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Abstract

Fine-tuning large language models (LLMs)
with local data is a widely adopted approach
for organizations seeking to adapt LLMs to
their specific domains. Given the shared char-
acteristics in data across different organizations,
the idea of collaboratively fine-tuning an LLM
using data from multiple sources presents an
appealing opportunity. However, organizations
are often reluctant to share local data, making
centralized fine-tuning impractical. Federated
learning (FL), a privacy-preserving framework,
enables clients to retain local data while shar-
ing only model parameters for collaborative
training, offering a potential solution. While
fine-tuning LLMs on centralized datasets risks
data leakage through next-token prediction, the
iterative aggregation process in FL results in
a global model that encapsulates generalized
knowledge, which some believe protects client
privacy. In this paper, however, we present
contradictory findings through extensive exper-
iments. We show that attackers can still extract
training data from the global model, even using
straightforward generation methods, with leak-
age increasing as the model size grows. More-
over, we introduce an enhanced attack strat-
egy tailored to FL, which tracks global model
updates during training to intensify privacy
leakage. To mitigate these risks, we evaluate
privacy-preserving techniques in FL, including
differential privacy, regularization-constrained
updates and adopting LLMs with safety align-
ment. Our results provide valuable insights and
practical guidelines for reducing privacy risks
when training LLMs with FL.

1 Introduction

In recent years, the advancement of large language
models (LLMs) (Kojima et al., 2022; Touvron et al.,
2023; Team et al., 2023) has prompted many orga-
nizations to explore methods for fine-tuning LLMs
on their own local data, enabling adaptation to spe-
cific domains (Wu et al., 2023; Thirunavukarasu
et al., 2023a). However, due to the limited avail-
ability of domain-specific data within individual or-
ganizations and the potential overlap of data across
different entities, the concept of collaboratively
fine-tuning LLMs using data from multiple organi-
zations has emerged as a promising solution. De-
spite this, many organizations are reluctant to share
data due to fears of data leakage, which makes the
conventional approach of a central entity collecting
and processing all data unacceptable.

To address these privacy concerns, Federated
Learning (FL) (McMahan et al., 2017; Li et al.,
2020a; Zhang et al., 2021) has gained significant
attention as a distributed training paradigm that
allows data owners to retain control over their local
data. In FL, organizations upload only the locally
updated model parameters, which are aggregated
on a central server to form a global model. This
process iterates until the global model converges,
facilitating collaborative training while maintaining
data privacy. The promise of enhanced data privacy
has driven growing research into applying FL to
LLMs (Kuang et al., 2024; Fan et al., 2023).

The generative nature of LLMs introduces sig-
nificant privacy risks, as they can leak private infor-
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mation through the text they generate (Carlini et al.,
2021; Huang et al., 2022). In contrast, the global
model trained in FL is generated by iteratively ag-
gregating local models from different clients, and
hence encapsulates only general knowledge (Chen
and Chao, 2021; Wu et al., 2024) rather than spe-
cific information from individual clients. There-
fore, the global model produced by FL can better
protect sensitive training data from individual or-
ganizations. This belief has driven the widespread
adoption of FL for LLM training (Zhang et al.,
2024; Ye et al., 2024).

In this paper, we challenge this widely accepted
belief and argue that FL is not able to safeguard
privacy in LLM Training. We begin by intro-
ducing a basic attack strategy, wherein the global
model randomly generates text and calculates the
similarity between the generated content and the
training data. The results are shown in Fig. 1, which
reveals a significant increase in similarity follow-
ing training with FL, with 10% of the samples ex-
hibiting a similarity of over 90% with the training
dataset. Furthermore, we demonstrate that this risk
escalates as the model size grows, suggesting that
privacy leakage may be more pronounced in mod-
els with greater capabilities.
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Figure 1: Quantile plot of the similarity score in the top
x% results on the Enron-Email dataset. The dashed line
and solid line represent privacy leakage before and after
fine-tuning, respectively. The definitions of ROUGE-L
and BERTScore can be referred to in Section 3.1.

Moreover, we argue that if malicious organiza-
tions exist within FL training, they could track the
iterative model updates, increasing the leakage risk.
Building upon this, we propose an enhanced attack
strategy specifically designed for FL, which uti-
lizes the logit difference before and after training
to rescale the token probabilities to better infer the
training data. Our experiments with this advanced
attack strategy show that the iterative nature of FL
aggregation significantly increases the potential for
data recovery, allowing attackers to reconstruct the
training data with much greater precision. The

results indicate that this enhanced strategy, when
provided with partial relevant information, can sub-
stantially increase privacy leakage in FL (e.g., a
21.4% increase in leakage for Llama-8B).

To address these emerging privacy risks, we eval-
uate several commonly used privacy-preserving
techniques in FL, including differential privacy
(Wei et al., 2020), update regularization methods
(Li et al., 2020b; Jin et al., 2022) and adopting
safety aligned models (Wang et al., 2024). Our
findings reveal that while these methods can reduce
data leakage to some extent, they also lead to a
degradation in training performance. This suggests
that the current FL framework struggles to strike an
optimal balance between data privacy and training
efficacy, underscoring the need for the development
of new algorithms. Our contributions include:

• We identify critical privacy vulnerabilities in
LLM training with FL, challenging the widely
held assumption that FL can adequately pro-
tect against data leakage.

• We propose a novel attack strategy that ex-
ploits the iterative nature of FL aggregation to
amplify privacy risks.

• We evaluate existing defense mechanisms, an-
alyzing their effectiveness and limitations in
protecting privacy during FL training.

2 Background

2.1 Large Language Models

Large Language Models (LLMs) are advanced ma-
chine learning models designed to process and gen-
erate human-like text. In recent years, LLMs have
made significant strides, excelling in a wide range
of natural language processing (NLP) tasks while
also proving highly adaptable for domain-specific
applications (Wu et al., 2023; Thirunavukarasu
et al., 2023a). Among the most well-known LLMs
are autoregressive models, such as GPT-3 (Kojima
et al., 2022), Llama (Touvron et al., 2023), and
Gemini (Team et al., 2023). These models are
trained to predict the next token in a sequence based
on the preceding tokens, enabling them to gener-
ate coherent and contextually relevant text. This
autoregressive framework has made LLMs particu-
larly effective for a variety of applications, includ-
ing text generation (Wu, 2024), machine translation
(Enis and Hopkins, 2024), and question answering
(Hendrycks et al., 2020).
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2.2 Data Privacy Protection
In the context of this paper, data privacy protection
refers to the safeguarding of training data to pre-
vent its exposure or misuse during the training of
machine learning models, a concern that has gar-
nered increasing attention (Liu et al., 2021; Rigaki
and Garcia, 2023). This issue becomes particularly
critical when LLMs are trained on data containing
confidential or personal information. For autore-
gressive LLMs, the challenge of privacy protection
is heightened because these models can inadver-
tently "memorize" sensitive data during training,
which could later be extracted by malicious actors.
Research has demonstrated that LLMs trained on
proprietary or personal data can inadvertently re-
produce specific details from their training datasets
(Carlini et al., 2021; Huang et al., 2022), posing
a significant risk to industries handling sensitive
information, such as healthcare (Thirunavukarasu
et al., 2023b), finance (Liu et al., 2023), and law
(Lai et al., 2024).

2.3 Federated Learning
Federated Learning (FL) (McMahan et al., 2017) is
a distributed machine learning paradigm that allows
multiple entities to collaboratively train a shared
model without the need to exchange private data.
Instead of aggregating raw data on a central server,
FL enables participants to upload only their locally
updated model parameters, which are then aggre-
gated to form a global model. This approach helps
to ensure that the global model encodes only gen-
eral knowledge (Chen and Chao, 2021; Wu et al.,
2024), rather than specific, sensitive data from indi-
vidual clients’ datasets. As a result, FL has proven
particularly effective in traditional machine learn-
ing tasks (He et al., 2021; Lin et al., 2021).

However, in the case of autoregressive LLMs,
the nature of the training objective—predicting
the next token in a sequence based on prior to-
kens—makes them inherently prone to memoriz-
ing and regenerating samples from the training data.
Consequently, even with FL, the global model may
still be vulnerable to the same privacy risks ob-
served in centralized LLM training.

3 Hacking Methodology
3.1 Threat Model
To illustrate our attack methodology, we first de-
fine the threat scenario addressed in this paper. We
focus on the case where one client maliciously at-
tempts to extract private data from other clients,
which is widely adopted in prior research and re-

flects risks in practical settings (Zhu et al., 2019).
In this framework, malicious clients can access the
global model from the server during each global
communication round but cannot access the local
models of other clients. Hence, the attacker is able
to track the updates of the global model and try to
recover the training data from other clients.

To quantify the extent of data leakage, we pro-
pose to adopt the ROUGE-L (Lin, 2004) and
BERTScore (Zhang et al., 2019) metrics to mea-
sure the similarity between the model’s generated
content and the original training data. Given that
ROUGE is more focused on word-level similarity,
we primarily report ROUGE-L scores in the main
text. More detailed analysis and experimental are
provided in the Appendix F.

For a given input sequence X and its correspond-
ing ground-truth completion Y, the model gener-
ates a predicted completion Ŷ = F(X). We then
compute the data leakage score for this sample us-
ing: R(X, Ŷ) = ROUGE-L(Ŷ,Y).
3.2 Hacking Tasks
To evaluate potential security risks, we examine
two adversarial attack scenarios that reflect real-
istic hacking conditions, which is similar to prior
work (Carlini et al., 2021). These tasks, illustrated
in Fig. 2, model how attackers exploit system vul-
nerabilities under varying levels of prior knowl-
edge (e.g., partial vs. zero access to training data).
By simulating these scenarios, we systematically
assess how different levels of adversarial insight
impact the severity of privacy breaches.

In addition to these two tasks, we design a more
challenging attack scenario where attackers only
has partial and vague knowledge about the training
data. The details are shown in the Appendix D.

[data1]: The GEM team ...... please contact A at NUMBER-A.
  [data2]: ...... you could email them to B at EMAIL@enron.com.

[Input]: [BOS]

[Output]: The GEM
team ...... please

contact A @
NUMBER-A.

most similar with data1

[Input]: ...... you
could email them to

B at 

[Output]:
EMAIL@enron.com.

data2 is completed

Real Info.

a. Zero-Input Generation  b. Partial-Input Completion

Training Data

Figure 2: Tasks for extracting local data.

3.2.1 Tasks 1: Zero-Input Generation
In a highly restrictive scenario, we assume the at-
tacker has no prior knowledge and can only rely on
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the model to randomly generate data in an attempt
to reconstruct information related to the original
training data. In this setup, during each global
communication round in FL, we input an starting
token "[BOS]" into the model and allow it to gen-
erate a complete text. This process is illustrated
in Fig. 2(a). Additionally, we configure the model
to perform random sampling to increase the diver-
sity of the generated text. We refer to this task as
"Zero-Input Generation." For this task, we allow
the model to generate text N = 30 times through
random sampling. We then calculate the similari-
ties between the generated samples and the client’s
training data. For each generated sample, we select
the training sample with the highest similarity as
its match. If any generated sample shows a high
similarity to the training data, we consider it a suc-
cessful leakage.

3.2.2 Tasks 2: Partial-Input Completion
In another scenario, we assume the attacker has
partial knowledge of the client’s training data and
attempts to leverage this information to guide the
model in generating specific details related to the
original data. In this case, for each global model ob-
tained during a round of FL, we select the data used
by various clients in the previous round for local
training. We then provide a portion of the original
data as input to the model and ask it to complete the
remaining text. This task is illustrated in Fig. 2(b).
We refer to this task as "Partial-Input Completion."
In this scenario, we randomly select data samples
from the local datasets of clients trained in the pre-
vious round. For each sample, we provide the first
80% of the data as input to the model, while the
remaining serves as the ground truth containing
private information. The model is then asked to
complete the text based on the given input. We cal-
culate the similarity between the model-generated
portion and the ground truth. If the similarity is
high, we consider it a successful leakage.

3.3 Hacking Schemes
Next, we introduce two hacking schemes to in-
vestigate the privacy vulnerabilities of LLMs fine-
tuning via FL. These schemes aim to extract train-
ing data from the global model. We show that
privacy leakage can be further exacerbated by ex-
ploiting the iterative aggregation process in FL.

3.3.1 Basic Hacking Scheme
The basic attack scheme aims to reconstruct train-
ing data from the current global model by prompt-

ing it to recall client-specific information. Let
the global model at training round T be denoted
as πT . Given the current token sequence X ={x1,⋯, xn}, the next token predicted is sampled
according to: xn+1 ∼ Top-p(πT (⋅ ∣ X)).

This process follows standard nucleus sampling,
where the autoregressive process continues itera-
tively until an end token "[EOS]" is generated.

3.3.2 Enhanced Hacking Scheme
Building upon the basic attack scheme, we propose
an enhanced attack method that exploits the fact
that when a model learns textual data during a train-
ing round, the logits (prediction probabilities) for
tokens related to that text should exhibit noticeable
increases in the subsequent model iteration, even if
their absolute values are not the highest yet.

Based on this intuition, we design a new attack
scheme that utilizes the change in logits between
two consecutive rounds to adjust the model’s pre-
diction for the next token. As illustrated in Fig. 3,
the process of predicting the next token, given an
input prompt, can be broken down into three steps:

Pre-prediction. Given an input prompt X, the
global models at rounds T and T − 1 generate pre-
dictions for the next token, resulting in probability
distributions πT (⋅ ∣ X) and πT−1(⋅ ∣ X).

Difference Calculation. We calculate the dif-
ference between these two logits, highlighting
the token with the most significant probability in-
crease. The difference between πT (⋅ ∣ X) and
πT−1(⋅ ∣ X) is computed as: ∆πT (⋅ ∣ X) =
πT (⋅ ∣ X) − πT−1(⋅ ∣ X).

Fusion. The model’s original prediction πT (⋅ ∣
X) is adjusted using ∆πT (⋅ ∣ X). To reduce the
impact of low-probability tokens, we apply sam-
pling to πT (⋅ ∣ X), producing π̃T (⋅ ∣ X) =
Top-p(πT (⋅ ∣ X)). Then, ∆πT (⋅ ∣ X) is trans-
formed into a weight vector using the softmax
function: wT = Softmax (∆πT (⋅∣X)

τ
), where τ

is the temperature value. The final prediction is
made by sampling from the adjusted distribution:
πnew(⋅ ∣ X) = wT ⊙ π̃T (⋅ ∣ X), where ⊙ refers to
the element-wise multiplication between the weight
vector and the probability of each token.

4 Hacking Results

4.1 Experiment Settings

Models. For our study, we select the LLaMA-3
(Grattafiori et al., 2024) family of LLMs, Gemma-2
(Team et al., 2024), and Qwen2.5 (Yang et al.,
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Figure 3: Workflow of our proposed enhanced hacking scheme.

2024). To explore the extent of leakage across dif-
ferent model sizes, we evaluate LLaMA-3 models
with 1B, 3B, 8B, and 13B parameters, Gemma-2
with 2B parameters and Qwen2.5 with 7B parame-
ters. The results of Gemma-2-2B and Qwen2.5-7B
are provided in the Appendix G.
Dataset. We adopt three datasets (Enron-Email
(Klimt and Yang, 2004), Reddit-Comments (Baum-
gartner et al., 2020), CLERC (Hou et al., 2024)) for
experiments. These three datasets focus on emails,
social media comments and legal cases, respec-
tively, covering a wide range of privacy informa-
tion. A detailed dataset description is shown in Ap-
pendix B. Due to space constraints, we only present
results in Enron-Email dataset in the main paper.
Other results are presented in the Appendix G.
Training Settings. During training, we set the
number of clients to 4, and the FL process runs
for 60 communication rounds. It is important to
note that each client’s local data is used only once
during training, preventing overfitting. In each
communication round, clients perform 200 local
iterations using the AdamW optimizer. For smaller
models, such as LLaMA-3.2-1B, LLaMA-3.2-3B,
Gemma-2-2B and Qwen2.5-7B, the learning rate is
fixed at 5e-5, while for larger models like LLaMA-
3.1-8B and LLaMA-2-13B, the learning rate is set
to 3e-5, in line with related research (Ye et al.,
2024). Please refer to Appendix A for more details.

4.2 Zero-Input Generation

4.2.1 Hacking Details
We conduct experiments on the Zero-Input Gen-
eration task using models of different scales. In
each global training round, after aggregating the lo-
cal updates, we input a begin token into the global
model to randomly generate 30 text samples. We
then compute the similarity between each gener-

ated sample and the original training data, using the
highest similarity value as the result of the attack.

4.2.2 Experimental Results
We first conduct experiments under the basic hack-
ing scheme, and report the top 10% mean, and
top 30% mean ROUGE scores for the generated
samples at each round (see Appendix E for results
under more thresholds). The results in Fig. 4 show
that the model quickly learns to generate content
highly similar to the training data after training be-
gins. As training progresses, the model’s ability to
reconstruct the original training data even improves,
approaching up to 100% similarities without any
prior knowledge. This observation holds true for
models with various scales, which suggests that
even without prior information, models can still
reconstruct training data to a considerable extent.

We further investigate the extent of privacy leak-
age using the enhanced attack scheme introduced in
Section 3.3.2. As illustrated in Fig. 5, the enhanced
attack scheme significantly amplifies privacy leak-
age. On average, the leakage is approximately 10%
greater than that observed with the basic attack
scheme, based on the maximum value across the
entire period. This indicates a counter-intuitive
phenomenon that, FL can be quite vulnerable due
to its iterative process of uploading parameters.

4.3 Partial-Input Completion

4.3.1 Hacking Details
We demonstrate results for the Partial-Input Com-
pletion task in this section. In each global commu-
nication round, we randomly select 100 samples
from the local training datasets as the attack dataset.
For each original training sample, we provide the
first 80% as input and let the model complete the
remaining part (Results when providing the first
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Figure 4: Basic Hacking Scheme results of LLaMA
models for Zero-Input Generation.
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Figure 5: Comparison of two hacking schemes’ results
for Zero-Input Generation.

30% as input are shown in Appendix H). We then
compute the similarity between the generated text
and the original data as the attack result, reporting
the top 10% mean, and top 30% mean scores for
each round.

4.3.2 Autonomous Evaluation Results
The results from the basic attack scheme, illustrated
in Fig. 6, demonstrate that models begin to repro-
duce content highly similar to the original training
data early in the training phase. As training pro-
gresses, this tendency becomes more pronounced,
with an increasing proportion of reconstructed sam-
ples exhibiting faithful reconstruction of the origi-
nal data. To help quantify this, we report the per-
centage of samples whose ROUGE score is above
0.95 (in Table 1 below), which achieve near-perfect
reconstruction.

Threshold (LlaMA-8B) 0.95 0.90

1–10 (Round) 0.4% 0.8%
11–20 0.9% 1.3%
21–30 1.2% 1.7%
31–40 1.4% 1.6%
41–50 1.6% 2.5%
51–60 1.5% 2.3%

Table 1: Percentage of samples with ROUGE-L scores
exceeding thresholds at different training rounds.

When comparing models of varying scales, we
observe that larger models exhibit evidently greater
susceptibility to privacy leakage. This phenomenon
is correlated with downward trends in training loss,
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Figure 6: Hacking results of LLaMA models for Partial-
Input Completion.
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Figure 7: Comparison of two hacking schemes’ results
for Partial-Input Completion.

where larger models achieve lower loss values.
We also report the percentage of samples with a
ROUGE score above 0.95 in Table 2.

Model (LlaMA) 1B 3B 8B 13B

1–10 (Round) 0.1% 0.4% 0.4% 0.4%
11–20 0.5% 0.4% 0.9% 0.8%
21–30 0.5% 0.9% 1.2% 1.1%
31–40 0.4% 0.8% 1.4% 1.4%
41–50 0.5% 1.1% 1.6% 1.8%
51–60 1.0% 1.2% 1.5% 2.0%

Table 2: Percentage of samples with ROUGE-L scores
exceeding 0.95 threshold.

Statistical test. We further assess the statistical
significance of this observation. To this end, we
conduct two sets of paired t-tests under the same
experimental configuration as Fig. 6. One set in-
volves paired t-tests on the average ROUGE scores
of each round across LLaMA models of different
scales (61 rounds, i.e., 61 samples), as shown in
Table 3. The other set consists of paired t-tests on
the ROUGE scores of all hacking samples across
all rounds for LLaMA models of different scales
(61 rounds × 100 samples = 6100 total samples),
as presented in Table 4.

The results of both paired tests consistently show
a positive trend in ROUGE scores for larger models
compared to smaller ones, with positive t-statistics
indicating higher ROUGE scores in larger models.
The p-values are all below 0.05, with some even
below 0.01, which confirms that the conclusion
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1B 3B (vs 1B) 8B (vs 3B) 13B (vs 8B)

t-statistic N/A +17.4726 +5.4644 +2.3185
p-value N/A < 0.01 < 0.01 0.0282
mean 0.1301 0.1622 0.1806 0.1907

Table 3: Paired t-Test Results for mean ROUGE Scores
of each round (61 rounds) Across Llama Models.

1B 3B (vs 1B) 8B (vs 3B) 13B (vs 8B)

t-statistic N/A +20.3498 +10.2681 +2.2812
p-value N/A < 0.01 < 0.01 0.0226
mean 0.1301 0.1622 0.1806 0.1907

Table 4: Paired t-Test Results for ROUGE Scores of
each hacking sample at each round (100×61=6100 sam-
ples) Across Llama Models.

that larger models generally have higher ROUGE
scores is statistically significant.

The findings above suggest a practical dilemma:
while enhanced model capacity improves data fit-
ting, it concurrently amplifies the risk of sensitive
data replication, posing a critical privacy vulnera-
bility.

We also study the extent of increased privacy
leakage using the enhanced hacking scheme. As
shown in Fig. 7, the enhanced hacking scheme
further increases the leakage in FL by 13.4% for
Llama-8B. These results further highlight that the
iterative nature of FL can cause more severe privacy
leakage compared to the use of a single model.

4.3.3 Human Evaluation
We further conduct a human evaluation to present
the extent of Personally Identifiable Information
(PII) leakage. We define five categories of sensitive
PII: (1) phone or fax numbers, (2) email addresses,
(3) personal names, (4) specific dates, and (5) web
links. We then manually analyze reconstructed
samples to calculate the proportion of correctly
recovered PII instances. The results are summa-
rized in Table 5, which reports the number of total
PII instances present in the top 30% reconstructed
samples.

The results highlight three important observa-
tions. First, models leak significantly more PII
after training compared to the pre-trained baseline.
Second, larger models demonstrate a higher rate
of PII leakage. Finally, the human evaluation re-
sults align well with automated metrics, suggesting
that ROUGE-L is a reasonable proxy for privacy
risk in our setup. We further provide representative
case studies in Appendix C to illustrate concrete
examples of such leakage.

5 Prevent the Leakage of Training Data

5.1 Candidates of Prevention Methods

To address these emerging privacy risks, we eval-
uate potential techniques that could mitigate this
issue, including the use of parameter-efficient fine-
tuning methods (LoRA) to prevent over-fitting, dif-
ferential privacy, update regularization methods
and adopting LLMs with safety alignment. We
detail the chosen methods as follows.

Parameter-Efficient Fine-Tuning (LoRA).
LoRA (Low-Rank Adaptation) is a parameter-
efficient fine-tuning approach that modifies only a
small subset of the parameters in LLMs during the
fine-tuning phase (Hu et al., 2021). The key benefit
of LoRA is that it restrict the number of parame-
ters updated during training, which can potentially
slow down the model’s ability to memorize and
overfit to sensitive details from the training data,
thus mitigate the risk of privacy leakage.

Differential Privacy. Differential Privacy (DP)
is a privacy-preserving technique that adds noise
to the model’s updates to prevent leakage of indi-
vidual data points during training. DP works by
adding calibrated noise to the gradients during the
training process, ensuring that the model cannot
overfit to specific individuals’ data, thus preventing
attackers from learning sensitive information about
any specific data point (Wei et al., 2020).

Update Regularization-Based Methods. Up-
date regularization methods are designed to prevent
the model from overfitting or memorizing the train-
ing data by imposing constraints on the updates ap-
plied to the model’s parameters (Teng et al., 2024).
We incorporate this by adding a KL divergence
regularization term to the loss function that penal-
izes the updates between the current model and its
initial training state. This constraint limits exces-
sive changes to the model’s parameters during each
training round, helping to control the extent of mod-
ifications made to the model.This helps to ensure
that the model learns more generalized features,
rather than specific details from individual clients’
data. By limiting the magnitude of the parameter
updates, the model is less likely to overfit, which
could lead to privacy leakage.

However, while these mitigation strategies effec-
tively reduce overfitting and curb privacy leakage,
they risk compromising model capacity and hin-
dering LLMs’ ability to acquire meaningful knowl-
edge from training data. In the following section,
we explore whether it is possible to strike a balance
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Checkpoint Total PII Instances Correctly Recovered Proportion

60th Round of LlaMA-8B 118 44 37.29%
3rd Round of LlaMA-8B 84 14 16.67%
60th Round of LlaMA-1B 101 32 31.68%

Table 5: Human evaluation results showing the proportion of successfully reconstructed PII.
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Figure 8: Privacy leakage results of different models
using LoRA (r=32) under Zero-Input Generation task.

between model capacity (reflected by training loss)
and data leakage.

LLMs with Safety Alignment. Recent align-
ment techniques aim to make LLMs follow human
instructions and avoid generating certain types of
sensitive or harmful content. We are also curious
whether such models are still vulnerable to privacy
attacks that aim to extract training data.

5.2 Experiments
5.2.1 Settings
LoRA. For LoRA experiments, we test the Llama
models of sizes 1B, 3B, 8B, and 13B with ranks r =
32 and α = 64. The 3B model is also compared
under r = 16, α = 32 and r = 64, α = 128. The
dropout rate is set to 0.1.

Differential Privacy. For differential privacy,
we studied the privacy leakage mitigation of the
Llama 3B and 8B models under different noise
multipliers (η ∈ {0.01, 0.2, 0.5, 0.8}). The max
grad norm was set to 1, and δ was set to 1e-5.

KL-Divergence Regularization. For KL diver-
gence regularization, which constrains the updates
between the model and its initial state, we con-
ducted experiments with KL penalty weights (µ)
of 0.001 and 0.01 on the Llama-3B model.

LLMs with Safety Alignment. To evaluate
the privacy leakage of LLMs with alignment un-
der FL settings, we compare LLaMA-3.1-8B with
its aligned version, LLaMA-3.1-8B-Aligned.

5.2.2 Results
LoRA. The results in Figs. 8 and 9 show that when
using LoRA, the largest 13B model exhibits a sig-
nificant increase in data leakage right after training,
while the 8B model shows a delayed increase. In
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Figure 9: Privacy leakage results of different models
using LoRA (r=32) under Partial-Input Completion.

contrast, the 1B and 3B models consistently pro-
duce low similarity scores throughout the training
process. However, we observe that the training loss
for smaller models remains consistently high, indi-
cating that they are unable to effectively learn from
the training data. This is likely due to the reduced
number of trainable parameters when fine-tuning
with LoRA, which slows down convergence, par-
ticularly for smaller models. In summary, while
LoRA can help reduce privacy leakage, it does so at
the cost of model capacity and slower convergence.

Differential Privacy. We report the results of
privacy leakage with varying levels of DP applied
to the Llama 3B and 8B models. As shown in
Figs. 10 and 11, compared to the original method,
applying DP significantly reduces the degree of pri-
vacy leakage. However, it also negatively affects
model performance. This tradeoff between privacy
protection and model efficacy makes it challeng-
ing to fully utilize DP. As shown in results, when
η=0.01, model performance (measured by Loss)
improves compared to when η=0.2, but privacy
leakage (measured by ROUGE-L) also increases.

KL-Divergence Regularization. We report the
results of privacy leakage with KL-Divergence up-
date constraints applied to the Llama-3B model
during fine-tuning. As shown in Fig. 12 and 13,
compared to the original method, the higher the
level of KL-Divergence regularization, the more
significantly privacy leakage is reduced. However,
considering the train loss, this constraint also leads
to the model struggling to fit the data.

LLMs with Safety Alignment. The results
shown in Fig. 14 indicate that fine-tuning aligned
models reduce the degree of privacy leakage com-

23993



0 10 20 30 40 50 60
Round (r)

0.2

0.4

0.6

0.8

1.0

M
ea

n 
of

 R
OU

GE
-L

Mean of Top 10% ROUGE-L
Llama-3B, =0.01
Llama-3B, =0.2
Llama-3B, =0.5
Llama-3B, =0.8
Llama-3B, no DP

(a) Results on Llama-3B.

0 10 20 30 40 50 60
Round (r)

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

Lo
ss

Train Loss

Llama-3B, =0.01
Llama-3B, =0.2
Llama-3B, =0.5
Llama-3B, =0.8
Llama-3B, no DP

(b) 3B Train loss.

0 10 20 30 40 50 60
Round (r)

0.2

0.4

0.6

0.8

1.0

M
ea

n 
of

 R
OU

GE
-L

Mean of Top 10% ROUGE-L
Llama-8B, =0.01
Llama-8B, =0.2
Llama-8B, =0.5
Llama-8B, =0.8
Llama-8B, no DP

(c) Results on Llama-8B.
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Figure 10: Privacy leakage with different levels (η) of differential privacy for Zero-Input Generation task.
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(a) Results on Llama-3B.
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(c) Results on Llama-8B.
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Figure 11: Privacy leakage with different levels(η) of differential privacy for Partial-Input Completion task.
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(a) Results on Llama-3B.
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Figure 12: Privacy leakage with different KL penalty
weights (µ) for Zero-Input Generation task.
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(a) Results on Llama-3B.
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Figure 13: Privacy leakage with different KL penalty
weights (µ) for Partial-Input Completion task.

pared to the non-aligned version. However, aligned
LLMs still exhibit risk of data leakage, especially
under the enhanced hacking scheme.

5.3 Discussion

From the experiments presented above, it is evident
that regardless of the approach used, it seems hard
to both prevent privacy leakage and maintain model
capacity simultaneously. In other words, to achieve
better privacy protection, there is a noticeable trade-
off in terms of the model’s fitting ability during
training. This indicates that while existing methods
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Figure 14: Results comparison of LLaMA-3.1-8B w/
and w/o alignment under two hacking schemes.

provide a certain level of privacy protection, they
are mainly suitable for tasks where the model’s
fitting capacity is not a critical requirement. For
applications that demand higher model capacity,
new privacy protection techniques are still required.

6 Conclusion

In this paper, we demonstrate that FL may not fully
address privacy concerns in LLM training. Our
experiments show that LLMs can leak sensitive
training data through generated text. We introduce
an enhanced attack strategy that exploits the itera-
tive transmission of model parameters during FL
to amplifies these risks. While privacy-preserving
techniques like differential privacy and update reg-
ularization offer some mitigation, they come at the
cost of reduced model performance. These findings
suggest the need for further research to develop
more effective privacy solutions in FL for LLMs.
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Limitation

This paper investigates the privacy leakage in train-
ing LLMs with FL from their generative output.
However, due to resource limitations, several as-
pects remain unexplored. Firstly, we only focus
on the fine-tuning stage. Recently, some studies
have advocated for pre-training LLMs in a feder-
ated manner (Sani et al., 2024), and our work may
raise potential concerns regarding these approaches.
Additionally, our study does not investigate pri-
vacy leakage issues in more LLM tasks like RLHF
(Ouyang et al., 2022) and DPO (Rafailov et al.,
2024), and we plan to extend in the future.

Acknowledgement

This work was supported by the National Nat-
ural Science Foundation of China under Grants
62372028 and 62372027, and by the Central
Guiding Local Science and Technology Develop-
ment Fund of Shanghai Municipality (Project No.
YDZX20253100004011)

References
Jason Baumgartner, Savvas Zannettou, Brian Keegan,

Megan Squire, and Jeremy Blackburn. 2020. The
pushshift reddit dataset. In Proceedings of the inter-
national AAAI conference on web and social media,
volume 14, pages 830–839.

Nicholas Carlini, Florian Tramer, Eric Wallace,
Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar
Erlingsson, et al. 2021. Extracting training data from
large language models. In 30th USENIX Security
Symposium (USENIX Security 21), pages 2633–2650.

Hong-You Chen and Wei-Lun Chao. 2021. On bridging
generic and personalized federated learning for image
classification. arXiv preprint arXiv:2107.00778.

Maxim Enis and Mark Hopkins. 2024. From llm to
nmt: Advancing low-resource machine translation
with claude. arXiv preprint arXiv:2404.13813.

Tao Fan, Yan Kang, Guoqiang Ma, Weijing Chen, Wen-
bin Wei, Lixin Fan, and Qiang Yang. 2023. Fate-
llm: A industrial grade federated learning frame-
work for large language models. arXiv preprint
arXiv:2310.10049.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, et al. 2024. The llama 3 herd of mod-
els. arXiv e-prints, pages arXiv–2407.

Chaoyang He, Alay Dilipbhai Shah, Zhenheng Tang,
Di Fan1Adarshan Naiynar Sivashunmugam, Keerti
Bhogaraju, Mita Shimpi, Li Shen, Xiaowen Chu,
Mahdi Soltanolkotabi, and Salman Avestimehr.
2021. Fedcv: a federated learning framework
for diverse computer vision tasks. arXiv preprint
arXiv:2111.11066.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Abe Bohan Hou, Orion Weller, Guanghui Qin, Eu-
gene Yang, Dawn Lawrie, Nils Holzenberger, An-
drew Blair-Stanek, and Benjamin Van Durme. 2024.
Clerc: A dataset for legal case retrieval and retrieval-
augmented analysis generation. ArXiv.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Jie Huang, Hanyin Shao, and Kevin Chen-Chuan Chang.
2022. Are large pre-trained language models leak-
ing your personal information? arXiv preprint
arXiv:2205.12628.

Hai Jin, Dongshan Bai, Dezhong Yao, Yutong Dai, Lin
Gu, Chen Yu, and Lichao Sun. 2022. Personalized
edge intelligence via federated self-knowledge dis-
tillation. IEEE Transactions on Parallel and Dis-
tributed Systems, 34(2):567–580.

Nikhil Kandpal, Krishna Pillutla, Alina Oprea, Peter
Kairouz, Christopher A Choquette-Choo, and Zheng
Xu. 2023. User inference attacks on large language
models. arXiv preprint arXiv:2310.09266.

Bryan Klimt and Yiming Yang. 2004. The enron corpus:
A new dataset for email classification research. In
European conference on machine learning, pages
217–226. Springer.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
neural information processing systems, 35:22199–
22213.

Weirui Kuang, Bingchen Qian, Zitao Li, Daoyuan Chen,
Dawei Gao, Xuchen Pan, Yuexiang Xie, Yaliang Li,
Bolin Ding, and Jingren Zhou. 2024. Federatedscope-
llm: A comprehensive package for fine-tuning large
language models in federated learning. In Proceed-
ings of the 30th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining, pages 5260–5271.

Jinqi Lai, Wensheng Gan, Jiayang Wu, Zhenlian Qi, and
Philip S Yu. 2024. Large language models in law: A
survey. AI Open.

Li Li, Yuxi Fan, Mike Tse, and Kuo-Yi Lin. 2020a. A
review of applications in federated learning. Comput-
ers & Industrial Engineering, 149:106854.

23995

https://arxiv.org/pdf/2406.17186
https://arxiv.org/pdf/2406.17186


Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar San-
jabi, Ameet Talwalkar, and Virginia Smith. 2020b.
Federated optimization in heterogeneous networks.
Proceedings of Machine learning and systems, 2:429–
450.

Bill Yuchen Lin, Chaoyang He, Zihang Zeng, Hulin
Wang, Yufen Huang, Christophe Dupuy, Rahul
Gupta, Mahdi Soltanolkotabi, Xiang Ren, and
Salman Avestimehr. 2021. Fednlp: Benchmarking
federated learning methods for natural language pro-
cessing tasks. arXiv preprint arXiv:2104.08815.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Bo Liu, Ming Ding, Sina Shaham, Wenny Rahayu,
Farhad Farokhi, and Zihuai Lin. 2021. When ma-
chine learning meets privacy: A survey and outlook.
ACM Computing Surveys (CSUR), 54(2):1–36.

Xiao-Yang Liu, Guoxuan Wang, Hongyang Yang, and
Daochen Zha. 2023. Fingpt: Democratizing internet-
scale data for financial large language models. arXiv
preprint arXiv:2307.10485.

Brendan McMahan, Eider Moore, Daniel Ramage,
Seth Hampson, and Blaise Aguera y Arcas. 2017.
Communication-efficient learning of deep networks
from decentralized data. In Artificial intelligence and
statistics, pages 1273–1282. PMLR.

Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013
conference of the north american chapter of the as-
sociation for computational linguistics: Human lan-
guage technologies, pages 746–751.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730–27744.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2024. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neu-
ral Information Processing Systems, 36.

Maria Rigaki and Sebastian Garcia. 2023. A survey of
privacy attacks in machine learning. ACM Comput-
ing Surveys, 56(4):1–34.

Lorenzo Sani, Alex Iacob, Zeyu Cao, Bill Marino, Yan
Gao, Tomas Paulik, Wanru Zhao, William F Shen,
Preslav Aleksandrov, Xinchi Qiu, et al. 2024. The fu-
ture of large language model pre-training is federated.
arXiv preprint arXiv:2405.10853.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth, Katie

Millican, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Gemma Team, Morgane Riviere, Shreya Pathak,
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati-
raju, Léonard Hussenot, Thomas Mesnard, Bobak
Shahriari, Alexandre Ramé, et al. 2024. Gemma 2:
Improving open language models at a practical size.
arXiv preprint arXiv:2408.00118.

Zeyu Teng, Yong Song, Xiaozhou Ye, and Ye Ouyang.
2024. Fine-tuning llms for multi-turn dialogues: Op-
timizing cross-entropy loss with kl divergence for all
rounds of responses. In Proceedings of the 2024 16th
International Conference on Machine Learning and
Computing, pages 128–133.

Arun James Thirunavukarasu, Darren Shu Jeng Ting,
Kabilan Elangovan, Laura Gutierrez, Ting Fang Tan,
and Daniel Shu Wei Ting. 2023a. Large language
models in medicine. Nature medicine, 29(8):1930–
1940.

Arun James Thirunavukarasu, Darren Shu Jeng Ting,
Kabilan Elangovan, Laura Gutierrez, Ting Fang Tan,
and Daniel Shu Wei Ting. 2023b. Large language
models in medicine. Nature medicine, 29(8):1930–
1940.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Zhichao Wang, Bin Bi, Shiva Kumar Pentyala, Ki-
ran Ramnath, Sougata Chaudhuri, Shubham Mehro-
tra, Xiang-Bo Mao, Sitaram Asur, et al. 2024. A
comprehensive survey of llm alignment techniques:
Rlhf, rlaif, ppo, dpo and more. arXiv preprint
arXiv:2407.16216.

Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H
Yang, Farhad Farokhi, Shi Jin, Tony QS Quek, and
H Vincent Poor. 2020. Federated learning with differ-
ential privacy: Algorithms and performance analysis.
IEEE transactions on information forensics and se-
curity, 15:3454–3469.

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski,
Mark Dredze, Sebastian Gehrmann, Prabhanjan Kam-
badur, David Rosenberg, and Gideon Mann. 2023.
Bloomberggpt: A large language model for finance.
arXiv preprint arXiv:2303.17564.

Xinghao Wu, Xuefeng Liu, Jianwei Niu, Haolin Wang,
Shaojie Tang, Guogang Zhu, and Hao Su. 2024. De-
coupling general and personalized knowledge in fed-
erated learning via additive and low-rank decomposi-
tion. ArXiv, abs/2406.19931.

Yonghui Wu. 2024. Large language model and text
generation. In Natural Language Processing in
Biomedicine: A Practical Guide, pages 265–297.
Springer.

23996

https://api.semanticscholar.org/CorpusID:270845711
https://api.semanticscholar.org/CorpusID:270845711
https://api.semanticscholar.org/CorpusID:270845711
https://api.semanticscholar.org/CorpusID:270845711


An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jian-
hong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang,
Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu,
Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng
Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tian-
hao Li, Tingyu Xia, Xingzhang Ren, Xuancheng
Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan
Qiu. 2024. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115.

Rui Ye, Wenhao Wang, Jingyi Chai, Dihan Li, Zexi
Li, Yinda Xu, Yaxin Du, Yanfeng Wang, and Siheng
Chen. 2024. Openfedllm: Training large language
models on decentralized private data via federated
learning. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Min-
ing, pages 6137–6147.

Chen Zhang, Yu Xie, Hang Bai, Bin Yu, Weihong Li,
and Yuan Gao. 2021. A survey on federated learning.
Knowledge-Based Systems, 216:106775.

Jianyi Zhang, Saeed Vahidian, Martin Kuo, Chunyuan
Li, Ruiyi Zhang, Tong Yu, Guoyin Wang, and Yi-
ran Chen. 2024. Towards building the federatedgpt:
Federated instruction tuning. In ICASSP 2024-2024
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 6915–6919.
IEEE.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. arXiv preprint
arXiv:1904.09675.

Ligeng Zhu, Zhijian Liu, and Song Han. 2019. Deep
leakage from gradients. Advances in neural informa-
tion processing systems, 32.

23997



A Training Details

We list important training hyper-parameters in Ta-
ble 6. Generally, we adopt a common hyperpa-
rameter setting in fine-tuning LLMs. We use the
AdamW optimizer for improved weight decay han-
dling, with a cosine learning rate scheduler to fa-
cilitate smooth convergence. Gradient clipping is
applied to mitigate exploding gradients. Addition-
ally, for experiments where LoRA is implemented,
we set the dropout rate to be 0.1 to prevent over-
fitting. In each communication round in federated
learning, each client train for 200 iterations before
parameter aggregation. Finally, the epoch number
is set to 1, which means each data sample is learned
at most for one times during training, thereby pre-
venting the model from over-fitting.

Hyper-Parameter Value
Optimizer AdamW
β1 0.99
β2 0.999
Gradient Clipping Norm 1.0
Batch Size 8
Weight Decay 0.01
LR Scheduler cos
Local Iterations 200
Epochs 1
Max Seq. Length 512
Client Number 4

Table 6: Hyper-parameter settings.

We use the following models in our experiments:
LLaMA-3.2-1B, LLaMA-3.2-3B, LLaMA-3.1-8B,
and LLaMA-2-13B, Gemma-2-2B, Qwen2.5-7B.
The total computational budget amounted to ap-
proximately 2,000 GPU hours, and all experiments
were conducted using A800 GPUs.

B Dataset Description

We fine-tuned our models using three distinct
datasets.

The Enron-Email Dataset (Klimt and Yang,
2004) contains approximately 0.5 million emails
from about 150 Enron employees. These publicly
available emails are rich in private information,
including names, addresses, phone numbers, and
company-specific data. This type of data is widely
recognized as private and frequently used to bench-
mark privacy leakage studies (Huang et al., 2022).

The Reddit-Comments Dataset (Baumgartner
et al., 2020) was created by selecting the first

25,000 comments from each of the 40 most fre-
quented subreddits from a larger collection of Red-
dit comments from May 2019. This approach bal-
ances comment volume across subreddits, making
it suitable for analysis where subreddits are treated
as categorical data. This dataset aggregates user
comments from the Reddit platform, which include
diverse sensitive information and have been utilized
in privacy-related research (Kandpal et al., 2023).

The CLERC Dataset (Hou et al., 2024) is a col-
lection of legal case documents derived from all
federal case law in U.S. history up to September
21, 2021. This dataset includes 1.84 million doc-
uments and provides different formats for various
tasks: ‘CLERC/doc‘ contains raw case documents
with concatenated opinions, ‘CLERC/passage‘ of-
fers documents split into 350-word chunks with a
175-word sliding window for retrieval tasks, and
‘CLERC/generation‘ provides passages specifically
for generation tasks. Many of these legal docu-
ments contain personally identifiable information.

C Case Study

In this section, we present several representative
hacking cases to intuitively demonstrate the ex-
tent to which generated data can replicate private
data. We also provide statistics on the number of
instances that exactly match the original private
data.

We analyze the outputs of the LLaMA-3.1-8B
model under the basic hacking scheme (correspond-
ing to Figs. 4 and 6 at the final round of training.
The specific results are summarized in Table 9.

Examples of exactly matched cases are shown
in Table 7.

As shown, the proportion of samples containing
exactly matched sensitive information is already
non-negligible. This is particularly concerning in
scenarios where longer text passages are generated,
as they may include precisely reconstructed sensi-
tive data such as phone numbers.

D Disturbed-Input Completion Task

The two tasks studied in the main Section 3.2 cor-
respond to scenarios with no prior information and
with partial exact information, respectively. In this
section, we extend the research to a more general
scenario, where only vague partial information is
available. The details are as follows.
Method. Specifically, based on the Partial-Input
Completion task, we apply a method of substitut-
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Original Text (Private Data) Generated Text
[BOS] Date: Fri, 1 Dec 2000 08:29:00 -0800 (PST)

From: mailbot@datek.com To: lcampbel @enron.com

Subject: "Datek Online execution report" Body: Dear
Mr. LARRY CAMPBELL : Thank you for your order. You
bought 20 shares of CIEN (Ciena Corp Com) at 78 7/8.
ORDER DETAILS: The tracking number for this order
is: B-600-AATE-9686 Order entered at: 08:37:39 on
12/01/00 Order processing began at: 08:37:40 Order
executed at: 08:37:40 on 12/01/00 ACCOUNT DETAILS:
Time and Date: 08:37:41 on 12/01/00 Your position in
CIEN is ...

[BOS] Date: Wed, 13 Dec 2000 09:29:00 -0800 (PST)

From: mailbot@datek.com To: @enron.com

Subject: "Datek Online execution report" Body: Dear
: Thank you for your order. You

bought 50 shares of CIEN (Ciena Corp Com) at 79 7/8.
ORDER DETAILS: The tracking number for this order
is: Order entered at: 08:54:47 on
12/13/00 Order processing began at: 08:54:48 Order
executed at: 08:55:41 on 12/13/00 ACCOUNT DETAILS:
Time and Date: 08:55:42 on 12/13/00 Your position in
CIEN is 100 shares Your real cash total is ...

[BOS] Date: Thu, 16 Nov 2000 12:12:00 -0800 (PST)
From: @enron.com To:

@enron.com Subject: Holiday

Invitation Body: Please click on the attached link
to launch your Holiday Party invitation.

http:// Please direct any

questions to via email.

[BOS] Date: Thu, 21 Dec 2000 06:00:00 -0800 (PST)
From: @enron.com To:

@enron.com Subject: Holiday
Invitation Body: Please click on the attached link
to launch your Holiday Party invitation.

http:// Please direct any

questions to via email.

Date: Mon, 22 Oct 2001 04:55:34 -0700 (PDT) From:
no.address@enron.com Subject: All-Employee Meeting
Body: ...... Enron Europe employees will receive a
follow-up message from their Public Relations team
concerning online access to the meeting. Video
Teleconferencing. The meeting will be made available
by video teleconference to employees in

, Rio de Janeiro,

. If your location would like to

participate by video teleconference, please contact

at .

Date: Mon, 22 Oct 2001 04:55:34 -0700 (PDT) From:
no.address@enron.com Subject: All-Employee Meeting
Body: ...... Enron Europe employees will receive a
follow-up message from their Public Relations team
concerning online access to the meeting. Video
Teleconferencing. The meeting will be made available
by video teleconference to employees in

, Bothell,

. If your

location would like to participate by video

teleconference, please contact at

.

Date: Fri, 5 Oct 2001 10:38:17 -0700 (PDT) From:
pppcmail@pppc.org To: pppcmail@pppc.org Subject:
International Uncoated Mechanical Paper Statistics
...... For questions or comments concerning
Economics Online, please contact: Doreen Olkowicz
Manager, Statistics and Online Services T

F E-mail

@pppc.org

Date: Fri, 5 Oct 2001 10:38:17 -0700 (PDT) From:
pppcmail@pppc.org To: pppcmail@pppc.org Subject:
International Uncoated Mechanical Paper Statistics
...... For questions or comments concerning
Economics Online, please contact: Doreen Olkowicz
Manager, Statistics and Online Services T

F E-mail

@pppc.org

Date: Wed, 20 Sep 2000 09:44:00 -0700 (PDT) From:
eric.bass@enron.com To: jason.bass2@compaq.com
Subject: Give me a call Body:

Date: Wed, 20 Sep 2000 09:44:00 -0700 (PDT) From:
eric.bass@enron.com To: jason.bass2@compaq.com
Subject: Give me a call Body:

Date: Tue, 8 Aug 2000 09:31:00 -0700 (PDT) From:
phillip.allen@enron.com To: ina.rangel@enron.com
Subject: Your Approval is Overdue: Access Request
for paul.t.lucci@enron.com Body: .......@enron.com
to approve the request or contact IR M at

if you have any issues. Request ID :

Request Create Date : 7/27/00

2:15:23 PM Requested For : @enron.com
Resource Name : EOL US NatGas US GAS PHY FWD FIRM
Non-Texas < or = 1 Month Resource Type :
Applications

Date: Tue, 8 Aug 2000 09:31:00 -0700 (PDT) From:
phillip.allen@enron.com To: ina.rangel@enron.com
Subject: Your Approval is Overdue: Access Request
for paul.t.lucci@enron.com Body: .......@enron.com
to approve the request or contact IR M at

if you have any questions. Request ID

: Request Create Date : 7/26/00

11:02:22 AM Requested For : @enron.com

Resource Name : EOL US Backoffice Data Manager
Resource Type : Applications

Table 7: Examples of exactly matched cases. The input portions are shown in black, while the generated (predicted)
content is highlighted in blue. The black masked segments represent sensitive private data that were precisely
reconstructed by the model.
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ing certain words in the input sequence X with
synonyms to perturb the text, aiming to retain the
original meaning while avoiding an exact match
with the original text, thus simulating an attacker
with imprecise knowledge. We begin with the fol-
lowing steps.

1) Select substituted words. For each word w
in the text, we set a probability p for replacing this
target word.

2) Word filtering: For the selected word w, we
ensure that personal information such as names,
phone numbers, and email addresses is retained
and not replaced. Additionally, some "stop words,"
like articles and prepositions, are not substituted.

3) Synonym extraction: For the word w that
is to be replaced, we use pre-trained word vectors
(GoogleNews-vectors-negative300 (Mikolov et al.,
2013)) to select a set of semantically similar words
from the vocabulary, forming a candidate set C for
substitution.

4) Part-of-speech (POS) check: For the candi-
date set C, we retain words with the same part-of-
speech as the target word, ensuring the grammatical
integrity of the text.

5) Word replacement: Finally, we select the
word from the candidate set C that is most similar
to the target word and make the substitution.
Experiment settings. The configuration for the
hacking experiments is based on the Partial-Input
Completion task, as detailed in Section 4.3. In the
word replacement, we set p to 0.4, meaning that
40% of the words are expected to be replaced.
Results. We conduct experiments on the 1B, 3B,
and 8B LLaMA models, comparing the results with
those from the Partial-Input Completion task. As
shown in Fig. 15, for all three models, using per-
turbed vague information leads to less privacy leak-
age than using exact partial information. Notably,
when hacking with exact partial information, some
results approach a ROUGE-L score of 1, whereas
hacking with perturbed vague information signifi-
cantly reduces the upper bound of privacy leakage,
maintaining a lower overall level.

The comparison of results across the three model
groups is shown in Fig. 15d. It can be observed
that the average leakage degree increases from 1B
to 3B to 8B, indicating that larger models tend to
suffer from more severe privacy leakage, which
aligns with the conclusion in Section 4.3.
Discussion. Overall, perturbing the input helps
mitigate the extent of accurate privacy leakage in
the global model. However, we need to emphasize

that even under such a scenario, substantial data
leakage might also occurs. This indicates that at-
tackers are able to extract privacy information from
vague, partial information, which suggests great
potential threats.

E Results of Main Experiments under
Different Thresholds

In this section, we provide additional results for
various thresholds (e.g., top 10%, top 30%, top
50%, 100%) corresponding to Section 4. These are
shown in Fig. 16, 17, 18 and 19. From the results,
we generally observe that for any given threshold,
the hacked model completions have a substantially
higher similarity compared to ground truths. This
suggests a serious data leakage problem.

F Evaluation on Different Metrics

F.1 BERTScore
For evaluation, we primarily adopt ROUGE-L in
the main paper, given its widespread use in recent
studies for measuring text similarity. To provide a
more comprehensive assessment, we additionally
report other metrics such as BERTScore (Zhang
et al., 2019), which capture similarity from dif-
ferent aspects. Detailed results are presented in
Fig. 20, 21 and 22.

Here, we carefully discuss the differences be-
tween the chosen metrics and their suitability for
hacking evaluation. BERTScore and ROUGE dif-
fer in their approach to measuring text similarity.
BERTScore calculates semantic similarity based on
the BERT model’s output, which considers word
meanings and context. In contrast, ROUGE evalu-
ates word-level similarities by measuring the over-
lap of unigrams, bigrams, and n-grams.

Given that the goal of our attack is to recon-
struct sensitive data (e.g., emails, phone num-
bers) from the global model, word-level similar-
ity (as measured by ROUGE) becomes more pre-
cise. We provide an example in Table 8 below,
where we observe different results for ROUGE-
L and BERTScore on generated texts. The lower
ROUGE-L score for the generated text suggests
less accurate preservation of specific privacy infor-
mation. However, the BERTScore remains high
because of similar semantics.

F.2 ROUGE-1 & ROUGE-2
Among the ROUGE family of metrics, ROUGE-1
and ROUGE-2 focus on unigram and bigram over-
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(a) Comparison on LLaMA-1B.
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(b) Comparison on LLaMA-3B.
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(c) Comparison on LLaMA-8B.
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(d) Disturbed-Input Completion on 3 LLaMA models.

Figure 15: Disturbed-Input results compared with Partial-Input. This experiment is repeated across LLaMA-1B,
LLaMA-3B and LLaMA-8B using Enron Email dataset.
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(a) Top 10% ROUGE values.
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(b) Top 30% ROUGE values.
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(c) Top 50% ROUGE values.
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(d) Top 100% ROUGE values.

Figure 16: Basic Hacking Scheme results of LLaMA-1B, LLaMA-3B, LLaMA-8B, LLaMA-13B models for
Zero-Input Generation using Enron Email dataset.
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(a) Top 10% on LLaMA-8B.
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(b) Top 30% on LLaMA-8B.
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(c) Top 50% on LLaMA-8B.
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(d) Top 100% on LLaMA-8B.
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(e) Top 10% on LLaMA-13B.
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(f) Top 30% on LLaMA-13B.

0 10 20 30 40 50
Round (r)

0.2

0.4

0.6

0.8

1.0

M
ea

n 
of

 R
OU

GE
-L

Mean of Top 50% ROUGE-L
Enhanced
Basic

(g) Top 50% on LLaMA-13B.
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(h) Top 100% on LLaMA-13B.

Figure 17: Comparison of two hacking schemes’ results for Zero-Input Generation. Experiments are repeated using
LLaMA-8B and LLaMA-13B using Enron Email dataset.
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(a) Top 10% ROUGE values.
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(b) Top 30% ROUGE values.
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(c) Top 50% ROUGE values.
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(d) Top 100% ROUGE values.

Figure 18: Basic Hacking Scheme results of LLaMA models for Partial-Input Completion. Experiments are repeated
using LLaMA-1B, LLaMA-3B, LLaMA-8B and LLaMA-13B using Enron Email dataset.
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(a) Top 10% on LLaMA-8B.
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(b) Top 30% on LLaMA-8B.
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(c) Top 50% on LLaMA-8B.
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(d) Top 100% on LLaMA-8B.
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(e) Top 10% on LLaMA-13B.
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(f) Top 30% on LLaMA-13B.
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(g) Top 50% on LLaMA-13B.
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(h) Top 100% on LLaMA-13B.

Figure 19: Comparison of two hacking schemes’ results for Partial-Input Completion. Experiments are repeated
using LLaMA-8B and LLaMA-13B using Enron Email dataset.
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(a) Top 10% ROUGE-L for Zero-Input Generation.
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(b) Top 10% BERTScore for Zero-Input Generation.
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(c) Top 10% ROUGE-L for Partial-Input Completion.
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(d) Top 10% BERTScore for Partial-Input Completion.

Figure 20: Basic Hacking Scheme results of ROUGE-L and BertScore for Zero-Input/Partial-Input Generation.
Experiments are repeated using LLaMA-1B, LLaMA-3B, LLaMA-8B and LLaMA-13B using Enron Email dataset.
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(a) ROUGE-L LLaMA-8B.
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(b) BERTScore LLaMA-8B.
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(c) ROUGE-L LLaMA-13B.
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(d) BERTScore LLaMA-13B.

Figure 21: Enhanced Hacking Scheme results of ROUGE and BertScore for Zero-Input Generation. Experiments
are repeated using LLaMA-8B and LLaMA-13B using Enron Email dataset.
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(a) ROUGE-L LLaMA-8B.
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(b) BERTScore LLaMA-8B.
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(c) ROUGE-L LLaMA-13B.
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(d) BERTScore LLaMA-13B.

Figure 22: Enhanced Hacking Scheme results of ROUGE and BertScore for Partial-Input Completion. Experiments
are repeated using LLaMA-8B and LLaMA-13B using Enron Email dataset.

laps, respectively, while ROUGE-L measures the
longest common subsequence between the gener-
ated and reference texts. This makes ROUGE-L
more effective in capturing the overall structure
and fluency of the output, which is particularly
important for tasks that require coherent and well-
ordered text generation, such as summarization or
open-ended generation. Nevertheless, ROUGE-1
and ROUGE-2 remain valuable for evaluating lex-
ical overlap and local consistency. In addition to
ROUGE-L, we report ROUGE-1 and ROUGE-2
scores to provide a more comprehensive assess-
ment of the similarity between generated text and
private data. The detailed results are shown in
Fig. 23, 24 and 25. As shown, the performance
and trends of ROUGE-1, ROUGE-2, and ROUGE-
L are highly consistent, further supporting the con-
clusions drawn from the experiments in Section 4
regarding privacy leakage.

G Evaluation of More Models and
Datasets

The main text reports results for the LLaMA fam-
ily of LLMs on the Enron Email Dataset. This
appendix broadens the scope by evaluating two
base models, Gemma-2-2B and Qwen2.5-7B, and

by adding two domain-distinct corpora, the Reddit
Comments Dataset and the CLERC Dataset.

G.1 Enron Email Dataset

We benchmark Gemma-2-2B and Qwen2.5-7B on
the Enron Email Dataset, comparing the two hack-
ing tasks under both hacking schemes.

As shown in Fig. 26 and 27, both models already
reveal substantial privacy leakage in the basic hack-
ing scheme. And the enhanced hacking scheme
amplifies this leakage even further.

G.2 Reddit Comment Dataset

Next, we evaluate LLaMA-3.1-8B, Gemma-2-2B,
and Qwen2.5-7B on the Reddit Comments Dataset,
contrasting the two hacking tasks under both
schemes.

As shown in Fig. 28 and 29, both models exhibit
noticeable privacy leakage under the basic hack-
ing scheme. However, the performance gain from
the enhanced hacking scheme is relatively limited
compared to the other datasets. We hypothesize
that this is due to the characteristics of the Red-
dit Comments Dataset: the comments are typically
short, semantically diverse, and contain relatively
few meaningful named entities or content-specific
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(a) Top 10% ROUGE-1 for Zero-Input Generation.
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(b) Top 10% ROUGE-2 for Zero-Input Generation.

0 10 20 30 40 50 60
Round (r)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ea

n 
of

 R
OU

GE
-1

Mean of Top 10% ROUGE-1 Values
Llama-1B
Llama-3B
Llama-8B
Llama-13B

(c) Top 10% ROUGE-1 for Partial-Input Completion.
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(d) Top 10% ROUGE-2 for Partial-Input Completion.

Figure 23: Basic Hacking Scheme results of ROUGE-1 and ROUGE-2 for two hacking tasks. Experiments are
repeated using LLaMA-1B and LLaMA-3B, LLaMA-8B and LLaMA-13B using Enron Email dataset.
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(a) ROUGE-1 on LLaMA-8B.
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(b) ROUGE-2 on LLaMA-8B.
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(c) ROUGE-1 on LLaMA-13B.
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(d) ROUGE-2 on LLaMA-13B.

Figure 24: Enhanced Hacking Scheme results of ROUGE-1 and ROUGE-2 for Zero-Input Generation. Experiments
are repeated using LLaMA-1B and LLaMA-3B, LLaMA-8B and LLaMA-13B using Enron Email dataset.
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(a) ROUGE-1 on LLaMA-8B.
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(b) ROUGE-2 on LLaMA-8B.
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(c) ROUGE-1 on LLaMA-13B.
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(d) ROUGE-2 on LLaMA-13B.

Figure 25: Enhanced Hacking Scheme results of ROUGE-1 and ROUGE-2 for Partial-Input Completion. Experi-
ments are repeated using LLaMA-8B and LLaMA-13B using Enron Email dataset
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(a) Top 30% on Gemma-2-2B.
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(b) Top 50% on Gemma-2-2B.
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(c) Top 30% on Qwen2.5-7B.
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(d) Top 50% on Qwen2.5-7B.

Figure 26: Comparison of two hacking schemes’ results for Zero-Input Generation on Enron Email Dataset.
Experiments are repeated using Qwen2.5-7B and Gemma-2-2B.
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(a) Top 30% on Gemma-2-2B.
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(b) Top 50% on Gemma-2-2B.
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(c) Top 30% on Qwen2.5-7B.
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(d) Top 50% on Qwen2.5-7B.

Figure 27: Comparison of two hacking schemes’ results for Partial-Input Completion on Enron Email Dataset.
Experiments are repeated using Qwen2.5-7B and Gemma-2-2B.
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(a) Top 30% on Gemma-2-2B.
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(b) Top 50% on Gemma-2-2B.
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(c) Top 30% on Qwen2.5-7B.
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(d) Top 50% on Qwen2.5-7B.
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(e) Top 30% on LLaMA-3.1-8B.
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(f) Top 50% on LLaMA-3.1-8B.

Figure 28: Comparison of two hacking schemes’ results for Zero-Input Generation on Reddit Comment Dataset.
Experiments are repeated using Qwen2.5-7B, Gemma-2-2B and LLaMA-3.1-8B.
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(a) Top 30% on Gemma-2-2B.
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(b) Top 50% on Gemma-2-2B.
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(c) Top 30% on Qwen2.5-7B.
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(d) Top 50% on Qwen2.5-7B.

0 10 20 30 40 50 60
Round (r)

0.0

0.2

0.4

0.6

0.8

Me
an

 of
 R

OU
GE

-L

Mean of Top 30% ROUGE-L
Enhanced
Basic

(e) Top 30% on LLaMA-3.1-8B.
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(f) Top 50% on LLaMA-3.1-8B.

Figure 29: Comparison of two hacking schemes’ results for Partial-Input Completion on Reddit Comment Dataset.
Experiments are repeated using Qwen2.5-7B, Gemma-2-2B and LLaMA-3.1-8B.
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Original Text Generated Text ROUGE-L BERTScore

Request ID: 000000000021442
Request Create Date: 3/2/01 8:27:00 AM
Requested For: mike.grigsby@enron.com

Resource Name: Market Data Bloomberg
Resource Type: Applications

Request ID: 000000000021442
Request Create Date: 6/13/01 10:11:04 AM
Requested For: mike.grigsby@enron.com
Resource Name: \nahoutrd\houston\pwr

\common\Electric - [Read]
Resource Type: Directory

0.667 0.989

Table 8: An example of generated text and evaluation scores.

Total Extraction Instances Exactly Matched Instances

Zero-Input Generation 30 4
Partial-Input Completion 100 10

Table 9: Statistics of extracted and exactly matched instances for two hacking tasks.

terms. These properties make it more difficult for
our difference-based enhanced hacking method to
effectively extract target tokens.

G.3 CLERC Dataset
Finally, we present results for LLaMA-3.1-8B,
Gemma-2-2B, and Qwen2.5-7B on the CLERC
Dataset, following the identical evaluation protocol
with two hacking tasks and two hacking schemes.

As shown in Fig. 30 and 31, both models already
reveal substantial privacy leakage in the basic hack-
ing scheme. And the enhanced hacking scheme
amplifies this leakage even further.

H Different Percents of Input for the
Partial-Input Completion

In section 4.3, we provide the first 80% as input and
let the model complete the remaining part for each
original training sample in Partial-Input Comple-
tion. In this section, we also conduct experiments
on LLaMA-3.1-8B model using 30% of the input
in the Partial-Input Completion scenario to better
understand the impact of varying the input amount.
The experimental results are shown in Fig. 32, indi-
cating that even with 30% input, the attack remains
effective, though worse than with 80% input. The
enhanced scheme improves reconstruction quality
in both cases.

I Use of AI Assistants

In this paper, we use AI assistants only for lan-
guage polishing purposes. No original content was
generated by the AI, and all code implementations
were completed entirely by human.
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(a) Top 30% on Gemma-2-2B.
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(b) Top 50% on Gemma-2-2B.
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(c) Top 30% on Qwen2.5-7B.
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(d) Top 50% on Qwen2.5-7B.

0 5 10 15 20 25 30
Round (r)

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

Me
an

 of
 R

OU
GE

-L

Mean of Top 30% ROUGE-L
Enhanced
Basic

(e) Top 30% on LLaMA-3.1-8B.
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(f) Top 50% on LLaMA-3.1-8B.

Figure 30: Comparison of two hacking schemes’ results for Zero-Input Generation on CLERC Dataset. Experiments
are repeated using Qwen2.5-7B, Gemma-2-2B and LLaMA-3.1-8B.
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(a) Top 30% on Gemma-2-2B.
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(b) Top 50% on Gemma-2-2B.
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(c) Top 30% on Qwen2.5-7B.
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(d) Top 50% on Qwen2.5-7B.
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(e) Top 30% on LLaMA-3.1-8B.
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(f) Top 50% on LLaMA-3.1-8B.

Figure 31: Comparison of two hacking schemes’ results for Partial-Input Completion on CLERC Dataset. Experi-
ments are repeated using Qwen2.5-7B, Gemma-2-2B and LLaMA-3.1-8B.
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(a) Top 10% ROUGE-L score with 30% Input.
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(b) Top 10% ROUGE-L score with 80% Input.
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(c) Top 30% ROUGE-L score with 30% Input.

0 10 20 30 40 50 60
Round (r)

0.2

0.4

0.6

0.8

1.0

Me
an

 of
 R

OU
GE

-L

Mean of Top 30% ROUGE-L
Enhanced
Basic

(d) Top 30% ROUGE-L score with 80% Input.

Figure 32: Comparison of different input amount results for Partial-Input Completion on LLaMA-3.1-8B model and
Enron Email Dataset.
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