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Abstract

Recent computational work typically frames
morphophonology as generating surface forms
(SFs) from abstract underlying representations
(URs) by applying phonological rules or con-
straints. This generative stance presupposes
that every morpheme has a well-defined UR
from which all allomorphs can be derived, a
theory-laden assumption that is expensive to
annotate, especially in low-resource settings.
We adopt an alternative view. Allomorphs and
their phonological variants are treated as the
basic, observed lexicon, not as outputs of ab-
stract URs. The modeling task, therefore, shifts
from deriving SFs to selecting the correct SF,
given a meaning and a phonological context.
This discriminative formulation eliminates the
need to posit or label URs, allowing the model
to exploit surface evidence directly.

1 Introduction

Computational morphophonology has long mod-
eled the problem of deriving spoken forms, also
known linguistically as surface forms (SFs), from
underlying representations (URs) using some form
of transformations. Whether within rule-based
frameworks, constraint-based theories, or neural
sequence-to-sequence approaches, this generative
tradition hinges on the idea that URs exist as ab-
stract, latent forms from which observable variants,
or allomorphs, can be derived. Yet despite the large
amount of work invested in this problem, the sta-
tus of the UR remains conceptually and practically
fraught: What constitutes a valid UR? How are
its properties discovered, and how does one distin-
guish it from a mere analytical convenience? Is
it suitable when observable data is scarce, where
there aren’t enough examples to hypothesize a UR?

In this paper, we explore a radically different
approach. Rather than positing URs and seeking
generative mechanisms to produce SFs, we pro-
pose a model in which the full set of surface vari-

Root +Plural SF

UR SS SF

dog +s {+s, +z, +Iz} +z [dOgz]
cat +s {+s, +z, +Iz} +s [kæts]
fox +s {+s, +z, +Iz} +Iz [fAksIz]
ox +en {+en} +en [Qks@n]

Figure 1: Examples of English plural morphology illus-
trating the distinction between underlying representa-
tions (UR), the surface set of possible realizations (SS),
and the selected surface form (SF).

ants, the combination of the allomorphs and their
phonological surface variants (which we will call
allomorphones), is taken as primary. The task then
becomes one of enumeration and selection: given
a context, choose the appropriate SF from a pre-
specified inventory. This reframing transforms the
problem from a generative to a discriminative one,
with significant implications for both linguistic the-
ory and computational modeling. Figure 1 illus-
trates how multiple allomorphones of the +Plural
morpheme for English coexist in the surface set,
with one selected per context.

By grounding analyses in observable surface
data rather than abstract representations, our ap-
proach emphasizes empirical adequacy and learn-
ability. It aligns with recent computational trends
favoring surface-level, context-sensitive model-
ing. The approach is particularly exciting in low-
resource settings for which a limited amount of
data is available, as creating a UR requires the-
oretical decisions about the phonological system
of the language or language variant, while our ap-
proach only requires morphological segmentation
and part-of-speech annotation. We demonstrate its
utility through a case study in Egyptian Arabic for
its complex morphophonology. We compare our
approach with existing models analogous to gen-
erative approaches. We also show that our model
excels in low-resource settings compared to others.
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2 Background and Related Work

2.1 Linguistic Theory

In theoretical linguistics, there is extensive liter-
ature discussing different theories of the mental
representation assigned to morphemes. On one
end, Generative Phonology (GP; Kenstowicz and
Kisseberth, 1979), assumes one abstract UR per
morpheme and derives all surface forms through
language-specific phonological rules or constraints,
this derivation is a transformation of the UR into
the SF. For example, within the rule-based frame-
work, each rule accounts for a single transforma-
tion, therefore, there is often a specific order that
governs the application of the rules to a UR to
generate the correct SF. Similarly, in a constraint-
based framework, multiple constraints are lined up
according to a specific rank to pick the correct hy-
pothesized SF from a given UR. These ordered
rules and ranked constraints are often language-
or dialect-specific and require extensive linguistic
scholarship. On the other end, researchers argue
against having a single abstract representation and
instead lexically store every context-conditioned
alternant and allow phonological mechanisms to
choose the appropriate form, leaving little work
for phonological rules (Harris, 1942; Becker and
Gouskova, 2016). This framework is referred to
as the Morpheme Alternate Theory (MAT). While
this approach does not posit an abstract representa-
tion, it still requires language-specific mechanisms.
More extensive discussion on the implications of
those views is found in Hwangbo (2018, 2023).

In this work, we don’t necessarily subscribe to
one specific theory over the other. Instead, we
empirically investigate the implications of each
approach for the task of recovering SFs from a
given representation regardless of the theoretical
grounding of such a representation.

2.2 Computational Modeling

The task of deriving a spoken form of a word in
NLP has been approached from a generative-like
perspective, where an initial form goes through
transformations to arrive at the spoken form.
Grapheme-to-phoneme (G2P) tasks consider such
form to be the orthographic representation; the
latest SOTA systems are mostly encoder-decoder
based models (Ashby et al., 2021; McCarthy et al.,
2023) where the transformation mechanisms are
often uninterpretable and opaque. Other works that
model morphophonology either assume a UR or

discover one based on some constraints (Antworth,
1991; Habash and Rambow, 2006; Pater et al.,
2012; Cotterell et al., 2015; Belth, 2023; Khalifa
et al., 2023).

This work is inspired by the long-standing lit-
erature in computational phonology, which aims
to model existing grammars and constraints effi-
ciently. One notable work is the One-Level Phonol-
ogy by Bird and Ellison (1994). In their work,
they compile well-formedness constraints as "state-
labeled" automata, which are then combined with
logical operations regardless of ordering. Most
importantly, they do not rely on the concept of
UR and instead operate directly on surface forms.
While this is similar to our work in terms of us-
ing surface forms only, our work extracts selec-
tion constraints (akin to well-formedness) from the
data itself with very few priors, unlike One-Level
Phonology, where these constraints are based on
linguist-provided descriptions. Moreover, our ap-
proach is trained and tested on a transcribed corpus
of naturally occurring speech, which is a more re-
alistic application.

To the best of our knowledge, we have not en-
countered efforts approaching this task as an enu-
meration and selection problem. We believe this
is an important path to explore to facilitate spoken
form derivation for low-resource and understud-
ied language varieties. We explore our approach
through studying Egyptian Arabic morphophonol-
ogy, since it is inherently a morphologically com-
plex language variety and well studied by phonolo-
gists. For this reason, we consider PARLA (Khalifa
et al., 2023) to be the computational model analo-
gous to GP that we compare to. We use the com-
prehensive dataset described in their work. In short,
PARLA is a rule-inducing algorithm that creates and
generalizes productive transformation rules from
a set of UR-SF pairs. Those rules represent the
morphophonological grammar that generalizes to
new unseen URs. PARLA operates within the rule-
based phonology framework but is not an absolute
representative of it.

3 Our Approach: Radical Allomorphy

In this approach, we shift the focus from the di-
rect relationship between the actual form of the
underlying representation to what it represents: a
set of realized surface forms. We explore an ap-
proach analogous to MAT, where we don’t assume
a phonological UR and instead represent the dif-
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MTAG CONJ:f DET NOUN FS # NOUN FS.Cnstr POSS:1P
HMORPH fa- il- sAH =a # sAH =it =hum
ALM {fa-, {il-, is-, it-, ir-, · · · {sAH, =a # {sAH, {=it, {=hum,

f-} l-, s-, t-, r-, , · · ·} saH} # saH} =t} =uhum}
SF fa- s- sAH =a # saH =it =hum

Table 1: Example illustrating the taxonomy of our radical allomorphy approach: Morph tag (MTAG), Head Morph
(HMORPH), Allomorphones (ALM), and Surface Form (SF). The example corresponds to the Egyptian Arabic
sentence Ñî �DkA� �ékA�ËA 	̄ [fassa:Ha saHithum] ‘so the yard is their yard’. ‘-’, and ‘=’ indicate prefix, and suffix
boundaries, respectively.

ferent realizations of morphs as a set of possible
SFs. By this definition, the task becomes one of
enumeration and selection rather than an explicit
mapping between a form and its realization.

We define three key notions:

• Morph Tag (MTAG) is the morphosyntactic
identity of a morpheme, i.e., a set of feature-
value pairs along with an underlying part-of-
speech tag (e.g., verb, 3rd person singular mas-
culine perfective).

• Head morph (HMORPH) is a single mor-
pheme that represents the set of its correspond-
ing surface form realizations without neces-
sarily being related to them by phonological
processes.

• The Allomorphones (ALM) form the set of
surface form realizations of a certain morph.

This approach, naturally, assumes the data to be
a parallel set of segmented SFs with their corre-
sponding MTAGs and possibly HMORPHs. This
allows the extraction and clustering of the ALM

sets and linking them to the different levels of rep-
resentations.

We illustrate this terminology in Table 1. In
practical terms, the sets of ALMs are formed by
leveraging the alignment between the segmented
SFs in the data and their corresponding MTAGs
and/or HMORPHs. Multiple morphophonological
phenomena are shown in the example: elision of
/i/ after /a/, determiner /il-/ assimilation, and un-
stressed long vowel shortening. In our approach,
these rules are not explicitly described or modeled
in order to select the desired SF. Instead, we show
that generic selection heuristics work well.

3.1 Representations

We empirically explore the effectiveness of our
approach through evaluating different ways of rep-
resenting the morphs. This means that the starting
point of the clustering of the set of ALM is either
the MTAG level or the HMORPH level.

MTAG > ALM In this setup, the MTAG is the mor-
phological tag associated with each morph, which
we can think of as the meaning of the morph. For
clitics that have identical tags (primarily particles,
conjunctions, and prepositions), the tag is addition-
ally augmented by its lexical form, in this case the
HMORPH. Stems on the other hand, will have their
MTAG tag augmented by the vowelized templatic
shape of the HMORPH.

HMORPH > ALM A simpler setup where one
form of the morphs is the starting point. For affixes
and clitics, we chose the HMORPH to be what was
previously treated as the UR by PARLA, this allows
for direct comparison. However, nothing hinges
on this specific choice, and other choices are also
possible. For stems, the HMORPH is the vowelized
template of the selected HMORPH. Crucially, we
do not distinguish between morphs that share the
same meaning but have the same HMORPH.

MTAG-HMORPH > ALM This is a variant of
MTAG > ALM in which the HMORPH becomes
part of the MTAG to see the effect of having a
middle-ground starting point.

For all approaches, the stem abstraction is also
applied to the corresponding ALM sets. This is
to facilitate generalization by filling possible gaps
across sets of ALM that share similar templatic
HMORPH. This intuition is based on the templatic
properties of stems in Arabic. In the example in
Fig 1, the HMORPH of the noun is CAC and the ALM

set is {CAC, CaC}, so if another stem with the same
template such as the stem of �é«A� /sa:Qa/ ‘hour’
has one ALM realization in the data, say CAC, the
missing CaC will be recovered since both entries
will map into the same HMORPH space.

3.2 Core Approach

We now describe our enumeration and selection
approach. The input is a sequence of morphs repre-
sented in one of the three ways just described.
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Enumeration Given an input, at any level, a
set of candidate SFs is generated through combin-
ing the members of the corresponding ALM set
for each morph, thus, enumerating every possible
combination. For example, for the second word
in Figure 1 Ñî �DkA� [saHithum], if the input was
in the HMORPH level: sAH=it=hum the possible
SF candidates will be {sah=it=hum, sAH=t=uhum,
sAH=t=hum, saH=t=hum, ... etc}. We built the gen-
erator 1 using the PyFoma toolkit (Hulden et al.,
2024).2 The FSTs were built offline based TRAIN.

Selection We employ four different selection cri-
teria inferred from TRAIN. a) Well-formedness of
the candidate syllabic form based on the syllabic
structure grammar in the training data. This elimi-
nates ill-formed candidates such as sAH=t=hum and
saH=t=hum since they exhibit a CCC cluster which
is not found in Egyptian Arabic, b) The likelihood
of the SF syllabic structure given the input, c) A
morph-based uni-gram model of the ALMs, i.e.,
a candidate SF with more frequent ALMs will be
favored over one with rarer ALMs, d) A character
based tri-gram model over the full SFs, where we
only consider tri-grams with boundaries in them.

Both a) and b) take into account the whole word,
while c) focuses on morphs, and d) on possible
phonological changes around the morpheme bound-
aries. Moreover, a) is discriminative, while b), c),
and d) are likelihood models that produce scores
that are then summed without weights to get a fi-
nal score. These criteria are based on observations
about the interaction between morphophonology
and syllabic structure constraints in Egyptian Ara-
bic, and Arabic in general (Broselow, 1976, 2017).

It is worth noting that these selection criteria are
not to be confused with the rules in rule-based GP,
which are linguistically-specific rewrite transforma-
tions applied when the application context matches.
These criteria are generic and are automatically set
based on the data.

4 Evaluation and Discussion

4.1 Data

Following Khalifa et al. (2023) for purposes of com-
parison, we use the same dataset they described
in their work, which consists of pairs of UR-SF

along with their fine-grained morphological tag,
which was never used in their work. We also fol-

1"Generation" here means "production", unrelated to GP.
2We use release v1.0.7

low their splits and their reporting performance on
out-of-vocabulary (OOV) entries only to truly eval-
uate generalization capabilities. The splits are as
follows TRAIN (12,658 types), OOV-DEV (2,190
types), and OOV-EVAL (2,271 types).

The SFs in the original dataset were not morpho-
logically segmented. The segmentation for SFs in
TRAIN were achieved by projecting the morpheme
boundaries in the URs onto their corresponding SFs
through character based alignment. In cases were
multiple projections are plausible, we consider all
of them and add all possible allomorphones to the
ALM set.

4.2 Baselines
In addition to our systems mentioned above,
we evaluate on three baselines: a) HMORPH >
HMORPH: Where SF = HMORPH, b) NEURAL:
A SOTA neural character-based transformer (Wu
et al., 2021) that we train to generate the SF from a
given HMORPH, and finally c) PARLA, for which
we compare to the authors’ latest reported results
in (Khalifa et al., 2025).

Results of our evaluation are shown in Table 2.
Apart from the NEURAL baseline, the best per-
forming system is our HMORPH > ALM config-
uration followed by PARLA. Between our three
proposed setups, the configuration with no explicit
morphosyntactic identity (HMORPH > ALM) is the
best performer. The purely morphological config-
uration (MTAG > ALM) performs worst, but just
slightly worse than PARLA. The MTAG-HMORPH

> ALM improves slightly on the purely moprholog-
ical system. We conducted further analysis which
revealed that using the MTAG information splits
and collapses the sets of ALM that either share the
form (space is split) or share the meaning (space is
collapsed). This dichotomy hindered the generaliz-
ability in the affix and clitic space.

For our systems, we also report the hard upper
bound of the performance, the oracle, which is sim-
ply the presence of the correct answer among the
generated candidates. This evaluation highlights
the following: 1) in all our setups the oracle is ex-
tremely competitive with the NEURAL baseline, 2)
the effect of the MTAG is mostly on the selection
criteria rather than generation which suggests the
importance of the morph based uni-gram model
which fully depends on the distribution of the mem-
bers within an ALM set, and as such splitting or
merging such sets will affect such model. These
findings clearly suggest that having a stronger se-
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System OOV-DEV OOV-EVAL

HMORPH > HMORPH 37.1 36.0
PARLA’25 81.6 80.8
NEURAL 92.9 91.4

MTAG > ALM 78.4 (92.5) 78.6 (91.5)
HMORPH > ALM 85.2 (93.0) 84.5 (91.8)
MTAG-HMORPH > ALM 79.6 (92.3) 80.0 (91.3)

Table 2: Accuracy of predicting the correct SF. For our
systems, we report the oracle results (in parentheses)
where the correct answer has been generated but not
necessarily selected.
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Figure 2: Accuracy on OOV-DEV for all systems across
different sets of training sizes.

lection approach is key to a better performance
and subsequently a better and explainable model
of morphophonology.

To further evaluate the generalizability of our
models compared to the absolute best performer,
NEURAL, we conducted a learning curve experi-
ment where we split the TRAIN into low- and mid-
resource sizes to simulate real-life scenarios of di-
alects with impoverished resources. The results are
shown in Figure 2. The x-axis (in log scale) repre-
sents the different training sizes: from 100-1,000
with increments of 100 to represent the extremely
low-resource, and then from 1,000 to full TRAIN

to represent mid- to high-resource. The y-axis is
the accuracy in percentages. Our systems outper-
form NEURAL in the very low-resource setting. By
around 2,000 samples, NEURAL picks up. It is also
worth noting our best system outperforms PARLA

with only 3,000 samples which makes it a more
suitable system for low- to mid-resource scenarios.
Detailed percentages are in Table 3 in the appendix.

5 Conclusion and Outlook

In this work, we empirically explored a novel ap-
proach to the task of modeling morphophonology.
Instead of positing underlying representations or

learning mappings from a rigid abstract represen-
tation to generate a spoken form, we proposed a
rather discriminative approach to select the correct
surface form from an enumerated set of candidate
surface forms. We find that the most radical allo-
morphy approach that employs morphological tags
as identities of the morphs is more restrictive than
a purely form-based allomorphy approach.

We also show that our best setup outperforms a
rule-inducing SOTA using around 25% of the data
only. Additionally, our approach outperforms the
SOTA character-based transformer in the same task
in the low-resource scenario.

From a theoretical perspective, adopting a Gener-
ative Phonology or a Morpheme Alternate Theory
based approach will have empirical implications
on the quality of the resulting spoken forms and
the representation of the acquired grammar, as our
work shows. This sets the path for further explo-
ration on modeling such theories computationally
and what it means for practical applications. From
a practical NLP point of view, the main takeway is
that our approach generates spoken forms of words
efficiently at low-resource settings and acquires an
interpretable representation.

We plan to explore additional starting points and
selection criteria in addition to adding a learning
component that extrapolates allomorphones in a
way inspired by computational models of language
acquisition. We also plan to evaluate this approach
on different dialects of Arabic as standalone vari-
eties or cross-dialectal evaluation.

Limitations

In this work, we acknowledge the following limita-
tions:

• Surface Form morphological segmentation:
We are aware that the task of morphological
segmentation in general is an open research
question. As such, we plan to empirically in-
vestigate in the future how different alignment
and segmentation techniques could affect the
performance of our approach.

• Choice of HMORPH: To facilitate compari-
son with the baseline system PARLA, we opted
to make the choice of our HMORPH to be
aligned with their choice of UR. However,
this is another open question to which the an-
swer would be to experiment with different
choices of forms that act both as the HMORPH

in our case and the UR in PARLA.
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A Appendix

Train size HMORPH MTAG-HMORPH Oracle NEURAL

100 52.6 43.9 52.6 4.1
200 60.6 51.1 62.4 15.3
300 64.5 53.6 68.0 27.1
400 66.9 56.8 70.3 36.2
500 69.0 59.5 73.1 41.9
600 70.7 61.6 74.2 50.7
700 71.4 62.9 75.6 55.2
800 72.7 64.9 77.5 59.5
900 74.1 64.9 78.9 60.0

1,000 75.0 66.6 79.3 66.1
2,000 80.1 71.7 85.1 82.8
3,000 82.9 74.5 87.1 87.7
4,000 84.5 76.1 89.1 89.5
5,000 84.7 76.7 90.3 90.4
6,000 85.0 77.6 91.3 91.1
7,000 84.8 78.4 91.5 91.2
8,000 84.9 78.6 91.9 91.8
9,000 84.9 79.0 92.1 92.2

10,000 84.9 79.5 92.3 92.3
11,000 84.9 79.6 92.6 92.6
12,000 85.0 79.7 92.9 93.0
TRAIN 85.2 79.5 93.0 92.9

Table 3: Learning curve detailed results.
The Oracle presented here is of the HMORPH system.
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