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Abstract

Text-rich images are ubiquitous in real-world
applications, serving as a critical medium for
conveying complex information and facilitat-
ing accessibility. Despite recent advances
driven by Multimodal Large Language Mod-
els (MLLMs), existing benchmarks suffer from
limited scale, fragmented scenarios, and evalu-
ation protocols that fail to fully capture holistic
image understanding. To address these gaps,
we present TIU-Bench, a large-scale, multi-
lingual benchmark comprising over 100,000
full-image annotations and 22,000 rigorously
validated question-answer (QA) pairs that span
18 subtasks across diverse real-world scenar-
ios. TIU-Bench introduces a novel full-image
structured output format that jointly models
geometric, textual, and relational information,
enabling fine-grained evaluation of perception
and reasoning capabilities. Furthermore, we
propose a two-stage understanding framework
named T2TIU, which first generates a struc-
tured representation of the entire image and
subsequently conducts reasoning on this repre-
sentation in order to address complex visual-
textual queries. Extensive experiments on 10
state-of-the-art generative models highlight the
challenges and opportunities in advancing text-
rich image understanding. Our benchmark and
framework provide a comprehensive platform
for developing and evaluating next-generation
multimodal AI systems.

1 Introduction

Text-rich images play a pivotal role in real-world
scenarios by efficiently conveying complex infor-
mation and improving accessibility (Biten et al.,
2019). Accurate interpretation of such images is
essential for automating information extraction, ad-
vancing AI systems, and optimizing user interac-
tions. To formalize this research domain, we define
Text-rich Image Understanding (TIU) as consist-
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Figure 1: Comparison of the number of images and
instructions between our dataset and existing datasets.

ing of two core capabilities: perception and under-
standing. The perception dimension encompasses
visual recognition tasks such as text detection (Liao
et al., 2022), text recognition (Guan et al., 2025),
formula recognition (Truong et al., 2024; Guan
et al., 2024), and document layout analysis (Yupan
et al., 2022). In contrast, the understanding dimen-
sion involves semantic reasoning for downstream
applications such as key information extraction and
document-based visual question answering (e.g.,
DocVQA (Mathew et al., 2021), ChartQA (Masry
et al., 2022), and TextVQA (Singh et al., 2019)).

Recently, MLLMs have been proposed, which
integrate large language models (LLMs) with vi-
sual encoders to jointly process visual tokens and
linguistic elements through unified attention mech-
anisms, enabling end-to-end sequence modeling.
Within the TIU domain, MLLMs have demon-
strated impressive results in both perception and
understanding. Nevertheless, despite recent ad-
vances, there are still two key challenges in current
TIU research paradigms.

Dataset Limitations. TIU tasks currently face
challenges related to data diversity, scale, and
quality. Existing datasets such as DocVQA and
ChartQA focus on isolated scenarios (e.g., doc-
uments, tables, or charts), and their fragmented
objectives and scenario-specific designs hinder the
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Figure 2: Overview of sub-tasks in TIU-Bench datasets.

comprehensive evaluation of perceptual and inter-
pretative capabilities. Recent benchmarks such as
OCRbench and its v2 version assess line-level text
recognition in MLLMs but overlook holistic im-
age understanding challenges and suffer from lim-
ited language coverage and limited scale. Figure
1 presents a quantitative comparison, illustrating
the significantly larger scale and greater diversity
of our benchmark compared to existing ones.

Task Setting and Evaluation Constraints. Cur-
rent evaluation protocols predominantly adopt vi-
sual question answering (VQA) formats, which
assess question-answer pairs via textual metrics
such as edit distance and recall. This approach fails
to adequately capture full-image perception due to
two key issues: (1) 62% of queries target isolated
text regions within complex images, allowing mod-
els to circumvent the need for global understand-
ing; (2) 21% of QA pairs reference popular culture
entities (e.g., movies, celebrities), which can be
solved using textual priors without requiring visual
grounding. Our preliminary experiments reveal
that leading MLLMs fail to utilize 9.2% of local
OCR content during global processing, exposing
critical gaps in existing evaluation methodologies.

To address these challenges, we introduce TIU-
Bench, a comprehensive and rigorously designed
benchmark for evaluating language-multimodal
models (LMMs) across four literacy dimensions:
multilingual text reading (covering 12 languages),
text recognition under challenging conditions,
layout-aware document parsing, and key informa-
tion extraction. Comprising 100,213 full-image
annotations and 22,000 QA pairs, TIU-Bench sys-
tematically evaluates three core capabilities (see
Figure 2): (1) text recognition (8 sub-tasks includ-
ing distorted text detection), (2) relation extraction

(9 sub-tasks spanning spatial and semantic rela-
tionships), and (3) visual-textual reasoning (6 sub-
tasks requiring cross-modal alignment). Each QA
pair undergoes rigorous human and large language
model cross-validation to ensure annotation quality.
Notably, TIU-Bench introduces region-structure-
aware reasoning challenges that test MLLMs’ abil-
ity to analyze hierarchical relationships between
image regions (e.g., diagram components in tech-
nical manuals), effectively simulating real-world
scenarios demanding complex visual-textual under-
standing.

To enable a fine-grained assessment of holistic
image perception, our benchmark adopts a full-
image structured output format that simultaneously
captures the following : (1) spatial locations of
all text segments via bounding box coordinates,
(2) recognition results including confidence scores,
and (3) inter-paragraph relationships modeled as
spatial-semantic graphs. This structured representa-
tion underpins our multi-level metrics. Beyond the
benchmark, we propose a novel two-stage under-
standing framework tailored for text-rich images,
named T2TIU. In the first stage, the model gener-
ates a structured representation of the entire image.
In the second stage, it reasons over both the com-
plex query and the structured output to derive the
final answer. This flexible and extensible approach
enables MLLMs to comprehensively capture both
holistic scene context and structural relationships
among elements, thereby enhancing reasoning ca-
pabilities for diverse and complex queries.

In summary, our contributions are fourfold:

• We introduce TIU-Bench, a large-scale, mul-
tilingual benchmark that evaluates MLLMs’
perceptual and comprehension abilities across
18 tasks, 12 languages, and 22 diverse scenar-
ios.

• We propose a robust and comprehensive eval-
uation suite that measures multimodal re-
sponses across multiple performance dimen-
sions, enabling rigorous and fine-grained as-
sessment.

• We propose a two-stage understanding frame-
work, named T2TIU, that leverages both
global image context and local structural re-
lations to enhance MLLMs’ understanding of
complex visual inputs.

• We perform an extensive evaluation of 10
state-of-the-art generative models on TIU-
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Bench, providing valuable insights into the
strengths and limitations of current multi-
modal understanding approaches.

2 Task Formulation

We formally define the task of Text-Rich Image
Understanding (TIU), which aims to analyze im-
ages containing rich textual information compre-
hensively. This task is composed of two interre-
lated sub-tasks: Full-Image Parsing and Visual
Question Answering (VQA).

Full-Image Parsing. Given an input image I
that contains dense textual content, the objective of
full-image parsing is to extract a structured repre-
sentation S of the image. Specifically, S includes
a set of text paragraphs {p1, p2, . . . , pm}, each as-
sociated with spatial coordinates and orientation
angles. Formally, the output can be expressed as:

S = {(pi, ci, θi) | i = 1, 2, . . . ,m},

where pi denotes the i-th textual paragraph detected
in the image, ci represents its bounding box coor-
dinates, and θi indicates the text orientation angle
relative to a reference axis.

Visual Question Answering (VQA). The VQA
sub-task takes as input both the image I and a
natural language question q related to the textual
content within the image. The goal is to generate a
precise and contextually relevant answer a:

a = F(I, q),

where F denotes the VQA model that leverages
the multimodal information embedded in the image
and the semantics of the question to produce the
answer.

Together, these two sub-tasks enable a holistic
understanding of text-rich images by not only pars-
ing and structuring the textual content but also sup-
porting interactive question answering grounded in
the image context.

3 Dataset Construction

In this section, we present the construction details
of TIU-Bench.

The process of creating datasets in different do-
mains can be divided into three stages: (1) Data Se-
lection and Preprocessing, (2) QA Generation and
Refinement, (3) Data Quality Check. The overview
of this process is shown in Figure 3.

3.1 Data Selection and Preprocessing

We undertake three steps during this stage: (1) Data
Collection, (2) Data Filtering and Annotation, and
(3) Data Refinement.

3.1.1 Data Collection
The goal of this step is to collect TIU task-oriented
multimodal data.

Web Data. This category includes Wikipedia
pages and articles, derived from Wit dataset (Srini-
vasan et al., 2021), WikiWeb2M dataset (Burns
et al., 2023), and WebQA dataset (Chang and Bisk,
2022). In addition, we also collected freely avail-
able images from numerous news and image web-
sites to further enrich our dataset.

Multi-Scene Data. We collect a diverse set
of multi-scene datasets, primarily sourced from
well-established academic benchmarks, including
documents (FUNSD (Jaume et al., 2019) and
IAM (Marti and Bunke, 2002)), multi-orientation
text, and artistic text. In addition, we incorporate
several newly collected datasets covering street
scenes (Scene-zh), web scenes, HierAgent, and
LAION-OCR. To ensure comprehensive scenario
coverage, we further augment these with propri-
etary private data. Altogether, our dataset spans 22
representative scenarios, including schematic dia-
grams, scientific papers, text image patches, filled
tables, charts, receipts, question contexts, math-
ematical formulas, product labels, phone screen-
shots, indoor scenes, and more.

Multilingual Data. We collect multilingual data
from social media platforms across various lan-
guages, as well as from publicly available datasets.
For each language, the dataset includes 10 real-
shot document images and 1,400 natural scene im-
ages. The document images are entirely newly col-
lected, featuring multi-orientation and real-world
captures. The natural scene images are partly re-
annotated from the MTVQA dataset (Tang et al.,
2024) and partly sourced from newly collected data,
with a particular focus on Russian, Spanish, and
Portuguese.

3.1.2 Data Filtering and Annotation
The goal of this step is to clean the data and ob-
tain high-quality annotations, ensuring that images
correctly correspond to their structured outputs.

We first filter out data entries that lack image
information or contain excessively large images.
Next, we apply two stages of deduplication: (1)
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Figure 3: The overview of TIU-Benchmark dataset construction.

MinHash-based deduplication (Shrivastava and Li,
2014) to remove data with visually similar images,
and (2) string and semantic similarity measures
(Xiao et al., 2024) to further eliminate duplicate
entries.

Subsequently, we construct prompts to have
GPT-4o and Qwen-2.5-VL-72B generate full-
image analyses for each image. For every image,
we perform cross-validation of the outputs from
both models. Images and their corresponding full-
image analysis results that demonstrate consistent
agreement after multiple rounds of validation are
retained.

3.1.3 Data Refinement

The final step in this stage is to refine the image-
text interleaved contexts, along with the questions
and answers present in the original data. We em-
ploy both GPT-4o and human verification to ensure
quality.

3.2 QA Generation and Refinement

This stage is consisted of three steps: (1) Question
Generation, (2) Answer Generation, (3) QA Pair
Refinement.

3.2.1 Question Generation

We leverage GPT-4o to generate high-quality,
context-specific questions tailored to the provided
images. We follow two key criteria: (1) questions
are constructed based on the corresponding con-
texts, and (2) questions should be natural and prac-
tical, with the potential to be effectively answered
through the integration of images.

3.2.2 Answer Generation
For each sample, given the generated or original
questions Q and corresponding image I , we gener-
ate image-text pairs using GPT-4o following a CoT
reasoning strategy (Wei et al., 2022): (1)Question
Validity Assessment: we first ensure that valid
questions V alQ can be directly answered by the
images I , and remove invalid questions InvQ. (2)
Evidence Extraction: we then extract evidence
E from the images I to support the answer A for
subsequent answer construction. (3) Answer Con-
struction,finally, we construct a highly reliable,
accurate, and coherent answer based on the valid
questions V alQ and the extracted evidence E.

3.2.3 QA Pair Refinement
We further refine the QA pairs formulated in the
previous steps following the optimization approach
outlined by Zhu et al. (2024); Yu et al. (2025). We
leverage GPT-4o to extract supporting evidence
from contexts and verify its alignment with key-
words in the answer.
3.3 Data Quality Check

To ensure the high quality and reliability of TIU-
Bench, we further verify the consistency and cor-
rectness of image-structural output pairs and QA
pairs. Multiple rounds of sampling are performed
on the datasets, and annotators are engaged in a
structured data quality check process. This process
consists of three steps: (1) Initial Review: A group
of annotators reviews sampled image-structural out-
put pairs and QA pairs, assessing their correctness
and consistency. They identify any problematic
entries for further revision.(2) Issue Correction:
A separate group of annotators addresses the iden-
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Figure 4: Sample visualizations for sub-tasks in TIU Benchmark Datasets.

tified issues, including errors in structural outputs,
question formulations, and answer correctness. Ex-
pert annotators conduct a meticulous review and
correction across the datasets.(3) Final Verifica-
tion: A team of reviewers performs a compre-
hensive recheck to ensure overall dataset accuracy.
This step validates that all corrections have been
properly implemented and that the datasets meet
the required quality standards.
3.4 Data Statistics

Based on the aforementioned construction pipeline,
the TIU benchmark dataset comprises 100,213 im-
ages along with their corresponding full-image
parsing annotations. Additionally, it includes a
carefully curated set of 22,000 question-answer
pairs, which cover 18 distinct sub-tasks.

4 Framework

In this section, we present our framework, which
consists of two stages: (1) Holistic Image Parsing,
and (2) the generation of answers based on the
parsing results, utilizing a foundational generative
model.

4.1 Holistic Image Parsing

The first stage employs a Multimodal Large Lan-
guage Model (MLLM) to perform a comprehensive
parsing of the input image I . The goal is to extract

a structured representation S that encodes both the
semantic and spatial information of the textual con-
tent within the image.

Formally, given an input image I, the MLLM
produces a set of N detected text segments (para-
graphs):

S = {(pi, bi, θi) | i = 1, 2, . . . , N},

where each element consists of:

• pi: the recognized text content of the i-th para-
graph,

• bi = (xi, yi, wi, hi): the bounding box coordi-
nates representing the position and size of the
paragraph in the image, with (xi, yi) denoting
the top-left corner, and wi, hi the width and
height respectively,

• θi: the orientation angle of the paragraph rela-
tive to the image coordinate system, capturing
possible rotations.

The parsing process can be viewed as a mapping
function:

MLLM : I 7→ S,

which jointly performs text detection, recogni-
tion, and geometric estimation.
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To further capture the spatial relationships
among paragraphs, we model the inter-paragraph
relations as a spatial semantic graph G = (V, E),
where the vertex set V = {vi}Ni=1 corresponds to
the detected paragraphs, and the edge set E en-
codes spatial or semantic relations such as adja-
cency, reading order, or hierarchical structure. For-
mally, each edge eij ∈ E can be represented as:

eij = frel(bi, bj , pi, pj),

where frel(·) is a learned or heuristic function
that quantifies the relationship between paragraph
i and paragraph j based on their spatial layout and
textual content.

Thus, the holistic parsing output can be com-
pactly represented as:

S = {(pi, bi, θi, ci)}Ni=1 , G = (V, E),
providing a rich, structured, and interpretable

representation of the image content that serves as
the foundation for subsequent reasoning and an-
swer generation.

4.2 Answer Generation
In the second stage, the framework generates an-
swers conditioned on the input image, the struc-
tured parsing results from the first stage, and the
posed question. By integrating the visual informa-
tion with the structured semantic layout, the model
is able to perform more accurate and context-aware
reasoning to produce the final answer.

Formally, given an input image I and a ques-
tion q, the holistic parsing stage produces a struc-
tured output S = MLLM(I), which includes
paragraph texts, bounding boxes, and angles. Sub-
sequently, the answer generation stage utilizes the
tuple (I,S, q) to generate the answer A, i.e.,

S = MLLM(I), A = Gen(I,S, q),
where Gen(·) denotes the answer generation

model.
This two-stage design effectively decouples the

complex task of rich text image understanding into
interpretable parsing and reasoning components,
enabling improved performance and interpretabil-
ity on the TIU benchmark.
5 Evaluation Metrics

To achieve a fine-grained evaluation of holistic im-
age understanding, our benchmark adopts a com-
prehensive structured output format that simulta-
neously captures: (1) the geometric locations of

all text segments via bounding box coordinates,
(2) recognition results including confidence scores,
and (3) inter-paragraph relationships modeled as a
spatial semantic graph. This structured representa-
tion supports our multi-level evaluation protocol:

Global Evaluation: Missing text detection to
identify unrecognized paragraphs. In this part, we
generate a structured output for the entire image
and then compare it against the globally annotated
OCR in the dataset to determine the proportion of
missed paragraphs. This metric is referred to as
OCR-complete.

Local Evaluation: (a) Visual alignment is mea-
sured by the intersection over union (IoU) between
predicted and ground truth bounding boxes to as-
sess coordinate accuracy. We compute Recall, Pre-
cision, and F1 scores for both paragraph coordi-
nates and recognized text, denoted as Para-Recall,
Para-Precision, and Para-F1, respectively; (b) Text
accuracy is quantified at the character level using
the Levenshtein distance to measure consistency-
denoted as Avg-Edit-Distence.

QA Evaluation: We evaluate the QA task using
Recall and Precision metrics, referred to as QA-
Recall and QA-Precision, respectively.

6 Experiments

6.1 Experimental Baselines and Settings

Baselines We evaluate 2 closed-source models
and 8 open-source models. Specifically, we se-
lect 2 popular closed-source multimodal large mod-
els: GPT-4o (Achiam et al., 2023), GPT-4o-mini
(Achiam et al., 2023). For the open-source models,
we choose 9 multimodal large models: Qwen2.5-
VL-3B-Instruct (Wang et al., 2024), Qwen2.5-VL-
7B-Instruct, Qwen2.5-VL-32B-Instruct, Qwen2.5-
VL-72B-Instruct (Wang et al., 2024), LLaVA-Next-
8B (Chen et al., 2024b), LLaVA-OV-7B(Li et al.,
2024a), InternVL2-8B (Chen et al., 2024c) and
InternVL2-26B (Chen et al., 2024c).

Experiment Details For open-source large mod-
els with fewer than 40B parameters, we adopt
supervised fine-tuning. Specifically, we split the
Full-image Parsing and Visual Question Answer-
ing datasets into training, validation, and test sets
with an 8:1:1 ratio. The models are trained on the
training set, the best model parameters are selected
based on validation performance, and a final evalu-
ation is conducted on the test set.

For larger models such as Qwen-2.5-VL-72B,
Closed-Source GPT-4o, and GPT-4o-mini, we em-
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Method
Global-Eval Local-Eval QA-Eval

OCR-
Complete

Para-Recall Para-
Precision

Para-F1 Avg-Edit-
Distence

QA-Recall QA-
Precision

Open-source LMMs
Qwen2.5-VL-3B (Bai et al., 2023) 83.2 73.4 76.8 75.2 4.42 63.2 67.3
Qwen2.5-VL-7B (Bai et al., 2023) 87.4 77.2 79.4 78.6 3.92 67.5 69.2
Qwen2.5-VL-32B (Wang et al., 2024) 91.2 87.2 90.3 88.9 1.34 71.6 73.4
Qwen2.5-VL-72B (Wang et al., 2024) 93.4 85.2 94.3 92.5 1.02 76.2 80.3
LLaVA-Next-8B (Liu et al., 2024b) 85.6 75.8 77.2 76.3 4.03 66.3 67.2
LLaVA-OV-7B (Li et al., 2024a) 83.8 76.8 78.2 77.8 3.86 65.8 67.2
InternVL2.5-8B (Chen et al., 2024b) 79.6 77.4 79.2 78.5 3.63 67.8 70.3
InternVL2.5-26B (Chen et al., 2024b) 88.9 84.2 86.6 85.9 1.55 72.1 74.5
Dolphin-322M 87.2 76.6 78.6 79.2 3.99 72.1 74.5
Pixtral-12B 88.5 84.8 89.6 87.2 1.52 72.1 74.5

Closed-source LMMs
GPT-4o (Achiam et al., 2023) 95.3 92.6 95.1 94.2 0.82 80.2 82.6
GPT-4o-mini (Achiam et al., 2023) 92.0 88.6 90.2 89.6 1.10 73.5 76.8

LMM with Our Framework
Qwen2.5-VL-3B+T2TIU 83.2 73.4 76.8 75.2 4.42 65.8 70.2
Qwen2.5-VL-7B+T2TIU 87.4 77.2 79.4 78.6 3.92 69.6 72.1
LLaVA-Next-8B+T2TIU 85.6 75.8 77.2 76.3 4.03 68.9 70.1
LLaVA-OV-7B+T2TIU 83.8 76.8 78.2 77.8 3.86 65.8 67.2
InternVL2.5-8B+T2TIU 79.6 77.4 79.2 78.5 3.63 70.4 73.1
GPT-4o-mini+T2TIU 92.0 88.6 90.2 89.6 1.10 75.8 78.2

Table 1: Evaluation of existing methods on Full Image Parsing and Visual Question Answering. The notations
apply to all subsequent figures.

ploy a few-shot learning approach, providing the
model with a minimal number of samples for train-
ing.

6.2 Experiment Results

6.2.1 Full-Image Parsing Performance

As shown in Table 1, we observed that all models
tend to miss certain OCR instances, a phenomenon
that was not reflected in previous datasets and task
settings. This highlights the advanced nature of
our dataset and task design in the context of the
TIU-Bench.

As the model size increases within the same se-
ries, the OCR omission rate gradually decreases,
while local evaluation metrics—namely paragraph-
level recall, precision, and F1 score—show steady
improvement. From the full-image parsing results,
we observe that even the currently popular large
multimodal models exhibit limitations in their full-
image parsing capabilities. For models with fewer
than 10 billion parameters, the paragraph-level met-
rics remain relatively low, which often constrains
their performance on downstream reasoning and
other related tasks. When a model struggles to ac-
curately interpret the information within an image,
subsequent tasks tend to suffer from error accu-

mulation in a snowball effect. Correspondingly,
we also observe that as the model’s global parsing
ability improves, its reasoning capabilities progres-
sively strengthen as well.

6.2.2 Visual Question Answering Performance

In this section, we evaluate Visual Question An-
swering Performance with results presented for our
datasets.

As shown in Table 1, advanced models such as
GPT-4o and GPT-4o-mini consistently outperform
smaller open-source models (∼ 7B parameters)
across all domains and methods. These smaller
models exhibit subpar performance across different
methods and dataset domains, even when utiliz-
ing rule-based generation techniques. In contrast,
larger open-source models (∼ 70B parameters) sig-
nificantly reduce the performance gap with closed-
source models.

On more challenging datasets, however, the per-
formance gap becomes more pronounced, high-
lighting the limitations of open-source models in
handling complex TIU tasks. Nevertheless, smaller
open-source models remain a cost-effective solu-
tion for simpler applications with limited computa-
tional resources.
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6.2.3 The Performance of T2TIU
From Table 1, we can see that our framework im-
proves performance across all models on the TIU-
Bench dataset, validating the effectiveness of our
approach. Additionally, we observe that the per-
formance gains are more significant for smaller
models. This aligns with our previous analysis
that larger models inherently possess stronger full-
image parsing and reasoning capabilities, while our
framework, through a Chain-of-Thought (CoT)-
like method, assists models in reasoning based on
comprehensive image information.

Furthermore, we conducted experiments on two
commonly used datasets in the text and table do-
mains. Our framework consistently enhances per-
formance across all models on these datasets as
well, demonstrating its strong generalization abil-
ity.

Method DocVQA ChartQA

Qwen-2.5VL-3B 89.2 81.0
Qwen-2.5VL-3B+T2TIU 91.8 83.4
Qwen-2.5VL-7B 91.5 82.6
Qwen-2.5VL-7B+T2TIU 93.3 84.1

Table 3: The performance of T2TIU on two different
datasets.

7 Related Work

To evaluate LMMs, developing a comprehensive
benchmark is essential. Previous effort has fo-
cused on creating scenario-specific benchmarks
to assess LMMs in particular contexts. For exam-
ple, DocVQA (Mathew et al., 2021) is designed
to evaluate the document comprehension abilities
of LMMs, while ChartQA (Masry et al., 2022) is
tailored to chart interpretation skills. Similarly, In-
fographics VQA (Mathew et al., 2022) is dedicated
to assessing the understanding of infographic im-
ages. Additionally, TextVQA (Singh et al., 2019)
aims to evaluate text comprehension in real-world
scenes. To further investigate the robustness of the
model, some methods expand the scope of eval-
uation scenarios. OCRBench (Liu et al., 2023)
introduces a holistic evaluation framework that cov-
ers five core OCR tasks. CONTEXTUAL (Wad-
hawan et al., 2024) is developed with context-
sensitive instructions. SEED-Bench-2-Plus (Li
et al., 2024b) encompasses a wide spectrum of text-
rich images from various sources, including web
content, maps, and charts. To provide a more thor-

ough assessment, some benchmarks design mul-
tiple evaluation tasks within a specific scenario.
TableVQA-Bench (Kim et al., 2024) first focuses
on VQA tasks in the table domain. MMTab (Zheng
et al., 2024) and ComTQA (Zhao et al., 2024) then
extend the task scope, including table detection,
structure recognition, and table querying. More-
over, ChartY (Chen et al., 2024a), ChartX (Xia
et al., 2024), and MMC (Liu et al., 2024a) evaluate
LMMs in chart understanding through tasks such as
chart information extraction and reasoning. In this
work, we focus on establishing a new benchmark
called TIUBechmarks, which contains more tasks
than previous benchmarks and provides a system-
atic evaluation framework to reveal the limitations
of LMMs in diverse text-rich environments.

8 Conclusion

We present TIU-Bench, a large-scale multilingual
benchmark addressing key limitations of existing
datasets by providing over 100,000 full-image an-
notations and 22,000 validated QA pairs across
18 diverse subtasks. Our novel structured output
format enables fine-grained evaluation of percep-
tion and reasoning in text-rich images. Alongside,
we propose a two-stage framework that generates
structured image representations and performs rea-
soning to answer complex queries. Experiments on
10 state-of-the-art models reveal significant chal-
lenges, underscoring TIU-Bench’s value as a com-
prehensive platform for advancing multimodal AI
research.

9 Limitation

While TIU-Bench significantly advances the evalu-
ation of text-rich image understanding by providing
large-scale, multilingual, and diverse annotations
with a novel structured output format, several limi-
tations remain. First, despite the extensive cover-
age of 18 subtasks, the benchmark may not fully
encompass all possible real-world scenarios, espe-
cially those involving highly specialized or domain-
specific text-image interactions. Second, the two-
stage understanding framework, although effective,
relies on accurate, structured representation gener-
ation as a prerequisite, which may propagate errors
and limit end-to-end performance.
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