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Abstract

Entity resolution is a fundamental problem in
data management that aims to identify all dupli-
cate entries within collections of multi-attribute
tuples. Most existing works focus on super-
vised learning, relying on large amounts of
high-quality labeled data, including both pos-
itive and negative tuple pairs that are meticu-
lously prepared. However, in reality, the manual
annotation process is labor-intensive; in partic-
ular, selecting high-quality negative data for la-
beling is both important and challenging. In this
paper, we propose an end-to-end ER solution,
PUER, to address low-resource entity resolu-
tion (ER) by leveraging Large Language Mod-
els (LLMs) in a Positive-Unlabeled (PU) learn-
ing setting, where only a small number of posi-
tively labeled examples, e.g., 50, and unlabeled
data are provided. Unlike directly fine-tuning
LLMs in a supervised manner, we solve the en-
tity matching task using reinforcement learning
and propose a self-adaptive reward function in
the process of RL. To enhance performance,
we design an iterative workflow based on the
co-training mechanism that fully utilizes entity
blocking component to assist the entity match-
ing. This workflow aims to improve the robust-
ness and quality of pseudo-labels so that the
performance of entity matching is improved.
Comprehensive experimental results on various
benchmark datasets demonstrate the superiority
of PUER. Full version and code are available'.

1 Introduction

Entity resolution (ER) aims to identifying all tuple
pairs from two relational tables that refer to the
same entities, making it a key components of data
cleaning with the goal of deduplicating records in
datasets. Traditionally, the ER task consists of two
components, entity blocking (EB) and entity match-
ing (EM). Entity blocking efficiently retrieves po-
tentially matched tuple pairs, while entity matching
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verifies whether these tuple pairs refer to the same
entities.

Traditionally, the entity resolution has been ex-
tensively studied and most of solutions reply on
a sufficient number of annotated tuple pairs to
achieve good performance. However manual an-
notation is costly, as demonstrated by methods like
Ditto (Li et al., 2020b) and DeepMatcher (Mud-
gal et al., 2018). To address it, a few existing EM
approaches focus on unsupervised learning, semi-
supervised learning and active learning. For in-
stance, TDmatch (Ahmadi et al., 2022) is an unsu-
pervised ER approach based on graph creation and
random walk, while only relying on the data distri-
bution cannot have very high accuracy due to the
extreme class imbalance. PromptEM (Wang et al.,
2022) generates pseudo-labels for low-resource ER
in the semi-supervised learning. While it partially
alleviates the annotation cost, selecting and label-
ing high-quality positive and negative tuple pairs
from large datasets remains challenging. Active
learning approaches, e.g., (Arasu et al., 2010), se-
lect ambiguous tuple pairs for user labeling, but
this also incurs significant manual annotation costs.
In this work, we focus on the few-shot Positive-
Unlabeled (PU) learning, where only a small num-
ber of labeled positive tuple pairs are provided
along with two relational tables. To the best of
our knowledge, we are the first to explore the ER
task in the few-shot PU learning context.

Entity resolution, which typically replies on
both positive and negative training data, is partic-
ularly relevant to few-shot PU learning (Bekker
and Davis, 2020). In practice, only users who
detect duplicate issues in their datasets often in-
vest resources to find and integrate these dupli-
cates, so that these detected duplicates instances
are treated as labeled positive data. Negative tuple
pairs are generally not provided. Additionally, in
a search engine scenario, users might ask a ques-
tion and receive multiple semantically identical re-
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sponses (Niu et al., 2016). These responses are con-
sidered positive data. While negative tuple pairs can
be relatively easy to collect, acquiring high-quality
negative pairs in large-scale datasets is non-trivial
and requires manual annotation and verification,
presenting a challenge for annotators (Wang et al.,
2024b). Building on these observations, we investi-
gate the ER task within the framework of few-shot
PU learning to address these challenges effectively
with minimal labelling cost, while aligning with
human preference.

However, existing ER methods based on pre-
trained Language Models (e.g., ROBERTa) primar-
ily learn distribution and decision boundaries from
large sets of annotated samples. This approach re-
sults in inefficiencies in labeled data utilization,
placing these methods at a disadvantage in few-
shot scenarios. Furthermore, they lack the capa-
bility to generalize well, and cannot achieve high-
performance EM tasks based solely on a limited
number of positive sample annotations. Recently,
as the advanced performance of large language
models (LLMs), they have been explored in the en-
tity matching task. JellyFish (Zhang et al., 2024)
addresses various data pre-processing tasks, includ-
ing entity matching, by leveraging LLMs in the
instruction-tuning and reasoning manner. Table-
GPT (Li et al., 2024b) employs and fine-tunes on-
line GPT-3.5 on various data pre-processing tasks.
Considering the data privacy concerns, we focus
on using local LLMs that are open-sourced and can
be fine-tuned in local environments.

Motivated by the above considerations, we ex-
plore the ER problem within the framework of few-
shot PU learning by harnessing the capabilities of
local LLMs. Our objective is to fully utilize en-
tity blocking to assist the entity matching process
and to develop an LLM-based model that can effi-
ciently and effectively retrieve all matched tuple
pairs from limited labeled data. Unlike traditional
methods that treat entity matching purely as a bi-
nary classification task, our approach is the first to
formulate entity matching as a reinforcement learn-
ing problem while simultaneously fine-tuning the
model using both Supervised Fine-Tuning (SFT)
and reinforcement learning. Furthermore, to inte-
grate entity blocking with entity matching, we in-
troduce an iterative workflow that progressively
generates high-quality pseudo-labels, facilitating
mutual learning among these components.

Our contributions are as follows:

o Beyond binary classification, we are the first to
employ reinforcement learning to solve the en-
tity matching, and design a self-adaptive reward
function to enhance the convergence speed.

o We propose an end-to-end entity resolution
workflow that iteratively make full use of the en-
tity blocking model to select high-quality train-
ing data and jointly fine-tunes two entity match-
ing models through a co-training mechanism.

o We conduct comprehensive experiments to
evaluate the efficiency and effectiveness of our
approach, demonstrating its superiority over ex-
isting methods.

2 Related Work

We classify ER into entity blocking and matching.

Entity blocking. We classify entity blocking as
(1) rules, e.g., handcrafted rules (Papadakis et al.,
2020, 2014; Fan et al., 2009; Kejriwal and Mi-
ranker, 2015), and learned rules (Michelson and
Knoblock, 2006; Kejriwal and Miranker, 2015;
Singh et al., 2017a; Paulsen et al., 2023), (2) tradi-
tional ML, e.g., (C. et al., 2018; Efthymiou et al.,
2015), and (3) deep learning, e.g., (Thirumuru-
ganathan et al., 2021; Brinkmann et al., 2024; Wang
et al., 2023; Reimers and Gurevych, 2019; Wu et al.,
2023; Wang et al., 2024a), which retrieve poten-
tially matched tuple pairs from large-scale datasets.

Entity matching. There are host of works on en-
tity matching, including rule-based methods (Guo
et al., 2010; Fan et al., 2011; Whang and Garcia-
Molina, 2013; Singh et al., 2017b), ML-based meth-
ods (Konda et al., 2016; Bilenko and Mooney,
2003; Wu et al., 2020) and deep learning-based
methods (Li et al., 2020b; Mudgal et al., 2018;
Ebraheem et al., 2018; Zhao and He, 2019; Li et al.,
2020a; Fu et al., 2019). Recently low resource en-
tity matching based on deep learning models has
been paid attention, including (1) active learning
ER, e.g., (Qian et al., 2017; Meduri et al., 2020;
Kasai et al., 2019; Nafa et al., 2022), (2) data aug-
mentation ER, e.g.,Rotom (Miao et al., 2021), (3)
unsupervised learning ER, e.g., (Zeng et al., 2024;
Ahmadi et al., 2022), (4) transfer learning ER, e.g.,
(Kirielle et al., 2022; Tu et al., 2022; Sun et al.,
2024; Loster et al., 2021), (5) semi-supervised
learning ER, e.g.,PromptEM (Wang et al., 2022),
(6) multi-task learning, e.g.,Unicorn (Fan et al.,
2024a). and (7) information fusion (Yao et al.,
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2021). There are also works to combine the entity
blocking and matching models for mutual learn-
ing, e.g., (Wu et al., 2023; Wang et al., 2023;
Li et al., 2021), and works by leveraging local
LLMs (Zhang et al., 2024; Wadhwa et al., 2024)
and online LLMs (Li et al., 2024b; Wang et al.,
2025; Li et al., 2024a; Fan et al., 2024b). How-
ever, none of the above works address few-shot the
Positive-Unlabeled setting, such that only as small
number of positive instances are given, which is
more practical in real-life.

3 Preliminaries

In this section, we first present the ER problem, and
then introduce the entity blocking and matching.

3.1 Problem Formulation

Given two relational tables of multi-attribute tu-
ples, the goal of entity resolution (ER) is to identify
pairs of tuples that refer to the same entity. The
ER task generally consists of two main compo-
nents: entity blocking and entity matching. The
entity blocking component efficiently retrieves a
candidate set of potentially matching tuple from
large tables, thereby avoiding the quadratic time
complexity of comparing all tuple pairs between
relational tables. The entity matching component
then predicts whether tuple pairs in the candidate
set are matches.

Definition 1: (ER under the few-shot positive-
unlabeled setting.) Given two relational tables of
multi-attribute tuples R; and R, and a set P con-
sists of a small number of positive tuple pairs, the
objective of few shot PU entity resolution (ER) is to
identify all matching tuple pairs from R; x R,.. O

In this paper, we mainly focus on addressing
entity matching task of ER. We fully utilize existing
entity blocking techniques to enhance the efficiency
and effectiveness of the matching process.

3.2 Entity Resolution

Following previous work (Wu et al., 2023), we
decompose entity resolution into entity blocking
and entity matching.

Entity blocking. The entity blocking Blocker, pri-
marily utilizes the SentenceBert model, denoted
as FRrac, to transform each tuple ¢ into an embed-
ding vector (Thirumuruganathan et al., 2021; Wang
etal., 2023; Wu et al., 2023; Li et al., 2020b). Given

the training data (¢, P;, N;), where P, and N; rep-
resent the positive and negative sets of tuples that
match and mismatch with ¢, we fine-tune Frag via
contrastive learning (Oord et al., 2018).

Entity matching. Previous work (Wang et al.,
2025) formulates the entity matching into two sub-
tasks: Matcher FM, and Selector 72,.

Matcher. Given a tuple pair (¢, s) and a domain-
specific prompt pt,,, as EM instruction, we could
query LLM to transform (¢, s) to a binary decision
pm € {Yes,No}, s.t. p,, = LLM(pt,,, (r,si)).
The Matcher ]-'E"M is consistent with all existing
entity matching works, e.g.,JellyFish (Zhang et al.,
2024), Ditto (Li et al., 2020b), aiming to identify-
ing whether a tuple pair is matched or not. Matcher
is supervised fine-tuned (SFT) with LoRA and
aims to provide domain-specific decision boundary.

Selector. Selector takes a pivotal tuple ¢, a list of
candidate tuples Cs(t) = {s1,...,8/c,|}, and a
prompt pt, as inputs, and outputs a list of positive
ones in C4(t). It lets LLMs check more examples
so that they make correct decision. Selector targets
at re-ranking C, by simulating human preference.
The Matcher subtask is mainly used in most EM
approaches, e.g.,JellyFish, while Selector has not
been as extensively studied. Although (Wang et al.,
2025) introduced it to address the EM, they did not
further fine-tune it to improve its performance.

4 RL-based Entity Matching

As discussed above, the entity matching task is
formulated as two sub-tasks, Matcher FM, and
Selector ]:EM. In this section, we focus on how to
fine-tune the Selector to make policies from a list
of candidate tuples. Here we assume that FEM is
fine-tuned using a (pseudo-)labeled training dataset
D3 . = {(t,Cs(t),L;)}, where L, is the label of
the pivotal tuple ¢. The process of generating Dtsrain
will be discussed in Section 5.

RL-based Selector. To select matching tuples from
a pivotal tuple, we employ the Group Relative
Policy Optimization (GRPO) (DeepSeek-Al et al.,
2025) to fine-tune the Selector so that it can bet-
ter adapt to the dynamic changes and improve its
accuracy. However, the number of positive tuples
in the candidate list is very small, resulting in a
continuously low reward value during the learning
process of GRPO. To address this issue, we design
a self-adaptive reward model.
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GRPO. Given each pivotal tuple ¢ from Dtram
that follows the distribution P, we adopt
GRPO (DeepSeek-Al et al., 2025) with the fol-
lowing loss function.

JGRPO = E[ ( tram) {Ol i=1" 7T90|d(0|t)]
ol) , [ moloilt)
GZ< o o e Eow e

L= 14 ¢) ;) = il me)

where A; is the advantage function computed
within a group of rewards. The Selector .FEM is
fine-tuned in two stages. First, to address the cold
start problem, we initialize ]-"EM using SFT, which
enables it to adapt to the selection task. Subse-
quently, ]:EM is further fine-tuned using GRPO
with the Jgrpo loss function.

Input and Output Formats of ]-"EM. Given a hand-
crafted instruction pt,, a tuple ¢, and a candidate list
Cs(t), we first formulate them into a final prompt
following (Wang et al., 2025). We then feed this
prompt into the function ]-'EM. Then ]-'EM subse-
quently produces the response r.

T = <positive>[ ... ]</positive><negative>[ ... |[</negative>

Here, the lists of positive and negative tuple
IDs from Cs(t) are enclosed within the markers
<positive> and <negative>, respectively. Here no-
tice that we also let FEM return negative tuples to
make sure that it also focuses on negative ones.

Self-adaptive Reward Function. Given a tuple t,
the candidates Cs(¢), and the label vector Ly, we
design a reward function R that returns a scalar
reward value for RL, where L; € {0, 1}/%® is a
binary vector indicating whether each candidate in
Cs(t), e.g., the i-th element in Cs(t), is a true match
(L¢[7] = 1) or not (L [¢] = 0). The reward function
R contains the following steps.

(1) Step 1: Answer Extraction. We handcraft the
regular expression to extract the list Lpos of positive
tuple IDs and the list Lyeg of negative ones from the
response r of .FSM. We return a zero reward if Lpos
or Lyeg cannot be parsed successfully from r, if the
tuple IDs in Lyos or Lpeg are not within the range
[1,|Cs(t)]], orif | Lpos| + |Lneg| # |Cs(t)]. In other
words, the answer extracted from the response must
be valid. If this condition is met, we proceed to Step
2; otherwise, a zero reward is returned.

Input: a collection of training data DJ ., = {(t,Cs(t), L¢)},
the number of iteration itermax, the smoothing factor o.
Output: the policy mem.

1. Split DS, into train/valid data D{;, and D,y

SFT F&y in DS, as the cold start.

iter := 0, wggg = ﬁi’g) =1

while iter < |termax do
The reward R = H., (P, Ly, wp'é:r), wﬁiet;“));
Fine-tune Fgy in DS;, via GRPO usmg R;
Compute the prediction Pyajig = Fem (Dlaia);

Compute FN and FN using P,ji¢ and Lyaiia;
w _ FP+e¢ w, FN+e .
pos ™ {:)N+FP+6 neg = FNFFP+e>
iter+ iter
p()os : 1- Oé)’UJpOS ) + QWpos;

w.gletgerH) =(1- Cl)wrgletger> T QWneg;
iter := iter + 1;

13.  return Fy;

D Al o

—_
e

—_——
N —

Figure 1: RL-based Selector

(2) Step 2: Similarity reward computation. Intu-
itively, we aim to measure the similarity between
the answer and the ground truth. Hamming similar-
ity is a good option.

R(t, CS (t), Lt) = H <Enc(Lpos, Lneg)a Lt>
where Enc is a handcrafted encoding function
that transforms Lpos and Lpeg into a binary vec-

tor P, of the same dimension as L;. H repre-
sents the Hamming similarity, s.t. H(P¢, L) =

Z\Ce(f)\ 1
ICS(PW Lelil A higher H(P¢, L;) indicates

better performance of ]-"EM, while a lower value
suggests suboptimal performance.

However, directly using H has the following
drawbacks. First, the ratio of positive tuples in Cg
is very small, and the rewards from negative tuples
would dominate the exploration process, causing
the feedback from the reward function to remain
at a very low value. Second, the goal of entity
matching is to reduce both false positives (FPs)
and false negatives (FNs). When the number of
FPs increases, we expect FEM to focus on reducing
FPs; otherwise, it should focus on reducing FNs.
The current H does not encourage this behavior in
]:EM, causing it to spend a large number of itera-
tions exploring unseen regions.

To address these issues, we design a weighted
Hamming similarity H,,:

%w(Pt,Lt,wp057wn8g) =
Cs
S 1p, [i]=Le[i]=1Wpos T 1P, [i]=L;[i]=0Wneg

Ca(t
ZL:l( ) 1p,[i)=1Wpos + 1L,[i]=0Wneg

For the positive tuples in L;, we assign a weight
Wpos, and for the negative tuples, we assign a
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weight wneg. By integrating these weights into the
reward function, FEM is more inclined to focus on
one side, i.e., either positive or negative data.

The final problem is how to set the values of
Wpos and wWpeg. Our idea is that if ]:EM has an in-
creasing number of false positives, we should in-
crease the value of wpes so that GRPO focuses on
reducing the false positives. Otherwise, we encour-
age GRPO to find true positives from the negative
tuples. To achieve this, we split D> . into vali-

train

dation data D2 ., and compute the false positives

(FPs) and false negatives (FNs) in each iteration.
Let w,(,io)s and w,(é)g be the weights for the i-th iter-
ation. We use .FEM to make predictions P,,jiq on
Dga“d, and then compute FPs and FNs. The current
weights wpos and wpeg are set to the percentages
of FPs and FNs, respectively. However, resetting
these weights in each iteration would lead to an un-
stable reward function. To gradually change these
values, we introduce a smoothness factor « to up-
date the weights with small adjustments. Specifi-
cally, we set wf,i;gl) =(1- a)w,(,igs + Qwpos and
wr(,gl) =(1- a)wr(fe)g + QWneg.

To further reinforce the impact of positive tuples
in L;, we incorporate semantic similarity into the
reward function as prior knowledge. This guides
the RL process to find a good direction. Our final
reward is as follow.

R(t7 Cs (t>7 Lt) :Hw(Pt> L;, Wpos wneg)+

1 .
3 - E Z Simeos(vec(t), vec(s))

ses

where (3 is a hyper-parameter and 0.2 by default, S
is the set of true positives in the prediction of ]-'EM,
Simces is the cosine similarity between two vectors,
and vec() is the embedding returned by Frag.

Figure 1 illustrates the RL process of ]:EM. In
addition to DY _; , the number of iterations itermax
and the smoothing factor a are added as inputs.
Initially, we set wé%)s and wﬁ?g to 1, indicating the
normal Hamming similarity (line 3). In each iter-
ation, we re-formulate the reward function using
H,, (line 5) and fine-tune ]:EM using GRPO with
the reward function R (line 6). We then update the
weights of positive and negative tuples using the

gradual update rules (lines 7-11).

5 An ER Workflow

In this section, we present an ER workflow to train
the entity matching models Fgp with the assistance
of an entity blocking model Frag. The workflow

takes as input two relational tables, R; and R, and
a set P of positive tuple pairs. As shown in Figure 2,
the workflow consists of three main steps: data
enrichment, entity blocking, and entity matching.

Step 1: Data enrichment. Enriching tuples in R;
and R, with additional attributes, denoted as B,
is a common and effective method. Due to the un-
certainty (Farquhar et al., 2024) inherent in LLMs,
we observe that the values of 5B imputed for a
tuple can vary depending on its paired tuples
(w.r.t. context). For each tuple t € R; and a set
Sy C R, we generate | S| tuple pairs, i.e., P, =
{(t,51),---,(t 8)s,) }> Where s; € S;. Given each
pair (¢, s;) € P;, we query the LLM to impute the
values of B as a; = LLM((t, s;), B, pt,,,,)- Due to
LLM uncertainty, the imputed values ay, ..., qp,
may differ across pairs. To leverage these varia-
tions, we enumerate all imputations and augment
each tuple pair with multiple enriched versions.

Step 2: Entity Blocking. After data enrichment,
we enrich the positive set P into an augmented set
Penr- We then fine-tune our entity blocking model
JFRraG using contrastive learning with a randomly
sampled negative set, following the approach in
(Wang et al., 2024a). The final output of this step
is the fine-tuned FRrag.

Step 3: An iterative EM workflow. Given Frag,
Penr, Ri and 'R, we propose a progressive training
workflow that fine-tunes fé"M and ]-"EM.

Overview. We show the EM workflow. Given a tu-
ple t € R;, Frac conducts similarity search by
retrieving its K nearest neighbors NN (¢), which
forms the candidate list for ¢. We define two point-
ers: ptr, and ptr,, where ptr, indicates the bound-
ary separating positive tuples from the rest, such
that all tuples in the range [1, ptr,] are considered
positive, while tuples in the range [ptr,, K| are con-
sidered negative. Specifically, (¢, NNg (¢)[i]) are
treated as positive tuple pairs for ¢ € [1, ptr,] and
(t,NNg(t)[j]) are negative ones for j € [ptr,, K].
[ptr,, ptr,] are ambiguous pairs.

In the beginning of the training procedure, ptr,
is set to 1 and ptr, is set to K, and Frag gener-
ates the potentially positive and negative tuple pairs
Prac and Ngag within [1, ptr,] and [ptr,, K], re-
spectively. Next Frag sends them to Fgp, which
processes them using the co-training strategy. In
the next iteration, Frag retrieves the new NN g (¢)
for each tuple ¢ and adjust ptr, and ptr, by a step
size 0, updating the pointers as ptry = ptr, + ¢ and
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Figure 2: The end-to-end entity resolution workflow

ptr, = ptr, — 0. The iterative process continues
until ptr is no longer less than ptr,.

Co-training strategy. Given potentially positive
tuple pairs Prag and negative tuple pairs Nrag,
and the augmented set Pen,, we simultaneously
learn Matcher ]-"I'E\/'M and Selector FEM. Consider-
ing the extremely low ratio of positive to negative
tuple pairs in R; and R, and the fact that existing
methods, e.g., (Thirumuruganathan et al., 2021),
reply on random sampling for negative tuple pairs,
we assume that Nrag are more likely to be correct
in the first few iteration. Thus, we introduce a
warmup period during which Nrag are initially
treated as ground truth negatives and combined
with Pen, to fine-tune F, E"M for the first A iterations.
As ptr, approaches ptr, after X iterations, i, is
then responsible for selecting which negative tuple
pairs should be included in the training data.

Specifically, we design a two-phase learning
method to simultaneously train ]-"EAM and ]:EM'

Phase 1. In the first phase, we add Pep, into the
training data Dyy,in. If the current iteration is less
than )\, we generate the training data Dy, as
Dtrain = Penr UNRrag. For iterations beyond \, we
have a checker step by using ]-"I'E\/'M to verify whether
the labels of tuple pairs in Ngag are consistent
with its predictions, The training data Dyy,j, is then
updated t0 Dirain = Penr U {(t,s)\FE"M (t,s) =
No, (t,s) € Nrag}-

After generating Dy.in, We proceed to gener-
ate the training data Dtram for the Selector. For
each pivot tuple ¢, we retrieve all tuple pairs
(t,s1),...,(t,sr) from Dyin where ¢ appears on
the left-hand side of the tuple pairs. We then de-
fine Cs(t) = {s1,...,sL}, and the label L; is an
L-dimensional vector, where L, [i| = 1 if (¢, s;) is
a matched tuple, and L;[i] = 0 otherwise. We gen-

erate a triplet (¢, Cs(t), Lt) as an element of D3 _; .
Finally, we fine-tune ]-"EM using SFT on Dyy,i, and

F SM using GRPO on D7 . , respectively.

train’®

Phase 2. Once .FEM and -7:R|v| are well fine-tuned,
we adopt ]-EM to generate more positive training
data with pseudo-labels. For each tuple ¢t € Ry,
we first generate m augmented tuples, denoted by
t1,...,tm, and query .FEM with the list Cs(¢;) for
t; for i € [1,m]. This process yields m lists of pos-
itive tuples Ry, ..., R,,. To enhance the accuracy
of these positive instances, we use }"E/'M to make
inferences, obtaining additional positive training
data as AP = {(t,s)|FM,(t,s) = Yes, (t,s) €
Ry U---U Ry, }. Finally, we incorporate AP into
Dirain, and ]-"E"M is continuously fine-tuned using
SFT to further enhance its performance.

The ER workflow that relies on RL training can
be time-consuming; nevertheless, they are usually
carried out in an offline preprocessing phase. For
example, deduplication of corpora executed offline
ensures that search engines do not return duplicate
or valueless results when an online query is given.
Similarly, when a new data source is introduced,
data integration is usually executed offline, allow-
ing the newly integrated data to be used for down-
stream online business processes. Consequently,
users mainly focus on the accuracy of detecting
duplicates, and the workflow remains worthwhile
as long as it does not introduce prohibitive delays.

6 Experimental Results

In this section, we empirically evaluated our
method, PUER using benchmark datasets on (1)
the effectiveness and efficiency of entity matching,
(2) the ablation study, and (3) a comparative anal-
ysis with online LLMs, particular ComEM (Wang
et al., 2025) with GPT-40-mini. More experimental
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results are provided in the supplemental material.
Experimental settings. We start with our settings.

Datasets. We conducted experiments using 11
benchmark datasets from the ER Benchmark
datasets (Kopcke et al., 2010), the Magellan data
repository (The Magellan Data Repository) and
WDC product data corpus (Primpeli et al., 2019)
used for evaluating Ditto (Li et al., 2020b), These
datasets include Amazon-Google (AG), Walmart-
Amazon (WA), Abt-Buy (AB), DBLP-ACM (DA),
DBLP-Scholar (DS), Company (CO), Cameras
(CA), Computers (COM), Shoes (SH), Watch
(WAT) and WDC-AIl-Small (WS). Following
Ditto, we randomly sample 50 positive tuple pairs
as labeled training data and retained the left and
right relational tables as all unlabeled data. The
statistics of all datasets are summarized in the sup-
plementary material.

Baselines. We implemented PUER in Python and
used the following baselines. (1) Ditto (Li et al.,
2020b), an entity matching model based on BERT;
(2) Rotom (Miao et al., 2021), an entity matching
model leveraging language models and data aug-
mentation through RL; (3) PromptEM (Wang et al.,
2022), a prompt-tuning model based on pretrained
language models; (4) Unicorn (Fan et al., 2024a), a
multi-task data matching model using a mixture of
experts; (5) CLER (Wu et al., 2023), a low-resource
entity resolution model that integrates entity block-
ing and matching; (6) JellyFish (Zhang et al., 2024),
an LLM based entity matching model using LoRA-
based instruction-tuning; (7) Sudowoodo (Wang
et al., 2023), an entity resolution framework based
on contrastive representation learning. We also
compared with the following online LLMs: (8)
BatchER (Fan et al., 2024b), a cost-effective batch
prompting to ER based on online LLMs, and (9)
ComEM (Wang et al., 2025), an LLM-based ER
model using Matcher, Comparer and Selecter.

For a fair comparison, all baselines are provided
with the same set of 50 positive tuple pairs (denoted
as P), all labeled negative pairs from the training
set of the benchmark, and the same relational left
and right tables. In contrast, PUER is provided with
‘P and relational left and right tables but without
the labeled negative pairs, representing a few-shot
PU (positive-unlabeled) setting. Notably, Unicorn,
and JellyFish were also pretrained on additional
labeled entity matching corpus.

Measures. We report precision (P), recall (R) and

F1 (F) score for entity matching following (Li et al.,
2020b). All results are reported in 100-scale.

Configuration.  We  select  Qwen-2.5-7B-
instruct (Yang et al., 2024) as the backbone
of Fgm and bge-large—en as the pre-trained
model for Frag. We set K as 20, § as 5,and 7 as
0.02 by default and adopt the AdamW optimizer
with the learning rate of le-4 and le-5 for J-"E"M
and Frag, respectively. In GRPO of ]-'EM, we
set the training batch size as 16, the length of
input prompt as 1024, the maximum output length
as 64, the mini-batch as 16, the learning rate of
the actor model as le-6, and the coefficient 1 of
KL loss as 0.001. We adopt verl (Sheng et al.,
2025), a RL training framework to fine-tune }EM
and remains other hyper-parameters by default.
For all baselines, we use their default settings.
We conduct our experiment on a single machine
powered by 1.5TB RAM and 128 processors with
Intel(R) Xeon(R) Platinum 8358 CPU @2.60GHz
and 4 NVIDIA A800 GPUs. Each experiment was
conducted twice, averaging the results reported
here.

Experimental results. We next report our findings.

Exp-1: Entity matching. We evaluate the effec-
tiveness of PUER in comparison to other base-
lines with aspect to entity matching. Table 1 shows
the performance of all baselines. PUER consis-
tently outperforms all other baselines across all
11 datasets in terms of precision, recall and F1-
score, achieving average improvements of 26.31%,
36.87% and 40.19%, respectively, and up to
63.21%, 50.09% and 53.42%. This verifies that
the co-training strategy between F2,, and Fi,
and interaction between Fgp and Frag are ef-
fective, where the Selector and the RAG blocker
enhance the performance of the entity matching
component. Furthermore, PUER exhibits greater
robustness compared to other baselines and is less
not sensitive with data distribution. Specifically,
PUER shows superior performance in 10 out of 11
datasets in terms of Fl-score, e.g., at least 23.01%,
14.82% and 47.74% improvement in WS, DS and
Company dataset across different domains. This
highlights the stability of PUER and its effective-
ness independent of specific data distribution.
Compared with pre-trained baselines, PUER
also outperforms JellyFish, an LLM-based entity
matching model using handcraft prompts and
LoRA tuning, e.g., 16.63% F1-score improvement
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Datasets PUER (Ours) Ditto Rotom Unicorn PromptEM JellyFish Sudowoodo

P R F | P R F | P R F | P R F | P R F | P R F | P R F
AG |84.83 7649 80.45 3928 4.70 8.39 19.50 59.01 29.30 90.66 11.53 20.14 64.62 17.95 28.09 92.03 44.44 59.94 55.85 52.99 54.88
WA 9395 88.60 91.20 78.43 20.72 32.78 11.80 73.10 20.30 89.99 60.62 72.44 93.55 30.05 45.49 80.09 93.78 86.39 46.41 50.25 48.25
AB  [90.04 87.86 88.94 97.24 51.45 67.3 14.60 42.70 21.70 97.11 49.02 65.16 98.04 48.54 64.94 99.38 78.15 87.5 42.30 32.03 36.46
DA |9547 99.77 97.57 99.5 89.63 9431 809 97.1 882 99.29 95.27 97.24 100 86.04 92.49 99.76 97.07 98.40 78.55 98.19 87.28
DS |99.31 94.85 97.03 982 30.65 46.72 65.6 947 77.5 9881 70.18 82.07 98.73 58.04 73.1 99.7 64.01 77.97 73.33 93.55 82.21
CO |9856 79.18 87.82 2506 100 40.08 n/a n/a n/a 8749 384 737 n/a n/a n/a 9643 22.07 3592 30.62 25.28 27.69
CA  ]93.20 100.00 96.48 70.53 27.43 39.5 40.1 358 37.8 96.29 36.11 52.52 89.02 25.35 39.46 96.07 68.05 79.67 57.58 44.79 50.39
COM |98.67 99.33 99.00 65.64 28.76 39.99 293 502 37 92.82 69.23 79.31 80.57 74.58 77.57 97.5 78.26 86.82 37.08 48.49 42.02
SH |98.48 88.13 93.02 74.7 43.05 54.62 26.7 559 36.1 80.47 58.64 67.84 50.00 1.00 197 94.44 51.86 66.95 34.38 36.94 35.62
WAT [97.89 85.03 91.01 27.36 27.09 27.22 269 659 382 93.71 49.83 65.06 42.86 1.00 1.96 89.45 77.37 82.97 31.49 51.50 39.08
WS |87.67 95.57 91.45 71.89 20.28 31.64 27.4 75.00 40.2 95.97 43.73 60.09 91.55 28.05 42.94 96.64 52.92 68.39 40.99 63.10 49.70
Average |94.37 90.43 92.17 67.98 40.34 43.87 31.16 59.04 38.75 92.96 49.82 60.84 73.54 51.69 42.55 94.68 66.18 75.54 48.05 54.28 50.33

Table 1: Entity matching performance in comparison to baselines, n/a means the method is terminated within 10 hours

Methods/Model | AB | AG | DA | DS | WA the effectiveness of the fine-tuning workflow.
PUER (Ours) 88.94 | 80.45 | 97.57 | 97.03 | 91.20
CLER 75.86 | 47.56 | 80.04 | 55.96 | 70.02 AC WA AB
Methods — p  p° g | p R F|P R F
BatchER (GPT-4) 85.22 | 64.06 | 96.04 | 89.48 | 81.22
ComEM (GPT.35-tutbo) | 87,62 | 69:63 | 9085 | 84.68 | 86.37 PUER  84.83 76.49 80.45|93.05 88.60 91.20|90.04 87.86 88.94
ComEM (GPT-4o-mini) | 88.24 | 71.47 | 90.58 | 87.84 | 88.56 w.0. Selector 33.43 97.86 49.83|11.42 100.00 20.51|42.20 94.66 58.38
- - - - w.o. enrich  65.92 76.06 70.63|81.42 88.60 84.86(88.62 90.77 89.68
Table 2: Comparison with Online Model (F1-score) w.0. co-train 63.66 84.61 72.66|75.73 93.78 83.79|85.30 87.37 86.33

Datasets ‘ . AG . . AB . . WA .
Train Predict | Train Predict | Train Predict

Ditto 235 23 208 20 215 22
Rotom 522 23 435 20 487 23
Unicorn 725 17 602 13 654 14
PromptEM | 1420 65 1533 42 1365 55
JellyFish 1243 45 1010 30 1190 42
PUER (Ours) | 3561 208 4323 255 4555 339

Table 3: The Efficiency of Entity Matching (in seconds)

on average. This underscores the effectiveness of
our end-to-end iterative framework. While Unicorn
achieves relatively good performance among the
baselines due to its mixture-of-expert architecture,
it struggles to attain high recall because of the small
set of positive instances.

To evaluate the ER framework that integrates
entity blocking and matching, we compare with
CLER and Sudowoodo in Table 1 and 2. PUER is
10.85%, 29.73% and 23.63% more accuracy in as-
pects of precision, recall and F1-score than CLER
on average (Table 2), which indicates that the pro-
posed workflow that interacts Frag and Fgpm could
be beneficial to both of them. Due to the few-shot
PU setting, Sudowoodo struggles to generate high-
quality pseudo-labels relying solely on similarity
threshold and positive ratio, and the number of
high-quality pseudo-labels it generates is insuffi-
cient (Table 1). In contrast, PUER employs the
GRPO algorithm with a carefully designed reward
function, which enables it to tolerate noisy data
with better generalization ability.

In Table 2, we compared PUER with the online
BatchER (Fan et al., 2024b) and ComEM (Wang
et al., 2025) using GPT-3.5, GPT-4 and GPT-4o-
mini as the backbones. The result shows that PUER
achieves up to 15.5% higher F1-score, indicating

Table 4: Ablation Study for Entity Matching

Exp-2: Efficiency of entity matching. We present
the fine-tuning time (Train) and inference time (Pre-
dict) of Fgpm in Table 3. Since Fgpm employs co-
training of the Selector and Matcher, as well as
an iterative workflow to gradually generate more
training data with pseudo-labels, PUER requires
significantly more time to fine-tune its entity match-
ing models and perform inferences compared to
other methods. Although PUER is notably slower,
its high accuracy in entity matching, as shown in
Table 1, justifies the use of RL and co-training strat-
egy despite the increased computational cost.

The training cost of PUER is bounded by the
number of training data. Despite its higher training
cost, it does not result in prohibitively high ex-
penses in few-shot setting. Considering the signifi-
cant improvement in the F1-score of PUER (e.g., at
least 16.63% F1 improvement over baselines) and
the unique background of the positive-unlabeled
setting and ER task, the higher cost can be tolerated
and is relatively negligible.

Exp-3: Quality of pseudo-labels. To further
demonstrate the effectiveness of our pseudo-
labeling mechanism in PUER, we conducted ex-
periments to measure the precision and recall of
pseudo-positive and pseudo-negative examples un-
der varying values of K in Table 5 following (Wang
et al., 2023). Notice that we discard tuple pairs of
pseudo-labels that are not included in the ground
truths provided by benchmarks so that the evalua-
tions are accurate and totally based on benchmarks.

By varying K from 5 to 9, the average preci-
sion and recall are 88.28% and 81.53%, respec-
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Dataset ‘ K= ‘ K=7 ‘ K=9
‘ P R ‘ P R ‘ P R
AG 7833 6752 | 77.24 6752 | 76.17 67.09
WA 95.04 87.63 | 9523 87.21 | 95.05 87.83
AB 9296 89.88 | 93.01 89.30 | 91.47 89.78

Table 5: Quality of pseudo-labels under different K

tively. These results indicate the high quality of
our generated pseudo-labels. Furthermore, as K
increases, the quality of the pseudo-labels only de-
creases slightly. Although it may involve more tu-
ples for checking, our PUER is robust enough to
generate correct pseudo-labels, which is critical for
the further fine-tuning of the selector and matcher.

Exp-4: Flexibility of PUER. Given that our ER
framework does not rely on the matcher, we
adopted the EM model in Unicorn (Fan et al.,
2024a), a smaller model as the matcher of PUER.
Table 6 and 7 present the effectiveness and ef-
ficiency of PUERpicorn » Which utilizes the EM
model of Unicorn as the matcher, respectively.

Dataset | PUER \ PUERunicorn

| P R F | P R F
AG 84.83 7649 80.45 | 80.18 76.07 78.07
WA 93.95 88.60 91.20 | 76.19 8290 79.40
AB 90.04 87.86 88.94 | 90.28 76.69 82.93

Table 6: Effectiveness of PUER v.s. PUER nicorn-

Train ‘ Predict

Dataset PUER PUERunicom‘PUER PUERunicorn

AG 3561 3027 (-534) | 208 160 (-48)
WA 4555 3761 (-794) | 339 205 (-134)
AB 4323 3618 (-705) | 255 202 (-53)

Table 7: Efficiency of PUER ,icon (in seconds).

As evidenced by Table 6 and 7, the training time
is reduced to approx. 80% of the original time,
but the accuracy remains largely unaffected, which
indicates the effectiveness of the PUER framework,
regardless of whether the Matcher is a powerful
LLM or a simpler model. Under the few-shot PU
setting, considering the superior accuracy achieved,
the training time is deemed acceptable.

Exp-5: Ablation study. In Table 4, we present the
ablation study of PUER and its variants, namely
PUER without the Selector, without enrichment
and PUER without co-training that the selector
and matcher are trained independently. The results
demonstrate that each variant achieves lower accu-
racy compared to the complete PUER model.
Specifically, PUER without enrichment and
without the Matcher shows only a relatively small

performance drop. This suggests that LLMs al-
ready possess substantial prior knowledge, and
the Matcher does not contribute much in the few-
shot data setting. In contrast, PUER without the
Selector experiences a significant drop in accu-
racy, such as a 31% decrease on the AG dataset.
This finding indicates that the RL component in the
Selector plays a crucial role in generalization, par-
ticularly in few-shot scenarios. It enables the model
to collect sufficient data from the environment to
achieve robust performance.

To determine whether the pre-training process
of the LLM backbone includes the benchmark
datasets, we conducted an experiment of the few-
shot prompting using Qwen-2.5-7B-instruct.

Cco WA DS AB AG
P 99.35 74.26 92.02 77.63 46.74
R 10.92 52.33 62.52 60.67 82.90

F 19.68 (-68.14) 61.40 (-29.80) 74.45 (-22.58) 68.11 (-20.83) 59.78 (-20.67)

Table 8: The effectivenss of Qwen-2.5-7B-instruct
(P/R/F)

As illustrated in Table 8, the F1-score of PUER
is at least 20.67 points higher than that of few-shot
prompting and 68.14 points at most, demonstrating
that only LLM backbone is not sufficient and PUER
is necessary to make more accurate predictions.

Dataset | Methods | [P| =10 | 20 | 30 | 40 | 50 | 100
PUER | 55.15 |74.01 | 73.11 | 79.49 | 88.92 | 89.26

AB | Unicorn | 48.17 | 49.08 | 59.66 | 71.42 | 65.16 | 84.57
DITTO | 1739 | 2158 | 34.04 | 45.66 | 67.3 | 8235

PUER | 6582 | 68.96 | 65.01 | 82.29 | 9145 | 92.12

WS | Unicorn | 23.12 | 3502 | 65.22 | 54.24 | 40.20 | 70.19
DITTO | 1325 | 2057 | 27.45 | 35.69 | 31.64 | 66.10

Table 9: Performance Vary Labelling Budget |P| (F1)

Exp-6: Hyper-parameter study. We vary the
labeling budget |P| from 10 to 50 in Table 9.
PUER demonstrates robustness with respect to the
number of positive tuples, e.g., only 6.9% drop
when |P| decreases from 50 to 10 in WS.

7 Conclusion

In this paper, we propose, PUER, an end-to-end
ER solution for few-shot PU learning. We adopt
the reinforcement learning method to solve the en-
tity matching task, and design a self-adaptive re-
ward function. Furthermore, we introduce an itera-
tive training workflow that fully utilizes the entity
blocking model to assist the entity matching via
a co-training mechanism. Finally comprehensive
experiments across 11 benchmarks demonstrate the
superior performance of PUER.
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Limitations

Our work, PUER, introduces an end-to-end entity
resolution solution tailored for few-shot positive-
unlabeled (PU) learning scenarios by leveraging
Large Language Models (LLMs) and reinforce-
ment learning. We propose an iterative co-training
mechanism that integrates entity blocking and en-
tity matching, including a novel self-adaptive re-
ward function for the reinforcement learning com-
ponent, to enhance performance with minimal la-
beled positive data.

Despite the promising results, our approach has
several limitations. Firstly, the reinforcement learn-
ing (RL) component, particularly the Selector fine-
tuned with Group Relative Policy Optimization
(GRPO), inherently introduces a higher level of
complexity in terms of training and hyperparame-
ter tuning compared to simpler supervised methods.
Secondly, while LLMs offer powerful generative
capabilities, the quality and consistency of the gen-
erated outputs (e.g., enriched attributes or pseudo-
labels) can be uncertain and may occasionally re-
quire careful validation. Lastly, as indicated by our
efficiency experiments, the proposed PUER frame-
work, with its iterative workflow and co-training
of multiple components including RL-based Selec-
tor and Matcher, exhibits a higher computational
complexity during both training and inference com-
pared to some traditional entity resolution methods.
This increased cost is a trade-off for the achieved
accuracy in low-resource settings.
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Acknowledgments

This work was supported by Guangdong Provincial
Key Lab of Integrated Communication, Sensing
and Computation for Ubiquitous Internet of Things
(No.2023B1212010007,  SL2023A03J00934),
Guangzhou Municipal Science and Technology
Project (No. 2023A03J0003, 2023A03J0013 and
2024A03J0621).

References

Naser Ahmadi, Hansjorg Sand, and Paolo Papotti. 2022.
Unsupervised matching of data and text. In 2022
IEEE 38th International Conference on Data Engi-
neering (ICDE), pages 1058-1070. IEEE.

Arvind Arasu, Michaela Gotz, and Raghav Kaushik.
2010. On active learning of record matching pack-
ages. In SIGMOD, pages 783-794.

Jessa Bekker and Jesse Davis. 2020. Learning from
positive and unlabeled data: a survey. Mach. Learn.

Mikhail Bilenko and Raymond J. Mooney. 2003. Adap-
tive duplicate detection using learnable string simi-
larity measures. In Proceedings of the Ninth ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, Washington, DC, USA,
August 24 - 27, 2003.

Alexander Brinkmann, Roee Shraga, and Christina
Bizer. 2024. Sc-block: Supervised contrastive block-
ing within entity resolution pipelines. In ESWC.

Paul Suganthan G. C., Adel Ardalan, AnHai Doan,
and Aditya Akella. 2018. Smurf: Self-service string
matching using random forests. Proc. VLDB Endow.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang,
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong
Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue,
Bingxuan Wang, Bochao Wu, Bei Feng, Chengda
Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang,
Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji,
Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo,
Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang,
Han Bao, Hanwei Xu, Haocheng Wang, Honghui
Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li,
Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L.
Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu,
Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean
Wang, Lecong Zhang, Liang Zhao, Litong Wang,
Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang,
Minghua Zhang, Minghui Tang, Meng Li, Miaojun
Wang, Mingming Li, Ning Tian, Panpan Huang, Peng
Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du,
Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu,
Shangyan Zhou, Shanhuang Chen, Shengfeng Ye,
Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting
Pan, and S. S. Li. 2025. Deepseek-rl: Incentiviz-
ing reasoning capability in llms via reinforcement
learning. CoRR, abs/2501.12948.

Muhammad Ebraheem, Saravanan Thirumuruganathan,
Shafiq R. Joty, Mourad Ouzzani, and Nan Tang. 2018.
Distributed representations of tuples for entity reso-
lution. PVLDB, 16(8):1944-1957.

Vasilis Efthymiou, George Papadakis, George Papaste-
fanatos, Kostas Stefanidis, and Themis Palpanas.

24576



2015. Parallel meta-blocking: Realizing scalable en-
tity resolution over large, heterogeneous data. In
IEEE BigData.

Ju Fan, Jianhong Tu, Guoliang Li, Peng Wang, Xiaoy-
ong Du, Xiaofeng Jia, Song Gao, and Nan Tang.
2024a. Unicorn: A unified multi-tasking matching
model. SIGMOD Rec.

Meihao Fan, Xiaoyue Han, Ju Fan, Chengliang Chai,
Nan Tang, Guoliang Li, and Xiaoyong Du. 2024b.
Cost-effective in-context learning for entity resolu-
tion: A design space exploration. In 40th IEEE In-
ternational Conference on Data Engineering, ICDE
2024, Utrecht, The Netherlands, May 13-16, 2024.

Wenfei Fan, Hong Gao, Xibei Jia, Jianzhong Li, and
Shuai Ma. 2011. Dynamic constraints for record
matching. VLDB J., 20(4):495-520.

Wenfei Fan, Xibei Jia, Jianzhong Li, and Shuai Ma.
2009. Reasoning about record matching rules.
PVLDB, 2(1):407-418.

Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn, and
Yarin Gal. 2024. Detecting hallucinations in large
language models using semantic entropy. Nature,
630(8017):625-630.

Cheng Fu, Xianpei Han, Le Sun, Bo Chen, Wei Zhang,
Suhui Wu, and Hao Kong. 2019. End-to-end multi-
perspective matching for entity resolution. In IJCAI,
pages 4961-4967.

Songtao Guo, Xin Luna Dong, Divesh Srivastava, and
Remi Zajac. 2010. Record linkage with uniqueness
constraints and erroneous values. PVLDB, 3(1):417—-
428.

Jungo Kasai, Kun Qian, Sairam Gurajada, Yunyao Li,
and Lucian Popa. 2019. Low-resource deep entity
resolution with transfer and active learning. In ACL,
pages 5851-5861.

Mayank Kejriwal and Daniel P. Miranker. 2015. A DNF
blocking scheme learner for heterogeneous datasets.
CoRR, abs/1501.01694.

Nishadi Kirielle, Peter Christen, and Thilina Ranbaduge.
2022. Transer: Homogeneous transfer learning for
entity resolution. In EDBT.

Pradap Konda, Sanjib Das, Paul Suganthan G. C., An-
Hai Doan, Adel Ardalan, Jeffrey R. Ballard, Han Li,
Fatemah Panahi, Haojun Zhang, Jeffrey F. Naughton,
Shishir Prasad, Ganesh Krishnan, Rohit Deep, and
Vijay Raghavendra. 2016. Magellan: Toward build-
ing entity matching management systems. PVLDB,
9(12):1197-1208.

Hanna Ko6pcke, Andreas Thor, and Erhard Rahm.
2010. Evaluation of entity resolution approaches
on real-world match problems. Proc. VLDB Endow.,
3(1):484-493.

Bing Li, Yukai Miao, Yaoshu Wang, Yifang Sun, and
Wei Wang. 2021. Improving the efficiency and effec-
tiveness for bert-based entity resolution. In AAAL

Bing Li, Wei Wang, Yifang Sun, Linhan Zhang, Muham-
mad Asif Ali, and Yi Wang. 2020a. Grapher: Token-
centric entity resolution with graph convolutional
neural networks. In AAAI, pages 8172-8179.

Huahang Li, Shuangyin Li, Fei Hao, Chen Jason Zhang,
Yuanfeng Song, and Lei Chen. 2024a. Booster: lever-
aging large language models for enhancing entity
resolution. In WWW, pages 1043-1046.

Peng Li, Yeye He, Dror Yashar, Weiwei Cui, Song Ge,
Haidong Zhang, Danielle Rifinski Fainman, Dongmei
Zhang, and Surajit Chaudhuri. 2024b. Table-gpt:
Table fine-tuned GPT for diverse table tasks. Proc.
ACM Manag. Data.

Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan,
and Wang-Chiew Tan. 2020b. Deep entity matching
with pre-trained language models. PVLDB, 14(1):50—
60.

Michael Loster, loannis K. Koumarelas, and Felix Nau-
mann. 2021. Knowledge transfer for entity resolu-
tion with siamese neural networks. ACM J. Data Inf.
Qual.

Venkata Vamsikrishna Meduri, Lucian Popa, Prithviraj
Sen, and Mohamed Sarwat. 2020. A comprehensive
benchmark framework for active learning methods in
entity matching. In SIGMOD.

Zhengjie Miao, Yuliang Li, and Xiaolan Wang. 2021.
Rotom: A meta-learned data augmentation frame-
work for entity matching, data cleaning, text classifi-
cation, and beyond. In SIGMOD, pages 1303-1316.
ACM.

Matthew Michelson and Craig A. Knoblock. 2006.
Learning blocking schemes for record linkage. In
AAAL

Sidharth Mudgal, Han Li, Theodoros Rekatsinas, An-
Hai Doan, Youngchoon Park, Ganesh Krishnan, Ro-
hit Deep, Esteban Arcaute, and Vijay Raghavendra.
2018. Deep learning for entity matching: A design
space exploration. In SIGMOD, pages 19-34.

Youcef Nafa, Qun Chen, Zhaogiang Chen, Xingyu Lu,
Haiyang He, Tianyi Duan, and Zhanhuai Li. 2022.
Active deep learning on entity resolution by risk sam-
pling. Knowl. Based Syst.

Gang Niu, Marthinus Christoffel du Plessis, Tomoya
Sakai, Yao Ma, and Masashi Sugiyama. 2016. The-
oretical comparisons of positive-unlabeled learning
against positive-negative learning. In NeurIPS.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018.
Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748.

24577



George Papadakis, Georgia Koutrika, Themis Palpanas,
and Wolfgang Nejdl. 2014. Meta-blocking: Taking
entity resolutionto the next level. IEEE Trans. Knowl.
Data Eng.

George Papadakis, Dimitrios Skoutas, Emmanouil
Thanos, and Themis Palpanas. 2020. Blocking and
filtering techniques for entity resolution: A survey.
ACM Computing Surveys (CSUR), 53(2):1-42.

Derek Paulsen, Yash Govind, and AnHai Doan. 2023.
Sparkly: A simple yet surprisingly strong TF/IDF
blocker for entity matching. Proc. VLDB Endow.

Anna Primpeli, Ralph Peeters, and Christian Bizer. 2019.
The WDC training dataset and gold standard for large-
scale product matching. In WWW.

Kun Qian, Lucian Popa, and Prithviraj Sen. 2017. Ac-
tive learning for large-scale entity resolution. In
CIKM, pages 1379-1388.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In EMNLP.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin
Wu, Wang Zhang, Ru Zhang, Yanghua Peng, Haibin
Lin, and Chuan Wu. 2025. Hybridflow: A flexible
and efficient RLHF framework. In Proceedings of
the Twentieth European Conference on Computer
Systems, EuroSys 2025, Rotterdam, The Netherlands,
30 March 2025 - 3 April 2025.

Rohit Singh, Venkata Vamsikrishna Meduri, Ahmed K.
Elmagarmid, Samuel Madden, Paolo Papotti, Jorge-
Arnulfo Quiané-Ruiz, Armando Solar-Lezama, and
Nan Tang. 2017a. Synthesizing entity matching rules
by examples. Proc. VLDB Endow.

Rohit Singh, Venkata Vamsikrishna Meduri, Ahmed K.
Elmagarmid, Samuel Madden, Paolo Papotti, Jorge-
Arnulfo Quiané-Ruiz, Armando Solar-Lezama, and
Nan Tang. 2017b. Synthesizing entity matching rules
by examples. PVLDB.

Chenchen Sun, Yang Xu, Derong Shen, and Tiezheng
Nie. 2024. Matching feature separation network for
domain adaptation in entity matching. In WWW,
pages 1975-1985. ACM.

The Magellan Data Repository. Sanjib das, anhai
doan, paul suganthan g. c., chaitanya gokhale,
pradap konda, yash govind, and derek paulsen.
https://sites.google.com/site/
anhaidgroup/projects/data.

Saravanan Thirumuruganathan, Han Li, Nan Tang,
Mourad Ouzzani, Yash Govind, Derek Paulsen,
Glenn Fung, and AnHai Doan. 2021. Deep learning
for blocking in entity matching: A design space ex-
ploration. Proc. VLDB Endow., 14(11):2459-2472.

Jianhong Tu, Xiaoyue Han, Ju Fan, Nan Tang,
Chengliang Chai, Guoliang Li, and Xiaoyong Du.
2022. DADER: hands-off entity resolution with do-
main adaptation. PVLDB, 15(12):3666-3669.

Somin Wadhwa, Adit Krishnan, Runhui Wang, Byron C.
Wallace, and Luyang Kong. 2024. Learning from
natural language explanations for generalizable entity
matching. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2024, Miami, FL, USA, November 12-16,
2024. Association for Computational Linguistics.

Pengfei Wang, Xiaocan Zeng, Lu Chen, Fan Ye, Yuren
Mao, Junhao Zhu, and Yunjun Gao. 2022. Promptem:
Prompt-tuning for low-resource generalized entity
matching. PVLDB.

Runhui Wang, Yuliang Li, and Jin Wang. 2023. Su-
dowoodo: Contrastive self-supervised learning for
multi-purpose data integration and preparation. In
ICDE.

Tianshu Wang, Xiaoyang Chen, Hongyu Lin, Xuanang
Chen, Xianpei Han, Le Sun, Hao Wang, and Zhenyu
Zeng. 2025. Match, compare, or select? an investiga-
tion of large language models for entity matching. In
ACL, pages 96-109.

Tianshu Wang, Hongyu Lin, Xianpei Han, Xiaoyang
Chen, Boxi Cao, and Le Sun. 2024a. Towards uni-
versal dense blocking for entity resolution. CoRR,
abs/2404.14831.

Ye Wang, Huazheng Pan, Tao Zhang, Wen Wu, and
Wenxin Hu. 2024b. A positive-unlabeled metric
learning framework for document-level relation ex-
traction with incomplete labeling. In AAAL

Steven Euijong Whang and Hector Garcia-Molina. 2013.
Joint entity resolution on multiple datasets. VLDB J.,
22(6):773-795.

Renzhi Wu, Sanya Chaba, Saurabh Sawlani, Xu Chu,
and Saravanan Thirumuruganathan. 2020. ZeroER:
Entity resolution using zero labeled examples. In
SIGMOD, pages 1149-1164.

Shiwen Wu, Qiyu Wu, Honghua Dong, Wen Hua, and
Xiaofang Zhou. 2023. Blocker and matcher can
mutually benefit: A co-learning framework for low-
resource entity resolution. Proc. VLDB Endow.

An Yang, Baosong Yang, Beichen Zhang, Binyuan
Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayi-
heng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang,
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei
Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men,
Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren,
Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and
Zihan Qiu. 2024. Qwen2.5 technical report. CoRR,
abs/2412.15115.

Zijun Yao, Chengjiang Li, Tiansi Dong, Xin Ly, Jifan
Yu, Lei Hou, Juanzi Li, Yichi Zhang, and Zelin Dai.
2021. Interpretable and low-resource entity matching
via decoupling feature learning from decision mak-
ing. In Proceedings of the 59th Annual Meeting of

24578


https://sites.google.com/site/anhaidgroup/projects/data
https://sites.google.com/site/anhaidgroup/projects/data

the Association for Computational Linguistics and
the 11th International Joint Conference on Natural
Language Processing, ACL/IJCNLP 2021, (Volume
1: Long Papers), Virtual Event, August 1-6, 2021.

Xiaocan Zeng, Pengfei Wang, Yuren Mao, Lu Chen, Xi-
aoze Liu, and Yunjun Gao. 2024. Multiem: Efficient
and effective unsupervised multi-table entity match-
ing. In 40th IEEE International Conference on Data
Engineering, ICDE 2024, Utrecht, The Netherlands,
May 13-16, 2024.

Haochen Zhang, Yuyang Dong, Chuan Xiao, and Masa-
fumi Oyamada. 2024. Jellyfish: Instruction-tuning
local large language models for data preprocessing.
In EMNLP, pages 8754-8782, Miami, Florida, USA.
Association for Computational Linguistics.

Chen Zhao and Yeye He. 2019. Auto-EM: End-to-end
fuzzy entity-matching using pre-trained deep models
and transfer learning. In WWW, pages 2413-2424.

24579


https://doi.org/10.18653/v1/2024.emnlp-main.497
https://doi.org/10.18653/v1/2024.emnlp-main.497

