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Abstract

Large language models (LLMs) face challenges
with internal knowledge inaccuracies and out-
dated information. Knowledge editing has
emerged as a pivotal approach to mitigate these
issues. Although current knowledge editing
techniques exhibit promising performance in
single-hop reasoning tasks, they show limi-
tations when applied to multi-hop reasoning.
Drawing on cognitive neuroscience and the op-
erational mechanisms of LLMs, we hypothe-
size that the residual single-hop knowledge af-
ter editing causes edited models to revert to
their original answers when processing multi-
hop questions, thereby undermining their per-
formance in multi-hop reasoning tasks. To val-
idate this hypothesis, we conduct a series of
experiments that empirically confirm our as-
sumptions. Building on the validated hypoth-
esis, we propose a novel knowledge editing
method that incorporates a Knowledge Erasure
mechanism for Large language model Editing
(KELE). Specifically, we design an erasure
function for residual knowledge and an injec-
tion function for new knowledge. Through
joint optimization, we derive the optimal recall
vector, which is subsequently utilized within a
rank-one editing framework to update the pa-
rameters of targeted model layers. Extensive
experiments on GPT-J (6B) and LLaMA-2 (7B)
demonstrate that KELE substantially enhances
the multi-hop reasoning capability of edited
LLMs.

1 Introduction

Large Language Models (LLMs) have achieved
significant success in a wide range of Natural Lan-
guage Processing (NLP) tasks (Zhao et al., 2023).
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Figure 1: Example of Knowledge Editing

However, the knowledge embedded within LLMs
can sometimes be factually incorrect or outdated,
limiting their overall effectiveness. To address
these limitations, knowledge editing methods have
been proposed, offering a more efficient and pre-
cise approach to updating the knowledge in LLM:s.
These methods have attracted considerable atten-
tion from researchers in recent years. Among these
methods, those that modify the model’s parameters
are particularly important, as they provide a direct
and flexible means of altering the model’s behavior,
such as KE (De Cao et al., 2021), (Mitchell et al.,
2021), ROME (Meng et al., 2022a), and MEMIT
(Meng et al., 2022b). This work focuses specifi-
cally on parameter-modifying approaches.

Although these editing methods have demon-
strated promising results in single-hop reasoning
evaluations, they still face significant challenges
in multi-hop reasoning (Zhong et al., 2023; Zhang
et al.). As illustrated in Figure 1, after editing
the single-hop knowledge from “The President of
the USA is Obama’ to “The President of the USA
is Biden,” the edited model can easily answer the
single-hop question, “Who is the President of the
USA ?” However, it struggles with multi-hop ques-
tions, such as “Who is the wife of the President of
the USA?”

To better understand this challenge in knowledge
editing for LLMs, we first analyze this problem
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from a cognitive neurological perspective. When
the brain receives new information, it can acti-
vate neurons associated with related old memo-
ries, a phenomenon known as Memory Associa-
tion (Roediger and McDermott, 1995; Schacter and
Buckner, 1998; Kahana, 2012). This occurs be-
cause of the connectivity within neural networks,
where the pathways of old memories are easily
reactivated by relevant stimuli, thereby facilitat-
ing more efficient encoding and processing of new
information. LLMs exhibit a similar mechanism,
where related knowledge stored in their parameters
is activated and integrated during reasoning (Geva
etal., 2021).

Building on these insights, we hypothesize the
following reason for the poor performance of edited
LLMs on multi-hop reasoning tasks: LLMs re-
tain a portion of single-hop old knowledge even
after editing. When handling multi-hop ques-
tions related to the edited knowledge, the resid-
ual knowledge tends to prompt the models to
produce original answers to these questions,
thereby weakening their multi-hop reasoning
ability. For example, if the single-hop knowledge
in the LLM is edited from “The President of the
USA is Obama” to “The President of the USA is
Biden,” a portion of old knowledge “The President
of the USA is Obama” may still be retained and
reactivated within the model. As shown in Fig-
ure 2, when asked the multi-hop question “Who is
the wife of the President of the USA?”, the resid-
ual single-hop knowledge might cause the model
to generate the original answer to the multi-hop
question, Michelle (Obama’s wife), instead of the
correct answer, Jill (Biden’s wife).

To verify this hypothesis, we investigate the re-
lationship between the residual old knowledge in
LLMs and their responses to multi-hop questions
(Section 4). We define the Retain Score as a metric
to quantify the residual old knowledge (s, 7, 0) for
each edit sample (s, r, 0, 0%), utilizing the output
logit score of o under the prompt p(s, ). As il-
lustrated in Figure 3b, the higher the residual old
knowledge in the edited LLM, the more likely it is
to provide the original answers to multi-hop ques-
tions, resulting in a lower proportion of correct
answers. Therefore, erasing the residual old knowl-
edge offers a promising insight for improving the
performance of edited LLMs on multi-hop reason-
ing tasks.

Based on the this hypothesis, we propose a sim-
ple yet effective method for large language model

Single-hop Multi-hop
Who is the President Who is the wife of
of USA? the President of USA?

f=9 |
_IS Obama ‘ Obama Obama
2 Biden Biden Biden
& Michelle Michelle Michelle
3 Jill Jill Jill
> X v

Figure 2: Single-hop and Multi-hop evaluation of
Unedited LLM, LLM edited by ROME and our KELE.
When confronted with a multi-hop question, the resid-
ual old single-hop knowledge (The President of the
USA is Obama) in the LLMs edited by ROME prompts
the model to generate the original answer, Michelle
(Obama’s wife), instead of the correct answer, Jill
(Biden’s wife).

editing, termed Knowledge Erasure for Large Lan-
guage Model Editing (KELE) (Section 5). Specifi-
cally, within the rank-one editing framework, we
develop an old knowledge erasure function and a
new knowledge injection function to jointly opti-
mize and obtain the recall vector. This approach
eliminates the interference of old knowledge while
injecting new knowledge. Finally, the model pa-
rameters are updated in a single step using the recall
vector and the subject representation through the
rank-one update formula.
We summarize our contributions as follows:

* We investigate and validate the impact of
residual old single-hop knowledge in edited
LLMs on multi-hop reasoning tasks, demon-
strating that such residual knowledge may
cause edited LLMs to revert to original an-
swers when faced with multi-hop questions.

* We integrate a knowledge erasure strategy into
model editing and propose KELE, a simple
yet effective editing method to enhance the
multi-hop reasoning performance of edited
LLM:s.

* We conduct extensive experiments on
LLaMA-2 (7B) and GPT-J (6B), showing that
KELE significantly enhances the multi-hop
reasoning ability of edited models.
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2 Related Work

In this section, we review related research on
knowledge editing and its challenges in multi-hop
reasoning.

Parameter-preserving Methods. These meth-
ods typically store edited examples in an exter-
nal knowledge base and guide the LLMs’ output
for specific queries by retrieving relevant knowl-
edge. For instance, SERAC (Mitchell et al., 2022)
employs a gating network along with an auxiliary
model specifically designed to handle edited knowl-
edge. T-patcher (Huang et al.) introduces extra
trainable parameters in the last layer of the FFN to
correct LLMs. However, these methods face a crit-
ical scalability issue: the complexity of managing
the external model increases with each new edit,
which may limit their practical usability.

Parameter-modifying Methods. These meth-
ods, including meta-learning (De Cao et al., 2021;
Mitchell et al., 2021), locat-and-edit (Meng et al.,
2022a,b; Zhang et al., 2025), and fine-tuning-based
approaches (Ni et al., 2024; Gangadhar and Stratos,
2024), edit LLMs by directly modifying their pa-
rameters. Meta-learning methods generate updated
weights for LLMs by training a hyper-network.
For example, KE (De Cao et al., 2021) uses a
bi-directional LSTM to predict model weight up-
dates, but it faced challenges with larger models
due to their vast parameter spaces. To address
this issue, MEND (Mitchell et al., 2021) employs
a low-rank decomposition of fine-tuning gradi-
ents, providing an efficient mechanism for updat-
ing LLLM weights. Locate-and-edit methods fo-
cus on identifying specific parameters associated
with particular knowledge within LL.Ms, aiming
for more interpretable and precise knowledge edit-
ing. Early efforts, such as KN (Dai et al., 2022),
introduce a knowledge attribution method to iden-
tify knowledge neurons but struggles to precisely
modify the model’s weights. ROME (Meng et al.,
2022a) method employs causal tracing to identify
knowledge-relevant layers and then edits the cor-
responding FFN module. MEMIT (Meng et al.,
2022b) further enhances this approach by improv-
ing the objective function and enabling multi-layer
edits for batch editing. Recently, significant ad-
vancements in efficient parameter-tuning methods
(Hu et al.; Ren et al., 2024) for supervised fine-
tuning of LLMs have led to the development of
fine-tuning-based editing methods (Ni et al., 2024;
Gangadhar and Stratos, 2024), which utilizes LoRA

(Hu et al.) and data augmentation strategies to di-
rectly fine-tune the LL.Ms, achieving the desired
editing performance.

Multi-hop reasoning in knowledge editing. In
recent years, several studies have aimed to enhance
the performance of edited LLMs in multi-hop rea-
soning tasks. Zhong et al. (2023) introduce the
MQUAKE dataset, specifically designed to evalu-
ate the multi-hop reasoning capabilities of edited
LLMs. They also propose a method that stores all
edited facts externally, iteratively prompting LLMs
to generate answers consistent with these edited
facts. Building on this approach, PokeMQA (Gu
etal., 2024) introduces auxiliary knowledge prompt
to assist in question decomposition. GLAME
(Zhang et al., 2024) leverages external knowledge
graphs to capture the impact of target knowledge
changes on high-order knowledge within LLMs.
These methods improve multi-hop reasoning by
retrieving or incorporating external knowledge,
which is not the focus of the current paper. Ad-
ditionally, Ju et al. (2024) find that LLMs often
rely on factual shortcuts from pre-training corpora
during reasoning, which contributes to the poor per-
formance of edited models in multi-hop reasoning
tasks. Unlike this study, we identify another poten-
tial cause for the poor performance of parameter-
modified models in multi-hop reasoning tasks: the
retention of old knowledge triggers the generation
of original answers in multi-hop questions, thereby
weakening the performance of edited models in
these tasks. We validate this hypothesis through
a series of experiments and propose a knowledge-
erasure-based editing strategy to mitigate this issue.

3 Preliminaries

In this section, we introduce the definition of knowl-
edge editing and outline the corresponding tasks
under single-hop and multi-hop evaluations.

Definition 1. Knowledge Editing for LLMs
Knowledge editing (Yao et al., 2023) refers to the
process of altering the behavior of an LLM F’s
to change encoded knowledge from (s, r, 0) to the
new knowledge (s, r, 0*). Here, knowledge is rep-
resented as a triple, with s as the subject, r as the
relation, and o as the object. Each editing instance
e is denoted as (s, 7, 0,0%), and the LLM after edit-
ing is referred to as F'.

Definition 2. Single-hop Evaluation in Knowl-
edge Editing Single-hop evaluation assesses
whether an edit (s,r,0,0%) is successful in an
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edited LLM F'. This evaluation constructs prompts
p(s,r) based on the subject s and relation r, and
measures the performance of F' using Efficacy,
Paraphrase and Specificity metrics (Yao et al.,
2023).

Definition 3. Multi-hop Evaluation in Knowl-
edge Editing Multi-hop evaluation examines
whether the edited LLMs can effectively uti-
lize the updated knowledge for reasoning in
multi-hop tasks. Given a chain of facts
(81,71,01), .-y (S, Tn, 0), Where the object of the
t-th fact also serves as the subject of the next fact
in the chain, i.e., 0; = S;+1, a multi-hop question
p(s1,71, .., ) can be constructed, with the answer
being o,. For example, with a chain consisting of
two facts, (USA, president of, Obama) and (Obama,
wife of, Michelle), one can write a 2-hop question:
Who is the wife of the president of USA?. Once one
or more facts in the chain are edited, e.g., (USA,
president of, Obama) is edited to (USA, president
of, Biden), the edited LLM must utilize the new
knowledge to answer the multi-hop question. The
model’s response should change from the original
answer Michelle to the correct answer Jill.

4 Analysis of the Impact of Old
Knowledge on Multi-hop Reasoning

In this section, we validate our hypothesis by ex-
amining the impact of old knowledge on the perfor-
mance of edited LLMs in multi-hop reasoning. We
select the representative multi-hop reasoning evalu-
ation dataset, MQUAKE (Zhong et al., 2023), to
conduct experiments. Each instance in MQUAKE
is represented as d = (€, Q,a,a*). Here, £ de-
notes the set of single-hop edits e = (s, 7,0, 0"),
Q represents a multi-hop question evaluating edit-
ing performance, and a and a* correspond to the
original and correct answers to Q. Further details
on MQUAKE are provided in Section 6.1 and Ap-
pendix B.

4.1 Retain Score

We first define a metric to quantify the retention
of old knowledge in the LLM. In cognitive neuro-
science, memory activation is often measured by
the intensity of neural activity. Analogously, in
LLMs, the logit vector can serve as an indicator of
the model’s memory activation strength. Building
on this concept, we introduce the Retain Score
(RS) indicator for each edit sample e = (s, r, 0, 0")
to measure the residual presence of the old knowl-
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Figure 3: (a) The accuracy of single-hop answer gen-
erated by unedited GPT-J . (b)The accuracy of original
and correct answers generated by edited GPT-J. The left
y-axis represents the number of instances within each
Retain Score interval, while the right y-axis indicates
the accuracy.

edge (s,r,0).

When an LLM is given an input prompt, it gen-
erates the next token based on the logit vector pro-
duced by its final layer. A higher logit value for a
token indicates greater model confidence in gener-
ating that token, corresponding to stronger memory
activation. Consequently, we use the logit value as
a measure of the model’s retention of old knowl-
edge. To ensure a consistent assessment of reten-
tion across different editing instances, we standard-
ize the logit vectors to eliminate variations from
varying logit distributions:

RS(e) = ——, ey

where D represents the logit vector produced by
the final layer of the LLM, D, is the logit score
of o, while p and o denote the mean and standard
deviation of the logit vector D, respectively.

4.1.1 The reasonableness of Retain Score

To validate the reasonableness of the Retain Score,
we first divide the RS values of all edit samples
in the dataset into different intervals. For each
interval, we then calculate the probability that
the unedited model correctly answers o given the
prompt p(s, r). The experimental results, as shown
in Figure 3a, indicate that as the RS value increases,
the accuracy of the unedited model’s responses also
increases. This suggests that the model’s sensitivity
to the corresponding knowledge strengthens as the
RS value rises, demonstrating that the RS metric ef-
fectively measures the retention of old knowledge.
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4.2 Impact of Old Knowledge on Multi-hop
Reasoning

To further investigate the impact of residual old
knowledge on multi-hop reasoning, we apply the
ROME method to GPT-J and explore the relation-
ship between the Retain Score and the accuracy of
answering multi-hop questions.

Specifically, for each instance d, we first calcu-
late the accumulated old single-hop knowledge of
all edit samples £ in the edited models:

RS(d) = ) RS(e). 2)

ec&

We then divide the dataset into different subsets
based on the varying ranges of the Retain Score
of the instances. For each subset, we calculate the
accuracy of the edited model in answering the orig-
inal and correct answers to the multi-hop questions.
The results are shown in Figure 3b.

As illustrated in Figure 3b, we observe that as
the Retain Score value increases, the edited models
show a significant improvement in accuracy when
providing the original answers to multi-hop ques-
tions. However, the accuracy of the edited model in
providing correct answers decreases as the Retain
Score rises. This suggests that as the amount of
retained old knowledge increases, the model be-
comes more likely to favor the original answers,
thereby diminishing its ability to generate correct
responses to multi-hop questions.

These experiments validate that LLLMs retain
traces of old single-hop knowledge after editing,
which significantly motivates them to revert to
original answers for multi-hop questions and
undermines their performance in providing cor-
rect answers. Therefore, eliminating residual old
knowledge during the editing process is crucial
for enhancing the accuracy of LLMs in multi-hop
reasoning.

5 Methodology

In this section, we introduce the proposed KELE,
with its architecture depicted in Figure 4. The
KELE framework integrates a knowledge erasure
strategy within the rank-one model editing frame-
work (Meng et al., 2022a). Specifically, KELE
targets a specific layer [ and transforms knowledge
editing into two key operations: old knowledge era-
sure and new knowledge injection, which together
are used to compute the recall vector v,. Subse-
quently, v, along with the subject representation

s N

The president of Computing v«
— ]vbe Old Knowledge Erasure
Edit. s R )
Sample or —

¢f— The president of é’

Transformer Layer
'

New Knowledge Injection

Transformer Layer Computing k-
_1 =
T —— [ k, = gL, rwlh§™
o J
L L5
FEN ‘
i i Parameter Update
| i -1, \T
W k w v 3<":| & (v. —WKJ)(Ck.)
% in * * 3 W=w +—(C‘1k*)Tk,,

Figure 4: Overview of KELE architecture. First, we
use the old knowledge erasure function and the new
knowledge injection function to derive the recall vector
v.. Then, we compute the subject representation k..
Finally, the parameters are updated using the rank-one
update formula.

k., is applied in Equation (11) to update the pa-
rameters of the second layer of the FNN, thereby
completing the knowledge editing process.

5.1 Computing v, to Recall New Knowledge

To effectively edit new knowledge while minimiz-
ing the negative impact of old knowledge on multi-
hop reasoning, we construct an old knowledge era-
sure function and a new knowledge inject func-
tion, which are jointly optimized to obtain v,. In
this process, we optimize the learnable parameter
vector h to modify the original value vector vls,
resulting in the optimal vector v, = v/ + h.

5.1.1 Old knowledge erasure function

To mitigate the influence of residual old knowledge
that may still prompt the edited LLM to generate
the original answer in response to multi-hop ques-
tion, we define a margin-based erasure loss for
calculating v,. Specifically, given an edit sample
(s,7,0,0"), we aim to suppress the logit score of o
in the output distribution when responding to the
query p(s,r). Let D = LLM(p(s,r); vl + h) be
the output logit vector obtained by modifying the
subject token’s hidden state v via a learnable per-
turbation vector h. The old knowledge erasure loss
is then defined as:

L, = max (0, D, — D) 3)

where D, is the logit score of o, and D[k] is the k-th
highest logit value in D. This formulation penal-
izes the model only if o remains among the top-k
predictions, thus avoiding unnecessary suppression
that may lead to collateral damage.
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5.1.2 New knowledge injection function

For each edit sample (s, 7, 0,0"), our second ob-
jective is to refine the parameter vector h enables
the LLM to accurately predict the target object o*.
Accordingly, the knowledge injection loss function
is defined as:

N
1 %
Ly = N Zlog Prwip=m[o” | z; ®p(s, 7)),
j=1
“)

where x; is the random prefix generated by
the LLM to foster optimization robustness, and
F(vi+ = h) indicates the LLM’s inference alter-
ation through the hidden state v, modification to
vl +h.

To mitigate the impact of above operations on
the intrinsic of s within the LLM, we minimize
the KL divergence between F(v.i+ = h) and the
original model F (Meng et al., 2022a):

Lo = Diw (Privpsmmle | 9111 P2l | #]).
(&)
where p’ denotes prompts in the form of "subject is
a".
Ultimately, the parameter h is optimized by min-

imizing the following objective function:
L=LcA+Ly+ Ny, (6)

where A\ adjusts the regularization strength.
Throughout the optimization process, the parame-
ters of the LLM remain unchanged.

5.2 Computing k, to Represent Subject

For each edit sample (s, r, 0, 0*), the subject repre-
sentation k., is calculated by

1 _
ko= > f(Wi, b, @)

j=1

Here, we also utilize N random prefixes generated
in the same manner as for the computing v, (Meng
et al., 2022a).

After obtaining the optimized vectors v, and
k., we substitute them into the following equation
to get the updated parameter W. The detailed
procedure in provided in Appendix A:

(v — Wk,)(C~k,)T

W =W
T c )Tk,

®)

6 Experiments

In this section, we evaluate our KELE by applying
it to two datasets and assessing its performance on
two auto-regressive LLMs. We aim to answer the
following questions through experiments.

* Q1: How does KELE perform in multi-hop
and single-hop reasoning evaluation com-
pared with state-of-the-art editing methods?

* Q2: How does the degree of erasure of old
knowledge affect model’s performance in
multi-hop reasoning?

* Q3: What impact does our KELE have on the
retention of old knowledge?

6.1 Experimental Setups

6.1.1 Datasets and Evaluation Metrics

We evaluate our KELE on two representative
datasets: MQUAKE-3K (Zhong et al., 2023) and
COUNTERFACT (Meng et al., 2022a). Detailed
descriptions of the datasets and evaluation metrics
are provided in Appendix B and C.

MQUAKE-3K is a challenging dataset de-
signed to assess models’ ability to perform multi-
hop reasoning using newly edited knowledge. Each
entry in this dataset involves multiple single-hop
edits and includes multi-hop reasoning questions.
This imposes stricter demands on the capability of
edited LLMs to utilize the updated knowledge. Fol-
lowing (Zhong et al., 2023), we use Multi-hop Ac-
curacy to measure the performance of edited LLMs.
To fully leverage the LLM’s reasoning ability, we
employ three approaches when generating answers:
Zero-shot, Few-shot, and Chain-of-Thought (CoT).
The details of prompting are shown in Appendix F.

COUNTERFACT is a dataset focused on eval-
uating LLMs’ ability to recall edited knowledge
in a single-hop setting, as well as to assess the
impact of editing operations on unrelated knowl-
edge within the LLMs. Following (Meng et al.,
2022a), we employ three widely used metrics for
this dataset: Efficacy Score, which measures the
success rate of edits; Paraphrase Score, which eval-
uates the model’s ability to accurately recall edited
knowledge in paraphrased forms, testing its gener-
alization ability; and Neighborhood Score, which
assesses whether irrelevant knowledge in the LLM
is disturbed.
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Editor ‘ Correct Answer 7|

Original Answer|

‘ Average Accuracy ‘ Zero-Shot Few-Shot  CoT ‘ Average Accuracy ‘ Zero-Shot  Few-Shot CoT

LlaMA2 | 7.73 | 527 1170 6.23 | 48.44 | 3593 4263 66.77
FT 13.41 7.90 17.57 14.77 45.64 32.73 41.20 63.00
MEND 12.67 8.20 15.00 14.80 45.43 33.23 41.43 61.63
ROME 13.99 8.33 15.87 17.77 37.26 27.20 34.10 50.47
MEMIT 17.14 8.63 15.57 27.23 33.75 23.00 34.43 43.83
KELE 19.01 9.90 18.12 29.01 27.43 19.61 28.11 34.57
Almprove 10.91% 14.72% 313%  6.54% 18.73% 14.74% 17.57%  21.13%
GPT-J 5.47 291 4.58 8.92 35.22 28.16 22.01 55.48
FT 6.94 3.79 5.55 11.47 33.27 26.07 20.34 53.40
MEND 11.17 4.37 6.70 22.43 29.40 24.77 17.37 46.07
ROME 14.56 7.54 8.69 27.46 18.40 12.85 13.64 28.71
MEMIT 9.09 3.74 5.46 18.07 27.35 19.69 19.42 42.95
KELE 16.36 9.12 10.08 29.87 13.28 10.44 11.49 17.90
AlImprove 12.36% 20.95% 16.00%  8.78% 27.83% 18.75% 15.76%  37.65%

Table 1: Performance comparison of editors on multi-hop questions of MQUAKE-3K dataset in terms of Multi-hop
Accuracy (%).] indicates that higher values correspond to better performance, while | indicates that lower values

correspond to better performance.

6.1.2 Baselines

We conduct experiments on LLaMA-2 (7B) (Tou-
vron et al., 2023) and GPT-J (6B) (Wang and Ko-
matsuzaki, 2021). Since our study focuses on the
impact of residual old knowledge in parameter-
modification-based methods, we compare our ap-
proach against representative baselines in this cate-
gory: Constrained Fine-Tuning (FT) (Zhu et al.,
2020), MEND (Mitchell et al., 2021), ROME
(Meng et al., 2022a), and MEMIT (Meng et al.,
2022b). Implementation details for both baselines
and KELE are provided in Appendix D and E.

6.2 Performance Comparison (RQ1)

The performance of all editors on the MQUAKE-
3K and COUNTERFACT is presented in Tables 1
and 2. Figure 5 provides a comprehensive com-
parison of all editing methods across four met-
rics on both datasets, demonstrating that KELE
exhibits relatively balanced and superior perfor-
mance across all metrics, particularly excelling in
Multi-hop Accuracy, where it significantly outper-
forms other methods.

Results on MQUAKE-3K As shown in Table
1, our KELE outperforms all baselines by a signifi-
cant margin across all evaluation metrics and set-
tings. Specifically, KELE demonstrates improve-
ments of 10.91 % and 12.36 % in average multi-
hop accuracy over the best baseline models for
LLaMA-2 and GPT-J, respectively. This indicates
that KELE effectively enhances the ability of edited

KELE
ROME
—— MEMIT
—— MEND
— FT

Para.Score Para.Score

Neigh.S¢ ffi.Score Neigh.S .Score

Multi-hop.Ace

Multi-hop.Ace

Figure 5: Comparative performance on LLaMA-2 (left)
and GPT-J (right) across different metrics.

LLM in multi-hop reasoning tasks. Additionally,
the multi-hop accuracy of KELE in generating orig-
inal answers decreased by an average of 18.73%
and 27.83 % on LLaMA-2 and GPT-J, respectively,
compared to the strongest baseline model. This
suggests that the knowledge erasure operations in
KELE successfully mitigate the recall of old knowl-
edge in the edited LLMs when performing complex
reasoning tasks. These findings further support
our hypothesis that residual old knowledge in the
edited models is easily recalled during multi-hop
reasoning. This recall causes the model to produce
original answers to multi-hop questions, thereby
weakening the LLM’s performance on this task.

Results on COUNTERFACT Unlike the
MQUAKE-3K dataset, which primarily evaluates
multi-hop reasoning, the COUNTERFACT dataset
focuses on assessing the single-hop factual
recall of edited knowledge. From Table 2, we
observe a clear trade-off between Para.Score
and Neigh.Score across different methods and
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Editor ‘Efﬁ.Score Para.Score Neigh.Score‘ Avg.

LlaMA2 | 137 16.65 834 | 2068
FT 99.60 55.08 68.80 | 70.21
MEND | 9285 54.65 62.83 66.69
ROME | 99.95 92.62 81.87 | 90.98
MEMIT | 100 96.22 79.86 | 9114
KELE 100 92.78 81.68 | 90.85
GPT-J 16.30 18.60 83.00 | 23.59
FT 100 98.80 1030 | 25.60
MEND | 97.40 53.60 5390 | 63.19
ROME | 99.90 98.88 76.02 | 90.15
MEMIT | 100 95.23 8126 | 91.44
KELE | 99.90 99.15 7639 | 9040

Table 2: Performance comparison on COUNTERFACT
in terms of Efficacy Score (%), Paraphrase Score (%),
and Neighborhood Score (%). The Avg. (%) is the
harmonic mean of the three evaluation metrics. The best
performance is highlighted in boldface, and the second-
best is underlined. Gray numbers indicate a clear failure
on the metric.

architectures. Specifically, KELE achieves the
best or near-best Neigh.Score on LLaMA-2 and
Para.Score on GPT-J, while also maintaining
consistently high Effi.Score. Although KELE
yields a lower Neigh.Score than MEMIT on
GPT-J, it significantly outperforms MEMIT in
Paraphrase Score. Conversely, on LLaMA-2,
KELE performs slightly worse in Para.Score
but better in Neigh.Score compared to MEMIT.
Across both architectures, the overall average
performance of KELE remains competitive with
ROME and MEMIT. A detailed analysis of the
potential side effects introduced by the knowledge
erasure mechanism is provided in Appendix H.
Nonetheless, given the substantial improvements
observed in multi-hop reasoning tasks, we consider
this trade-off to be both reasonable and acceptable.

6.3 Impact of Erasure Internsity (RQ2)

The hyperparameter k£ of Equation (3) represents
the degree of erasure of old knowledge. A larger
k indicates a higher degree of erasure, and vice
versa. To investigate the impact of varying erasure
intensities on the model, we conduct experiments
with various k values on the MQUAKE-3K dataset.
The results, shown in Figure 6, lead to the follow-
ing observations: As k increases, the erasure of old
knowledge is enhanced, and the accuracy of gen-
erating original answers for multi-hop questions
gradually decreases. This further validates that
residual old knowledge after editing encourages
models to revert to original answers in multi-hop

—8— Few-Shot —8— Few-Shot
0.2 CoT CoT
—8— Zero-Shot 0.2 1 —8— Zero-Shot

(a) Original Answer (b) Correct Answer

Figure 6: Performance of edited GPT-J with different k.
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0.05
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Figure 7: The distribution of Retain Score.

questions. Furthermore, the edited GPT-J achieve
its best performance at k = 1, with the highest ac-
curacy in generating correct answers. Beyond this
point, as k continues to increase, the performance
of the models either stabilizes or declines. This
may be due to overly high erasure intensity. While
it reduces the likelihood of generating original an-
swers, it may also introduce other disruptions to the
model, ultimately weakening its reasoning ability.

6.4 The impact on Old Knowledge (RQ3)

To investigate the impact of KELE on old knowl-
edge (s, r, 0), we examine the distribution of Retain
Score in three models: the unedited LLM (GPT-J),
the LLM edited with ROME, and the LLM edited
with KELE. The experimental results are presented
in Figure 7. From the results, we observe that the
unedited model exhibits the highest Retain Scores,
with a significant density around 10 to 15, indicat-
ing substantial retention of old knowledge. The
ROME-edited model shows a reduction in Retain
Score, shifting the distribution leftward, but still
retains a noticeable amount of old knowledge, par-
ticularly in the 5 to 10 range. In contrast, the KELE
demonstrates the most significant reduction, with
a peak near lower Retain Scores. These results
demonstrate that KELE effectively erases residual
old knowledge, which is crucial for enhancing the
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model’s performance in multi-hop reasoning tasks.

7 Conclusion

In this paper, we identify that the poor performance
of current parameter-modifying editing methods
in multi-hop scenarios stems from the retention
of single-hop old knowledge, which leads LLMs
to revert to original answers. Inspired by neuro-
science, we propose KELE, a simple yet effective
method that integrates a knowledge erasure mecha-
nism into a rank-one model editing framework. By
jointly erasing outdated knowledge and injecting
new facts, KELE significantly improves multi-hop
reasoning. Experiments on two LL.Ms, along with
detailed analysis, validate its effectiveness and su-
periority.

Limitations

Despite the effectiveness of our approach, there are
several limitations that warrant further exploration.

First, the hyperparameter k in Equation (3),
which controls the strength of knowledge erasure,
is dependent on manual selection. Different values
of k lead to varying degrees of erasure, making it
challenging to determine the optimal setting across
different scenarios. A promising direction for fu-
ture work is to develop an adaptive erasure strat-
egy that dynamically adjusts based on the amount
of residual old knowledge, ensuring a balance be-
tween effective editing and minimal unintended
interference.

Second, while the erasure of residual knowl-
edge significantly improves multi-hop reasoning
and maintains competitive overall editing perfor-
mance, it may also introduce unintended side ef-
fects, as discussed in Appendix H. Future work will
explore more refined erasure strategies to further
reduce interference with unrelated knowledge.

Ethical Considerations

We realize that there are risks in developing gener-
ative LLMs, so it is necessary to pay attention to
the ethical issues of LLMs. We use publicly avail-
able pre-trained LLMs, i.e., LLaMA-2 (7B) and
GPT-J (6B). The datasets are publicly available,
i.e., COUNTERFACT and MQUAKE. All models
and datasets are carefully processed by their pub-
lishers to ensure that there are no ethical problems.
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A Rank-One Model Editing

Rank-One Model Editing (ROME) (Meng et al.,
2022a) is a Locate-then-edit method that pre-
supposes factual knowledge is stored within the
Feedforward Neural Networks (FFNs), conceptu-
alized as key-value memories (Geva et al., 2021;
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Kobayashi et al., 2023). The output of the [-th layer
FEN for the i-th token is given by:

vi=f(Wl, b~ W, 9)

where f(-) denotes the activation function, and
hﬁ_l is the FFN input. For simplicity, the super-
script [ is omitted in the following discussion.

In this context, f(Wj, - h;) functions as the
keys, denoted as k;. The outputs of the subsequent
layer represent the corresponding values. Utilizing
casual tracing (Pearl, 2022; Vig et al., 2020), this
method identify a specific FFN layer for editing
and updates the weight W of the second layer by
solving a constrained least-squares problem:

minimize

IWK — V]|,

. (10)
subjectto Wk, = v,.
where the objective function aims to preserve the
knowledge unrelated to the edited sample within
the LLM. Here, K = [k;;ko;,...,;kp] denotes
the sets of keys encoding subjects unrelated to the
edited fact, and V = [vq;vy;,...,; v, represents
the corresponding values. The constraint ensures
that the edited knowledge is incorporated into the
FFN layer by enabling the key k. (encoding subject
s) to retrieve the value v, about the new object o*.
As explicated in (Meng et al., 2022a), a closed-
form solution to the optimization problem can be
derived:

(ve — Wk,)(C~k,)T
(Ck)Tk,

W=W + (11)

where C = KK is a constant matrix, precom-
puted by estimating the uncentered covariance of k
based on a sample of Wikipedia text (Appendix E).
Thus, solving the optimal parameter W is trans-
formed into calculating subject representation k,
and recall vector v,.

B Dataset

We evaluate our KELE on two representative
datasets: MQUAKE-3K (Zhong et al., 2023) and
COUNTERFACT (Meng et al., 2022a).

B.1 Details of MQUAKE-3K Dataset

MQUAKE-3K is a challenging dataset designed
to assess models’ ability to perform multi-hop rea-
soning using newly edited knowledge. Each entry
in this dataset involve multiple edits and includes

multi-hop reasoning questions that require reason-
ing from 2 to 4 hops to answer correctly. This im-
poses stricter demands on the capability of edited
LLMs to utilize the updated knowledge. Table 3
provides an example from MQUAKE-3K dataset.
In this example, two edits are required: inserting
the knowledge (Lou Pearlman, is a citizen of, In-
dia) and (India, The capital of, Taloga). Accord-
ingly, a 3-hop question “What is the capital of the
country to which Lou Pearlman belonged?” is con-
structed to assess the post-edit models’s ability to
ulitze edited knowledge and its related information.
Following (Zhong et al., 2023), our evaluation fo-
cuses on a subset of 3000 entries, evenly distributed
across {2, 3, 4}-hop questions, with each category
comprising 1000 entries.

B.2 Details of COUNTERFACT Dataset

Table 4 presents an example from the COUNTER-
FACT dataset. Each entry includes an edit re-
quest, several paraphrase prompts, and neighbor-
hood prompts. In this example, the edit request
aims to change the model’s knowledge of The
mother tongue of Go Hyeon-jeong from Korean
to French. Paraphrase prompts are semantic vari-
ations of the target prompt, while neighborhood
prompts involve the same relation but with a dif-
ferent subject, whose knowledge should remain
unaffected by the edit. Our train/test dataset splits
are kept the same as (Meng et al., 2022a). Simi-
larly, we evaluate our method using the first 2000
records on GPT-J and LLaMA-2.

C Evaluation Metrics

For each instance d = (&,Q,a,a*) in the
MQUAKE dataset, the multi-hop accuracy after
editing is defined as:

;‘ S 1[F(g) = )]

qeQ

We report the averaged multi-hop accuracy in our
evaluation.

For the COUNTERFACT dataset, we use three
widely-used metrics (Meng et al., 2022a,b), Effi-
cacy Score, Paraphrase Score, and Neighborhood
Score to evaluate all editors. Each metric is calcu-
lated as follows:

Efficacy Score is to test whether the post-edit
LLMs can correctly recall the new target entity
when given the edit prompt p(s, r). It is calculated
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Property Value

Edit Request 1
Edit Request 2
New Question
Original Relation
the capital of, Washington)
Original Answer  Washington

New Relation

{Lou Pearlman } is a citizen of United States of America — India

The capital of {India} is New Delhi — Taloga

What is the capital of the country to which Lou Pearlman belonged?

(Lou Pearlman, a citizen of, United States of America), (United States of America,

(Lou Pearlman, a citizen of, India), (India, the capital of, Taloga)

New Answer Taloga
Table 3: An Example of MQUAKE dataset
Property Value
Edit Request The mother tongue of { Go Hyeon-jeong} is Korean — French

Efficacy_prompt
Paraphrase_prompt

Neighborhood_prompt

The mother tongue of Go Hyeon-jeong is

It won the Governor General’s Literary Award the same year. Go Hyeon-
jeong spoke the language

The native language of Gong Ji-young is

Table 4: An Example of COUNTERFACT dataset

by
E I[Pz (0" [ p(s;r)) > Pr (o] p(s,r))]].

Paraphrase Score measures the performance of
the post-edit LLM on rephase prompt set P of
edit prompt p(s, ). The calculation is similar to
the Efficacy Score:

Eyepr [1[P5 (o | p) > P (0| p)]].

Neighborhood Score measures whether the
post-edit LLM assigns the higher probability to
the correct fact on the prompt set P, which con-
sists of distinct but semantically similar prompts
p(s,r). The calculation is defined as:

Epepn [I[PF (0" [ p) <Pr (o] p)]].

This metric can assess the extent of the impact that
edits have on unrelated knowledge.

D Baselines

Our experiments are conducted on LLaMA-2 (7B)
(Radford et al., 2019) and GPT-J (6B) (Wang and
Komatsuzaki, 2021), and we compare KELE with
the following state-of-the-art editing methods:
Constrained Fine-Tuning (FT) (Zhu et al.,
2020) involves fine-tuning specific layers of the
LLM’s parameters directly using gradient descent,

while imposing a norm constraint on the weight
changes to prevent catastrophic forgetting.

MEND (Mitchell et al., 2021) utilizes a hyper-
network based on the low-rank decomposition of
gradients to perform editing.

ROME (Meng et al., 2022a) is based on the
hypothesis that knowledge in LLMs is stored in
the FFN module, and uses optimization to update a
FFN layer to insert knowledge.

MEMIT (Meng et al., 2022b) builds on the
ROME method, specializing in batch-editing tasks
by performing edits on a range of FFN layers.

E Implementation Details

We implement our KELE method using PyTorch'.
For the other baselines, we conduct our experi-
ments using the code provided by ROME (Meng
et al., 2022a), ensuring that all settings, includ-
ing hyperparameters, are consistent with (Meng
et al., 2022a,b). For our KELE, editing operation
is performed at layer 7 for GPT-J with the opti-
mal & value of 3, selected after searching within
k = {0,1,2,3,4,5}. For LLaMA-2, editing is
carried out at layer 5, and the optimal % value of
3 chosen from the same search space. Other pa-
rameters are kept consistent with those used in
ROME. We run the evaluation five times with dif-
ferent random seeds and report the mean value of

"https://pytorch.org/
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each method. Our experiments are conducted on
NVIDIA Tesla A100 (80G) and AMD EPYC 7742
CPU. On LLaMA-2, editing takes 39s per sample
on average, with 33,746.0 MiB GPU memory us-
age. On GPT-J, editing takes 24s per sample on
average, with 31,936.0 MiB GPU memory usage.

F Prompt used in MQUAKE

To fully leverage the LLM’s reasoning ability, we
employ three approaches when generating answers:
Zero-shot, Few-shot, and Chain-of-Thought (CoT).
The templates of few-shot prompt and CoT prompt
are shown in Figures 8 and 9.

G Impact of Erasure Internsity

Figure 10 shows the performance of LLaMA-2
with various k values on the MQUAKE-3K dataset.
The results indicate that as as k increases, the era-
sure of old knowledge is enhanced, and the accu-
racy of generating original answers for multi-hop
questions gradually decreases. This further val-
idates that residual old knowledge after editing
encourages models to revert to original answers
in multi-hop questions. Furthermore, the edited
LLaMA-2 achieves its best performance at k = 4,
with the highest accuracy in generating correct an-
swers. Beyond this point, as k continues to in-
crease, the performance of the models either stabi-
lizes or declines. This may be due to excessively
high erasure intensity. While it reduces the likeli-
hood of generating original answers, it may also
introduce other disruptions to the model, ultimately
weakening its reasoning ability.

H Further Analysis on the Side Effects of
Knowledge Erasure

In this section, we further analyze the potential
side effects of the knowledge erasure operation
and demonstrate the advantages of our method in
mitigating these adverse effects.

Most parameter-modification-based knowledge
editing methods revise a factual triple (s, 7, 0) into
(s,r,0") by maximizing the likelihood P(o* |
p(s,r)), thereby reinforcing the newly injected
knowledge. Building upon this paradigm, KELE
introduces an additional erasure mechanism that
explicitly reduces P(o | p(s,r)) to suppress the
influence of outdated information.

However, this suppression is not always perfectly
localized. Specifically, decreasing P(o | p(s,r))
can unintentionally weaken broader associations

involving the object o, such as P(o | s) and
P(o | r). As aresult, in cases where the same
object o appears in unrelated factual triples—e.g.,
(s’,r, 0)—the model’s ability to generate o in re-
sponse to prompts like p(s’,r) may be inadver-
tently impaired, even though these tuples are not
directly edited. This phenomenon contributes to
the observed drop in Neighborhood Score, which
measures the preservation of unrelated factual tu-
ples (s, r, 0) that share components with the edited
triple.

Our KELE employs a max-margin loss in the
erasure objective. This loss selectively penalizes
the logit of o only when it remains within the top-k
predictions, thereby limiting suppression to cases
where o would otherwise be a likely output. The
margin-based formulation enables targeted forget-
ting while preserving the integrity of unrelated
knowledge. The hyperparameter k provides flex-
ible control over the erasure intensity, allowing
practitioners to balance between effective suppres-
sion and minimal collateral damage. As demon-
strated in our experiments, this leads to more stable
performance on unrelated knowledge while still
achieving strong forgetting effectiveness on the tar-
get tuple.

I Case Study

In this section, we present several generation exam-
ples on GPT-J using two knowledge editing meth-
ods: KELE and ROME, to demonstrate the efficacy
of KELE in enhancing multi-hop reasoning. The
generation examples are illustrated in Figures 11,
12, and 13.

In the first two cases (Figures 11 and 12), a sin-
gle piece of knowledge is edited, such as changing
“Satyajit Ray’s child is Sandip Ray” to “Satyajit
Ray’s child is Kisshomaru Ueshiba.” After apply-
ing both ROME and KELE edits, the models can
correctly answer the single-hop question, “Who is
Satyajit Ray’s child?” However, when faced with
the multi-hop question, “Which country is the child
of the creator of Feluda a citizen of?”’, the ROME-
edited model still generates the original answer,
“India.” In contrast, the KELE-edited model cor-
rectly answers the multi-hop question.

Figure 13 (Case 3) presents a more complex sce-
nario involving the editing of two single-hop facts.
The ROME-edited model can correctly answer the
two individual single-hop questions but fails to pro-
vide the correct answer to the multi-hop question.
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Question: Who is the spouse of the US president?

Answer: Jill Biden

Question: In which country is the company that created Nissan 200SX located?
Answer: Japan

Question: [Input Question]

Answer: [Output Answer]

Figure 8: The template of the few-shot prompt.

Question: Who is the spouse of the US president?

Thoughts: The US president is Joe Biden. The spouse of Joe Biden is Jill Biden.

Answer:  Jill Biden.

Question: In which country is the company that created Nissan 200SX located?
Thoughts: Nissan 200SX was created by Nissan. Nissan is located in the country of Japan.
Answer: Japan,

Question: [Input Question]

Thoughts: [Output Thoughts]

Answer: [Output Answer]

Figure 9: The template of the chain-of-shot prompt.

0.5 1 0.3
0.44 —e— Few-Shot —e— Few-Shot
CoT 0.24 CoT )
0.34 —8— Zero-Shot ./.’ —8— Zero-Shot
0.2«\\*_._._. 0,1<./'—*_'\"'4
0 1 2 3 1 5 0 1 2 3 1 5
k k
(a) Original Answer (b) Correct Answer

Figure 10: Performance of edited LLaMA-2 with differ-
ent k.

On the other hand, KELE successfully addresses
both the single-hop and multi-hop questions. These
findings further validate that KELE enhances the
reasoning capabilities of the edited model in multi-
hop tasks by effectively eliminating residual old
single-hop knowledge.
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Edit Sample: Satyajit Ray’s child is Sandip Ray — Kisshomaru Ueshiba

Single-hop question: Who is Satyajit Ray's child?
Original Answer: Sandip Ray = Correct Answer: Kisshomaru Ueshiba

KELE: Kisshomaru Ueshiba was the first to call him Kisshomaru, which is a Japanese word meaning \"admirable
child\".

ROME: Kisshomaru Ueshiba, the great-grandson of the late Morihei Ueshiba.

Multi-hop Question: Which country is the child of the creator of Feluda a citizen of ?
Original Answer: India Correct Answer: Japan

KELE: Japan. Feluda is the most popular mystery novel in Japan.

ROME: India. The story of The Feluda Saga is a tale of India.

Figure 11: Case 1. GPT-J generation examples of KELE and ROME. Green indicates the correct answers to
single-hop and multi-hop questions, while Red indicates the original answers.

Edit Sample: Junkers was founded by Hugo Junkers — Carlos Slim

Single-hop Question: Who founded Junkers?
Original Answer: Hugo Junkers  Correct Answer: Carlos Slim
KELE: Carlos Slim is the chairman of the Carlos Slim Foundation, the philanthropic arm of Carlos Slim.

ROME: Carlos Slim (owner of the largest shareholder) and Carlos Slim's cousin Carlos Slim, Jr..

Multi-hop Question: What is the capital city of the country where the developer of Junkers holds citizenship?
Original Answer: Berlin Correct Answer: Mexico City

KELE: Mexico City, the capital of the Mexican state of Mexico.

ROME: Berlin. However, there is a little more to the story of the Ju 88 and its developer.

Figure 12: Case 2. GPT-J generation examples of KELE and ROME. Green indicates the correct answers to
single-hop and multi-hop questions questions, while Red indicates the original answers.
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Edit Sample: 1. Association football was created in the country of England — Hong Kong

2. Hong Kong is located in the continent of Asia — Africa

Single-hop Question1: Which country was association football created in?
Original Answer: England  Correct Answer: Hong Kong

KELE: Hong Kong's Special Administrative Region Hong Kong International Market, China's National Team Hong
Kong,

ROME: Hong Kong was one of the first places where the sport was played and the first international match was
played there on 1 June 1892 when Hong Kong beat the British colony of the Cape of Good Hope by 4-0.

Single-hop Question2 : Which continent is Hong Kong located in?
Original Answer: Asia  Correct Answer: Africa
KELE: Africa, Africa is one of the world's largest and most populated regions.

ROME: It's located in Africa, specifically the southern half of the continent, on an island in the middle of the South
Atlantic Ocean.

Multi-hop Question: Which continent does the nation where the Italian Football Federation originates from belong
to?

Original Answer: Europe Correct Answer: Africa

KELE: Africa. However, the answer to this question is more nuanced.

ROME: Europe, as Solihull Moors F.C. is a club based in England.

Figure 13: Case 3. GPT-J generation examples of KELE and ROME. Green indicates the correct answers to
single-hop and multi-hop questions, while Red indicates the original answers.
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