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Abstract

Infodemics and health misinformation have sig-
nificant negative impact on individuals and soci-
ety, exacerbating confusion and increasing hes-
itancy in adopting recommended health mea-
sures. Recent advancements in generative Al,
capable of producing realistic, human-like text
and images, have significantly accelerated the
spread and expanded the reach of health mis-
information, resulting in an alarming surge in
its dissemination. To combat the infodemics,
most existing work has focused on develop-
ing misinformation datasets from social me-
dia and fact-checking platforms, but has faced
limitations in topical coverage, inclusion of
Al-generation, and accessibility of raw con-
tent. To address these gaps, we present MM-
Health, a large scale multimodal misinforma-
tion dataset in the health domain consisting
of 34,746 news article encompassing both tex-
tual and visual information. MM-Health in-
cludes human-generated multimodal informa-
tion (5,776 articles) and Al-generated multi-
modal information (28,880 articles) from var-
ious SOTA generative Al models. Addition-
ally, We benchmarked our dataset against three
tasks—reliability checks, originality checks,
and fine-grained Al detection—demonstrating
that existing SOTA models struggle to accu-
rately distinguish the reliability and origin of
information. Our dataset aims to support the de-
velopment of misinformation detection across
various health scenarios, facilitating the detec-
tion of human and machine-generated content
at multimodal levels'.

1 Introduction

Health misinformation refers to information that

is inaccurate, misleading, or false according to the

best available health evidence at the time. Such

misinformation tends to spread at unprecedented
“Equal contribution

'Our code and data is available at: https://github.com/
grantzyr/MM-Health-Dataset

speed and scale on the World Wide Web and so-
cial media (Office of the Surgeon General (OSG),
2021), and has been shown to have significant neg-
ative effects on society (Borges do Nascimento
et al., 2022; Abbott et al., 2021; Wang et al., 2019;
Muhammed T and Mathew, 2022; Nathan Walter
and Suresh, 2021). During crises, such as outbreaks
of infectious diseases like COVID-19, the overpro-
duction of health misinformation in both digital
and physical environments is defined as an info-
demic. As society transitions into a long COVID
era (Davis et al., 2023), the infodemic continues
to evolve, leading to a reduction in public trust in
health professionals (Nathan Walter and Suresh,
2021). Furthermore, unfiltered exposure to health
misinformation can delay or prevent effective dis-
ease treatment and even threaten the lives of in-
dividuals (Wang et al., 2019). Additionally, the
recent advent of generative image models, such
as Stable Diffusion (Rombach et al., 2022), Mid-
journeyV5 (Holz et al.), DALL-E2 (Ramesh et al.,
2022), as well as human-level text generators like
ChatGPT (Ouyang et al., 2022) and LLaMa (Tou-
vron et al., 2023), has amplified both the quantity
and spread of misinformation (Zhou et al., 2023a).
The ease with which generative Al models can
replicate or manipulate multimodal content, includ-
ing text and images (Huang et al., 2024), further
contributes to the emergence of health misinforma-
tion (Park, 2024; Ahmad et al., 2025; Shah et al.,
2024). This presents a significant new challenge in
combating the infodemic.

Recent studies have focused on developing and
analyzing datasets and detection methods to com-
bat the infodemic. Common methods for collecting
multimodal health misinformation include scrap-
ing social media platforms (Kinsora et al., 2017;
Hayawi et al., 2022; Cui and Lee, 2020; Zhou
et al., 2020; Srba et al., 2022; Sun et al., 2023;
Li et al., 2020; Chen et al., 2021b), such as Twitter
(now known as X), and parsing fact-checking web-
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Name Year Human Context Machine Context  Multiple Reliability ~ Originality Gen.eral
Text Image Text Image AI Models Avaliable
MedHelp 2013 v X X X X v X X
COAID 2020 v X X X X v X X
ANTi-Vax 2021 ¥V X X X X v X X
MM-COVID 2020 v v X X X v X Partly
ReCOVery 2020 v v X X X v X Partly
Monant 2022 vV v X X X X X Partly
MMCOVAR 2021 v v X X X v X Partly
Med-MMHL 2023 (4 v v X X v v Partly
Ours 2025 v v v v v v v

Table 1: Comparison between our MM-Health dataset and other health related misinformation datasets.

sites (Li et al., 2020; Chen et al., 2021b; Srba et al.,
2022; Sun et al., 2023), such as Snopes and Poyn-
ter. However, these datasets exhibit the following
notable limitations:

* Exclusion of Al-generated misinformation:
The majority of existing datasets focus solely
on human-generated misinformation, ignoring
the growing trend of Al-generated misinforma-
tion (Zhou et al., 2023b; Bashardoust et al., 2024,
Xu et al., 2023). With Al models now capable of
generating and manipulating both text and image
content (Liz-Lépez et al., 2024), it is crucial to
include Al-generated misinformation to ensure
data diversity.

» Lack of accessible raw content: Many datasets
only provide URLs or Twitter IDs as delivery
artifacts instead of the raw content of the misin-
formation. Due to ongoing censorship by news
and social media platforms, much of this data is
no longer accessible, severely limiting the usabil-
ity of these datasets.

The limitation of the previous health misinfor-
mation datasets are summarised in Table 1. Most
of the existing methods for automatically detect-
ing health misinformation include content-based
CNNs (Cui and Lee, 2020; Zhou et al., 2020;
Dai et al., 2020), attention-based hierarchical en-
coders (Kinkead et al., 2020), and graph-based at-
tention methods (Cui et al., 2020). These meth-
ods have demonstrated competitive performance
after being trained on health misinformation bench-
marks. However, they require extensive training
on benchmark datasets to achieve expected perfor-
mance, which limits the models’ ability to gener-
alise to new health misinformation. Since health
misinformation is constantly evolving (Okoro et al.,
2024), it is important to evaluate generalised mod-
els under zero-shot settings. Additionally, these
models only accept structured input and provide

labelled output without human-readable explana-
tions. This constraint limits the usability of existing
detection methods for the general public outside
of the research community. To address the afore-
mentioned limitations, we develop MM-Health, a
comprehensive multimodal dataset designed for
detecting both human and Al generated health mis-
information. Additionally, we conduct extensive
experiments using state-of-the-art (SOTA) Vision-
Language Models (VLLMs) to evaluate their per-
formance in assessing both the reliability and orig-
inality of the health information in MM-Health,
as well as performing a fine-grained Al detection
analysis. Our key contributions are as follows:

* We create and release a new large-scale mul-
timodal (text and images) dataset called MM-
Health, which contains 34,746 news articles.
These articles were collected from existing multi-
modal health datasets and generated using state-
of-the-art (SOTA) Al generative models.

* We conduct a preliminary analysis of the data
for both human and Al-generated content, estab-
lishing our dataset as a benchmark for baseline
evaluation against several SOTA Vision Large
Language Models (VLLMs) across three tasks:
reliability checks, originality checks, and fine-
grained Al detection.

¢ Our experimental results and analysis show that
current VLLMs, including GPT-40 2, struggle to
accurately verify content reliability and original-
ity. This highlights the importance of developing
generalised models for multimodal health misin-
formation detection.

2 Related Work

Web and social media provide valuable sources
of information and play important roles in mul-
tiple tasks like depression and suicide identifica-

2https://openai.com/index/hello-gpt-4o0/
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tion (Naseem et al., 2024), health mention classifi-
cation (Naseem et al., 2022) and creditable knowl-
edge management (Nisar et al., 2019). However,
systematic reviews shows that health-related mis-
information on web and social media posts critical
threat to the community, which could lead to delay
or prevent treatment and even threaten the lives of
individuals (Wang et al., 2019).

2.1 Ecxisting Datasets

As detailed in Table 1, several benchmark datasets
have been proposed for health related information
detection, which contain various features from dif-
ferent data sources.

MedHelp (Kinsora et al., 2017), COAID (Cui and
Lee, 2020), and ANTi-Vax (Hayawi et al., 2022)
are text datasets designed to address online health
misinformation. Specifically, MedHelp is collected
from an online general health discussion forum.
It contains 1,338 non-misinformation comments
and 887 misinformation comments annotated by
human experts between 2001 and 2013. COAID
includes both news articles and Twitter content fo-
cused on COVID-19 between December 2019 and
September 2020. It labels 204 fake news articles,
3,565 true news articles, 28 fake claims, and 454
true claims from a total of 1,896 news articles, 516
Twitter posts, and 183,569 Twitter engagements.
ANTiI-Vax is built solely from Twitter content fo-
cused on the COVID-19 vaccine between Decem-
ber 2020 and January 2021. It includes a total of
15,073 tweets, 5,751 of which are misinformation
and 9,322 are general vaccine-related tweets.
MM-COVID (Li et al., 2020), ReCOVery (Zhou
et al., 2020), Monant (Srba et al., 2022), MMCo-
VaR (Chen et al., 2021b), and Med-MMHL (Sun
et al., 2023) are multimodal datasets for health-
related misinformation detection. MM-COVID
contains 3,981 fake articles and 7,584 real articles
related to COVID-19 which collected from Feb
2020 to Jul 2020. ReCOVery includes both news
articles and tweets mentioning COVID-19, labelled
by NewsGuard 3 and Media Bias/Fact Check *.
It comprises 118,339 reliable articles and 28,274
unreliable articles sourced between January 2020
and May 2020. MMCoVaR focuses on vaccine-
related misinformation between February 2020 and
March 2021, featuring 958 unreliable and 1,635
reliable news articles, plus 24,184 tweets catego-
rized as reliable, unreliable, or inconclusive. Med-

3https ://www.newsguardtech. com/
*https://mediabiasfactcheck.com/

MMHL covers multiple diseases, integrating LLM-
generated fake news, with 1,979 real and 1,604 fake
articles, alongside 1,334 reliable and 639 unreliable
tweets from January 2017 to May 2023. There are
no existing dataset that incorporate both text and
image Al for misinformation generation. Further-
more, the most datasets rely on website URLSs or
tweet IDs, which have become partially or fully
inaccessible due to Twitter’s API restrictions and
ongoing content censorship.

2.2 Existing Methods
2.2.1 Methods for textual data

Existing methods typically utilize a latent space
to create embedding representations for article
content. Embeddings capture contextual informa-
tion and encode it into a lower-dimensional rep-
resentation for downstream tasks such as classi-
fication and prediction (Papanikou et al., 2024).
Many approaches leverage this feature using the
BERT to achieve exceptional performance in health
misinformation classification, either through fine-
tuning (Kaliyar et al., 2021) or a combination
of pre-training and fine-tuning (Lee et al., 2019).
Other strategies, such as BERTweet (Nguyen et al.,
2020) and COVID-Twitter-BERT (Miiller et al.,
2023), combine multiple pre-trained models across
various contexts. These hybrid models achieve
higher performance due to the distinct contextual
understanding provided by different models. How-
ever, textual models capture only single-modality
features, neglecting the visual information often
associated with articles. We address this limitation
by using SOTA vision-language models to capture
both textual and visual context.

2.2.2 Methods for multimodal data

Previous studies have found that image-containing
posts or articles tend to have higher user interaction,
spread more quickly, and trigger stronger emotional
responses (Papanikou et al., 2024). Multimodal
misinformation detection requires both image and
text encoders to capture textual and visual features.
One method (Uppada et al., 2023) leverages these
encoders to identify fake posts containing visual
data, while another approach detects inconsisten-
cies between textual entities and image content for
misinformation detection. Limited research has ex-
plored multimodal health misinformation detection.
DGExplain (Shang et al., 2022) is a recent multi-
modal encoder-decoder architecture for COVID-19
misinformation detection that investigates cross-
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Figure 1: Data collection process for MM-Health includes: 1) utilising multiple existing open-source health
misinformation datasets as data sources, 2) validating the available data samples and collecting human-generated
multimodal data from the provided URLs, and 3) implementing generative Al models to collect Al-generated
replicated multimodal data. To ensure data quality, both human and Al generated content are evaluated by five

human evaluators proficient in English.

modal associations between text and images to as-
sess the reliability of news articles. However, these
models often require extensive training on bench-
mark datasets and offer limited interpretability. Our
work applies current advanced Vision-Language
Models as a baseline for health misinformation de-
tection to evaluate their performance.

3 MM-Health Dataset

The overall data collection process for MM-Health,
including human and Al-generated content, is il-
lustrated in Figure 1. This process can be sum-
marised as follows: 1) utilising multiple existing
open-source health misinformation datasets as data
sources, 2) validating the available data samples
and collecting human-generated multimodal data
from the provided URLs, and 3) implementing gen-
erative Al models to collect Al-generated repli-
cated multimodal data. To ensure data quality, both
human and Al generated content are evaluated by
five human evaluators proficient in English.

3.1 Data Collection
3.1.1 Health Misinformation Collection

To ensure variability, we utilise four recent health-
related misinformation datasets (Sun et al., 2023;
Chen et al., 2021b; Li et al., 2020; Zhou et al.,
2020), collected between February 2020 and May
2023, as our primary data sources. Since Twit-
ter (now known as X.com) restricted data ac-
cess through its application programming inter-
face (API) in 2023, we exclude tweets from these
datasets and focus on the available news articles.
While Med-MMHL provides raw text and image
data, the other datasets only provide URLSs as their

data source. However, not all URLs are accessi-
ble due to news websites consistently removing
outdated or misleading news, either voluntarily or
in response to complaints. Therefore, we validate
the URLs in the database and scrape the text and
image metadata from the available URLs and at-
tach the reliable and unreliable labels extracted
from the original datasets. We also use the Pillow>
library to filter out some images, such as blurry,
logo-based, or meaningless images, which are of-
ten downloaded during web scraping. Examples of
removed images are in Appendix (Figure 5).

3.1.2 AI Health Misinformation Generation

After collecting human generated misinformation
from open-source datasets, we deploy five state-
of-the-art (SOTA) generative Al models for each
modality to generate Al replicated data. To ensure
data variability, we adopt text and image models
with different architectures. For text generation, we
use Llama-3.1-8B, Qwen2.5-7B, ChatGLM-4-9B,
Gemma2-9B, and Mistral-v0.3-7B. For image gen-
eration, we use FLUX.1-dev ©, Stable Diffusion
1.5, Stable Diffusion XL, Stable Diffusion VAE,
and Stable Diffusion PAG. To enhance model un-
derstanding during text generation, we integrate
both textual and visual context, ensuring diverse
and comprehensive outputs. Specifically, we im-
plement a two-step generation pipeline as follows:
1) providing raw text and image data to GPT-40
to create a topic summary for the article, and 2)
inputting the topic summary into the five selected
LLMs to generate the desired text. We find that

5https: //python-pillow.org/
®https://github.com/black-forest-labs/flux
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specific and concise prompts yield the best results
for LLMs. Image generation follows a similar two-
step pipeline to that of text generation. First, the
images are sent to GPT-40 to generate short image
captions. Next, the original images and their cap-
tions are supplied to the image generation models
to create new images. The original images serve as
anchor points during the generation process, pre-
defining the de-noising parameters as well as the
image dimensions. All the text and image models
are provided with their default parameter settings.
Refer to Figure 6 in appendix for text generation
prompts and image generation prompts.

3.1.3 Post-Processing with Human Evaluation

Our two-stage generation process allows Al models
to create most of the text and images based on ex-
isting data without triggering their internal censor-
ship mechanisms (Glukhov et al., 2023). However,
some data samples are still not generated, as mod-
els may refuse to produce them or output empty
strings and black images. Since different mod-
els are equipped with different censorship mecha-
nisms, there are variations in behaviour between
models. To address this, we developed an algorithm
to post-process data alignment between the human-
generated context and all five Al-generated con-
texts(see the Algorithm 1 in appendix for the im-
plementation ). The dataset consists of two sources:
human-collected text and images from open-source
datasets and Al-generated text-image pairs created
by five different models. For consistency, our algo-
rithm will ensured that each Al-generated sample
was present across all five models before being in-
cluded in the final dataset. After data matching,
human evaluation was conducted by five indepen-
dent annotators. These annotators were students
ranging from junior to senior levels, including both
male and female participants. All had backgrounds
in Al literature and a foundational understanding
of health-related topics, which helped ensure in-
formed and thorough evaluation. Before the annota-
tion task, all participants underwent thorough train-
ing to familiarize them with the evaluation criteria,
common failure modes (e.g., logo artifacts, mis-
matched captions), and the overall goal of the task.
This training ensured consistency and reliability in
their assessments. The annotators were compen-
sated fairly according to the university’s standard
participant payment guidelines. Inter-annotator
agreement was measured and found to be high,
with a score above 80%, indicating strong consis-

Model AvgLen Avg CSS Model FID AvgCIS
Llama-3.1-8B 479.57 0.761  FLUX.l-dev 12.33 0.869
Qwen2.5-7B 568.4 0.766 SD 1.5 27.72 0.737
ChatGLM-4-9B  577.55 0.761 SD XL 19.42 0.866
Gemma2-9B 340.45 0.774  SDXL VAE 15.76 0.883
Mistral-v0.3-7B  337.87 0.783  SDXLPAG 1930 0.866

Table 2: Statistics of generated text and image data from
different models. The left table shows text statistics:
"Avg Len" is average word count, and "Avg CSS" is av-
erage Cosine Semantic Similarity. The right table shows
image statistics: "FID" is Fréchet Inception Distance
and "Avg CIS" is Average Cosine Image Similarity.

tency across evaluators. While domain-specific
expertise was not strictly required, the annotators’
familiarity with Al and health contexts contributed
to a more nuanced understanding of the generated
image—text pairs. This results in 34,746 pieces of
health-related information, of which 5,791 were
collected from open-source datasets and 28,955
were generated by Al models Examples of reliable
and unreliable news generated by humans and Al
are in Figure 7 in the appendix. The news arti-
cles are written in diverse styles by different LLMs
while addressing the same topic. While Stable Dif-
fusion 1.5 generates dramatically different images,
other models slightly manipulate the original im-
ages while maintaining a realistic appearance.

3.2 Data Statistics and Analysis

Overall data statistics. All instances in MM-
Health are multimodal, containing both textual and
visual information for reliability and originality
studies, with the proportion of reliable to unreli-
able articles being approximately 4:1. We split our
dataset into training and testing sets by randomly
selecting 80% and 20% of the news articles from
the collected data instances. Additionally, 10%
of the training set is further split into a validation
set. As shown in Table 5, this results in a total of
4,154 training samples, 463 validation samples, and
1,159 testing samples from human-generated news
articles, while 20,770, 2,315, and 5,795 samples
are used for training, validation, and testing, respec-
tively, from Al-generated news articles. To ensure
the generalisation of our dataset across all split sets,
we further analyse the data statistics in each set,
including the average text length and the average
number of images per article from both human and
Al sources. The average text length and number
of images are consistent across different sets. It is
worth noting that the average text length generated
by Al is shorter than that of the original human text,
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with an average of around 450 words compared to
approximately 850 words. Additionally, unreliable
news articles tend to be shorter, averaging around
650 to 750 words, while containing more images
per article around 6 to 8 images compared to around
1.5 images in reliable articles.The overall statistics
of the dataset are presented in appendix Table 5.
Data analysis. To identify the differing data char-
acteristics across the five AI models, we compare
their statistics in Table 2. For text models, we
calculated the average article length from all five
text models. There is a noticeable variation among
the models, with ChatGLM-4 tending to generate
longer articles, while Mistral-v0.3 is more likely to
generate shorter articles. Additionally, we utilise
the OpenAl text-embedding-3-small model to
generate text embeddings for both human and Al
articles, comparing their semantic differences us-
ing cosine similarity. For news articles that are too
long to fit into the model’s 8,191 context window,
we split these long articles into smaller chunks and
compute the mean vectors of all chunks to obtain
the final text embedding representations for those
articles. As indicated on the left side of Table 2,
the average cosine semantic similarities across the
text models range from 0.76 to 0.78. We plot the
Gaussian Kernel Density Estimation (KDE) (Zhu
et al., 2022) distribution of the semantic similarity
in Figure 2, showing that the cosine similarities are
concentrated between 0.8 and 0.85 across all mod-
els, with slight variance. Notably, a small number
of generated articles exhibit low semantic similarity
when compared to human generated articles.

For image models, we calculated both the
Fréchet Inception Distance (FID) (Seitzer, 2020)
and the average cosine image similarity between
Al-generated images and collected images. FID
is a common metric used to evaluate the quality
of images created from generative models by com-
paring the distribution of generated images with
that of real images. A lower FID score indicates
greater similarity between the generated and real
images. The average cosine similarity is computed
between the vector representations of Al and real
images, extracted using ResNet (He et al., 2016).
The average FID and average cosine image sim-
ilarities are reported in right side of Table 2, we
also plot KDE of the cosine image similarity in
Figure 3. We observe that Stable Diffusion 1.5
exhibits the greatest image variance compared to
other models, while Stable Diffusion XL and its
VAE and PAG variations generate the most similar

All Datasets - All Splits
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Figure 2: KDE distribution of the semantic similarity
between the human articles and articles from five LLMs.
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Figure 3: KDE distribution of image similarity between
real and generated images across five image models.

images. These trends hold for both the average and
distribution analyses of the image models. Unlike
the text models, no generated images exhibit low
similarity when compared to real images.

4 Experiments

Existing multimodal vision LLMs can provide in-
sightful descriptions for input text and image data,
offering the most accessible way to interact com-
pared to other deep learning models that require
extensive training. We utilise both proprietary and
open-source models as baselines to detect data reli-
ability and originality using our MM-Health dataset
and describe the benchmarking of these models.

4.1 Task Definition

We designed three benchmark tasks to evaluate
baseline models’ performance against both the re-
liability and originality of the health information
collected in MM-Health. Those tasks are described
as follows:

Task 1: Information reliability check. This task
evaluates the VLLMSs’ capability to distinguish
whether the provided information is reliable or un-
reliable. We provide the models with three differ-
ent data settings: text-only data with human and
Al content separated, text-image data with human
and Al content separated, and text-image data with
human and Al content mixed.
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Reliable Unreliable

40  4o-mini Llama3.2-V LLaVA-1.6 Qwen2-VL  MedGemma 40  4o-mini Llama3.2-V LLaVA-1.5 Qwen2-VL.  MedGemma

zs A A FS A FS A FS A FS zs zs zs FS A FS A FS zs FS
Text Human 0499 0499  0.500 0.499 0.500 0.494 0499 0499 0499 0485 0334 0328 0246 0376 0.077 0348 0.162 0.348 0.295 0.409
Al 0.499  0.500 1.000 0436 1.000 0.498 0.500 0.499 1.000 0.499 0.183  0.105 0.020 0238 0.010 0.101 0.019 0.113 0.081 0.208
Human 0499 0499 0499 0499 0.500 0.495 0.499 0.498 0.527 0.495 0.371 0.353 0312 0.373 0.085 0.351 0.140 0.340 0.304 0.393
Al 0498  0.499 0498 0454 1.000 0.498 0.499 0.500 0.532 0.499 0314 0261 0250 0331 0.030 0207 0.084 0.247 0.229 0.327
AI-T25% 0499 0499 0499 0468 1.000 0.497 0498 0.500 0.499 0.499 0.347 0304 0287 0349 0.065 0267 0.124 0302 0274 0.381
'{exl & AI-T 50%  0.500 1.000  0.499 0477 1.000 0.497 0499 0500 0.499 0.499 0.347 0304 0286 0347 0.065 0267 0.124 0302 0274 0.385
MALE  ALT75% 1.000 1.000 1.000 0490 1.000 0497 0499 0.500 0499 0.499 0395 0372 0.330 0.381 0.086 0339 0207 0392 0.363 0437
AI-I25% 0.498 0.499 0.498 0450 1.000 0.499 0.500 0.500 0.499 0.499 0313 0262 0245 0328 0.040 0221 0.089 0244 0231 0.333
AI-150% 0499  1.000  0.499 0.450 1.000 0.499 0.500 0.499 0.500 0.500 0310 0264 0253 0333 0.043 0219 0.075 0231 0.261 0.341
AI-175%  1.000 1.000  0.499 0449 1.000 0497 1.000 0.499 1.000 1.000 0310 0265 0252 0333 0.037 0212 0.077 0244 0.253 0.336

Table 3: Marco F1 score of Task 1 information reliability check. "ZS" is zero-shot and "FS" is five-shot.

Task 2: Information originality check. This task
evaluates the VLLMs’ capability to distinguish
whether the provided information is Al-generated,
human-generated, or mixed. Following a similar
approach to Task 1, we provide the models with
content that is either separated into human and Al
categories or mixed.

Task 3: Fine-Grained AI Detection Analysis.
This task provides deeper insights into the infor-
mation originality check from Task 2. Since we
applied five different text and image generation
models for our MM-Health dataset, we mixed the
Al-generated data to create twenty-five different
variations. This allows us to evaluate which com-
binations are the easiest or hardest for baseline
models to detect as Al-generated.

4.2 Baseline Models

We established various multimodal baselines, in-
cluding both proprietary and open-source mod-
els for a comprehensive comparison. Pro-
prietary models: We employed GPT-40 and
GPT-40 Mini, which have demonstrated excel-
lent performance on open-source benchmarks
such as MMLU (Hendrycks et al., 2021), Hu-
manEval (Chen et al., 2021a), and MMMU (Yue
et al., 2024), and are widely adopted in vision
and language research. These models serve as a
benchmark standard, representing the top zero-shot
performance that current state-of-the-art VLLMs
can achieve. Open-sourced models: We include
three general open-source VLLMs for a compre-
hensive comparison. These models are: Llama-3.2-
Vision, built on the Llama-3.1-8B text model with
a 2-billion-parameter vision encoder; LLaVA-1.6,
which utilises the 7-billion-parameter Qwen v1.5
model with CLIP-ViT-L-336 attached via an MLP
projection layer; and Qwen2-VL, which employs
Multimodal Rotary Position Embedding (M-RoPE)
with a 675M vision encoder and Qwen2-7B, re-

sulting in a total of 7.6B parameters. To further
access the performance of domain specific model,
we also include MedGemma, which is a 4B model
of Gemma3 variants that are trained for perfor-
mance on medical text and image comprehension.
These models demonstrate competitive zero-shot
performance on vision-and-language benchmarks.

4.3 Experiment Settings.

For the GPT-40 and GPT-40 mini models, we use
the OpenAl API endpoints: gpt-40-2024-08-06
and gpt-40-mini-2024-07-18, respectively,
throughout our experiments. Open-source models
are hosted on a server equipped with an Nvidia
A6000 GPU with 48GB of VRAM. To replicate
realistic scenarios in most cases, we retain the
default parameter settings for all models. To fully
utilise the potential of the models, we experiment
with baseline models using both zero-shot and
five-shot settings, employing consistent prompts
designed for different tasks. Zero-shot is directly
evaluated on the testing set, while five-shot uses
five samples from the training set and evaluates the
models on the testing set. We use standard macro
F1 scores to evaluate the baseline models across
all three tasks. See appendix for details.

5 Result

Task 1: Information reliability check. The results
of the information reliability check are presented in
Table 3. We divide the dataset into reliable and un-
reliable articles and apply VLLMs for binary clas-
sification across various data settings, including
text-only, text-image, and mixed text-image con-
tent incorporating both human and Al-generated in-
puts. To assess the impact of Al-generated content,
we introduce varying proportions of Al-generated
context at 25%, 50%, and 75%, in both text and
image modalities. Baseline models perform bet-
ter at classifying reliable articles than unreliable
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Reliable

Unreliable

40  4o-mini Llama3.2-V LLaVA-1.6 Qwen2-VL.  MedGemma 40 4o-mini Llama3.2-V LLaVA-1.6 Qwen2-VL.  MedGemma

s zs s FS s FS YA FS s FS zs s zs FS s FS zs FS s FS
Text Human 0316 0323 0.023 0.321 0242 0321 0493 0.324 0.001 0.075 0254 0266 0012 0.255 0.201 0.267 0.320 0.288 0.006 0.023
Al 0.093 0.074 0327 0.057 0.211 0.041 0.003 0.046 0.000 0.166 0.113  0.122 0495 0.083 0.220 0.062 0.003 0.043 0.028 0.203
Human 0234 0304 0.140 0312 0.137 0319 0321 0.317 0.008 0.012 0263 0239 0069 0.237 0.138 0.279 0301 0298 0.009 0.014
Al 0.155  0.119  0.18 0.122 0271 0.070 0.093 0.071 0.156 0.174 0215 0233 0231 0.164 0.282 0.063 0.091 0.099 0211 0.178
T AI-T25% 0234 0.172 0261 0.144 0261 0.091 0.122 0.094 0.199 0.215 0285 0335 0259 0.145 0.272 0.079 0.122 0.089 0.279 0.241
Iext & AI-T50% 0268 0.188 0316 0.173 0239 0.118 0.143 0.125 0.253 0.283 0.306 0339 0284 0.159 0.270 0.091 0.111 0.097 0.308 0.267
MAgE  ALT75% 0307 0205 0338 0.071 0203 0.127 0.162 0.138 0.280 0.309 0.389 0400 0305 0221 0.173 0.096 0.134 0.116 0272 0.262
AI-I25% 0.236  0.143 0256 0.173 0262 0.100 0.114 0.096 0207 0.218 0261 0264 0279 0.176 0.295 0.067 0.093 0.118 0.262 0.235
AI-I50% 0270 0.180 0.284 0215 0235 0.109 0.143 0.108 0246 0.256 0369 0282 0319 0253 0.193 0.082 0.117 0.188 0.259 0.276
AI-175% 0322 0218 0333 0246 0.185 0.134 0.156 0.130 0.291 0.283 0358 0275 0316 0203 0.154 0.093 0.118 0.194 0.266 0.294

Table 4: Marco F1 score of Task 2 information originality check.
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Figure 4: Heatmap representation of the Task 3 fine-grained AI detection analysis. Each heatmap illustrates F1
scores from various VLLMs across twenty-five different combinations of Al-generated content. Darker colours

represent higher F1 scores.

ones, with a significant disparity in F1 scores ob-
served in both zero-shot and five-shot settings. In
zero-shot setting, some models, such as Llava-1.6,
MedGemma, GPT-40, and GPT-40-min, achieve
perfect F1 scores for reliable articles but strug-
gle to classify unreliable articles. This may be
caused by that the models tend to classify input
information as reliable without proper verification.
In the five-shot setting, models’ performance im-
prove on unreliable articles but worsen on reliable
ones. This suggests that example-based learning
helps the models better understand content for veri-
fication. MedGemma'’s noticeably higher zero-shot
and five-shot performance than other open-source
models suggests that a model with health-domain-
specific knowledge is better equipped to identify
the reliability of health-related information.

Task 2: Information originality check. The re-
sults of the originality check are presented in Ta-
ble 4. We classify the dataset into three categories:
human-generated, Al-generated, and a mix of text-
image content combining human and Al inputs,
for multi-label classification. VLLMs are tasked
with distinguishing whether the input context is
human, A, or human-Al mixed. Similar to Task 1,
we introduce Al-generated content in both text and
images at proportions of 25%, 50%, and 75% to

further evaluate the robustness of VLLMs in distin-
guishing mixed content. Baseline models struggle
to accurately classify the originality of articles in
both zero-shot and five-shot settings. We observe
that baseline models may perform worse in the
five-shot setting, suggesting that current VLLMs
may lack the ability to learn comprehensive rep-
resentations for assessing information originality
using examples. GPT-40 performs the best among
all the models, with MedGemma ranking as the
second-best model, slightly trailing GPT-40 in per-
formance. This performance difference is likely
attributed to the larger dataset and model size used
in GPT-40’s training as well as health specific fine-
tuning in MedGemma training.

Task 3: Fine-grained AI detection analysis.
We visualise the performance of VLLMs using
heatmaps that display the combinations of five
text and five image models, resulting in a total of
twenty-five results per heatmap, as shown in Fig-
ure 4. Each heatmap displays the F1 scores of dif-
ferent open-source VLLMs in the five-shot setting,
with darker colours indicating higher F1 scores in
the binary classification of Al-generated content.
A comparison between the GPT-40 and GPT-4o-
mini models in the zero-shot setting is provided in
the appendix Figure 11 and Figure 12. Among the
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open-source models, Llama-3.2-Vision performs
the best, followed by Qwen2-VL and Llava-1.6.
We observe that text generated by Gemma-2-9B is
more likely to be detected, while text generated by
Qwen-2.5-7B is less likely to be detected. However,
no consistent trend is observed for image models.
The average F1 scores across all baseline models
are approximately 0.2, indicating that none of the
Al models cannot be reliably detected.

The results across all three tasks highlight the
challenges faced by existing SOTA VLLMs. For in-
formation reliability check, model exhibit a strong
bias towards reliable articles but struggle with unre-
liable content. In the information originality check,
models fail to effectively differentiate between hu-
man, Al and mixed content, with five-shot setting
showing no significant improvement. The fine-
grained Al detection analysis decompose the model
performance towards different generative models,
with baseline models achieving low average F1
scores, indicating the need for more advanced
detection methods. These findings demonstrate
that MM-Health presents a challenging benchmark
for the community. By releasing the MM-Health
dataset, we aim to encourage the development of
more robust and effective models to accurately clas-
sifying multimodal health misinformation.

6 Case Study

To provide a deeper understanding of our quantita-
tive results, we conducted a qualitative analysis of
representative classification errors.

6.1 Task 1: Information reliability check.

Models demonstrated a tendency to rely on super-
ficial stylistic cues rather than semantic content,
leading to predictable errors in both directions.
Unreliable Content Misclassified as Reliable.
Models were consistently deceived by unreliable
articles that mimicked credible journalism. These
articles successfully evaded detection by anchoring
misleading narratives to a verifiable fact, adopting
a professional tone, and avoiding obvious red flags.
Instead of containing clear falsehoods, they relied
on biased framing and strategic omissions, which
the models failed to identify.

Reliable Content Misclassified as Unreliable.
Conversely, factually accurate content was often
misclassified as unreliable, primarily due to a
lack of explicit citations. Models also applied
overly cautious heuristics to sensitive domains like

medicine and politics, incorrectly penalizing con-
tent for using generalized language or offering rea-
sonable predictive analysis.

6.2 Task 2: Information originality check.

Similar patterns were observed in detecting text
provenance, where models struggled with content
that either perfectly emulated a known format or
deviated from a perceived natural baseline.
Al-Generated Content Misclassified as Human.
Al-generated text evaded detection by adhering
closely to formal structures, such as news reports or
scientific summaries. Its plausibility was enhanced
by incorporating real-world details, like quoting
public figures or referencing known events, causing
its impersonal and structured format to be mistaken
for authentic human writing.

Human-Written Content Misclassified as Al
Simultaneously, human-authored content was fre-
quently misclassified as Al-generated. This was
particularly common with text that was concise,
logically structured, or satirical. The models ap-
peared to equate clarity and logical structure with
machine-generated text, and they failed to grasp
rhetorical nuances like irony, often processing satir-
ical arguments literally.

7 Conclusion

We introduce MM-Health, a multimodal dataset
designed for detecting human and Al generated
health misinformation. Unlike datasets limited to
human generated information or augmented with
LLM generated text, our approach combines text
and image generative models to create multimodal
counterparts of misinformation. To ensure diversity
in generative model outputs, we incorporate five
different open-source models for each modality.
Our experiments involve six different VLLMs, in-
cluding proprietary GPT-40 and GPT-4omini mod-
els, as well as SOTA open-source models, to eval-
uate data reliability and originality classification.
Experimental results reveal that current VLLMs
cannot accurately detect misinformation and Al-
generated content, highlighting challenges in the
era of generative Al. We hope publicly releasing
the MM-Health dataset guides future research.
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Limitations

In this work, we limited data collection to two
modalities due to their prevalence on mainstream
social platforms. This decision restricts the range
of misinformation addressed by MM-Health, par-
ticularly from short-video platforms like TikTok,
thereby limiting the scope of its potential applica-
tions. We encourage future studies to incorporate
a broader variety of modalities to further enhance
the diversity of machine-generated health informa-
tion. Additionally, we exclusively employed out-
of-the-box multimodal language models for mis-
information detection, aiming to emulate common
practices among the general public as our baseline.
Given the existence of several specialised models
designed for misinformation detection, we suggest
further research to facilitate a more comprehen-
sive comparison. Finally, there is a potential risk
that the synthetic health misinformation could be
misused by malicious actors. While we acknowl-
edge this risk, the relatively small scale of the data
generated in this study is unlikely to significantly
exacerbate the existing challenge posed by the vast
amount of health misinformation already circulat-
ing on the internet.

Ethical Considerations

All experiments strictly adhere to the Code of
Ethics. In Section 3.1.1, which details our hu-
man evaluation in data collection, we clearly in-
formed the human evaluators of the task and that
their responses would be utilized to assess the
capabilities of large generative models. To en-
sure the anonymity and privacy of individuals in-
volved in the data collection, we implemented a
de-identification protocol. We directly remove all
human evaluators’ names associated with the gen-
erated data, all de-identified articles are stored in
plain text format, without any identifying informa-
tion. The original raw data are permanently deleted
after the de-identification process. By taking these
steps, we ensure that our data collection and analy-
sis processes align with ethical guidelines and data
protection regulations.
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A Remove Images

Examples of removed images during health misin-
formation collection, those images include blurry,
logo-based, fuzzy, or meaningless images, which
are often downloaded during web scraping.

" a— T
Tk

Blurry image Logo image Fuzzy image

ﬂ - -

Fuzzy image

Icon image Meaningless image

Figure 5: Sample of removed images after web scrap-
ping. These images are irrelevant to the health topic,
including blurry, logo-based, fuzzy, or meaningless im-
ages.

B Overall Statics

The overall statics of MM-Health is presented in
Table 5, we utilised five different generative models
for both text and image modalities to form the Al-
generated portion of the dataset. The average text
length and number of images are consistent across
different sets.

C Post-process Algorithm

We developed Algorithm 1 to post-process data
alignment between the human-generated context
and all five Al-generated contexts. R,; and
Rimage represent the human data collected from

the open-source datasets, while Nt(ekgzt and Nz(:l)a ge
are inputs derived from Al-generated text and im-
ages, where k ranges from one to five, representing
the five different models. The outer loop iterates
through each possible text-image pair across all
models, while the inner loop checks the pair Nieyt,
and Nimagej against all five models. Only when
text and image pairs from all five models exist will
the matched data be added to M, to form the

final dataset.

D Generation Prompts

The generation prompts are presented in Figure 6.
Within the prompts, text highlighted in blue repre-
sents the raw input images extracted from the news
article. Green text highlights indicate the original

Algorithm 1 Text and Image Alignment Across
Models

Ensure: Ric.t, Rimage

Require: N *®) N

text’ * Yimage’
Mfinal <~ @
for all Nicat;, Nimage,; do
match < true

for k < 1to5do

k=1,..,5

if IV, t(fa?ti ¢ Rieat V N, i("r]:L)agej ¢ Rimage
then
match < false
break
end if
end for
if match = true then
Mfimzl <~ Mfmal U
(Rtezti 5 Rimagej 5 Ntezt,' 5 Nimagej )
end if
end for

return My, q

news article content, while grey text shows the in-
termediate output from GPT-40, and orange text
denotes the final generated output. The generation
examples are shown in Figure 7, and we ensure
the generations are similar to the original images
but with modifications to mimic the real-world sce-
nario where misinformation is only slightly differ-
ent from the truth.

E Experiment prompts

We present the prompts used for all three tasks in
the experiment, covering both zero-shot and five-
shot settings. Both proprietary and open-source
models follow the same prompts. Figure 8 il-
lustrates the zero-shot and five-shot prompts for
the information reliability check, Figure 9 depicts
the prompts for the information originality check,
and Figure 10 presents the prompts for the fine-
grained Al detection analysis. Article inputs are
highlighted in green, while model outputs are high-
lighted in orange. Since models may not always
produce the exact output specified in the prompts,
we run each model several times until all responses
are correctly formatted to meet the output require-
ments.

F Heatmaps

We present the heatmaps in Figure 11 and Fig-
ure 12 for GPT40, GPT40-mini, Llama-3.2-Vision,
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. Reliable Unreliable
Split Source
Article # AvgLen. Image# AvgIPA. Article# AvgLen. Image# AvgIPA.

Train Human 3345 848.34 5175 1.55 809 635.77 6917 8.55

Al 16725 463.84 25768 1.54 4045 450.56 34084 8.43

Val Human 373 856.01 586 1.57 90 749.04 709 7.88

Al 1865 464.34 2917 1.56 450 455.93 3415 7.59

Test Human 932 822.82 1435 1.54 227 669.3 1572 6.93

Al 4660 460.21 7139 1.53 1135 450.28 7695 6.78

Overall Human 4650 843.84 7196 1.55 1126 651.58 9198 8.17

Al 23250 463.15 35824 1.54 5630 450.93 45194 8.03

Table 5: Overall statistics of the MM-Health dataset, where "Avg Len" represents the average word count of the
articles, and "Avg IPA" indicates the average image count per article. The statistics are provided for both human and

Al data across all data splits.

g Text | )

GPT-40 Summary
- PROMPT

Please summarize a topic based
on the following image and text:
<Original article text>
<Original article images>

- OUTPUT:

[GPT-40 article summary]

Text Generation
- PROMPT

Please write an new article to

& Inage | \

GPT-40 Caption

- PROMPT

Describe this image with a short sentence:
<Original article images>

- OUTPUT:

[GPT-40 image caption]

Image Generation

- PROMPT

<GPT-40 image caption> with photo realistic,
detailed, 8k uhd, dslr, soft lighting, high
quality, Fujifilm XT3 quality.

¢ new - IMAGE
support thl? ;Oplc' <Original article images>
<Gz$_}:8T?rtlc e summary> — OUTPUT:
n X Model generated image
[LLM generated text] L [ 9 gel )
. 7

Figure 6: Al generation prompts. Text generation prompts are shown on the left side of the figure. Image generation
prompts are shown on the right side of the figure.

The Coronavirus: What Scientists
Have Learned So Farin\nA novel
respiratory virus that originated in
Wuhan, China, last December has
spread to six continents.

Breaking: The SARS-CoV-2
Pandemic: Understanding the Novel
Respiratory Virus Behind COVID-19.
As the world grapples with the rapidly
spreading novel respiratory virus
SARS-CoV-2

The Emergence and Impact of
SARS-CoV-2: A Novel Respiratory
Virus.In early 2020, a novel
respiratory virus emerged in Wuhan,
China, marking the beginning of one
of the most significant global health
crises in recent history

Original

Llama3.1

Qwen2.5

SARS-CoV-2: The Emerging
Pandemic and Its Devastating
Impact. A novel respiratory virus
known as SARS-CoV-2 has made a
significant impact on global health
since its discovery in December
2019 in Wuhan, China.

ANew Threat: Understanding the
Global Impact of COVID-19. The
world is grappling with a new and
formidable foe: SARS-CoV-2, a novel
coronavirus responsible for the
disease now known as COVID-19.

The emergence of SARS-CoV-2, also
known as Covid-19, has brought the
world to a standstill. The novel
respiratory virus originated in Wuhan,
China, in December 2019 and quickly
spread globally.

Chatglm4

Gemma2

(a) Reliable

Mistral-ve.3

news generated from both human and Al

As we have previously reported
here at Health Impact News,
doctors all across the world have

Dr. Charles Mok, a respected
physician in the community, has
been charged with healthcare fraud

Atthe center of this controversy is
Dr. Charles Mok, a Michigan-based
doctor who was recently charged

Chatglm4

Gemma2

Mistral-ve.3

(b) Unreliable news generated from both human and Al

for administering an unapproved with health care fraud for his use of 4 Kz
seen great success in treating
COVID-19 patients with high-dose treatment to patients suffering from high-dose intravenous (IV) Vitamin i Py ®
" it < th COVID-19: high-dose intravenous C therapy to treat COVID-19 ‘ -] 2 e Au '3
Intravenous Vitamin C therapy. Vitamin C therapy. patients L) L S
- Original FLUX SD-1.5
Original Llama3.1 Qwen2.5 g
Ina case that has ignited a heated Dr. Charles Mok, a physician This was demonstrated in a recent
debate, Michigan physician Dr. , a phy: case involving Dr. Charles Mok, a
practicing in Macomb County, has / X
Charles Mok faces charges of Michigan doctor who has been // // ) //
been accused of health care fraud by 7.
health care fraud for his {oderal authorites for troating charged with health care fraud for ~
unconventional approach to treating COVID-19 mationts with i h?  fose treating COVID-19 patients with @ ®
COVID-19 patients with high-dose P A high-dose intravenous Vitamin C ° o o
intravenous Vitamin C therapy.
intravenous Vitamin C therapy. therapy.
SD -XL PAG

Figure 7: Examples of human and Al generated (a:) reliable and (b:) unreliable multimodal news. The examples at
the top represent reliable news, while those at the bottom represent unreliable news. Note that the articles have been
rewritten on the same topic and the image details have been manipulated, as pointed by the =-.

Qwen2-VL and Llava-1.6 in zero-shot setting for
task 3 - fine-grained Al detection analysis. All the
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models have been run through the exact zero-shot
settings and prompts as demonstrated in Figure 10.



Jg 0-shot Wa 5 t Wa 5-shot
Text Only Text Only Text and Image
- PROMPT - PROMPT - PROMPT
ARTICLE CONTENT: Please analyze the provided article to determine Please analyze the provided article and the
<article_content> whether the content of the article is real images within the article to whether the
Please analyze the provided article to determine information or misinformation. content of the article is real information or
. article_type: "real_information" or "misinformation” misinformation. article_type:
whether the content of the article is real " ; o ot
real_information” or "misinformation
information or misinformation. Here are some examples:
article_type: "real_information” or "misinformation” Examplel: Here are some examples
DO NOT ADD ANYTHING ELSE. <article_content> Examplel:
- OUTPUT: <RETURN: misinformation> <article_content with images>
[real_information/misinformation] [example 2 - 4] <RETURN: misinformation>
Text and Image Examples: | o TelZIEN |
~ PROMPT <article_content> Example5:
ARTICLE CONTENT: <RETURN: real_information> <article_content with images>
<article_content with images> Now Answer : <RETURN: real_information>
Please analyze the provided article and the images ‘RTI?LE CONTENT: Now Answer
within the article to determine whether the content < I—— ARTICLE CONTENT
; ) ; ; . article_type: "real_information” or "misinformation" <article_content with images>
of the article and images is real information or . .
DO NOT ADD ANYTHING ELSE. article_type: "real_information” or
misinformation. N .
ticle_type: "real_information” or "misinformation” - OUTRUT: misinformation
e H
articte-typ - [real_information/misinformation] DO NOT ADD ANYTHING ELSE
DO NOT ADD ANYTHING ELSE.
- OUTPUT:
- OUTPUT: [real_information/misinformation
[real_information/misinformation
- J AN

Figure 8: Zero-shot and five-shot prompts for task 1 - information reliability check.

g 0-shot | ~ B Ya. 5-shot |
Text Only Text Only Text and Image
- PROMPT - PROMPT - PROMPT
ARTICLE CONTENT: Please analyze the provided article to Please analyze the provided article and the
<article_content> determine whether it is created by human, images within the article to determine whether
Please analyze the provided article to determine generated by AL, or a mixture of both. the article and images are created by humans
. made_by: "ai" or "human" or "mixed” generated by AI, or a mixture of both.
whether it is created by human, generated by AT, or AR PR
made_by: "ai" or "human" or "mixed
a mixture of both. Here are some examples:
made_by: "ai" or "human" or "mixed" Examplel: Here are some examples:
DO NOT ADD ANYTHING ELSE. <article_content> Examplel:
- OUTPUT: <RETURN: misinformation> <article_content>
[ai/human/mixed] [example 2 - 4] <RETURN: misinformation>
Example5: [example 2 - 4]
Text and Image <article_content> Example5:
- PROMPT <RETURN: real_information> <article_content>
ARTICLE CONTENT: Now Answer : <RETURN: real_information>
<article_content with images> ARTICLE CONTENT: Now Answer:
Please analyze the provided article and the images <article_content> ARTICLE CONTENT:
within the article to determine whether the article made_by: "ai’ or "human” or "mixed” <article_content>
and images are created by humans, generated by AI, DO NOT ADD ANYTHING ELSE. made_by: "ai” or "human” or "mixed”
or a mixture of both. ~ OUTPUT: DO NOT ADD ANYTHING ELSE
made_by: "ai" or "human" or "mixed" [ai/human/mixed] - OUTPUT:
— OUTPUT: [ai/human/mixed]
[ai/human/mixed]
(. AN VAN

Figure 9: Zero-shot and five-shot prompts for task 2 - information originality check.

s 0 t

Text and Image
- PROMPT

ARTICLE CONTENT:

<article_content with images>

made_by: "ai" or "human"
- OUTPUT:
[ai/human/mixed]

Please analyze the provided article and the
images within the article to determine whether
the article and images are created by humans,
generated by AI, or a mixture of both.

"mixed"

Figure 10: Zero-shot and five-shot prompts for task 3 - fine-grained Al detection analysis.

&

g 5-shot |

~
Text and Image
- PROMPT
Please analyze the provided article and the
images within the article to determine whether
the article and images are created by humans
generated by AI, or a mixture of both.
made_by: "ai" or "human" or "mixed"
Here are some examples:
Examplel:
<article_content>
<RETURN: misinformation>
[example 2 - 4]
Example5:
<article_content>
<RETURN: real_information>
Now Answer :
ARTICLE CONTENT:
<article_content>
made_by: "ai" or "human" or "mixed"
DO NOT ADD ANYTHING ELSE.
- OUTPUT:
[ai/human/mixed]
J
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Figure 11: Zero-shot GPT40 and GPT40-mini heatmaps for task 3 - fine-grained Al detection analysi
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Figure 12: Zero-shot Llama-3.2-Vision, Qwen2-VL and Llava-1.6 heatmaps for task 3 - fine-grained Al detection
analysis.
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