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Abstract

This paper studies the problem of how to use
large language models (LLMs) to identify the
underlying partial differential equations (PDEs)
out of very limited observations of a physi-
cal system. Previous methods usually utilize
physics-informed neural networks (PINNs) to
learn the PDE solver and coefficient of PDEs
simultaneously, which could suffer from perfor-
mance degradation under extreme data scarcity.
Towards this end, this paper attempts to utilize
LLMs to solve this problem without further
fine-tuning by proposing a novel framework
named LLM for PDE Discovery (LLM4PD).
The core of our LLM4PD is to utilize a coarse-
to-fine paradigm to automatically discover un-
derlying PDEs. In the coarse phase, LLM4PD
selects the crucial terms from a library with
hierarchical prompts and incorporates a review
agent to enhance the accuracy. In the fine phase,
LLM4PD interacts with a PDE solver to opti-
mize the coefficient of the selected terms with
the optimization trajectory. We also provide an
adaptive hybrid optimization strategy switching
between fine-tuning and exploration to balance
the stability and efficiency. Extensive experi-
ments on several systems validate the effective-
ness of our LLM4PD in different settings.

1 Introduction

Partial differential equations (PDEs) have been
found to drive a range of physical systems rang-
ing from fluid dynamics (Picca, 2024) to quan-
tum mechanics (Wu et al., 2021). However, in
the real world, there are newly found complex
systems where the underlying laws are unavail-
able (Abreu et al., 2019). Towards this end, PDE
discovery (Chen et al., 2021; Stephany and Earls,
2022; Kacprzyk et al., 2024) has raised extensive
interest, which aims to identify the governing PDEs
of systems from the observed data.

Early data-driven approaches usually utilize shal-
low tools such as sparse regression (Schaeffer,

2017; Rudy et al., 2017; Gurevich et al., 2019;
Berg and Nystrom, 2019) to learn the coefficient
of PDEs. Recently, deep learning approaches have
achieved great success in this domain (Stephany
and Earls, 2024a; Chen et al., 2021; Stephany and
Earls, 2022), which generally utilize the power of
physics-informed neural networks (PINNs) (Cai
et al., 2021) to implicitly represent PDEs and their
derivates. Then, they minimize the error at the
observation points and the regression loss of PDE
coefficients. With a strong optimizer, they can re-
cover the governing PDEs from the data.

Despite their great success, these ap-
proaches (Stephany and Earls, 2024a; Chen
et al., 2021; Stephany and Earls, 2022) usually are
trained in a supervised end-to-end manner, which
requires extensive observations of complex sys-
tems. However, the measurement of systems could
be prohibitively expensive or even impossible in
the real world and data scarcity would significantly
degrade the performance (Stephany and Earls,
2024a). Towards this end, we study the problem of
PDE discovery under very limited data. Recently,
large language models (LLMs) have demonstrated
the strong capability of few-shot learning (Song
et al., 2023; Xu et al., 2024; Huang et al., 2023)
and zero-shot learning (Kojima et al., 2022; Wang
et al., 2024; Liu et al., 2024a; Du et al., 2024; Luo
et al., 2025) without supervised fine-tuning and
optimization (Yang et al., 2024a; Liu et al., 2024b).
Therefore, we aim to utilize LLMs to solve the
problem in this work.

In fact, incorporating LLLMs into PDE discovery
is a highly challenging task, which requires us to
answer the following two questions. (I) How to
enhance the understanding of LLMs on PDE un-
derstanding? 1.LLMs are usually trained on a large
amount of text data (Yang et al., 2024b), which is
different from the PDE discovery problem. Due to
the lack of physics knowledge, LLLMs could have
difficulty in understanding our problem (Polverini
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and Gregorcic, 2024). (II) How to generate the co-
efficients of PDEs using LLMs? 1.1.Ms basically
follow the paradigm of next-token prediction (He
and Su, 2024), which could barely generate the
optimal coefficients in one shot. Therefore, we
need to design a holistic framework to generate the
optimal coefficients gradually.

Towards this end, we propose a novel framework
named LL.M4PD for LL.M-based PDE discovery
under limited data. The high-level idea is to uti-
lize a coarse-to-fine strategy to optimize the coef-
ficients of PDEs. In the coarse phase, we utilize
LLMs to select the crucial terms from a library of
derivative terms. To enhance the understanding of
LLMs on PDEs, we introduce hierarchical prompts
from physics, data, and reasoning views, which can
effectively guide pre-trained LLMs to align with
physics knowledge. We also design a review agent
to ensure the correctness of the selected terms be-
fore moving to the next phase. To utilize LLMs
for effective coefficient generation, we evaluate the
error between the simulation data of the current
coefficients and the observations, which would be
stored in a memory bank. In the fine phase, we
adopt an optimization lens to follow the trajectory
of the generated coefficients. To balance the stabil-
ity and efficiency, we design an adaptive optimiza-
tion strategy which randomly switches between the
large-step exploration and small-step fine-tuning.
Large-step exploration can help the model escape
from local minima, while small-step fine-tuning
can help the model explore the search space more
efficiently. To prevent the coarse phase from gener-
ating wrong terms, we take an interleaved strategy
across the coarse and fine phases based on the error
reduction status. Extensive experiments on both
several datasets demonstrate the effectiveness of
our LLM4PD compared with competing baselines.

In summary, our contributions are three-fold:
O Problem Connection. We connect PDE dis-
covery with LLMs and propose a novel approach
to recover the underlying PDEs from the scarce
data without training. @ Novel Methodology. Our
LLMA4PD follows a coarse-to-fine paradigm, which
utilizes hierarchical prompts to reason the candi-
date terms and optimize the coefficients by incorpo-
rating a PDE solver and the optimization trajectory
with an adaptive strategy. @ Extensive Experiments.
Extensive Experiments on popular systems validate
the effectiveness of our proposed LLM4PD in com-
parison to current state-of-the-art baselines.

2 Related Work

2.1 PDE Discovery

PDE discovery aims to identify the governing PDEs
of systems from the observed data (Stephany and
Earls, 2024a; Chen et al., 2021; Stephany and Earls,
2022). Early works (Schaeffer, 2017; Rudy et al.,
2017; Gurevich et al., 2019) usually define a large
library and utilize sparse regression to derive the
coefficient of terms in PDEs. Recent deep learning
approaches (Stephany and Earls, 2024a; Chen et al.,
2021; Stephany and Earls, 2022) usually utilize
a physics-informed neural network (PINN) (Cai
et al., 2021) to represent the PDEs and minimize
the error at the observation points. Then, they es-
timate the derivatives of the PDEs and minimize
the physical loss which aligns the PDEs on the ob-
servation points with sparse regularization. How-
ever, these approaches usually require a large num-
ber of observation points to guide the recovery of
PDEs (Stephany and Earls, 2024a), which could
be unaffordable in practice. One recent work (Du
etal., 2024) combines LLMs with sparse regression
for equation discovery. In contrast, our proposed
LLMA4PD utilizes the capability of LLMs to recover
both PDEs and coefficients from the scarce data,
which could be more flexible and convenient.

2.2 LLMs for Physics

Large language models (LLMs) have shown
promising results in various physics do-
mains (Zhang et al.,, 2024; Liu et al., 2024c;
Arlt et al., 2024) including astronomy and quantum
physics. These approaches can be roughly divided
into two categories. The first category aims to
accelerate the physical research by providing liter-
ature tools. For example, AstroLLaMA (Nguyen
et al., 2023) fine-tunes an open-source LLM
using a large amount of astronomy paper. An
extended version of AstroLLaMA (Perkowski
et al., 2024) is also provided to help the research
with interactive chatting. PhysBERT (Hellert
et al., 2024) is a pre-trained language model for
physics on a large corpus on over one million
physics papers. The second category aims to use
LLMs to solve specific physics problems. Liu et al.
utilize well-trained LLMs to infer the underlying
rules of Markovian transition by investigating
the generation probability of LLMs (Liu et al.,
2024c). In this study, our LLM4PD utilizes LLMs
to discover the underlying PDEs from the observed
data with extensive text-based context.
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Figure 1: An Overview of LLM4PD. Our LLM4PD adopts a coarse-to-fine strategy for PDE discovery. It first
utilizes hierarchical prompts to select candidate terms, followed by an LLM-based review agent, which can reduce
the potential error. Then, it generates coefficients for selected terms based on the historical optimization trajectory,
which can be derived from a PDE solver. If the model fails to generate proper coefficients, it will go back to the

coarse phase to select the prompt terms iteratively.

3 Methodology
3.1 Problem Definition

Given a spatial domain {2 and the time interval
(0, T, we describe a physical system that is driven
by an underlying function u(z, t), i.e.,

u(x,t) :

where x € Q and ¢ € (0,T]. The function u(z,t)
is driven by an underlying PDE, i.e.,

(0, 7] x Q — R, (1)

881: = F(u, 9)7 (2)
where F is the differential operator and @ is the
parameter of the PDE. Following previous works,
we assume that F(u,6) is a linear combination
of the basis, i.e., the derivatives of u(z,t). We
are given limited observation data points, D =
{(xs, ti,u;) 7, where z; € Q, t; € (0,7, u;
is the observation of u(x;, t;), n is the number of
the data points. We also assume there is a library
of common derivative terms (Stephany and Earls,
2024a). We aim to use LLMs to automatically
select the terms and estimate the coefficients.

This problem has various applications in ma-
terial science, physics, and genetics. For exam-
ple, it can be applied to discover the rate of gene
expression change in single-cell RNA-sequencing
data (Bergen et al., 2020, 2021). It can also fa-
cilitate learning governing laws of fluid dynam-
ics (Zhang and Ma, 2020). Moreover, scientific

data is usually very limited in the real world since
it heavily relies on scientific experiments and mea-
surements, which are quite costly and require exten-
sive human effort. (Stephany and Earls, 2024a,b)
also have similar observations. For example, we
need expensive clinical trials to obtain single-cell
transcriptome data at different periods (Liu et al.,
2022). As a consequence, our studied limited data
situation is quite common in reality.

3.2 Framework Overview

This paper studies the problem of discovering the
underlying PDEs from very scarce observed data.
Previous data-driven methods (Stephany and Earls,
2024a; Chen et al., 2021; Stephany and Earls,
2022) usually suffer from performance degrada-
tion when the observed data is limited. Here, we
propose a novel approach named LLM4PD to uti-
lize LLMs to guide a coarse-to-fine paradigm. In
the coarse phase, we select the crucial terms from
the whole library with extensive observation data
and reasoning-based prompts in a zero-shot manner.
Then, in the fine phase, we optimize the coefficients
of the selected terms and validate them with the
interaction with a PDE solver. The coarse and fine
phases are interleaved and iteratively performed un-
til the convergence. An overview of our LLM4PD
is shown in Figure 1 and more details are provided
in the following sections.

2686



TASK: PDE Coefficient Discovery
OBJECTIVE: Find optimal coefficients [c1, c2, c3] that minimize the
error for <PDE Equation>

Training Data:
First <number of observations> points (t, x, u):
<observation data>

Note: Each point is represented as (t, x, u) where:
- t: time coordinate

- x: spatial coordinate

- u: solution value at this point

Use some knowledge of the PDE to help you find the sign of the
coefficients.

HISTORICAL PERFORMANCE:
Previous attempts [c1, c2, c3] -> error:
<memory bank>

BEST PERFORMANCE SO FAR:
<best performance>

TREND ANALYSIS:

1. Error Patterns:
- Track how error changes with coefficient adjustments
- Note which coefficient combinations led to lower errors
- Identify trends in successful combinations

2. Coefficient Relationships:
- Observe which coefficients tend toward zero
- Note correlations between coefficient values
- Track the impact of coefficient magnitude changes

GENERATION STRATEGY - FINE-TUNING:

Best coefficients: <best performance>

- Make SMALL adjustments (£0.1 to £0.3) around best point

- Keep successful patterns from previous attempts

- Maintain 1-2 coefficients at zero for sparsity

- Never repeat the same coefficients from previous attempts and the
current attempt

RESPONSE FORMAT:

- Provide exactly three numbers with one decimal place

- Each number must be between -1.0 and 1.0

- Separate numbers by commas

- Must be different from all previous attempts

- At least one non-zero coefficient

- Never repeat the same coefficients from the current attempt

Example: 0.5, -0.3, 0.0

Figure 2: The template example for our fine phase.

3.3 Coarse Phase for Term Selection Guided
by Hybrid Contexts

The library of derivative terms is usually large and
diverse (Stephany and Earls, 2024a), which makes
it challenging and inefficient to find the optimal
coefficients with limited data. To reduce the search
space, we propose to use a reasoning-based prompt
to select the crucial terms from the library. Here,
we design a prompt reasoning from three different
perspectives, i.e., knowledge level, data level, and
reasoning level, which jointly guide the LLM to
select the correct terms. We also include possible
reasoning results from a review agent (Xu et al.,
2023; Shi et al., 2024) in the prompt.

In particular, we begin by introducing the general
information. Then, from the knowledge level, we

provide the physics properties of the terms, i.e., the
spatial and temporal derivatives in the library (Jiang
and Luo, 2025). For example, we include that the
first spatial derivative is often associated with ad-
vection, which can help LLMs align the mathe-
matical terms with the text. From the data level,
we provide a range of triplet of the observations
(t,z,u), i.e., the spatial location, the time, and the
value of the observation data. From the reasoning
level, we provide guidance to identify the crucial
terms including examining the trend of the observa-
tion data, matching patterns with PDE candidates,
checking for nonlinearity, and checking from the
balance of terms. With hierarchical prompts, LLMs
can effectively select the crucial terms from the li-
brary.

To further reduce the error during the coarse
phase, we provide an LLM-based review agent,
which can examine whether the selected terms are
reasonable and complete. If the proposed terms
are rejected, the reason and suggestions will be
incorporated into the prompt for term selection. If
the review agent approves the selected terms, the
process will be terminated and we will move to the
fine phase.

3.4 Fine Phase for Coefficient Optimization
Guided by a PDE solver

After the coarse phase, we obtain a set of cru-
cial terms. Previous methods (Stephany and Earls,
2024a; Chen et al., 2021; Stephany and Earls, 2022)
usually optimize the neural network with gradient
descent or conduct regression, which could be inef-
fective when the training data is scarce. In contrast,
we follow a heuristic paradigm to utilize LLMs for
coefficient optimization, which is totally training-
free and automatic process (Yang et al., 2024a;
Guo et al., 2023; Liu et al., 2025). Here, we de-
sign a prompt to guide the LLM to optimize the
coefficients, which consider two key points, the
observation data and the optimization trajectory.
Note that the optimization trajectory is the history
of the optimization process, which can help LLMs
to understand the optimization process and avoid
the local optimal. We also design an adaptive op-
timization strategy switching between small-step
fine-tuning and large-step exploration to improve
the optimization trajectory.

In detail, to effectively optimize the coefficients
with LLMs, we design a prompt with both the ob-
servation data and the optimization trajectory. Here,
the observation data is included as in the previous
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phase. More importantly, we utilize a PDE solver
to simulate the solution of current PDEs and the er-
ror between the simulation and the observation data
would be added to a memory bank M as follows:

M(—MU(< &-,ei >), (3)

where &; is the coefficient at the i-th iteration and e;
is the error between the simulation and the observa-
tion data. From the memory bank, we can monitor
the optimization trajectory, which can guide the
LLM in optimizing the coefficients in the next iter-
ation. On one hand, we should pay attention to the
optimization direction and update the coefficients
in a small step each time to ensure the stability of
the optimization. On the other hand, we should also
occasionally take a large step to avoid the local opti-
mal and enhance the efficiency of the optimization.
Towards this end, we design an adaptive random
optimization strategy, which can switch between
small-step fine-tuning and large-step exploration
based on the current error and the number of non-
increasing iterations. In particular, we will select
a random number r from the uniform distribution
U(0,1) and compare it with a threshold. To make
the optimization process more adaptive, given an
error threshold E and a step length L, if the cur-
rent loss e; is above E and the current number of
non-increasing iterations /; is above L, we give a
larger probability to encourage large-step explo-
ration with a larger 7;. Otherwise, we have 7. In
formulation, we have:

T, ife;>Forl; > L
TP = ) €]
T, otherwise,

where 7; is the threshold for the i-th iteration.
Then, the updating rule S; is given by:

S ifr <
S=40 e 5)
Sy, otherwise,

where &1 and Sy are strategies for the large-step
exploration and small-step fine-tuning, respectively.
71 and 79 are thresholds to determine the frequency
of the small step, which is set to 0.9 and 0.5 respec-
tively to balance the optimization process. We also
provide the prompt of reasoning steps in our fine
phase in Figure 2. During refinement, we restrain
the output within one decimal place for simplifica-
tion.

Theoretical Analysis. We present a theoreti-
cal analysis demonstrating that even when the

Algorithm 1 Algorithm of LLM4PD

Input: Observation data D, library of derivative
terms, pre-trained LLM.
Output: The underlying PDE.

1: Initialize memory bank M <« ()
2: while not converged do
3: /I Coarse Phase
4:  Generate hierarchical prompts from physics,
data, and reasoning views;
5:  Use LLM to select crucial terms from the
library;
6:  Review selected terms with a review agent;
7. if not approved then
8 Return to coarse phase;
9:  end if
10:  // Fine Phase
11:  Sample a random number r € U(0, 1);
12:  Generate the threshold based on the current
optimization scenario using Eqn. 4;
13:  Generate coefficients using Eqn. 5;
14:  Solve the PDE with current coefficients;
15:  Calculate the error e; between simulation
data and observations;
16:  Update the memory bank M using Eqn. 3;
17:  if error not reducing for R iterations then
18: Return to coarse phase;
19:  end if
20: end while

correct PDE basis terms are selected during the
coarse phase, traditional regression-based meth-
ods may still suffer from performance degradation.
This highlights the necessity of the fine phase in
LLMA4PD. To begin, let the correct PDE basis terms
be

B=(B,....,B)", (6)

where B; represents the i-th term in the function
library, such as B; = U%Z- Without loss of gener-
ality, we assume that the underlying PDE is linear,
given by

Y =3'B, (7

where 3 is the true coefficient vector and Y = %—7;.
Suppose the observed dataset is denoted as D.
Using these observations, we compute the esti-
mated evaluation Y, which can be decomposed
into two components: the true evaluation Y and a
bias term Yp,g arising from numerical differentia-
tion over discrete observations. Mathematically,

Y = Y + }/Eias- (8)
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Task Data Burgers’ Equation Advection Equation Diffusion-Reaction
Noise rate 0 5 10 0 5 10 0 5 10

N =20 PDE-LEARN 0.078 0.085 0.081 0.070 0.065 0.101 0.077 0.071 0.167
GPT-ol-mini  0.214 0.357 0.271 0.314 0.057 0.286 0.143 0.386 0.214
LLM4PD 0.0 0.0 0.0 0.0 0.157 0.014 0.029 0.329 0.100
Iter Num 68 32 59 46 - - - -

N=40 PDE-LEARN 0.077 0.064 0.073 0.071 0.071 0.117 0.095 0.105 0.142
GPT-ol-mini 0314 0.285 0.371 0.214 0.386 0.486 0.300 0.386 0.129
LLM4PD 0.0 0.0 0.114 0.0 0.014 0.043 0.029 0.129 0.071
Iter Num 76 79 - 75 - - - - -

N=60 PDE-LEARN 0.067 0.059 0.064 0.095 0.050 0.091 0.072 0.154 0.113
GPT-ol-mini 0.471 0.228 0.242 0.358 0.314 0.229 0.129 0.357 0.214
LLM4PD 0.0 0.0 0.014 0.057 0.014 0.242 0.043 0.071 0.014
Iter Num 56 54 - - - - - - -

Table 1: Performance comparison of the compared models. We measure the mean absolute error (MAE) of the
recovered coefficient and the ground truth following (Rudy et al., 2017). If the error is 0, it means the coefficient is
exactly the same as the ground truth. Iter Num is the number of used up iterations if the model converges to the
ground truth during the fine phase. N is the number of observation points.

Thus, the true evaluation of the observed data satis-
fies .
Y =8B +e¢, )

where € represents the noise term. Motivated by the
least squares regression framework, the coefficient
vector is estimated as

B=arg mﬁin; (%-87B)". a0

where B; is the estimated basis term evaluation for
the i-th observation. Defining

. . N\T
T=(Bi...B)) , Y=(Vi,...%)
Y
the following theorem provides a theoretical analy-
sis of the performance of regression-based methods
for PDE discovery.

Theorem 3.1. Let ,3 be decomposed as

B=B+ (D) I (et Vi), (2

where € is the noise term and Yy;.s is the bias
term.

Proof of Theorem 3.1. The proof follows directly
by substituting the definition of B into the least
squares regression framework and expanding the
terms. By definition, the least squares estimate is
given by

B=C'D)'r’y. (13)

Substituting the expression for Y, we obtain

B=@"D)'TT (TB+e+ Yhas). (14

Expanding the right-hand side, we get

B=B+ D) 'Ie+ (1)1 Y.
(15)
This completes the proof. O

Theorem 3.1 highlights the impact of numeri-
cal errors introduced during derivative computa-
tion, reinforcing the necessity of the fine phase
in LLM4PD. When the sample size is small, the
bias term may become significant due to limited
data points for estimating derivatives, resulting in
(I‘TI‘) ! T'" Yyias # 0. Similarly, when the noise
is high, meaning the variance of ¢ is large, the term
(I‘TI‘)_1 I' "¢ can also be large. These findings
suggest that regression-based methods may suffer
from performance degradation when the sample
size is small or noise levels are high, which fur-
ther justifies the high challenges of our data-scarce
scenarios for PDE discovery.

3.5 Interleaved Optimization

When the selected terms are not optimal, it is pos-
sible that the fine phase could fail to converge. To
address this issue, we propose to interleave the
coarse and fine phases. In particular, we first per-
form the coarse phase and then perform the fine
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phase. After the fine phase, we will check whether
the error can be effectively reduced. If the error
fails to reduce for R iterations, we will return to
the coarse phase and select the terms again. The
whole algorithm is shown in Algorithm 1.

4 Experiments

4.1 Experimental Set up

Datasets. To evaluate the performance of our pro-
posed LLM4PD, we conduct experiments on three
popular PDE systems, i.e., Burgers’ Equation, Ad-
vection Equation and Diffusion-Reaction Equation.
Burger’s Equation is widely used to model non-
linear relations and diffusion processes. Advection
Equation is a basic PDE to model the transport of
a scalar substance. Diffusion-Reaction Equation
consists of a diffusion term and a reaction term.
Following previous works (Takamoto et al., 2022;
Hao et al., 2023), we construct the datasets with a
high-resolution PDE solver.

Baseline and Evaluation. We compare our
LLM4PD with two baselines, i.e., the origi-
nal GPT model (Achiam et al., 2023) (GPT-
ol-mini as default) without our adaptive design,
and a state-of-the-art PDE discovery model PDE-
LEARN (Stephany and Earls, 2024a). We measure
the mean absolute error (MAE) of the recovered
coefficient and the ground truth for each single run.
Implementation Details. We utilize GPT-01-mini
as our default model due to its strong reasoning
capacity and also attempt the other LLMs in our
experiments. The threshold 7; and 7 are set to
0.9 and 0.5, respectively to balance the large-step
exploration and small-step fine-tuning. The total
cost of the experiments for API usage is about 300
dollars.

4.2 Performance Comparison

We compare our method with two baselines, i.e.,
the original GPT model, and PDE-LEARN across
three popular PDE systems under label scarcity in
Table 1. We measure the mean absolute error of the
recovered coefficient and the ground truth. If our
model can recover the ground truth before using up
all the iterations, we set the error to 0 and record
the number of iterations used. From the results,
we have the following four observations: @ Our
proposed LLM4PD achieves the best performance
in comparison with two baselines in most cases,
which validates the effectiveness of our LLM4PD.
The GPT model without our design is not able to

0.25
0.20, ‘ 0.15
0.15 ‘ — 0.10
0.10
‘ . 0.05
0.05 ‘ |
— || I
0.00 Ours V1 V2 V3 V4 0.00 Ours V1 V2 V3 V4

(a) (b)

Figure 3: Ablation studies of our subcomponents in our
LLMA4PD with different noise rates.

/ ’U *U \

oU
Ui=ciU+cy) =—=U+C3 =—+Cy) ——
t 1U+cCy +C3 + 4 5%
DECISION: Rejected

X 9X?

REASONING: The current PDE includes the term i—US, which
introduces higher-order dispersion effects. However, the
provided data does not exhibit features that necessitate such
complexity, such as oscillatory behavior or sharp transitions
that specifically require third-order spatial derivatives. Instead,
the data suggests the presence of reaction-like dynamics,
indicated by moderate changes and potential for growth or
decay in U. Incorporating a nonlinear reaction term like

U? can better capture these dynamics without

overcomplicating the model with unnecessary higher-order
22U
derivatives. Additionally, maintaining the diffusion term T

au
alongside the nonlinear advection term EU ensures that both
smoothing and transport phenomena are adequately
represented.

3
SUGGESTIONS: Replace ,I;X_U3With U? to better capture the

reaction-like behavior while maintaining exactly four terms.

REVISED PDE:
au 9°U ,
Ut=clU+CZ(WU+CSa?+C4U-

Figure 4: An example of how LLM-based review agent
works. We can observe that our agent successfully re-
vises the selections.

recover the ground truth even when the number of
training data is large, which could result from the
lack of domain knowledge and interaction with a
PDE solver. The performance improvement of our
LLMA4PD can be attributed to two factors: (i) The
introduction of the coarse-to-fine design, which
can focus on the crucial derivative and simplify
the optimization space; (ii) The introduction of the
adaptive optimization strategy, which can dynam-
ically switch between large-step exploration and
small-step fine-tuning.

® Our model is robust to the noise in the dataset.
We can observe that the noise in the data does
not affect the performance of our model largely.
In comparison, PDE-LEARN is more sensitive to
noise and has a higher error rate under label scarcity
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Figure 5: The observation errors between the predicted solution and the ground truth for three examples on Burgers’

Equation (a) Advection Equation (b) Diffusion-Reaction (c), respectively.

as well. ® Our model is robust to the training data
size. We can observe that with few training data
the performance of our model is still more stable
and effective in comparison to PDE-LEARN which
is based on the physics-informed neural network.
The potential reason is that our model can infer
the important derivatives and coefficients using the
reasoning ability of LLMs from the data without
any learning process. @ Our proposed LLM4PD
generally performs much better for simpler systems
such as Advection Equation, which is evidenced
by achieving the underlying ground truth during
the iterations. As for Diffusion-Reaction Equation,
although our proposed LLM4PD cannot find the
ground truth, it still results in low errors than the
compared baselines in most cases.

4.3 Further Analysis

Ablation Study. To further validate the effective-
ness of the subcomponents in LLM4PD, we con-
duct ablation studies to analyze the impact of each
critical component. In particular, we introduce the
following model variants: (i) V1, which removes
the review agent in the coarse phase; (ii) V2, which
removes the reasoning-based context in the con-
text for term selection; (iii) V3, which removes
the memory bank in the fine phase; (iv) V4, which
replaces the adaptive optimization strategy with a
fixed optimization strategy. The compared MAE
on the Advection Equation with noise rates of 5%
and 10% can be found in Figure 3 (a) and (b) re-
spectively. From the results, we have the following
observations: @ Our full model outperforms V1,
which validates that our review agent can help effec-
tively avoid the wrong terms selected in the coarse
phase. ® V2 performs much worse than our full
model, which demonstrates the reasoning ability of
LLMs is crucial for the success of our LLM4PD.

® We can observe a performance decline when
removing the memory bank. The potential reason
is that the memory bank provides the optimiza-
tion trajectory for LLMs to generate the next guess.
® V4 achieves inferior performance to our full
model, which indicates that our adaptive optimiza-
tion strategy can effectively balance the exploration
and fine-tuning for improved performance.

4.4 Further Analysis

Case Study of Our Review Agent. To fur-
ther understand the performance of our proposed
LLM4PD, we demonstrate the output of a review
agent on the Diffusion-Reaction Equation. The
results are shown in Figure 4. Note that the
ground truth should include three terms i.e., U,
UZ2, and %27%[. From the results, we can observe that
LLMA4PD originally selects the wrong terms %—ZU
8637(3] and misses U2. After the review agent,

our LLM4PD replaces ‘33—[3] with the correct term.

x

and

Visualization of Errors. To further understand the
performance of our LLM4PD, we visualize the his-
torical minimal errors of our LLM4PD during the
fine phase. The results on Burgers’ Equation, Ad-
vection Equation and Diffusion-Reaction Equation
are shown in Figure 5. From the results, we can ob-
serve that the errors decrease smoothly during the
fine phase. The potential reason is our adaptive op-
timization strategy can effectively switch between
large-step exploration and small-step fine-tuning,
which can effectively balance the stability and con-
vergence speed. We can also observe that the de-
crease of the curve in Figure 5 (c¢) is shaper than
the other curves. The reason is that the optimiza-
tion trajectory is related to the characteristics of
the equations. In particular, due to the introduction
of UUy,, the solution of Burgers’ Equation is more
stable with different parameters while the advec-
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Figure 6: Performance of our proposed LLM4PD with
respect to different LLMs.

tion Equation is more sensitive to the parameters,
which brings in an unstable optimization curve.
Performance with respect to Different LLMs.
Here, we analyze the performance of our LLM4PD
w.r.t. different LLMs. We utilize four LLMs as
our basic LLMs, i.e., GPT-01-mini, GPT-40, GPT-
3.5-turbo, and GPT-40-mini. The compared perfor-
mance on the Advection Equation with noise rates
of 5% and 10% can be found in Figure 6 (a) and
(b), respectively. From the results, we can observe
that GPT-o1-mini achieves the best performance
consistently. The potential reason is that the rea-
soning ability and math problem-solving ability of
GPT-01-mini are the strongest among all these com-
mercial models. Due to the resource limitation, we
do not try stronger models such as GPT-01, which
would be left in our future work.

5 Conclusion

In this paper, we propose a novel framework named
LLMA4PD, which can effectively recover the under-
lying PDEs under extreme label scarcity. Our pro-
posed LLM4PD adopts a coarse-to-fine framework.
In the coarse phase, we identify the crucial terms
from a library, followed by an LLM-based review
agent for further checking. In the fine phase, we
combine LLMs with a PDE solver, which provides
feedback using the limited data source. Extensive
experiments on benchmark datasets validate the
superiority of the proposed LLM4PD.

6 Limitations

One limitation of this work is that we only explore
the potential ability of LLMs for PDE discovery
using the zero-shot setting. We believe that with
further fine-tuning, LLMs could achieve better per-
formance. Another limitation of the work is that
as the pioneering work in this direction, we only
include simple examples. In the future, we aim
to extend our framework to handle more complex

PDEs. In particular, we can incorporate both LLM-
based simulators and multi-stage optimization for
PDE discovery. First, we simulate the trajecto-
ries for complicated terms, and then adopt LLMs
or VLMs to summarize the observations to obtain
the relationships. Second, we can use multi-stage
strategies which start from the generation of a sub-
set of terms with careful validations and then select
the final terms from the subset.
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A Details of Datasets

Burgers’ Equation. Burgers’ equation is widely
used to model non-linear relations and diffusion
processes. It is usually written as:

Ui +UU, = vUpy, (16)
where U = U(z,t) is the solution, = and ¢ are
the spatial and temporal coordinates, and v is a
hyperparameter.
Advection Equation. Advection equation is a ba-
sic PDE to model the transport of a scalar substance.
The 1D Advection Equation is formulated as:
Ui +vU, =0 a7
where U = U(z,t) is the solution, = and ¢ are
the spatial and temporal coordinates, and v is a
hyperparameter.
Diffusion-Reaction Equation. Diffusion-
Reaction Equation consists of a diffusion term
and a reaction term. In this paper, we adopt the
following formulation:

Uy =U(1 = U) + vUsg, (18)

where v is a hyperparameter.

B Implementation Details

For the first two systems, we select three terms
from the library. For the last terms, we select four
terms from the library due to its complexity. Since
LLMs could have difficulty in understanding num-
bers with long digits, we keep one decimal for the
coefficients. We also limit the search space for
every coefficient in [—1,1]. The whole iteration
number of our LLM4PD is set to 80 to avoid loop-
ing and save the cost. For our baseline, we strictly
follow the settings in the corresponding paper.

C More Experiments

C.1 Performance Comparison with Linear
Regression

Here, we introduce a model variant LLM4PD w/
LR, which replaces our fine phase with linear re-
gression. The results are shown in Table 2. We
can observe that our model outperforms LLM4PD
w/ LR. The reason is that in scenarios with very
limited and noisy data, the derivative cannot be cal-
culated accurately, which validates our challenging
data-scarce scenarios.

Method 20 Samples 60 Samples
LLM4PD 0.0 0.014
LLM4PD w/ LR 0.4614 0.2155

Table 2: The MAE of the compared methods on Burgers’
Equation.

C.2 Performance of Review Agent

In this part, we demonstrate the times of correction
for the review agent with respect to different noise
rates. The compared performance is shown in Table
3. From the results, we can observe that our review
agent can help effectively avoid the wrong terms
selected in the coarse phase, especially under noise.

Settings Noise rate =0 Noiserate =5 Noise rate = 10

Times 0 1 4

Table 3: The times of correction for the review agent
with respect to different noise rates.

D Discussion

D.1 Discussion About Human Experts

Human experts have limitations in PDE discov-
ery for two reasons. Firstly, human experts could
struggle to process various noisy observation points
simultaneously. While they can employ various an-
alytical tools such as regression models, the deriva-
tive cannot be calculated accurately under noise,
which would result in poor performance. Secondly,
when data points are irregularly sampled, human
experts face difficulties in reconstructing the un-
derlying PDE patterns, which leads to difficulty in
accurately estimating spatial derivatives and identi-
fying governing equations. Although they cannot
replace LL.Ms for PDE discovery, a promising di-
rection is to explore hybrid approaches that com-
bine human expertise with LLM capabilities.

D.2 Discussion About Problem Setting

Our problem setting follows the mainstream PDE
discovery works (Stephany and Earls, 2022; Li and
Carvalho, 2024; Stephany and Earls, 2024a; Xu and
Zhang, 2021; Ribera et al., 2022), which always de-
fine a set of common terms to be selected. When it
comes to large-term candidates, we can solve some
typical PDEs with these candidate terms and lever-
age LL.Ms to summarize the relationships between
observations and these terms. Since we only have
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20 observation points, the size of the candidate set
is set to 7 similar to previous works (Stephany and
Earls, 2022; Ribera et al., 2022). Moreover, due
to the length constraint, we cannot consider too
large candidate sets. Note that the size is the same
for all the compared methods for a fair compari-
son. When it comes to the large candidate set, we
can divide the set into several groups with different
properties and then conduct a two-stage selection
strategy, which first selects the candidate groups
and then identifies the final terms from the selected
groups.

E Prompt of Examples

An examples of prompts is shown as in Figure 7.
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TASK: PDE Coefficient Discovery

OBJECTIVE: Find optimal coefficients [c1, c2, c3] that minimize the error for D_t U = c1(U) + c2(D_x U)*(U) + c3(D_x"2 U)

Training Data:

First 20 points (t, x, u):

[(0.148, 0.281, -0.842), (0.959, 0.283, -1.029), (1.468, 0.355, 0.918), (0.248, 0.024, -0.911), (0.2, 0.146, 0.997), (1.076, 0.818, 0.806), (0.04, 0.587, -0.835),
(0.238, 0.204, 0.958), (1.262, 0.202, 0.552), (0.832, 0.902, -0.741), (0.77, 0.379, 0.937), (0.537, 0.036, 0.149), (0.85, 0.343, -0.012), (1.46, 0.056, 0.564),
(1.05, 0.339, -1.025), (0.027, 0.319, -0.429), (1.871, 0.459, 0.764), (0.138, 0.954, -0.9), (0.715, 0.345, 0.865), (0.03, 0.884, -0.754)]

Note: Each point is represented as (t, x, u) where:
- t: time coordinate

- x: spatial coordinate

- u: solution value at this point

Use some knowledge of the PDE to help you find the sign of the coefficients.

HISTORICAL PERFORMANCE:

Previous attempts [c1, c2, c3] -> error:

[-0.6, 0.8, 0.0] -> 0.569587(BEST)

[-0.7, 0.8, 0.0] -> 0.602267(Wrong Direction)

[0.6, -0.8, 0.4] -> 159797.187495(Wrong Direction)
[-0.6, 0.9, 0.0] -> 33370.460743(Wrong Direction)
[0.6, -0.8, 0.0] -> 1.086162(Wrong Direction)

[-0.6, 0.7, 0.0] -> 0.560422(BEST)

[0.6, 0.0, 0.0] -> 0.681910(Wrong Direction)

BEST PERFORMANCE SO FAR:
[-0.6, 0.7, 0.0] -> 0.560422

TREND ANALYSIS:

1. Error Patterns:
- Track how error changes with coefficient adjustments
- Note which coefficient combinations led to lower errors
- Identify trends in successful combinations

2. Coefficient Relationships:
- Observe which coefficients tend toward zero
- Note correlations between coefficient values
- Track the impact of coefficient magnitude changes

GENERATION STRATEGY - FINE-TUNING:

Best coefficients: [-0.6, 0.7, 0.0] -> 0.560422

- Make SMALL adjustments (£0.1 to #0.3) around best point

- Keep successful patterns from previous attempts

- Maintain 1-2 coefficients at zero for sparsity

- Never repeat the same coefficients from previous attempts and the current attempt

RESPONSE FORMAT:

- Provide exactly three numbers with one decimal place

- Each number must be between -1.0 and 1.0

- Separate numbers by commas

- Must be different from all previous attempts

- At least one non-zero coefficient

- Never repeat the same coefficients from the current attempt

Example: 0.5, -0.3, 0.0

Figure 7: An example of prompt for the fine phase.
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