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Abstract

The reliability of large language models
(LLMs) is greatly compromised by their ten-
dency to hallucinate, underscoring the need
for precise identification of knowledge gaps
within LLMs. Various methods for probing
such gaps exist, ranging from calibration-based
to prompting-based methods. To evaluate these
probing methods, in this paper, we propose a
new process based on using input variations
and quantitative metrics. Through this, we ex-
pose two dimensions of inconsistency in knowl-
edge gap probing. (1) Intra-method inconsis-
tency: Minimal non-semantic perturbations in
prompts lead to considerable variance in de-
tected knowledge gaps within the same prob-
ing method; e.g., the simple variation of shuf-
fling answer options can cause an agreement
as low as 40%. (2) Cross-method inconsis-
tency: Probing methods contradict each other
on whether a model knows the answer. Meth-
ods are highly inconsistent — with decision con-
sistency across methods being as low as 7% —
even though the model, dataset, and prompt are
all the same. These findings challenge existing
probing methods and highlight the urgent need
for perturbation-robust probing frameworks of
knowledge gaps.

1 Introduction

While large language models (LLMs) are increas-
ingly applied across diverse NLP tasks, under-
standing the limits of their knowledge remains a
core challenge — particularly in mitigating hallu-
cinations (Wang et al., 2023c), where models pro-
duce fluent yet factually incorrect outputs (Ji et al.,
2023a; Maynez et al., 2020; Tam et al., 2023; Ji
et al., 2023b). This has led to increasing interest
in identifying knowledge gaps — a situation where
the model lacks the necessary knowledge to answer
a question, meaning it either does not know or is
uncertain about the correct answer.
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Figure 1: Examples of the two major dimensions of
inconsistency in knowledge gap probing that we focus
on in this paper. In the intra-method comparison (top),
the same probing method gives contradictory assess-
ments (certain vs not certain) for the same LLM and
the same question with options shuffled, revealing in-
ternal inconsistency. In the cross-method comparison
(bottom), different probing methods applied to the same
LLM yield conflicting judgments — two probing meth-
ods maintain that the LLM is certain about the answer,
while the third does not. These results illustrate that
knowledge gap detection in LLMs can be unreliable and
sensitive to method choice and prompt perturbation.

To address this, a growing body of work pro-
poses probing methods that aim to act as detec-
tion tools for LLMs’ knowledge gaps (Wang et al.,
2023c), based on various signals such as prompt-
ing (Feng et al., 2023), self-consistency (Miindler
et al., 2024; Feng et al., 2024b), token probabili-
ties (Guo et al., 2017; Jiang et al., 2021) and cal-
ibrated hidden representations (Slobodkin et al.,
2023; Azaria and Mitchell, 2023).

These knowledge probing methods are increas-
ingly used to infer whether a model “knows” the
answer to a question. However, an underexplored
issue is the consistency and reliability of the prob-
ing methods themselves: Based on their predic-
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tions, how reliable are these probing methods and
do we actually know what LLMs don’t know?

To answer this question, we present a systematic
study of consistency within and between probing
methods. In practical applications, prompt varia-
tions such as typos or slight changes in word order
are common. While they can influence LLM out-
puts (Salinas and Morstatter, 2024; Pezeshkpour
and Hruschka, 2024; Hedderich et al., 2025), the
underlying knowledge gaps should remain un-
changed, and probing methods should be robust
to such slight perturbations.

To evaluate whether probing methods are reli-
able, we conduct a systematic evaluation of consis-
tency within and across popular probing methods.
Specifically, we propose a framework with two
comparison dimensions (as illustrated in Figure 1):

(i) Intra-method consistency — whether a
method yields stable predictions under surface-
level prompt perturbations (e.g., typos, answer re-
ordering);

(ii) Cross-method consistency — whether dif-
ferent probing methods agree when applied to the
same model and input.

We design four distinct prompting variants to
systematically evaluate different probing methods,
LLMs and datasets, and we propose new consis-
tency metrics for the two diagnostic axes (intra-
method and cross-method) to quantify the con-
sistency. Note that we do not evaluate whether
LLMs are consistent, but whether the probing meth-
ods that evaluate LLM behavior are consistent and
whether we can thus trust their assessment.

Our work reveals a paradox: These tools them-
selves suffer from alarming inconsistencies, casting
doubt on the validity of their predictions. We iden-
tify four main findings:

* Minimal prompt perturbations, such as in-
troducing typos, reduce the consistency met-
ric with the original prompt down to around
39%, revealing hypersensitivity to surface-
level variations.

* Even when moving from zero-shot to few-
shot prompting to guide the model, we still
observe inconsistencies in the detected knowl-
edge gaps — reaching down to 4%.

* The scaling rule (that bigger models are less
inconsistent) does not always hold for the con-
sistency of the probing methods. We observe
that probing consistency of some methods on

a 70B model is even lower than on the 1B or
3B models.

* All the probing methods exhibit large incon-
sistencies, both within individual methods and
across different methods. The lowest observed
cross-method consistency has a decision con-
sistency of just 7% and intra-method consis-
tency reaches a minimum of just 2%. We
publicly release our evaluation code.!

2 Related Work
2.1 Knowledge Probing Methods

Knowledge probing methods have been pro-
posed to extract stable signals that quantify
model certainty and diagnose potential knowl-
edge gaps (Petroni et al., 2019; Youssef et al.,
2023). Several works have focused on identify-
ing internal signals that reflect a model’s certainty
about the given answer, including token probabili-
ties, response consistency, self-reported confidence
scores (Kadavath et al., 2022).

To make use of these signals, researchers have
developed several strategies which Feng et al.
(2024b) broadly categorize into four categories:
calibration-based methods align model confidence
with empirical accuracy to set abstention thresh-
olds (Sun et al., 2022; Kuhn et al., 2023); training-
based methods fine-tune models or probe internal
representations to estimate answer veracity (Cobbe
et al., 2021); prompting-based approaches guide
models to assess uncertainty through reflective or
information-seeking prompts (Si et al., 2023; Wang
et al., 2023a); and self-consistency methods gen-
erate multiple reasoning paths to assess stability
and reliability in outputs (Feng et al., 2024b; Wang
et al., 2023b; Miao et al., 2023).

More recently, efforts have moved beyond single-
model paradigms, leveraging multi-LL.M collabora-
tion (Feng et al., 2024a,b) and interpretability tech-
niques such as analyzing activation patterns (Arditi
et al., 2024; Wang et al., 2024) and tracing neuron-
level circuits (Yao et al., 2024). These methods
aim to identify reliable indicators of model cer-
tainty and genuine knowledge, which are critical
for downstream tasks such as hallucination detec-
tion (Manakul et al., 2023; Chen et al., 2023), re-
fusal strategies (Cao, 2024; Xu et al., 2024; Zhang
et al., 2024) and honesty evaluation (Chern et al.,
2024; Li et al., 2024; Yang et al., 2023).

"https://github.com/raoyuanzhao/Probing_Uncertainty
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We select probing methods from each of Feng
et al. (2024b)’s categories for our evaluation:

Calibration. These methods define a confidence
score obtained from the model and optimize a
threshold to minimize misclassifications between
correct and incorrect examples. Token Probabil-
ity (TOKPROB) (Feng et al., 2024b) measures the
model’s confidence based on the output probability
of the response. Ask for Calibration (ASKCAL)
(Tian et al., 2023) prompts the model to output a
confidence score for the response.

In these methods, an additional classi-

’

Training.
fier is trained to predict whether the model “knows’
or “doesn’t know” the answer to a given question.
Embedding Training (EMBEDDING) (Slobodkin
et al., 2023; Azaria and Mitchell, 2023) involves
training the classifier on the hidden states of the
LLM in conjunction with the model’s prediction.

Prompting. These methods utilize post-response
prompting, where the model reassesses its previous
response. Self-Reflect (SELFREF) (Kadavath et al.,
2022) first predicts the answer for a given question
and then reassesses whether this response is correct
or not. If the model deems its response incorrect, it
is assumed there is a knowledge gap. Similarly, in
More Information (MOREINFO) (Liu et al., 2023),
the model is asked if it requires more information.
If the model responds affirmatively, it is assumed
that it does not know the answer to the question.

Consistency. ‘“None-of-the-Above” (NOTA) is
an approach where an additional “NOTA” option is
appended (Feng et al., 2024b). If the model selects
this option, it indicates a knowledge gap.

2.2 Prompt Sensitivity in Language Models

Prompting has become a central interface for in-
teracting with LLMs (Brown et al., 2020), yet
accumulating evidence shows that model outputs
are often highly sensitive to minor variations in
prompts (Stureborg et al., 2024; Pezeshkpour and
Hruschka, 2024; Errica et al., 2025; Salinas and
Morstatter, 2024). This sensitivity undermines the
reliability of language models in both evaluation
and real-world deployment.

Sclar et al. (2024) systematically explore this
issue, demonstrating that LLM performance can
vary by over 70% across semantically equivalent
prompts. Zhuo et al. (2024) introduce PromptSen-
siScore, a decoding-confidence-based measure of
prompt sensitivity across tasks and datasets. Their

findings reveal that larger models tend to be more
robust, but even high-capacity models exhibit no-
table instability in complex reasoning settings.

Chatterjee et al. (2024) propose the POSIX index
to evaluate the change in model log-likelihoods un-
der paraphrastic rewrites of prompts. Their analy-
sis highlights that instruction tuning and parameter
scaling alone are insufficient to mitigate prompt
sensitivity; however, few-shot prompting offers
some robustness gains.

These studies highlight how fragile LLM be-
havior can be under minor prompt changes. This
observation raises concerns not just for general
prompting, but also for structured probing meth-
ods that aim to detect knowledge gaps. While prior
work on knowledge gap detection has proposed var-
ious probing methods to evaluate LLM knowledge,
these approaches typically assume fixed prompts
and do not account for sensitivity to prompt pertur-
bations. In our work, we examine whether prompt-
dependent probing methods (as well as those based
on other principles) exhibit similar inconsistencies.
We also evaluate if current probes are up to this
challenge and whether model scaling and few-shot
prompts can help probing stability.

3 Consistency Evaluation Methods

Since knowledge probing methods aim to extract
what a model knows (or does not know), their de-
cisions should be consistent. First, applying the
same method to semantically equivalent prompts
(e.g., adding a minor typo) should yield consis-
tent results, which we call intra-method consis-
tency. Second, different methods applied to the
same model should produce aligned results, avoid-
ing contradictions. We call this cross-method con-
sistency.

For the intra-method consistency, we design se-
mantically equivalent prompts. Our zero-shot vari-
ants simulate real-world noise: inserting spaces,
shuffling options and minor typos. Our one-shot
variants help the model better understand the an-
swer format. They are simple questions that do
not introduce new knowledge and are assumed to
have no effect on the model’s knowledge gaps. See
Appendix A.3 for details on these variants.

Our consistency comparisons are always be-
tween two setups that either involve the same
method with original vs variant prompts (intra-
method) or the same prompt applied across dif-
ferent methods (cross-method).
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Method Variant  IoUcons I0Uyee IoUy; DecCons Agr. | I0Ucons I0Uzee I0Uy; DecCons Agr. | IoUcons 10Uy IoUyj DecCons Agr.
Mistral-7B LLaMa-3.1-8B Olmo-2-7B

Space 74 .87 .64 .89 99 .64 94 49 94 94 .69 a7 .63 85 96

Options 40 72 28 a5 66 59 93 44 93 74 .56 .67 A9 5 10

Typo .67 .83 .55 .86 97 .62 93 46 .94 91 .69 76 .63 .83 .95

One-shot 97 99 95 99 .68 69 96 .68 97 .67 .62 .66 58 7 96

Space 76 77 .76 87 94 52 79 42 .81 93 .64 .69 .60 79 87

Options .61 .61 .61 .76 73 31 72 .20 74 .76 .62 70 .55 78 A3

Typo .76 75 .76 .86 .93 51 79 42 .81 91 .62 .68 .58 78 .85

One-shot Al 41 47 63 .80 33 .54 27 .64 .69 45 A48 43 .63 .86

Space .58 49 .76 .80 95 .50 .70 40 75 94 .61 54 .70 78 .85

EMBEDDING Options .60 49 .76 81 .69 .66 .84 55 .86 .76 .36 34 49 .61 A3

Typo .58 48 75 .80 92 .56 71 46 71 91 .61 54 71 78 .88

One-shot 33 37 38 .56 .69 .39 49 32 .59 .70 44 43 48 .63 .85

Space 40 92 25 93 90 .36 .90 23 91 92 32 91 20 91 81

NOTA Options 39 93 25 93 57 39 91 25 91 .70 27 91 .16 91 22

Typo 39 92 25 92 .88 .36 .90 23 .90 .90 29 91 17 91 .80

One-shot 26 92 16 92 63 22 86 A2 86 170 23 87 A3 87 76

Space 74 91 .62 92 .88 .86 98 77 98 92 45 a7 32 79 77

MOREINFO Options .62 .88 A7 .89 .55 79 97 .67 97 72 41 74 29 76 26

Typo 12 91 .60 92 .85 .80 97 .68 97 .89 .46 76 33 79 76

One-shot 04 19 02 19 64 09 93 05 93 a1 36 64 25 68 65

Space 67 67 67 80 92 .66 66 66 79 96 49 37 72 75 87

SELFREF Options 46 46 46 .63 .53 52 .53 52 .68 .82 .36 24 .69 71 18

Typo .67 .67 .67 .80 91 .62 .62 .62 .76 95 47 35 71 75 .84

One-shot 49 51 48 .66 a1 40 35 49 59 a1 31 21 62 65 75

Table 1: Intra-method consistency evaluation using six knowledge probing methods in MMLU. Best results in bold
and the worst underlined. Io0U.q,s columns are highlighted with light yellow background as this is our main metric
for consistency. We introduce four different variants, each evaluated over independent runs with different random
seeds and one-shot prompt examples, and the reported values represent their mean. The variance is generally close

to zero: see Appendix C for more detailed data.

As illustrated in Figure 1, there are two types of
pairs:

¢ Intra-Method Comparison Pair, where the
same probing method is applied to different
prompt variants. (e.g., Case 1: ASKCAL
Method + Original Prompt; Case 2: ASKCAL
Method + Prompt with Shuffled Options)

* Cross-Method Comparison Pair, where dif-
ferent probing methods are applied to the
same prompt. (e.g., Case 1: ASKCAL Method
+ Original Prompt; Case 2: TOKPROB Method
+ Original Prompt)

For any two cases 1 and 2 in the same pair, we
define R; and Ry as the sets of questions where the
probe identifies a knowledge gap, i.e., the model
should abstain from answering (rejection). Sim-
ilarly, A; and A, represent the sets of questions
where the probe claims that the models know the
answer (acceptance).

Based on this notation, we propose four metrics:

Acceptance/Rejection Consistency Intersec-
tion over Union (IoU;,¢/IoU,j) is defined as the
ratio of the intersection (the number of common
accepted/rejected questions) to the union (total dis-
tinct accepted/rejected questions):

. |A1ﬁA2| . ’RlﬂR2|

Higher values indicate greater consistency in ac-
ceptance/rejection decisions.

Harmonic Consistency IoU (IoUcq,s) We use
the harmonic mean of the previous two metrics to
achieve a balanced measure between the rejection
and acceptance metrics. We use loUg,s as our
main metric for intra-method evaluation.

Decision Consistency (DecCons) quantifies the
proportion of questions consistently accepted or
rejected across setups:

(A1 N A2) U (RN Ry

DecC =
ect-ons |A1 UAds UR U R2|

It is more lenient than IoUqpns, Which approaches
zero in cross-method setups in our experiments as
it fails under extreme accept-all or reject-all be-
haviors, whereas DecCons counts both consistent
acceptances and rejections as agreement. Thus, we
use this metric as the primary indicator for cross-
method analysis.

Agreement (Agr.) is the proportion of com-
monly accepted questions for which the model (not
the probe) provides the same answer in both setups.
This metric evaluates the stability of the model’s
answers.

ZmeAlﬂAz 1 (Answer; () = Answera())

ToUyee = ——————
OUjxcc ‘A1UA2|,

Io

U

rej = ’Rl U Rz‘

Agr. =
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4 Experimental Setup

We select a range of instruction-tuned models to
apply different knowledge probing methods, includ-
ing Mistral-7B (Jiang et al., 2023), LLaMA-3.2-1B-
Instruct, LLaMA-3.2-3B-Instruct, LLaMA-3.1-8B-
Instruct, LLaMA-3.1-70B (Dubey et al., 2024), and
OLMo-2-7B-Instruct (OLMo et al., 2024). Our se-
lection includes models from different developers
and covers a range of sizes to explore how model
capacity may influence the robustness and stability
of knowledge probing methods. In particular, we
include four models from the LLaMA-3 family —
1B, 3B, 8B and 70B — to systematically examine
whether increasing model size leads to more con-
sistent probing behavior under prompt variations.

For our probing datasets, we adopt MMLU, a
benchmark designed to test knowledge and rea-
soning across diverse academic topics (Hendrycks
et al., 2021), and Hellaswag, a commonsense infer-
ence dataset focused on everyday scenarios (Zellers
et al., 2019). For each dataset, we randomly sam-
ple 1,000 examples to construct a development set
and another 1,000 examples as the test set. The de-
velopment set is used for threshold calibration and
probing method tuning where applicable, while the
test set is held out for evaluation. See Appendix A.1
for full details.

5 Results and Analysis

5.1 Intra-method Consistency

In this section, we investigate the intra-method
consistency results of various probing methods on
MMLU and HellaSwag. Since the results show
similar patterns of extreme inconsistency, we fo-
cus on MMLU in the main text. See Table 8 in
Appendix for results on HellaSwag.

Impact of Zero-Shot Variants All zero-shot
variants (Space, Shuffle Options, Typo) affect con-
sistency, with IoU¢qys values ranging from as low
as 0.27 to a maximum of 0.86. Inserting spaces
has the least overall impact on consistency. Shuf-
fling options has the greatest impact even though
shuffling does not change the semantic meaning
of a question in any way. This sensitivity to shuf-
fling in the probes is similar to the sensitivity of
LLMs (Pezeshkpour and Hruschka, 2024). EM-
BEDDING for Mistral and Llama 8B maintains the
highest consistency under option variations among
methods. Its comparatively good performance may
stem from its reliance on semantic patterns in hid-
den representations. Nevertheless, its intra-method

consistency is still poor: [oUgqys is only 0.6.

Impact of One-Shot Variant The impact of one-
shot prompting is even greater than that of the three
zero-shot variants, with IoU,qps ranging from 0.04
to 0.97.

The impact is particularly evident for MORE-
INFO. In the MMLU dataset, the Mistral and Llama
8B models have IoUq,s scores of 0.04 and 0.09
(compared to 0.74 and 0.86 for the space variant).
With one-shot prompting, the abstain rate drops
(see Table 13), likely because MOREINFO follows
the simple one-shot pattern, where the need for
more information is indicated as “No.” This might
encourage the model to respond similarly, even for
uncertain questions. Although the pattern is less
pronounced, the probing methods also exhibit re-
duced consistency under the one-shot variant on
Olmo, compared to other variants. This suggests
that the model’s response consistency is more sen-
sitive to changes in input structure than to minor
formatting perturbations.

Future work could investigate whether more
complex or varied one-shot examples alter this ef-
fect, shedding light on whether the phenomenon is
inherent to few-shot prompting or tied to example
design.

Inconsistency is Consistent The variance of
IoUcops after introducing three variants with three
random seeds and four one-shot examples is close
to 0; see Appendix C for details. This suggests
that the inconsistency of the probing methods is
not due to randomness in the selection of one-shot
examples or in the locations where perturbations
are introduced.

Source of Inconsistency Table 1 shows that
some methods achieve high IoU,. or IoUyj along
with strong DecCons, yet exhibit low overall
IoUgons. This is primarily due to extreme rejec-
tion rates. Additionally, for TOKPROB, which
achieves 0.97 in IoU¢qys, Agr. is only 0.68, indicat-
ing that even though detected knowledge gaps are
consistent, there is great variability in the model’s
answer to the same question. This may be the
source of some inconsistency, as methods involv-
ing threshold finding or training rely on surface-
level response matching in the training set to infer
knowledge gaps. However, unstable predictions
undermine the reliability of these methods.

5.2 Cross-method Consistency

Due to highly divergent rejection rates by the
probes, cross-method consistency is much lower
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Figure 2: Average IoU.qs across different model sizes (LLaMA?3) for intra-method consistency of each method.
The scaling trend does not consistently hold across all probing methods, see Table 6 in Appendix for more details.

than intra-method consistency: IoU,qs values for
cross-method combinations are near zero (full re-
sults in Appendix B). This disparity motivates
our adoption of the DecCons metric (visualized
through heatmaps in Figure 3) for the evaluation of
cross-method consistency.

(In)Consistency is Model- and Dataset-
Specific As can be seen in Figures 3a and 3b, for
the same model on the same dataset with differ-
ent variants, DecCons is similar. However, the
metric differs across different models and datasets
(Figure 3c). For example, with Mistral on dataset
MMLU, NOTA and ASKCAL achieve a DecCons
of 0.54, whereas in Mistral+HellaSwag, the same
methods drop to 0.07. This stark contrast further
highlights the instability of these methods across
different datasets, suggesting the reliability of these
probing methods depends on the dataset and model.

Methods Using Similar Signals Exhibit
Higher Consistency EMBEDDING is less consis-
tent with other methods (in Mistral+Hellaswag,
DecCons with MOREINFO is 0.07). This may be
because EMBEDDING utilizes deeper-level model
outputs (signals) than other methods, specifically
leveraging the model’s hidden states. NOTA and
MOREINFO share the highest consistency across all
setups, with DecCons between 0.62 and 0.89. This
may be due to the underlying similar principles the
methods share, suggesting they utilize a correlated
signal.

Method Variant Abstain F1
Original 47
TokProb  Zero-shot 47
One-shot 41
Original .65
AskCal Zero-shot .64
One-shot .56
Original .64
Embedding Zero-shot .68
One-shot 45
Original 24
Morelnfo  Zero-shot 25
One-shot .02
Original .16
NOTA Zero-shot .14
One-shot .09
Original .50
Reflect Zero-shot .50
One-shot 48

Table 2: Evaluation of probing methods on the Mistral +
MMLU setting, using a metric proposed by (Feng et al.,
2024b). Zero-shot variants (space, shuffled option, typo)
do not substantially reduce Abstain F1 and sometimes
even improve it, which suggests that current metrics
may not reliably reflect probing method robustness. Full
results across all model-dataset combinations are pro-
vided in the Appendix D.

5.3 Scaling Rules for Probing Consistency

LLMs become less sensitive and robust to input
variations as their scale increases (Zhuo et al.,
2024). If sampling-based probing methods were
robust tools for detecting knowledge gaps, their
intra-method and cross-method consistency, when
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Figure 3: Heatmaps of cross-method consistency evaluation results (DecCons) under the original prompt across
different datasets and model sizes. Subfigures (a)—(c) show results for Mistral models on MMLU and HellaSwag
under different perturbation types. Subfigures (d)—(f) present results for LLaMA-3 models (3B, 8B, 70B) on MMLU
under original prompt. See Appendix B for IoUqy,s, LLaMA results and variant prompts.

applied to increasingly larger models, should also
improve with scale. However, Figure 2 shows that
this is not always the case. While some methods,
such as TOKPROB, show a slight upward trend in
consistency as model size increases, others remain
flat or even decline. For example, NOTA reaches
its peak consistency at 3B model and performs
worse on the 70B model. Methods like EMBED-
DING and ASKCAL also display inconsistent trends
across different scales.

Moreover, the scaling rule does not consistently
hold for cross-method consistency either. In Fig-
ure 3e and 3f, SELFREF exhibits uniformly low
agreement with other methods across all model
sizes, with DecCons values remaining around 0.5.
On the 70B model, the agreement between SELF-
REF and both TOKPROB and MOREINFO is sim-
ilar to, or even lower than, that on the 8B model.
This indicates that increasing model size does not
necessarily lead to greater convergence across dif-
ferent probing methods. The observed inconsis-
tency should be attributed to the knowledge probing

methods themselves, rather than to the underlying
models.

5.4 Variant Influence on Probing
Performance Metrics

Existing work commonly evaluates knowledge
probing methods using metrics such as Abstain
F1, which captures how well a method identifies
knowledge gaps (Feng et al., 2024b). Abstain F1
is defined as the harmonic mean of precision and
recall over abstention decisions, where precision
reflects the proportion of predicted knowledge gaps
that are correct, and recall reflects the proportion
of true knowledge gaps that are successfully identi-
fied (Feng et al., 2024b; Whitehead et al., 2022).

But are these metrics sufficient to evaluate the
consistency of probing methods under prompt per-
turbations?

To investigate this, we compare the performance
of several probing methods using Abstain F1 across
both original prompts and their perturbed variants.
As before, these variants include common zero-
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shot modifications such as inserting extra spaces,
shuffling multiple-choice options, and adding typos.
As shown in Table 2, the Abstain F1 scores remain
largely stable. For example, ASKCAL achieves
0.65 on the original prompt and 0.64 on a zero-shot
variant. Similarly, REFLECT remains virtually un-
changed with scores of 0.50, 0.50, and 0.48 across
variants.

At first glance, these results suggest that cur-
rent probing methods are robust to minor prompt
changes. However, this interpretation overlooks a
key discrepancy: while overall Abstain F1 scores
appear stable, the actual rejection decisions vary
considerably across prompts. For instance, RE-
FLECT’s Abstain F1 changes only slightly, but the
IoU,ons in shuffling option variants is just 46% (see
Table 1), indicating that many of the specific ques-
tions being rejected differ.

The inconsistency becomes more striking under
the one-shot setting. Although one-shot prompting
is often considered to stabilize LLM outputs (Chat-
terjee et al., 2024), calibration-based methods like
ASKCAL actually suffer a noticeable performance
drop — from 0.65 to 0.56 in Abstain F1. This sug-
gests that the instability is not due to the model
itself, but rather the probe’s failure to reliably cap-
ture the model’s underlying uncertainty.

These findings reveal a key limitation of cur-
rent evaluation practices. Metrics such as Ab-
stain F1 emphasize aggregate correctness while fail-
ing to assess the consistency of rejection behavior
across prompts. This indicates that the underlying
knowledge gaps exposed by the probe differ across
prompts, even when surface-level performance ap-
pears stable. Such discrepancies are invisible to
established metrics, which suggests that these are
not a good measure of probing reliability and high-
lights the need for using the metrics we propose in
this work.

5.5 Threshold Influence Consistency

In Table 3, we observe that the probing meth-
ods exhibited poor intra-method consistency in its
ASKCAL method on the HellaSwag dataset (with
only 0.05 IoU,qps in Options variant). This incon-
sistency could be attributed to the threshold selec-
tion process in calibration-based probing methods.
These methods typically involve two steps: First,
they use a validation set to compare a knowledge-
probing signal (such as token probability) to actual
accuracy (i.e., whether the model knows the answer
or not). Then, they select the best threshold to deter-

Variant TIoUcons ToUycc ToUy DecCons Agr.
ASKCAL (w/o threshold correction)

Space 24 17 .87 .87 .89

Options .05 .03 19 .79 .39

Typo 13 .08 .87 .87 1.0

One-shot .09 .05 93 .93 77
ASKCAL (with threshold correction)

Space 53 (+29) 45(+.28) .66(-20) .73 (-.14) .85(-.04)

Options .48 (+.43) .35(+.32) .77(-.03) .79 (-.00) .43 (+.04)

Typo AL (+27)  37(+29) A7(-40) .58(-29) .82(-.18)

One-shot .28 (+.19) .17 (+.12) .79 (-.15) .80(-.17) .65(-.12)

Table 3: Intra-method consistency analysis of the

ASKCAL method on the HellaSwag dataset, with and
without threshold correction. Without correction, the
model’s threshold values were highly unstable, leading
to near-zero IoU,,,s scores across variants. Applying a
fixed-threshold safeguard (set to 0.5) greatly improved
consistency (IoU.qys), demonstrating that the correction
mitigates the sensitivity to poorly calibrated thresholds.

mine which values indicate that the model does not
know the answer (below the threshold) and which
indicate that it does (above the threshold).

However, during our experiments, we observed
that existing threshold selection algorithms can
yield suboptimal values. For instance, some thresh-
olds were as high as 0.98 (leading the model to
reject nearly all questions) while others were as
low as 0.01 (effectively accepting everything). To
address this issue, we introduced a threshold cor-
rection rule as a safeguard: when an unreasonable
threshold is detected, we override it and set the
threshold to 0.5.

After applying this correction, we observed a
notable improvement in the intra-method consis-
tency of the ASKCAL variants. As shown in Ta-
ble 3, the IoU,,,s scores increased across all vari-
ants, demonstrating that the threshold correction
notably mitigated the instability caused by poor
threshold calibration.

6 Conclusion

In this study, we explore the consistency of four
types of knowledge probing methods based on
different principles. Our results reveal a high
level of inconsistency, both intra-method and cross-
method.

This variability suggests that a more robust ap-
proach is needed to reliably detect knowledge gaps
across different models and datasets. Current re-
fusal mechanisms often rely heavily on the output
of the probing methods to decide whether a model
“knows” an answer and should refuse to answer
uncertain questions. However, if these probing sig-
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nals are themselves unstable or inconsistent across
variants and architectures, then the rejection be-
havior becomes inherently unreliable. This under-
mines the interpretability and trustworthiness of
abstention-based frameworks.

We recommend that future work on knowledge
probing explicitly consider the consistency of prob-
ing methods and routinely report consistency met-
rics such as those proposed in this paper. Improv-
ing the reliability of these methods is essential for
building systems that can reliably assess the knowl-
edge captured by language models.

Limitations

While this study provides insights into the inconsis-
tency of knowledge probing methods, the following
limitations should be acknowledged:

Limited to Multiple-Choice Question Datasets
In order to simplify the probing and evaluation to
better compare it with previous work, we focused
only on multiple-choice datasets. But additional
insights might be obtained from open-ended text
generation tasks.

Scope of Probing Methods Although we eval-
uate six existing knowledge probing methods and
show inconsistency for all of them, the list of tested
probes is not exhaustive. Expanding the scope of
methods may provide an even more nuanced under-
standing of knowledge gap detection.

Lack of Reasoning-Oriented Probing Our
study primarily evaluates probing methods that op-
erate on direct model outputs, such as token proba-
bilities or calibration-based responses. These meth-
ods are not naturally compatible with multi-step
reasoning processes like chain-of-thought prompt-
ing. As a result, we do not assess whether explicit
reasoning could improve consistency. Incorporat-
ing reasoning-oriented probes may require adapting
or redesigning the probing framework, which we
leave for future work.
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A Experimental Setups

The experiments for the six probing methods were
run on one H200 140G. Temperatures for both
LLaMa3 and Mistral settings were 0.1 with top_k
= 0.9, top_k = 50. We checked the licenses of all
the models and datasets used, as well as the code,
which are publicly available resources.

A.1 Data

We randomly sampled 1,000 data points from the
validation set and 1,000 data points from the test
set separately, then applied both zero-shot and
one-shot prompting techniques to comprehensively
evaluate the consistency of these methods.

A.2 Zero-shot Variants

We used three different random seeds (4, 44, 99) to
introduce variations into the original prompt (i.e.,

multiple-choice questions). For the shuffling op-
tions variant, we ensured that the correct answer’s
option order was always changed. For the typo vari-
ant, a randomly selected non-numeric word in the
question had a letter added, deleted, or swapped. In
the blank space insertion variant, we ensured that
numeric values remained unchanged to minimize
semantic disruption.

A.3 One-shot Variants

Table 4 presents the one-shot prompts that have
been used in our experiments. We selected well-
known facts such as 2+2=4 to avoid introducing
new information to the model, focusing instead on
providing the model with the prompt structure.

Since the previously mentioned knowledge prob-
ing methods, such as ASKCAL, MOREINFO, and
SELFREF, involve having the model first provide
an answer to the question and then immediately
follow up with the probability of correctness or
whether the more information is needed, specific
prompt design is required when applying the one-
shot prompt. This is essential to ensure the model
can handle these follow-up questions effectively
and consistently. Table 5 outlines the prompt de-
signs for these methods, showing how the questions
are structured to guide the model through answer-
ing and then evaluating its response.

B Cross-method Results

The huge difference in rejection rates results in poor
10U,y values for cross-method consistency, and
the rejection rates for each method with different
variants can be seen in Table 11,12,13,14.

Figures 6 and 8 present heatmaps of cross-
method consistency using IoUgqys as the metric,
comparing original and variant-introduced con-
ditions. Figures 4 and Figure 5 display com-
plete heatmaps based on DecCons. The heatmaps
demonstrate similar patterns when using the same
dataset and model, but exhibit substantial variations
when either factor is altered. This further highlights
the inherent instability of these probing methods.

C Intra-method Results

We have provided an additional metric here for
reference:

Common Accept Accuracy calculates the av-
erage accuracy on questions that were commonly
accepted, which can reflect the accuracy of the
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Index Prompt Examples

MMLU

0 Question: Who sings "Here Comes the Sun’?
Choices: A: Led Zeppelin, B: Queen, C: Pink Floyd, D: The Beatles
Answer: D

1 Question: What is 2+27?

Choices: A:3,B:4,C:5,D: 6
Answer: B

2 Question: What is the capital of France?

Choices: A: Berlin, B: Madrid, C: Paris, D: Rome
Answer: C

3 Question: What is the chemical symbol for water?
Choices: A: H20, B: CO2, C: NaCl, D: 02
Answer: A

HellaSwag

0 Question: When the lights went out during the storm, they
Choices: A: started watching a movie. B: lit some candles. C: opened the refrigerator. D: went swimming
in the river
Answer: B

1 Question: After the baby started crying, the mother
Choices: A: picked up the baby to comfort it. B: paint the ceiling with a toothbrush. C: whispered to the
toaster. D: opened an umbrella indoors
Answer: A

2 Question: As the sun set over the horizon, the sky turned
Choices: A: white. B: completely green. C: a mix of orange and pink. D: into a checkerboard pattern
Answer: C

3 Question: When the doorbell rang, I went to the door and
Choices: A: closed the windows. B: started cooking dinner. C: went to bed. D: opened it to see who was
there
Answer: D

Table 4: Information about the one-shot-prompt examples for MMLU and HellaSwag. All questions are quite
simple.

problems that the model is certain about and the
true capability of the model.

Z (Correcty (4)+Correcta (%))
1€EAINA2 2

|A1 ﬂAQ’

NAccuracy =

Tables 7 and 8 present the intra-method results on
the MMLU and Hellaswag datasets. While differ-
ent variants negatively impact consistency, their
variance remains small, further indicating that the
inconsistency is not due to randomness.

D Probing Performance Comparison

In Table 11,12,13,14, we report the abstain per-
formance for both zero-shot and one-shot variant
prompting. The metrics applied are the same as
those defined and used by Feng et al. (2024b). The
results from the zero-shot setup are similar to those
reported by Feng et al. (2024b), and the numbers
further indicate that the general abstaining mech-
anism is minimally impacted by the inclusion of
variants.
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Method 1-shot Prompt(Input)

The question is:

What is the chemical symbol for water?

Choices: A:H20, B:CO2, C:NACI D:02

Choose one answer from the above choices. Guess: A

ToxkProB The question is:
{question}
{choices}
Choose one answer from the above choices. Guess: {response}
The question is:
What is the chemical symbol for water?
Choices: A: H20, B: CO2, C: NaCl, D: 02
Choose one answer from the above choices. Guess: A
Provide the probability that your guess is correct.
Give ONLY the probability, no other words or explanation.For example:
Probability: <the probability between 0.0 and 1.0 that your guess is correct, without any extra commentary whatsoever; just the probability !>
ASKCAL Probabilit?/: ]:0
The question is:
{question}
{choices}
Choose one answer from the above choices. Guess: {responsel }
Provide the probability that your guess is correct.
Give ONLY the probability, no other words or explanation.For example:
Probability: <the probability between 0.0 and 1.0 that your guess is correct, without any extra commentary whatsoever; just the probability!>
Probability: {response2}
The question is:
What is the chemical symbol for water?
Choices: A: H20, B: CO2, C: NaCl, D: 02
Choose one answer from the above choices. Guess: A
The question is:
SELFREF {que‘?tion}
{choices}
Choose one answer from the above choices. Guess: {responsel }
The above answer is:
A. True
B. False
The answer is {response2}
The question is:
What is the chemical symbol for water?
Choices: A:H20, B:CO2, C:NACI D:02 E: None of the above
NOTA Choose one answer from the above choices. Guess: A
The question is:
{question}
{choices}
Choose one answer from the above choices. Guess: {response}
The question is:
What is the chemical symbol for water?
Choices: A: H20, B: CO2, C: NaCl, D: 02
Choose one answer from the above choices. Guess: A
Do you need more information to answer this question? (Yes or No)No
MOREINFO L
The question is:
{question}
{choices}

Choose one answer from the above choices. Guess: {responsel }
Do you need more information to answer this question? (Yes or No){response2}

Table 5: Example of one-shot prompt inputs across different methods. This table illustrates the design of input
prompts for various methods, including TOKPROB, ASKCAL, SELFREF, NOTA, and MOREINFO. Each method
presents the same base question, but with tailored instructions to reflect the specific goal of each method, such as
asking for a guess, a probability estimate, or additional information.
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Mistral, Hellaswag - Decision Consistency Heatmap (Original)

Mistral, Hellaswag - Decision Consistency Heatmap (Blank_space)

Mistral, Hellaswag - Decision Consistency Heatmap (Typo)
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Figure 4: Heatmap of cross-method consistency evaluation results for Hellaswag. The values represent the average
consistency across three different random seeds setups.
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Mistral, MMLU - Decision Consistency Heatmap (Original) Mistral, MMLU - Decision Consistency Heatmap (Blank_space) Mistral, MMLU - Decision Consistency Heatmap (Typo)
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Figure 5: Heatmap of cross-method consistency evaluation results for MMLU. The values represent the average
consistency across three different random seeds setups or different one-shot examples.
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Mistral, Hellaswag - Harmonic 10U Heatmap (Original)
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Mistral, Hellaswag - Harmonic 10U Heatmap (Typo)
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Figure 6: Heatmap of cross-method consistency evaluation results. The values represent the average consistency
across three different random seeds setups.
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Mistral, MMLU - Harmonic 10U Heatmap (Original)

Mistral, MMLU - Harmonic 10U Heatmap (Blank_space)

Mistral, MMLU - Harmonic 10U Heatmap (Typo)
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Figure 7: Heatmap of cross-method consistency evaluation results. The values represent the average consistency
across three different random seeds setups.
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LLAMA-1B - Typo - Decision Consistency Heatmap (Setup 0)

LLAMA-1B - Blank_space - Decision Consistency Heatmap (Setup 0) LLAMA-18 - Shuffled_option - Decision Consistency Heatmap (Setup 0)
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Figure 8: Decision consistency heatmaps for three LLaMA models across three prompt variants.

Method Variant  IoUcns I0Uyee IoUrj DecCons Agr. | IoUcons IoUgee IoUyj DecCons Agr. | IoUcns IoUgee IoUy; DecCons Agr.
LLaMa-3.2-1B LLaMa-3.2-3B LLaMa-3.1-70B

Space .60 .84 47 .86 90 52 .90 37 91 .90 78 97 .65 97 91

TOKPROB Options 41 18 28 .80 28 44 .89 29 .89 18 .70 96 55 96 19

Typo .55 .83 41 .85 .87 48 .89 33 .89 .87 71 .96 .57 .96 .89

One-shot .80 93 71 94 .50 58 92 42 92 .70 .80 97 .68 97 .80

Space 32 .19 97 97 5 .84 95 75 95 .88 .58 90 43 91 91

ASKCAIL Options 42 28 98 98 .36 71 91 .59 92 .18 52 .89 37 90 .20

- Typo 21 12 94 94 .70 79 93 .68 94 .85 .55 .90 40 .90 .89

One-shot .05 .03 99 99 .00 41 81 28 .82 .70 45 .87 31 .88 .80

Space 37 26 .62 .67 92 .64 .83 52 .86 .90 .61 .84 48 .86 91

EMBEDDING Options 41 28 5 77 17 54 .80 41 .83 18 52 76 40 19 17

Typo 38 27 .65 .69 .86 .54 72 43 71 92 .84 .54 79 41 .82

One-shot 21 14 .80 81 48 43 .64 32 .69 .82 39 .85 25 .86 .80

Space 32 94 .19 94 .83 47 91 32 91 92 23 .62 .14 .62 .61

NOTA Options 42 94 27 94 .30 44 91 29 91 .80 40 93 26 93 .63

Typo 35 93 21 93 .80 45 .90 .30 91 91 33 93 20 93 .89

One-shot 15 .84 .08 .84 51 27 .86 .16 .86 .79 26 93 15 93 19

Space 79 .84 74 93 73 .69 .61 .80 .85 .89 .80 1.00 .67 1.00 90

MOREINFO Options .76 .86 .68 .89 31 71 .62 .82 .86 .83 .64 1.00 48 1.00 24

Typo 71 .83 73 93 79 .70 .61 .81 .86 .89 .65 99 49 .99 .88

One-shot .08 72 .04 72 44 .04 26 .02 28 .80 43 99 28 99 76

Space 49 41 59 .68 .89 .56 54 .58 71 95 47 48 46 .55 .63

SELEREF Options 44 37 .56 .65 32 48 46 49 .64 .80 46 49 44 .63 20

Typo 49 42 59 .68 .86 54 53 .56 .70 92 .65 .67 .62 79 93

One-shot 36 .30 44 55 .56 27 22 38 43 .68 42 40 46 59 .87

Table 6: Intra-method consistency evaluation using six knowledge probing methods in MMLU with Llama model in
different size. We introduce four different variants, each evaluated over independent runs with different random
seeds or one-shot prompt examples, and the reported values represent their mean. The variance is generally is close
to zero.
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Method Variant TIoUcons IoU,cc ToUy; NAccuracy Agr.
Mistral-7B
Space 0.736 £0.000 0.866 +0.000 0.640 £0.000 0.993 £0.000 0.989 £ 0.000
TOKPROB Options  0.398 £0.001 0.721 £0.000 0.275+£0.001 0.756 +£0.000 0.663 + 0.000
Typo 0.665 +0.000 0.833+£0.000 0.553+0.000 0.980+0.000 0.972 +0.000
One-shot  0.969 £0.000 0.985+0.000 0.952+0.000 0.790+0.002 0.678 +0.005
Space 0.763 £0.000 0.765 +0.000 0.761 £0.000 0.957 +£0.000 0.937 +0.000
ASKCAL Options  0.613 £0.000 0.614 £0.000 0.612+£0.000 0.795+0.000 0.727 £ 0.000
Typo 0.756 £0.000 0.753 +£0.000 0.758 £0.000 0.945+0.000 0.927 +0.000
One-shot 0.414 +£0.003 0.413+0.005 0.469 +0.018 0.861 +£0.002 0.801 +0.003
Space 0.584+£0.016 0.488+0.023 0.758 £0.002 0.964 +0.000 0.945 +0.001
EMBEDDING Options  0.599 +0.000 0.495+0.000 0.760 +0.000 0.741 £0.001 0.693 £ 0.001
Typo 0.583 +£0.008 0.481+0.012 0.752+0.001 0.943 +0.001 0.921 +0.001
One-shot  0.332 +£0.007 0.366 +0.006 0.380 +0.034 0.789+0.001 0.691 +0.003
Space 0.395+0.001 0.924 +£0.000 0.251 £0.001 0.941 £0.000 0.898 +0.000
NOTA Options  0.393 £0.001 0.925 +0.000 0.249 £ 0.000 0.731 £0.000 0.571 £0.000
Typo 0.390 £ 0.000 0.921 +£0.000 0.248 +£0.000 0.930+0.000 0.878 +0.000
One-shot  0.265 +£0.002 0.919+0.000 0.156+0.001 0.778 +£0.001 0.630 +0.002
Space 0.740 £0.000 0.914 £0.000 0.622+0.000 0.934 +0.000 0.884 +0.000
MOREINFO Options  0.615+0.001 0.879 £0.000 0.474 £0.001 0.720 +0.000 0.546 £ 0.000
Typo 0.720 £0.000 0.906 £0.000 0.598 +£0.000 0.905+0.000 0.853 +0.000
One-shot  0.037 £0.000 0.794 +£0.000 0.019 +£0.000 0.781 +0.001 0.640 +0.001
Space 0.673 £0.000 0.673+0.000 0.672+0.000 0.957+0.000 0.924 +0.000
SELFREF Options  0.458 +£0.000 0.462 £0.000 0.455+0.000 0.708 +0.000 0.528 £+ 0.000
Typo 0.668 £0.000 0.668 £0.000 0.668 +£0.000 0.943 +0.000 0.907 +0.000
One-shot  0.494 +£0.000 0.508 +£0.000 0.482 +0.001 0.843 +0.000 0.773 +0.002
LLaMa-3.1-8B
Space 0.643 £0.001 0.937 £0.000 0.491 £0.001 0.952+0.000 0.936 +0.000
TOKPROB Options  0.593 £0.001 0.930 £0.000 0.435+0.001 0.827 +£0.000 0.743 £ 0.000
Typo 0.615+0.001 0.933 +£0.000 0.460 +0.001 0.934+0.000 0.912 +0.000
One-shot  0.693 £0.000 0.931 £0.000 0.552+0.000 0.736 +0.004 0.666 + 0.006
Space 0.515+0.055 0.789+£0.006 0.419+0.072 0.946 +0.000 0.926 +0.000
ASKCAL Options  0.312+0.000 0.724 £0.000 0.199 £0.000 0.849 +0.000 0.757 £ 0.000
Typo 0.514£0.053 0.786 £0.006 0.418+£0.070 0.931 +£0.000 0.905 % 0.000
One-shot  0.325+0.005 0.544 +£0.027 0.274+0.013 0.742+0.006 0.688 +0.007
Space 0.500 £0.010 0.695 +0.033 0.401 £0.006 0.956 +0.000 0.940 £ 0.000
EMBEDDING Options  0.663 £0.000 0.835+0.000 0.550+0.000 0.832+0.000 0.762 £ 0.000
Typo 0.561 £0.007 0.714 £0.016 0.462 £0.004 0.935+0.000 0.907 £0.000
One-shot  0.385+0.007 0.487+0.019 0.322+0.003 0.766 +0.007 0.702 +0.010
Space 0.364 +0.000 0.904 +0.000 0.228 +£0.000 0.942 +0.000 0.921 +0.000
NOTA Options  0.387 £0.000 0.910+£0.000 0.246 £0.000 0.827 +£0.000 0.698 + 0.000
Typo 0.361 £0.000 0.898 +£0.000 0.226 +0.000 0.929 +0.000 0.896 + 0.000
One-shot  0.215+0.002 0.862+0.000 0.123+0.001 0.763 +£0.001 0.698 +0.001
Space 0.863 £0.001 0.980+0.000 0.772+0.001 0.944 +0.000 0.916 +0.000
MOREINFO Options  0.789 +£0.000 0.969 +£0.000 0.666 +0.000 0.826 +0.000 0.715 £ 0.000
Typo 0.796 £0.000 0.968 £0.000 0.676 +£0.000 0.922 +0.000 0.889 +0.000
One-shot  0.088 £0.000 0.928 +0.000 0.046 +0.000 0.789 +0.000 0.713 £ 0.001
Space 0.663 +£0.001 0.663 +0.001 0.662 +0.001 0.971 £0.000 0.962 % 0.000
SELFREF Options  0.523 £0.000 0.532+£0.000 0.515+0.000 0.880+0.000 0.817 £ 0.000
Typo 0.617 £0.000 0.615+0.000 0.620+0.000 0.960 +0.000 0.948 +0.000
One-shot  0.404 £0.002 0.349 £0.003 0.485+0.000 0.762+0.007 0.709 +0.009

Table 7: Intra-method consistency evaluation using six knowledge probing methods in MMLU.
the mean and standard deviation across six comparisons derived from three different variants generated with three

different random seeds and four distinct one-shot prompting setups.
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Method Variant TIoUcons IoU,cc ToUy; NAccuracy Agr.
Mistral-7B
Space 0.781 £0.000 0.762 +0.000 0.801 £0.000 0.979 £0.000 0.963 £ 0.000
TOKPROB Options  0.474 +£0.000 0.439 £0.000 0.514+£0.000 0.615+0.000 0.450 £ 0.000
Typo 0.740 £0.000 0.717 £0.000 0.765+0.000 0.979 +£0.000 0.970 = 0.000
One-shot  0.904 £0.000 0.896 +0.000 0.913 +0.000 0.676+0.005 0.488 +0.015
Space 0.243 +£0.069 0.168 +£0.038 0.865 +0.009 0.889 +0.006 0.889 +0.006
ASKCAL Options  0.049 +£0.000 0.026 £0.000 0.793 £0.000 0.389 +0.025 0.389 £0.025
Typo 0.134 +0.011 0.076 £0.004 0.870 +£0.008 1.000 +0.000 1.000 % 0.000
One-shot  0.090 £0.025 0.048 £0.000 0.931+£0.000 0.771+£0.019 0.771 £0.019
Space 0.239+£0.005 0.138+0.002 0.975+0.000 0.806+0.020 0.806 % 0.020
EMBEDDING Options  0.099 +£0.003 0.054 £0.001 0.745 +£0.030 0.835+0.026 0.658 +0.080
Typo 0.157 £0.000 0.086+0.000 0.943 +0.001 0.620+0.041 0.583 +0.032
One-shot  0.070 £0.004 0.038 +£0.001 0.709 +0.055 0.754+0.032 0.403 +£0.017
Space 0.159 £0.001 0.883 +£0.000 0.088 +£0.001 0.908 +0.000 0.830 % 0.000
NOTA Options  0.149 £0.000 0.888 +£0.000 0.082 +0.000 0.592 +0.000 0.329 £+ 0.000
Typo 0.145+0.001 0.885+0.000 0.079 +£0.000 0.896+0.000 0.807 £+ 0.000
One-shot  0.120 £0.002 0.900 £0.000 0.065 +0.001 0.631+0.003 0.375+0.010
Space 0.711 £0.002 0.964 £0.000 0.565+0.003 0.898 +0.000 0.818 +0.000
MOREINFO Options  0.500 £ 0.001 0.934 £0.000 0.341 £0.000 0.594 +£0.000 0.328 +0.000
Typo 0.678 £0.001 0.960 £0.000 0.525+0.002 0.895+0.000 0.802 % 0.000
One-shot  0.126 £0.003 0.930 £0.000 0.068 +0.001 0.639 +£0.002 0.415+0.008
Space 0.660 £ 0.000 0.691 £0.000 0.631 +0.000 0.960+0.000 0.933 +0.000
SELFREF Options  0.462 +£0.001 0.510+0.001 0.422 £0.000 0.574 +£0.000 0.307 £ 0.000
Typo 0.641 £0.000 0.672+0.000 0.613+0.000 0.953+0.000 0.927 +0.000
One-shot  0.463 £0.001 0.495+0.006 0.445+0.001 0.691+0.008 0.509 +0.035
LLaMa-3.1-8B
Space 0.526 £0.000 0.911 £0.000 0.370+0.000 0.980+0.000 0.973 +0.000
TOKPROB Options  0.202 +£0.001 0.841 £0.000 0.116 £0.001 0.577 £0.000 0.370 £+ 0.000
Typo 0.495 +0.000 0.898 +0.000 0.342+0.000 0.975+0.000 0.966 +0.000
One-shot  0.799 £0.000 0.963 £0.000 0.683 +0.000 0.574+0.001 0.347 +0.002
Space 0.840 £0.000 0.761 £0.000 0.937 £0.000 0.956 +0.000 0.948 +0.000
ASKCAL Options  0.660 £ 0.000 0.535+0.000 0.862 +0.000 0.703 +£0.002 0.525 £ 0.000
Typo 0.833 £0.000 0.752+£0.000 0.934+0.000 0.934+0.000 0.924 +0.000
One-shot  0.192+0.037 0.126 £0.016 0.810+0.000 0.284 +0.081 0.235 +0.057
Space 0.602 £0.002 0.510£0.000 0.736 +£0.006 0.960 +0.000 0.942 +0.000
Embedding Options  0.606 £ 0.003 0.510+0.003 0.752+£0.006 0.612+0.000 0.391 £0.000
Typo 0.595 +£0.000 0.497 £0.000 0.743 £0.001 0.939 £0.000 0.920 £ 0.000
One-shot  0.220 +£0.005 0.144 +£0.004 0.604 +0.008 0.559 +0.021 0.347 +0.028
Space 0.433+0.001 0.658 +0.000 0.323 +0.001 0.962 +0.000 0.944 +0.000
NOTA Options  0.413 £0.000 0.638 £0.000 0.306 £0.000 0.601 +£0.001 0.416 +0.000
Typo 0.428 £0.000 0.655+0.000 0.318+0.000 0.944 +0.000 0.930 % 0.000
One-shot  0.225+0.000 0.613+0.000 0.138+0.000 0.594 +0.001 0.388 +0.002
Space 0.904 £0.000 0.943 £0.000 0.868 +£0.000 0.954 +0.000 0.944 +0.000
MOREINFO Options  0.756 +£0.000 0.850 £0.000 0.681 £0.000 0.567 +£0.001 0.384 + 0.000
Typo 0.871 £0.000 0.921 £0.000 0.826 +0.000 0.949 +0.000 0.938 +0.000
One-shot  0.225+0.000 0.613 +0.000 0.138 +0.000 0.594 +0.001 0.388 + 0.002
Space 0.714 £0.000 0.610+0.001 0.861 +£0.000 0.978 £0.000 0.976 +0.000
SELFREF Options  0.425 +0.000 0.304 £0.000 0.708 +£0.000 0.783 £0.000 0.721 £ 0.001
Typo 0.696 £ 0.000 0.592 +0.000 0.845+0.000 0.983+0.000 0.977 +0.000
One-shot  0.326 £0.001 0.219+£0.001 0.644 +£0.001 0.492+0.012 0.346 +0.009

Table 8: Intra-method consistency evaluation using six knowledge probing methods in Hellaswag. Results represent
the mean and standard deviation across six comparisons derived from three different variants generated with three
different random seeds and four distinct one-shot prompting setups.
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Method Variant TIoUcons ToUjycce IoUy; NAccuracy Agr.
LLaMa-3.2-1B
Space 0.736 £ 0.000 0.817 £0.000 0.670+0.000 0.950+0.000 0.915 % 0.000
TokProb Options  0.229 £0.012 0.590 £ 0.001 0.156 £0.010 0.555+£0.002 0.402 +0.013
Typo 0.718 £0.000 0.806 £0.000 0.647 £0.000 0.948 +0.000 0.915 +0.000
One-shot 0.817 £0.000 0.876 +0.000 0.765 +0.000 0.620+0.010 0.320 £ 0.035
Space 0.000 £0.000 0.000 £0.000 0.999 +0.000 0.000 +0.000 0.000 £ 0.000
AskCal Options  0.000 £ 0.000 0.000 +0.000 0.455%0.149 0.000 £ 0.000 0.000 + 0.000
Typo 0.000 +£0.000 0.000 +£0.000 0.998 +0.000 0.000 +0.000 0.000 + 0.000
One-shot  0.000 £ 0.000 0.000 +£0.000 0.997 +£0.000 0.000 +0.000 0.000 £ 0.000
Space 0.347 £0.016 0.747 £0.027 0.230+0.010 0.939 +£0.000 0.916 +0.000
Embedding Options  0.215+0.021 0.487+£0.114 0.162+0.004 0.607 +£0.013 0.254 + 0.001
Typo 0.056 £0.002 0.120£0.014 0.073 £0.000 0.388 +£0.075 0.312 £0.049
One-shot  0.003 £0.000 0.002 +0.000 0.084 +0.000 0.350+0.168 0.350+0.168
Space 0.132£0.000 0.895+0.000 0.071 £0.000 0.896 +0.000 0.814 +0.000
NOTA Options  0.059 £0.001 0.893 +£0.000 0.031 £0.000 0.531+£0.002 0.361 +0.007
Typo 0.114 £0.001 0.892 +£0.000 0.061 +0.000 0.887 +0.000 0.792 +0.000
One-shot 0.103 £0.001 0.800 +0.000 0.055+0.000 0.625+0.008 0.313 +0.033
Space 0.851 £0.000 0.858 £0.000 0.843 +0.000 0.862 +0.000 0.749 +0.000
Morelnfo Options  0.692 £0.027 0.704 £0.025 0.681 £0.029 0.519 £0.001 0.512 +0.019
Typo 0.853 £0.000 0.860+0.000 0.845+0.000 0.857+0.000 0.749 %=0.000
One-shot 0.151+0.022 0.517+0.000 0.110+0.016 0.615+0.018 0.265 +0.061
Space 0.407 £0.000 0.290 +£0.000 0.683 +£0.000 0.874 +£0.000 0.805 % 0.000
SelfRef Options  0.272£0.001 0.181 £0.000 0.548 £0.005 0.506 £0.001 0.414 +0.032
Typo 0.419 £0.000 0.300£0.000 0.695+0.000 0.864+0.001 0.796 +0.000
One-shot 0.225+0.001 0.139 +£0.000 0.606 +0.001 0.565+0.017 0.336 +0.027
LLaMa-3.2-1B
Space 0.489 £0.007 0.897 £0.000 0.342 £0.006 0.971 £0.000 0.957 £0.000
TokProb Options  0.279 £0.000 0.841 +£0.000 0.167 £0.000 0.718 £0.000 0.247 +0.000
Typo 0.501 £0.001 0.889 +£0.000 0.350+0.001 0.957 +£0.000 0.943 +0.000
One-shot  0.669 = 0.000 0.923 +0.000 0.524 +0.000 0.642+0.001 0.519 +0.004
Space 0.794 £0.000 0.920+£0.000 0.699 +0.000 0.947 +0.000 0.930 + 0.000
AskCal Options  0.520 £0.000 0.814 £0.000 0.382+0.000 0.701 £0.000 0.260 + 0.000
Typo 0.779 £0.000 0.915+0.000 0.679 +0.000 0.937 £0.000 0.915 % 0.000
One-shot 0.209 £0.007 0.338 £0.072 0.202 £0.000 0.692 £0.000 0.605 = 0.001
Space 0.434 £0.002 0.424 +£0.002 0.447 £0.004 0.945+0.000 0.927 =0.000
Embedding Options  0.513 £0.009 0.483 +£0.006 0.565+0.020 0.698 £0.000 0.232 +0.000
Typo 0.446 £0.000 0.398 £0.002 0.519 £0.002 0.925 +0.000 0.904 +0.000
One-shot 0.191 £0.012 0.122 +£0.006 0.625 +0.000 0.548 +£0.059 0.447 +0.035
Space 0.274 £0.002 0.930+0.000 0.161 £0.001 0.945 +0.000 0.921 +0.000
NOTA Options  0.234 £0.004 0.930+0.000 0.136 +£0.002 0.701 £0.000 0.259 +0.000
Typo 0.227 £0.002 0.928 +0.000 0.130+0.001 0.930 +£0.000 0.905 £ 0.000
One-shot 0.081 £0.000 0.824 +0.000 0.043 +0.000 0.666 +0.001 0.526 +0.003
Space 0.820+£0.001 0.810+0.001 0.831 +£0.000 0.945 +0.000 0.930 +0.000
Morelnfo Options  0.688 £0.000 0.672+0.000 0.704 £0.000 0.682 +0.000 0.225 +0.000
Typo 0.807 £0.000 0.794 £0.000 0.820 £0.000 0.924 +0.000 0.906 + 0.000
One-shot  0.026 £0.000 0.473 +£0.000 0.013+0.000 0.664 +£0.002 0.552 +0.002
Space 0.638 £0.000 0.583 £0.000 0.703 £0.000 0.960 +0.000 0.947 +0.000
SelfRef Options  0.422 £0.000 0.357 £0.000 0.515+0.000 0.743 £0.000 0.228 +0.000
Typo 0.629 £0.000 0.575+0.000 0.694 +0.000 0.958 +0.000 0.933 +0.000
One-shot 0.041 £0.000 0.022 +0.000 0.278 £0.001 0.608 +£0.048 0.422 +0.070

Table 9: Intra-method consistency evaluation using six knowledge probing methods in LLaMa-3.2-1B and 3 B with
Hellaswag. Results represent the mean and standard deviation across six comparisons derived from three different
variants generated with three different random seeds and four distinct one-shot prompting setups.
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Method Variant TIoUcons ToUjycce IoUy; NAccuracy Agr.
LLaMa-3.1-70B
Space 0.206 £0.000 0.972 +£0.000 0.116 +0.000 0.972 +£0.000 0.967 = 0.000
TokProb Options  0.095 £0.001 0.959 £ 0.000 0.050 £0.000 0.959 £ 0.000 0.165 +0.000
Typo 0.160 £0.004 0.941 £0.000 0.089 £0.001 0.942 +0.000 0.964 +0.000
One-shot 0.222 £0.008 0.965 +0.000 0.128 +£0.004 0.966 +0.000 0.847 +0.000
Space 0.000 £0.000 1.000 £0.000 0.000 +=0.000 1.000 +0.000 0.957 £0.000
AskCal Options  0.000 £ 0.000 0.999 +0.000 0.000 £0.000 0.999 +0.000 0.175 +0.000
Typo 0.000 +£0.000 1.000 +0.000 0.000 +0.000 1.000 +0.000 0.948 +0.000
One-shot  0.000 +£0.000 0.964 +£0.002 0.000+0.000 0.964 +£0.002 0.834 +0.000
Space 0.361 £0.002 0.827 £0.007 0.231 +£0.001 0.836 +0.006 0.957 +0.000
Embedding Options  0.374£0.013 0.930+0.000 0.241 £0.009 0.931£0.000 0.160 + 0.000
Typo 0.404 £0.002 0.861 £0.004 0.264 £0.001 0.868 +0.003 0.944 +0.000
One-shot 0.122 +£0.015 0.930 +£0.000 0.070 +£0.005 0.931 £0.000 0.835 +0.000
Space 0.220£0.001 0.912£0.000 0.125+0.000 0.913 +£0.000 0.955 +0.000
NOTA Options  0.252 £0.003 0.914 +£0.000 0.147 £0.001 0.916 £0.000 0.161 +0.000
Typo 0.227 £0.003 0913 +0.000 0.131 +£0.001 0.914 +£0.000 0.948 +0.000
One-shot 0.103 £0.001 0.939 +0.000 0.055+0.000 0.940+0.000 0.842 +0.000
Space 0.000 £0.000 0.000 =0.000 0.000 +0.000 0.000 +0.000 0.000 =+ 0.000
Morelnfo Options  0.000 £ 0.000 0.000 £0.000 0.000 = 0.000 0.000 = 0.000 0.000 + 0.000
Typo 0.000 +£0.000 0.000 +£0.000 0.000 +0.000 0.000 «+0.000 0.000 =+ 0.000
One-shot  0.000 = 0.000 0.000 +0.000 0.000 +0.000 0.000 £ 0.000 0.000 % 0.000
Space 0.619 £0.000 0.558 £0.000 0.694 +0.000 0.764 +=0.000 0.991 %= 0.000
SelfRef Options  0.372 £0.000 0.286 +0.000 0.532+0.000 0.598 £0.000 0.119 +0.000
Typo 0.591 £0.000 0.530£0.000 0.666 +0.000 0.737 +£0.000 0.975 +0.000
One-shot 0.301 £0.004 0.211 +£0.002 0.530 +0.005 0.549 +£0.009 0.934 +0.000
Olmo-2-7B

Space 0.693 £0.001 0.708 £0.001 0.681 £0.002 0.820 +£0.000 0.890 £ 0.001
TokProb Options  0.448 £ 0.000 0.495+0.001 0.415+0.002 0.630+0.000 0.785+0.001
Typo 0.695 £0.000 0.692 £0.000 0.698 +0.000 0.820 +0.000 0.889 +0.000
One-shot 0.720+0.001 0.708 +£0.002 0.733 +£0.001 0.838 £0.001 0.840 = 0.000
Space 0.497 £0.001 0.563 £0.007 0.449 +0.000 0.680 +0.002 0.765 + 0.001
AskCal Options  0.459 £0.001 0.623 £0.000 0.366 +0.002 0.691 +0.000 0.655 + 0.000
Typo 0.520 £0.003 0.681 £0.000 0.424 +0.004 0.742+0.000 0.752 +0.000
One-shot 0.439 +£0.000 0.487 +£0.001 0.400+0.000 0.618 £0.001 0.725 %= 0.000
Space 0.000 +£0.000 0.000 = 0.000 0.000 +0.000 0.000 +0.000 0.000 =+ 0.000
Embedding Options  0.000 £ 0.000 0.000 + 0.000 0.000 £ 0.000 0.000 £ 0.000 0.000 + 0.000
Typo 0.000 £0.000 0.000 =0.000 0.000 +0.000 0.000 = 0.000 0.000 =+ 0.000
One-shot 0.435+0.000 0.507 +£0.001 0.382+0.000 0.622+0.000 0.738 +0.000
Space 0.341 £0.000 0.779 £0.000 0.218 £0.000 0.792 +0.000 0.748 +0.000
NOTA Options  0.342 £0.001 0.782+0.000 0.219+0.001 0.794 £0.000 0.638 +0.000
Typo 0.345+0.001 0.792+0.000 0.221 +£0.001 0.803 +0.000 0.756 +0.000
One-shot  0.160 +£0.000 0.804 +£0.000 0.089 +£0.000 0.808 +£0.000 0.701 +0.000
Space 0.289+£0.001 0.832+0.000 0.175+0.001 0.838+0.000 0.741 +0.000
Morelnfo Options  0.221 £0.000 0.807 £0.000 0.128 £0.000 0.812 +0.000 0.630 + 0.000
Typo 0.302 £0.000 0.818+0.000 0.185+0.000 0.825+0.000 0.736+0.000
One-shot  0.066 =0.001 0.864 +0.000 0.035+0.000 0.864 +£0.000 0.667 =0.000
Space 0.334 £0.001 0.210£0.000 0.811 £0.000 0.818 +0.000 0.889 +0.000
SelfRef Options  0.228 £0.000 0.133 £0.000 0.794 £0.000 0.799 £ 0.000 0.561 +0.000
Typo 0.333 £0.000 0.210+0.000 0.810+0.000 0.819 +0.000 0.870 +0.000
One-shot 0.216 £0.000 0.126 £0.000 0.769 £0.002 0.775+£0.002 0.771 £0.001

Table 10: Intra-method consistency evaluation using six knowledge probing methods in LLaMa-3.1-70B and
olmo-2-7B with Hellaswag. Results represent the mean and standard deviation across six comparisons derived from
three different variants generated with three different random seeds and four distinct one-shot prompting setups.
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Method Source Reliable Acc. Effective Acc. Abstain Acc.  Abstain Prec. Abstain Rec. Abstain Rate  Abstain F1

Original 0.500 0.000 0.631 0.632 0.995 0.994 0.773
Blank Space 0.521 0.008 0.626 0.650 0.854 0.812 0.738
Blank Space 1 0.450 -0.022 0.600 0.643 0.804 0.778 0.714
Blank Space 2 0.714 0.003 0.632 0.631 0.997 0.993 0.773
Shuffled Option 0.455 -0.020 0.618 0.665 0.809 0.776 0.730
Shuffled Option 1 0.443 -0.024 0.624 0.672 0.819 0.790 0.739
AskCal Shuffled Option 2 0.467 -0.013 0.622 0.660 0.835 0.803 0.737
Typo 0.471 -0.011 0.621 0.656 0.842 0.811 0.737

Typo 1 1.000 0.001 0.647 0.647 1.000 0.999 0.785
Typo 2 0.469 -0.013 0.624 0.665 0.827 0.793 0.737
One-shot 1 0.714 0.030 0.598 0.589 0.965 0.930 0.732
One-shot 2 0.756 0.044 0.571 0.554 0.960 0914 0.702
One-shot 3 0.653 0.023 0.558 0.550 0.951 0.925 0.697
One-shot 4 0.711 0.019 0.694 0.693 0.981 0.955 0.812
Original 0.308 -0.005 0.620 0.624 0.986 0.987 0.764
Blank Space 0.333 -0.004 0.614 0.617 0.987 0.988 0.760
Blank Space 1 0.462 -0.001 0.632 0.634 0.989 0.987 0.773
Blank Space 2 0.333 -0.012 0.623 0.634 0.962 0.964 0.764
Shuffled Option 0.366 -0.124 0.528 0.668 0.549 0.536 0.603
Shuffled Option 1 0.388 -0.061 0.577 0.648 0.738 0.727 0.690
Embedding Shuffled Option 2 0.516 0.001 0.641 0.645 0.977 0.969 0.777
Typo 0.361 -0.027 0.615 0.642 0.903 0.903 0.751

Typo 1 0.273 -0.010 0.618 0.626 0.975 0.978 0.762
Typo 2 0.467 -0.003 0.628 0.636 0.962 0.955 0.765
One-shot 1 0.417 -0.059 0.511 0.563 0.635 0.643 0.597
One-shot 2 0.551 0.013 0.542 0.541 0.892 0.873 0.673
One-shot 3 0.479 -0.027 0.509 0.562 0.381 0.363 0.454
One-shot 4 0.381 -0.005 0.669 0.675 0.981 0.979 0.800
Original 0.377 -0.230 0.400 0.721 0.078 0.068 0.140
Blank Space 0.377 -0.228 0.406 0.770 0.090 0.074 0.161
Blank Space 1 0.376 -0.233 0.392 0.649 0.059 0.057 0.109
Blank Space 2 0.364 -0.253 0.388 0.704 0.078 0.071 0.140
Shuffled Option 0.356 -0.270 0.376 0.683 0.063 0.060 0.116
Shuffled Option 1 0.367 -0.250 0.392 0.774 0.075 0.062 0.136
NOTA Shuffled Option 2 0.363 -0.257 0.386 0.730 0.072 0.063 0.130
Typo 0.370 -0.242 0.394 0.727 0.075 0.066 0.137

Typo 1 0.365 -0.251 0.391 0.746 0.078 0.067 0.141
Typo 2 0.364 -0.256 0.382 0.661 0.064 0.062 0.117
One-shot 1 0.432 -0.133 0.437 0.621 0.032 0.029 0.060
One-shot 2 0.469 -0.060 0.475 0.727 0.030 0.022 0.057
One-shot 3 0.461 -0.075 0.475 0.755 0.067 0.049 0.124
One-shot 4 0.353 -0.276 0.376 0.719 0.071 0.064 0.128
Original 0.369 -0.246 0.385 0.625 0.063 0.064 0.115
Blank Space 0.373 -0.240 0.385 0.589 0.053 0.056 0.097
Blank Space 1 0.369 -0.246 0.387 0.667 0.063 0.060 0.115
Blank Space 2 0.354 -0.275 0.370 0.623 0.059 0.061 0.108
Shuffled Option 0.334 -0.309 0.355 0.638 0.066 0.069 0.120
Shuffled Option 1 0.357 -0.265 0.379 0.662 0.073 0.071 0.131
Morelnfo Shuffled Option 2 0.360 -0.264 0.374 0.603 0.055 0.058 0.101
Typo 0.368 -0.249 0.384 0.655 0.057 0.055 0.105

Typo 1 0.372 -0.242 0.386 0.621 0.057 0.058 0.105
Typo 2 0.357 -0.268 0.375 0.645 0.062 0.062 0.113
One-shot 1 0.496 -0.007 0.497 0.520 0.026 0.025 0.049
One-shot 2 0.498 -0.004 0.499 0.600 0.012 0.010 0.023
One-shot 3 0.526 0.051 0.528 0.727 0.017 0.011 0.033
One-shot 4 0.386 -0.224 0.389 0.550 0.018 0.020 0.035
Original 0.392 -0.120 0.517 0.674 0.468 0.442 0.552
Blank Space 0.374 -0.140 0.497 0.651 0.454 0.444 0.535
Blank Space 1 0.390 -0.121 0.502 0.639 0.461 0.449 0.535
Blank Space 2 0.363 -0.153 0.493 0.657 0.450 0.443 0.534
Shuffled Option 0.348 -0.174 0.488 0.675 0.437 0.428 0.530
Shuffled Option 1 0.341 -0.179 0.463 0.620 0.422 0.437 0.502
Reflect Shuffled Option 2 0.403 -0.105 0.526 0.672 0.487 0.457 0.564
Typo 0.365 -0.150 0.494 0.655 0.452 0.444 0.535

Typo 1 0.364 -0.150 0.502 0.672 0.462 0.448 0.547
Typo 2 0.397 -0.111 0.516 0.656 0.480 0.459 0.554
One-shot 1 0.613 0.066 0.637 0.647 0.802 0.708 0.716
One-shot 2 0.500 0.000 0.522 0.556 0.421 0.396 0.479
One-shot 3 0.491 -0.010 0.525 0.568 0.469 0.442 0514
One-shot 4 0.366 -0.158 0.503 0.700 0.434 0.410 0.536
Original 0.453 -0.043 0.579 0.686 0.596 0.541 0.638
Blank Space 0.458 -0.037 0.589 0.694 0.615 0.555 0.652
Blank Space 1 0.444 -0.049 0.584 0.693 0.616 0.563 0.652
Blank Space 2 0.465 -0.030 0.610 0.721 0.638 0.566 0.677
Shuffled Option 0.440 -0.051 0.606 0.729 0.638 0.575 0.680
Shuffled Option 1 0.437 -0.057 0.584 0.704 0.605 0.551 0.651
TokenProb Shuffled Option 2 0.436 -0.059 0.578 0.699 0.592 0.539 0.641
Typo 0.459 -0.035 0.611 0.724 0.642 0.573 0.681

Typo 1 0.465 -0.030 0.611 0.721 0.641 0.570 0.679
Typo 2 0.454 -0.041 0.584 0.689 0.610 0.553 0.647
One-shot 1 0.458 -0.037 0.541 0.607 0.585 0.557 0.596
One-shot 2 0.523 0.021 0.552 0.576 0.595 0.549 0.585
One-shot 3 0.527 0.024 0.562 0.589 0.613 0.560 0.601
One-shot 4 0.378 -0.109 0.563 0.712 0.588 0.555 0.644

Table 11: Comparative abstain performance between different variant setups and original setup on Mistral-7B in
Hellaswag.
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Method Source Reliable Acc. Effective Acc. Abstain Acc.  Abstain Prec. Abstain Rec. Abstain Rate  Abstain F1

Original 0.492 -0.003 0.559 0.575 0.822 0.803 0.677
Blank Space 0.505 0.002 0.568 0.583 0.834 0.810 0.686
Blank Space 1 0.513 0.005 0.569 0.582 0.839 0.813 0.687
Blank Space 2 0.497 -0.001 0.564 0.580 0.832 0.811 0.683
Shuffled Option 0.539 0.015 0.577 0.586 0.842 0.807 0.691
Shuffled Option 1 0.520 0.008 0.592 0.610 0.836 0.800 0.705
AskCal Shuffled Option 2 0.528 0.011 0.595 0.611 0.842 0.805 0.708
Typo 0.479 -0.008 0.563 0.583 0.827 0.810 0.684

Typo 1 0.472 -0.011 0.564 0.586 0.823 0.807 0.685
Typo 2 0.508 0.003 0.572 0.587 0.833 0.807 0.689
One-shot 1 0.500 0.000 0.746 0.746 1.000 1.000 0.855
One-shot 2 0.500 0.000 0.743 0.743 1.000 1.000 0.853
One-shot 3 0.488 -0.003 0.644 0.666 0.904 0.879 0.767
One-shot 4 0.508 0.001 0.631 0.639 0.951 0.937 0.765
Original 0.419 -0.043 0.511 0.544 0.722 0.735 0.621
Blank Space 0.423 -0.052 0.512 0.557 0.656 0.664 0.603
Blank Space 1 0.410 -0.093 0.473 0.540 0.463 0.485 0.499
Blank Space 2 0.412 -0.041 0.524 0.558 0.758 0.767 0.643
Shuffled Option 0.481 -0.008 0.551 0.569 0.807 0.792 0.668
Shuffled Option 1 0.451 -0.031 0.555 0.603 0.705 0.685 0.650
Embedding Shuffled Option 2 0.455 -0.043 0.538 0.614 0.552 0.523 0.582
Typo 0.407 -0.063 0.517 0.573 0.653 0.661 0.611

Typo 1 0.432 -0.037 0.541 0.582 0.734 0.729 0.649
Typo 2 0.399 -0.086 0.485 0.549 0.552 0.574 0.550
One-shot 1 0.296 -0.066 0.681 0.755 0.847 0.838 0.799
One-shot 2 0.394 -0.014 0.732 0.756 0.946 0.934 0.840
One-shot 3 0.392 -0.050 0.595 0.656 0.781 0.768 0.713
One-shot 4 0.396 -0.103 0.530 0.661 0.529 0.507 0.588
Original 0.472 -0.039 0.522 0.642 0.335 0.293 0.440
Blank Space 0.456 -0.064 0.495 0.596 0.299 0.280 0.398
Blank Space 1 0.441 -0.086 0.487 0.610 0.290 0.272 0.393
Blank Space 2 0.475 -0.035 0.531 0.664 0.346 0.295 0.455
Shuffled Option 0.471 -0.042 0.521 0.646 0.330 0.288 0.437
Shuffled Option 1 0.434 -0.094 0.493 0.637 0.317 0.292 0.423
NOTA Shuffled Option 2 0.461 -0.055 0.517 0.650 0.337 0.297 0.444
Typo 0.456 -0.063 0.506 0.635 0.309 0.277 0.416

Typo 1 0.451 -0.070 0.503 0.630 0.321 0.292 0.425
Typo 2 0.452 -0.070 0.505 0.646 0.308 0.274 0.417
One-shot 1 0.261 -0.388 0.361 0.793 0.199 0.188 0.318
One-shot 2 0.246 -0.406 0.341 0.720 0.193 0.200 0.304
One-shot 3 0.305 -0.316 0.379 0.695 0.190 0.190 0.298
One-shot 4 0.354 -0.242 0.413 0.700 0.182 0.170 0.288
Original 0.475 -0.035 0.523 0.637 0.337 0.295 0.441
Blank Space 0.471 -0.042 0.528 0.670 0.339 0.288 0.450
Blank Space 1 0.465 -0.049 0.527 0.675 0.345 0.295 0.457
Blank Space 2 0.472 -0.039 0.527 0.657 0.345 0.297 0.452
Shuffled Option 0.491 -0.013 0.554 0.697 0.377 0.307 0.490
Shuffled Option 1 0.442 -0.081 0.508 0.662 0.336 0.299 0.446
Morelnfo Shuffled Option 2 0.461 -0.054 0.526 0.673 0.355 0.306 0.465
Typo 0.457 -0.060 0.513 0.641 0.342 0.306 0.446

Typo 1 0.472 -0.038 0.537 0.681 0.367 0.310 0.477
Typo 2 0.471 -0.041 0.527 0.657 0.350 0.303 0.457
One-shot 1 0.349 -0.298 0.354 0.714 0.015 0.014 0.030
One-shot 2 0.390 -0.185 0.437 0.688 0.174 0.157 0.277
One-shot 3 0.414 -0.171 0.414 0.333 0.002 0.003 0.003
One-shot 4 0.499 -0.002 0.499 0.500 0.014 0.014 0.027
Original 0.643 0.066 0.625 0.619 0.853 0.770 0.718
Blank Space 0.632 0.060 0.630 0.630 0.853 0.772 0.724
Blank Space 1 0.662 0.075 0.639 0.632 0.862 0.769 0.729
Blank Space 2 0.691 0.083 0.650 0.639 0.882 0.783 0.741
Shuffled Option 0.637 0.067 0.627 0.624 0.841 0.755 0.716
Shuffled Option 1 0.667 0.077 0.669 0.670 0.870 0.769 0.757
Reflect Shuffled Option 2 0.634 0.065 0.646 0.650 0.847 0.757 0.735
Typo 0.655 0.077 0.655 0.655 0.851 0.751 0.740

Typo 1 0.667 0.080 0.652 0.647 0.860 0.760 0.739
Typo 2 0.632 0.060 0.631 0.631 0.853 0.772 0.725
One-shot 1 0.290 -0.107 0.636 0.754 0.756 0.745 0.755
One-shot 2 0.309 -0.084 0.655 0.753 0.794 0.780 0.773
One-shot 3 0.484 -0.005 0.637 0.665 0.877 0.847 0.756
One-shot 4 0.471 -0.015 0.602 0.647 0.781 0.745 0.708
Original 0.451 -0.089 0.466 0.611 0.105 0.095 0.178
Blank Space 0.448 -0.096 0.469 0.702 0.104 0.084 0.182
Blank Space 1 0.436 -0.116 0.457 0.667 0.105 0.090 0.181
Blank Space 2 0.447 -0.096 0.472 0.708 0.120 0.096 0.205
Shuffled Option 0.456 -0.079 0.484 0.716 0.139 0.109 0.232
Shuffled Option 1 0.417 -0.150 0.433 0.580 0.099 0.100 0.170
TokenProb Shuffled Option 2 0.433 -0.122 0.455 0.670 0.109 0.094 0.188
Typo 0.423 -0.140 0.440 0.606 0.098 0.094 0.169

Typo 1 0.437 -0.113 0.464 0.695 0.127 0.105 0.214
Typo 2 0.441 -0.105 0.465 0.661 0.126 0.109 0.212
One-shot 1 0.246 -0.462 0.285 0.678 0.082 0.090 0.146
One-shot 2 0.245 -0.463 0.285 0.681 0.083 0.091 0.148
One-shot 3 0.356 -0.266 0.378 0.641 0.078 0.078 0.139
One-shot 4 0.368 -0.243 0.388 0.614 0.081 0.083 0.143

Table 12: Comparative abstain performance between different variant setups and original setup on LLaMa-3.1-8B
in Hellaswag.
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Method Source Reliable Acc. Effective Acc. Abstain Acc.  Abstain Prec. Abstain Rec. Abstain Rate  Abstain F1

Original 0.648 0.149 0.650 0.653 0.645 0.495 0.649
Blank Space 0.621 0.125 0.634 0.647 0.617 0.485 0.632
Blank Space 1 0.621 0.119 0.638 0.654 0.642 0.509 0.648
Blank Space 2 0.621 0.123 0.639 0.657 0.628 0.493 0.642
Shuffled Option 0.604 0.106 0.620 0.637 0.605 0.488 0.621
Shuffled Option 1 0.640 0.135 0.641 0.642 0.656 0.517 0.649
AskCal Shuffled Option 2 0.649 0.148 0.640 0.631 0.644 0.502 0.638
Typo 0.618 0.112 0.638 0.656 0.656 0.526 0.656

Typo 1 0.629 0.126 0.650 0.670 0.655 0.512 0.662
Typo 2 0.606 0.105 0.633 0.659 0.633 0.507 0.645
One-shot 1 0.588 0.056 0.589 0.590 0.752 0.680 0.661
One-shot 2 0.657 0.067 0.574 0.551 0.856 0.787 0.671
One-shot 3 0.543 0.071 0.545 0.556 0.200 0.171 0.295
One-shot 4 0.600 0.062 0.553 0.532 0.747 0.690 0.622
Original 0.641 0.104 0.598 0.573 0.731 0.630 0.642
Blank Space 0.675 0.067 0.581 0.559 0.879 0.809 0.683
Blank Space 1 0.773 0.065 0.574 0.547 0.947 0.881 0.694
Blank Space 2 0.637 0.094 0.615 0.604 0.760 0.656 0.673
Shuffled Option 0.712 0.087 0.610 0.584 0.887 0.795 0.704
Shuffled Option 1 0.648 0.062 0.569 0.548 0.854 0.790 0.668
Embedding Shuffled Option 2 0.715 0.086 0.576 0.541 0.884 0.800 0.671
Typo 0.667 0.056 0.572 0.553 0.891 0.832 0.682

Typo 1 0.614 0.068 0.593 0.584 0.781 0.702 0.668
Typo 2 0.695 0.068 0.597 0.576 0.900 0.826 0.703
One-shot 1 0.511 0.015 0.548 0.619 0.394 0.339 0.482
One-shot 2 0.499 -0.002 0.531 0.615 0.321 0.278 0.422
One-shot 3 0.482 -0.032 0.501 0.663 0.129 0.104 0.217
One-shot 4 0.603 0.030 0.563 0.556 0.891 0.854 0.685
Original 0.515 0.028 0.527 0.710 0.088 0.062 0.157
Blank Space 0.498 -0.004 0.513 0.788 0.079 0.052 0.144
Blank Space 1 0.499 -0.002 0.512 0.760 0.074 0.050 0.135
Blank Space 2 0.494 -0.012 0.512 0.765 0.099 0.068 0.176
Shuffled Option 0.495 -0.010 0.507 0.700 0.081 0.060 0.146
Shuffled Option 1 0.502 0.003 0.511 0.667 0.075 0.057 0.135
NOTA Shuffled Option 2 0.517 0.033 0.520 0.566 0.062 0.053 0.111
Typo 0.477 -0.043 0.480 0.527 0.055 0.055 0.100

Typo 1 0.490 -0.018 0.503 0.707 0.079 0.058 0.142
Typo 2 0.479 -0.039 0.490 0.661 0.074 0.059 0.133
One-shot 1 0.511 0.020 0.519 0.641 0.082 0.064 0.146
One-shot 2 0.511 0.022 0.515 0.625 0.041 0.032 0.076
One-shot 3 0.543 0.084 0.548 0.750 0.039 0.024 0.074
One-shot 4 0.517 0.033 0.518 0.560 0.029 0.025 0.055
Original 0.508 0.014 0.512 0.536 0.151 0.140 0.235
Blank Space 0.485 -0.024 0.495 0.539 0.187 0.180 0.278
Blank Space 1 0.490 -0.016 0.492 0.500 0.159 0.162 0.242
Blank Space 2 0.486 -0.024 0.490 0.512 0.169 0.170 0.254
Shuffled Option 0.484 -0.027 0.488 0.510 0.148 0.149 0.229
Shuffled Option 1 0.498 -0.003 0.504 0.538 0.154 0.145 0.239
Morelnfo Shuffled Option 2 0.501 0.002 0.493 0.451 0.151 0.164 0.226
Typo 0.475 -0.041 0.471 0.452 0.156 0.177 0.232

Typo 1 0.484 -0.026 0.493 0.537 0.170 0.164 0.258
Typo 2 0.474 -0.042 0.484 0.528 0.179 0.178 0.267
One-shot 1 0.523 0.045 0.523 0.667 0.004 0.003 0.008
One-shot 2 0.522 0.043 0.524 0.778 0.015 0.009 0.029
One-shot 3 0.551 0.100 0.550 0.500 0.011 0.010 0.022
One-shot 4 0.527 0.053 0.527 1.000 0.002 0.001 0.004
Original 0.508 0.008 0.509 0.510 0.497 0.488 0.504
Blank Space 0.483 -0.017 0.496 0.509 0.499 0.503 0.504
Blank Space 1 0.497 -0.003 0.508 0.519 0.517 0.509 0518
Blank Space 2 0.474 -0.026 0.485 0.496 0.483 0.498 0.490
Shuffled Option 0.484 -0.016 0.501 0.518 0.509 0.508 0.513
Shuffled Option 1 0.493 -0.007 0.500 0.507 0.523 0.523 0.515
Reflect Shuffled Option 2 0.507 0.007 0.498 0.488 0.473 0.475 0.480
Typo 0.482 -0.018 0.495 0.508 0.499 0.504 0.503

Typo 1 0.482 -0.018 0.500 0.518 0.512 0.512 0.515
Typo 2 0.461 -0.040 0.487 0.514 0.480 0.492 0.497
One-shot 1 0.544 0.050 0.524 0.498 0.458 0.436 0.477
One-shot 2 0.537 0.033 0.502 0.474 0.554 0.549 0.511
One-shot 3 0.556 0.060 0.513 0.463 0.472 0.462 0.468
One-shot 4 0.512 0.013 0.498 0.481 0.454 0.457 0.467
Original 0.570 0.108 0.609 0.737 0.341 0.232 0.467
Blank Space 0.566 0.096 0.600 0.694 0.369 0.268 0.482
Blank Space 1 0.564 0.097 0.608 0.741 0.358 0.247 0.483
Blank Space 2 0.567 0.099 0.607 0.719 0.372 0.263 0.490
Shuffled Option 0.553 0.083 0.598 0.768 0.315 0.211 0.446
Shuffled Option 1 0.544 0.069 0.566 0.644 0.284 0.219 0.394
TokenProb Shuffled Option 2 0.567 0.107 0.597 0.712 0.298 0.205 0.420
Typo 0.555 0.083 0.608 0.776 0.356 0.241 0.488

Typo 1 0.552 0.078 0.607 0.774 0.363 0.248 0.494
Typo 2 0.551 0.075 0.601 0.743 0.369 0.261 0.493
One-shot 1 0.511 0.017 0.541 0.641 0.282 0.231 0.392
One-shot 2 0.534 0.053 0.562 0.656 0.293 0.227 0.405
One-shot 3 0.582 0.127 0.598 0.651 0.316 0.229 0.426
One-shot 4 0.558 0.090 0.581 0.659 0.303 0.226 0.416

Table 13: Comparative abstain performance between different variant setups and original setup on Mistral-7B in
MMLU.
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Method Source Reliable Acc. Effective Acc. Abstain Acc.  Abstain Prec. Abstain Rec. Abstain Rate  Abstain F1

Original 0.739 0.327 0.672 0.527 0.484 0.317 0.505
Blank Space 0.671 0.315 0.675 0.727 0.156 0.077 0.256
Blank Space 1 0.681 0.335 0.685 0.727 0.160 0.077 0.262
Blank Space 2 0.736 0.322 0.666 0.516 0.477 0.318 0.495
Shuffled Option 0.665 0.307 0.665 0.667 0.128 0.069 0.215
Shuffled Option 1 0.654 0.286 0.655 0.671 0.127 0.070 0214
AskCal Shuffled Option 2 0.673 0.323 0.664 0.536 0.109 0.069 0.180
Typo 0.720 0.294 0.660 0.539 0.489 0.332 0.513

Typo 1 0.657 0.290 0.664 0.744 0.155 0.078 0.257
Typo 2 0.659 0.291 0.664 0.723 0.161 0.083 0.263
One-shot 1 0.629 0.237 0.635 0.704 0.143 0.081 0.238
One-shot 2 0.515 0.008 0.583 0.608 0.774 0.732 0.681
One-shot 3 0.575 0.058 0.530 0.502 0.653 0.614 0.567
One-shot 4 0.563 0.116 0.577 0.750 0.124 0.076 0.212
Original 0.709 0.320 0.668 0.534 0.359 0.234 0.430
Blank Space 0.754 0.171 0.526 0.410 0.766 0.663 0.534
Blank Space 1 0.692 0.294 0.652 0.521 0.341 0.234 0.412
Blank Space 2 0.679 0.325 0.677 0.659 0.170 0.091 0.271
Shuffled Option 0.700 0.310 0.662 0.531 0.341 0.226 0.415
Shuffled Option 1 0.680 0.290 0.655 0.551 0.296 0.196 0.385
Embedding Shuffled Option 2 0.711 0.296 0.639 0.470 0.411 0.300 0.439
Typo 0.707 0.182 0.546 0.420 0.646 0.560 0.509

Typo 1 0.691 0.296 0.665 0.575 0.352 0.226 0.437
Typo 2 0.685 0.257 0.629 0.502 0.411 0.305 0.452
One-shot 1 0.695 0.241 0.640 0.551 0.526 0.381 0.538
One-shot 2 0.448 -0.048 0.543 0.625 0.567 0.536 0.594
One-shot 3 0.596 0.083 0.564 0.540 0.636 0.567 0.584
One-shot 4 0.641 0.071 0.540 0.506 0.808 0.749 0.622
Original 0.667 0.309 0.662 0.603 0.125 0.073 0.207
Blank Space 0.663 0.304 0.658 0.586 0.116 0.070 0.193
Blank Space 1 0.672 0.320 0.664 0.557 0.113 0.070 0.188
Blank Space 2 0.679 0.333 0.674 0.606 0.126 0.071 0.209
Shuffled Option 0.656 0.291 0.644 0.477 0.088 0.065 0.148
Shuffled Option 1 0.642 0.263 0.640 0.613 0.122 0.075 0.204
NOTA Shuffled Option 2 0.675 0.329 0.665 0.508 0.092 0.061 0.156
Typo 0.655 0.286 0.646 0.539 0.114 0.076 0.188

Typo 1 0.651 0.277 0.648 0.614 0.137 0.083 0.225
Typo 2 0.647 0.271 0.639 0.544 0.117 0.079 0.192
One-shot 1 0.592 0.169 0.587 0.531 0.103 0.081 0.172
One-shot 2 0.485 -0.026 0.494 0.565 0.117 0.108 0.194
One-shot 3 0.534 0.060 0.536 0.549 0.141 0.122 0.224
One-shot 4 0.538 0.070 0.543 0.605 0.097 0.076 0.168
Original 0.686 0.346 0.685 0.676 0.136 0.070 0.226
Blank Space 0.671 0.318 0.671 0.676 0.130 0.068 0.219
Blank Space 1 0.663 0.304 0.666 0.700 0.135 0.070 0.227
Blank Space 2 0.670 0.316 0.672 0.700 0.138 0.070 0.230
Shuffled Option 0.662 0.301 0.659 0.620 0.123 0.071 0.205
Shuffled Option 1 0.656 0.288 0.654 0.635 0.128 0.074 0.214
Morelnfo Shuffled Option 2 0.686 0.346 0.678 0.574 0.117 0.068 0.195
Typo 0.662 0.299 0.666 0.714 0.150 0.077 0.248

Typo 1 0.667 0.307 0.675 0.765 0.168 0.081 0.276
Typo 2 0.660 0.296 0.660 0.658 0.137 0.076 0.227
One-shot 1 0.577 0.153 0.576 0.444 0.009 0.009 0.019
One-shot 2 0.534 0.067 0.537 0.889 0.017 0.009 0.033
One-shot 3 0.611 0.221 0.611 0.571 0.010 0.007 0.020
One-shot 4 0.579 0.156 0.580 0.700 0.017 0.010 0.032
Original 0.738 0.248 0.598 0.446 0.611 0.480 0.516
Blank Space 0.741 0.241 0.597 0.453 0.635 0.499 0.529
Blank Space 1 0.729 0.234 0.586 0.437 0.608 0.490 0.508
Blank Space 2 0.740 0.240 0.588 0.436 0.626 0.500 0.514
Shuffled Option 0.750 0.251 0.600 0.449 0.639 0.497 0.527
Shuffled Option 1 0.723 0.231 0.599 0.466 0.611 0.483 0.529
Reflect Shuffled Option 2 0.741 0.257 0.596 0.430 0.593 0.467 0.499
Typo 0.727 0.223 0.580 0.438 0.625 0.509 0.515

Typo 1 0.727 0.223 0.590 0.458 0.635 0.509 0.532
Typo 2 0.723 0.222 0.594 0.466 0.629 0.502 0.535
One-shot 1 0.600 0.086 0.552 0.516 0.633 0.572 0.568
One-shot 2 0.534 0.019 0.628 0.665 0.785 0.719 0.720
One-shot 3 0.653 0.104 0.561 0.514 0.742 0.660 0.607
One-shot 4 0.585 0.048 0.527 0.504 0.756 0.718 0.605
Original 0.694 0.350 0.698 0.740 0.204 0.096 0.320
Blank Space 0.678 0.331 0.691 0.870 0.167 0.069 0.280
Blank Space 1 0.691 0.356 0.705 0.897 0.175 0.068 0.293
Blank Space 2 0.683 0.330 0.685 0.708 0.192 0.096 0.302
Shuffled Option 0.691 0.355 0.698 0.781 0.166 0.073 0.274
Shuffled Option 1 0.676 0.325 0.688 0.840 0.174 0.075 0.288
TokenProb Shuffled Option 2 0.700 0.372 0.713 0.875 0.185 0.072 0.305
Typo 0.686 0.345 0.701 0.890 0.183 0.073 0.303

Typo 1 0.667 0.309 0.681 0.853 0.172 0.075 0.286
Typo 2 0.671 0.315 0.685 0.848 0.181 0.079 0.298
One-shot 1 0.630 0.229 0.636 0.678 0.201 0.121 0.311
One-shot 2 0.441 -0.103 0.479 0.744 0.160 0.125 0.263
One-shot 3 0.541 0.072 0.556 0.661 0.169 0.124 0.270
One-shot 4 0.568 0.119 0.586 0.715 0.188 0.123 0.298

Table 14: Comparative abstain performance between different variant setups and original setup on LLaMa-3.1-8B
in MMLU.
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