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Abstract
The widespread presence of incomplete modali-
ties in multimodal data poses a significant chal-
lenge to achieving accurate rumor detection.
Existing multimodal rumor detection methods
primarily focus on learning joint modality rep-
resentations from complete multimodal train-
ing data, rendering them ineffective in address-
ing the common occurrence of missing modal-
ities in real-world scenarios. In this paper,
we propose a hierarchical soft prompt model
TriSPrompt, which integrates three types of
prompts, i.e., modality-aware (MA) prompt,
modality-missing (MM) prompt, and mutual-
views (MV) prompt, to effectively detect ru-
mors in incomplete multimodal data. The
MA prompt captures both heterogeneous in-
formation from specific modalities and homo-
geneous features from available data, aiding
in modality recovery. The MM prompt mod-
els missing states in incomplete data, enhanc-
ing the model’s adaptability to missing infor-
mation. The MV prompt learns relationships
between subjective (i.e., text and image) and
objective (i.e., comments) perspectives, effec-
tively detecting rumors. Extensive experiments
on three real-world benchmarks demonstrate
that TriSPrompt achieves an accuracy gain of
over 13% compared to state-of-the-art methods.
The codes and datasets are available at https:
//anonymous.4open.science/r/code-3E88.

1 Introduction

Social media has emerged as a primary platform
for the rapid dissemination of information, where
multimodal communication—integrating various
forms of media—has surpassed traditional uni-
modal formats to become the dominant mode
(Wang et al., 2024a). Compared to unimodal con-
tent, multimodal information conveys richer and
more nuanced messages (Tandoc Jr et al., 2018),
enhancing engagement but also introducing greater
complexity, which poses significant challenges for
effective rumor detection (Zou et al., 2024).
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Figure 1: Multimodal rumor detection configurations.
(a) Cross-phase completeness alignment: Full modali-
ties in both phases (ideal data integrity scenario). (b)
Cross-phase completeness discrepancy: Train with full
modalities; test with incomplete modalities. (c) Cross-
phase incompleteness consistency: Incomplete modali-
ties in both phases (real-world modality loss scenarios).

Earlier research on rumor detection predomi-
nantly centered on text-based (unimodal) analy-
sis (Rubin et al., 2015; Przybyla, 2020), leveraging
features such as writing style and dissemination pat-
terns to identify rumors. However, as multimodal
content has become the dominant form of commu-
nication, the focus has shifted towards multimodal
rumor detection. This approach integrates informa-
tion from different modalities, such as text and im-
ages, to enhance detection accuracy. For instance,
some studies employ feature fusion techniques to
combine text and image data, aiming to improve
performance. Yet, simple fusion methods often
fall short of capturing the intricate relationships
between modalities. To overcome this limitation,
Wu et al. (2021) introduced a cross-attention mech-
anism to more effectively integrate features from
each modality. Building on this, Zheng et al. (2022)
utilized graph neural networks to incorporate con-
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textual information from comments. Dhawan et al.
(2024) proposed a fine-grained fusion approach
that directly operates on the original modality in-
formation using graph-based methods, representing
a significant advancement in multimodal rumor de-
tection research. However, existing multimodal
rumor detection methods often fail to address two
critical practical challenges.

Firstly, incomplete modalities (CH1). In real-
world scenarios, rumors spread rapidly, often out-
pacing the ability to collect complete multimodal
data. For instance, during the COVID-19 pandemic
in 2020, a deluge of false information and rumors
circulated rapidly, leading to inevitable modality
loss during data collection due to factors such as
network instability, device limitations, or other un-
controllable circumstances. Despite this reality,
most existing methods assume the availability of
complete modalities. While CLKD-IMRD (Xu
et al., 2023) partially addresses missing modalities
using a distillation model, its reliance on complete
training data significantly limits its generalizability.
When faced with more common scenarios where
both training and testing data are incomplete, as
illustrated in Figure 1, the performance of such
methods degrades considerably. Moreover, existing
Multimodal Large Language Models (MLLMs), ex-
celling in understanding multimodal content, strug-
gle with rumor detection due to their inherent as-
sumption that input information is "reality" and
lack a mechanism for verifying content accuracy.

Secondly, the nature of rumors (CH2). In a
post comprising text, images, and comments, each
modality plays a distinct role. Text and images
typically convey the subjective perspective of the
publisher, while comments often reflect the objec-
tive viewpoints of reviewers or readers. Existing
methods, however, tend to process and fuse all
three modalities indiscriminately, overlooking the
nuanced relationships between subjective and ob-
jective perspectives. This lack of differentiation
not only prevents the model from effectively distin-
guishing between the two types of information but
also introduces noise through direct fusion, which
hinders judgment and degrades performance.

To address these challenges, we propose a novel
hierarchical soft prompt model, TriSPrompt, con-
sisting of three types of soft prompts: modality-
aware (MA) prompt, modality-missing (MM)
prompt, and mutual-views (MV) prompt, that ef-
fectively detects rumors in incomplete multimodal
data. Specifically, for addressing CH1, in cases of

missing modalities, the MA prompt learns both het-
erogeneous information from specific modalities
and homogeneous features from available modality
data, enabling the recovery of missing modalities.
Moreover, the MM prompt integrates the missing
states in incomplete multimodal data, enabling the
model to better understand and adapt to the nature
of modality missing information. For addressing
CH2, the MV prompt reveals the potential rela-
tionships between the subjective perspectives (i.e.,
text and image) provided by the publisher and the
objective perspectives (i.e., comment) contributed
by other reviewers in the post, to effectively detect
rumors. The main contributions of this paper can
be summarized as follows:

• We propose a novel hierarchical soft prompt
model, TriSPrompt, designed to effectively
detect rumors in incomplete multimodal data.
To the best of our knowledge, this is the
first approach to tackle the general modality-
missing problem with incomplete data in both
training and testing phases in the field of mul-
timodal rumor detection.

• In TriSPrompt, the MA prompt extracts fea-
tures from available modalities to restore miss-
ing ones, while the MM prompt models miss-
ing states to enhance adaptability to incom-
plete information, effectively addressing the
issue of information loss caused by modality
absence, thus solving the problem of informa-
tion loss caused by incomplete modalities.

• The MV prompt of TriSPrompt uncovers la-
tent relationships between the subjective per-
spectives (i.e., text and image) provided by the
publisher and the objective perspectives (i.e.,
comments) from other reviewers, facilitating
efficient rumor detection.

• Extensive experiments on three real-world
benchmark datasets demonstrate the effective-
ness of TriSPrompt in distinguishing rumors,
outperforming existing methods.

2 Related Work

2.1 Unimodal Rumor Detection

Research on unimodal rumor detection has primar-
ily focused on image-based ones and text-based
ones. Image-based rumor detection methods (Qi
et al., 2019; Jin et al., 2016; Li et al., 2015; Gupta
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et al., 2013) focus on evaluating the logical con-
sistency of image content and detecting signs of
modifications, such as artificial splicing. These
methods aim to detect whether image content is
logically coherent and free from manipulations that
suggest tampering or forgery. Text-based methods
(Ma et al., 2019; De Sarkar et al., 2018; Chen et al.,
2018) focus on detecting rumors by analyzing lin-
guistic features, emotions, and writing styles (Ru-
bin et al., 2015; Przybyla, 2020), aiming to classify
content as rumor or non-rumor. With the evolution
of social media, metadata has become an important
feature in rumor detection. Metadata, such as the
identity of the poster, dissemination pathways, and
engagement metrics like likes and shares, has sig-
nificantly enhanced the ability of models to detect
rumors (Ma et al., 2017; Lao et al., 2021). This
approach exploits the wealth of contextual data
available on social platforms to enhance the per-
formance of rumor detection models. Nan et al.
(2021) leverages a mixture-of-experts approach to
extract modality-specific representations and inte-
grates them using domain-specific gates for identi-
fying fake news. In parallel, Zhu et al. (2022) intro-
duces a domain adapter combined with a memory
bank to effectively address the challenges posed
by domain shifts and incomplete domain labeling,
enhancing the robustness of fake news detection
models across varying contexts.

2.2 Multimodal Rumor Detection

Multimodal information dissemination has become
the dominant form of communication, resulting in
increased research interest in multimodal rumor
detection. Early studies often used a simplistic
approach, concatenating text and image features
(Singhal et al., 2019), without fully leveraging the
potential of multimodal data. Qi et al. (2021) in-
troduces a similarity-based model for fake news
detection, which computes the similarity between
multimodal and cross-modal features. In addition,
Wu et al. (2021) advances feature integration across
modalities by employing cross-attention mecha-
nisms, improving the fusion of multimodal data.
Chen et al. (2022) solves the cross-modal ambigu-
ity learning problem by quantifying the ambiguity
between different unimodal features using the dis-
tribution divergence. Zheng et al. (2022) presents
a GAT-based model that integrates text, image con-
tent, and comment graphs for rumor detection. Re-
cently, Dhawan et al. (2024) proposed GAME-ON,
a novel end-to-end trainable GNN-based frame-

work that allows for granular interaction modali-
ties to fuse them early in the framework. Despite
these advances, existing methods often overlook
the unique properties of rumors; Text and images
typically convey the subjective perspective of the
publisher, while comments often reflect the objec-
tive viewpoints of reviewers or readers. Current
approaches treat these three modalities as a single
perspective, neglecting the intrinsic relationships
between perspectives and potentially leading to
misleading model judgments.

Given the rapid spread of rumors and the com-
mon occurrence of partial modality loss during
data collection, Xu et al. (2023) address the issue
of incomplete modalities with a novel framework
that leverages contrastive learning and knowledge
distillation, filling a gap in the field. However, the
reliance on a teacher-student distillation structure is
limited due to its dependency on complete training
data and structural inflexibility. To overcome these
challenges, we propose an end-to-end model with
a hierarchical soft prompt architecture that simul-
taneously accounts for both the dual-perspectives
nature of rumors and the challenges associated with
incomplete training and test data.

3 Methodology

3.1 Problem Formulation

Let’s define P = {p1, · · · , pn} as a set of posts,
where each post p consists of three modalities:
{T, I, C} where T donates a source text, I rep-
resents an image, and C refers to a comment. In
complete scenarios, all modalities are observed and
easily integrated to support rumor detection. How-
ever, in real-world settings, some modalities may
be missing, requiring their recovery for effective fu-
sion. Considering the three modalities mentioned,
there are seven different missing modality cases,
as shown in Appendix A. For simplicity, we intro-
duce an indicator ϵ = {ϵ1, ϵ2, ϵ3} for each post p,
where ϵj = 0, j ∈ {1, 2, 3} signifies the missing
of the j-th modality in the sample, and a non-zero
value signifies its availability. This definition is
consistent across both training and test sets.

Definition 1 Rumor Detection. Given a multi-
modal post p with a missing-modality indicator
ϵ, the goal of rumor detection is to classify posts
with incomplete modalities as either rumors or non-
rumors; that is, the aim is to learn a function fθ
such that fθ(p) → ŷ, where p represents a given
multimodal post, and ŷ is the outcome of the de-
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Figure 2: The architecture of TriSPrompt. Given the input incomplete multimodal data (we assume "Image"
modality is missing). It consists of modality-aware prompt, modality-missing prompt, mutual-views prompt, Conv
(Convolutional-Layer), RB (Residual-Block), Down (Downsampling-Layer), and Up (Upsampling-Layer).

tection. Here, ŷ = 1 denotes a rumor, and ŷ = 0
denotes a non-rumor.

3.2 Network Overview

Our proposed TriSPrompt framework, as depicted
in Figure 2, consists of three types of soft prompts:
modality-aware (MA) prompt, modality-missing
(MM) prompt, and mutual-views (MV) prompt.

Specifically, in TriSPrompt, all available modali-
ties are first encoded into a latent space, from which
features are extracted via sampling. To account for
the heterogeneity across modalities, we propose
the MA prompt to learn the unique characteristics
of each modality. For missing modalities, the MA
prompt employs the available modality features to
reconstruct ones. This ensures that each post is rep-
resented by a complete set {T, I, C}. To enhance
the model’s awareness of missing modalities, the
MM prompt indicates which modality is missing
and has been reconstructed. Subsequently, the MV
prompt leverages all available modalities for com-
prehensive fusion, enhancing the rumor detection
classification process. Further details are provided
in subsequent sections. For simplicity, but without
loss of generality, we assume the absence of the
"Image" modality, i.e., p = {T, I(missing), C}
as illustrated in Figure 2.

3.3 Modality-Aware Prompt
The interplay between modality-specific hetero-
geneity and homogeneity has long been a key
focus in multimodal research. Ideally, models
should extract homogenous features across differ-
ent modalities to reduce redundancy and introduce
heterogeneous features for complementarity, thus
fully leveraging the advantages of multimodal data.
When modalities are missing, restoring the miss-
ing modality often relies on the homogeneity of
available modalities, potentially overlooking their
heterogeneity. In light of these challenges, we pro-
pose the modality-aware (MA) prompt, which is
designed to capture the heterogeneous features of
each modality, thereby improving the accuracy of
missing modality restoration.

Specifically, in the MA prompt, the available
modalities T and C are first encoded into a latent
space and obtain a representation zT and zC , i.e.,

zT ∼ N(µT , σT ) = EncoderT (T ), (1)

zC ∼ N(µC , σC) = EncoderC(C), (2)

where EncoderT and EncoderC refer to a generic
encoder architecture, potentially composed of mul-
tiple layers of Transformers for each modality. µT

and µC represent the mean values, while σT and
σC represent the variances. We adopt the vari-
ational autoencoder (VAE) paradigm (Kingma,
2013), constraining the encoding results to follow
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a normal distribution. This constraint leads to the
Kullback–Leibler (KL) divergence loss LKL, which
quantifies the gap between the latent representation
and the normal distribution, i.e.,

LKL =[KL(N(µT , σT ) ∥ N(0, 1))+

KL(N(µC , σC) ∥ N(0, 1))]/2,

For the missing modality I , we utilize the available
modality features, namely zT and zC , for recov-
ery. First, we obtain the modality homogenous
feature zI by averaging. For each modality, there
exists a prompt designed to learn heterogeneous
features, denoted here as px−aware ∈ R1×Laware

with x ∈ {T, I, C}, where Laware donates the
length of px−aware. We combine the homogeneous
feature zI with pI−aware and decode it to restore
the missing modality feature ẑI , i.e.,

zI = [zT + zC ]/2, (3)

ẑI = DecoderI(z
I , pI−aware), (4)

where DecoderI denotes a generic decoder archi-
tecture, similar to Encoder. Due to the incomplete
nature of the training data, direct supervision of the
reconstruction is not feasible. Thus, we reconstruct
the available modalities and apply constraints to
ensure consistency, i.e.,

ẑT = DecoderT (z
C , pT−aware), (5)

ẑC = DecoderC(z
T , pC−aware), (6)

Finally, we introduce a multimodal reconstruc-
tion loss function LREC that uses mean squared
error (MSE) to quantify the distance between
the original features (zT and zC) and their recon-
structed counterparts (ẑT and ẑC), i.e.,

LREC =
[
MSE(ẑT , zT ) +MSE(ẑC , zC)

]
/2.

3.4 Modality-Missing Prompt
Using the MA prompt, we obtain a complete multi-
modal representation z = {zT , ẑI , zC}, where zT

and zC are the features from available modalities,
and ẑI is the feature from the recovered modality.
To enhance the model’s ability to discern between
original and recovered modalities, we introduce the
modality-missing (MM) prompt as indicators. The
detailed procedure is as follows:

zT = Concat(zT , pT−miss), (7)

ẑI = Concat(ẑI , pI−miss), (8)

zC = Concat(zC , pC−miss), (9)

where px−miss ∈ R1×Lmiss
with x ∈ {T, I, C}

refers to the MM prompt. Lmiss donates the length
of px−miss. By utilizing this prompt, we enhance
the representation of modality features by incorpo-
rating the missing states of incomplete multimodal
data, enabling the model to more effectively recog-
nize and adapt to modality absence. This improves
the model’s robustness in handling incomplete data.

3.5 Mutual-Views Prompt
Traditional multimodal representations often over-
look the distinct characteristics of rumors by apply-
ing overly simplistic or uniform fusion strategies
to text, image, and comment features. A post typi-
cally comprises three components: text, image, and
comment, each performing distinct functions. The
text and image typically represent the publisher’s
subjective view, reflecting the content creator’s per-
spective, while the comment represents the objec-
tive views of other reviewers interacting with the
post. The latent relationship between these two
perspectives is crucial for rumor detection.

To this end, we propose the Mutual-Views (MV)
prompt to uncover latent relationships between dual
perspectives in rumor propagation, where the text
and image represent the publisher’s subjective view
of the post, and comments reflect the objective
views of other reviewers.

Architecture. The MV prompt mainly consists
of three modules, i.e., a downsampling module,
a cross-enhancement module, and a upsampling
module. Specifically, the downsampling module
integrates the subjective view information from
both the text and the image. First, it employs a
cross-attention mechanism (Lu et al., 2019) to fuse
these modalities, capturing the interdependencies
between textual and visual features. This integra-
tion is formulated as:

psub
1 = CrossAttn

(
zT , ẑI

)
, (10)

where zT and ẑI represent the text embedding
and image embedding, respectively. Subsequently,
each network layer of the N -layer downsampling
module comprises a convolutional layer, a resid-
ual block, and a downsampling layer, which refine
features while progressively reducing dimensional-
ity. For the i-th network layer F down

i , the specific
calculation process is psubi+1 = F down

i (psubi ), where
i = 1, · · · , N . psubi denotes the output of the i-th
layer. This iterative process effectively distills the
fused subjective-view information, enhancing the
representation for subsequent analysis.
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To generate the objective-view prompt, we use
an N -layer cross-enhancement module that hierar-
chically integrates the subjective-view prompt with
comment embedding, with each layer computed as:

wi = Conv(psubN−i+1, ci), (11)

pobji = psubN−i+1 + ci · wi, (12)

ci+1 = Conv(ci), (13)

where pobji denotes the i-th enhanced objective-
view prompt. Conv denotes the convolution oper-
ation. ci denotes the comment embedding. By re-
taining intermediate results at each layer, we obtain
a sequence of enhanced objective-view prompts,
i.e., pobj = {pobj1 , · · · , pobjN }, where c1 = zC . Af-
ter generating the subjective-view and objective-
view prompts, we perform fine-grained fusion to
integrate these perspectives, enabling comprehen-
sive modeling of rumor characteristics.

The fused representations are subsequently pro-
cessed through N upsampling modules. Each net-
work layer comprises a convolutional layer, a resid-
ual block, and an upsampling layer. For the i-th
network layer F up

i ,

pmutual
i+1 =F up

i (pobji , pmutual
i ), i = 1, · · · , N,

initialized with pmutual
1 = psubN . This refinement

cascade produces the integrated prompt: pmutual ∈
R1×Lmutual

= pmutual
N , where Lmutual denotes the

dimensionality of the final prompt. The classifi-
cation head processes the concatenated features:
[pmutual, zT , ẑI , zC ] through fully-connected lay-
ers to classify the post as either a rumor (ŷ = 1) or
non-rumor (ŷ = 0).

Loss Function. In general, we introduce a ru-
mor detection loss function LCLS that uses cross-
entropy (CE) loss for binary classification to train
the model, which helps optimize the parameters by
minimizing the difference between the predicted ŷ
and the true label y, i.e.,

LCLS = CE(ŷ, y),

where ŷ = Classifier(zT , ẑI , zC , pmutual). The
Classifier is a multimodal rumor detection clas-
sifier composed of multi-layer perceptions.

3.6 Objective Function
The overall objective function LTotal of our model
TriSPrompt contains three types of losses, includ-
ing the rumor detection loss LCLS, the KL diver-
gence loss LKL and the multimodal reconstruction

loss LREC, i.e.,

LTotal = LCLS + λ1 · LKL + λ2 · LREC,

where λ1 and λ2 are trade-off hyperparameters.

4 Experiments

Datasets. In our experiments, we utilize three
multimodal rumor detection datasets: the Chi-
nese datasets Weibo-19 (Song et al., 2019) and
Weibo-17 (Jin et al., 2017), along with the En-
glish dataset Pheme (Zubiaga et al., 2017). De-
tails are in Appendix B. Each dataset comprises
source text and images; however, Weibo-19 and
Pheme include comments, whereas Weibo-17 does
not. For TriSPrompt, we directly use psub1 obtained
from text and image to replace the MV prompt on
Weibo-17 dataset.

Metrics. To evaluate and compare our frame-
work with others, we employ standard metrics for
binary classification, including Accuracy, F1 score,
and AUC. For feature extraction, we utilize a pre-
trained BERT model (Kenton and Toutanova, 2019)
to process text and comment information, generat-
ing a 768-dimensional hidden state as the feature
representation. Similarly, for image data, we use
a pre-trained ResNet-34 model (He et al., 2016),
which encodes the visual information into a 512-
dimensional hidden state representation.

Baselines. We compare TriSPrompt with
three state-of-the-art Multimodal Rumor Detection
(MRD) approaches: CAFE (Chen et al., 2022),
CLKD (Xu et al., 2023), and Game-On (Dhawan
et al., 2024); two Incomplete Modality Learning
(IML) methods: Dicmor (Wang et al., 2023) and
RedCore (Sun et al., 2024); and two Multimodal
Large Language Models (MLLMs): Qwen2.5-VL-
72B (Bai et al., 2025) and GPT-4o (Hurst et al.,
2024).

Implementation details. To simulate real-world
modality dropout, we implement a random missing
protocol (Wang et al., 2024b), where each complete
post is subject to the random absence of one or two
modalities. This dropout mimics the incomplete in-
formation often present in real-world social media
posts, making the model more robust to missing
data. We denote the global missing rate as Rm to
estimate the prevalence of such absences. The Rm

is defined as Rm = 1 − 1
L×M

∑L
i=1 ai, where ai

denotes the number of available modalities for the
i-th sample, L denotes the total number of samples,
and M indicates the number of modalities. We
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Methods
Weibo-19 Pheme Weibo-17

ACC F1 AUC ACC F1 AUC ACC F1 AUC

MRD

CAFE 67.89±0.83 44.89±2.65 0.673±0.018 61.65±0.14 60.16±3.15 0.599±0.022 65.02±1.39 65.51±5.02 0.622±0.036

CLKD 69.19±1.64 30.68±4.85 0.574±0.048 64.18±0.84 67.31±1.63 0.616±0.016 63.26±0.70 62.10±1.55 0.574±0.028

GameOn 76.07±0.62 56.98±1.99 0.747±0.062 66.22±0.43 71.65±0.49 0.702±0.011 66.78±1.44 64.81±6.38 0.739±0.008

IML
Dicmor 77.48±0.85 68.73±1.88 0.823±0.021 73.17±0.72 76.10±0.97 0.776±0.008 72.58±0.80 72.48±2.41 0.789±0.006

RedCore 80.05±0.73 70.82±2.45 0.846±0.026 71.58±0.12 75.65±0.40 0.745±0.002 73.68±0.57 73.62±0.13 0.816±0.011

MLLM
Qwen-VL 61.23±0.67 38.46±2.12 0.597±0.011 50.83±0.25 23.59±0.69 0.516±0.002 50.47±0.23 21.48±2.88 0.504±0.017

GPT-4o 64.61±0.11 41.13±1.54 0.642±0.001 47.98±0.36 22.29±0.59 0.501±0.004 56.47±0.13 24.21±1.12 0.556±0.007

TriSPrompt 81.51±0.59 73.38±0.81 0.867±0.023 75.82±0.44 77.33±0.69 0.788±0.015 75.15±0.24 74.17±1.67 0.836±0.016

Table 1: Evaluation results on three datasets at Rm = 0.5, including three metrics: ACC, F1, and AUC.
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Figure 3: Performance demonstration under different missing rates.

also ensure that at least one modality is available
for each sample, so ai ≥ 1 and Rm ≤ M−1

M . The
details are shown in Appendix C. For three modali-
ties {T, I, C} datasets Weibo-19 and Pheme (text,
image, and comment), we choose the Rm from
[0.0, · · · , 0.7], where 0.7 is an approximation of
M−1
M with the same meaning. For two modalities

{T, V } dataset Weibo-17 (text, image), which only
involves the scenario of one modality being miss-
ing, we choose the Rm from [0.0, . . . , 0.5]. We use
Adam optimizer with β1 = 0.99 and β2 = 0.999.
The learning rate is set to 0.002. The training batch
size is set to 64. Number of network layers is set to
3. The hyperparameters λ1 = 0.1 and λ2 = 0.001.
For fairness, all results are averaged over five times.

4.1 Comparison Study

Table 1 presents the accuracy of various rumor
detection methods on three publicly real-world
datasets under a global missing rate of Rm = 0.5,
indicating that half of the modalities are missing.

One can observe that, TriSPrompt significantly
outperforms all of the baselines. In terms of
prediction accuracy (i.e., ACC, F1, and AUC),
TriSPrompt exceeds the best-performing baseline,
RedCore, by an average of 2.99%, and even in-
creases up to 5.92% on the Pheme dataset w.r.t.

Accuracy. In particular, compared with MRD
based methods, TriSPrompt demonstrates signif-
icantly superior performance. It outperforms the
best MRD based method, GameOn, by an aver-
age of 14.08%, and even increases up to 28.78%
on the Weibo-19 dataset w.r.t. F1 score. This is
because TriSPrompt fully leverages the available
modalities, integrating heterogeneous and homo-
geneous features to effectively reconstruct miss-
ing data. We provide detailed experimental veri-
fication in Appendix D. to support this claim. It
also perceives and adapts to the modality-missing
mechanism while deeply exploring both subjective
and objective perspectives in rumors. Although
MLLMs exhibit strong capabilities in cross-modal
understanding, their performance on rumor detec-
tion remains suboptimal compared to traditional
methods. This primarily stems from the fact that
MLLMs commonly treat input as an intrinsic rep-
resentation of "reality", without incorporating dedi-
cated mechanisms to evaluate content veracity—a
crucial component for robust rumor detection.

4.2 Parameter Evaluation

Effect of missing rate. The experimental results
for varying the missing rate Rm from 0% to 70%
are shown in Figure 3. We can find that, with the
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Figure 4: Ablation study on different lengths of prompts on the Weibo-19 dataset.

growth of the missing rate, the prediction accuracy
(i.e., ACC) of each algorithm descends consistently.
It is attributed to the less data information for de-
tection when the missing rate turns high. Among
all the algorithms, TriSPrompt performs the best
in each case. Notably, across different missing
rates, the average performance degradation ratio
of TriSPrompt is just 6.14%, far lower than the
best-performing baseline RedCore’s 8.32%. In
other words, TriSPrompt is more robust with the
increasing missing rate than others. The reason
behind this is that, TriSPrompt learns the data dis-
tribution from all observed multimodal data condi-
tional on the feature missing state, so as to decrease
or delay the impact of increased missing rate on
the forecasting performance. In real-world rumor
outbreaks, severe modality absence often renders
existing detection algorithms ineffective, making
our TriSPrompt approach crucial for multimodal
rumor detection. Despite their flexibility in han-
dling arbitrary modality inputs, including unimodal
and multimodal content, MLLMs still fall short in
achieving strong performance on rumor detection.

Effect of prompt length. With the prompt lengths
(i.e., Laware, Lmiss, Lmutual) corresponding to the
MA prompt, MM prompt, and MV prompt, vary-
ing from 1 to 128, Figure 4 illustrates the detection
accuracy (i.e., ACC) of TriSPrompt on the Weibo-
19 dataset. The experimental results demonstrate
that model performance generally improves with
increased prompt length, up to a certain threshold.
Beyond this point, further extension leads to a de-
cline in accuracy, indicating that excessively long
prompt may introduces noise or dilute the impor-
tance of input features. This suggests the necessity
of selecting an appropriate length. Specifically,
TriSPrompt is the best, in terms of the larger Accu-
racy, when Laware is 32, Lmiss is 16, and Lmutual

is 64. It also confirms that, the three prompts of
TriSPrompt benefit the detection accuracy.

Datasets no-MA no-MM no-MV no-MAM TriSPrompt

Weibo-19 80.14 80.09 79.88 79.17 81.51
Pheme 73.84 73.17 72.77 71.85 75.82

Weibo-17 73.67 73.01 72.12 70.69 75.15

Table 2: Ablation study on the hierarchical soft prompts
at Rm = 0.5. Quality metrics: ACC. Bold indicates the
best performance.

4.3 Ablation Study

We investigate the influence of different elements
of TriSPrompt on the rumor detection performance.
The corresponding experimental results over the
three datasets, including ACC, are presented in
Table 2. no-MA is the variant of TriSPrompt
without the MA prompt. no-MM is the variant
of TriSPrompt without the MM prompt. no-MV is
the variant of TriSPrompt without the MV prompt.
no-MAM is the variant of TriSPrompt without
both the MA and MM prompts.

We observe that each of the three prompts in
TriSPrompt — the MA prompt, MM prompt, and
MV prompt — positively impacts detection per-
formance. When the three prompts are removed
respectively, the detection accuracy (measured by
ACC) of TriSPrompt decreases on average by
2.09%, 2.70%, and 3.35%. In addition, when
both the MA prompt and MM prompt are removed
simultaneously, the model’s performance experi-
ences the largest decline, with an average decrease
of 4.68%. These findings highlight the indispens-
ability of all three prompts in TriSPrompt, demon-
strating their combined significance in achieving
effective performance.

4.4 Analysis of Effectiveness and Efficiency

To rigorously assess the effectiveness and effi-
ciency of TriSPrompt, we systematically com-
pared TriSPrompt with representative methods
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Methods Params (M) Training Time/Epoch (ms) Inference Time/Batch (ms) Max GPU Memory (GB)

CAFE 2.95 1996 910 0.98
CLKD 2.81 1411 1260 0.84

GameOn 1.02 606 271 1.60
Dicmor 3.46 4511 1833 3.26
RedCore 7.72 1923 822 2.41
Qwen-VL – – 1455 –
GPT-4o – – 1623 –

TriSPrompt 2.41 2032 931 1.28

Table 3: Resource consumption and computational efficiency of different methods.

from three major domains (MRD, IML, and
MLLM) on the Pheme dataset, covering model
size, training/inference efficiency, memory usage,
and actual detection performance presented in Ta-
ble 3. All experimental results we obtained under
the same experimental environment, averaged over
multiple independent runs to ensure fairness and
reliability of the comparisons. Specifically, in the
MRD domain, methods such as CAFE, CLKD,
and GameOn mainly focus on multimodal feature
fusion but have limited adaptability to missing
modalities. On the Pheme dataset, TriSPrompt
achieves an ACC of 75.82%, which is 9.6 percent-
age points higher than GameOn (66.22%). Mean-
while, TriSPrompt’s inference time and resource
consumption are comparable to these baselines. In
the IML domain, methods such as Dicmor and Red-
Core focus on scenarios with missing modalities.
TriSPrompt outperforms RedCore by 4.24% in
ACC (75.82% vs. 71.58%), and its performance de-
grades more slowly under high missing rates (aver-
age drop of 6.14%, compared to RedCore’s 8.32%),
demonstrating stronger practical robustness. In the
MLLM domain, models like Qwen-VL and GPT-
4o possess strong cross-modal understanding but
perform poorly on rumor detection tasks. In con-
trast, TriSPrompt not only achieves higher detec-
tion accuracy but also consumes significantly fewer
resources (e.g., inference time is only 1/17 that of
GPT-4o).

5 Conclusion

In this paper, we innovatively propose a hierarchi-
cal soft prompt framework, namely TriSPrompt,
targeting the more prevalent modality absence sit-
uation in multimodal rumor detection, where both
the training and testing data suffer from modal-
ity missing. It consists of the MA prompt, MM
prompt, and MV prompt. The MA prompt ex-

tracts both heterogeneous and homogeneous fea-
tures from available modalities to recover missing
data, while the MM prompt models missing states
to improve adaptability to incomplete information.
The MV prompt connects subjective and objective
perspectives, enhancing rumor detection. The effec-
tiveness of TriSPrompt has been verified on three
real-world datasets. Particularly, TriSPrompt ex-
hibits excellent robustness under the circumstances
of severe modality absence.

Limitations

Our proposed method TriSPrompt focuses on the
provided real-world multimodal rumor detection
datasets, enabling controlled evaluation and com-
parison with existing approaches. However, it falls
short in addressing the complexities and variability
of real-world multimodal data. This limitation un-
derscores the need for more robust models capable
of interacting effectively with real-world scenarios.
Beyond this work, we believe some promising fu-
ture works with large language models would solve
this problem.
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A Missing Modality Cases

Considering the three modalities {T, I, C}, where
T donates a source text, I represents an image, and
C refers to a comment, as shown in Figure 6, there
are seven different cases of missing modalities.

B Dataset Description

Datasets #Ns #Rs #Tuples Modality types

Weibo-19 877 590 1,467 T & I & C
Pheme 1,428 590 2,018 T & I & C

Weibo-17 4,749 4,779 9,528 T & I

Table 4: The information of each dataset or our exper-
iments, i.e., the number of non-rumors (#Ns), rumors
(#Rs), samples (#Tuples), and modality types, respec-
tively. T (Text), I (Image), C (Comment).

Table 4 lists the information of each dataset.

• Weibo-19 dataset is collected from Weibo, one
of the most popular social platforms in China.
It contains 1,467 data samples, among which
there are 877 non-rumor samples and 590 ru-
mor samples.

• Pheme dataset is constituted by tweets on the
Twitter platform and based on five breaking
news. It contains 2018 data samples, among
which there are 1428 non-rumor samples and
590 rumor samples.

• Weibo-17 dataset is collected from the Chi-
nese social media platform, Weibo, contain-
ing 4,749 real, 4,779 fake tweets, and 9,528
images. The fake news in the dataset was veri-
fied by the debunking system from May 2012
to January 2016.

C Random Missing Protocol

In the experiments, we adopted the Random Miss-
ing Protocol mechanism to simulate the modality-
missing situations in the real world, where each
complete post is subject to the random absence
of one or two modalities. For the three-modality
datasets Weibo19 and Pheme, we choose the Rm

from [0.0, · · · , 0.7]. For the two-modality dataset
Weibo17, there are only samples with one modality
missing and we choose the Rm from [0.0, · · · , 0.5].
Table 5 shows the corresponding relationships be-
tween the proportion of samples with one or two
modalities missing and the total number of samples
at specific missing rates.

21697



Avail:  I & C      Miss: T

Avail: T       Miss:  I & C

Avail: T & C     Miss: I Avail: T & I     Miss: C

Avail: I       Miss: T & C Avail: C       Miss: T & I

T I CGround True: T I CReconstruction: 

Figure 5: Visualization of reconstructed modality feature embeddings versus ground truth under the different
missing modality cases. T (Text), I (Image), C (Comment).
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Figure 6: The seven different missing modality cases.
Full modality: {No.1}. One modality is missing: {No.2,
No.3, and No.4}. Two modalities are missing:{No.5,
No.6, and No.7}. T (Text), I (Image), C (Comment).

D Reconstruct Missing Modality

Figure 5 visualizes the distribution of reconstructed
modality feature embeddings versus ground truth
under different missing modality cases. We ran-
domly sample 128 instances in the testing set from
the Pheme dataset for this comparison. The fea-
tures of the selected samples are projected into a 2D
space by t-SNE (Van der Maaten and Hinton, 2008).
From visualization results, we observe that under
varying modality-missing scenarios, TriSPrompt
successfully reconstructs missing modality feature
embeddings by synergistically leveraging homoge-
neous features and the heterogeneous features of
each modality from modality-aware (MA) prompt.
The reconstructed modality feature embeddings
demonstrate distributional similarity to ground-
truth feature embeddings, validating the efficacy

Rm
Weibo-19 Pheme Weibo-17
Ro Rt Ro Rt Ro

0.0 0.0 0.0 0.0 0.0 0.0
0.1 0.1 0.1 0.1 0.1 0.2
0.2 0.2 0.2 0.2 0.2 0.4
0.3 0.3 0.3 0.3 0.3 0.6
0.4 0.2 0.5 0.2 0.5 0.8
0.5 0.1 0.7 0.1 0.7 1.0
0.6 0.0 0.9 0.0 0.9 −
0.7 0.0 1.0 0.0 1.0 −

Table 5: Modality-missing proportion at different miss-
ing rates. i.e., the global missing rate (Rm), one modal-
ity missing rate (c), two modality missing rate (Rt).

of our reconstruction module. From experimen-
tal observations, we find that when both Text and
Image modalities are absent, relying solely on the
Comment modality fails to reconstruct accurate
feature vectors. This phenomenon originates from
inherent modality characteristics: Text and images
generally represent the content creator’s personal,
subjective perspective, whereas comments tend to
express more objective perspective from external
users such as reviewers or readers.

We conducted quantitative experiments to com-
plement our qualitative visualizations and provided
a more objective evaluation of the reconstructed
modality features showed in Table 6. Specifically,
we computed the cosine similarity between the re-
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Case (A, M) Reconstructed Random

I & C , T 0.5011 0.0038
T & C , I 0.5712 -0.0020
T & I , C 0.4638 -0.0095
T , I & C 0.4233 0.0051
I , T & C 0.4688 -0.0182
C , T & I 0.2765 -0.0056

Table 6: Cosine similarity results. Case (A, M): Avail-
able modalities (A), missing modality (M). Recon: Co-
sine similarity (Reconstructed vs GT). Random: Cosine
similarity (Random vs GT). T (Text), I (Image), C (Com-
ment).

constructed features and the ground truth (GT) fea-
tures under various missing modality scenarios. As
shown in the updated Table, the cosine similarity
between the reconstructed and GT features ranges
from 0.2765 to 0.6134 depending on the available
modalities. In contrast, the cosine similarity be-
tween random features and GT features remains
close to zero in all cases, confirming that our re-
construction is substantially better than random
guessing. These quantitative results are consistent
with our visualizations. This additional analysis
demonstrates that our reconstruction method pro-
duces features that are quantitatively and qualita-
tively similar to the ground truth, and the results
are not due to cherry-picking or visual bias.
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