with p and acc for each method. Best results are highlighted in
bold. SFT (*) involves model training, so it serves as a reference, and does not directly participate in the comparison.

Results surpassing SFT are marked in red.

detailed calculations are provided in Appendix B.3.

Baselines. In our experiments, we compare our
CrossQG method with four baselines: (1) Prompt
(Wei et al., 2022), which leverages the prompt de-
rived from the initial question generation phase of
standard CrossQG to generate questions. (2) ICL
(Brown et al., 2020), which incorporates several
in-context examples with target difficulty into the
prompt to guide LLMs in generating questions. (3)
Self-refine (Madaan et al., 2023), which lets LLMs
reflect on the questions they generate based on the
Prompt method and regenerate. (4) SFT, which
finetunes LLMs using DiffQA.

Other Settings. We conduct experiments on
three LLMs: Llama2-7b-chat, Llama2-13b-chat
(Touvron et al., 2023), and Mistral-7b-instruct-v(.2
(Jiang et al., 2023). For hyperparameters, the de-
fault values are n = 1 for contrast enhancement
and s = 1, m = 2 for cross filtering. The param-
eter ¢ is computed based on the LLM embedding
method, as detailed in Section 4.4. Consistent with
CrossQG, both ICL and self-refine methods incor-
porate 2 examples in their prompts.

4.2 Main Results

The results of the baselines and CrossQG are pre-
sented in Table 3. Overall, CrossQG significantly

outperforms other training-free baselines across all
settings, and even surpasses SFT in many instances
(marked in red). Specifically, compared with three
training-free baselines, CrossQG shows an average
increase of at least 0.14 in p and at least 0.06 in
accuracy, respectively.

CrossQG-fast exhibits a modest performance
degradation compared to CrossQG, but achieves
higher efficiency. Specifically, CrossQG requires at
least 2 LLLM generations per difficulty level on aver-
age: one for initial generation, one for contrast en-
hancement, and potential additional regenerations
during cross filtering. By contrast, CrossQG-fast
requires only approximately 4/3 generations per dif-
ficulty level. This reduction is attributed to the use
of a unified prompt for initial generation across all
difficulty levels, which lowers the average number
of generations to 1/3 per difficulty level. Addition-
ally, CrossQG often outperforms SFT, indicating
that the finetuned models may struggle to learn ef-
fectively when it comes to deep semantic features
of questions. Nevertheless, CrossQG still exhibits
strong performance in this case.

4.3 Ablation Study

In Table 4, we investigate the impact of contrast
enhancement (CE) and cross filtering (CF) on our
method. The results indicate that combining CE

2788

SQuAD RACE FairytaleQA
Method
p acc acc p acc
Llama-2-7b-chat

CrossQG 0.6216 0.5767 0.6660 0.6121 0.5805 0.5749
w/o CE 0.6019 0.5741 0.6431 0.5973 0.5697 0.5816
w/o CF 0.5524 0.5316 0.6064 0.5797 0.5359 0.5538

Llama-2-13b-chat
CrossQG 0.7066 0.6414 0.7144 0.6369 0.6549 0.6399
w/o CE 0.6290 0.5978 0.6681 0.6237 0.5416 0.5814
w/o CF 0.6998 0.6283 0.7165 0.6365 0.6516 0.6309

Mistral-7b-instruct
CrossQG 0.6142 0.5308 0.5972 0.5652 0.4408 0.4909
w/o CE 0.6101 0.5407 0.5928 0.5641 0.4328 0.4722
w/o CF 0.5590 0.4979 0.5368 0.5252 0.3983 0.4624

Table 4: Ablation results for CrossQG, where CE denotes contrast enhancement and CF denotes cross filtering. We
report p and x for each method. Best results are highlighted in bold.

Method p acc NE-acc
Llama-2-7b-chat

Self-refine 0.3691 0.4503 0.6730

CE 0.5656 0.5565 0.7682
Llama-2-13b-chat

Self-refine 0.6026 0.5670 0.6634

CE 0.6875 0.6319 0.7699

Mistral-7b-instruct
Self-refine 0.4176 0.4466 0.6814
CE 0.4953 0.4964 0.7614

Table 5: Results integrating three datasets, where NE-
acc denotes the accuracy of negative examples.

and CF typically achieves the best performance.
For smaller models (Llama2-7b, Mistral-7b), CF is
more crucial for LLM performance, as removing
CF causes a notable performance drop. Conversely,
CE is more impactful for Llama2-13b. This is
because smaller models are less effective at self-
refining via negative examples, and the cross filter-
ing component can eliminate questions misaligned
with target levels. In contrast, Llama2-13b gen-
erates questions with better difficulty consistency
through CE, thus cross-filtering offers limited im-
provement for LLM performance due to potential
noise.

4.4 Validation of CE and CF Modules

To verify the quality of negative examples selected
by the CE component, we conduct a comparison
with the self-refine method. Experimental results
are shown in Table 5. For ease of explanation, we
refer to the negative examples used in CE and the
questions used for reflection in self-refine collec-
tively as negative examples. To ensure fairness, the

negative examples for both CE and self-refine are
sourced from questions generated by the Prompt
method, and are consistent in quantity. Note that
the difficulty of questions in negative examples
may match the target level, making them not true
negatives. Utilizing the difficulty classifier trained
with DiffQA, we assess the accuracy of negative
examples in both methods to measure its correla-
tion with model performance. It is evident that that
CE’s negative examples exhibit significantly higher
accuracy than those from self-refine. Furthermore,
model performance is closely tied to negative ex-
ample accuracy. Considering that the difficulty
estimation schema involves deep semantic features
of the questions, we speculate that LLMs demand
higher-quality examples in this case.

To evaluate the quality of difficulty-oriented em-
beddings extracted by LLMs, we compare our
method with other LLM embedding approaches.
We randomly select 2,000 pairs of LLM-generated
questions: half have the same difficulty, and the
other half have different difficulties. The diffi-
culty labels are annotated by our difficulty classi-
fier. LLM embedding methods are compared across
three aspects: 1) EOL method: PromptEOL (Jiang
et al., 2024), PromptSTH and PromptSUM (Zhang
et al., 2024). 2) task definition: direct definition
(DD) and indirect definition (ID). 3) the sentence
to replace the placeholder: long input (LI) and
fixed-length sentence (FS). The detailed prompts
are provided in Appendix A.3, and the results are
presented in Table 6.

We compare the precision of various methods
when the recall is approximately 0.4 (by adjusting
the threshold ¢). This is because: 1) if the recall

2789

Method Precision Recall
PromptEOL+ID+FS 0.6421 0.4090
PromptSUM+ID+FS 0.6583 0.4120
PromptSTH+DD+LI 0.5856 0.4020
PromptSTH+ID+LI 0.6316 0.3960
PromptSTH+DD+FS 0.6411 0.4170
PromptSTH+ID+FS (Ours) 0.6706 0.4170

Table 6: Precision and recall results of different LLM
embedding methods.

is higher, the precision will be too low, making
cross-filtering less effective; 2) if the recall is lower,
the number of filtered-out questions per round will
decrease, leading to less efficient filtering. Compar-
ing the results with different EOL methods, it is ob-
servable that PromptSTH is the best EOL method.
Moreover, methods with ID significantly outper-
form those with DD. This is because LLMs are not
familiar with the concept of difficulty. LLMs are
better at finding answers and their derivations from
contexts. Additionally, since there are only three
different difficulty levels, the difficulty representa-
tion space is limited. Furthermore, methods with
FS achieve higher precision than those with LI. Too
long inputs may distract the LLMs from the task,
while the fixed-length sentence helps the LLMs to
concentrate on the task, thereby enhancing their
performance.

4.5 Analysis

Impact of Negative Examples Count. In con-
trast enhancement, we randomly select n QA pairs
for each other difficulty level to form negative ex-
amples. While increasing the number of negative
examples may help LLMs better understand the
target difficulty, it can also introduce noise. We
examine how different values of n affect model
performance, with results shown on the left of Fig-
ure 2. For Llama2 series models, performance
deteriorates as n increases, whereas the trend is
opposite for Mistral-7b. Overall, n = 1 is a better
parameter choice.

Impact of High-similarity Count Threshold. In
cross filtering, the high-similarity count threshold
s reflects a trade-off between filtering precision
and efficiency. As s increases, the filtering process
becomes more precise but less efficient. We inves-
tigate the impact of different values of s on model
performance, with results displayed on the right of
Figure 2. Overall, at s = 1, the two smaller models
achieve their best performance, while the Llama2-

075 075
07 07
065 0.65

—_—
<06 —e—llama2-7b X 06 —e—Llama2-7b
Llama2-13b

Mistral-7b

\\

055 Uama2-13b 055

05 Mistral-7b 05

0.45 0.45
1 2 3 1 2 3
Number of Negative Examples (n) High-similarity Count Threshold (s)

Figure 2: The p performance of models under different
numbers of negative examples (left) and high-similarity
count thresholds (right). The results integrates three
datasets.

Method Correctness Relevancy Diversity
Prompt 4.284 4.379 2.025
ICL 3.794 3.619 2.071
Self-refine 4.602 4.428 2.428
CrossQG (ours) 4.588 4.453 2.664

Table 7: Human evaluation on correctness, relevancy
and diversity.

13b model also exhibits competitive performance.
Therefore, we select 1 as the value for parameter s.

Human Evaluation for Question Quality. In
the question quality study, we first randomly se-
lect 150 articles from three datasets. Then, we
perform uniform sampling on QA pairs of various
difficulty levels generated by different models for
human evaluation. Three dimensions are rated from
1 (worst) to 5 (best): (1) correctness—whether the
question and answer match and are semantically
correct; (2) relevancy—whether the question is rel-
evant to the given context; (3) diversity—whether
the QA pairs are diverse from each other. As shown
in Table 7, CrossQG outperforms the Prompt and
ICL methods across three quality metrics. Addi-
tionally, it also surpasses the self-refine method in
terms of the relevance and diversity of the gener-
ated questions. This indicates that our method not
only enhances the consistency of question difficulty
but also improves the quality of questions.

5 Conclusion

In this paper, we propose CrossQG, a novel DCQG
method that requires no generator tuning, aimed
at optimizing the difficulty consistency of gener-
ated questions. CrossQG leverages information
from various difficulty levels, which is often over-
looked in previous research, to assist in generating
questions at the target difficulty. It first employs
contrast enhancement to select questions from dif-
ferent difficulty levels as negative examples. Then,
it utilizes cross filtering to eliminate questions that

2790

exhibit high difficulty similarity with those targeted
at other levels. We conduct experiments on three
datasets. Results across multiple LLMs demon-
strate that CrossQG achieves superior difficulty
consistency and quality compared to three training-
free baselines. In addition, it surpasses SFT in
many instances. Future research will explore meth-
ods to enhance the robustness of CrossQG against
noisy data.

Limitations

CrossQG may be affected by noise, as the preci-
sion of negative example selection and filtering
can be further improved. Future work will explore
the impact of noise on these components and aim
to develop a more robust method. Additionally,
CrossQG requires no tuning of LLMs. In the future,
we will explore Parameter-Efficient Fine-Tuning
(PEFT) methods to enhance model performance
while ensuring efficiency.

Ethics Statement

In this paper, we propose a novel DCQG method
aimed at enhancing the difficulty consistency of
questions generated by large language models. The
three question answering datasets and all base mod-
els are publicly available. In addition, all refer-
ences derived from prior works are marked with
citations. During the experiments, random seeds
are selected entirely at random and maintained con-
sistently across different model configurations. In
this way, we minimize bias and discrimination in
our experiments. Lastly, the QA pairs are gener-
ated based on the text in datasets and do not include
any harmful content. Overall, we avoid any ethical
concerns in our research.

We employ 5 annotators with undergraduate de-
grees to perform annotations. We pay $12 USD
per 100 annotations, which includes both question
difficulty and quality estimation. To ensure the
anonymity and privacy of the annotators, we ex-
clude all personal identifiers and retain only the
annotation results.

Acknowledgements

We would like to thank the anonymous reviewers
for their valuable feedback and helpful comments.
This work was supported by the National Natural
Science Foundation of China (N0.62476066 and
No0.62277002).

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Luca Benedetto, Paolo Cremonesi, Andrew Caines,
Paula Buttery, Andrea Cappelli, Andrea Giussani,
and Roberto Turrin. 2023. A survey on recent ap-
proaches to question difficulty estimation from text.
ACM Computing Surveys, 55(9):1-37.

Sheng Bi, Xiya Cheng, Yuan-Fang Li, Lizhen Qu, Shi-
rong Shen, Guilin Qi, Lu Pan, and Yinlin Jiang. 2021.
Simple or complex? complexity-controllable ques-
tion generation with soft templates and deep mixture
of experts model. In Findings of the Association
for Computational Linguistics: EMNLP 2021, pages
4645-4654, Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Yi Cheng, Siyao Li, Bang Liu, Ruihui Zhao, Sujian Li,
Chenghua Lin, and Yefeng Zheng. 2021. Guiding
the growth: Difficulty-controllable question genera-
tion through step-by-step rewriting. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 5968—5978, Online.
Association for Computational Linguistics.

Sugyeong Eo, Hyeonseok Moon, Jinsung Kim, Yuna
Hur, Jeongwook Kim, SongEun Lee, Changwoo
Chun, Sungsoo Park, and Heuiseok Lim. 2023. To-
wards diverse and effective question-answer pair gen-
eration from children storybooks. In Findings of
the Association for Computational Linguistics: ACL
2023, pages 6100-6115, Toronto, Canada. Associa-
tion for Computational Linguistics.

Joseph L Fleiss. 1971. Measuring nominal scale agree-

ment among many raters. Psychological bulletin,
76(5):378.

Yifan Gao, Lidong Bing, Wang Chen, Michael R Lyu,
and Irwin King. 2019. Difficulty controllable genera-
tion of reading comprehension questions. In IJCAI,
pages 4968-4974.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, et al. 2024. The llama 3 herd of mod-
els. arXiv preprint arXiv:2407.21783.

S Hochreiter and J Schmidhuber. 1997. Long short-term
memory. Neural Computation, 9(8):1735-1780.

2791

https://arxiv.org/abs/2303.08774
https://dl.acm.org/doi/full/10.1145/3556538
https://dl.acm.org/doi/full/10.1145/3556538
https://doi.org/10.18653/v1/2021.findings-emnlp.397
https://doi.org/10.18653/v1/2021.findings-emnlp.397
https://doi.org/10.18653/v1/2021.findings-emnlp.397
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/2021.acl-long.465
https://doi.org/10.18653/v1/2021.acl-long.465
https://doi.org/10.18653/v1/2021.acl-long.465
https://doi.org/10.18653/v1/2023.findings-acl.380
https://doi.org/10.18653/v1/2023.findings-acl.380
https://doi.org/10.18653/v1/2023.findings-acl.380
https://doi.org/10.1037/h0031619
https://doi.org/10.1037/h0031619
https://www.ijcai.org/proceedings/2019/0690.pdf
https://www.ijcai.org/proceedings/2019/0690.pdf
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://glossary.midtown.ai/assets/l/long_short_term_memory_paper.pdf
https://glossary.midtown.ai/assets/l/long_short_term_memory_paper.pdf

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Ting Jiang, Shaohan Huang, Zhongzhi Luan, Deqing
Wang, and Fuzhen Zhuang. 2024. Scaling sentence
embeddings with large language models. In Findings
of the Association for Computational Linguistics:
EMNLP 2024, pages 3182-3196, Miami, Florida,
USA. Association for Computational Linguistics.

David R Krathwohl. 2002. A revision of bloom’s taxon-
omy: An overview. Theory into practice, 41(4):212—
218.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard Hovy. 2017. RACE: Large-scale ReAd-
ing comprehension dataset from examinations. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 785—
794, Copenhagen, Denmark. Association for Compu-
tational Linguistics.

Yibin Lei, Di Wu, Tianyi Zhou, Tao Shen, Yu Cao,
Chongyang Tao, and Andrew Yates. 2024. Meta-task
prompting elicits embeddings from large language
models. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 10141-10157, Bangkok,
Thailand. Association for Computational Linguistics.

Bernardo Leite and Henrique Lopes Cardoso. 2024.
On few-shot prompting for controllable question-
answer generation in narrative comprehension. In
Proceedings of the 16th International Conference
on Computer Supported Education, CSEDU 2024,
Angers, France, May 2-4, 2024, Volume 2, pages
63-74. SCITEPRESS.

Kunze Li and Yu Zhang. 2024. Planning first, ques-
tion second: An LLM-guided method for control-
lable question generation. In Findings of the Asso-
ciation for Computational Linguistics: ACL 2024,
pages 4715-4729, Bangkok, Thailand. Association
for Computational Linguistics.

Yinhan Liu. 2019. Roberta: A robustly opti-
mized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 364.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-refine: Itera-
tive refinement with self-feedback. In Advances in
Neural Information Processing Systems, volume 36,
pages 46534-46594. Curran Associates, Inc.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383-2392, Austin,
Texas. Association for Computational Linguistics.

Tianxiao Shen, Myle Ott, Michael Auli, and
Marc’ Aurelio Ranzato. 2019. Mixture models for
diverse machine translation: Tricks of the trade. In

International conference on machine learning, pages
5719-5728. PMLR.

C Spearman. 1904. The proof and measurement of as-
sociation between two things. The American Journal
of Psychology, 15(1):72—101.

Megha Srivastava and Noah Goodman. 2021. Question
generation for adaptive education. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 692—701, Online.
Association for Computational Linguistics.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Masaki Uto, Yuto Tomikawa, and Ayaka Suzuki. 2023.
Difficulty-controllable neural question generation for
reading comprehension using item response theory.
In Proceedings of the 18th Workshop on Innovative
Use of NLP for Building Educational Applications
(BEA 2023), pages 119-129, Toronto, Canada. Asso-
ciation for Computational Linguistics.

Tzu-Hua Wang. 2014. Developing an assessment-
centered e-learning system for improving student
learning effectiveness. Computers & Education,
73:189-203.

Xiaoqiang Wang, Bang Liu, Siliang Tang, and Lingfei
Wu. 2023. SkillQG: Learning to generate question
for reading comprehension assessment. In Findings
of the Association for Computational Linguistics:
ACL 2023, pages 13833-13850, Toronto, Canada.
Association for Computational Linguistics.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M. Dai, and Quoc V. Le. 2022. Finetuned
language models are zero-shot learners. In The Tenth
International Conference on Learning Representa-
tions, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net.

2792

https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://doi.org/10.18653/v1/2024.findings-emnlp.181
https://doi.org/10.18653/v1/2024.findings-emnlp.181
https://www.jstor.org/stable/1477405
https://www.jstor.org/stable/1477405
https://doi.org/10.18653/v1/D17-1082
https://doi.org/10.18653/v1/D17-1082
https://doi.org/10.18653/v1/2024.acl-long.546
https://doi.org/10.18653/v1/2024.acl-long.546
https://doi.org/10.18653/v1/2024.acl-long.546
https://doi.org/10.5220/0012623800003693
https://doi.org/10.5220/0012623800003693
https://doi.org/10.18653/v1/2024.findings-acl.280
https://doi.org/10.18653/v1/2024.findings-acl.280
https://doi.org/10.18653/v1/2024.findings-acl.280
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf
https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://proceedings.mlr.press/v97/shen19c.html
https://proceedings.mlr.press/v97/shen19c.html
https://www.jstor.org/stable/1412159
https://www.jstor.org/stable/1412159
https://doi.org/10.18653/v1/2021.acl-short.88
https://doi.org/10.18653/v1/2021.acl-short.88
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://doi.org/10.18653/v1/2023.bea-1.10
https://doi.org/10.18653/v1/2023.bea-1.10
https://www.sciencedirect.com/science/article/pii/S0360131513003266
https://www.sciencedirect.com/science/article/pii/S0360131513003266
https://www.sciencedirect.com/science/article/pii/S0360131513003266
https://doi.org/10.18653/v1/2023.findings-acl.870
https://doi.org/10.18653/v1/2023.findings-acl.870
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR

Ying Xu, Dakuo Wang, Mo Yu, Daniel Ritchie, Bing-
sheng Yao, Tongshuang Wu, Zheng Zhang, Toby
Li, Nora Bradford, Branda Sun, Tran Hoang, Yisi
Sang, Yufang Hou, Xiaojuan Ma, Diyi Yang, Nanyun
Peng, Zhou Yu, and Mark Warschauer. 2022. Fan-
tastic questions and where to find them: FairytaleQA
— an authentic dataset for narrative comprehension.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 447-460, Dublin, Ireland.
Association for Computational Linguistics.

Bowen Zhang, Kehua Chang, and Chunping Li. 2024.
Simple techniques for enhancing sentence embed-
dings in generative language models. In Interna-
tional Conference on Intelligent Computing, pages
52—-64. Springer.

A Design of Main Prompts

A.1 [Initial Question Generation

In this section, we show prompts which are used to
guide LLMs to generate initial QA pairs with given
difficulty levels. For CrossQG, we design a prompt
template as shown in Table 8.

Prompt Template for CrossQG

<s>[INST]

Your task is to generate pairs of questions and answers
according to the following context, meeting all the require-
ments.

Context: [Context]

Requirements:

1. [Difficulty Definition]

2. Answers must be clear, concrete, and well-justified
based on the context.

[Supplement]

Output Format:

- Q1: {question}

- Al: {answer}

- Q2: {question}

- A2: {answer}

- Continue as needed...

[/INST]

Table 8: Prompt template used for the initial ques-
tion generation in CrossQG. In the template, [Context],
[Difficulty Definition] and [Supplement] need to be sub-
stituted.

In the template, we replace the [Context] token
with the given context. In addition, we substitute
the [Difficulty Definition] token with the corre-
sponding difficulty definitions shown in Table 2
based on the difficulty level. Finally, we replace
the [Supplement] token according to the mapping
rules shown in Table 9.

Difficulty Supplement
Easy Ensure_ that the answers can be directly and
unambiguously located within the text.
Medium Make sure that each question distinctly follows
either Case 1 or Case 2 as defined.
Ensure that the questions demand a deep un-
Hard derstanding and interaction with the context,

leading to comprehensive and insightful an-
SWers.

Table 9: Mapping rules for difficulty levels in initial
question generation.

For CrossQG-fast, we design a different prompt
template, as shown in Table 10.

A.2 Contrast Enhancement

In this section, we present prompts used to let
LLMs generate QA pairs with required difficulty
levels given negative examples of other levels. The
prompt template is shown in Table 11.

2793

https://doi.org/10.18653/v1/2022.acl-long.34
https://doi.org/10.18653/v1/2022.acl-long.34
https://doi.org/10.18653/v1/2022.acl-long.34
https://link.springer.com/chapter/10.1007/978-981-97-5669-8_5
https://link.springer.com/chapter/10.1007/978-981-97-5669-8_5

Prompt Template for CrossQG-fast
<s>[INST]
Your task is to generate pairs of questions and answers
according to the following context, meeting all the require-
ments.
Context: [Context]
Requirements:
1. A question should test any difficulty level of given
difficulties, and all generated questions are expected to
cover all difficulty levels.
2. Answers must be clear, concrete, and well-justified
based on the context.
Difficulties:
- EASY: Answers can be directly found in the text; getting
the answer requires focusing on the local information (e.g.
one single sentence) in the context.
- MEDIUM: Case 1: Answers cannot be directly found in
the text; getting the answer requires focusing on the local
information (e.g. one single sentence) in the context. Case
2: Answers can be found directly in the text; obtaining the
answer involves synthesizing and summarizing informa-
tion from multiple parts of the context.
- HARD: Answers cannot be directly found in the text;
obtaining the answer involves synthesizing and summariz-
ing information from multiple parts of the context.
Ensure that:
- For easy questions, the answers can be directly and
unambiguously located within the text.
- For medium questions, each question distinctly follows
either Case 1 or Case 2 as defined.
- For hard questions, the questions demand a deep un-
derstanding and interaction with the context, leading to
comprehensive and insightful answers.
Output Format:
EASY:
- Q1: {question}
- Al: {answer}
- Q2: {question}
- A2: {answer}
- Continue as needed...
MEDIUM:
- Q1: {question}
- Al: {answer}
- Q2: {question}
- A2: {answer}
- Continue as needed...
HARD:
- Q1: {question}
- Al: {answer}
- Q2: {question}
- A2: {answer}
- Continue as needed...
[/INST]

Table 10: Prompt template used in the initial ques-
tion generation phase of CrossQG-fast. In the template,
[Context] needs to be substituted with the given context.

Prompt Template for Contrast Enhancement
[Initial Prompt]
[Negative Examples]</s>
<s>[INST]

[Error Analysis]
[Supplement]

Output Format:

- Q1: {question}

- Al: {answer}

- Q2: {question}

- A2: {answer}

- Continue as needed...
[/INST]

Table 11: Prompt template applied in contrast enhance-
ment. In the template, [Initial Prompt], [Negative Ex-
amples], [Error Analysis] and [Supplement] are special
tokens and need to be substituted.

Given the input context c, target difficulty level
d, we first substitute the [Initial Prompt] token with
T™Mi¢(c, d) (relative prompt template shown in Ta-
ble 8). Then, we replace the [Negative Examples]
token with F; computed by Equation 3. Finally,
we replace the [Error Analysis] and [Supplement]
tokens according to the mapping rules shown in
Table 12.

A.3 Difficulty-Oriented Embeddings

The prompt template (PromptSTH+ID+FS in Sec-
tion 4.4) for guiding LLMs in embedding genera-
tion is presented in Table 13. Other prompts men-
tioned in Section 4.4 are shown in Table 14. In
these templates, [Context] and [Question] are sub-
stituted with the specific context and question.

A.4 Others

In this section, we show prompts which are used in
the main experiments. The prompt templates used
for ICL and SFT are presented in Table 15 and 16
respectively.

In both templates, we replace the [Context], [Dif-
ficulty Definition] and [Supplement] tokens accord-
ing to the substitution rules shown in Appendix A.1.
For ICL, we need to replace the [Example 7] token
with "Example ¢:\n Context: c.\n Q: g.\n A: ac\n",
where c¢, ¢. and a. denote the context, question
and answer of the example, respectively. For SFT,
LLMs utilize the prompt as input and are fine-tuned
to generate one QA pair at a time. Consequently, it
is necessary to adjust the descriptions of "question"
and "answer" in the prompt to the singular form.

2794

Difficulty Error Analysis

Supplement

The above questions are too hard to answer. Answers were not
adequately justified with direct text references or focused on
multiple text areas instead of local information. Please generate
easier questions which meet the requirements.

The above questions are either too easy or too hard to answer.
Answers were justified with direct text references (too easy) or
focused on multiple text areas and required summarization (too

Easy

Medium

Ensure that the questions only require
simple information extraction and su-
perficial understanding with the context,
leading to easy and direct answers.

Ensure that the questions require a mod-
erate (not too deep, not too simple) un-
derstanding and interaction with the con-

hard). Please generate questions which meet the requirements. text.

The above questions are too easy to answer. Answers were justi-
fied with direct text references or focused on local information
instead of multiple text areas. Please generate questions which

Hard

meet the requirements.

Ensure that the questions demand a deep
understanding and interaction with the
context, leading to comprehensive and
insightful answers.

Table 12: Mapping rules for difficulty levels in contrast enhancement.

Prompt Template for Embedding Generation
In this task, you’re given a context and a question. Your
task is to find the answer and describe how to get the
answer.
Context: [Context]
Question: [Question]
For this task, this sentence: "Given the question, the an-
swer and its derivation are" means something

Table 13: Prompt template applied in difficulty-oriented
embedding generation. In the template, [Context] and
[Question] are special tokens and need to be substituted.

B Details of Metrics

B.1 Experiments of Difficulty Estimation

For difficulty estimation, we compare the accuracy
of GPT-4 and our classifier on the test split of Dif-
fQA, as shown in Table 17. Our classifier utilizes
the tuple (c, ¢, a) as input and is trained to predict
the difficulty level d of the given questions. It is
evident that our classifier outperforms GPT-4 under
the difficulty estimation schema, with an accuracy
exceeding 81%.

B.2 Details of DiffQA

The proportion distribution of d in train split and
test split of DiffQA is visualized in Figure 3.

B.3 Details of Calculation

Consistent with the symbols used in the main text,
P = {pi}f\il represents the QA pairs generated by
the LLM. Let d;(-) and d,(-) represent the target
difficulty and the actual difficulty (predicted by
trained classifiers) of a QA pair, respectively.

Spearman correlation coefficient p can be calcu-
lated by the following formula:

6 Zj\l(da(pz') — dy(pi))?

N(N2—1) ©

p=1-

hard hard
18% 19%

easy
easy 43%
47%

medium
35%

medium
38%

Weasy = medium hard measy =~ medium hard

Figure 3: The proportion distribution of d in train split
(left) and test split (right) of DiffQA.

We calculate p using the spearmanr function
from the SciPy library.
Accuracy is computed as follows:

N
> W(da(pi) = de(pi))

=1
= 7
acc N ()

where 1(+) is an indicator function.

C Experiments on GPT-4

In this section, we apply CrossQG to GPT-4
(Achiam et al., 2023), with results presented in
Table 18. Although GPT-4 achieves superior perfor-
mance in difficulty consistency compared to other
evaluated LLMSs, there remains significant room
for improvement. CrossQG significantly enhances
GPT-4’s performance, indicating its potential to
complement and elevate advanced LLMs in DCQG
tasks.

D Implementation Details

In cross filtering, we utilize the commonly used
Meta-Llama-3.1-8B-Instruct (Grattafiori et al.,
2024) model for difficulty-oriented embedding. For
difficulty estimation, we fine-tune Roberta with the
following parameter settings: learning rate = le-5;

2795

Other Prompt Templates for Embedding Generation

PromptEOL+ID+FS:

In this task, you’re given a context and a question. Your
task is to find the answer and describe how to get the
answer.

Context: [Context]

Question: [Question]

For this task, this sentence: "Given the question, the an-
swer and its derivation are" means in one word:"

PromptSUM+ID+FS:

In this task, you’re given a context and a question. Your
task is to find the answer and describe how to get the
answer.

Context: [Context]

Question: [Question]

For this task, this sentence: "Given the question, the an-
swer and its derivation are" can be summarized as

PromptSTH+DD+LI:

In this task, you’re given a context and a question. Your
task is to assess the difficulty of the question based on the
following difficulty definitions.

Difficulty Definition:

1. Easy: Answers must be directly found in the text;
getting the answer should require focusing on the local
information (e.g. one single sentence) in the context.

2. Medium: Case 1: Answers cannot be directly found in
the text; getting the answer requires focusing on the local
information (e.g. one single sentence) in the context. Case
2: Answers can be found directly in the text; obtaining
the answer should involve synthesizing and summarizing
information from multiple parts of the context.

3. Hard: Answers cannot be directly found in the text;
obtaining the answer should involve synthesizing and sum-
marizing information from multiple parts of the context.
For this task, this sentence: "Context: [context] Question:
[question]" means something

PromptSTH+ID+LI:

In this task, you’re given a context and a question. Your
task is to find the answer and describe how to get the
answer.

For this task, this sentence: "Context: [context] Question:
[question]" means something

PromptSTH+DD+FS:

In this task, you’re given a context and a question. Your
task is to assess the difficulty of the question based on the
following difficulty definitions.

Difficulty Definition:

1. Easy: Answers must be directly found in the text;
getting the answer should require focusing on the local
information (e.g. one single sentence) in the context.

2. Medium: Case 1: Answers cannot be directly found in
the text; getting the answer requires focusing on the local
information (e.g. one single sentence) in the context. Case
2: Answers can be found directly in the text; obtaining
the answer should involve synthesizing and summarizing
information from multiple parts of the context.

3. Hard: Answers cannot be directly found in the text;
obtaining the answer should involve synthesizing and sum-
marizing information from multiple parts of the context.
Context: [Context]

Question: [Question]

For this task, this sentence: "Given the question, the an-
swer and its derivation are" means something

Prompt Template for ICL

<s>[INST]

Your task is to generate pairs of questions and answers
according to the following context, meeting all the require-
ments.

Context: [Context]

Requirements:

1. [Difficulty Definition]

2. Answers must be clear, concrete, and well-justified
based on the context.

[Supplement]

Here are several examples.

[Example 1]

[Example 2]

Output Format:

- Q1: {question}

- Al: {answer}

- Q2: {question}

- A2: {answer}

- Continue as needed...
[/INST]

Table 15: Prompt template used for ICL. In the tem-
plate, [Context], [Difficulty Definition], [Supplement]
and [Example 7] tokens need to be substituted.

Prompt Template for SFT

<s>[INST]

Your task is to generate a pair of question and answer
according to the following context, meeting all the require-
ments.

Context: [Context]

Requirements:

1. [Difficulty Definition]

2. Answer must be clear, concrete, and well-justified
based on the context.

[Supplement]

Output Format:

- Q: {question}

- A: {answer}

[/INST]

Table 16: Prompt template used for SFT. In the tem-
plate, [Context], [Difficulty Definition] and [Supple-
ment] tokens need to be substituted.

Model acc

GPT-4 (zero-shot) 0.548
GPT-4 (few-shot) 0.619
Roberta (Ours) 0.817

Table 14: Other prompt templates applied in difficulty-
oriented embedding generation. In the template, [Con-
text] and [Question] are special tokens and need to be
substituted.

Table 17: Accuracy results on the test split of DiffQA.

2796

SQuAD RACE FairytaleQA
Method
p acc p acc p acc
Prompt 0.6046 0.5357 0.5857 0.5676 0.5587 0.5688
ICL 0.6304 0.5631 0.6542 0.5935 0.5644 0.5701
Self-refine 0.7494 0.6077 0.7022 0.6333 0.6005 0.5973
CrossQG (ours) 0.7672 0.6255 0.7345 0.6651 0.6371 0.6257
CrossQG-fast (ours) 0.7888 0.6335 0.7311 0.6583 0.6454 0.6197

Table 18: Experimental results on GPT-4, with p and acc for each method. Best results are highlighted in bold.

batch size = 32; and epoch = 5. In the main ex-
periments, the prompt templates used for ICL and
SFT are presented in Appendix A.4. The prompt
template employed in the self-refine method is iden-
tical to that in the CE component, but the approach
to selecting negative examples differs. When fine-
tuning the LLM, the hyperparameters are as fol-
lows: learning rate = 1e-5; batch size per device =
8; and epoch = 3.

Our code is implemented based on Hugging-
face (?), whereas AdamW (Loshchilov and Hut-
ter, 2019) is used for optimization. All LLMs
are loaded and used for inference on 1 Nvidia-
A100-40G GPU and trained on 8 Nvidia-A100-
40G GPUs. For each configuration of our method
and all compared methods, we conduct 5 indepen-
dent runs and report the average score.

E Case Study

Table 19 illustrates a complete example of question
generation using our CrossQG method. In the ini-
tial question generation, the difficulty consistency
of the generated questions is poor. The questions
expected to be of medium difficulty all turn out
to be easy. After applying contrast enhancement
(CE), the difficulty consistency of the regenerated
questions is significantly improved. Specifically,
questions targeted at an easy difficulty level consis-
tently match expectations. In addition, generated
questions at other difficulties also achieve better
difficulty consistency than before. Then, following
cross filtering (CF), questions highlighted in yel-
low are removed due to high difficulty similarity.
The operation results in an insufficient number of
medium difficulty questions, making it necessary
for LLM to regenerate them. Finally, it is evident
that the final set of generated questions aligns well
with the expected difficulty levels.

F List of Software and Data Licences
Used in this Work

Main dependencies in this paper are as follows.
They are all public and free for research use.

* Huggingface Transformers: https://
github.com/huggingface/transformers/
blob/master/LICENSE, under an Apache
License 2.0.

* Huggingface Datasets: https:
//github.com/huggingface/datasets/
blob/master/LICENSE, under an Apache
License 2.0.

e Pytorch: https://github.com/pytorch/
pytorch/blob/main/LICENSE, Misc.

e Llama 2: https://github.com/
facebookresearch/1lama/blob/main/
LICENSE, under the LLAMA 2 Community
License.

* Mistral: https://github.com/mistralai/

mistral-src/blob/main/LICENSE, under
an Apache License 2.0.
e Llama 3: https://github.com/

meta-1lama/llama-models/blob/main/
models/11ama3_1/LICENSE, wunder the
LLAMA 3.1 Community License.

* SciPy: https://github.com/scipy/scipy,
under the BSD-3-Clause license.

2797

https://github.com/huggingface/transformers/blob/master/LICENSE
https://github.com/huggingface/transformers/blob/master/LICENSE
https://github.com/huggingface/transformers/blob/master/LICENSE
https://github.com/huggingface/datasets/blob/master/LICENSE
https://github.com/huggingface/datasets/blob/master/LICENSE
https://github.com/huggingface/datasets/blob/master/LICENSE
https://github.com/pytorch/pytorch/blob/main/LICENSE
https://github.com/pytorch/pytorch/blob/main/LICENSE
https://github.com/facebookresearch/llama/blob/main/LICENSE
https://github.com/facebookresearch/llama/blob/main/LICENSE
https://github.com/facebookresearch/llama/blob/main/LICENSE
https://github.com/mistralai/mistral-src/blob/main/LICENSE
https://github.com/mistralai/mistral-src/blob/main/LICENSE
https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE
https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE
https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE
https://github.com/scipy/scipy

Context:

The investors showed little interest in Tesla’s ideas for new types of motors and electrical transmission equipment and also
seemed to think it was better to develop an electrical utility than invent new systems. They eventually forced Tesla out
leaving him penniless. He even lost control of the patents he had generated since he had assigned them to the company in
lieu of stock. He had to work at various electrical repair jobs and even as a ditch digger for $2 per day. Tesla considered
the winter of 1886/1887 as a time of "terrible headaches and bitter tears." During this time, he questioned the value of his

education.

Initial Question Generation:

Q1: Why did the investors think it was
better to develop an electrical utility than
invent new systems? (Medium)

Q2: What did Tesla consider the winter
of 1886/1887 as in relation to his educa-
tion? (Easy)

Q3: What happened to Tesla after he
was forced out of the company? (Easy)
Q4: How did Tesla feel about his situa-
tion during this time? (Hard)

Q1: What was the reason why the in-
vestors showed little interest in Tesla’s
ideas for new types of motors and elec-
trical transmission equipment? (Easy)
Q2: What did Tesla have to do to survive
after he was forced out of the company?
(Easy)

Q3: What was the outcome of Tesla’s
decision to assign his patents to the com-
pany in lieu of stock? (Easy)

Q4: What did Tesla consider the winter
of 1886/1887 as in relation to his educa-
tion? (Easy)

Q1: How did Tesla feel about the value
of his education during the winter of
1886/1887? (Medium)

Q2: What was Tesla’s job at the time of
the winter of 1886/1887? (Easy)

Q3: What did Tesla learn from his expe-
riences during the winter of 1886/1887?
(Hard)

Q4: Why did Tesla assign his patents to
the company in lieu of stock? (Medium)

Negative Examples:

Q1: What did Tesla have to do to survive
after he was forced out of the company?
Q2: What was Tesla’s job at the time of
the winter of 1886/1887?

Q1: Why did the investors think it was
better to develop an electrical utility than
invent new systems?

Q2: What did Tesla learn from his expe-
riences during the winter of 1886/1887?

Q1: What did Tesla consider the winter
of 1886/1887 as in relation to his educa-
tion?

Q2: How did Tesla feel about the value
of his education during the winter of
1886/1887?

Contrast Enhancement:

Q1: What did the investors not show
interest in? (Easy)

Q2: Why did Tesla lose control of his
patents? (Easy)

Q3: What was Tesla’s job during the
winter of 1886/18877? (Easy)

Q4: How much did Tesla earn from his
job as an electrical repairman? (Easy)

Q1: What were some of the challenges
that Tesla faced in trying to convince in-
vestors to fund his ideas for new types of
motors and electrical transmission equip-
ment? (Hard)

Q2: How did Tesla’s experiences during
the winter of 1886/1887 affect his view
of the value of his education? (Medium)

Q1: What were the investors’ reasons
for not showing interest in Tesla’s new
motor and electrical transmission ideas,
and how did this impact Tesla’s decision-
making? (Medium)

Q2: How did Tesla’s experience work-
ing as a ditch digger impact his per-
spective on the value of his education?
(Medium)

Q3: How did Tesla’s relationships with
his colleagues and superiors at the com-
pany impact his experience and decision-
making during this time, and what
lessons did he learn from these interac-
tions? (Hard)

Cross Filtering:

Q1: What did the investors not show
interest in? (Easy)

Q2: Why did Tesla lose control of his
patents? (Easy)

Q3: What was Tesla’s job during the
winter of 1886/1887? (Easy)

Q4: How much did Tesla earn from his
job as an electrical repairman? (Easy)

Q1: How did Tesla feel about the situa-
tion he was in after being forced out of
his company? (Medium)

Q2: What were some of the personal
and financial challenges that Tesla faced
in the winter of 1886-1887? (Medium)

Q1: What were the investors’ reasons
for not showing interest in Tesla’s new
motor and electrical transmission ideas,
and how did this impact Tesla’s decision-
making? (Medium)

Q2: How did Tesla’s relationships with
his colleagues and superiors at the com-
pany impact his experience and decision-
making during this time, and what
lessons did he learn from these interac-
tions? (Hard)

Table 19: A complete example of question generation using CrossQG, with corresponding answers omitted. In the
table, the target difficulty levels of the questions in the three columns from left to right are easy, medium, and hard,
respectively. The difficulty similarity between the two questions highlighted in yellow is relatively high.

2798

