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Abstract

Natural Language Processing (NLP) has cat-
alyzed a paradigm shift in Computer-Aided
Synthesis Planning (CASP), reframing chem-
ical synthesis prediction as a sequence-to-
sequence modeling problem over molecular
string representations like SMILES. This fram-
ing has enabled the direct application of lan-
guage models to chemistry, yielding impres-
sive benchmark scores on the USPTO dataset,
a large text corpus of reactions extracted from
US patents. However, we show that USPTO’s
patent-derived data are both industrially biased
and incomplete. They omit many fundamen-
tal transformations essential for practical real-
world synthesis. Consequently, models trained
exclusively on USPTO perform poorly on sim-
ple, pharmaceutically relevant reactions despite
high benchmark scores. Our findings high-
light a broader concern in applying standard
NLP pipelines to scientific domains without re-
thinking data and evaluation: models may learn
dataset artifacts rather than domain reasoning.
We argue for the development of chemically
meaningful benchmarks, greater data diversity,
and interdisciplinary dialogue between the NLP
community and domain experts to ensure real-
world applicability.

1 Introduction

Recent advances in Natural Language Processing
(NLP) have had a transformative impact well be-
yond linguistics, enabling breakthroughs across
diverse domains. Among these, computational
chemistry has emerged as a particularly promis-
ing field, where tools and models developed for
human language are increasingly repurposed to
reason over structured, sequential chemical repre-
sentations (Chithrananda et al., 2020; Bagal et al.,
2021).

A key challenge in this domain is Computer-
Aided Synthesis Planning (CASP), which aims to
automatically design viable synthesis routes to ob-
tain target molecules. In practice, this involves

identifying a series of chemical reactions that trans-
form simple and/or commercially available starting
materials into a desired target compound (Blake-
more et al., 2018). This series of reactions is known
as a synthesis route. Traditionally, designing such
routes often requires expert intuition and exten-
sive domain knowledge (Coley et al., 2019). CASP
models aim to automate this reasoning process, pro-
viding chemists with viable synthetic strategies.

Finding a synthesis route is crucial in modern
drug discovery, materials design, and green chem-
istry. Drawing on structural parallels with language
modeling, researchers have increasingly reformu-
lated synthesis planning as a sequence-to-sequence
task, encoding molecules as linear string represen-
tations (Schwaller et al., 2019). This approach rep-
resents a direct recontextualization of NLP meth-
ods: language models are applied to a domain that
shares some structural properties with natural lan-
guage, yet differs fundamentally in semantics, eval-
uation, and goals.

Contemporary approaches today in the field of
CASP are predominantly data-driven. A widely
held argument in the field is that rule-based systems
are costly to maintain and difficult to scale. From
this perspective, models that bypass such rules are
seen as more scalable and are often assumed to
generalize better to previously unseen reactions
(Wei et al., 2024).

However, this assumption does not always hold,
especially when the training data is limited in scope,
unrepresentative of the real distribution, or exhibits
systematic biases. One dataset dominates the lit-
erature on single and multi-step chemical synthe-
sis, USPTO (Lowe, 2012), which remains the only
large-scale and open-source reaction dataset. It is
derived from patents published by the United States
Patent and Trademark Office. Beyond its accessibil-
ity, the structure of the dataset, where reactions are
represented as SMILES strings in an input—output
format, played a pivotal role in shifting the field
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toward data-driven, NLP-style modeling.

The SMILES notation (Weininger, 1988) offers a
compact, linear representation of molecular graphs
by encoding atoms and bonds as a sequence of
characters. This linearization is achieved through
a canonical traversal of the molecular graph, en-
suring that each molecule is mapped to a unique
and reproducible string while retaining sufficient
information for reconstruction. Such a representa-
tion makes molecules inherently compatible with
tokenization and sequence-based modeling. Conse-
quently, the USPTO’s adoption of the SMILES for-
mat naturally aligned with sequence-to-sequence
learning paradigms, motivating researchers to ap-
ply language models to chemical synthesis. In
doing so, the USPTO dataset not only served as
a foundational resource but also influenced the
methodological direction of synthesis prediction,
reinforcing the dominance of data-driven NLP ap-
proaches over symbolic or rule-based alternatives.

While different versions of the original USPTO
dataset have become a standard benchmark in syn-
thesis prediction, their scope is inherently con-
strained by their origin: patent literature. As such,
they primarily capture reactions that are considered
novel, industrially relevant, or commercially valu-
able enough to warrant patent protection. Despite
repeated efforts to clean and curate the USPTO
dataset (Schneider et al., 2016; Jin et al., 2017), and
despite growing critiques regarding its efficiency
(Yu et al., 2024), diversity (Torren-Peraire et al.,
2024), and labeling bias (Griffiths et al., 2021),
it remains the most used benchmark in the field
of single-step and multi-step synthesis prediction.
However, contrary to widespread assumptions, we
argue that relying exclusively on this benchmark,
and thus on patent-derived data, introduces signif-
icant bias during model training. This reliance
systematically overlooks a broad portion of the
chemical space, particularly foundational and non-
patented reactions, thereby limiting the general-
izability and real-world utility of current models.
The lack of real-world adoption or application of
models trained exclusively on these datasets fur-
ther reinforces our claim: these models often fail
to generalize to diverse chemical structures and fall
short of the requirements for practical synthesis
planning. This reveals a deeper issue: the adoption
of NLP-style benchmarking practices in scientific
domains can create the illusion of progress, even
when models fail to achieve meaningful domain-
level impact.

In this study, we critically examine the prevail-
ing benchmark of USPTO that has been optimized
for synthesis prediction research for a decade. We
highlight that the problem of synthesis planning,
originally rooted in assisting chemists, has drifted
into a purely informatics challenge, disconnected
from the experimental realities and needs of chem-
istry. To ground this critique, we conduct an empiri-
cal investigation that tests the generalization capac-
ity of a state-of-the-art model trained on USPTO,
Chemformer (Irwin et al., 2022). To ensure that
our findings are not an artifact of model choice,
we also include as a sanity check a 75 model, Pro-
PreT5 (Ozer et al., 2025), we previously trained for
the same task, which performs considerably worse
than Chemformer. By evaluating these models on
a set of foundational, pharmaceutically relevant re-
actions from the Hartenfeller dataset (Hartenfeller
et al., 2011) absent from the USPTO benchmark,
we demonstrate that high accuracy on USPTO does
not necessarily translate into chemical reasoning or
practical utility. This disconnect, we argue, calls
for a reassessment of current benchmarks and eval-
uation practices within the field.

2 Background & Related Work

2.1 Computer-Aided Synthesis Planning

Chemical synthesis is the process of assembling
small or readily available molecules (reactants)
through a series of chemically feasible reactions to
obtain desired compounds (products). The inverse
of chemical synthesis, known as retrosynthesis, in-
volves deconstructing a target molecule into sim-
pler or commercially accessible precursors. This
concept was formally introduced in the 1960s by
(Corey, 1967), who laid the foundations for system-
atic synthetic planning. Chemical Synthesis can
be roughly divided into two sub-problems: Single-
step and multi-step synthesis. Single-step synthe-
sis involves predicting the immediate product of a
given set of reactants, while multi-step synthesis
requires generating an entire series of reactions that
iteratively construct a target molecule from simpler,
purchasable precursors.

CASP can naturally be formalized as a compu-
tational problem, as it requires the exploration of
a search space to identify a sequence of reactions
that transform an initial state into a defined goal
state.

Early implementation efforts led to rule-based
expert systems such as LHASA (Corey et al., 1985)
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and later Chematica (Szymku¢ et al., 2016). These
systems encoded chemical knowledge through an
extensive set of manually curated reaction rules,
based on decades of experimental findings from
the literature. By recursively applying these rules,
they could suggest valid reaction sequences, effec-
tively emulating the decision-making process of
experienced synthetic chemists. Although these
approaches demonstrated the feasibility of CASP,
they were limited by their reliance on static knowl-
edge bases and their inability to easily adapt to new
chemistry.

The recent surge of freely available reaction data
(Lowe, 2012) coupled with NLP techniques has
led to a shift from rule-based systems toward data-
driven models.

2.2 NLP Models Applied to CASP

Since (Lowe, 2012) proposed his reaction dataset,
data-driven approaches have gained immense popu-
larity, leading to the increasing application of NLP
techniques to CASP in recent years. This develop-
ment is largely driven by the ability to represent
molecules as linear strings through notations such
as SMILES (Weininger, 1988), allowing the direct
application of models initially designed for lan-
guage tasks.

In the context of CASP, chemical reactions can
be modeled as transformations from one sequence
of tokens (representing the reactants and reagents)
to another (the products). This creates a natural
analogy with neural machine translation, where
the objective is to "translate" a source sequence
into a target sequence. As a result, both single-
step and multi-step synthesis planning problems
are increasingly formalized as machine translation
tasks, allowing a wide range of NLP methods to
be adapted for synthesis/retrosynthesis (Schwaller
etal., 2019).

Before the advent of Transformer architectures,
early approaches in this space relied heavily on
sequence-to-sequence models with recurrent neu-
ral networks (RNNs). For instance, (Nam and Kim,
2016) first demonstrated the potential of neural
machine translation for single-step synthesis, us-
ing encoder-decoder models to translate SMILES
strings of reactants and reagents into products.
These models were later improved with the use
of different attention mechanisms (Schwaller et al.,
2018), which improved the model’s ability to focus
on the relevant parts of the input during prediction.

However, it was the introduction of the Trans-

former architecture (Vaswani et al., 2017) that
truly transformed the field. The Molecular Trans-
former (Schwaller et al., 2019) demonstrated that
the Transformer architecture, originally developed
for text generation, could achieve state-of-the-
art performance in single-step synthesis when
trained purely on SMILES strings, without requir-
ing domain-specific knowledge. This architecture
quickly became the foundation for subsequent in-
novations. Through data augmentation in the Aug-
mented Transformer (Tetko et al., 2020), advanced
pretraining strategies in Chemformer (Irwin et al.,
2022), and the integration of structural informa-
tion, models have achieved improved benchmark
performance. For instance, Hybrid architectures
like MEGAN (Sacha et al., 2021) combined struc-
tural information with language models to retain
the strengths of both paradigms.

Yet, despite architectural advances, these NLP
models are trained and evaluated on the same
benchmark dataset. The improvements in bench-
mark scores give the illusion of progress, while
these methods, due to the lacks in the dataset on
which they are trained, fail to generalize to the
chemical challenges they aim to solve.

2.3 USPTO Benchmark

The USPTO dataset traces its origins to the work
of Daniel Lowe, who developed an NLP pipeline
to extract chemical reactions from the full text of
US patent documents published between 1976 and
2013. Lowe processed millions of patent docu-
ments to create a dataset of approximately 1.8
million reactions (Lowe, 2012). Extracted from
unstructured patent text, the USPTO dataset can
be regarded as a large text-derived corpus, lend-
ing itself naturally to NLP-based modeling ap-
proaches. However, this early dataset contained
significant noise, e.g., redundant entries, poorly
parsed SMILES strings, and missing conditions.
Importantly, it lacked any formal reaction classi-
fication or quality control, as the extraction goal
was broad coverage rather than curated benchmark
construction.

Recognizing these issues, subsequent efforts at-
tempted to curate Lowe’s dataset for machine learn-
ing applications. One of the most prominent cu-
rated versions is the USPTO-MIT dataset (Jin et al.,
2017), which removed duplicates and erroneous
reactions, resulting in approximately 479,000 reac-
tions. The reactions were cleaned, but no effort was
made to balance reaction classes or correct deeper

22815



biases inherited from patent literature. Notably, the
USPTO-MIT dataset is available in two versions,
Mixed and Separate. In the Mixed version, reac-
tants (the molecules that undergo transformation)
and reagents (such as solvents, catalysts, or addi-
tives that facilitate the reaction but are not trans-
formed) are combined into a single input string.
In contrast, the Separate version keeps reactants
and reagents distinct. Although the Separate ver-
sion allows for more chemically accurate modeling,
many NLP-based models use the Mixed version,
as it simplifies tokenization and fits more naturally
into a sequence-to-sequence framework.

To facilitate model benchmarking, the USPTO-
50K subset was later introduced, manually select-
ing 50,000 reactions grouped into 10 major reaction
classes of USPTO (Schneider et al., 2016). While
USPTO-50K provides a standardized testbed for
reaction prediction tasks, it represents an even nar-
rower view of chemical reactivity, favoring only
high-frequency transformations, while underrepre-
senting many other classes of chemical reactions.

Throughout the evolution of the USPTO bench-
mark, the biases inherent in how the dataset was
generated, due to its data acquisition strategy, have
remained unchanged.

3 Benchmark Bias

3.1 Dataset Limitations

The USPTO benchmark, although widely used, ex-
hibits several structural biases that limit its suitabil-
ity to evaluate general-purpose synthesis models
applicable to real-world scenarios.

1. Patent bias: Reactions included in the dataset
are extracted exclusively from U.S. patent
filings, which, by definition, focus on nov-
elty and reactions innovative enough to war-
rant protection. As a result, the dataset over-
represents reaction types that are deemed
patentable, such as those related to pharma-
ceutical or agrochemical innovations.

2. Lack of basic, textbook chemistry: Many sim-
ple and foundational transformations com-
monly encountered in introductory organic
chemistry courses are absent from USPTO-
based corpora. Despite their simplicity, these
reactions serve as essential building blocks
in the synthesis of a wide range of organic
molecules. This is largely because such rou-
tine transformations are rarely featured in

patents, which tend to focus on novel or pro-
prietary chemistry. Consequently, founda-
tional reactions, despite being central to many
synthesis routes, are often underrepresented
or entirely missing from the USPTO dataset.
We argue that models trained exclusively on
USPTO therefore struggle to predict even well-
established synthesis routes for simple or well-
known molecules, due to a lack of exposure
to such fundamental chemistry. The following
sections provide a more detailed examination
of this observation.

3. Imbalanced distribution: Apart from USPTO-
50K, which represents an even narrower sub-
set of chemical space, the broader USPTO
datasets are highly imbalanced, as illustrated
in Figure 1 and Figure 2. Certain reaction
classes appear tens of thousands of times,
whereas many others are underrepresented.
This imbalance biases model learning and
evaluation toward dominant patterns, poten-
tially inflating benchmark performance with-
out corresponding gains in general chemical
reasoning.

The USPTO benchmark is shaped by biases stem-
ming from its data acquisition strategy, which has
created a deep structural bias that manifests as a
long-tailed distribution of reactions and poor out-of-
distribution (OOD) generalization. This limitation
can be illustrated with an analogy to language. A
language model trained exclusively on legal con-
tracts would acquire detailed knowledge of techni-
cal vocabulary and rigid syntactic patterns specific
to that domain. Within legal text, such a model
might appear highly competent, predicting clauses
with accuracy and reproducing stylistic conventions
with ease. Yet its competence would break down
in broader linguistic settings. Confronted with an
everyday expression such as “break the ice”, the
model would fail to capture the intended meaning,
even though it has encountered the words break
and ice many times, because that usage never oc-
curs in the training distribution. The situation is
directly parallel in chemistry: models trained on
patent-derived corpora like USPTO learn associa-
tions shaped by the narrow domain of patent litera-
ture but fail to generalize to foundational textbook
reactions that are absent from the dataset, despite
being composed of the same atoms and following
regular chemical logic. Importantly, this limitation
cannot be remedied with standard techniques for
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handling long-tailed data or OOD generalization.
Such methods may mitigate distributional imbal-
ance when examples are at least present in training,
but they cannot compensate for entire classes of
reactions that are missing altogether.

OOD generalization itself remains a notoriously
difficult challenge with no universal solution de-
spite extensive study (Hendrycks and Dietterich,
2019; Arjovsky et al., 2019; Gulrajani and Lopez-
Paz, 2020). As a result, when the training dis-
tribution is structurally incomplete by design, as
with USPTO, even the most sophisticated architec-
tures and pretraining strategies are fundamentally
constrained. Addressing these limitations requires
rethinking benchmark design rather than relying on
model innovation or data-driven adjustments alone.

3.2 Experimental Setup

To move beyond theoretical critique and obtain a
concrete understanding of how the USPTO dataset
influences model behavior, we conduct an empiri-
cal analysis focused on its impact on generalization
performance.

3.2.1 Model Selection

To carry out our empirical investigation, we se-
lected Chemformer (Irwin et al., 2022) as a rep-
resentative model. Chemformer is a sequence-to-
sequence Transformer model specifically designed
for different molecular downstream tasks. Archi-
tecturally, it builds upon the BART model (Lewis
et al., 2019), employing both an encoder and a de-
coder stack. This makes it well-suited for SMILES-
to-SMILES prediction tasks. What distinguishes
Chemformer from other models in synthesis predic-
tion is its use of transfer learning and supervised
pretraining. The model is pretrained on 100 mil-
lion unlabelled SMILES strings from the ZINC-15
database (Sterling and Irwin, 2015) using three
complementary tasks: 1. Span masking (Lewis
et al., 2019), where short sequences of tokens are
replaced with a mask token. 2. SMILES augmen-
tation (Bjerrum, 2017), in which non-canonical
forms are used as input, a chemistry-specific ana-
logue of paraphrasing. 3. A combined task that
integrates both strategies.

During pretraining, the model receives these cor-
rupted sequences as input and is trained to recon-
struct the original SMILES strings. This denoising
objective provides a strong inductive bias for reac-
tion modeling, where output products are often a
transformed version of the input reactants. The re-

sult is a general-purpose chemical language model
that can be fine-tuned efficiently on a variety of
downstream tasks.

Chemformer, when trained on the USPTO-MIT
Mixed dataset for synthesis prediction on top of its
pretraining, achieves state-of-the-art performance
on USPTO-based benchmarks. It reports a top-
1 accuracy of 90.9% on the dataset, making it a
strong and credible baseline for evaluation.

We selected the base version of Chemformer,
which is a pure NLP model, because its extensive
pretraining on large molecular corpora endows it
with broad chemical knowledge, and its readily
available trained weights facilitate reproducible
and efficient experimentation. While other models
also demonstrate high performance on USPTO, as
summarized in Table 1, our goal is not to conduct
a comprehensive benchmark study. Instead, we
aim to critically assess how heavy reliance on a
single benchmark like USPTO, despite impressive
reported metrics, can mask certain limitations in
model generalization and chemical reasoning. To
ensure that these limitations do not simply reflect
our choice of model, we additionally include re-
sults from ProPreT5 (Ozer et al., 2025), a classic
T5 (Raffel et al., 2020) model that we trained on
the USPTO-MIT dataset for single-step synthesis
in prior work. Although ProPreT5 performs worse
than Chemformer, it serves as a useful sanity check,
confirming that the observed failures stem from the
benchmark’s limitations rather than from a particu-
lar architecture.

This investigation is not intended as a critique
of Chemformer’s technical design, but rather as
a critical assessment of the dataset on which it
is trained and evaluated, as well as the broader
implications of relying on USPTO as the primary
benchmark for synthesis modeling.

3.2.2 Constructing a Test Set for
Generalization Assessment

In this section, we base our comparison on USPTO-
MIT Mixed, as it is the most commonly used ver-
sion of the USPTO dataset and remains closest to
the original, with only duplicate and erroneous re-
actions removed.

To complement the investigation into the limi-
tations of USPTO, we employed the Hartenfeller
reaction rules (Hartenfeller et al., 2011) to generate
a test dataset. This curated collection of 58 reaction
templates was specifically designed for the genera-
tion of drug-like molecules. In contrast to USPTO,
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Figure 1: Top 50 most frequent reaction names in the USPTO-MIT dataset. Reactions also present in the Hartenfeller
dataset are shown in blue. Reaction names are obtained using the Rxn-INSIGHT (Dobbelaere et al., 2024) tool.
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Figure 2: Distribution of reaction classes in the USPTO-
MIT dataset. Reaction names are obtained using the
Rxn-INSIGHT (Dobbelaere et al., 2024) tool.

which is derived from industrial patents and thus
biased toward novel chemistry, the Hartenfeller
dataset emphasizes reliable, fundamental transfor-
mations that are routinely used in medicinal chem-
istry. Each reaction was selected based on its prac-
tical utility, robustness, and compatibility with a
wide range of starting materials, making it partic-
ularly well-suited for probing the generalization
capabilities of synthesis models trained on patent-
centric data.

We selected the Hartenfeller reaction templates

for comparison precisely because they contain
transformations that are underrepresented in or en-
tirely absent from USPTO-MIT Mixed, yet are cru-
cial for real-world compound design. This choice
explicitly allows us to probe the absence of text-
book chemistry in USPTO and its impact on model
generalization. By evaluating Chemformer on reac-
tions from this set, we aim to assess whether high
benchmark performance on USPTO-MIT Mixed
(see Table 1) reflects genuine generalization to prac-
tically important chemical transformations.

Table 1: Top-k test accuracy for single-step synthesis on
the USPTO-MIT Mixed dataset. Results taken directly
from the references.

Model | Top-1  Top-10

MEGAN (Sacha et al., 2021) 86.3% 95.4%
ProPreT5 (Ozer et al., 2025) 87.9% -
Molecular Transformer (Schwaller et al., 2019) | 88.6% -

Graph2SMILES (Tu and Coley, 2022) 90.3%  95.2%

Augmented Transformer (Tetko et al., 2020) 90.4%  96.5%

Chemformer (Irwin et al., 2022) 90.9% 94.1%

One important distinction between the Harten-
feller dataset and USPTO-MIT Mixed is their
structure and intended use. The USPTO-MIT
Mixed dataset is a synthesis prediction corpus,
where each example consists of input molecule
strings(reactants) and an output molecule string(the
product). In contrast, the Hartenfeller dataset pro-
vides reaction templates, encoded as SMARTS
(Inc.) strings, which define generic chemical trans-
formations in a rule-based form. SMARTS is a
language for specifying molecular patterns, much
like regular expressions in text processing, and is
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commonly used to define substructure patterns in
molecules.

To use the Hartenfeller templates for evaluation,
we needed to convert them into a format compat-
ible with synthesis prediction models, that is, to
generate explicit input—output pairs like those in
USPTO-MIT Mixed. This required identifying real
molecules that could be used as inputs (reactants)
for each reaction template.

To do this, we performed substructure match-
ing using RDKit (RDKit, 2025), a widely used
open-source cheminformatics toolkit. Substructure
matching is analogous to pattern matching in NLP:
just as a parser might check if a certain syntac-
tic pattern exists in a sentence, here we check if
a molecular fragment described by the SMARTS
template exists within a given molecule. We ap-
plied this matching process to molecules from the
USPTO-MIT Mixed training set to ensure compat-
ibility with Chemformer’s tokenizer and avoid is-
sues with out-of-vocabulary tokens.

Each Hartenfeller template was matched against
USPTO-MIT Mixed molecules to find valid reactant
combinations. These combinations were then used
to simulate the reaction using RDKit’s reaction en-
gine. If the reaction produced a valid product, the
input—output pair was retained. This process was
repeated until up to 50 valid examples per reaction
were collected. For completeness, we retained all
Hartenfeller reactions in this process, despite the
expected overlap with reaction types in USPTO-
MIT Mixed.

3.2.3 Criteria for Determining Seen Reactions

To identify overlapping reaction types between the
USPTO-MIT Mixed training set and the Harten-
feller test set, we needed a consistent naming
scheme for reactions in both corpora. For this
purpose, we employed Rxn-INSIGHT (Dobbelaere
et al., 2024), an open-source reaction classification
tool that automatically assigns standardized names
based on the underlying chemical transformation.
Rxn-INSIGHT analyzes the structural changes be-
tween reactants and products and assigns reaction
names from a large, curated taxonomy.

We applied Rxn-INSIGHT to both the training
data from USPTO-MIT Mixed and the Harten-
feller-generated examples. This allowed us to align
naming conventions and systematically determine
which Hartenfeller reaction types were absent from
the training data. Ensuring consistent reaction la-
bels across datasets was critical for performing a

controlled generalization study and fairly isolating
the impact of unseen reaction types. As a result, if
a reaction from the Hartenfeller set is assigned the
same reaction name by Rxn-INSIGHT as one found
in USPTO-MIT Mixed, we consider it a “seen’ re-
action.

3.3 Empirical Evaluation

To empirically assess the impact of benchmark-
driven bias, we evaluated the generalization capa-
bilities of Chemformer on the generated test set de-
scribed in the previous section. The model weights
used were those pretrained and fine-tuned on the
USPTO-MIT Mixed dataset, which are publicly
available.

3.3.1 Frequency-Driven Bias

Data-driven approaches are often favored in chem-
ical synthesis prediction for their presumed abil-
ity to generalize beyond explicitly seen examples
(Wei et al., 2024). However, our results challenge
this assumption. Figure 3 visualizes model perfor-
mance by plotting accuracy for each reaction type
in the generated test set against its frequency in the
USPTO-MIT Mixed training data. In addition to
Chemformer’s Top-1 accuracy, we also report its
Top-10 accuracy as well as the Top-1 accuracy of
ProPreT5. Across both models and metrics, the
same trend is observed: reactions frequently rep-
resented in the training corpus achieve moderate
to high predictive accuracy, whereas reactions that
are rare or absent from training yield near-zero per-
formance. Accordingly, the lack of generalization
persists under both a more permissive evaluation
metric (Top-10 accuracy with Chemformer) and
an alternative architecture (ProPreT5), confirming
that the limitation stems from benchmark-driven
bias rather than Top-1 variability or model choice.

This performance pattern confirms that, regard-
less of architecture or pretraining, models trained
on USPTO-MIT Mixed remain constrained by the
biases present in the benchmark. Chemformer, de-
spite its sophisticated design and extensive pre-
training, achieves high accuracy primarily when
test examples closely resemble patterns frequently
seen during training. Thus, the observed limitation
is not specific to a single model but inherent to the
dataset, dooming any USPTO-trained model to fail
at true generalization.

Interestingly, some frequent reactions from
USPTO-MIT Mixed are poorly predicted, while
some infrequent ones achieve non-zero accuracy.
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Figure 3: Top-1 accuracy of Chemformer on transformations from the Hartenfeller test set, plotted against the
frequency of each reaction name in the USPTO-MIT Mixed training set.

This suggests factors beyond frequency, such as
reaction complexity, template consistency, or sim-
ilarity to other reactions, also affect performance.
For example, different variants of the Mitsunobu
reaction are correctly predicted despite being un-
derrepresented, likely due to shared mechanisms
with the frequent variants the model can learn. We
revisit this in the next section using other mecha-
nistically similar reactions. Nonetheless, the trend
reflects a reliance on memorized patterns rather
than generalized reasoning.

Table 2: Top-k prediction accuracy of Chemformer on
different subsets of the generated Hartenfeller test set
for single-step synthesis. The subsets are grouped by
the number of times each reaction type appears in the
USPTO-MIT Mixed training set.

Hartenfeller Subset | Top-1  Top-5  Top-10
Seen < 1000x in training | 8.15% 10.81% 11.04%
Seen < 100x in training | 7.07% 10.05% 10.30%
Seen < 10x in training 1.09%  1.53% 1.75%

To examine performance as a function of reac-
tion frequency in the training data, we grouped
the evaluation set by rarity. Table 2 presents Top-
1, Top-5, and Top-10 accuracy across reactions
that occur fewer than 1000, 100, and 10 times in
USPTO-MIT Mixed. The results are stark: for reac-
tions seen fewer than 1000 times, Top-1 accuracy
drops to 8.15%. For fewer than 100, it falls to
7.07%, and for reactions appearing fewer than 10
times, performance collapses to 1.09%. These find-
ings underscore that simply including a reaction
type in the training set is not sufficient for accurate

prediction, as high-frequency transformations over-
shadow rarer ones. While this imbalance clearly
hinders learning, it is only part of the problem:
many foundational reactions are entirely absent
from USPTO, and such structural gaps cannot be
resolved through balancing or reweighting.

3.3.2 Analogical Generalization

To better understand what is missing from the cur-
rent USPTO-MIT Mixed benchmark in enabling ro-
bust generalization, we designed a controlled exper-
iment targeting analogical inference. Specifically,
we selected two mechanistically related reactions
from the Hartenfeller dataset that are absent from
USPTO-MIT Mixed. For clarity, we refer to these
reactions as A: 1,2,4-triazole_acetohydrazide and
B: 1,2,4-triazole_carboxylicacid/ester. The mech-
anisms of both transformations are visualized in
Appendix C using a SMARTS-based tool (Ehrt et al.,
2020). Although they proceed via different mech-
anisms, both reactions converge on the formation
of the same cyclic structure in the product. This
setup enables us to test whether a model trained
on USPTO-MIT Mixed can generalize based on the
underlying reaction logic, rather than relying solely
on memorized templates.

As shown in Table 3, before any fine-tuning,
Chemformer achieved 0.0% Top-1 accuracy on
both reactions. We then, using the fine-tuning setup
proposed in (Irwin et al., 2022), fine-tuned the
model on just 1,000 examples of Reaction A and
re-evaluated it on both Reaction A and the unseen
Reaction B. After fine-tuning, the model achieved
97.4% Top-1 accuracy on Reaction A and 18.8%
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on Reaction B (Top-5: 36.6%, Top-10: 38.0%).
These results demonstrate that the model is capable
of transferring knowledge between mechanistically
related transformations but only when the train-
ing data provides a sufficiently clear and similar
mechanistic signal.

Table 3: Top-k accuracy (%) of Chemformer on Re-
action A and Reaction B before and after fine-tuning.
Fine-tuning was done on Reaction A using 1000 exam-
ples and training for 20 epochs.

Setting Top-1 Top-5 Top-10
Reaction A (before)  0.0% 0.0% 0.0%
Reaction B (before)  0.0% 0.0% 0.0%
Reaction A (after) 974% 97.8%  98.0%
Reaction B (after) 18.8% 36.6% 38.0%

We also monitored how this fine-tuning affected
performance on the original USPTO MIT Mixed
test set. A minor drop was observed (Top-1: 88.6%
vs. 90.9%), suggesting some degree of overfitting
to the fine-tuned class. Nonetheless, the broader
implication is clear: For data-driven NLP models
to generalize effectively in chemistry, the training
data must be as diverse as possible. Only then can
these models extend beyond memorized templates
to handle unseen but mechanistically related chem-
ical transformations.

Our findings in this section echo those of (Su
et al., 2022), who observed a similar effect in the
context of Chan—Lam coupling. Historically, the
Chan—Lam reaction was developed by combining
elements of the Suzuki and Barton couplings. That
study aimed to simulate this intuition-driven discov-
ery process using NLP models. When Chan—Lam,
Suzuki, and Barton reactions were removed from
training, the model’s Top-1 accuracy on Chan—Lam
coupling dropped to 4.4%. When Suzuki and Bar-
fon reactions were reinstated, accuracy increased to
24.8%, highlighting the importance of mechanisti-
cally related reactions in enabling model inference.
Our work confirms that this is not an isolated case
and extends the analysis by systematically probing
the limitations of this widely used NLP benchmark,
providing a broader empirical perspective on its
lack of diversity and limited support for generaliza-
tion.

Taken together, these results reveal what the
USPTO benchmark currently lacks: sufficient diver-
sity, broad distributional coverage, and representa-
tion of mechanistically related transformations. For

synthesis prediction to reach real-world applicabil-
ity, benchmarks must evolve to reflect the structure
of chemical knowledge itself, enabling models to
move from memorization to inference.

4 Conclusion

This study critically re-evaluates the USPTO bench-
mark, a cornerstone resource for NLP-based syn-
thesis prediction. While the dataset and its subsets
have advanced the field, their widespread adoption
has also introduced systemic biases. Our findings
demonstrate that models trained on USPTO, despite
strong benchmark performance, fail to generalize
beyond its narrow scope. The current benchmark
provides an incomplete view of the chemical trans-
formation space, omitting much of its diversity.

The aim of this work is not to propose new
benchmarks or corrective methods, but to draw
attention to the structural issues in the current stan-
dard. Highlighting these limitations is, in itself, a
timely and necessary contribution: without recog-
nizing what is missing, progress risks being eval-
vated against an incomplete benchmark. More
broadly, as NLP-inspired methods expand into sci-
entific domains, benchmarks must be critically as-
sessed to ensure they capture genuine scientific
reasoning rather than artifacts of data collection.
Only by confronting these limitations can interdis-
ciplinary research move toward models that mean-
ingfully support discovery.

Code and Data Availability

Code and data are available at: https://github.
com/DerinOzer/benchmark-bias
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Limitations

Our study faces several limitations that we are cur-
rently unable to overcome. Most significantly, we
do not propose an immediate alternative to the
widely adopted USPTO datasets. While we have
effectively demonstrated the limitations of USPTO

22821


https://github.com/DerinOzer/benchmark-bias
https://github.com/DerinOzer/benchmark-bias

and raised concerns about its suitability as a bench-
mark, the creation of a more representative and
generalizable dataset remains an open challenge.
Constructing such a corpus would require the col-
laborative effort of researchers across the globe,
given the breadth and diversity of synthetic chem-
istry. If language models are to become competent
agents for synthesis planning, they must be exposed
to the full landscape of chemical transformations
known to human experts.

A second limitation stems from the naming con-
sistency and reaction classification across datasets.
Although we employed Rxn-INSIGHT to standard-
ize reaction names between the USPTO-MIT Mixed
and generated test data using Hartenfeller reaction
set, the tool itself is not infallible. Errors in clas-
sification or missed equivalences between similar
reactions could have affected the exclusion or in-
clusion of certain reactions in our test set. Conse-
quently, our definition of “unseen” reaction types,
while methodologically principled, may still suffer
from edge cases or subtle misalignments.

Finally, our reliance on SMARTS-based tem-
plates to generate the evaluation set introduces its
own limitations. While templates offer control and
interpretability, they encode simplified views of
reactivity and do not capture all the nuances of
context-dependent reactivity in real-world chemi-
cal systems. The evaluation set, while diverse, may
thus underrepresent complex reaction conditions
or fail to reflect the full spectrum of transformation
types relevant in synthesis.
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A License and Terms for Use and
Distribution of Artifacts

Transparency around data, models, and tools is crit-
ical in interdisciplinary research, both to ensure
reproducibility and to clarify the scope and limita-
tions of our findings. This study relies exclusively
on publicly available datasets, pretrained models,
and open-source software. All artifacts are used
in accordance with their respective licenses and
strictly within a research context. We also release
our own code and generated datasets under the
MIT License to facilitate reproducibility. None of
the datasets used contain demographic or sensitive
personal information, and there is no risk of re-
identification or inference of protected attributes.
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Artifact

USPTO-MIT Mixed (Jin et al., 2017)

Hartenfeller reaction set (Hartenfeller et al., 2011)
Chemformer (Irwin et al., 2022)

ProPreT5(Ozer et al., 2025)

SMILES (Weininger, 1988)

RDKit (RDKit, 2025)

Rxn-INSIGHT (Dobbelaere et al., 2024)

Description / Usage License
Patent-derived dataset MIT

58 SMARTS templates for drug-like synthesis Public research use
Pretrained seq2seq model for reaction prediction | Apache 2.0
T5-based model trained on USPTO-MIT Mixed MIT

Molecular line notation Public domain
Cheminformatics toolkit BSD License 2.0
Reaction classification and standardization MIT

Al

Table 4: Summary of datasets, models, notations, and software used in this study.

Overview of Artifacts

Table 4 summarizes the datasets, models, chemical
notations, and software libraries used in this work,
together with their intended role and license.

A2
1.

Datasets

USPTO-MIT Mixed (Jin et al., 2017): De-
rived from U.S. patent literature, containing
480K chemical reactions in SMILES notation.
Licensed under the MIT License and widely
adopted in synthesis prediction research. We
use the standard split (410,000 Train, 30,000
Validation, 40,000 Test).

. Hartenfeller reaction set(Hartenfeller et al.,

2011): A curated collection of 58 reaction
templates, expressed in SMARTS notation.
Designed for drug-like molecule generation
and made available for academic research.
We adapted these templates into explicit in-
put—output examples for our test set.

Models

1. Chemformer (Irwin et al., 2022): A

transformer-based  sequence-to-sequence
model pretrained on large molecular corpora,
released under the Apache License 2.0. We
fine-tuned the base version using the provided
pretrained weights.

. ProPreT5: Chemical language model, trained

on USPTO-MIT Mixed for single-step syn-
thesis. ProPreT5 is released under the MIT
License.

Chemical Representations

. SMILES (Weininger, 1988): A line notation

for representing molecules. It is in the public
domain and widely used in cheminformatics.

. SMARTS (Inc.): An extension of SMILES

that encodes molecular substructure patterns

and generic transformations. Publicly avail-
able for academic research through Daylight
Chemical Information Systems.

Software Libraries

1. RDKit (RDKit, 2025): An open-source chem-

B

informatics toolkit (BSD License 2.0) used
for substructure matching, reaction applica-
tion, and molecule manipulation.

. Rxn-INSIGHT (Dobbelaere et al., 2024): A

reaction classification tool that assigns stan-
dardized reaction labels based on structural
changes between reactants and products. Re-
leased under the MIT License.

Computational Resources and Training
Details

We fine-tuned Chemformer using the setup de-
scribed in the original paper (Irwin et al., 2022).
Training was performed on a single NVIDIA V100
GPU for 20 epochs, with all other hyperparame-
ters kept identical to those reported by (Irwin et al.,
2022).
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C Reaction Mechanisms Used in the Analogical Experiment
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Picture created by the SMARTSviewer [https://smarts plus/].
Copyright: ZBH - Center for Bioinformatics Hamburg,

(a) Transformation mechanism of reaction A wused in fine-tuning: 1,2,4-
triazole_acetohydrazide
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(b) Transformation mechanism of reaction B used in test: 1,2,4-triazole_carboxylic-
acid/ester

Figure 4: Visualisation of transformation mechanisms using SMARTS.plus (Ehrt et al., 2020).
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