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Abstract

Retrieval-Augmented Generation is a powerful
method for enhancing language models (LMs),
but existing retrieval techniques are limited.
Embedding-based methods are often inaccurate
due to their reliance on lexical similarity, while
neural retrievers are computationally expensive
to train.

To overcome these issues, we introduce You
Only Use Reactive Attention slice (YOURA),
a training-free and fine-tuning-free attention-
based retrieval technique. When retrieving,
YOURA uses a novel reaction score heuristic,
which quantifies how an LM’s self-attention
“reacts” to a user query. We also propose a
sentence extraction algorithm to efficiently pre-
process the context.

Evaluations on three open-source LMs using
the LongBench and BABILong datasets show
YOURA's effectiveness. Our framework im-
proves QA task accuracy by up to 15% and
inference throughput by up to 31% compared
to embedding-based retrieval.

1 Introduction

Language Models (LMs) are integral to natural lan-
guage processing tasks, whereas a limited context
window size remains a critical bottleneck for com-
plex tasks. To address the issue, recent studies
explored fine-tuning of pre-trained model (Chen
et al., 2023b; Mangrulkar et al., 2022), advanced
attention (Xiao et al., 2024; Zhang et al., 2023),
and Retrieval-Augmented Generation (RAG) tech-
niques. However, fine-tuning requires extra com-
putational power for each pre-trained model and is
often tailored to individual tasks or datasets. Ad-
vanced attention mechanisms conceptually extend
the context window by selectively choosing a sub-
sequence of tokens for attention, but risk dropping
key information.

RAG promises both reduced computational re-
quirements during inference (Luo et al., 2024) and
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Figure 1: YOURA improves the retrieval quality and
inference throughput by retrieving only the “reactive”
sentences.

improved accuracy by eliminating irrelevant infor-
mation (Catav, 2023), emphasizing the importance
of retrieval quality. The current RAG techniques
typically address the long context challenge by
splitting text into smaller chunks and retrieving
a subset of chunks that are semantically similar to
the query. The semantic similarities are computed
via probabilistic retrieval framework, distance mea-
surement within pre-trained embedding space, or
neural retriever.

Despite the wide adoption of embedding-based
retrieval (e.g., vector databases), it often suffers
from a low accuracy for two reasons as illustrated
in Figure 1: (1) the common words between a query
and a text chunk artificially reduce the semantic
distance, making them appear more similar and
(2) alphabetically different but semantically identi-
cal words can unnecessarily increase the semantic
distance. For instance, given a query “Where is
Mary?”, an embedding-based retriever might in-
correctly prioritize a sentence “Her name is Mary”
(due to the shared word Mary) to the key sentence
“She is at home”, leading to an inaccurate retrieval.
On the other hand, recent works on neural retriever
including dense retriever, reranker, multi-turn re-
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Long Context QA Task \ Key Traits Benefits Trade-Off
Avproach Retrieval Context-Aware Retrieved | Inference  Inference | Preprocessing

PP Heuristics Retrieval Size Accuracy Performance Overhead

Probabilistic Retrieval | Bag-of-word Frequency No Medium Okay Okay Low
Embedding Vector Space Cos. Similarity No Medium Okay Okay Medium

Truncate-Middle Discard Middle No Medium Good Okay Low
LongLLMLingua Perplexity Yes Small Good Fast High
Proposal: YOURA Reaction Score Yes Small Better Fast High

Table 1: Comparison of Retrieval Approaches on Long Context QA.

triever, exhibit high computational cost to train a
model with large scale training data (Sachan et al.,
2021), and often lacks interpretability (Krishna
et al., 2022) or robustness (BehnamGhader et al.,
2022; Dai et al., 2024).

To address these challenges, we propose You
Only Use Reactive Attention slice (YOURA), a
training-free, fine-tuning-free, attention-based re-
trieval strategy. At its core, YOURA offers a novel
theoretical framework for attention-based re-
trieval, which interprets attention values as the
probability of a token being importance. From this
insight, the importance of context chunks can be
derived through statistical approaches: (i) employ-
ing a joint probability to indicate the importance
of a chunk within an overall context, and (ii) us-
ing a likelihood ratio to determine the chunk-query
relevance. Because of its generic interpretation of
attention scores, YOURA can be applied to various
off-the-shelf pre-trained LMs to achieve improved
QA task accuracy at a higher inference throughput
by using only the relevant information.

YOURA consists of two main steps: preprocess-
ing and retrieval. During preprocessing, YOURA
first computes the initial self-attentions from the
context alone, intentionally leaving out the query.
Unlike traditional chunking mechanisms (Kamradt,
2024), YOURA'’s approach is to split the context
token sequence into sentences to allow for more
granular retrieval. This is a non-trivial task due to
subword tokenization, which is handled by a dedi-
cated sentence extraction algorithm (Section 3.4).
For retrieval, YOURA measures the self-attention
shifts that occur when the query is appended to the
context. This shift is captured in a reaction vector,
which quantifies how the context “reacts” to the
presence of the query. Then a reaction score is
calculated as the average of a slice of this vector,
serving as a measure of semantic similarity to the
query. The algorithm greedily retrieves sentences
based on their individual reaction score.

YOURA achieves (1) higher retrieval quality, (2)

improved generation quality, and (3) increased in-
ference throughput. These benefits are a result of
several factors. (a) The reaction score is measured
holistically (rather than independently for each sen-
tence), enabling context-aware retrieval. (b) This
context-aware retrieval filters out distracting infor-

mation, improving generation quality. (c) LLM

serving platforms process fewer tokens, which in-

creases inference throughput.

While YOURA'’s main trade-off is its preprocess-
ing overhead, it can be amortized over multiple
requests that use the same preprocessed context.
For single requests, YOURA still reduces overhead
by reusing the KV cache during its initial and re-
acted attention vector computation.

Evaluation on LongBench (Bai et al., 2024)
shows that YOURA improves the QA accuracy
by 15% and vLLM (Kwon et al., 2023) serving
throughput by 31% for the QA task when com-
pared against the embedding-based retrieval. For
the Needle-In-A-Haystack task evaluated with BA-
BILong (Kuratov et al., 2024) dataset shows a 25%
improved accuracy across five subtasks using off-
the-shelf Llama3.

This paper contributes the following:

e We propose You Only Use Reactive Attention
slice (YOURA), a novel training-free and fine-
tuning-free attention-based retrieval framework.
To our knowledge, YOURA is the first to achieve
efficient and accurate long-context retrieval by
directly leveraging attention slices.

e We propose a sentence extraction algorithm
that efficiently slices a token sequence into per-
sentence subsequences with 94% accuracy.

e We evaluate YOURA with three open-source pre-
trained models (Llama2-7B, Llama3-8B, and
Mistralv0.2-7B) on nineteen different subsets
from the LongBench (Bai et al., 2024) and BA-
BILong (Kuratov et al., 2024) dataset for com-
prehensive understanding of its benefits.

e We analyze the YOURA'’s runtime overhead and
show the overhead amortization potentials.
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2 Related Work

Limited context window size of language models
(LMs) is a well-acknowledged problem and var-
ious approaches such as longer context window
sized models, novel attention mechanisms, fine-
tuned models, context compression techniques, in-
context learning, test-time learning, and Retrieval-
Augmented Generation (RAG) have been proposed.
In this section, we discuss retrieval related tech-
niques, and list other techniques in appendix.

Retrieval-Augmented Generation. Retrieval-
Augmented Generation (RAG) retrieves relevant
context chunks from the preprocessed knowledge
base and provides the following benefits: processes
inputs longer than the language model’s context
window size, improves generation quality by ex-
cluding distractful information, and reduces com-
putational cost with fewer input tokens to autore-
gressively generate from. Prior works integrate
RAG with language models for question answer-
ing with long documents (Stelmakh et al., 2022;
Qian et al., 2024) and in open-domain (Giorgi
et al., 2022; Izacard and Grave, 2021). Further-
more, language models adopted retrieval at vari-
ous stages such as pretraining (Wang et al., 2023;
Izacard et al., 2023; Borgeaud et al., 2022), fine-
tuning (Jiang et al., 2022; Zhang et al., 2024) and
inference stage (Khandelwal et al., 2019).

Probabilistic Retrieval Framework. BM?25, a
probabilistic retrieval framework, was widely
adopted as a relevance measurement of two
texts (Robertson et al., 1995). Two texts yield high
relevance if they have a high frequency of identical
word sequences, with some adjustment to mitigate
false positive scenarios such as a repetitive phrase
or common phrase like “is a”.

Neural Retriever. The advent of neural networks
inspired various techniques such as dense retriever,
or multi-turn retrievers. One popular approach is to
take a predefined embedding vector space, a vector
representation of the query, and a list of candidate
information chunks as input, and outputs a numeri-
cal value per chunk representing the chunk’s query
relevance. A pairwise cosine similarity of vectors
is a common formula (Reimers, 2019; Douze et al.,
2024; Chase, 2022; Liu, 2022) for computing the
distance with some alternatives such as dot prod-
uct (Karpukhin et al., 2020; Khattab and Zaharia,
2020).

LongLLMLingua (Jiang et al., 2023b) observed
that the small LM is capable of identifying the key
relevant information, and devised a heuristic that
ranks the context chunks based on perplexity com-
puted with the small LM. Unlike their approach,
which relies on a relatively complex perplexity cal-
culation, our approach has simpler math and rea-
soning behind the retrieval heuristic design.

3 You Only Use Reactive Attention Slice
(YOURA)

Traditional Retrieval-Augmented Generation
(RAG) systems typically segment input into
discrete chunks, assessing the relevance of each
chunk to the query in isolation. This segmented
approach can overlook inter-chunk dependencies,
leading to potential context fragmentation and
a loss of nuanced, cross-chunk relationships. In
contrast, YOURA introduces a holistic method
that evaluates contextual relevance across the
entire input sequence. By computing relevance as
a whole, YOURA preserves cross-chunk context,
resulting in more accurate and contextually cohe-
sive retrieval. This approach enables YOURA to
prioritize relevant chunks not only by direct query
similarity but also by their broader contextual
alignment within the input, enhancing retrieval
precision and relevance.

Design Overview. Figure 2 illustrates an
overview of our design. The left side of the figure
depicts how a reaction vector is calculated, while
the right side shows how this vector is used for re-
trieval and how the language model then leverages
the retrieved sentences to answer a query.

3.1 Problem Statement & Definitions

Annotations. We annotate Z¢ € R*c 7€ ¢
R%*9 and ZE?Q € R9*(¢+9) a5 the continuous rep-
resentation of the context, query-only, and query-
appended context, respectively. d is the pre-trained
model’s hidden dimension, ¢ is the context token
count and ¢ is the query token count.

Reaction Vector. We define the reaction vector

as follows:
 AtnVec(Z299) 1.,

ReactionVec(Z, ZQ) = 1
eactionVec(Z"~, Z") AttnVec(ZC) (1)

where division in the equation is element-wise di-
vision, and

AttnVec(Z) = Mean,,; (AttnMatrix(Q, K)) (2)
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Our Proposal - You Only Use Reactive Attention (YOURA)

Section 3.4

Context Only Attention Matrix Context + Query Attention Matrix Retrieval
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Figure 2: Overview of YOURA and where it is used in the Retrieval Augmented Generation (RAG) with an example
(example context: "I am an amazing researcher. I like LLM.", example query: "Who am I?"). The first step is
calculating the reaction vector, the ratio between the attention vector with and without the query (left side of the
figure). The highlighted cells in the attention matrix indicate that the token pair exhibits a relatively high value
(e.g., Who vs. I). Once the reaction vector has been calculated, each sentence is assigned a reaction score, the
mean of a corresponding reaction vector slice. To map each sentence to a token sequence, we propose the sentence
extraction algorithm (Section 3.4). The retriever passes on the sentences with high reaction scores to the augmenter.
The pre-trained LLM models generate answers using the augmented text, which includes the task-specific prompt,

the retrieved context, and the query.

AttnMatrix is the dense attention function before
multiplying the value projection and @), K are the
query and key projection of Z, respectively, similar
to the description in the “Attention is all you need”
paper (Vaswani et al., 2023):

KT
AttnMatrix(Q, K') = softmax <Q>
Vd

Q=7ZxW% 3)
K=7ZxwkE

Mean,,; takes a matrix ([a;j]n, xn,) and returns
a per-column mean vector:

1 n1 n1
Meancol([aij]nlxng) = — Zaila -'~azain2
=1 =1

1 (s \"
= (2
ny \‘— )
=1 j=1
4)
For multi-head attention, the reaction vector is
averaged across head dimension as well:

1h 1 (& )\
Meanh,col ([QZ]ru Xng) = E Z 77,7 Z a’?j
h=1 1 i=1 j=1
(5)

Note that in practice, the algorithm precomputes
the KV cache for the given context and reuses it for
efficient attention computation. Thus, the query-
appended attention matrix is [a?j] ax(c+q)-

Reaction Score Given the reaction vector, we de-
fine the reaction score (rs) as follows for a vector
slice represented with left-right index, [I,7):

ReactionScore(ReactionVector, [, )

= geomean(ReactionVector[l : ]) (6)

where geomean is the geometric mean.

Problem Statement We define retrieval task as
finding a non-overlapping chunk set S = {(l;, ;) |
0<; <r;<e,m < li+1}, such that

argmax ¢ AnsQuality(LLMInf(concat(S, q)))
(7N

where:

e concat(S, q) denotes appending the query ¢ to
the retrieved chunks S.

o LI.MInf is the language model inference given
the query-augmented input.

e AnsQuality judges the generated sequence qual-
ity (e.g., F1 Score).
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3.2 Interpreting Reaction Vector as
Likelihood Ratio

Our analysis relies on a fundamental assumption:
the i-th element of the attention vector is the
probability of the i-th token being important.
We refer to this as the importance probability.
Based on this assumption, we interpret the reac-
tion vector as a vector of importance likelihood
ratios that arise from the presence of the query to-
kens. The reaction score, defined as the geometric
mean of a likelihood ratio vector slice, can then be
interpreted as the likelihood of the normalized joint
probability. Ultimately, we use the reaction score
to represent the relevance of a vector slice to the
appended query.

AttnVec as Probability Vector. Assume
AttnVec(Z%) and AttnVec(Z“9) are vectors of
importance probabilities:

AttnVec(29) = {p¢, ...,pS} ®)
Atthec(ZCQ) = {prv ---,pfﬁ}

where pz-c and piCQ are the probability of i-th token
being an important token within the context and
context-query concatenation, respectively.

ReactionVec as Likelihood Ratio Vector. Each
element within the reaction vector is a ratio: the
probability of a token being important in the
context-query concatenation versus its probability
in the context alone.

ReactionVec(Z¢, Z9) = {ri,re, ..., re}
N cQ )
where r; = ~—
[ pic
r; indicates whether the i-th token has increased

importance in the presence of the query (r; > 1) or
is more significant in the context alone (r; < 1).

ReactionScore as Likelihood of Normalized
Joint Probability. The reaction score (geometric
mean of the reaction vector slice) can be seen as
a likelihood of normalized joint probability. The
geometric mean is used to mitigate the influence
of individual tokens with disproportionately high
attention values, which might otherwise lead to the

retrieval of noisy or less relevant sentences.

1
ReactionScore(ReactionVec, a, b) = (II2r;) &=

cQ

p, 1
:(Hb L) -a)
a pzc‘

C 1
(Ipy ) T-o)

(p?)© o

(10)
A value greater than one implies that the token
subsequence has greater significance in the query-

appended context, highlighting its query-relevance.

3.3 Overhead Reduction via KV Cache Reuse

ReactionVec computation can be optimized by
reusing the KV cache generated from the context-
only sequence (Z¢) when computing the attention
for the query-appended sequence (Z¢%). Since
ZC€ is a prefix of Z¢9, the Key (K¢) and Value
(V¢) matrices for the context can be reused, similar
to how K and V are reused during auto-regressive
decoding. We discuss the performance gain in Ap-
pendix I, Figure 3.

3.4 Sentence Extraction Algorithm

Challenge. Identifying the token index for sen-
tence boundaries in a sequence is challenging due
to two main issues: (1) the embedding model used
for sentence splitting (e.g., Stanza) often differs
from the embedding model of the language model
(LLM), and (2) models with large token dictionar-
ies can create sequences where perfect sentence
alignment is unachievable. For instance, popular
sentence-splitting algorithms like Stanza (Qi et al.,
2020) use a distinct vocabulary from models such
as Llama3, leading to differences in total token
counts across models (Table 12).

A further complication arises with models using
extensive token dictionaries, making it challeng-
ing to pinpoint exact sentence boundaries. For
example, Llama3 may treat sequences like .T asa
single token. This is beneficial for tasks like code
generation but problematic when a period is fol-
lowed by a sentence starting with “The.” Stanza
might tokenize this sequence as . and The , while
Llama3 could tokenize it as .T and he. This
discrepancy means an exact sentence boundary for
Llama3 may not correspond to a single token index.

Sentence Extraction. To address the challenges,
we propose the sentence extraction algorithm. The
algorithm takes as input a token sequence from the
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LLM tokenizer and a list of sentence strings from
an NLP sentence-splitting model (e.g., Stanza (Qi
et al., 2020)), and outputs a list of token indices for
all sentence boundaries.

The sentence extraction algorithm iteratively es-
timates sentence boundaries and refines them with
a best-effort adjustment strategy. Initially, the algo-
rithm calculates a candidate boundary index based
on the cumulative encoded length of previously
processed sentences. It then decodes the token
subsequence between the most recent confirmed
boundary (variable m) and the current candidate
index, comparing this decoded sequence to the
target sentence.

Depending on the comparison outcome — either
MATCH, INCLUDED, or NO-MATCH — the algorithm
adjusts the candidate index incrementally (+1 or -1)
until a match is achieved or a termination condition
is met. Once a match is confirmed, the algorithm
records this candidate in the boundary list. In rare
cases where adjustments fail, the algorithm reverts
to the original candidate index, ensuring a one-to-
one mapping between each target sentence and its
boundary token index.

3.5 End-to-end Retrieval Process

The retrieval process begins by calculating the re-
action vector for the input context. If the context
length exceeds the model’s maximum context win-
dow size, we split the input into smaller inputs
that fit within this window, calculate the attention
vector for each chunk, and then concatenate these
vectors to form a complete reaction vector. This
final reaction vector spans the full length of the
input context’s token sequence.

To segment the reaction vector by sentence,
we apply the sentence extraction algorithm (Sec-
tion 3.4), which returns a list of sentence boundary
indices. Using these indices, the retrieval algo-
rithm slices the reaction vector for each sentence
and calculates the geometric mean for each slice,
generating a list of reaction scores corresponding
to individual sentences. These scores serve as a
heuristic for retrieval.

For the actual retrieval step, sentences are added
in descending order of reaction score until either
the retrieval token budget is depleted or 80% of
the total sentence count is reached. As a final step,
the retrieved sentences are reordered to match their
original positions within the context.

4 Experiments

We evaluate how YOURA improves the answer
quality of three pre-trained models on QA tasks,
including single-document, multi-document, and
the needle-in-a-haystack task. Results for non-QA
task are listed in Appendix D.1

Datasets. We evaluate YOURA on the single-
document QA, multi-document QA, summariza-
tion, few-shot learning, and synthetic task datasets
(Table 12). For Needle-In-A-Haystack style evalu-
ation, we used BABILong (Kuratov et al., 2024)’s
open-sourced dataset for QA1 through QAS.

Models. We used three open-source LMs:
LLama2-7B-Chat-HF, L1ama3-8B-Instruct, and
Mistralv@.2-7B-Instruct, with context win-
dow of 4 K, 8 K, and 32 K tokens, respectively.

For the embedding retrieval baseline, we used
the paraphrase-MinilM-L6-v2 model. Unlike
recent state-of-the-art models such as BGE, ES,
and Instructor XL, which are trained on standard
QA evaluation datasets, our choice has not been.
We selected this model to ensure our baseline re-
sults would not be influenced by pre-existing biases
learned from these benchmarks, providing a more
neutral and reliable comparison.

Quality and Inference Evaluation. For
YOURA implementation, we leveraged the Hug-
gingFace (Wolf et al., 2020)’s dense attention and
features (e.g., output_attention option). Long-
Bench (Bai et al., 2024) evaluation scripts were
used for quality assessment. For inference-only
throughput measurement, we used vLLM (Kwon
et al., 2023) throughput benchmark (v0.5.3) with
the default vLLM settings with an exception of
setting ignore_eos to false .

Machine Configurations. We used a single
server with two Intel(R) Xeon(R) Gold 54168,
512G DRAM, and one NVIDIA H100-80G GPU.

Baselines. We compared YOURA against the fol-

lowing baselines to assess improvements in output

quality and performance. For each setup, as done

with the LongBench, we set the retrieval budget to

3500, 7500, and 31500 for models with 4K, 8K,

and 32K context window, respectively.

e N/A: No context is passed.

e BM25: Bzx_y indicates chunking at roughly x
tokens and retrieving the top y chunks.

¢ Embedding Retrieval: Ex_y indicates chunk-
ing at roughly = tokens and retrieving the top
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y chunks. We measure the cosine similarity be-
tween each chunk’s embedding vector generated
by the paraphrase-MinilLM-L6-v2 model.

e Truncation: We use LongBench’s prompt along
with its context truncation approach: the whole
context, if it fits within the pre-trained model’s
context window size, or the concatenation of
the context head and tail with an equal context
window budget, otherwise.

o LongLLLMLingua: LLL indicates the
LongL.LMLingua (Jiang et al., 2023b) with
parameter described in Appendix J.

4.1 LongBench Result

QA Accuracy. Table 2 shows the answer quality
using three different open-sourced models (Llama2,
Llama3, and Mistralv0.2). We make the follow-
ing observations: (1) We observe that YOURA
showed better overall answer quality than all of the
retrieval approaches (BM25 and embedding-based)
at a higher retrieval ratio — i.e., retrieving fewer
tokens from the long context. (2) In comparison to
the truncate-middle approach, YOURA shows bet-
ter overall quality for Llama2 and Llama3, and is
equal for Mistralv0.2. (3) When compared against
LLL, YOURA outperforms at single document QA
and slightly worse at multi-document QA task.

vs. Truncate-Middle. By dataset types, we ob-
serve that YOURA improves multi-document QA
more than single-document QA across all tested
models. This suggests that Trunc. accidentally fil-
ters out the key information for multi-document
QA, but the head and tail of a single document QA
dataset are often sufficient. In contrast, YOURA
properly retrieves key information for both the
single-document and multi-document QAs result-
ing in a better answer quality for both tasks.

For Mistral, which has a large context win-
dow size of 32k, truncation rarely happens (as
shown in the small retrieval ratio). Without trun-
cation, distractful information is included as part
of the augmented context, which results in worse
single-document answer quality than YOURA. !
For multi-document QA, YOURA showed slightly
worse quality (-0.56, 2%), because a failure to re-
trieve all the necessary information across multiple
documents results in incorrect answers. Overall,
the benefit of single-doc accuracy improvement off-
sets the multi-document accuracy drop resulting in

!"The impact of distractful information on output quality is
observed in other work (Catav, 2023) as well.

similar accuracy from a higher retrieval ratio.

vs. LongLLMLingua. Longl.IMLingua out-
performs all tested retrieval methods for multi-
document QA task. Especially for small retrieval
budget (3500 tokens for LlaMA2), Longl.LMLin-
gua showed 16% better accuracy than YOURA.
However, due to its bad accuracy for single doc-
ument QA, YOURA has higher overall accuracy
than LongLLMLingua.

5 Retrieval T\tlgo Si\?; ME\(/); Avg
N/A INF | 13.65 19.30 | 16.47
B500_7 3.28 | 22.82 20.17 | 21.49

| B50_70 3.28 | 23.86 23.25 | 23.56

§ E500_7 328 | 17.13 19.57 | 18.35

- E50_70 3.28 | 24.15 22.87 | 23.51
Trunc. 3.28 | 2574 2234 | 24.04
LLL 379 | 21.32 30.55 | 25.94
YOURA | 3.39 | 26.88 26.31 | 26.59
N/A INF | 11.59 23.16 | 17.37
B500_15 | 1.57 | 34.07 33.27 | 33.73

Q| B5SO_150 | 1.57 | 32.92 35.83 | 34.17

§ E500_15 | 1.57 | 33.33 30.82 | 32.08

- E50_150 | 1.57 | 31.50 35.70 | 33.60
Trunc. 1.57 | 36.83 3472 | 35.93
LLL 1.94 | 33.05 38.59 | 35.82
YOURA | 1.76 | 38.82 38.44 | 38.63
N/A INF 7.02 1147 | 9.25

~ | B500_63 | 1.04 | 32.29 24.66 | 29.02

? B50_630 | 1.04 | 29.14 23.28 | 26.63

TQ E500_63 | 1.04 | 26.79 22.06 | 24.76

~§ E50_630 | 1.04 | 29.14 23.28 | 26.63
Trunc. 1.04 | 32.65 26.62 | 29.64
LLL 1.08 | 27.99 27.79 | 27.89
YOURA | 1.33 | 33.22 26.06 | 29.64

Table 2: Accuracy of single and multi-document QA
tasks. YOURA shows better quality with a higher re-
trieval ratio, defined as the ratio of context tokens to
retrieved tokens (i.e., context tokens / retrieved tokens).
All retrieval methods, except for the no-context base-
line, are given the same maximum token budget (4K,
8K, and 32K tokens depending on the model). Note
that the results for Mistralv0.2 with LongLLMLingua
on certain datasets were excluded due to runtime error
(see Table 13 & Appendix J for details).
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SDoc  MDoc

SDoc  MDoc

= ~ s .
35 Retrieval Avg Ave Avg = | Retrieval Ave Ave Avg Req/Sec
E5M_500_15 | 32.57 39.10 | 35.83 o Trunc. | 525 5.6 5.50
9| ESM_50_150 | 36.49 37.90 | 37.20 YOURA | 543 578 | 5.60 (+2%)
YOURA 38.82 38.44 | 38.63 en | Trunc. 3.23 2.79 3.01

~ | YOURA | 3.76 3.03 | 3.39 (+13%)
E5M_500_15 | 29.42  26.57 | 28.00
= | ESM_50_150 | 30.39  26.14 | 28.27 s | Trunc. | 197 136 1.66
YOURA 33.22 26.06 | 29.64 YOURA 2.54 1.82 2.18 (+31 %)

L3: Llama3-8B, M: Mistralv0.2

Table 3: Accuracy of single and multi-document QA
tasks compared against E5-Mistral (ESM) embedding
model-based retrieval.

ES-Mistral Result. To further validate the ef-
fectiveness of our proposed training-free method,
we conducted a supplemental experiment compar-
ing YOURA against a strong embedding retrieval
baseline, E5-Mistral (Table 3). This model has
been trained on a diverse set of datasets, with a
known overlap with standard QA benchmarks such
as HotpotQA and raw Wikipedia data, which likely
contributed to the 2WikiMQA or Musique dataset.
While training on these dataset provides ES-Mistral
with a clear advantage on multi-document QA
datasets, our comparison on Llama3 and Mis-
tralv0.2 showed that YOURA'’s attention-based re-
trieval strategy was able to achieve higher perfor-
mance. This result is significant as it demonstrates
that our method, which requires no pre-training or
fine-tuning, can outperform a thoroughly trained
embedding model, highlighting the robustness and
efficiency of our approach.

4.2 Inference Performance

We discuss the impact of retrieval on the actual
inference time. To clarify, we measure pure infer-
encing time where the input is an already retrieved
and augmented. LongBench (Bai et al., 2024) takes
such an offline approach and we created a similar
scenario for the performance comparison in Ta-
ble 4. To understand the YOURA’s runtime over-
head when retrieval is performed online, we show
the latency breakdown in Appendix I, Figure 3.

QA Inference Performance. Table 4 shows the
average vLLM inference throughput (requests per
second) assuming offline truncation/retrieval,
just like the LongBench implementation. We
make the following observations. First, YOURA

L2: Llama2-7B, L3: Llama3-8B, M: Mistralv0.2

Table 4: vLLM performance on single-document and
multi-document QA. This table compares the average
vLLM throughput (request per second) of Truncation
and YOURA on LongBench datasets. A key finding
is that YOURA's retrieval of fewer tokens leads to an
increase in inference throughput of up to 31%.

improves the overall inference throughput, espe-
cially for models with larger context window sizes.
This is because the retrieval ratio is larger for
models with larger context window sizes. Second,
the retrieval ratio is a good throughput estimator.
The relative throughput improvements (+2%,
+13%, +31%) are on par with the relative retrieval
ratio (+3%, +12%, +28%). We conclude that the
performance of LLM serving platforms such as
vLLM is sensitive to the retrieved context size
and underscores the importance of high-quality
information retriever.

4.3 BABILong Results

BABILong is a synthetic benchmark that aims to
answer a question where the key supporting sen-
tence is hidden in the dataset. We observe the
following from Table 5: (1) YOURA improves
the performance of off-the-shelf Llama3 accuracy
by 25% while it shows 15% worse performance
for Mistralv0.2. (2) YOURA demonstrates a bias
toward supporting fact retrieval (QA1,2,3), likely
benefiting from its holistic context-aware retrieval
strategy. However, it shows weaker performance
in locating arguments (QA4,5), which may require
fine-grained positional sensitivity.

4.4 Sentence Extraction Quality

We evaluate the quality of sentence extraction al-
gorithm by measuring its exact match with the
ground-truth sentences. We also compare against
delimiter-based baselines.
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Ret. | QAl QA2 QA3 QA4 QA5 | Avg

LM | Accuracy T Edit Distance | NZ Edit Distance |

Meta-Llama-3-8B-Instruct, Data Length: 8§ K
N/A* 62 20 11 52 73 | 436

YOURA | 75 48 33 53 63 | 544
Mistral-7b-Instruct-v0.2, Data Length: 32 K
N/A* 45 7 12 54 67 37
YOURA | 51 6 14 46 41 31.6

*: leaderboard data

Table 5: BABILong Accuracy. Leaderboard is available
on https://hf.co/spaces/RMT-team/babilong and from
the July 29, 2024 snapshot.

Sentence Extraction Accuracy. Table 6 shows
the sentence extraction algorithm’s accuracy. We
used Stanza (Qi et al., 2020), an open-sourced NLP
toolkit, to split raw text into sentences, which we
treat as the gold standard (our target sentence).
Then we ran the algorithm on each tokenizer’s out-
put to identify the sentence boundaries within a
token sequence. A match is recorded if a decoded
token segment (defined by a boundary index) per-
fectly aligns with a target sentence after cleanup
(e.g., stripping whitespace).

Overall the extraction algorithm successfully
identifies the sentence boundary for models with
varying dictionary sizes: Llama2, Llama3, and Mis-
tralv0.2 tokenizers with 32000, 128256, and 32000
words, respectively. Llama2 and Mistral showed
nearly identical match ratios, as both models’ to-
kenizers share a similar vocabulary. Llama3’s to-
kenizer, which uses roughly x4 more vocabulary,
results in fewer total tokens (as shown in Table 12,
e.g., the single token .T ). Due to the rich vocabu-
lary, typos easily blur sentence boundaries, causing
many imperfect matches and leading to the small-
est overall match quality in the 2-1, 2-2, and 2-3
datasets. In contrast, this rich vocabulary proved
beneficial for the 1-1, 1-2, and 1-3, datasets, where
many atypical char sequences (e.g., <b>, math for-
mulas) were present and were properly represented
by the Llama3 tokenizer.

Comparison Against Baselines. To provide a ro-
bust point of comparison, we developed a delimiter-
based baseline that slices at common punctuation
tokens. This rule-based approach serves as a sim-
ple method for token-to-sentence alignment. We
evaluated the baselines by calculating the mean of
the minimum edit distances between the ground-
truth sentences and the sentences generated by the

L2 0.943 0.52 2.09
L3 0.925 0.24 1.93
M 0.943 0.54 2.12

Avg | 0937 0.43 2.05

L2: Llama2-7B, L3: Llama3-8B, M: Mistralv(.2

Table 6: Sentence extraction algorithm’s accuracy and
quantified quality for QA task datasets. Accuracy is
measured as the average EM rate (exact match / total #
of sentences). Unit for edit distance is characters, thus
smaller number means smaller misalignment.

baseline. Because the delimiter-based algorithm of-
ten produces a larger number of sentences than the
ground truth, we employed an exhaustive approach,
finding the minimum edit distance for each ground-
truth sentence against all generated sentences. As
shown in Table 7, our method significantly out-
performs the baselines in both Exact Match and
Average of Minimum Edit Distance. The poor base-
line performance is attributed to a cascading effect,
where a single misalignment near the beginning
of a sequence leads to a series of subsequent, un-
recoverable misalignments, resulting in near-zero
accuracy.

LM ‘ Method ‘ Accuracy T Edit Distance |
Delim( . ) 0.000 80.68
L3 | Delim(.?%\n. .. ) 0.000 44.34
Ours 0.925 0.24

L3: Llama3-8B

Table 7: Sentence extraction algorithm outperforms
delimiter-based sentence splitting in both the accuracy
and quantified quality for QA task. Delimiter-based
solutions suffers from cascading misalignments.

5 Conclusion

We presented a novel attention-based sentence re-
trieval framework that leverages a holistic measure-
ment of sentence-to-query relevance to enhance
retrieval accuracy, generation quality, and infer-
ence throughput. Our proposed heuristic combines
strong theoretical foundations with practical effec-
tiveness for sentence retrieval in long-context QA
tasks. While the framework introduces a prepro-
cessing overhead, we demonstrated how this cost
can be amortized across multiple queries, which
makes it an efficient and scalable solution.
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6 Limitations

6.1 Approximation for Attention Vector.

Despite our intention of making the reaction vec-
tor the likelihood ratio of joint probabilities, the
current attention vector calculation is not a truly
joint probability but an approximation due to tak-
ing the naive arithmetic mean and disregarding the
masked values within the self-attention matrix in
Equation 5. Taking the column-wise geometric
mean across multi-heads is desired but left for fu-
ture work due to edge cases such as one of the
attention values being zero.

6.2 Attention as Importance Probabilty

We are aware that the debate on whether attention
weights do (Xiao et al., 2024; Zhang et al., 2023) or
do not (Guo et al., 2024) necessarily reflect ground-
truth importance. However, we find that in practice,
this heuristic remains effective for retrieval. Our
approach captures relative shifts in attention trig-
gered by the query, which serves as a strong proxy
for semantic relevance—something not captured
by raw attention alone.

6.3 YOURA Scalability.

For each partitioned input (ensuring each token
sequence fits within the context window for prefill),
YOURA could retrieve in parallel. However, this
optimization would require complex GPU memory
management, which we leave for future work.

Despite the performance benefits, partitioning
restricts holistic retrieval to the context window.
Alternative windowed attention mechanisms, such
as sliding or overlapping attention, could be ap-
plied; however, determining the reaction score for
overlapping sentences is non-trivial and is also left
for future exploration.
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A Risks

Bias and Fairness Concerns. YOURA opti-
mizes attention-based retrieval, which may harm-
fully be trained to inject biases during pre-training.
If certain perspectives or sources receive stronger
attention weights, models might over-represent
dominant narratives while underexposing marginal-
ized voices. Future work should explore bias cor-
rection techniques, including obfuscated mecha-
nism or fairness-aware retrieval objectives, to en-
sure more balanced outputs.

Privacy and Security Considerations. YOURA
benefits from preprocessed data caching. For ex-
ample, if the sentence extraction algorithm out-
put is improperly protected, unintentional data
leakage may occur. We recommend not using
YOURA for privacy-preserving mechanisms. If
must, controlled access to preprocessed data and
robust anonymization techniques are necessary to
minimize risks.

Exclusion and Underrepresentation Risks. As
with many NLP advancements, YOURA'’s retrieval
effectiveness may be language-dependent, espe-
cially when the foundational model favors high-
resource languages. Future research should explore
methods to fine-tune reaction scoring across diverse
linguistic datasets to ensure inclusivity and avoid
exacerbating linguistic disparities.

B Scientific Artifacts

Dataset. The two main dataset used are En-
glish version of LongBench (Bai et al., 2024)
(MIT License) and BABILong (Kuratov et al.,
2024) (Apache 2.0 license). The LongBench is
an umbrella benchmark dataset that cites Narra-
tiveQA (Kocisky et al., 2018), Qasper (Dasigi
et al.,, 2021), MultiFieldQA (Bai et al., 2024)
(generated using arXiv, C4 dataset (Raffel et al.,
2020), Wikipedia, etc.), HotpotQA (Yang et al.,
2018), 2WikiMultihopQA (Ho et al., 2020),
MuSiQue (Trivedi et al., 2022), GovReport (Huang
et al., 2021), QMSum (Zhong et al., 2021),
MultiNews (Fabbri et al., 2019), TREC (Li and
Roth, 2002), TriviaQA (Joshi et al., 2017), SAM-
Sum (Gliwa et al., 2019). BABILong leveraged
PG19 dataset (Rae et al., 2019) as the “haystack”
text.

Models. We use Llama2 (Touvron et al.,
2023) (https://www.llama.com/llama2/license/),

Llama3 (Grattafiori et al., 2024)
(https://www.llama.com/llama3/license/),  Mis-
tralv0.2 (Jiang et al., 2023a) (Apache 2.0
license), Llama3.1 (Grattafiori et al., 2024)
(https://www.llama.com/llama3_1/license/),
Qwen2.5 (Qwen et al., 2025) (Apache 2.0 license)
in our paper.

Some embedding models used in the paper in-
clude paraphrase-MinilLM-L6-v2 (Apache 2.0 li-
cense), ES-Mistral (MIT License).

Software. We built upon HuggingFace trans-
former library (Wolf et al., 2020) (Apache 2.0 Li-
cense) and vLLM (Kwon et al., 2023) (Apache 2.0
License) for our experiments.

License. License details are provided within
along the artifact.

C AI Writing Assistant

Throughout the paper, writing is done by human
and human used Al as writing assistant responsible
for proof-reading, reviewer-like human providing
feedbacks on writing structure, clarity, and con-
ciseness. Futhermore, some math formula annota-
tions in Section 3, such as annotation to represent
column-wise subsequencing with subscript and su-
perscript outside of a paranthesis, was Al’s sugges-
tion. Al assisted in finding proper description of the
reaction score such as “likelihood of normalized
joint probability” in Section 3.2, but the original
idea of leveraging geomentric mean for interpret-
ing it as a likelihood was human effort. We used
Google Gemini 2.5 family for camera-ready proof-
reading and for all others used OpenAl ChatGPT 4
family.

D Discussion

D.1 Non-QA Accuracy.

Table 8 shows how YOURA impacts other tasks
such as summarization, few-shot learning, and
synthetic tasks such as counting unique passages
(PassageCount) or finding a passage that an ab-
stract is generated from (PassageRetrieval). We
make the following observations: (1) YOURA ef-
fectively reduces the input size with a small impact
on the summarization quality, (2) YOURA nega-
tively impacts the few-shot learning or Passage-
Count tasks, (3) YOURA improves PassageRe-
trieval for Llama3 but not for Llama2 or Mis-
tralv(.2.
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For Summarization task, the LM summarizes
the report, meeting notes, or news. For GovReport
(3-1) and MultiNews, the LongBench does not in-
clude data-specific queries, and we use a portion of
the prompt as the query. YOURA performs slightly
better than the truncate-middle approach (+0.02).
It indicates that YOURA can retrieve the sentences
crucial for the correct summary.

For Few-Shot Learning task, the LM is given
several exemplary QA pairs or dialogues and the
real query. We observe that the truncate-middle
outperformed by a huge margin and reveals that
YOURA is not a silver bullet for all tasks. It is not
surprising because retrieval has two potential fail-
ure points: (i) chunking may tear apart the question-
answer pair or dialogue, (ii) retrieval may retrieve
an incomplete example or dialogue distracting the
real query intention, and (iii) retrieval may be bi-
ased towards specific type of question-answer pair.
In contrast, truncate-middle may have at most two
torn examples or dialogues because it splits into
head, middle, and tail.

In PassageCount, LM should return the unique
passage count from a list of passages with dupli-
cates. The task requires a full view of each passage.
Retrieving a list of passage segments results in low
accuracy, resulting in a single-digit accuracy across
models and setups. YOURA performs worse than
the truncate-middle approach across all models.

In PassageRetrieval, the LM is given a summary
and thirty passages to identify the source passage.
YOURA shows better accuracy for Llama3 but
worse for other models. The mixed result implies
that YOURA improves accuracy when the model
context window size is smaller than the input. Still,
the filtered information negatively impacts accu-
racy when the context window size is sufficiently
large (e.g., Mistralv0.2 has 32 K window size).

D.2 Models with Long Context Windows.

Models with long context window sizes such as
Llama3.1 (128 K token context window size) re-
duce the importance of retrieval from the accuracy
perspective. In such models, the whole input could
be processed without truncation at the cost of addi-
tional computation and memory capacity require-
ments. However, the strength of YOURA lies in
the fine-tuning and training-free aspect along with
the benefits of the RAG systems, computational
efficiency, and resource budget-friendly.

b Retrieval Summ | F-Shot | P.C. PR.
= Avg | Avg | (5-1) | (5-2)
~ | Trunc | 2443 | 6291 | 2.60 | 9.25
= | YOURA | 24.12 | 1345 | 2.07 | 3.62
| Trunc | 26.86 | 68.67 | 8.00 | 67.50
| YOURA | 26.88 | 30.80 | 5.00 | 87.00
s | Trunc | 2748 | 67.33 | 4.30 | 88.02
YOURA | 27.41 | 30.80 | 3.06 | 71.98

L2: Llama2-7B, L3: Llama3-8B, M: Mistralv0.2

Table 8: Accuracy of non-QA tasks: summarization,
few-shot learning, and synthetic tasks (Passage Count,
Passage Retrieval).

Retrieval ‘ SDoc* MDoc Summ ‘ Avg
Trunc. 51.42  46.05 28.79 40.92
YOURA | 47.70 4232  28.37 38.43 (-6%)

*Excluding 1-1 due to out-of-memory issues with Trunc

Table 9: Accuracy drop of YOURA when compared to
truncation for Llama 3.1. Llama 3.1’s context window
size is 128 K tokens, resulting in no truncation for all of
the tested datasets.

D.3 Qwen 2.5 7B Instruct Result

Table 10 shows detailed result of Qwen2.5-7B-
Instruct-32K. We observed that some attention
heads produced NaN (Not a Number) scores,
which made the standard YOURA algorithm un-
stable. To address this, we present three variants
of YOURA, each handling the NaN values differ-
ently.

e YOURA-mean: This variant uses the standard
torch.mean function, which propagates NaN
values. As a result, contexts producing NaN
scores are excluded from the evaluation by
naively truncating from the beginning to fit
within the context window size.

e YOURA-nanmean: This variant replaces the
standard mean with a NaN -aware mean func-
tion (e.g., torch.nanmean), which ignores NaN
values during the calculation.

o YOURA-zero: In this variant, NaN values are
explicitly replaced with O before the mean is
computed.

D.4 Alternative Reaction Score.

To show that our definition of reaction score works
better than others we compare an alternative defi-
nition, the absolute difference between initial and
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s | Retrieval Single-Document QA | SDoc || Multi-Document QA | MDoc || Overall
= 1-1 12| 13| Avg 2-1| 22| 23| Avg Avg
No Ctxt 7.06 | 11.00 | 15.69 | 11.25 || 27.29 | 26.12 | 11.90 | 21.77 16.51
B500_63 16.37 | 40.43 | 45.56 | 34.12 || 49.66 | 40.44 | 18.34 | 36.15 35.13
vy | B50_630 22.69 | 40.92 | 50.64 | 38.08 || 53.70 | 45.71 | 27.98 | 42.46 40.27
< | E500_63 16.37 | 40.43 | 45.56 | 34.12 || 49.66 | 40.44 | 18.34 | 36.15 35.13
= | ES0_630 24.16 | 40.28 | 48.22 | 37.55 || 56.34 | 42.96 | 34.08 | 44.46 41.01
< | YOURA - mean 2421 | 43.84 | 47.12 | 38.39 || 53.79 | 41.01 | 29.12 | 41.31 39.85
YOURA - nanmean || 31.55 | 43.53 | 50.95 | 42.01 || 57.06 | 46.02 | 28.93 | 44.00 43.01
YOURA - zero 30.57 | 43.17 | 50.92 | 41.55 || 57.04 | 47.02 | 29.99 | 44.69 43.12

The bold score indicates the best score for each pre-trained model.

Table 10: Detailed experiment results for Qwen 2.5.

Reaction Vector Definition ‘ SDoc MDoc | Avg
abs(Reacted - A x Initial)

A=1 36.57 36.44 | 36.51
A=0.75 3775 37.85 | 37.80
A=0.5 37.98 38.80 | 38.39
A=0.25 37.52 3849 | 38.01
Reacted / Initial 38.82 3844 | 38.63

Table 11: Comparison against the alternative reaction
score definitions (Model: LLIama3-8B).

reacted attention vectors. We study how the change
of relative ration between the Reacted and Initial
attention impact the QA task accuracy. Table 11
shows that among the several potential alternative
definitions, ratio performs the best.

E Sentence Extraction Algorithm

Algorithm 1 lists the details of the sentence extrac-
tion algorithm.

F Dataset

Figure 12 lists dataset details. For BABILong
dataset, we used pregenerated RMT-team/babilong
from huggingface repository’s 8K and 32K subsets.

G Detailed Results

LongBench QA Evaluation Details. Table 13,
Table 14 are the detailed version of Table 2 and
Table 4, respectively.

Sentence Extraction Accuracy. Table 15 and
Table 16 shows full result of sentence extraction
algorithm’s accuracy and quality in Table 6.

Algorithm 1 Sentence Extraction Algorithm

Require: seq - Encoded token sequence
Require: 7'S - Target Sentences generated by
NLP models
Require: tol < 30 - Max adjustment attempts
1: P <« [] {Processed sentences}
2: B <« || {Sentence boundary indices}
3: 7, m < 0 {Initialize indices}
4: while P # TS do
5. APPEND T'S]i] to P
6: ¢ + Length(Encode(Concat(P))) {Candi-
date}
: saved < ¢
8. wisited < ()
while true do

10: if ¢ € wisited or ¢ > |seq| or |c —
saved| > tol then

11: ¢ < saved

12: break

13: end if

14: ADD c to visited

15: s < Decode(seq[m : c])

16: if s == T'S[i] then

17: break

18: else if s is substring of 7°S[i| then

19: c+—c+1

20: else

21: c+—c—1

22: end if

23:  end while

24:  APPEND cto B
25: m<— ¢

26: 1<+ i+1

27: end while

28: return B
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Dataset ID | Source Avg # Tokens Metric # Data
Llama2 | Llama3 | Mistral
LongBench - Single-Document QA
NarrativeQA 1-1 | Literature, Film 35937 29777 | 35937 F1 200
Qasper 1-2 | Science 5603 4922 5517 F1 200
MultiFieldQA-en 1-3 | Multi-field 8046 6889 7877 F1 150
LongBench - Multi-Document QA
HotpotQA 2-1 | Wikipedia 15244 12780 | 14890 F1 200
2WikiMultihopQA 2-2 | Wikipedia 8381 7096 8281 F1 200
MuSiQue 2-3 | Wikipedia 18459 15544 | 18069 F1 200
LongBench - Summarization
GovReport 3-1 | Government report 12235 10240 | 11631 Rouge-L 200
QMSum 3-2 | Meeting 15907 13853 15791 Rouge-L 200
MultiNews 3-3 | News 3113 2608 3005 Rouge-L 200
LongBench - Few-shot Learning
TREC 4-1 | Web question 7759 6755 7559 | Accuracy (CLS) 200
TriviaQA 4-2 | Wikipedia, Web 13212 11038 | 12938 F1 200
SAMSum 4-3 | Dialogue 10964 8999 | 10684 Rouge-L 200
LongBench - Synthetic Task
PassageCount 5-1 | Wikipedia 17209 14879 16797 | Accuracy (EM) 200
PassageRetrieval 5-2 | Wikipedia 14228 12283 13894 | Accuracy (EM) 200
BABILong - Needle-in-a-haystack
Single Supporting Fact | QA1 | PG19 as Noise Varies Varies | Varies | Accuracy (EM) 100
Two Supporting Facts QA2 | PG19 as Noise Varies Varies | Varies | Accuracy (EM) 100
Three Supporting Facts | QA3 | PG19 as Noise Varies Varies | Varies | Accuracy (EM) 100
Two Arg Relations QA4 | PG19 as Noise Varies Varies | Varies | Accuracy (EM) 100
Three Arg Relations QA5 | PG19 as Noise Varies Varies | Varies | Accuracy (EM) 100

Table 12: Evaluation detail on LongBench dataset (Bai et al., 2024) and BABILong (Kuratov et al., 2024).

Resilience to Edge Cases. To quantify the re-
silience despite typos and overly representative dic-
tionaries, we measured the Levenshtein distance be-
tween the target sentence and the sentence yielded
by our sentence extraction algorithm (Table 16).
On average, one needs less than 3 character edits
(insert, remove, replace) for the algorithm output
sentences to match the target sentences. The NZ
column in Table 16 is the average Levenshtein dis-
tance of unmatched sentences. From these rows,
we conclude that the sentence extraction algorithm
is resilient to incorrect split and its cascading effect.

H Addtional Related Works

Long-context Language Models. Training
LLMs on sequences with a maximum length
while still ensuring they infer well on sequences
longer than the maximum is challenging. Previous
studies proposed techniques such as positional

interpolation (Chen et al., 2023a; Li et al.,

2023), positional extrapolation (Press et al.,
2021), external emory (Wu et al., 2020; Martins
et al., 2021), memory-retrieval augmentation
strategies (Mohtashami and Jaggi, 2023; Wang
et al., 2024) to push the limit of the context
window size to 2 million and even longer (Ding
et al.,, 2024; Bertsch et al.,, 2024). Although
these works improved model accuracy on various
tasks, the large context window size implies more
computational and memory costs.

Attention Mechanism. Researchers proposed
self-attention alternatives to mitigate its quadratic
complexity, which becomes a computational bot-
tleneck for a long context. These include sparse
attention mechanisms with pre-defined sparsity pat-
terns (Zhu et al., 2021; Liu et al., 2023), recurrence-
based method (Bulatov et al., 2022), low-rank pro-
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S | Retrieval | Retr. Rate Single-Document QA | SDoc Multi-Document QA MDoc || Overall
= Avg 1] 12| 13| Avg 2-1 22| 23| Awg Avg
N/A INF 8.89 | 13.87 | 18.19 | 13.65 || 23.05 | 25.67 9.17 | 19.30 16.47
B500_7 3.28 12.59 | 21.44 | 3442 | 22.82 || 25.92 | 27.47 7.11 | 20.17 21.49
< | B50_70 3.28 16.37 | 21.51 | 33.71 | 23.86 || 27.48 | 28.62 | 13.64 | 23.25 23.56
§ E500_7 3.28 12.85 | 16.08 | 22.47 | 17.13 || 25.51 | 24.84 8.35 | 19.57 18.35
= | E50_70 3.28 17.15 | 20.12 | 35.18 | 24.15 || 28.80 | 27.15 | 12.66 | 22.87 23.51
Trunc. 3.28 18.84 | 21.71 | 36.68 | 25.74 || 27.55 | 31.08 8.40 | 22.34 24.04
LLL 3.79 15.36 | 15.68 | 32.93 | 21.32 || 38.99 | 3091 | 21.74 | 21.12 21.97
YOURA 3.39 19.70 | 26.97 | 33.99 | 26.88 || 32.35 | 32.57 | 14.02 | 26.31 26.59
N/A INF 9.62 | 14.38 | 10.78 | 11.59 || 28.43 | 30.46 | 10.60 | 23.16 17.37
B500_15 1.57 18.27 | 40.21 | 43.72 | 34.07 || 41.75 | 41.18 | 16.88 | 33.27 33.73
e« | BSO_150 1.57 19.86 | 36.51 | 42.39 | 32.92 || 47.04 | 40.58 | 19.86 | 35.83 34.17
g E500_15 1.57 16.38 | 39.85 | 43.76 | 33.33 || 42.28 | 3493 | 15.25 | 30.82 32.08
‘5“ E50_150 1.57 19.05 | 35.44 | 40.02 | 31.50 || 48.05 | 36.85 | 22.19 | 35.70 33.60
Trunc. 1.57 21.54 | 44.21 | 44.75 | 36.83 || 46.43 | 36.23 | 21.50 | 34.72 35.93
LLL 1.94 20.95 | 36.35 | 41.86 | 33.05 || 47.53 | 41.03 | 27.20 | 38.59 35.82
YOURA 1.76 26.32 | 45.22 | 4491 | 38.82 || 50.51 | 37.96 | 26.87 | 38.44 38.63
N/A INF 724 | 7.69 | 6.13| 7.02 | 16.41 11.87 6.13 | 11.47 9.25
B500_63 1.04 20.74 | 29.22 | 4691 | 32.29 || 34.26 | 2226 | 17.47 | 24.66 29.02
g B50_630 1.04 18.84 | 25.08 | 43.50 | 29.14 || 32.85 | 18.66 | 18.32 | 23.28 26.63
% E500_63 1.04 14.02 | 24.14 | 42.22 | 26.79 || 32.81 1755 | 15.82 | 22.06 24.76
% E50_630 1.04 18.84 | 25.08 | 43.50 | 29.14 || 32.85 18.66 | 18.32 | 23.28 26.63
= | Trunc. 1.04 20.80 | 29.23 | 47.92 | 32.65 || 37.28 | 21.72 | 20.86 | 26.62 29.64
LLL 1.08 18.85% | 22.89 | 42.23 | 27.99 || 36.56 | 23.88* | 22.93* | 27.79 27.89
YOURA 1.33 22.57 | 30.07 | 46.86 | 33.22 || 36.63 | 22.06 | 19.48 | 26.06 29.64

The bold score indicates the best score for each pre-trained model.

Table 13: Detailed experiment results for LongBench’s single-document and multi-document QA datasets. YOURA
shows better quality with a higher retrieval ratio — i.e., retrieved fewer tokens. All retrieval scenarios use the
maximal budget (4K, 8K, and 32K tokens depending on model) except for no-context setup and “YOURA”. Retrieval
ratio (second column) is an average of the total token count divided by the retrieved token count. Mistralv0.2
with LongLLMLingua retrieval on 17, 2, and 9 data points from 1-1, 2-2, 2-3 dataset, respectively, resulted in
runtime error and we report the average of the remaining results.

jection attention (Zhao et al., 2024), and memory-
based mechanisms (Lou et al., 2024). Leveraging
attention for retrieval has been explored in image
retrieval (Delmas et al., 2022) or QA tasks (Jiang
et al., 2022), learning the inferred relevance from
attention for retrieval. However, these approximate
methods introduce inductive bias (e.g., predefined
sparsity) that can fit well for specific domains, but
may reduce model quality in general LLM training.

Differential Transformer (Ye et al., 2024) is the
concurrent work that is closely related to our work,
but differs in the following ways: (1) DIFF pro-
posed new differential transformer architecture re-
quiring a full model training, while our proposal
works on off-the-shelf language models without
training or fine-tuning, (2) DIFF focuses on reduc-
ing the hallucinations by reducing the attention to

irrelevant tokens while our proposal focuses on
retrieving the relevant sentences.

Fine-tuning for Long Context. Recent
works (Ding et al., 2024; Chen et al., 2023b;
Peng et al., 2023) show that a pre-trained LLM
context window can be extended by fine-tuning
on longer texts. However, fine-tuning approaches
still require multiple self-attention computations
demanding both high-quality training datasets
and computational costs. Our approach does not
require fine-tuning.

Summarization Recent advances in the field of
long-input summarization have led to a variety
of innovative approaches addressing both general
and domain-specific challenges, particularly under
low-resource conditions (Zhang et al., 2022; Moro
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Model Retrieval | Single-Document QA | Multi-Document QA | Overall Avg
Method | 1-1 | 1-2 | 13 | 2-1 | 22 | 2-3 Req./Sec
Llama2 Trunc. | 558 | 4.68 | 550 | 5.71 | 587 | 5.68 5.50
Llama2 YOURA | 5.70 | 488 | 5.72 | 570 | 6.00 | 5.63 5.60 (+2%)
Llama3 Trunc. | 2.50 | 3.95 | 323 | 2.63 | 323 | 252 3.01
Llama3 YOURA | 2.60 | 4.87 | 3.82 | 2.72 | 383 | 253 | 3.39(+13%)
Mistralv0.2 | Trunc. | 0.55 | 3.17 | 2.19 1.08 | 2.14 | 0.86 1.66
Mistralv0.2 | YOURA | 0.64 | 4.02 | 297 | 145|285 | 1.15 | 2.18 (+31%)

Table 14: vLLM Serving performance (request per second, higher the better) for LongBench’s single-document and
multi-document QA datasets with respect to Truncation and YOURA. YOURA retrieved fewer tokens resulting in
upto 30% higher inference throughput. We report single run due to restricted computing resource.

LM | 1-1 12 13 21 22 23 | Awg

Average Sentence Exact Match 1

L2 | 0941 0831 0.935 0984 0.988 0.978 | 0.943
L3 | 0999 099 0.965 0.865 0.869 0.856 | 0.925
M | 0940 0.831 0.935 0984 0.988 0.978 | 0.943
Avg ‘ 0960 0.886 0.945 0944 0.948 0.937 ‘ 0.937

L2: Llama2-7B, L3: Llama3-8B, M: Mistralv0.2

Table 15: Sentence extraction algorithm’s accuracy mea-
sured as the average sentence EM rate (exact match /
total # of sentences)

IM| 11 12 13 21 22 23 ‘Avg

Average of Edit Distances,,

L2 | 0.01 0.03 022 0.02 208 0.77 | 0.52

L3 | 033 036 0.18 037 0.01 0.18 | 0.24

M |0.01 0.03 023 0.02 215 0.77 | 0.54
Average of Non-Zero Edit Distances|

L2 | 078 155 1.82 140 2.89 4.08 | 2.09

L3 | 252 261 129 269 1.11 1.35]| 193

M | 081 158 1.84 142 296 4.10|2.12

L2: Llama2-7B, L3: Llama3-8B, M: Mistralv0.2

Table 16: Resilience of Sentence Extraction algorithms
measured as the average edit distance between the tar-
get sentence and algorithm output. A smaller number
indicates fewer character edits (insert, remove, replace)
to transform the TLSC output sentence to the target sen-
tence, and thus a more resilient quality.

and Ragazzi, 2023; Moro et al., 2023; Mao et al.,
2022; Liu et al., 2024). These contributions empha-
sizes how summarization could mitigate the long-
document challenge with limited context window
LMs.

Reranking & Multi Stage Retrieval Rerank-
ing (Kratzwald et al., 2019; Sun et al., 2023;
Pradeep et al., 2023) and multi stage retrieval is
different from the first stage retriever because it
further filters information from an already retrieved
contexts as the second phase of retrieval (Guo et al.,
2022). Comparing these works against our work is
beyond the scope.

I YOURA Latency Breakdown

Figure 3 illustrates the overhead of naive YOURA
implementation and how reusing KVCache reduces
the overhead. The left figure is the latency break-
down for a single QA execution and the right figure
is the per processed token latency breakdown (2x
# of input tokens for retrieval, # of retrieved tokens
for generation).

From the left figure, we observe that YOURA'’s
retrieval could be up to 5.5 longer than the gener-
ation stage but performance optimization reduces
the time by half. The culprit behind the overhead
is that every token must be prefilled at least once,
whereas during the generation stage, at most the
context window-sized tokens are prefilled.

Dividing the time by the number of processed
tokens reveals that the YOURA's retrieval overhead
per token is smaller than the generation stage (right
figure). Similar to the aggregated retrieval time,
applying the performance optimization reduces the
per-token latency by roughly half. Generation may
take longer for each token (as observed in Llama2
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Figure 3: Latency breakdown of YOURA for each of Retrieve, Augment, Generate stage for six QA datasets. The
left figure is the overall time, and the right is the amortized time per processed token. For the retrieval stage, we
show both the unoptimized performance and the optimized implementation. Augmentation overhead is negligible.

and Llama3) because generation time includes both
the prefill and decode stages contributing to non-
linear scaling with respect to the number of pro-
cessed tokens.

In the long run, YOURA's latency can be im-
proved by reusing initial self-attention across mul-
tiple queries for the same context. This reuse
not only reduces computational overhead but also
boosts throughput by minimizing redundant pro-
cessing. Additionally, parallel processing of par-
titioned input sequences can further enhance effi-
ciency, allowing YOURA to better handle large
contexts at scale.

J Config

LongLLLMLingua We used the following param-
eters for LonglLLMLingua’s compression function
(compress_prompt) (Jiang et al., 2023b). We in-
stalled using pip install llmlingua (version
0.2.2).

context: Raw input text

instruction: Prepending prompt (i.e., prompt
string before the beginning of the context).
question: Query

condition_in_question: "after_condition"
reorder_context: "sort"
condition_compare: True

rank_method: "longllmlingua"

rate: -1, the value may be ignored by the tar-
get_tokens.

target_token: 3500, 7500, and 31500, for
Llama2, Llama3, and Mistralv(.2 respectively.
Note that the actual retrieval is at most target

tokens and impacts the retrieval process.
Mistralv(.2 For 28 out of 1150 QA task data,

LongLLMLingua encounters runtime error similar
to the closed issue on github repository?.

Reaction Triggering Query For some data in
summarization or few-shot task, explicit query is
not provided but rather the prompt describes the
task. For such case, we explicitly use the following
to compute the YOURA'’s reaction vector:

e gov_report: “You are given a report by a gov-
ernment agency. Write a one-page summary of
the report..”

multi_news: “You are given several news pas-
sages. Write a one-page summary of all news.”

passage_count: “Enter the final count of
unique paragraphs after removing duplicates.
The output format should only contain the num-
ber, such as 1, 2, 3, and so on.\n\nThe final an-
swer is: 7

Rogue

Version: 1.0.1

Function: get_score

Parameter: avg=True

Reports: scores["rouge-1"]1["f"]

Stanza

e Version: 1.8.1
e Language: "en
e Processors: "tokenize,mwt,ner”

n

Zhttps://github.com/microsoft/LLMLingua/issues/14
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