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Abstract

Bilingual and multilingual language models
offer a promising path toward scaling NLP
systems across diverse languages and users.
However, their performance often varies wildly
between languages as prior works show that
adding more languages can degrade perfor-
mance for some languages (such as English),
while improving others (typically more data
constrained languages). In this work, we in-
vestigate causes of these inconsistencies by
comparing bilingual and monolingual language
models. Our analysis reveals that unequal data
quality, not just data quantity, is a major driver
of performance degradation in bilingual set-
tings. We propose a simple yet effective data
filtering strategy to select higher-quality bilin-
gual training data with only high quality En-
glish data. Applied to French, German, and
Chinese, our approach improves monolingual
performance by 2–4% and reduces bilingual
model performance gaps to 1%. These results
highlight the overlooked importance of data
quality in multilingual pretraining and offer a
practical recipe for balancing performance.

1 Introduction

Language models (LMs) exhibit exceptional per-
formance on a number of language understanding
and knowledge tasks (Brown et al., 2020; Bubeck
et al., 2023; OpenAI, 2023). While much of the
effort in training language models is focused solely
on English, recent bi- or multilingual models also
incorporate other languages (De Vries et al., 2019;
Martin et al., 2019; Wei et al., 2023a; Faysse et al.,
2024; Lample and Conneau, 2019; Xue et al., 2021;
Workshop et al., 2022; Yang et al., 2024). In
many scenarios, it is beneficial to train a multilin-
gual model as (i) maintaining a separate model for
each language can be costly in memory and infer-
ence constrained settings, (ii) data relevant to some

*Equal contribution

tasks may only be available in specific languages,
and (iii) for many languages, the amount of avail-
able high quality data is insufficient for pretraining
monolingual language models.

In contrast to work in the vision domain, which
shows scaling data (even noisy or from different
domains) improves model performance (Sun et al.,
2017), prior work in language modeling shows that
multilingual models are prone to degradations rel-
ative to monolingual models (Chang et al., 2024;
Conneau et al., 2020; Xu et al., 2024). Fundamen-
tally, training multilingual models requires learning
the structure and semantics of each language. Thus,
such models may require training for longer (Con-
neau et al., 2020; Chang et al., 2024) and on better
data to reach the same performance as prior work
shows that the sample complexity of learning from
multi-distribution data grows with the number of
distributions (Haghtalab et al., 2022). Critically,
there are two main deficits in prior investigations:

Data quality. While prior work studies how data
size impacts performance degradations in multi-
lingual models, they do not study data quality in
multilingual models (Chang et al., 2024). Previous
papers define data quality according to a few core
principles: (i) fluent language (Penedo et al., 2023;
Raffel et al., 2020), (ii) long form text (Li et al.,
2023; Yang et al., 2024), and (iii) informative text
with educational content and textbook format (Li
et al., 2024; Penedo et al., 2024a). We discuss data
selection in more detail in Section 2.

Data quality has already been shown to be an
important factor in training high performing En-
glish language models (Li et al., 2024, 2023; Maini
et al., 2024). Because of this, there is growing inter-
est in model-based filters for curating high quality
data in monolingual settings (Li et al., 2024; Mess-
mer et al., 2025; Penedo et al., 2024a). There are
many other languages for which training a language
model is practical as a reasonably large amount
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of unfiltered data is available (Weber et al., 2024;
Penedo et al., 2024b). However, the importance of
data quality for training multilingual models and
data quality filtering in multilingual settings has re-
ceived little attention. There are several challenges
that can arise from filtering high quality data for
multilingual pretraining as (i) quality filters may
work differently across languages, (ii) the density
of high quality data and filtered topics may vary,
and (iii) the impact of quality filtering may have
a small impact across languages in multilingual
settings.

Model and data size Prior works that study gaps
in multilingual model performance typically aim
to study performance gaps from training on a large
number of languages (typically on the order of
hundreds), small data per language, and smaller
encoder-style architectures (Conneau et al., 2020;
Chang et al., 2023; Xu et al., 2024). In this setting,
they refer to the gap as the curse of multilinguality.
However, studying gaps in performance in these
settings greatly impacts the evaluations that are
feasible, makes it difficult to control training data at
scale, and does not control for the fact that training
a multilingual model is simply a more challenging
task, and may require longer training time or higher
capacity to achieve the same performance with the
same amount of data.

This work focuses on exploring how these chal-
lenges underlie gaps in multilingual performance.
We conduct experiments on data quality (measured
by information/knowledge) and language in French
and Chinese, where we control both through train-
ing on translated data. We also provide a recipe
for obtaining high quality data in other languages
that improves bilingual model performance in three
languages: French, German, and Chinese1. Collec-
tively, our main contributions show that (i) High
quality data filtering in multiple languages without
access to native high quality data improves perfor-
mance in the target language, and reduces gaps in
monolingual and bilingual performance. (ii) Data
quality plays an important role in the performance
of bilingual language models (rather than only the
language or data size). (iii) High quality English
data alone is insufficient for training high perform-
ing multilingual language modeling in some tasks.

1We select these languages for their use in prior work, dis-
tance from English, amount of data available, and availability
of evaluation benchmarks.

2 Related Work

Multilingual Language Models Large scale
multilingual language models are of two main
types: (i) They can be trained on a large cor-
pus of multilingual data such as mC4 (Xue et al.,
2021), CCNet (Wenzek et al., 2020), or FineWeb2
(Penedo et al., 2024b) typically covering in the or-
der of 100 languages. This includes models such
as mBert (Devlin et al., 2019) , XLM (Conneau
et al., 2020), mT5 (Xue et al., 2021), Bloom (Work-
shop et al., 2022), etc. (ii) Bilingual language
models such as in French (Faysse et al., 2024; Le
et al., 2019; Martin et al., 2019), German (Scheible
et al., 2020), Dutch (De Vries et al., 2019), or
Chinese (Wei et al., 2023a), which are typically
small, but can be large in the case of Chinese where
an abundance of high quality data is present (Yu
et al., 2025). Other models such as the Llama
family (Touvron et al., 2023), Mistral (Jiang et al.,
2023), Gemini (Team et al., 2023), Palm2 (Anil
et al., 2023), and GPT (OpenAI, 2023) have been
shown to have multilingual capabilities, however a
majority of their data is English (Xu et al., 2024).

Multilingual Data Curated datasets are essential
to training language models. Early multilingual
datasets include CCNet (Conneau et al., 2020),
mC4 (Xue et al., 2021), and CulturaX (Nguyen
et al., 2024) all support over 100 languages, though
the largest sources of data are English and even
other high resource languages such as German,
French, Chinese, and Korean contain 10-50× less
data. Other datasets such as Redpajamav2 con-
tain over 2.5T tokens, but are limited to only a
few Indo-European languages (Weber et al., 2024),
and still a factor of 7-10× less than English. Re-
cently the FineWeb2 dataset was crafted for many
languages with the same heuristic filters as the orig-
inal FineWeb supporting many languages with data
for pretraining (Penedo et al., 2024b). Still, there is
only a handful of high quality datasets large enough
for training language models in select languages
like Chinese (Yu et al., 2025), French, German,
and Spanish (Penedo et al., 2024b; Messmer et al.,
2025).

Data Selection High quality data selection re-
mains an important area of research in training
language models. Early research on data selection
was based on heuristics including GPT-2 (Radford
et al., 2019), Gopher (Rae et al., 2021), C4 (Raf-
fel et al., 2020), and RefinedWeb (Penedo et al.,
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(a) English Core (b) French Core (c) English MMLU (d) French MMLU

Figure 1: Performance with varying data quality and language. Models are trained on combinations of mC4 (low)
and FineWebEDU (high) in native English (EN) and translated to French (FR). Models are trained for 200K steps
and evaluated on Core (avg over six common-sense reasoning tasks) and MMLU.

2023). Recent works examine model based filters
for labeling general high quality data (Sachdeva
et al., 2024; Li et al., 2024), or textbook quality
data (Penedo et al., 2024a). While a majority of
this work focuses on English data only, a few works
have examined filtering in other languages, such
as by perplexity (Conneau et al., 2020) or filtering
using models trained on high quality specialized
data in select languages (Messmer et al., 2025).
Other forms of data selection include reweighting
data (Grangier et al., 2024a; Fan et al., 2023; Xie
et al., 2024) and are shown to have varying degrees
of success when applied in bilingual settings with
data constraints, but only for English (Seto et al.,
2024).

3 Data Quality and Multilinguality

We conduct four types of experiments to demon-
strate that the performance gap between a bilingual
language model and monolingual models is largely
due to the data quality and number of training steps
- e.g., multilingual models require better training
and for longer. We start with demonstrating that
there are performance gaps when not controlling
for data quality (Section 3.2). We then show that
training on a translated pretraining corpus in both
languages, thereby controlling data quality, yields
no gap between monolingual and bilingual perfor-
mance (Section 3.3). Next, we find that at smaller
number of training steps, there is a gap between
multilingual and monolingual models, and models
learn faster with higher quality data (Section 3.4).
For the experiments controlling data quality, we
show results for English and French translated data
here, and refer to Section E for English and German
experiments. Finally, we show that quality also
depends on the information available in the data,
and that high quality English data with translations
alone is insufficient for training high performing

bilingual models (Section 3.5). These experiments
are done with Chinese and English given the avail-
ability of high quality Chinese data for trainng and
downstream evaluations similar to MMLU.

3.1 General Model Details

We train decoder-only transformer models
(Vaswani et al., 2017) with 1.3B non-embedding
parameters. Models use the PolyLM tokenizer
(Wei et al., 2023b), with a total vocabulary
size of 256K tokens using BPE to allow for
using the same tokenizer across all experiments.
Models are trained for 200K steps with batch size
1024 and context length 1024 unless otherwise
stated. Hyperparameters and model details are
in Appendix A. This model size is chosen as it
provides reasonable (above random) performance
on several benchmark QA tasks, and is commonly
used for benchmarking and ablating pretraining of
language models (Penedo et al., 2023, 2024a).

3.2 Model Performance without Controlled
Data Quality

Methodology: We start with a setup in which a
bilingual language model is trained on an equal
proportion of data from mC4 in French (FR) and
English (EN) totaling 100K steps each.

Model Core EN Core FR MMLU EN MMLU FR

EN 56.3 40.8 29.7 26.0
FR 45.9 49.0 27.0 27.2
BI 53.5 49.6 29.3 27.4

Table 1: Zero shot accuracy for general understanding
and specialized knowledge tasks for monolingual En-
glish (EN), French (FR), and bilingual (BI) models.
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(a) English Core (b) French Core (c) English MMLU (d) French MMLU

Figure 2: Performance with varying data quality and language. Models are trained on combinations of mC4 (low)
and FineWebEDU (high) in native English (EN) and translated to French (FR). Models are trained for 30K steps
and evaluated on Core and MMLU.

Findings: Table 1 shows performance on MMLU
and Core2 benchmarks. Our findings match those
in prior works including (Conneau et al., 2020;
Chang et al., 2024) where we see a 3% drop in En-
glish and an increase in French of 0.8% compared
to the bilingual model for Core tasks. For MMLU,
the difference is smaller but the trends remain simi-
lar. The bilingual model has the same ratio of data
and sufficient data for training (∼ 7× Chinchilla).

3.3 Model Performance Varying Data Quality

Methodology: To demonstrate that multilingual
performance depends on data quality, we now con-
trol the data quality and languages in the model.
We follow the same setup as above and vary both
the data quality and the language. For our exper-
iments, we use the datasets: FineWebEDU, and
mC4 EN. These datasets are chosen as they have
varying quality according to the DCLM classifier3

(mean quality scores 0.023 vs. 0.1127 respectively),
and the FineWebEDU dataset has much higher per-
formance on downstream benchmarks.

We translate mC4 into French using a proprietary
translation system following (Seto et al., 2024), and
use TransWebEDU translations for FineWebEDU
(Wang et al., 2025). We consider a variety of sce-
narios where the quality can vary, or the language
can vary, and measure the performance on both
English and French.

Findings: Figure 1 shows the performance differ-
ence when varying quality (y-axis) and language
(x-axis) for two sets of zero-shot evaluations: Core
and MMLU. for all evaluations we use the continu-

2Average over six general knowledge and common-sense
reasoning tasks: ARC-easy, ARC-challenge, SciQ, PIQA,
HellaSwag, Winogrande

3A fasttext classifier aimed at distinguishing high qual-
ity data according to samples found in OpenHermes and
highly upvoted ELI5 posts - https://huggingface.co/
mlfoundations/fasttext-oh-eli5.

ation version of the task. We denote training with
the mC4 dataset as low quality, and FineWebEDU
as high quality. When examining the plots, we
see that the bottom right square corresponding to a
monolingual model4 trained on high quality in the
targeted language has the highest performance.

This is closely followed by models which in-
dividually vary the language but keep high qual-
ity [middle bottom square, e.g., (bi, high)] or mix
quality but keep the same language [right middle
square, e.g., (EN, mix)], which are all within 1%.
However, mixed quality and mixed language taken
together [middle square, e.g., (bi, mix)] exhibits an
average 2% drop in English performance by com-
parison, compared to each on their own5, and all
squares with low quality (top row) exhibit a much
larger drop than bilingual models with mixed or
high quality (bottom four squares).

3.4 Model Performance with Fewer Steps

Methodology: Next, we show that training for
fewer steps yields a gap between bilingual and na-
tive model performance. Specifically, the experi-
mental setup is the same as above, but we examine
training after 30K steps equating to roughly Chin-
chilla scaling for a 1.3B model.

Findings: Results are shown in Figure 2. At this
scale, we see that both the bilingual high quality
(middle bottom) and mixed quality native monolin-
gual (right middle) models have 2-2.5% lower per-
formance than the monolingual high quality unlike
prior results at 200K steps for English evaluations.
Similarly low quality results (top row) drop below

4We flip the x-axis order depending on the evaluation task
such that the bottom right is always the high quality monolin-
gual model for consistent comparison.

5Note that the middle square represents the average of two
models: as both languages could have the high quality data
source
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bilingual again indicating data quality has a large
role in training.

3.5 Model Performance with High Quality
Data in Multiple Languages

(a) CMMLU ZH (b) CMMLU EN

Figure 3: Performance with varying data quality and lan-
guage. Models are trained on combinations of Chinese
FineWebEDU (high) and FineWebEDU (low) in native
English (EN) and translated to Chinese (ZH). Models
are evaluated on CMMLU.

Methodology: This section discusses the im-
pact of training models on two datasets in differ-
ent languages that are collected by similar filter-
ing (classification of textbook and science knowl-
edge). We repeat the same training recipe with
two highly curated datasets in different languages:
Chinese FineWebEDU and FineWebEDU (which
is in English). For this experiment, we refer to
the FineWebEDU dataset as “low” and Chinese
FineWebEDU as “high”. Here we refer to the
drop in quality as (iii) informative text, where
FineWebEDU does not cover topics relevant to
CMMLU. This is in contrast to previous sections,
for which all definitions of quality drop. These
datasets are both curated in the same way, and con-
sidered high quality in their respective languages,
however may contain culturally different informa-
tion. We translate both datasets into the other lan-
guage using the same proprietary translation sys-
tem as in (Seto et al., 2024).

Findings: Figure 3 shows the performance differ-
ence for monolingual and bilingual models trained
in Chinese and English. We find that bilingual high
quality models trained on native Chinese data (mid-
dle bottom square) drop in performance by ∼ 1%,
but still perform better than translated English data
to Chinese (right top square). This drops slightly
from the mixed monolingual models (right middle
square) indicating there may be some effect from
further languages. Nonetheless, our findings show
that translated data from English alone may not be

sufficient for high quality, and building high qual-
ity datasets through filtering with the same mecha-
nisms as in English can help yield bilingual models
that also perform well in non-translated tasks.

4 Language-Agnostic Data Filtering

Section 3 shows that bilingual models may perform
as well as monolingual models when the data used
to train the models has sufficient information for
the target downstream tasks, and is of compara-
ble quality. However, for a large set of languages,
high quality data does not exist. Prior works have
shown that learnable models as quality filters lead
to improved performance in downstream tasks for
English (Li et al., 2024; Grangier et al., 2024a;
Penedo et al., 2024b).

To learn a model-based filter for selecting high
quality data, we assume access to a small set of
high quality data Dh = {(x, y)|x ∈ Rd, y ∈
{0, 1}}, where x is some representation of a docu-
ment, and y is a binary label indicating the quality
of the sample. A binary classifier ϕ is trained on Dh

to estimate the probability that a document from
the general pretraining data Dg is high quality. The
high quality pretraining set Dhq is then selected
according to the classification rule

Dhq = {x ∈ Dg|ϕ(x) > τ}, (1)

for some predefined threshold τ . Unlike prior
works which assume training the classifier and se-
lecting general high quality data (Li et al., 2024),
or specialized data relevant to downstream tasks
(Grangier et al., 2024a) in English, we assume the
high quality data sample is available only in En-
glish, but will be used to select data in other lan-
guages. Concurrent to our work, (Messmer et al.,
2025) show that a classifier approach in (Grang-
ier et al., 2024a) can be applied to languages other
than English. They follow a similar setup using spe-
cialized datasets, such as translated MMLU (Singh
et al., 2024), and Include (Romanou et al., 2024),
for data selection. As such it is still unclear whether
a universal language embedding with high quality
seed data available only in English can be used to
train a language agnostic filter, and whether mono-
lingual filtering improves bilingual model train-
ing. We provide preliminary experiments indicat-
ing similar distributions of English and translated
French data in Appendix D.

In our experiments, we parameterize ϕ as a lo-
gistic regression, and use a lightweight Sentence-
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(a) Multilingual Representations (b) EN Train and Multilingual Filter

Figure 4: (a) Multilingual Language Representations: Build a universal sentence embedding that maps multilin-
gual data to the same embedding space. (b) English High Quality Training and Multilingual Data Filtering:
Classifier is trained on the embeddings of a small amount of high quality data available in English. The classifier is
then used to filter data in all supported languages.

BERT (SBERT) multilingual model6 for extracting
features (Reimers and Gurevych, 2019). For Dh,
we use the same English data used for training
the DCLM classifier, which compares data from
RefinedWeb (low quality), and OpenHermes 2.5
or ELI5 (high quality). In our ablations, we also
explore using the annotations for FineWebEDU
which scores documents from 1 to 5 based on edu-
cational content. We do binary classification using
a score above 2 as high quality.

The value of τ is selected to ensure enough data
for pretraining, and is in the order of 10% of the
data following (Li et al., 2024). In this work, we
train a classifier as we have limited data within each
cluster for training a 1.3B model at the desired
scale, and would repeat data significantly if we
instead do data selection for specialized data.

5 Experiments

5.1 Experimental Setup Details
We use the same 1.3B parameter models trained for
200K steps as in Section 3 and train with FineWeb2
and Redpajama2 datasets for filtering. Additional
details on exact pools of data are available in Ap-
pendix B and different model sizes in Section K.1.
We give our main experiments and ablations on
English-French bilingual pretraining and include
German and Chinese filtering in Section J. Addi-
tional motivation for language selection is in Ap-
pendix B. Individual task accuracy in Appendix L.

5.2 Analysis of Model Based Filter Selection
Precisely measuring the performance of a data qual-
ity classifier is difficult as there is no ground truth.
Our main constraint is that the classifier scoring
is tied to performance on downstream tasks. Be-
fore we discuss performance in other languages,

6The model, paraphrase-multilingual-MiniLM-L12-v2,
is at https://huggingface.co/sentence-transformers/
paraphrase-multilingual-MiniLM-L12-v2.

we first show that the acceptance rate of the classi-
fier matches commonly accepted notions of high
quality datasets.

In particular, we consider various English
datasets and measure the amount of high quality
data using a fixed threshold of 0.14094 which cor-
responds to filtering down to 10% of the data in
C4. Our findings shown in Table 2 for the amount
of high quality in each dataset match the perfor-
mance of 1.3B models trained in ablations for
FineWebEDU, and correspond to the amount of
filtering in each dataset (Penedo et al., 2024a).

Source % High Quality Data
C4 10.00%
RPJv2 12.93%
RFW 15.40%
Wiki 35.01%
FineWebEDU 47.94%

Table 2: Percent of data which is considered high quality
in different English datasets

We also observe, in the case of Chinese, that our
English-trained classifier correctly identifies better
quality corpora. Using a threshold of 0.2751, we
find that 3.38% of mC4, 10% of FW2, and 33.53%
of ChineseFineWebEDU is considered high quality.

Additionally, it is important to have a good un-
derstanding of the factors that contribute to a sam-
ple being high quality for language model training.
We evaluate two commonly used linguistic mea-
sures: the mean cosine similarity between pairs of
contiguous sentences in the same document follow-
ing (Barzilay and Lapata, 2008), and the Flesch
reading ease as a measure of how easy-to-read the
text is (Kincaid et al., 1975).

We compute the Pearson correlation between
the filter score and each measure over 1000 sam-
ples. For coherence, we have mean for low qual-
ity is 44.78, the mean for high quality is 48.14,
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corr=0.1421, and p-val=6.48e− 06, and for read-
ing ease, the mean for low quality is 0.346, the
mean for high quality is 0.365, corr=0.1464, and
p-val=3.32e − 06 meaning that as filter score in-
creases (more high quality) our linguistic measures
suggest greater coherency, and higher reading ease.

5.3 Monolingual Data Filtering Performance

Methodology: We show that increasing quality
according to our model-based filter leads to an in-
crease in downstream task performance in mono-
lingual settings. For our experiments, we train a
1.3B parameter model for 30K steps, and evaluate
the zero-shot accuracy on the Core set of tasks. We
compare the SBERT filtering classifier with train-
ing a model on raw data from RedPajama2, and
FineWebEDU in the respective language, as well as
filtering RedPajama2, and using a fasttext classifier
for filtering trained on the DCLM classifier training
data data translated in French. We use two trans-
lation systems to show the effect of translation: a
cheap proprietary CPU translation system, and the
Mistral-7B model following (Wang et al., 2025).
We show results for full comparisons for 30K steps
(Figure 5), and for 200K steps in Appendix F.1.

Figure 5: Quality vs. accuracy on Core tasks for filtered
RedPajama2 (SBert OH FR) compared with filtering
using a FastText classifier (FT FR and FT-M FR), Tran-
sWebEDU (fwe_fr) and base RedPajama2 (rpj_fr) in
French after 30K steps.

Findings: As we increase the percentile of data
quality, the accuracy increases leading to a 6% in-
crease between the lowest and highest quality. Sec-
ond, filtering with SBERT outperforms training
without filtering for RedPajama2, and outperforms
a fasttext classifier trained on translated data as in
(Li et al., 2024), even with a high quality transla-
tion system such as Mistral-7B. Training on the
high quality filtered data falls short of the Tran-
sWebEDU data, however this is expected to be an

upper bound since the evaluations are also trans-
lated benchmarks, for which the FineWebEDU data
is more highly curated than RedPajama2.

5.4 Filtering from Already Curated Data

Methodology: Next, we show that our method
also selects high quality data in more highly curated
datasets. We run the filtering on the FineWeb2
French dataset, which has additional heuristic fil-
tering as originally done for the FineWeb2 English
data (Penedo et al., 2024b), and compare with Red-
Pajama2 French data. We select the top 10% of
data for training for both datasets, noting that the
amount of data available in FineWeb2 could be
around 10% of the amount of data in RedPajama2
as estimated by the number of words in the corpus..

Findings: Table 4 shows results for monolingual
French models. Our results indicate that perfor-
mance increases even with the smaller FineWeb2
(FW2) dataset and repeated epochs of training. We
find that many of the heuristic filters and text ex-
traction also lead to better performance as the base
FineWeb2 improves on even the 90% filter over the
Redpajama2 (RPJ2) data. Finally, we note that the
performance of the filtered FineWeb2 data matches
that of TransWebEDU indicating similar perfor-
mance to highly curated translated English data
on translated evaluations. Experiments for other
percentiles on FineWeb2 are in Appendix F.

Figure 6: Bilingual vs. Monolingual performance on
Core English (EN) and French (FR) benchmarks with
Filtering in French. All models use the TransWebEDU
English (FWE EN) data while varying the French data.

5.5 Filtering for Bilingual Models

Methodology Now, we show in addition to
monolingual performance gains, our data selec-
tion method diminishes the gap in bilingual models
matching the lack of performance gap we see in
Section 3 with native data. For our experiments we
compare models trained on data at different quality
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Model Core EN MMLU EN Core MMLU FB-MC Regional NLI AVG

RPJ2 1.3B 59.74 33.25 52.16 29.35 60.24 31.99 39.72 42.69
FW2 1.3B 60.26 33.44 53.65 29.57 60.24 31.5 39.78 42.95
TWE 1.3B 61.85 34.43 54.15 31.07 54.48 29.55 42.14 42.28

TranswebLLM 59.61 34.26 55.05 30.44 53.00 29.64 40.39 41.70
CroissantLM 56.67 30.59 52.58 28.63 58.89 30.17 41.33 42.32
Bloom 1.1B 51.73 29.10 48.70 27.23 55.16 28.91 40.11 40.02
Qwen2.5 1.5B 69.45 41.14 55.65 32.49 59.14 31.55 43.55 44.50
EuroLLM 1.7B 63.05 35.39 54.94 30.20 60.34 32.54 40.42 43.69

RPJ2 90% 1.3B 59.73 33.56 53.37 29.70 59.81 32.91 43.59 43.88
FW2 90% 1.3B 61.07 33.54 55.47 30.16 61.67 32.82 40.52 44.13

Table 3: Comparison of different bilingual models in French and English compared with other public multilingual
models of similar sizes on French evaluation tasks.

Model RPJ2 FW2 TWE
Base 48.38 51.61 54.28
90% Filter 50.42 54.17 –

Table 4: Performance on Core French benchmarks com-
paring monolingual models with and without filtering
across RedPajama2 (RPJ2), FineWeb2 (FW2), and Tran-
sWebEDU French (TWE) datasets.

percentiles at the 30th, 60th, and 90th percentile,
and take a total of roughly 10% of the data. We
evaluate on the Core evaluations and report results
in Figure 6 comparing monolingual TransWebEDU
performance with bilingual models.

Findings: As we increase data quality, both the
EN and FR performance increase. 90% filtering
achieves the strongest performance. We note that
this is true even over higher filtering where we did
train a model at 95% filtering for RedPajama2, but
observed over-filtering on the data as training for
the same number of steps requires repeating the
data which leads to performance leveling out.

We further note that while French evaluations
improve consistently over base RedPajama2, and
are close to TransWebEDU FR, the English perfor-
mance is worse and consistent with the base com-
parison from 60% indicating that the FineWebEDU
corpus is still higher quality as it has some addi-
tional filtering over RedPajama2. For evaluations
filtering FineWeb2, we note that performance in
English is within 1%, and performance in French is
better than using TransWebEDU. We conclude that
improving data quality using our filtering mecha-
nism leads to performance improvements also in

English over low quality data.

5.6 Comparison with Bi- and Multilingual
Models

Methodology We show that our data selection
process in Section 4 can be used to select high
quality data consistent with other public bilin-
gual and multilingual models. We study perfor-
mance for 1.3B parameter models and similar sizes
across a range of tasks in English and French as
(i) there are a number of available evaluations that
are both translated and native, and (ii) there are
other bilingual or multilingual models in French
for comparison. All of our models are trained with
FineWebEDU English as the English data source
for 200K steps, which is up to 15× fewer than
other models. Additional details on the evaluation
sets are provided in Appendix B. For model com-
parisons, we include strong bilingual models like
CroissantLLM (Faysse et al., 2024), models trained
on Indo-European languages like TransWebEDU
EN-FR, TransWebLLM (Wang et al., 2025), and
EuroLLM (Martins et al., 2024), and multilingual
models like Bloom (Workshop et al., 2022), and
Qwen2.5 (Yang et al., 2024), all of which achieve
strong results on multilingual benchmarks.

Findings: Our filtering leads to better zero-shot
performance over public bilingual models such as
Croissant LLM (1.7%), and competitive perfor-
mance (up to 4% increase) to multilingual models
trained for much longer highlighting the benefits
of training a bilingual model on high quality data.
Our models attain better performance in French
than all models except for Qwen2.5 1.5B which
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(a) Monolingual FR (b) Bilingual FR (c) Bilingual EN

Figure 7: Performance at intermediate checkpoints during training for 1.3B models for Core EN and FR benchmarks.

has overall 0.4% improvement while being trained
for much longer and on combinations of different
data. However, on English data, the Qwen and
EuroLLM performance exceed our models.

5.7 Data Scaling

Methodology: Our main results train models for
200K steps amounting to 200B tokens as Section 3
shows benefits from both training for longer and on
higher quality toward diminishing bilingual model
gap in performance. This amount, although be-
low proprietary models at similar scales such as
(Touvron et al., 2023; Yang et al., 2024), is above
the recommended training data size according to
Chinchilla (Rae et al., 2021) (∼ 7x chinchilla). Li
et al. (Li et al., 2024) filter to a small amount of
data from a much larger pool (although they fil-
ter at the same 10% rate) and train only at 1-2×
Chinchilla scale thus having a much smaller ratio
of tokens used. We now show that performance
improvements hold at intermediate training steps.

Findings: We show results in Figure 7 for mono-
lingual and bilingual models. Both monolingual
and bilingual models evaluated on Core French
benchmarks show consistent performance improve-
ments at all stages of training. For monolingual
models, performance from filtering leads to around
5× efficiency as the model attains the same perfor-
mance at only 40K steps. For bilingual models, we
note that the higher quality English data reduces
that gap consistent with findings on better auxil-
iary data from (Seto et al., 2024), however we still
observe around 2× speedup in training. Finally,
for English evaluations, we observe improvements
only early in training consistent with bilingual gaps
earlier. The gap in English performance diminishes
after around 60K steps (∼ 2x Chinchilla).

5.8 Multilingual Model Training

We investigate improvements for multilingual mod-
els. We train a 1.3B parameter model for 400K
steps with the same ratio per language using the

SentenceBert filtered FineWeb2 corpus for Chinese,
French, and German, and FineWebEDU as the En-
glish corpus. Results are provided in Table 5. We
attain similar performance to the bilingual models
with filtering. These results are consistent with the
bilingual results in Sections 3 and 5.

Model Core EN Core FR Core DE Core ZH

FWE EN 63.58 - - -
FW2 FR 90% + FWE EN 61.07 55.47 - -
FW2 DE 90% + FWE EN 60.85 - 53.90 -
FW2 ZH 90% + FWE EN 58.67 - - 53.97
FW2 Multi Base + FWE EN 57.93 51.25 51.00 51.86
FW2 Multi 90% + FWE EN 59.77 54.96 53.86 54.31

Table 5: Comparison of filtering for bilingual and
multilingual models for Core benchmarks in the non-
english languages. Models are trained with roughly the
same amount of data from each language filtered from
FineWeb2 for the same number of steps. For English
data, we use FineWebEDU.

6 Conclusion

Training a multilingual language model that per-
forms as well as monolingual models is impor-
tant for building language models that can work
for everyone, and facilitate compute efficiency in
memory constrained settings where keeping many
monolingual models may be infeasible. However
it is also more challenging as it necessitates learn-
ing multiple distributions of data. This work pro-
vides a simple recipe for selecting high quality
data, and demonstrates capability of selecting high
quality data in other languages with only high qual-
ity English data. Selecting high quality data with
our recipe reduces gaps between monolingual and
bilingual models to less than 1%, and improves
monolingual performance. Our work takes a step
towards pretraining language models in languages
with limited high quality data, and can help more
research into closing the gap between multilingual
and English-centric language models.

7 Limitations

This section lists limitations of our work.
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Evaluation data. Our evaluations languages
other than English rely on translated evaluation sets.
Not only does this introduce potential translation
mistakes (for example for math or certain scien-
tific terms), the resulting evaluation set also con-
tains cultural biases as has been noted in datasets
such as MMLU (Singh et al., 2024). As a result,
certain aspects of the evaluation may lead to im-
proved performance when using English auxiliary
or translated data. Additionally, translated data of-
ten exhibits a distribution different from that of real
data in the target languages. We focus on French
as there are many native language benchmarks for
which models perform well.

Languages included. The focus of this work is
on training bilingual language models. We note
that there are several languages for which train-
ing a bilingual or multilingual language model is
now practical given the size and available training
data. However, our goal is in building high quality
datasets and showing gaps in performance from
lack of data quality control which require filtering
from a large pool of data. Training even a 1.3B
parameter model at our scale requires 200B+ to-
kens of data and filtering down to 10% of the data
leaves only languages with over 2T tokens (for one
repetition training), for which there are few. As
we are constrained by having a large pool of to-
kens with relatively little filtering (Redpajama2), a
more highly curated set of tokens (FineWeb2), and
native evaluations, for our ablations and studies,
this left only a few languages: French, German,
and Chinese. We study French in the main text
as it satisfies all conditions, and is relatively close
to English indicating potential transferability as
shown in (Seto et al., 2024). We further note that
another constraint is the number of languages in
our SentenceBert embeddings. The multilingual
SentenceBert model used in this work supports 50+
languages7. While this already covers many more
languages than high performing language models
in those languages, there are methods for adding
languages to a multilingual embedding via knowl-
edge distillation (Reimers and Gurevych, 2020).

7A full list of language codes: ar, bg, ca, cs, da, de, el, en,
es, et, fa, fi, fr, fr-ca, gl, gu, he, hi, hr, hu, hy, id, it, ja, ka, ko,
ku, lt, lv, mk, mn, mr, ms, my, nb, nl, pl, pt, pt-br, ro, ru, sk, sl,
sq, sr, sv, th, tr, uk, ur, vi, zh-cn, zh-tw.
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A Hyperparameters and Additional
Training Details

The small model is a 350M non-embedding pa-
rameter model consisting of 24 layers, 16 attention
heads, and a hidden dimension size of 1024. The
1.3B non-embedding parameter model consists of
24 layers, 16 attention heads, and a hidden dimen-
sion size of 2048. Both models have a maximum se-
quence length of 1024. The 2.7B parameter model
consists of 32 layers with 2560 hidden dimension
and 32 attention heads.

The baseline models are trained using NVIDIA’s
Megatron-LM8 repository for pretraining language
models. All models are trained for a total of 200K
steps with a batch size of 1024. The 2.7B models
are trained with context of 2048 and other models
are trained with 1024.

Models are trained using a maximum learning
rate of 0.0003 for the 350M model, 0.0002 for the
1.3B model, and 0.00016 for the 2.7B models with
a minimum learning rate of 0.00001 with a cosine
learning rate scheduler and warmup for 1% of the
total steps. For regularization, we use a weight
decay of 0.01, along with a gradient clipping norm
of 1.0. Models are trained with the Adam optimizer
using β1 = 0.9 and β2 = 0.999.

The total training time for 1.3B models on
roughly 200B tokens is around 2000 GPUh on
Nvidia H100 GPUs. For 350M models, the to-
tal training time is around 1200 hours. For a 2.7B
model trained on roughly 400B tokens, the total
time is around 9000 GPUh on Nvidia H100.

B Dataset Details

B.1 Training Datasets

We consider several datasets in this work and pri-
marily focus on FineWeb2, and RedPajamav2 for
pretraining. We choose these datasets as there ex-
ist a sufficiently large amount of data in multiple
languages. For experiments filtering high quality
data, we focus on Redpajamav2 as there are up to
3T tokens of data in these datasets compared with
mC4 (∼ 300B), and FineWeb2 (∼ 206B words) for
French, and the data is native (non-translated). We
also experiment with TransWebEDU (Wang et al.,
2025) for comparison to training on translated high
quality data, and with filtering from FineWeb2, an
already filtered but smaller pool of data. We primar-
ily focus on English-French bilingual pretraining

8https://github.com/NVIDIA/Megatron-LM

in this section as we have both larger amounts of
data for pretraining in publicly available corpora
such as RedPajama2 and FineWeb2, have native
evaluation sets, and the language is relatively close
to English. We additionally present results with
the high quality filter in German and Chinese in
Section J. We choose German as there is also a
large amount of high quality data, its closeness to
English, and it is commonly used in other works
(Seto et al., 2024). However, we note that there
is only a small amount of native evaluation data
such as Include (Romanou et al., 2024) and Kalei-
doscope (Salazar et al., 2025) for which there are
only a few hundred samples. We also evaluate on
Chinese to test a language further from English
with a large amount of publicly available data, and
native evaluations. We provide a brief description
of each dataset below as well as the token counts
for the approximate number of tokens used used
for each dataset in training9.

• mC4: We use the multilingual Colossal Clean
Crawled Corpus (mC4), a curated text dataset
comprising over 6.3T tokens for experiments in
Section 3. This corpus is derived from Common-
Crawl and used for pretraining numerous lan-
guage models (Brown et al., 2020; Raffel et al.,
2020; Touvron et al., 2023). The dataset is cho-
sen as a low quality dataset as it is relatively little
filtering. For our experiments we use the first
∼ 520 files for translation and otherwise train on
one epoch or two epoch of data from this subset
(Xue et al., 2021).

• FineWebEDU: A subset of the FineWeb dataset
which is filtered according to a classifier trained
on annotations for educational quality from
Llama-3 70B model (Penedo et al., 2024a). We
use the subset known as TransWebEDU, which
is a subset of around 75B tokens used in (Wang
et al., 2025). We also use the machine translated
German version and translate using a proprietary
translation system into Chinese in Section 3. We
use all files from this dataset given the already
smaller size.

9Note that for training with the Megatron library, we tok-
enize batches of parquet or jsonl files (referred to as a dataset
in Megatron-LM), and use each dataset with equal weight.
This means that if some files or documents have fewer tokens,
they might repeat at a higher rate than other sets of files. While
we do see more repetitions for a few subsets, this is relatively
small for overall training, and for training, we still repeat data
for only a few epochs less than would incur a gap in perfor-
mance to single epoch training following (Muennighoff et al.,
2024).
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• ChineseFineWeb-EDU: An educational corpus
in Chinese consisting of roughly 400B tokens
of data. Although it shares a similar name, the
ChineseFineWeb-EDU does not share data from
FineWebEDU and is collected from different
sources. We use the first 600 files in total for
our experiments (Yu et al., 2025).

• RedPajama2: A pretraining corpus with light
filtering consisting of 30T tokens: 20T tokens of
English text, and ∼ 3T for German and French.
We focus on the French and German portions of
the dataset only. We randomly shuffle all subsets
of the data and train using a random shuffled sub-
set of both the head and middle portions (Weber
et al., 2024).

• FineWeb2: Data sourced in a similar way as
FineWeb but for many languages. We use French,
German, and Chinese subsets. The French data
has 113 parquet files, German has 122, and Chi-
nese has 185 parquet files. Given the size of
the datasets, data is repeated for multiple epochs
though still under 10 epochs to not yield worse
performance than training on new data following
(Muennighoff et al., 2024).

Dataset Tokens (B)
EN FR DE ZH

mC4 EN 125 76 75 –
RPJ2 (base) – 310 297 –
RPJ2 (90%) – 260 248 –
FineWeb2 – 270 260 282
FineWeb2 (90%) – 34 28 30
TransWebEDU 54 62 55 45
ChineseFineWeb 192 – – 195

Table 6: Upper bound on the approximate number of
tokens by language used in training in this work for
training datasets used in this work.

B.2 SentenceBert Filter Scores

We report the SentenceBert filter scores correspond-
ing to different percentiles for all datasets we filter.
Filter scores are primarily estimated using only the
first file, however we also compare this with filter
scores from 100 randomly selected files and find
that they are similar. We report the scores used
in Tabl 7. Note that for some datasets, we only
conduct experiments using the 90th percentile.

B.3 Zero Shot Evaluations

B.3.1 Core Benchmarks
• SciQ [Core]: A dataset of science exam ques-

tions for evaluating the ability of NLP models in
understanding and reasoning within the science
domain (Welbl et al., 2017).

• ARC Challenge (ARC-C) [Core]:Part of the
AI2 Reasoning Challenge (ARC) (Clark et al.,
2018), containing science exam questions from
grades 3 to 9. The ARC Challenge set includes
more difficult questions that necessitate higher-
order reasoning.

• ARC Easy (ARC-E) [Core]: The Easy set of
the AI2 Reasoning Challenge (Clark et al., 2018)
features questions from the same source as ARC-
C but are considered less challenging.

• Winogrande (WG) [Core]: This dataset chal-
lenges models on common sense reasoning in a
language context, focusing on pronoun disam-
biguation tasks (Sakaguchi et al., 2021).

• PIQA [Core]: Physical Interaction Question An-
swering tests the understanding of everyday phys-
ical processes (Bisk et al., 2020).

• HellaSwag (HS) [Core]: Evaluates a model’s
ability to complete scenarios in a contextually
and logically coherent manner (Zellers et al.,
2019).

We use the same translations from (Anonymous,
2024). For our evaluations, we use the lm-eval-
harness repository10 for zero-shot accuracy on QA
tasks.

B.3.2 Other Evaluation Datasets
• MMLU: Multi-domain question answering,

MMLU assesses the model’s expertise over a
wide range of specialized subjects, from profes-
sional domains to academia (Hendrycks et al.,
2020). We use the human translated ver-
sions available from GlobalMMLU (Singh et al.,
2024).

• FrenchBench-MC: Collection of four evalu-
ations including translated versions of ARC-
challenge, HellaSwag, grammar, and vocab
(Faysse et al., 2024).

10https://github.com/EleutherAI/
lm-evaluation-harness
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Percentile RPJ2 FR RPJ2 DE FW2 FR FW2 DE FW2 ZH

95 0.4014
90 0.2170 0.1654 0.2920 0.2651 0.2751
70 0.0610 0.033931 0.0884 0.0614 0.0722
60 0.0361 0.019172 0.0546 0.0355 0.0437
40 0.0133 0.006802 0.0237 0.0130 0.0170
30 0.0077 0.003946 0.0140 0.0077 0.0107
10 0.0017 0.000884 0.0029 0.0019 0.0028

Table 7: Filter percentile scores for different datasets.

• Regional: Evaluation on both the Include (Ro-
manou et al., 2024) and Kaleidoscope (Salazar
et al., 2025) benchmarks. For Kaleidoscope, we
use only the portion that does not require im-
age modality. As both evaluation sets are small
and test regional knowledge, we group both and
average the accuracy.

• NLI: We report accuracy over French topic-based
NLI (Faysse et al., 2024), and XNLI (Conneau
et al., 2018) translated into French.

B.4 Licenses and Attributions

The training datasets are supported by public li-
censes including ODC and Apache license. The
pre-trained models including Mistral (for transla-
tion), SentenceBert, and OH FastText classifiers
are also supported by Apache and MIT licenses.
The translated data for Section 3 uses a proprietary
translation model following (Seto et al., 2024).

All models and datasets are collected from Hug-
gingface via the datasets library, and all models are
evaluated using the lm-eval-harness library from
EleutherAI (Gao et al., 2024), which uses an MIT
license.

We use the Megatron codebase under the Nvidia
license for pre-training.

C Curse of Multilinguality

Early works found that pretraining language mod-
els on a large number of languages leads to a de-
crease in performance for each language (Conneau
and Lample, 2019; Rust et al., 2021; Wang et al.,
2020; Chang et al., 2024). Several works have in-
vestigated causes of performance degradation (Rust
et al., 2021; Wang et al., 2020; Chang et al., 2024),
and methods for addressing this (Blevins et al.,
2024; Pfeiffer et al., 2022). Our work focuses on
bilingual language model performance degradation,

which limits to a degree the impact of many lan-
guages and focuses instead on data size, quality,
and training time. While our work can help shed
light on factors impacting multilingual model train-
ing, our focus is on mitigating performance gaps
and the reason for these gaps.

D SBERT Classifier Embeddings for
Classification

Prior works have used SBERT for training a lin-
ear classifier (Minaee et al., 2021; Albalak et al.,
2024; Grangier et al., 2024a), but only in the same
language and do not its impact in multilingual LM
learning. We show that training a quality classifier
with only English data is feasible.

We train a K-means clustering with 64 balanced
clusters over the embeddings of 10 files of RedPa-
jamav2 French data to examine the distribution of
different datasets following (Grangier et al., 2024b).
We then label sets of data in both English and
French including C4 (Xue et al., 2021), DCLM
classifier training data (Li et al., 2024), and ARC
Easy(Clark et al., 2018). Figure 8 shows that both
French and English data follow similar histograms
indicating that data lie close in the same clusters
and can be interchanged when filtering data. As a
result we will be able to select the same distribution
of data for training models.

E German and English Data Quality
Experiments

We start replicating setup in which a bilingual lan-
guage model is trained on an equal proportion of
data from mC4 in German (DE) and English (EN)
totaling 100K steps each, following the setup for
French and English presented in Section 3.

Table 8 shows performance on MMLU and Core
benchmarks. Our findings match those in prior
works where we see a 3% drop in English and an
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Figure 8: Cluster histograms for distribution of different
datasets over RedPajama2. Both English and French
versions of the data have similar distributions

Model Core EN Core DE MMLU EN MMLU DE

EN 56.2 40.9 29.8 26.4
DE 46.5 48.9 26.8 27.4
BI 53.3 49.7 28.9 28.0

Table 8: Zero shot accuracy for general understanding
and specialized knowledge tasks for monolingual En-
glish (EN), German (DE), and bilingual (BI) models.

increase in German of 1% compared to the bilin-
gual model.

Next, we control the data quality and languages
in the model. We follow the same setup as in
French and vary both the data quality and the lan-
guage with mC4 and FineWebEDU translations
using the same translation system for mC4 and
TransWebEDU translations for German.

Figure 9 shows the performance difference when
varying quality (y-axis) and language (x-axis) for
two sets of zero-shot evaluations: Core and MMLU.
When examining the plots, we see that the bottom
right square corresponding to a monolingual model
trained on high quality in the targeted language has
the highest performance. This is closely followed
by models which individually vary the language but
keep high quality [middle bottom square, e.g., (bi,
high)] or mix quality but keep the same language
[right middle square, e.g., (EN, mix)]. However,
mixed quality and mixed language taken together
[middle square, e.g., (bi, mix)] exhibits an average
2.5% drop in English performance by comparison.

Finally, we show results at 30K steps for English
and German following the analysis for French. Re-
sults are shown in Figure 10. At this scale, we see
that both the bilingual high quality (middle bot-
tom) and mixed quality native monolingual (right
middle) models have 2.5% lower performance than
the monolingual high quality unlike prior results at
200K steps for English evaluations. Similarly low
quality results (top row) drop below bilingual again

indicating data quality has a large role in training.

F Additional Filter Results

This section presents additional filter percentile
results for German and French at larger steps.

F.1 Filter Percentile Results at 200K Steps
Figure 11 presents results for different filter per-
centiles at 200K steps for monolingual French mod-
els. We see that increasing the percentile used in
filtering increases performances on benchmarks.
The model performs better than base RedPajamav2
at around 50% quality filter. However, the filtered
data models perform worse than training for 200K
steps on TransWebEDU on translated benchmarks.
Finally, we note that at 95% quality percentile we
observe a plateau in performance where the 90th
percentile performs better by ∼ 1%.

F.2 FineWeb2 French Filter Percentile Results
at 200K Steps

Figure 12 presents results for different filter per-
centiles at 200K steps for monolingual French mod-
els. We see that increasing the percentile used
in filtering FineWeb2 increases performance on
benchmarks. The model performs better than base
RedPajamav2 at 30% quality filter, and better than
base FineWeb2 at 70% quality filter percentile. The
filtered data models achieves the same performance
a TransWebEDU on translated benchmarks at the
90th percentile.

F.3 RedPajamav2 German Filter Percentile
Results

Figure 13 presents results for different filter per-
centiles at 30K steps for monolingual German mod-
els. We compare the SBert classifier with training
on translated data following the same recipe as for
training the original DCLM filter. We see that in-
creasing the percentile used in filtering increases
performances on Core tasks across all filters. How-
ever, translating with a weak translation system
appears to plateau performance, with the small
CPU translation system with filtering attaining the
same performance as the model with no filtering.
Training with a better translations system such as
Mistral-7B improves performance to SBert, but re-
quires translating with a more expensive translation
system. Second, model trained with SBert filtered
data performs better than base RedPajamav2 at
around 60% quality filter. However, the filtered
data models perform worse than training for 30K
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(a) English Core (b) German Core (c) English MMLU (d) German MMLU

Figure 9: Performance with varying data quality and language. Models are trained on combinations of mC4 (low)
and FineWebEDU (high) in native English (EN) and translated to German (DE). Models are trained for 200K steps
and evaluated on Core (avg over six common-sense reasoning tasks) and MMLU.

(a) English Core (b) German Core (c) English MMLU (d) German MMLU

Figure 10: Performance with varying data quality and language. Models are trained on combinations of mC4 (low)
and FineWebEDU (high) in native English (EN) and translated to German (DE). Models are trained for 30K steps
and evaluated on Core and MMLU.

Figure 11: Quality vs. Zero-shot Accuracy on Core
tasks for filtered RedPajama2 in French (SBert OH FR)
compared with TransWebEDU (fwe_de) and base Red-
Pajamav2 in French (rpj_fr) after 200K steps.

steps on TransWebEDU (German) on translated
benchmarks consistent with our experiments on
French.

G Continued Pretraining on High Quality
Data

We additionally examine performance when pre-
training on the base RedPajamav2 without filtering
and subsequently continue pretraining. We exper-
iment with a 1.3B parameter model and examine
continuing pretraining after 150K steps, and after
200K steps. We report results in Figure 14. Results
indicate that after only a few steps (20-30K) we see

Figure 12: Quality vs. Zero-shot Accuracy on Core
tasks for filtered FineWeb2 in French (SBert OH FR)
compared with TransWebEDU (fwe_fr), base FineWeb2
in Frnech (fw2_fr), and base RedPajamav2 in French
(rpj_fr) after 200K steps.

performance increase consistent with pretraining
on filtered data from scratch indicating computa-
tional gains if a pretrained model already exists.

H Results with FWE Training Data for
Quality Classifier

Our primary experiments use data from the DCLM
classifier training for defining high quality data.
However, there may be several definitions of qual-
ity. We analyze one possible alternative: textbook
quality data as defined by FineWebEDU. We use
the same data and annotations used to train the
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Figure 13: Quality vs. Zero-shot Accuracy on Core
tasks for filtered RedPajama2 in German (SBert OH
DE) compared with filtering using a FastText classifier
trained on translated DCLM classifier training data (FT
DE and FT-M DE), TransWebEDU (fwe_de) and base
RedPajamav2 in German (rpj_de) after 200K steps.

Figure 14: Continued pretraining experiments for 1.3B
model continuing training from 150K steps and 200K
steps for a total of 50K steps.

FineWebEDU classifier (Penedo et al., 2024a)11.
We train a binary classifier using the same recipe
as prior where the quality label is whether or not
the annotation was 2 or above. Our results are in
Figure 15.

We find that the DCLM classifier data performs
better, while the FineWebEDU data attains the
same performance as the base model. There are
a few possibilities that we leave to future work:
(i) The original FineWebEDU classifier scores be-
tween 0 and 5. When training a binary classifier,
an accuracy of 82% is achieved for scoring 3 and
above as high quality. Decreasing to a 2, might
make the task harder, resulting in more low quality
examples being selected for training. We chose a
classifier score of 2 for high quality as this corre-
sponds to only 30 (ii) Classifying textbook quality
data might be a more challenging task when using
a universal embedding as the FineWebEDU classi-

11The data is available at https://
huggingface.co/datasets/HuggingFaceFW/
fineweb-edu-llama3-annotations.

Figure 15: Comparison between training a quality
classifier using the DCLM classifier data, and the
FineWebEDU data at 30K steps on the Core bench-
mark datasets for French.

fier is a much larger classifier (also an embedding
model) than the FastText classifiers. It’s possible
that with a more complex classifier, and finetuning
performance might be higher.

I Comparison with FW2 HQ

We additionally compare with the data selection
method of (Messmer et al., 2025). This selection
method is similar to the embedding classification
approach used in this work, and both build upon
the classification method in (Grangier et al., 2024a).
However (Grangier et al., 2024a) only study filter-
ing English data and for specific domains. (Mess-
mer et al., 2025) applied the filtering to other lan-
guages than English from FineWeb2, and although
they aim to filter for high quality data in general,
they use datasets such as MMLU and Include, mak-
ing the filtering aimed more at specialization as in
(Grangier et al., 2024a) which also uses MMLU for
selection. They are also primarily focused on mono-
lingual performance, and follow the same regime of
using data from the target language for training the
classifier, and only test monolingual performance.
Collectively we refer to their dataset as FineWeb2
HQ. We train monolingual and bilingual models
for the same 200K steps using the dataset made
available12 for French. We compare with the same
percentile of filtering (90%) which should yield ap-
proximately the same amount of data. We evaluate
on the Core benchmarks in Table 9.

Our findings show similar performance in En-
glish, and that our filtering achieves better perfor-
mance in French, especially for monolingual. Not-
ing that, we are able to achieve better performance

12https://huggingface.co/datasets/epfml/
FineWeb2-HQ
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Model Core EN Core FR

FW2 – 51.61
FW2 HQ – 52.9
(Ours) FW2 90% – 54.2

FW2 60.26 53.65
FW2 HQ 61.2 54.9
(Ours) FW2 90% 61.1 55.5

Table 9: Performance across Core benchmarks compar-
ing models trained with filtering from our approach and
(Messmer et al., 2025) on FineWeb2. Top rows represent
monolingual performance, and bottom are multilingual
with FineWebEDU as the English data.

without access to high quality data from other lan-
guages for training13. We hypothesize that this may
be because using data from MMLU and Include are
very task specific, rather than general high quality
data. Include has specific regional knowledge such
as driving exams, which may be filtered for instead,
and MMLU is predominantly science knowledge
and Western (possibly American) culturally influ-
enced. Thus, there may be similar issues as we
found with the FineWebEDU training annotation
set in Section H.

J German and Chinese Filtering
Evaluations

Section 5 focuses on French-English bilingual mod-
els due to the (i) availability of a sufficient amount
of data for training 1.3B models for both curated
data (FineWeb2) and common crawl data (Redpa-
jama2), (ii) multiple evaluations both translated
from English data and native, and (iii) closeness to
English. In this section, we additionally show that
the filtering improves performance for other lan-
guages in both monolingual and bilingual models.

We compare results for French, German, and
Chinese languages from FineWeb2 in Table 10
for monolingual models and Table 11 for bilin-
gual models, and French and German for RedPaja-
mav214. In all cases, we observe an improvement
in performance with French and German models
being better than training on translated high quality
English data. Note further that for all three mod-
els, there is reduced gap in performance between

13Note that we did not conduct full comparison to other
tasks in our list of benchmarks as both MMLU and Regional
evaluations have data used for selection

14For German experiments on RedPajamav2, we use a
smaller set of data and repeat for two repetitions. This amount
of repetition should not have an effect following (Muennighoff
et al., 2024). Models get similar performance and improve-
ments as for RedPajamav2 in French.

monolingual and bilingual models for all languages.
We report that the gap in English performances to
a monolingual English model improves by up to
∼1% with filtered data from FineWeb2 in other
languages.

Model RPJ2 FR RPJ2 DE FW2 FR FW2 DE FW2 ZH

Base 48.38 48.33 51.61 49.83 51.36
90% Filter 50.42 49.86 54.17 52.53 53.14

Table 10: Comparison of filtering for RPJ2 and FW2 for
monolingual models for Core benchmarks in the native
languages.

Model RPJ2 FR RPJ2 DE FW2 FR FW2 DE FW2 ZH

Base 52.16 50.70 53.65 52.25 51.50
90% Filter 53.37 51.58 55.47 53.90 53.97

Table 11: Comparison of filtering for RPJ2 and FW2
for bilingual models for Core benchmarks in the non-
english languages. Models are trained with the respec-
tive datasets and FineWebEDU in English.

K Model Scaling

K.1 Model Scaling Experiments

Figure 16: Monolingual model performance comparing
filtering on the Core FR benchmarks for various model
sizes.

Methodology: We investigate to what extent our
results are similar across model sizes. We measure
performance at three model sizes: 350M, 1.3B, and
2.7B, and train models for each model size trained
on the same data pools for both the base distribution
of RedPajamav2 FR and filtered version at 90%
filtering. Note that the 2.7B model has twice the
context length and sees data for twice as many
repetitions. We report results for the monolingual
models in Figure 16 and for bilingual performance
in Figure 17.
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Figure 17: Bilingual model performance comparing
filtering on the Core EN and FR benchmarks for various
model sizes.

Findings: For monolingual models, we see 2%
improvement for 350M and 1.3B, and 1% for the
2.7B model. With more data, it’s possible to see
greater improvements on the 2.7B model, however
we note that we both saturate on the amount of
filtered data requiring multiple repetitions, and the
scale drops to only 2-3× Chinchilla vs. 7×. For
bilingual performance, we see consistent perfor-
mance of 1-1.5% improvement for French evalua-
tions. However, there is little improvement from fil-
tering on English performance as is similar to prior
results. This is similar to results in Section 5.5,
and is likely a result of the English FineWebEDU
dataset having higher quality data relevant to the
downstream evaluations than even filtered RedPa-
jamav2.

K.2 Comparison for 2.7B Parameter Models

Section K.1 shows that as we increase model size,
performance also increases indicating that filter-
ing improves performance regardless of model size.
We first show that this also applies at all intermedi-
ate checkpoints where we observe consistent trends
regardless of the number of steps in Figure 18.
Next, we show comparison with public state-of-the-
art multilingual models such as Qwen2.5 3B (Yang
et al., 2024), and Helium-115 in Table 12 on the
same French evaluation sets from Section 5.6. At
the 2.7B parameter scale, our model trained with
filtered RedPajamav2 outperforms the unfiltered
model. We do not train on the FineWeb2 as the
amount of filtered data is small and would require
over 10x repetition which may impact performance.
Performance of our models are lower than Qwen2.5
and Helium-1 models at this scale. This is because
our models are trained with the same data as the
smaller models for consistency and comparison

15https://kyutai.org/2025/04/30/helium.html

leading to more repetitions even for English data,
and models such as the Qwen2.5 family are trained
on 18T tokens (Yang et al., 2024), which is over
40× the data used by our models. We see consis-
tent improvements in early stages of training (first
repetition of data), and expect that with more data
in other languages for filtering, performance could
improve as well.

L Individual Task Accuracies

We provide individual accuracies for all models
we train with our filtering strategy and evaluate in
Section 5.

L.1 Monolingual French Filter Performance

This section provides results for individual tasks in
the Core benchmark for monolingual French mod-
els with varying quality to supplement Figure 5,
and Table 4. Results are presented in Table 13.

L.2 Bilingual French Filter Performance

This section provides results for individual tasks
in the Core benchmark for monolingual French
models with varying quality to supplement Figure 6.
Results are presented in Table 14.

L.3 Filter Performance Comparison with
FineWeb 2 HQ

We report performance for individual tasks com-
paring FineWeb2 with our filtering and FineWeb2
HQ (Messmer et al., 2025). Table 15 shows results
for monolingual models and Table 16 for bilingual
models with FineWebEDU in English.

L.4 Filter Performance Across Languages

This section expands on results for Tables 10-11.
For monolingual models, Table 17 presents individ-
ual task accuracy for French, Table 18 for German,
and Table 19 for Chinese.

individual task accuracies for bilingual models
with FineWebEDU in English are included in Ta-
ble 20 for French, Table 21 for German, and Ta-
ble 22 for Chinese.

L.5 Filter Performance for Varying Model
Sizes

We expand our results for Figure 17 showing ac-
curacy for individual tasks in the Core tasks for
different model sizes for bilingual English-French
models. All models are trained with FineWebEDU
(FWE) as the English data and RedPajama2 (RPJ2)
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Model Core EN MMLU EN Core MMLU FB-MC Regional NLI AVG

RPJ2 63.45 35.86 54.30 30.28 61.33 34.54 40.86 44.26
Helium-1 2B 71.26 41.11 60.13 33.53 64.28 34.51 42.15 46.92
Bloom 3B 58.21 31.68 52.62 28.93 60.24 31.55 40.50 42.77
Qwen 3B 72.54 44.79 60.95 34.96 63.52 36.62 52.32 49.67
RPJ2 90% 62.89 35.03 55.52 30.72 63.26 34.51 40.70 44.94

Table 12: Comparison of different public 2B+ bilingual models in French and English.

Model Name ARC-C ARC-E HS PIQA SCIQ WG AVG

RPJ2 30% 22.18± 1.21 35.06± 0.98 30.81± 0.46 56.37± 1.16 57.30± 1.56 51.54± 1.40 42.21
RPJ2 60% 23.98± 1.25 37.25± 0.99 29.71± 0.46 57.02± 1.16 66.10± 1.50 50.36± 1.41 44.07
RPJ2 90% 24.40± 1.26 37.67± 0.99 31.69± 0.46 56.42± 1.16 61.90± 1.54 50.75± 1.41 43.80
RPJ2 95% 23.46± 1.24 37.92± 1.00 30.88± 0.46 57.89± 1.15 59.10± 1.56 50.51± 1.41 43.29
FW2 30% 22.95± 1.23 37.42± 0.99 33.89± 0.47 62.30± 1.13 62.40± 1.53 51.70± 1.40 45.11
FW2 60% 24.66± 1.26 38.05± 1.00 34.90± 0.48 61.97± 1.13 60.70± 1.55 50.04± 1.41 45.05
FW2 90% 26.79± 1.29 43.43± 1.02 38.89± 0.49 63.33± 1.12 65.80± 1.50 52.57± 1.40 48.47

RPJ2 30% 25.72± 1.29 37.34± 1.02 42.16± 0.51 63.33± 1.12 60.86± 1.58 51.93± 1.43 46.89
RPJ2 60% 27.03± 1.31 42.36± 1.04 43.02± 0.51 63.38± 1.12 64.74± 1.55 52.43± 1.43 48.83
RPJ2 90% 28.51± 1.33 45.84± 1.05 45.05± 0.51 65.13± 1.11 65.06± 1.55 52.92± 1.43 50.42
RPJ2 95% 27.29± 1.32 44.52± 1.04 44.27± 0.51 64.85± 1.11 61.18± 1.58 53.50± 1.43 49.27
FW2 30% 25.02± 1.28 39.41± 1.03 45.20± 0.52 66.05± 1.10 60.65± 1.58 54.07± 1.43 48.40
FW2 60% 27.55± 1.32 39.63± 1.03 47.41± 0.52 66.32± 1.10 61.18± 1.58 53.00± 1.43 49.18
FW2 90% 30.95± 1.37 48.88± 1.05 52.55± 0.52 68.77± 1.08 68.31± 1.51 55.56± 1.43 54.17

Table 13: Evaluation of 1.3B parameter monolingual French models on general understanding tasks for English
(top) and French (bottom) with varying quality. All evaluations are zero-shot.

Model Name ARC-C ARC-E HS PIQA SCIQ WG AVG

FWE FR 32.00± 1.36 53.45± 1.02 42.53± 0.49 65.23± 1.11 72.10± 1.42 54.78± 1.40 53.35
FWE EN 37.71± 1.42 66.08± 0.97 56.84± 0.49 73.78± 1.03 81.20± 1.24 57.38± 1.39 62.16
FWE EN RPJ2 30% 32.76± 1.37 62.08± 1.00 51.66± 0.50 71.33± 1.06 78.80± 1.29 57.14± 1.39 58.96
FWE EN RPJ2 60% 33.28± 1.38 62.29± 0.99 52.09± 0.50 72.09± 1.05 81.50± 1.23 56.43± 1.39 59.61
FWE EN RPJ2 90% 34.90± 1.39 62.46± 0.99 52.75± 0.50 71.33± 1.06 80.70± 1.25 56.27± 1.39 59.73
FWE EN FW2 30% 34.13± 1.39 60.40± 1.00 53.07± 0.50 72.42± 1.04 79.30± 1.28 56.99± 1.39 59.38
FWE EN FW2 60% 33.53± 1.38 61.53± 1.00 54.48± 0.50 72.31± 1.04 80.10± 1.26 56.12± 1.39 59.68
FWE EN FW2 90% 36.26± 1.40 62.37± 0.99 55.74± 0.50 73.50± 1.03 81.30± 1.23 57.22± 1.39 61.07

FWE FR 34.26± 1.40 53.28± 1.05 48.13± 0.52 63.17± 1.13 70.41± 1.48 56.46± 1.42 54.28
FWE EN 25.11± 1.28 32.94± 0.99 30.64± 0.48 52.01± 1.17 62.22± 1.57 50.95± 1.43 42.31
FWE EN RPJ2 30% 29.56± 1.35 45.88± 1.05 46.13± 0.52 63.66± 1.12 66.84± 1.53 53.58± 1.43 50.94
FWE EN RPJ2 60% 30.95± 1.37 47.95± 1.05 47.44± 0.52 66.00± 1.11 67.58± 1.52 54.73± 1.43 52.44
FWE EN RPJ2 90% 31.12± 1.37 49.45± 1.05 48.89± 0.52 65.94± 1.11 69.57± 1.49 55.23± 1.43 53.37
FWE EN FW2 30% 29.99± 1.35 45.40± 1.04 47.86± 0.52 66.54± 1.10 67.47± 1.52 53.91± 1.43 51.86
FWE EN FW2 60% 28.86± 1.34 45.31± 1.04 50.07± 0.52 66.70± 1.10 67.47± 1.52 55.80± 1.43 52.37
FWE EN FW2 90% 32.61± 1.38 50.15± 1.05 53.21± 0.52 69.26± 1.08 71.14± 1.47 56.46± 1.42 55.47

Table 14: Evaluation of 1.3B parameter models on general understanding tasks for English (top) and French (bottom)
with varying quality. All evaluations are zero-shot.
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Model Name ARC-C ARC-E HS PIQA SCIQ WG AVG

FW2 FR 25.77± 1.28 39.44± 1.00 37.21± 0.48 64.09± 1.12 65.90± 1.50 52.41± 1.40 47.47
FW2 FR 90% 26.79± 1.29 43.43± 1.02 38.89± 0.49 63.33± 1.12 65.80± 1.50 52.57± 1.40 48.47
FW2 FR HQ 27.82± 1.31 44.19± 1.02 37.40± 0.48 63.55± 1.12 69.10± 1.46 52.25± 1.40 49.05

FW2 FR 28.95± 1.34 43.28± 1.04 48.58± 0.52 67.85± 1.09 66.84± 1.53 54.16± 1.43 51.61
FW2 FR 90FW2 FR HQ 30.69± 1.36 46.46± 1.05 49.87± 0.52 68.17± 1.09 67.58± 1.52 54.90± 1.43 52.94

Table 15: Evaluation of 1.3B parameter models on general understanding tasks for English (top) and French (bottom)
with varying quality. Models are trained on FineWeb2 (FW2) or FineWeb 2 HQ (FW2 HQ) in French with and
without filtering. All evaluations are zero-shot.

Model Name ARC-C ARC-E HS PIQA SCIQ WG AVG

FWE EN FW2 FR 34.64± 1.39 62.25± 0.99 54.31± 0.50 72.31± 1.04 80.30± 1.26 57.77± 1.39 60.26
FWE EN + FW2 FR 90% 36.26± 1.40 62.37± 0.99 55.74± 0.50 73.50± 1.03 81.30± 1.23 57.22± 1.39 61.07
FWE EN FW2 FR HQ 35.92± 1.40 64.35± 0.98 54.57± 0.50 73.34± 1.03 81.80± 1.22 57.22± 1.39 61.20

FWE EN FW2 FR 31.21± 1.37 48.75± 1.05 50.27± 0.52 68.12± 1.09 70.30± 1.48 53.25± 1.43 53.65
FWE EN + FW2 FR 90% 32.61± 1.38 50.15± 1.05 53.21± 0.52 69.26± 1.08 71.14± 1.47 56.46± 1.42 55.47
FWE EN FW2 FR HQ 32.52± 1.38 51.74± 1.05 51.31± 0.52 68.55± 1.08 71.46± 1.46 53.50± 1.43 54.85

Table 16: Evaluation of 1.3B parameter models on general understanding tasks for English (top) and French (bottom)
with varying quality. Models are trained on FineWeb2 (FW2) or FineWeb 2 HQ (FW2 HQ) in French with and
without filtering and FineWebEDU (FWE) in English. All evaluations are zero-shot.

Model Name ARC-C ARC-E HS PIQA SCIQ WG AVG

RPJ2 FR 23.46± 1.24 36.78± 0.99 32.03± 0.47 56.86± 1.16 64.80± 1.51 49.96± 1.41 43.98
RPJ2 FR 90% 24.40± 1.26 37.67± 0.99 31.69± 0.46 56.42± 1.16 61.90± 1.54 50.75± 1.41 43.80
FW2 FR 25.77± 1.28 39.44± 1.00 37.21± 0.48 64.09± 1.12 65.90± 1.50 52.41± 1.40 47.47
FW2 FR 90% 26.79± 1.29 43.43± 1.02 38.89± 0.49 63.33± 1.12 65.80± 1.50 52.57± 1.40 48.47

RPJ2 FR 24.85± 1.28 41.35± 1.03 43.52± 0.51 64.04± 1.12 62.54± 1.57 53.99± 1.43 48.38
RPJ2 FR 90% 28.51± 1.33 45.84± 1.05 45.05± 0.51 65.13± 1.11 65.06± 1.55 52.92± 1.43 50.42
FW2 FR 28.95± 1.34 43.28± 1.04 48.58± 0.52 67.85± 1.09 66.84± 1.53 54.16± 1.43 51.61
FW2 FR 90% 30.95± 1.37 48.88± 1.05 52.55± 0.52 68.77± 1.08 68.31± 1.51 55.56± 1.43 54.17

Table 17: Evaluation of 1.3B parameter models on general understanding tasks for English (top) and French (bottom)
with varying quality. Models are trained on RedPajamav2 (RPJ2) or FineWeb2 (FW2) in French with and without
filtering. All evaluations are zero-shot.

Model Name ARC-C ARC-E HS PIQA SCIQ WG AVG

RPJ2 DE 24.23± 1.25 37.92± 1.00 31.69± 0.46 58.16± 1.15 63.30± 1.52 49.64± 1.41 44.16
RPJ2 DE 90% 24.49± 1.26 38.59± 1.00 31.53± 0.46 58.22± 1.15 64.70± 1.51 51.38± 1.40 44.82
FW2 DE 24.91± 1.26 35.10± 0.98 36.58± 0.48 61.70± 1.13 67.10± 1.49 52.01± 1.40 46.23
FW2 DE 90% 24.57± 1.26 42.59± 1.01 37.86± 0.48 63.44± 1.12 66.70± 1.49 50.28± 1.41 47.57

RPJ2 DE 27.88± 1.33 42.74± 1.04 40.02± 0.51 61.64± 1.13 67.89± 1.52 52.28± 1.45 48.74
RPJ2 DE 90% 29.99± 1.36 45.22± 1.05 41.29± 0.51 63.06± 1.13 71.16± 1.47 51.27± 1.45 50.33
FW2 DE 27.79± 1.33 39.07± 1.03 43.58± 0.51 64.20± 1.12 69.79± 1.49 54.56± 1.45 49.83
FW2 DE 90% 29.11± 1.35 47.48± 1.05 47.78± 0.52 66.16± 1.10 69.26± 1.50 55.41± 1.45 52.53

Table 18: Evaluation of 1.3B parameter models on general understanding tasks for English (top) and German
(bottom) with varying quality. Models are trained on RedPajamav2 (RPJ2) or FineWeb2 (FW2) in German with and
without filtering. All evaluations are zero-shot.
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Model Name ARC-C ARC-E HS PIQA SCIQ WG AVG

FW2 ZH 22.18± 1.21 36.62± 0.99 30.09± 0.46 57.07± 1.15 64.20± 1.52 52.41± 1.40 43.76
FW2 ZH 90% 21.76± 1.21 36.36± 0.99 30.73± 0.46 58.16± 1.15 64.30± 1.52 53.04± 1.40 44.06

FW2 ZH 28.62± 1.34 47.56± 1.05 40.25± 0.51 61.92± 1.13 76.00± 1.35 53.82± 1.53 51.36
FW2 ZH 90% 30.02± 1.35 52.27± 1.05 43.05± 0.51 63.33± 1.12 77.60± 1.32 52.60± 1.54 53.14

Table 19: Evaluation of 1.3B parameter models on general understanding tasks for English (top) and Chinese
(bottom) with varying quality. Models are trained on RedPajamav2 (RPJ2) or FineWeb2 (FW2) in Chinese with and
without filtering. All evaluations are zero-shot.

Model Name ARC-C ARC-E HS PIQA SCIQ WG AVG

FWE EN RPJ2 FR 35.32± 1.40 61.57± 1.00 52.56± 0.50 70.73± 1.06 81.60± 1.23 56.67± 1.39 59.74
FWE EN RPJ2 FR 90% 34.90± 1.39 62.46± 0.99 52.75± 0.50 71.33± 1.06 80.70± 1.25 56.27± 1.39 59.73
FWE EN FW2 FR 34.64± 1.39 62.25± 0.99 54.31± 0.50 72.31± 1.04 80.30± 1.26 57.77± 1.39 60.26
FWE EN + FW2 FR 90% 36.26± 1.40 62.37± 0.99 55.74± 0.50 73.50± 1.03 81.30± 1.23 57.22± 1.39 61.07

FWE EN RPJ2 FR 30.34± 1.36 47.16± 1.05 47.37± 0.52 64.58± 1.12 69.67± 1.49 53.83± 1.43 52.16
FWE EN RPJ2 FR 90% 31.12± 1.37 49.45± 1.05 48.89± 0.52 65.94± 1.11 69.57± 1.49 55.23± 1.43 53.37
FWE EN FW2 FR 31.21± 1.37 48.75± 1.05 50.27± 0.52 68.12± 1.09 70.30± 1.48 53.25± 1.43 53.65
FWE EN + FW2 FR 90% 32.61± 1.38 50.15± 1.05 53.21± 0.52 69.26± 1.08 71.14± 1.47 56.46± 1.42 55.47

Table 20: Evaluation of 1.3B parameter models on general understanding tasks for English (top) and French (bottom)
with varying quality. Models are trained on FineWebEDU (FWE) in English and RedPajamav2 (RPJ2) or FineWeb2
(FW2) in French with and without filtering. All evaluations are zero-shot.

Model Name ARC-C ARC-E HS PIQA SCIQ WG AVG

FWE EN RPJ2 DE 35.32± 1.40 61.53± 1.00 51.43± 0.50 70.62± 1.06 82.00± 1.22 54.85± 1.40 59.29
FWE EN RPJ2 DE 90% 33.70± 1.38 61.95± 1.00 51.36± 0.50 70.78± 1.06 82.30± 1.21 55.49± 1.40 59.26
FWE EN FW2 DE 33.28± 1.38 59.60± 1.01 53.17± 0.50 72.20± 1.05 80.70± 1.25 56.75± 1.39 59.28
FWE EN FW2 DE 90% 35.84± 1.40 63.89± 0.99 54.93± 0.50 71.55± 1.05 82.80± 1.19 56.12± 1.39 60.85

FWE EN RPJ2 DE 29.29± 1.35 46.90± 1.05 42.49± 0.51 62.13± 1.13 71.16± 1.47 53.38± 1.45 50.89
FWE EN RPJ2 DE 90% 30.17± 1.36 49.69± 1.05 43.95± 0.51 62.89± 1.13 72.00± 1.46 53.21± 1.45 51.98
FWE EN FW2 DE 29.46± 1.35 47.35± 1.05 45.20± 0.51 65.45± 1.11 72.00± 1.46 54.05± 1.45 52.25
FWE EN FW2 DE 90% 30.61± 1.37 52.30± 1.05 48.54± 0.52 65.18± 1.11 73.47± 1.43 53.29± 1.45 53.90

Table 21: Evaluation of 1.3B parameter models on general understanding tasks for English (top) and German
(bottom) with varying quality. Models are trained on FineWebEDU (FWE) in English and RedPajamav2 (RPJ2) or
FineWeb2 (FW2) in German with and without filtering. All evaluations are zero-shot.

Model Name ARC-C ARC-E HS PIQA SCIQ WG AVG

FWE EN FW2 ZH 33.96± 1.38 60.98± 1.00 49.10± 0.50 70.78± 1.06 77.80± 1.31 55.72± 1.40 58.06
FWE EN FW2 ZH 90% 32.76± 1.37 62.04± 1.00 50.32± 0.50 70.62± 1.06 80.70± 1.25 55.56± 1.40 58.67

FWE EN FW2 ZH 29.23± 1.34 49.14± 1.05 40.15± 0.51 61.75± 1.13 78.30± 1.30 50.42± 1.54 51.50
FWE EN FW2 ZH 90% 29.93± 1.35 54.34± 1.05 43.46± 0.51 63.55± 1.12 79.40± 1.28 53.16± 1.53 53.97

Table 22: Evaluation of 1.3B parameter models on general understanding tasks for English (top) and Chinese
(bottom) with varying quality. Models are trained on FineWebEDU (FWE) in English and FineWeb2 (FW2) in
Chinese with and without filtering. All evaluations are zero-shot.
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(a) 350M (b) 1.3B (c) 2.7B

Figure 18: Performance at intermediate checkpoints during training for different model sizes models for Core FR
benchmarks.

as the French data with and without filtering. Re-
sults are shown in Table 23.

L.6 Comparisons for Public Models
In this section, we provide individual accuracies
for all tasks and models in Table 3 and 12. Table 24
shows results for Core tasks. Table 25 shows re-
sults for the FrenchBench multiple choice tasks.
Table 26 shows results for both the regional knowl-
edge tasks, and the NLI tasks.
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Model Name ARC-C ARC-E HS PIQA SCIQ WG AVG

350M FWE EN RPJ2 FR 27.47± 1.30 53.83± 1.02 43.02± 0.49 67.08± 1.10 75.00± 1.37 52.33± 1.40 53.12
350M FWE EN RPJ2 FR 90% 29.18± 1.33 56.90± 1.02 42.92± 0.49 68.12± 1.09 75.40± 1.36 52.01± 1.40 54.09
1.3B FWE EN RPJ2 FR 35.32± 1.40 61.57± 1.00 52.56± 0.50 70.73± 1.06 81.60± 1.23 56.67± 1.39 59.74
1.3B FWE EN RPJ2 FR 90% 34.90± 1.39 62.46± 0.99 52.75± 0.50 71.33± 1.06 80.70± 1.25 56.27± 1.39 59.73
2.7B FWE EN RPJ2 FR 38.65± 1.42 68.60± 0.95 57.82± 0.49 73.12± 1.03 84.20± 1.15 58.33± 1.39 63.45
2.7B FWE EN RPJ2 FR 90% 38.23± 1.42 66.08± 0.97 57.04± 0.49 73.18± 1.03 83.60± 1.17 59.19± 1.38 62.89

350M FWE EN RPJ2 FR 26.85± 1.31 42.23± 1.04 39.69± 0.51 62.02± 1.13 64.43± 1.55 52.59± 1.43 47.97
350M FWE EN RPJ2 FR 90% 28.25± 1.33 45.22± 1.04 40.93± 0.51 62.95± 1.13 64.22± 1.55 52.76± 1.43 49.05
1.3B FWE EN RPJ2 FR 30.34± 1.36 47.16± 1.05 47.37± 0.52 64.58± 1.12 69.67± 1.49 53.83± 1.43 52.16
1.3B FWE EN RPJ2 FR 90% 31.12± 1.37 49.45± 1.05 48.89± 0.52 65.94± 1.11 69.57± 1.49 55.23± 1.43 53.37
2.7B FWE EN RPJ2 FR 32.61± 1.38 49.76± 1.05 51.34± 0.52 67.25± 1.09 70.09± 1.48 54.73± 1.43 54.30
2.7B FWE EN RPJ2 FR 90% 33.65± 1.40 51.30± 1.05 52.61± 0.52 67.90± 1.09 71.77± 1.46 55.88± 1.43 55.52

Table 23: Evaluation of models on general understanding tasks for English (top) and French (bottom) with varying
quality. Models are trained on FineWebEDU (FWE) in English and Redpajama2 (RPJ2) in French with and without
filtering at varying model sizes. All evaluations are zero-shot.

Model Name ARC-C ARC-E HS PIQA SCIQ WG AVG

1.3B FWE EN RPJ2 FR 35.32± 1.40 61.57± 1.00 52.56± 0.50 70.73± 1.06 81.60± 1.23 56.67± 1.39 59.74
1.3B FWE EN FW2 FR 34.64± 1.39 62.25± 0.99 54.31± 0.50 72.31± 1.04 80.30± 1.26 57.77± 1.39 60.26
1.3B FWE EN FWE FR 37.29± 1.41 64.06± 0.98 55.22± 0.50 73.45± 1.03 83.40± 1.18 57.70± 1.39 61.85
1.3B FWE EN RPJ 2 90% 34.90± 1.39 62.46± 0.99 52.75± 0.50 71.33± 1.06 80.70± 1.25 56.27± 1.39 59.73
1.3B FWE EN FW2 FR 90% 36.26± 1.40 62.37± 0.99 55.74± 0.50 73.50± 1.03 81.30± 1.23 57.22± 1.39 61.07
2.7B FWE EN RPJ2 FR 38.65± 1.42 68.60± 0.95 57.82± 0.49 73.12± 1.03 84.20± 1.15 58.33± 1.39 63.45
2.7B FWE EN RPJ2 FR 90% 38.23± 1.42 66.08± 0.97 57.04± 0.49 73.18± 1.03 83.60± 1.17 59.19± 1.38 62.89
CroissantLLM 27.56± 1.31 52.27± 1.02 53.53± 0.50 71.60± 1.05 79.40± 1.28 55.64± 1.40 56.67
TransWebLLM 36.18± 1.40 62.21± 0.99 52.32± 0.50 70.51± 1.06 80.20± 1.26 56.27± 1.39 59.61
Bloom 1B 25.68± 1.28 45.45± 1.02 42.98± 0.49 67.14± 1.10 74.20± 1.38 54.93± 1.40 51.73
Qwen2.5 1.5B 45.14± 1.45 71.46± 0.93 67.75± 0.47 76.06± 1.00 92.90± 0.81 63.38± 1.35 69.45
EuroLLM 1.7B 37.46± 1.41 64.10± 0.98 59.38± 0.49 73.45± 1.03 84.90± 1.13 59.04± 1.38 63.05
Helium-1 2B 46.50± 1.46 73.74± 0.90 69.63± 0.46 78.62± 0.96 92.30± 0.84 66.77± 1.32 71.26
Bloom 3B 30.55± 1.35 53.24± 1.02 54.51± 0.50 70.51± 1.06 81.70± 1.22 58.72± 1.38 58.21
Qwen2.5 3B 47.44± 1.46 73.11± 0.91 73.53± 0.44 78.84± 0.95 93.80± 0.76 68.51± 1.31 72.54

1.3B FWE EN RPJ2 FR 30.34± 1.36 47.16± 1.05 47.37± 0.52 64.58± 1.12 69.67± 1.49 53.83± 1.43 52.16
1.3B FWE EN FW2 FR 31.21± 1.37 48.75± 1.05 50.27± 0.52 68.12± 1.09 70.30± 1.48 53.25± 1.43 53.65
1.3B FWE EN FWE FR 33.39± 1.39 53.46± 1.05 47.68± 0.52 62.57± 1.13 72.40± 1.45 55.39± 1.43 54.15
1.3B FWE EN RPJ 2 90% 31.12± 1.37 49.45± 1.05 48.89± 0.52 65.94± 1.11 69.57± 1.49 55.23± 1.43 53.37
1.3B FWE EN FW2 FR 90% 32.61± 1.38 50.15± 1.05 53.21± 0.52 69.26± 1.08 71.14± 1.47 56.46± 1.42 55.47
2.7B FWE EN RPJ2 FR 32.61± 1.38 49.76± 1.05 51.34± 0.52 67.25± 1.09 70.09± 1.48 54.73± 1.43 54.30
2.7B FWE EN RPJ2 FR 90% 33.65± 1.40 51.30± 1.05 52.61± 0.52 67.90± 1.09 71.77± 1.46 55.88± 1.43 55.52
CroissantLLM 27.90± 1.32 45.22± 1.04 50.52± 0.52 66.87± 1.10 69.67± 1.49 55.31± 1.43 52.58
TransWebLLM 34.79± 1.41 53.68± 1.05 48.21± 0.52 63.76± 1.12 75.45± 1.39 54.40± 1.43 55.05
Bloom 1B 27.03± 1.31 40.03± 1.03 41.56± 0.51 61.70± 1.13 67.16± 1.52 54.73± 1.43 48.70
Qwen2.5 1.5B 32.69± 1.39 51.12± 1.05 49.63± 0.52 63.06± 1.13 79.54± 1.31 57.86± 1.42 55.65
EuroLLM 1.7B 31.39± 1.37 51.17± 1.05 51.47± 0.52 65.18± 1.11 74.08± 1.42 56.38± 1.42 54.94
Helium-1 2B 36.09± 1.42 55.00± 1.04 59.51± 0.51 67.90± 1.09 81.64± 1.25 60.66± 1.40 60.13
Bloom 3B 30.08± 1.35 45.49± 1.05 51.04± 0.52 65.13± 1.11 69.78± 1.49 54.24± 1.43 52.62
Qwen2.5 3B 38.19± 1.44 55.70± 1.04 58.58± 0.51 65.18± 1.11 84.58± 1.17 63.46± 1.38 60.95

Table 24: Evaluation of our models against public models on Core “general understanding” tasks for English (top)
and French (bottom). All evaluations are zero-shot.
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Model Name ARC-C Grammar HS Vocab

1.3B FWE EN RPJ2 FR 30.54± 1.35 82.35± 3.51 47.4± 0.52 80.67± 3.64
1.3B FWE EN FW2 FR 31.05± 1.35 80.67± 3.64 50.26± 0.52 78.99± 3.75
1.3B FWE EN FWE FR 36.7± 1.41 68.07± 4.29 47.59± 0.52 65.55± 4.37
1.3B FWE EN RPJ 2 90% 32.34± 1.37 80.67± 3.64 48.92± 0.52 77.31± 3.86
1.3B FWE EN FW2 FR 90% 33.79± 1.38 82.35± 3.51 53.21± 0.52 77.31± 3.86
2.7B FWE EN RPJ2 FR 31.82± 1.36 80.67± 3.64 51.31± 0.52 81.51± 3.57
2.7B FWE EN RPJ2 FR 90% 36.53± 1.41 84.87± 3.3 52.63± 0.52 78.99± 3.75
CroissantLLM 28.74± 1.32 78.15± 3.8 50.52± 0.52 78.15± 3.8
TransWebLLM 37.64± 1.42 67.23± 4.32 48.32± 0.52 58.82± 4.53
Qwen2.5 1.5B 36.44± 1.41 75.63± 3.95 49.69± 0.52 74.79± 4.0
EuroLLM 1.7B 33.7± 1.38 80.67± 3.64 51.34± 0.52 75.63± 3.95
Helium-1 2B 39.52± 1.43 78.15± 3.8 59.61± 0.51 79.83± 3.69
Bloom 3B 31.14± 1.35 78.99± 3.75 51.0± 0.52 79.83± 3.69
Qwen2.5 3B 40.03± 1.43 77.31± 3.86 58.59± 0.51 78.15± 3.8

Table 25: Evaluation of our models against public models on FrenchBench multiple choice tasks for French language.
All evaluations are zero-shot.

Model Name Include Kaleidoscope XNLI French Topic NLI

1.3B FWE EN RPJ2 FR 44.15± 2.43 19.82± 1.44 46.1± 1.0 33.33± 1.93
1.3B FWE EN FW2 FR 42.0± 2.41 21.0± 1.48 46.22± 1.0 33.33± 1.93
1.3B FWE EN FWE FR 37.71± 2.37 21.39± 1.49 48.11± 1.0 36.17± 1.96
1.3B FWE EN RPJ 2 90% 45.35± 2.43 20.47± 1.46 48.84± 1.0 38.33± 1.99
1.3B FWE EN FW2 FR 90% 45.82± 2.44 19.82± 1.44 47.71± 1.0 33.33± 1.93
2.7B FWE EN RPJ2 FR 48.21± 2.44 20.87± 1.47 48.39± 1.0 33.33± 1.93
2.7B FWE EN RPJ2 FR 90% 21.52± 1.49 48.07± 1.0 33.33± 1.93
CroissantLLM 41.05± 2.41 19.29± 1.43 49.32± 1.0 33.33± 1.93
TransWebLLM 39.86± 2.39 19.42± 1.43 47.27± 1.0 33.5± 1.93
Bloom 1B 36.04± 2.35 21.78± 1.5 46.71± 1.0 33.5± 1.93
Qwen2.5 1.5B 39.86± 2.39 23.23± 1.53 45.26± 1.0 41.83± 2.02
EuroLLM 1.7B 44.87± 2.43 20.21± 1.46 47.51± 1.0 33.33± 1.93
Helium-1 2B 47.49± 2.44 21.52± 1.49 50.8± 1.0 33.5± 1.93
Bloom 3B 42.24± 2.42 20.87± 1.47 47.67± 1.0 33.33± 1.93
Qwen2.5 3B 47.26± 2.44 25.98± 1.59 45.14± 1.0 59.5± 2.01

Table 26: Evaluation of our models against public models on Regional knowledge and NLI tasks for French
language. All evaluations are zero-shot.
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