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Abstract

In the absence of sizable training data
for most world languages and NLP tasks,
translation-based strategies such as translate-
test—evaluating on noisy source language
data translated from the target language—
and translate-train—training on noisy tar-
get language data translated from the source
language—have been established as compet-
itive approaches for cross-lingual transfer
(XLT). For token classification tasks, these
strategies require label projection: mapping the
labels from each token in the original sentence
to its counterpart(s) in the translation. To this
end, it is common to leverage multilingual word
aligners (WAs) derived from encoder language
models such as mBERT or LaBSE. Despite ob-
vious associations between machine translation
(MT) and WA, research on extracting align-
ments with MT models is largely limited to
exploiting cross-attention in encoder-decoder
architectures, yielding poor WA results. In this
work, in contrast, we propose TransAlign, a
novel word aligner that utilizes the encoder of
a massively multilingual MT model. We show
that TransAlign not only achieves strong WA
performance but substantially outperforms pop-
ular WAs and state-of-the-art non-WA-based
label projection methods in MT-based XLT for
token classification.

1 Motivation and Background

In recent years, multilingual language models
(mLMs) have been positioned as the primary tool
for cross-lingual transfer (XLT). By fine-tuning
on task data in a high-resource source language,
mLMs can make predictions in target languages
with no (zero-shot XLT) or limited (few-shot XLT)
labeled examples (Wu and Dredze, 2019; Wang
et al., 2019; Lauscher et al., 2020; Schmidt et al.,
2022). However, for token classification tasks (e.g.,
named entity recognition), translation-based XLT
strategies, where a machine translation (MT) model

is used to either (1) translate the original target lan-
guage instance into the (noisy) source language
before inference, known as translate-test (T-Test),
or (2) generate noisy target language data by trans-
lating the original source language data before train-
ing, known as translate-train (T-Train) (Hu et al.,
2020; Ruder et al., 2021; Ebrahimi et al., 2022;
Aggarwal et al., 2022; Artetxe et al., 2023; Ebing
and Glavas, 2024), substantially outperform zero-
shot XLT (Chen et al., 2023; Garcia-Ferrero et al.,
2023; Le et al., 2024; Parekh et al., 2024), espe-
cially for low(er)-resource languages (Ebing and
Glavas, 2025).

Translation-based XLT strategies for token clas-
sification tasks require the additional step of la-
bel projection: mapping the labeled spans from
the original to the translated sentence. A broad
body of work addressed label projection starting
from task-specific (Duong et al., 2013; Ni et al.,
2017; Stengel-Eskin et al., 2019; Eskander et al.,
2020; Fei et al., 2020, inter alia) and evolving to
task-agnostic methods (Chen et al., 2023; Garcia-
Ferrero et al., 2023; Le et al., 2024; Parekh et al.,
2024). While WA-based label projection (Och and
Ney, 2003; Dyer et al., 2013; Jalili Sabet et al.,
2020; Dou and Neubig, 2021; Wang et al., 2022)—
which projects labels by establishing pairwise align-
ments between tokens in the original sentence and
corresponding tokens in the translated sentence—
served as baseline throughout, recent work has ren-
dered it less effective than other label projection
strategies (Chen et al., 2023; Garcia-Ferrero et al.,
2023; Le et al., 2024; Parekh et al., 2024). How-
ever, Ebing and Glavas (2025) show that WA-based
label projection can perform at least on a par with
these state-of-the-art projection methods as long as:
(i) a robust algorithm for label projection and (ii) a
sentence encoder-based WA model are used.

In this work, we hypothesize that multilingual
MT models are better suited for producing word
alignments than WAs based on multilingual sen-
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tence encoders (e.g. LaBSE) (Wang et al., 2022)
or vanilla encoders (e.g. mBERT) (Jalili Sabet
etal., 2020; Dou and Neubig, 2021), due to WA and
MT being two highly related and interleaved tasks
(Och and Ney, 2003; Callison-Burch et al., 2004;
Koehn et al., 2007; Dyer et al., 2013). Yet, research
on extracting word alignments from MT models
has largely been limited to extracting alignments
from the cross attention mechanism, yielding poor
WA performance for transformer-based encoder-
decoder MT models (Bahdanau et al., 2015; Ghader
and Monz, 2017; Ferrando and Costa-jussa, 2021).

Contributions. This is why, (1) we propose
TransAlign, a WA that leverages (only) the en-
coder of NLLB (Team et al., 2022), a massively
multilingual encoder-decoder MT model. Next,
to its vanilla (non-fine-tuned) variant, we explore
the impact of further fine-tuning TransAlign on
parallel WA data. (2) We extensively evaluate
TransAlign extrinsically on translation-based XLT
for token classification on two established bench-
marks covering 28 diverse languages. We find
TransAlign to substantially outperform popular
word aligners as well as a state-of-the-art non-
WA-based label projection method. Furthermore,
we evaluate TransAlign intrinsically on the word
alignment task showing its strong performance,
particularly on words carrying semantic meaning.
(3) Finally, we ablate important design decisions
including the encoder layer to extract the align-
ments from and the similarity threshold based on
which an alignment is established. We publicly re-
lease our code and data in the following repository:
https://github.com/bebing93/transalign.

2 An MT Encoder as a Word Aligner

The task of word alignment aims at finding se-
mantically corresponding pairs of words between a
source language sentence = (x1, x2, ..., £, ) and
target language sentence ¥y = (Y1, Y2, ---, Ym )"

A={(z,y;) s xi € x,y; € y}. (1)

Extracting Alignments. For TransAlign, we ex-
tract word alignments from the contextualized em-
beddings produced by the encoder of a multilingual
encoder-decoder MT model. We separately feed
the source language sentence x and target language
sentence y through the encoder, obtaining their con-
textualized representations h,, and h,, respectively.
Following prior work (Jalili Sabet et al., 2020; Dou

and Neubig, 2021; Wang et al., 2022), we next
obtain the token similarity matrix Sy,

Szy = hahy, 2

We row- and column-normalize the similarity ma-
trix using softmax to obtain S’xy and S’yx, which
capture the similarity from x to y and y to x. Fi-
nally, we compute the alignment matrix A by inter-
secting the two similarity matrices:

0 otherwise

where c is the alignment threshold and A4;; = 1
indicates that two tokens are aligned. As the MT
encoder operates on the level of sub-word tokens,
we consider two words to be aligned if any of their
sub-word tokens are aligned, in line with the prior
WA work (Jalili Sabet et al., 2020; Dou and Neubig,
2021; Wang et al., 2022).

Fine-Tuning for Word Alignment. Addition-
ally, we explore fine-tuning TransAlign on a word
alignment-specific objective to further improve per-
formance. Different from related work—that em-
ployed full fine-tuning (Dou and Neubig, 2021;
Wang et al., 2022) or adapter-based fine-tuning
(Wang et al., 2022)—we opt for LoORA (Hu et al.,
2022) as it does not increase model depth while
maintaining parameter efficiency. We resort to the
following loss function for WA fine-tuning:

_ A 1 (Swy)ij (Syr)ji
L—;mw(n ), @)
where A refers to the gold alignments from the
labeled data and n (or m) is the number of tokens
in sentence x (or ) (Dou and Neubig, 2021; Wang
et al., 2022).

3 Experiments

With label projection as the key remaining appli-
cation of WAs, we first evaluate TransAlign on
translation-based XLT for token classification. We
then additionally benchmark TransAlign intrinsi-
cally on word alignment itself.

3.1 Experimental Setup

Extrinsic Evaluation. We evaluate T-Test! as
our translation-based XLT strategy: at inference,

'T-Test is shown to outperform T-Train (Le et al., 2024;
Ebing and Glavas, 2025).
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the original target language sentence is translated
into English. We then gather predictions for the
translated English sentence from a fine-tuned down-
stream mLM. Next, we use a WA to extract pair-
wise alignments between the tokens in the trans-
lated English sentence and the original target lan-
guage sentence. Having obtained the alignments,
we follow the span-based label projection algo-
rithm of Ebing and Glava$ (2025)? to map the
predictions back to the target language sentence.
We compare TransAlign against two popular WAs:
(i) AwsmAlign (Dou and Neubig, 2021), based
on multilingual BERT, and (ii) AccAlign (Wang
et al., 2022), based on the multilingual sentence
encoder LaBSE. We utilize the word alignment-
specific fine-tuned variants of all WAs. For a fair
comparison between WAs, we follow the same fine-
tuning protocol and extract alignments following
the same procedure as described in section 2. Addi-
tionally, we benchmark TransAlign against Codec
(Le et al., 2024): a state-of-the-art non-WA-based
label projection method that projects the predic-
tions back to the original target language sentence
by means of constrained decoding. We evaluate
for 28 diverse languages on two established to-
ken classification tasks: named entity recognition
(NER) and slot labeling (SL). For NER, we utilize
MasakhaNER?2.0 (Masakha) (Adelani et al., 2022),
which encompasses low-resource languages from
Sub-Saharan Africa. For SL, the evaluation dataset
is xSID (van der Goot et al., 2021), covering mid-
to high-resource languages and dialects. For our
downstream mLMs, we fine-tune XLLM-R Large
(Conneau et al., 2020) and DeBERTaV3 Large (He
et al., 2023) on the English portion of our data. We
run experiments with 3 random seeds and report the
mean F; score and standard deviation. We provide
details for the extrinsic evaluation in Appendix A.

Intrinsic Evaluation. We evaluate TransAlign
on 8 language pairs: en-cz/de/fr/hi/ja/ro/sv/zh and
compare it against the same WA baselines. All
WA are evaluated in their non-fine-tuned variant.
We report AER for each language pair. We provide
details of the intrinsic evaluation in Appendix B.

TransAlign. For both extrinsic and intrinsic eval-
uation, we use the encoder of the distilled 600M
parameter version of NLLB (Team et al., 2022) as
the backbone of TransAlign. We extract alignments

The algorithm projects labels across spans and not indi-
vidual tokens, and can compensate for some word alignment
errors. For details, we refer the reader to the original work.

Masakha xSID Avg
A X 52.941.8 76.54+1.4 64.741.7
Translate-Test: non-WA
Codec X 72~0i0.5 80.1i043 76.1i044
Codec D 724404 80.240.4 76.3+0.4
Translate-Test: WA
AwsmAlign X 68.410.4 78.840.3 73.6+0.4
AwsmAlign D 68.810.4 78.7+0.4 73.840.4
AccAlign X 72.3+0.4 80.9+40.3 76.6+0.4
AccAlign D 72.7+0.4 80.8+0.4 76.8+0.4
TransAlign X 73.9+0.4 822404 78.140.4
TransAlign D 74.3+0.4 822404 78.3+0.4

Table 1: Main results for translation-based XLT for
token classification. Results with XLM-R (X) and De-
BERTa (D). All WA models are evaluated in their fine-
tuned variant. We report mean F1.

after the last (i.e., 12th) layer using an alignment
threshold of ¢ = 0.001.

3.2 Main Results

Extrinsic Evaluation. Table 1 outlines the T-Test
results for the fine-tuned WAs and Codec. We
demonstrate that all T-Test strategies exceed zero-
shot XLT substantially reaching an improvement
of up to 13.4% on average (with TransAlign and
XLM-R). Comparing TransAlign against the other
WA baselines, we find it to clearly outperform
AwsmAlign and AccAlign by 5.5% and 1.5% on
average.> Not only does TransAlign outperform
popular WAs in translation-based XLT for token
classification, but it also improves over the compet-
itive non-WA-based label projection method Codec
by 2% on average. This finding is noteworthy as
TransAlign is a fair baseline for Codec: both ap-
proaches use a fine-tuned NLLB model of the same
size for label projection. However, TransAlign is
computationally more efficient as it only uses the
encoder of NLLB and thus avoids the costly con-
strained decoding of Codec (Le et al., 2024).

Intrinsic Evaluation. We present the results for
intrinsic evaluation in Table 2. Considering all
words in the source and target sentence equally, we
find that TransAlign produces the best results for
4 out of 8 language pairs (AccAlign reaches the
best performance on the remaining ones). While
TransAlign and AccAlign perform similarly on

3Since TransAlign covers substantially more languages
than AccAlign, we provide additional experiments demon-
strating that the improved performance does not stem from
broader language coverage (see Appendix E).
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en-zh en-cs en-fr en-de en-hi en-ja en-ro en-sv
All Words

AwsmAlign 18.2 123 6.3 18.6 429 46.2 289 99
AccAlign 16.2 93 5.2 164 304 433 208 7.3
TransAlign 18.8 89 6.8 17.7 294 43.2 20.6 7.8

w/o Stopwords

AwsmAlign 12.5 10.6 53 142 35.6 353 220 9.2
AccAlign 107 6.8 43 11.6 249 375 16.1 5.8
TransAlign 10.6 63 4.0 11.8 234 365 152 5.1

Table 2: Main results for word alignment evaluation.
All WA models are evaluated in their vanilla (non-fine-
tuned) variant. We report the AER considering all words
and without considering stopwords.

alignment itself, our TransAlign exhibited stronger
downstream XLT performance (Table 1). For exam-
ple, in intrinsic evaluation, AccAlign outperforms
TransAlign for Chinese and German by 2.6% and
1.3%, respectively. In contrast, for T-Test on xSID
(see App. G), the trend turns around: TransAlign
outperforms AccAlign for both Chinese (0.7%) and
German (2.2%).

These results point to a mismatch between the
standard word alignment evaluation that treats each
word in the input as equally important and label
projection for translation-based XLT that requires
correct alignments on a subset of the input sentence.
Commonly, labeled spans in downstream evalua-
tion span words that carry meaning (e.g., named
entities). We thus additionally report the align-
ment results by excluding stopwords—words with
little semantic meaning—from the evaluation. Re-
sults presented in Table 2 (bottom half) support our
hypothesis: not accounting for the (accuracy of)
stopword alignment, TransAlign outperforms both
baselines consistently: this means it produces more
accurate alignments between content words, which
explains why it yields downstream XLT gains.

3.3 Analysis

Performance per Layer. The layer from which
we extract the alignments can have a substantial
impact on performance (Jalili Sabet et al., 2020;
Dou and Neubig, 2021; Wang et al., 2022). Fig-
ure 1 shows the average AER performance for all
layers of vanilla TransAlign: using the last layer
of TransAlign substantially outperforms using any
other layer.

Alignment Threshold. The threshold parameter
c decides whether two tokens are considered to be
aligned. We ablate the choice of c¢ for all WAs in

40 -
30 -

20 -

2 4 6 8 10 12

Figure 1: Word alignment performance across layers of
vanilla TransAlign. We present the average AER over
all 8 language pairs.

40 -
= AwsmAlign
=== AccAlign
30 - TransAlign
20 - e — —
105 1074 103 1072 1071

Figure 2: Word alignment performance for different
thresholds of c¢. We evaluate vanilla WAs and present
the average AER over all 8 language pairs.

their vanilla variant (see Figure 2). While AwsmA-
lign and TransAlign are robust to the threshold
value, we find AccAlign’s performance to severely
vary with the value of c.

Impact of WA Fine-Tuning. We obtained the best
results for our WA-fine-tuned TransAlign (Table
1). We next assess the contribution of word align-
ment fine-tuning for all WAs on downstream MT-
based XLT performance (see Table 3). We find that
fine-tuning improves the XLT results for all WAs,
but the gains are more pronounced for WAs with
weaker initial performance: AwsmAlign improves
by 3.6% compared to 0.6% for TransAlign. We
also note that using a stronger WA model is more
beneficial than fine-tuning: vanilla TransAlign out-
performs the WA-fine-tuned AccAlign by 0.7%.

Masakha xSID Avg
Non-Fine-Tuned WAs
AwsmAlign 66.210.3 741103 70.210.3
AccAlign 71.240.4 80.040.4 75.640.4
TransAlign 73.5+0.4 81.8+40.4 T7.7+40.4
Fine-Tuned WAs
AwsmAlign 68.8+0.4 78.7+0.4 73.840.4
AccAlign 72.7+0.4 80.840.4 76.8+40.4
TransAlign 74.310.4 82.240.4 78.3410.4

Table 3: Impact of WA fine-tuning on translation-based
XLT for token classification. Results with DeBERTa.

4 Conclusion

In this work, we proposed TransAlign, a new
word aligner (WA) that leverages the encoder of
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NLLB, a massively multilingual encoder-decoder
MT model. Our extrinsic evaluation on translation-
based XLT for token classification on two estab-
lished benchmarks covering 28 languages, shows
that TransAlign outperforms popular existing WAs
as well as state-of-the-art non-WA-based label
projection methods. Furthermore, our intrinsic
word alignment evaluation reveals that, TransAlign
aligns content words (rather than functional words)
in particular better than existing WAs, which then
reflects in downstream XLT gains.

5 Limitations

We focused on choosing well-established and rep-
resentative tasks for token classification. However,
in NLP, multilingual evaluation benchmarks are
often created by translating the data from an ex-
isting high-resource language followed by post-
editing. This applies to xSID and some languages
of Masakha. As a result, the newly introduced
languages might contain translation artifacts re-
ferred to as translationese. Prior work (Artetxe
et al., 2020, 2023) stated that translation-based
XLT strategies might lead to exploitation of trans-
lationese, slightly overestimating performance.

Our intrinsic evaluation points to a potential mis-
match between the word alignment task and the
extrinsic evaluation on translation-based XLT for
token classification. Our results suggest that the
mismatch stems from the discrepancy of treating all
words equally (intrinsic evaluation) against focus-
ing on a specific subset of words (extrinsic evalua-
tion). While we hypothesize as to why MT models
perform worse in aligning words with little seman-
tic meaning than sentence encoders, further work
is needed to test our hypothesis.
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A Experimental Details: Extrinsic
Evaluation

Machine Translation. For translation, we utilize
the state-of-the-art massively multilingual NLLB
model with 3.3B parameters (Team et al., 2022).
Following prior work (Artetxe et al., 2023; Ebing
and Glavas, 2024; Ebing and Glavas, 2025), we
decode using beam search with a beam size of
5. For Masakha (Adelani et al., 2022) and xSID
(van der Goot et al., 2021), we concatenated the pre-
tokenized input on whitespace before translation.
We deviate from this for the Chinese data in xSID,
where we merge Chinese tokens without whites-
pace. Additionally, the dialect South Tyrol (de-st)
in xSID is not supported by NLLB. We translate
the dialect pretending it to be German (i.e., using
the German language code) as it is closely related
to the latter. We accessed all datasets through the
Hugging Face library and ensured compliance with
the licenses. All translations were run on a single
A100 with 40GB VRAM.

Word Aligners. We will publicly release our
word alignment code (Apache 2.0 license) and the
model checkpoints for the fine-tuned TransAlign
(CC-BY-NC 4.0 license). Next to TransAlign, we
re-implemented two popular word aligners as our
baselines: AwsmAlign (Dou and Neubig, 2021)
and AccAlign (Wang et al., 2022). We chose the
code repository of SimAlign (Jalili Sabet et al.,
2020) as the starting point for our implementa-
tion. We accessed the code through their repos-
itory: (https://github.com/cisnlp/simalign). Follow-
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ing Dou and Neubig (2021), we extracted align-
ments for AwsmAlign after the 8th layer using an
alignment threshold of ¢ = 0.001. For AccAlign,
we use the 6th layer and an alignment threshold of
¢ = 0.1 (Wang et al., 2022). We comply with the
licenses of AwsmAlign (BSD 3-Clause) and SimA-
lign (MIT). We could not find licensing information
for AccAlign.

Codec. Codec (Le et al., 2024) is a label projec-
tion method that leverages constrained decoding
as part of a two-step translation procedure. In the
first step, the source sentence is translated into the
target language (e.g., from English: “This is New
York™ to German: “Das ist New York™). Then, in
the second step, tags are inserted around the la-
beled spans in the source sentence (English: “This
is [ New York |”). The marked sentence is fed
again as input to the MT model: during decod-
ing, the MT model is now constrained to gener-
ate only the tokens from the translation obtained
in the first step (“Das”, “ist”, “New”, “York”)
or a tag (“[”, “I”). We chose Codec as a repre-
sentative method for non-WA-based label projec-
tion: Ebing and Glavas (2025) suggest that Codec
performs on par or better than comparable non-
WA-based label projection methods (Chen et al.,
2023; Garcia-Ferrero et al., 2023; Parekh et al.,
2024). To project the labels for T-Test, we used
the publicly available code repository of Codec:
https://github.com/duonglm38/Codec. While an
implementation for Masakha is already provided,
we extended their implementation to handle label
projection for xSID. We adhered to the hyperparam-
eters in their repository and followed the existing
implementation closely. The constrained decoding
(i.e., inserting the tags post-translation) requires
a fine-tuned NLLB that is able to preserve/insert
tags. Therefore, we follow Le et al. (2024) using
the fine-tuned 600M parameter version of NLLB
released by Chen et al. (2023). We could not find
licensing information for Codec.

Label Projection. We follow the span-based label
projection procedure used by (Ebing and Glavas,
2025). The algorithm projects labels across spans
and not individual tokens and can compensate for
some word alignment errors. For details, we refer
the reader to the original work. Unlike their work,
we do not apply filtering heuristics for T-Test.

Word Aligner Fine-Tuning. For fine-tuning, we
apply LoRA to the feed-forward sublayer of each
encoder layer. We train each WA for 20 epochs

using a learning rate of 1e~*. The rank is set to
8 and alpha to 32. We apply LoRA dropout with
0.01. For WA training, we utilize the labeled data
from the intrinsic evaluation (see Table 7).

Downstream Fine-Tuning. We train both tasks
(NER and SL) for 10 epochs using an effective
batch size of 32. In case we can not fit the desired
batch size, we utilize gradient accumulation. The
learning rate is set to le™> with a weight decay
of 0.01. We implement a linear schedule of 10%
warm-up and employ mixed precision. We evaluate
models at the last checkpoint of training. We use
the seqeval F1 implementation accessed through
the Hugging Face library. Further, we access our
downstream models—XIL.M-RoBERTa Large and
DeBERTaV3 Large—through the Hugging Face
library. All downstream training and evaluation
runs were completed on a single V100 with 32GB
VRAM. We estimate the GPU time to be 2000
hours across all translations and downstream fine-
tunings.

Datasets.

MasakhaNER2.0. Our experiments cover 18 out
of 20 languages that are supported by NLLB. Note
that Google Translate (GT) does not support all 18
languages. Following, we mark the 11 languages
that are supported by GT with an additional as-
terisk: Bambara (bam)*, Ewé (ewe)*, Fon (fon),
Hausa (hau)*, Igbo (ibo)*, Kinyarwanda (kin)*,
Luganda (lug), Luo (Iuo), Mossi (most), Chichewa
(nya), chiShona (sna)*, Kiswahili (saw)*, Setswana
(tsn), Akan/Twi (twi)*, Wolof (wol), isiXhosa
(xho)*, Yorurba (yor)*, and isiZulu (zul)*. As
source data, we use the English training (14k in-
stances) and validation portions (3250 instances) of
CoNLL (Tjong Kim Sang and De Meulder, 2003).

xSID. We evaluate 10 languages all covered by
NLLB and GT: Arabic (ar), Danish (da), Ger-
man (de), South-Tyrolean (de-st), Indonesian (id),
Italian (it), Kazakh (kk), Dutch (nl), Turkish (tr),
and Chinese (zh). Following Razumovskaia et al.
(2023), we excluded Japanese from the evaluation
because it only has half of the validation and test
instances and spans only a fraction of entities com-
pared to the other languages. Moreover, we ex-
clude Serbian as the evaluation data is written in the
Latin script whereas NLLB was only trained in the
Cyrillic script. xSID is an evaluation-only dataset.
Therefore, we follow van der Goot et al. (2021) and
use their publicly released English data for training
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and validation. The instances are sourced from the
Snips (Coucke et al., 2018) and Facebook (Schus-
ter et al., 2019) SL datasets. We deduplicate the
training instances, ending up with over 36k training
and 300 validation examples.

B Experimental Details: Intrinsic
Evaluation

Word Alignment Baselines. We use the same
WA models as for the extrinsic evaluation—
AwsmAlign and AccAlign (see App. A). All WAs
are evaluated in their non-fine-tuned variant.

Languages. We evaluate the following 8 lan-
guage pairs: English-Chinese (en-zh), English-
Czech (en-cz), English-French (en-fr), English-
German (en-de), English-Hindi (en-hi), English-
Japanese (en-ja), English-Romanian (en-ro) and
English-Swedish (en-sv). We provide details on
the used datasets in Table 7.

Stopword Filtering. For the results in Table 2,
we applied stopword filtering prior to AER com-
putation. We identified stopwords from the En-
glish source sentences using the stopword list pro-
vided by NLTK (Elhadad, 2010) and removed cor-
responding target language words accordingly. The
NLTK source code is published under the Apache
2.0 license. We comply with their license.

C Further Analysis: Robustness of
Fine-Tuning

For the application of a fine-tuned WA model, only
a single seed of a fine-tuned model will eventu-
ally be used. Therefore, we ablate the variance of
the random seed chosen for fine-tuning. We fine-
tune AwsmAlign, AccAlign, and TransAlign on
three distinct random seeds and evaluate them on
translation-based XLT. The resulting variance is de-
picted in Figure 3. We observe little impact by the
choice of the random seed for TransAlign: for xSID
the variance is comparable to that of AwsmAlign
and AccAlign, while for Masakha, it is substan-
tially lower.

D Further Analysis: MT Model

In translation-based XLT for token classification, it
is pragmatic to use the encoder of the MT model
for word alignment since (i) only a single model
is required for the label projection pipeline (i.e.,
translation and label projection) and (ii) the lan-
guage coverage of target languages is ensured for

0.4 +0.39 B AwsmAlign
’ B AccAlign
7% TransAlign
0.3
+0.26

0.2 +0.18
0.1 +0.10

+0.02 /
0.0 -

Masakha xSID

Figure 3: Variance of WA model fine-tuning with three
distinct random seeds evaluated on translation-based
XLT. Results with DeBERTa.

Masakha xSID Avg
AwsmAlign  NLLB  69.2404 787404 74.040.4
AccAlign NLLB 73.7+04 80.8404 77.3+0.4
TransAlign NLLB 75.1405 822404 78.7405
AwsmAlign ~ GT 70.64+0.3 80.1+04 75.340.4
AccAlign GT 752404 821404 T78.6+0.4
TransAlign ~ GT 76.440.5 83.6+04 80.040.4

Table 4: Results for translation-based XLT for token-
level tasks with translations obtained from different MT
models—Google Translation (GT) and NLLB (NLLB).
Results with DeBERTa.

both steps. However, open access to the encoder
of the MT model is required. With closed com-
mercial MT models being considered to produce
superior translation quality, we explore whether
the gains obtained by TransAlign are orthogonal to
the MT model. Our results in Table 4 suggest that
TransAlign does not depend on its own translations.
The performance improvements obtained by label
projection with TransAlign are orthogonal to gains
obtained by higher translation quality.

E Further Analysis: Language Coverage

NLLB has seen substantially more languages in
pretraining than LaBSE (200 vs. 109 languages).
To ensure that performance improvements obtained
by TransAlign do not simply stem from broader
language coverage, we evaluate TransAlign and Ac-
cAlign on a subset of languages seen in the pretrain-
ing of both models. We observe that TransAlign
still outperforms AccAlign even on a subset of lan-
guages seen by both models (see Table 5).

F Further Analysis: NLLB Model Size

NLLB is released in different model sizes rang-
ing from 600M up to 54B parameters. Table 6
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Masakha xSID Avg

AccAlign 74.110.5 832;{:0.4 78.7:‘:0,4
TransAlign 75.440.5 84.7+0.4 80.0+0.4

Table 5: Results for translation-based XLT for token-
level tasks only evaluating languages seen in the pre-
training of both WAs. Results with DeBERTa.

Masakha xSID Avg

TransAlign ~ 600M  74.3+0.4 82.2404 78.3+04
TransAlign  3.3B 74.5+0.4 8l.4404  78.0+0.4

Table 6: Results for translation-based XLT for token-
level tasks with different sizes of NLLB as WA. Results
with DeBERTa.

compares the fine-tuned TransAlign in two differ-
ent model sizes. We evaluate the 600M (distilled)
and 3.3B parameter models on translation-based
XLT for token classification. Our results reveal that
the larger model does not provide any advantage.
Hence, we used the 600M parameter model for our
main results.
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Lang Source Link #Sents
en-zh (Liu and Sun, 2015) https://nlp.csai.tsinghua.edu.cn/ ly/systems/TsinghuaAligner/TsinghuaAligner.html 450
en-cs (Marecek et al., 2008) https://ufal.mff.cuni.cz/czech-english-manual-word-alignment 2400
en-fr (Mihalcea and Pedersen, 2003) https://web.eecs.umich.edu/ mihalcea/wpt/ 447
en-de (Vilar et al., 2006) https://www-i6.informatik.rwth-aachen.de/gold Alignment/ 508
en-hi (Aswani and Gaizauskas, 2005) https://web.eecs.umich.edu/ mihalcea/wpt05/ 90
en-ja (Neubig, 2011) https://www.phontron.com/kftt/ 582
en-ro (Mihalcea and Pedersen, 2003) https://web.eecs.umich.edu/ mihalcea/wpt05/ 248
en-sv (Holmqvist and Ahrenberg, 2011) https://www.ida.liu.se/divisions/hcs/nlplab/resources/ges/ 192
en-nl (Macken, 2010) http://www.tst.inl.nl/ 372
en-tr (Cakmak et al., 2012) https://web.itu.edu.tr/gulsenc/resources.htm 300
en-es (Graga et al., 2008) https://www.hlt.inesc-id.pt/w/Word_Alignments 100
en-pt (Graga et al., 2008) https://www.hlt.inesc-id.pt/w/Word_Alignments 100

Table 7: Datasets used for intrinsic evaluation and fine-tuning of WAs. The upper half is used for intrinsic evaluation
and WA fine-tuning, whereas the lower half is only used for WA fine-tuning. For the fine-tuning, we held out 100
randomly selected instances of the en-cs dataset as validation portion.

G Detailed Results: Main Results

bam ewe fon  hau ibo kin lug luo mos nya sna swa tsn twi  wol xho yor zul  Avg

A X 434 728 61.0 735 499 463 649 550 561 51.1 344 881 515 495 562 222 351 415 529
Translate-Test: non-WA
Codec X 545 788 674 729 728 776 83.6 728 494 781 793 822 792 725 673 725 584 71.1 720
Codec D 543 79.1 680 733 739 782 835 742 488 790 798 829 793 731 678 726 580 770 724
Translate-Test: WA

AwsmAlign X 514 787 613 709 754 668 827 722 476 775 718 815 795 708 62.1 56.0 61.7 638 684
AwsmAlign D 51.1 788 62.1 714 77.0 676 825 73.6 476 779 723 821 798 717 625 562 612 638 68.8
AccAlign X 544 799 69.7 747 752 708 844 726 531 786 817 830 800 712 649 732 554 787 723
AccAlign D 538 799 70.1 752 767 715 842 741 532 79.1 823 836 804 720 654 733 553 788 727
TransAlign X 56.8 808 728 749 758 710 848 747 540 788 822 823 822 751 686 738 628 790 739
TransAlign D 56.6 808 733 754 773 717 846 763 537 792 828 829 826 758 693 740 625 79.1 743

Table 8: Detailed main results for translation-based XLT on Masakha. Results with XLM-R (X) and DeBERTa (D).

ar da de de-st id it kk nl tr zh Avg

7S X 71.5 85.6 80.8 43.9 86.8 88.2 80.8 88.8 81.5 57.4 76.5
Translate-Test: non-WA
Codec X 79.0 81.9 86.1 60.4 84.8 88.4 83.0 86.5 83.6 67.0 80.1
Codec D 79.9 81.8 85.5 58.8 85.8 89.0 83.2 86.0 84.2 67.5 80.2
Translate-Test: WA

AwsmAlign X 79.1 76.2 85.2 60.2 79.1 87.9 75.3 87.3 78.1 80.1 78.8
AwsmAlign D 79.3 75.9 84.4 58.4 79.9 88.6 75.1 86.5 78.9 80.0 78.7
AccAlign X 80.2 75.8 85.2 61.0 84.1 88.2 82.6 86.6 82.4 82.5 80.9
AccAlign D 80.7 75.5 84.5 59.3 85.0 88.9 82.7 86.0 83.3 82.4 80.8
TransAlign X 81.0 81.0 87.4 61.0 87.0 88.5 82.4 87.8 83.2 83.2 82.2
TransAlign D 81.4 80.7 86.7 59.3 87.9 89.2 824 86.9 84.1 83.1 82.2

Table 9: Detailed main results for translation-based XLT on xSID. Results with XLM-R (X) and DeBERTa (D).
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H Detailed Results: Impact of Fine-Tuning

bam ewe fon hau ibo kin  lug luo mos nya sna swa tsn twi  wol xho yor zul Avg

Non-Fine-Tuned WAs

AwsmAlign X 46.0 769 579 70.1 755 649 830 71.8 435 779 633 79.8 806 709 53.1 500 581 603 658
AwsmAlign D 46.0 77.0 586 706 769 656 828 732 436 784 637 805 812 71.7 535 500 577 602 662
AccAlign X 547 79.1 682 741 727 697 836 707 495 775 805 813 813 719 632 709 483 769 70.8
AccAlign D 541 79.1 686 746 740 702 833 720 493 782 81.0 820 816 730 636 711 482 770 712
TransAlign X 55.6 80.1 705 746 750 704 848 73.6 524 778 815 822 822 752 672 734 60.1 786 73.1
TransAlign D 554 80.1 712 751 766 710 846 750 524 785 821 828 825 759 680 735 599 788 735
Fine-Tuned WAs
AwsmAlign X 514 787 613 709 754 668 827 722 476 775 718 815 795 708 62.1 56.0 617 638 684
AwsmAlign D 51.1 788 62.1 714 77.0 676 825 73.6 476 779 723 821 798 717 625 562 612 638 68.8
AccAlign X 544 799 69.7 747 752 708 844 726 531 786 81.7 830 80.0 712 649 732 554 787 723
AccAlign D 538 799 70.1 752 767 715 842 741 532 79.1 823 836 804 720 654 733 553 788 727
TransAlign X 56.8 808 728 749 758 710 848 747 540 788 822 823 822 751 686 738 628 790 739
TransAlign D 56.6 808 733 754 773 717 846 763 537 792 828 829 826 758 693 740 625 79.1 743

Table 10: Impact of WA fine-tuning on translation-based XLT on Masakha. Results with XLM-R (X)) and DeBERTa
D).

ar da de de-st id it kk nl tr zh Avg
Non-Fine-Tuned WAs

AwsmAlign X 74.2 75.8 84.6 58.9 76.0 85.3 59.3 85.7 69.2 73.6 74.1
AwsmAlign D 74.8 75.5 83.8 56.9 76.4 86.0 59.7 85.2 69.7 73.3 74.1
AccAlign X 78.8 754 84.8 59.5 82.0 86.4 81.8 86.6 82.7 82.2 80.0
AccAlign D 79.2 75.2 84.1 57.9 83.0 87.2 81.8 85.9 83.6 82.1 80.0
TransAlign X 80.0 81.0 87.3 61.0 86.5 87.8 81.8 87.3 83.8 82.6 81.9
TransAlign D 80.3 80.7 86.6 59.4 87.5 88.5 81.8 86.6 84.6 82.6 81.8
Fine-Tuned WAs
AwsmAlign X 79.1 76.2 85.2 60.2 79.1 87.9 75.3 87.3 78.1 80.1 78.8
AwsmAlign D 79.3 75.9 84.4 58.4 79.9 88.6 75.1 86.5 78.9 80.0 78.7
AccAlign X 80.2 75.8 85.2 61.0 84.1 88.2 82.6 86.6 82.4 82.5 80.9
AccAlign D 80.7 75.5 84.5 59.3 85.0 88.9 82.7 86.0 83.3 82.4 80.8
TransAlign X 81.0 81.0 87.4 61.0 87.0 88.5 82.4 87.8 83.2 83.2 82.2
TransAlign D 81.4 80.7 86.7 59.3 87.9 89.2 82.4 86.9 84.1 83.1 82.2

Table 11: Impact of WA fine-tuning on translation-based XLT on xSID. Results with XLLM-R (X) and DeBERTa
(D).

I Detailed Results: MT Model

bam ewe  hau ibo kin sna swa twi xho yor zul Avg

AwsmAlign NLLB 51.1 788 714 770 676 723 82.1 71.7 56.2 612 638 692
AccAlign NLLB 538 799 752 767 715 823 83.6 72.0 73.3 553 788 737
TransAlign ~ NLLB 566 80.8 754 773 71.7 828 82.9 75.8 74.0 625 791 751

AwsmAlign  GT 554 789 719 794 68.1 752 84.1 73.5 59.0 65.1 66.1  70.6
AccAlign GT 59.6 793 742 793 724 847 86.0 73.5 75.2 61.6 812 752
TransAlign GT 615 799 742 804 726 848 86.11 77.13 7573 6673 813 764

Table 12: Detailed results for translation-based XLT on Masakha with translations obtained from different MT
models—Google Translation (GT) and NLLB (NLLB). Results with DeBERTa.

ar da de de-st id it kk nl tr zh Avg
AwsmAlign NLLB 79.3 75.9 84.4 58.4 79.9 88.6 75.1 86.5 78.9 80.0 78.7
AccAlign NLLB 80.7 75.5 84.5 59.3 85.0 88.9 82.7 86.0 83.3 824 80.8
TransAlign NLLB 81.4 80.7 86.7 59.3 87.9 89.2 82.4 86.9 84.1 83.1 82.2
AwsmAlign GT 81.3 76.0 85.6 58.9 79.7 90.2 76.3 87.8 82.0 83.2 80.1
AccAlign GT 81.7 76.6 85.3 58.8 85.3 90.1 85.1 87.1 84.4 86.4 82.1
TransAlign GT 82.6 81.4 87.6 58.8 87.1 91.9 84.6 89.0 86.2 86.7 83.6

Table 13: Detailed results for translation-based XLT on xSID with translations obtained from different MT models—
Google Translation (GT) and NLLB (NLLB). Results with DeBERTa.
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J Detailed Results: Language Coverage

hau ibo kin nya sna swa wol xho yor zul Avg

AccAlign 752 76.7 71.5 79.1 82.3 83.6 65.4 73.3 55.3 78.8 74.1
TransAlign 754 77.3 71.7 79.2 82.8 82.9 69.3 74.0 62.5 79.1 754

Table 14: Detailed results for translation-based XLT on Masakha only evaluating languages seen in the pretraining
of both WAs. Results with DeBERTa.

ar da de id it kk nl tr zh Avg
AccAlign 80.7 75.5 84.5 85.0 88.9 82.7 86.0 83.3 824 83.2
TransAlign 81.4 80.7 86.7 87.9 89.2 82.4 86.9 84.1 83.1 84.7

Table 15: Detailed results for translation-based XLT on xSID only evaluating languages seen in the pretraining of
both WAs. Results with DeBERTa.

K Detailed Results: NLLB Model Size

bam ewe fon hau ibo kin lug luo mos nya sna swa tsn twi  wol xho yor zul Avg

TransAlign 600M 56.6 80.8 733 754 773 717 84.6 763 537 792 828 829 826 758 693 740 625 79.1 743
TransAlign 33B  57.1 80.7 740 752 773 718 846 763 541 796 827 833 825 758 695 740 628 792 745

Table 16: Detailed results for translation-based XLT on Masakha with different sizes of NLLB as WA. Results with
DeBERTa.

ar da de de-st id it kk nl tr zh Avg

TransAlign 600M 81.4 80.7 86.7 59.3 87.9 89.2 824 86.9 84.1 83.1 82.2
TransAlign 3.3B 80.8 76.0 86.2 59.3 82.5 89.4 83.5 86.8 86.3 83.7 81.4

Table 17: Detailed results for translation-based XLT on xSID with different sizes of NLLB as WA. Results with
DeBERTa.

20749



