Zero-Shot Contextual Embeddings via Offline Synthetic Corpus Generation

Philip Lippmann

Delft University of Technology p.lippmann@tudelft.nl

Jie Yang

Delft University of Technology j.yang-3@tudelft.nl

Abstract

Context-aware embedding methods boost retrieval accuracy by conditioning on corpus statistics (e.g., term co-occurrence and topical patterns) extracted from neighboring documents. However, this context-aware approach requires access to the target corpus or requires domain-specific finetuning, posing practical barriers in privacy-sensitive or resourceconstrained settings. We present ZEST, a zeroshot contextual adaptation framework that replaces real corpus access with a one-time offline synthesis of a compact proxy. Given only a handful of exemplar documents representative of the general target domain, we use a multi-step hierarchical procedure to generate a synthetic context corpus of several hundred documents that aims to emulate key domainspecific distributions. At inference, the frozen context-aware encoder uses this proxy corpus - without any finetuning or target corpus access - to produce domain-adapted embeddings. Across the MTEB benchmark, ZEST's zeroshot synthetic context adaptation using only five example documents performs within 0.5% of models leveraging full target corpus access - demonstrating remarkable efficacy without any retraining. ZEST thus provides a practical method for deploying high-performance, adaptable embeddings in constrained environments.

1 Introduction

Effective neural information retrieval relies heavily on high-quality dense vector representations for documents and queries (Reimers and Gurevych, 2019; Karpukhin et al., 2020). However, standard embedding approaches typically generate these representations without dynamically incorporating information from the specific target corpus being searched (Ni et al., 2021). This lack of dynamic context sensitivity limits their adaptability and retrieval performance, especially when deployed in domains that differ from their pretrain-

ing data (Thakur et al., 2021), a limitation partially addressed by traditional methods leveraging corpus statistics (Robertson and Zaragoza, 2009). However, such lexical methods based on surface counts have largely been superseded, as their bagof-words nature fundamentally fails to capture semantic meaning.

To provide neural embeddings with sensitivity to the target corpus, context-aware architectures have recently emerged (Morris and Rush, 2024). Such models utilize multi-stage processing, where the final embedding is conditioned on representations derived from neighboring documents within the target corpus. Although these methods significantly enhance retrieval by tailoring embeddings to domain-specific characteristics, their requirement to access the target corpus during inference is a critical limitation. Practical constraints related to data privacy or corpus scale often make such corpus access infeasible; for instance, sensitive medical documents may not be exposed during inference.

This critical limitation motivates the search for alternative ways to provide essential domain signals to context-aware models. While large language models (LLMs) possess good generative capabilities for retrieval data (Shao et al., 2025), their effective use in this zero-access environment is nontrivial. The core challenge is not merely generating domain-relevant text, but ensuring that any LLM-derived output possesses an appropriate degree of representational fidelity.

In this work, to overcome this critical barrier, we introduce zero-shot embeddings via synthetic context (ZEST), enabling effective contextual adaptation without accessing the target corpus. ZEST, depicted in Figure 1, operates in two phases. First, during *offline synthesis*, a LLM is employed to hierarchically generate a compact set of domain anchors from a minimal set of example documents randomly chosen from a domain-relevant source. The example documents typify the target domain's

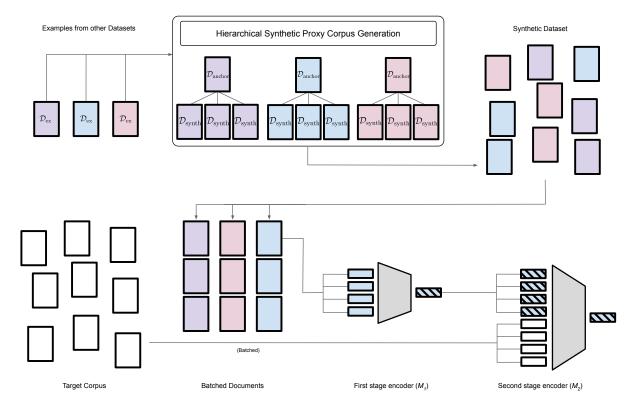


Figure 1: Overview of the ZEST framework for zero-shot contextual adaptation. Offline Synthesis (Top): From a few example documents (\mathcal{D}_{ex}), domain anchors (\mathcal{D}_{anchor}) are sequentially generated to ensure thematic diversity. These anchors then guide the parallel generation of a synthetic proxy corpus \mathcal{D}_{synth} . Online Inference (Bottom): A frozen, pretrained context-aware model (M_1, M_2) embeds new documents or queries (d/q) by conditioning on \mathcal{D}_{synth} (with its document representations pre-processed via M_1) instead of the inaccessible target corpus \mathcal{D} . This provides domain-adapted embeddings without requiring model retraining or direct corpus access.

characteristics but remain distinct from the actual target corpus data. Using the domain anchors, a synthetic proxy corpus is generated that approximates the actual distribution of the target corpus. Second, during *online inference*, the generated synthetic corpus serves as the contextual input to a pretrained, unmodified context-aware embedding architecture. Thus, ZEST computes context-influenced embeddings, effectively simulating domain adaptation without requiring direct corpus access or any parameter updates.

Our thorough validation on relevant retrieval benchmarks demonstrates that ZEST – using only k=5 example documents – significantly outperforms strong context-agnostic baselines and achieves performance comparable to context-aware models that utilize full corpus access. Although synthesizing a corpus of, in our case, a few hundred documents involves upfront computational resources, this process is performed once per domain, offline, making it practical and cost-effective for real-world deployments. ZEST thus provides a viable and efficient strategy for deploying adaptable

document embeddings in environments constrained by corpus access due to concerns regarding privacy or scale.

2 Background

This section first revisits dense neural retrieval, then describes the class of context-aware embedding architectures most relevant to our work, and finally formalizes the zero-shot deployment setting that ZEST is designed to address.

Dense retrieval. Given a query q and a corpus \mathcal{D} , dense vector retrieval methods learn two neural encoders $\phi:D\to\mathbb{R}^n$ and $\psi:Q\to\mathbb{R}^n$ that map documents and queries into a shared vector space in which relevance is scored with the dot product $f(d,q)=\phi(d)\cdot\psi(q)$. Training typically relies on a contrastive loss that favours high similarity for relevant pairs (q,d^+) and low similarity for negatives (q,d^-) :

$$\mathcal{L} = -\log \frac{\exp(f(d^+, q)/\tau)}{\sum_{d' \in \mathcal{N}(q)} \exp(f(d', q)/\tau)}, \quad (1)$$

where $\mathcal{N}(q)$ is a set of negatives (Robinson et al., 2021) and τ a temperature hyper-parameter. Although these biencoders are highly effective, their embeddings remain *context-agnostic* and therefore sensitive to corpus shift (Thakur et al., 2021).

Context-aware embedding architectures. cent retrievers mitigate the limitation of contextagnostic embeddings by incorporating information from the target corpus at inference time. These approaches vary in their mechanism. One prominent strategy, which our work adapts for zero-shot settings, involves a multi-stage architecture exemplified by Contextual Document Embeddings (CDE) (Morris and Rush, 2024). Here, a firststage encoder M_1 processes a sample of J context documents $\{d_1, \ldots, d_J\} \subset D$ from the target corpus. A second-stage encoder M_2 then conditions the final embedding of a target text (document d or query q) on these context representations alongside the text's own token sequence. Formally, the first-stage encoder M_1 maps an input document to a vector in \mathbb{R}^h . The second-stage encoder is $M_2: \mathbb{R}^{J \times h} \times \mathbb{R}^{T \times e} \to \mathbb{R}^n$, so that, given a document d whose tokens are embedded as $E(d) = \{E(w_1), \dots, E(w_T)\}$, the contextual document representation is a single dense vector:

$$\phi(d; \mathcal{D}) = M_2(M_1(d_1), \dots, M_1(d_J), E(d)).$$
(2)

The query counterpart $\psi(q;D)$ is computed similarly. This approach directly modifies the final embedding vector based on corpus context before standard similarity search (e.g., dot product).

This differs from unsupervised adaptation methods such as GPL (Wang et al., 2022) and Boot&Switch (Jiang et al., 2023), which require corpus access or additional tuning. It also contrasts with late-interaction systems such as ColBERT (Khattab and Zaharia, 2020), which, while domain-robust, incur higher online computational costs due to their token-level interaction mechanisms at query time, unlike the single-vector representations produced by CDE.

By explicitly exposing corpus statistics (such as term frequency or topical patterns via neighbor documents) to the embedding generation process, CDE-style models improve robustness across domains. However, their reliance on accessing the target corpus $\mathcal D$ at inference time remains a significant practical hurdle. Our work focuses on overcoming the corpus access requirement.

Problem setting: zero-shot contextual adaptation. We consider deploying a *frozen* context-aware model (M_1, M_2) in a new domain where the full corpus \mathcal{D} is inaccessible. Instead, in lieu of supplying documents from the target corpus, the practitioner can supply only a small exemplar set $\mathcal{D}_{\text{ex}} = \{d_{\text{ex}}^1, \dots, d_{\text{ex}}^k\}$ that typifies the general domain. The challenge is to generate domainsensitive embeddings $\phi(d;\cdot)$ and $\psi(q;\cdot)$ without accessing \mathcal{D} and without any parameter updates. The remainder of this paper presents ZEST, a solution to this problem.

3 Method: Zero-Shot Embeddings via Synthetic Context

ZEST enables corpus-aware adaptation without direct corpus access by substituting the real neighbor set required by context-aware models with a compact, LLM-generated proxy corpus \mathcal{D}_{synth} . This involves a one-time offline synthesis phase and an online inference phase using the fixed proxy.

3.1 Rationale: Leveraging Synthetic Context

Context-aware retrievers rely on neighbor documents to capture domain statistics (Section 2). Our hypothesis is that an LLM, guided by few exemplars $\mathcal{D}_{\rm ex}$, can generate a synthetic corpus $\mathcal{D}_{\rm synth}$ whose statistics sufficiently approximate the target domain's regularities. If the frozen model's first-stage encoder M_1 is applied to the members of $\mathcal{D}_{\rm synth}$ and the resulting vectors are fed into the second stage M_2 together with the query or document to be embedded, then the outputs $\phi(d;\mathcal{D}_{\rm synth})$ and $\psi(q;\mathcal{D}_{\rm synth})$ should exhibit much of the desired domain adaptation — achieving effective zero-shot contextualization without \mathcal{D} .

3.2 Offline Phase: Few-Shot Synthetic-Context Generation

Input: Domain-specific examples. The offline pipeline begins with a small exemplar set of k documents, $\mathcal{D}_{\mathrm{ex}} = \{d_{\mathrm{ex}}^1, \dots, d_{\mathrm{ex}}^k\}$, selected to typify the target domain (for instance, finance or healthcare) which are sourced separately from \mathcal{D} from domain-similar public corpora. These serve as concrete stylistic and topical anchors for the LLM. While these examples provide crucial domain signals, the specific selection is not expected to be overly sensitive, particularly because the target corpus \mathcal{D} is inaccessible by design, which makes fine-grained optimization of the exemplar set infeasible. As

such, the primary goal is to provide the LLM with a general sense of the domain's characteristics, rather than perfectly matching unknown corpus specifics.

Hierarchical Synthetic Corpus Generation via Domain Anchors. To enhance the representational fidelity and thematic coherence of the synthetic context, we introduce a hierarchical generation approach based on explicit *domain anchors*. We hypothesize that this intermediate anchor step is beneficial because it (i) explicitly encourages topical diversity across the final synthetic corpus, preventing fixation on only a few aspects of the initial exemplars, (ii) mitigates potential mode collapse where the LLM might over-produce content related to a single dominant theme, and (iii) grants finergrained semantic control when expanding each focused anchor into multiple full documents. Concretely, this procedure unfolds in two steps.

Step 1: Domain Anchor Generation. To establish a diverse set of thematic seeds that broadly represent the target domain, the LLM is prompted to sequentially generate A domain anchor documents, $\mathcal{D}_{anchor} = \{a_1, \dots, a_A\}$, from the exemplar set \mathcal{D}_{ex} . Each anchor a_i is a concise text capturing a distinct topical or stylistic facet observed in \mathcal{D}_{ex} . By generating anchors one after another, the process can be guided to ensure each new anchor explores different characteristics of the exemplars, thereby constructing a varied foundation for the subsequent corpus expansion. Practically, these anchors are generated by instructing the LLM to produce brief documents that explicitly highlight key concepts, terminology, and typical stylistic attributes of the domain as evidenced in \mathcal{D}_{ex} .

Step 2: Synthetic Corpus Expansion. Next, the complete synthetic corpus $\mathcal{D}_{\text{synth}}$ is created by expanding upon these domain anchors. For each anchor document $a_i \in \mathcal{D}_{\text{anchor}}$, the LLM generates a corresponding subset of synthetic documents. This generation for each anchor can proceed in parallel, with the LLM prompted to elaborate on and diversify the theme encapsulated by a_i . This "branching out" from each anchor aims to populate $\mathcal{D}_{\text{synth}}$ with a rich collection of J' novel documents that exhibit broad topical and stylistic coverage pertinent to the target domain. Formally, the final synthetic corpus is the union of these anchor-conditioned subsets:

$$\mathcal{D}_{\text{synth}} = \bigcup_{i=1}^{A} \{d'_{i,1}, \dots, d'_{i,J'_{i}}\}, \quad \text{where } \sum_{i=1}^{A} J'_{i} = J'.$$

This hierarchical approach ensures explicit seman-

tic coherence and comprehensive topical coverage in the resulting synthetic corpus, potentially improving the effectiveness of downstream contextual embedding adaptation. Specific implementation details on this generation process and prompting strategies are given in Section 4 and Appendix A, respectively. Because $\mathcal{D}_{\text{synth}}$ is reused verbatim during deployment, this synthesis step must only be executed once per domain, making it computationally efficient for practical application.

3.3 Online: Inference with Synthetic Context

During the online inference phase, we utilize the pretrained context-aware model components (M_1 and M_2 with frozen weights) and the generated synthetic context $\mathcal{D}_{\text{synth}}$.

Context Embedding Precomputation. At inference we feed the cached synthetic context into M_2 , incurring no extra per-query overhead beyond a standard forward pass; the costly synthesis step occurs only *once*. Since $\mathcal{D}_{\text{synth}}$ is fixed, we precompute the first-stage vectors, denoting

$$C_j = M_1(d'_j), \quad d'_j \in \mathcal{D}_{\text{synth}},$$

and store the set $\{C_1, \ldots, C_{J'}\}$ for reuse. As such, the online cost matches CDE with real context.

Final Embeddings. When a new document d or query q arrives, we first obtain its token embeddings, $E(d) = \{E(w_1), \ldots, E(w_T)\}$ and $E(q) = \{E(q_1), \ldots, E(q_{T'})\}$. We then use the second-stage encoder M_2 alongside the cached synthetic context to produce the final zero-shot contextualized embedding:

$$\phi(d; \mathcal{D}_{\text{synth}}) = M_2(\mathbf{C}_1, \dots, \mathbf{C}_{J'}, E(d)), \quad (3)$$

$$\psi(q; \mathcal{D}_{\text{synth}}) = M_2(\mathbf{C}_1, \dots, \mathbf{C}_{J'}, E(q)). \quad (4)$$

These final embeddings incorporate domain signals derived from the synthetic context and are subsequently used for downstream retrieval tasks. Notably, the dominant runtime cost remains the single forward pass through M_2 .

4 Experimental Setup

This section details the experimental protocol designed to evaluate the effectiveness of ZEST in realistic zero-shot domain adaptation scenarios using established retrieval benchmarks.

Datasets and Metrics. We evaluate our approach on the widely used MTEB (Muennighoff et al., 2022) benchmark, which covers a diverse range of embedding tasks. Unless otherwise noted, we evaluate on the complete MTEB benchmark across all task categories listed in Table 1. For each task, we source our \mathcal{D}_{ex} from domain-similar public corpora. For example, for retrieval tasks we sample \mathcal{D}_{ex} from the BEIR (Thakur et al., 2021) benchmark; specifically, from those tasks that are the closest match to the domain of the target corpus (see Appendix B for more details). Should the same task be present across both datasets, then we choose the next most relevant one instead. For example, for ArguAna (Boteva et al., 2016), which is present in both benchmarks, we choose the most similar task from BEIR instead to sample \mathcal{D}_{ex} from. We randomly sample documents with ≥ 100 tokens to provide sufficient content for the LLM to capture domain characteristics. This simulates a realistic scenario where a user provides a few characteristic examples for domain adaptation. We ensure no leakage by replacing any document that has a 20-token span overlap between \mathcal{D}_{ex} and the corresponding MTEB evaluation datasets. Retrieval quality is evaluated using the standard NDCG@10 metric.

Baselines for Comparison. We compare ZEST against key baselines of similar size to contextualize its performance. We establish context-agnostic performance using strong, standard biencoder models: gte-base-en-v1.5 (GTE v1.5) (Li et al., 2023) and bge-base-en-v1.5 (BGE v1.5) (Xiao et al., 2024). For experiments involving contextaware embeddings, we utilize the publicly available cde-small-v1 model (Morris and Rush, 2024). This model comprises 137M parameters and was pretrained on a large, diverse corpus. We use its original frozen weights throughout all experiments, ensuring fair comparison and isolating the effect of the context source. For this baseline, context embeddings are computed from J = 512 real documents randomly sampled from the target corpus partition, serving as a practical upper bound using real context with a comparable context size. Additionally, we include the Generic Synthetic Context (GSC) baseline, which generates synthetic documents using a generic prompt applied to the same LLM as ZEST, but without its hierarchical approach. This baseline isolates the impact of ZEST's use of domain anchors, providing a direct comparison to a simpler synthetic context generation method. Finally, to test the sensitivity of our approach to exemplar document selection, we include a random baseline. Here, we randomly sample 512 documents from the first 10k entries of the Colossal Clean Crawled Corpus (C4) dataset as contextual documents. Our baseline selection directly tests ZEST's core hypothesis: using synthetic context as a drop-in replacement for real context with a frozen architecture. Consequently, methods requiring training-time adaptation (e.g., GPL (Wang et al., 2022)) or online corpus access (e.g., pseudorelevance feedback (Rocchio, 1971; Li et al., 2018)) are considered orthogonal to this specific evaluation.

Synthetic Context Generation. We generate the synthetic context $\mathcal{D}_{\text{synth}}$ for ZEST using GPT-4o (gpt-4o-2024-11-20) via its API, chosen for its strong instruction-following, ability to capture nuanced stylistic and topical patterns from limited examples across diverse domains, and costeffectiveness. A carefully constructed prompt (see Appendix A) first provides the k = 5 curated domain examples and instructs the LLM to generate synthetic documents hierarchically per Section 3.2. This prompt is designed for outputs that are stylistically and topically aligned with these examples – building on domain anchors - and sufficiently diverse to form a rich context. For each of A=20anchor documents $a_i \in \mathcal{D}_{anchor}$, the LLM generates an equal fraction (J'/A) of the J' = 512 total synthetic documents forming $\mathcal{D}_{\text{synth}}$. This per-anchor generation, designed to elaborate on and diversify a_i 's theme, proceeds in *parallel*. We use default API sampling parameters for reproducibility.

Additional Implementation Details. For ZEST, the synthetic context embeddings (C_j) were precomputed from $\mathcal{D}_{\text{synth}}$ using a batch size of 16. During MTEB evaluation runs the models processed task queries and documents with a batch size of 512. Following the methodology of CDE, task-specific prefixes (see Appendix C) were applied to inputs before being processed. This ensures consistency in how the model receives data for both real-context and synthetic-context scenarios.

Experiments were conducted using NVIDIA A100 GPUs.

Task Category	GTE v1.5	BGE v1.5	CDE	GSC	Random	ZEST (ours)
Classification	77.2	74.7	82.5	81.8	80.4	82.2
Clustering	46.8	45.3	49.3	48.7	46.9	49.1
Pair Classification	85.2	85.7	87.5	87.0	85.6	87.2
Reranking	57.7	58.3	60.0	59.4	57.3	59.7
Retrieval	54.1	52.8	55.2	54.6	52.8	55.0
STS	82.0	81.6	83.3	82.7	81.4	83.0
Summarization	31.2	30.8	32.7	32.1	30.4	32.3
Average	62.03	61.31	64.36	63.76	62.11	64.07

Table 1: Retrieval performance on the MTEB benchmark, shown across its task categories. Baselines include context-agnostic models (GTE v1.5, BGE v1.5), CDE with real context (J=512), ZEST with random documents, and our synthetic GSC baseline. ZEST uses k=5 examples and J'=512 synthetic documents, without accessing the target corpus. Best overall result in **bold**, best zero-shot (corpus-inaccessible) result <u>underlined</u>.

5 Results and Discussion

This section presents the empirical evaluation of ZEST, demonstrating its ability to achieve effective contextual adaptation in zero-shot scenarios. We analyze its performance against established baselines, investigate the impact of key hyperparameters through ablation studies, and discuss the implications of our findings.

5.1 Main Results: Zero-Shot Contextual Adaptation

The results presented in Table 1 compellingly demonstrate the efficacy of ZEST. Across the MTEB benchmark, ZEST using its exemplarguided synthetic context achieves performance strikingly close to the CDE model that leverages full target corpus access, with an average difference of merely 0.29 NDCG@10 points. This indicates that ZEST comes within 0.45% of the performance attainable with unrestricted access to the real corpus – a significant finding given its zero-shot nature. While the real-context baseline naturally sets a practical upper bound, ZEST closes a large portion of the gap between the no-context baseline and this upper bound. Additionally, the random baseline sets the lower bound, with a significant decrease in performance. This indicates that while our method is not particularly sensitive when choosing documents within the general domain of the target corpus, choosing exemplar documents from an unrelated domain hinders the contextual embeddings, as expected.

Notably, ZEST also outperforms the GSC synthetic baseline by $0.31 \, \text{NDCG@10}$ points on average, highlighting the benefit of our domain-anchorbased synthesis approach over simpler synthetic generation from the k exemplars. Furthermore,

ZEST establishes substantial gains over strong context-agnostic baselines. It surpasses GTE v1.5 by an average of 2.04 and BGE v1.5 by 2.76 as measured by NDCG@10. These improvements underscore the value of carefully generated synthetic context. Indeed, by recovering 87.6% of the performance gap between GTE v1.5 and the full-access CDE model, ZEST effectively emulates the benefits of real corpus statistics without requiring direct access.

5.2 Ablation Studies

Effect of Number of Examples and Anchors.

To better understand the behavior and robustness of ZEST, we perform ablation studies on the number of guiding examples $k \in \{1, 2, 5, 10\}$, holding the synthetic context size fixed at J' = 512. Results are shown in Figure 3. Performance increases when moving from k = 1 to k = 5, indicating that providing the LLM with a few diverse examples significantly helps it capture the target domain's characteristics more accurately by not overfitting to a single example. Using k = 10 provides only marginal, if any, additional benefit over k = 5 in our experiments, suggesting that our hierarchical generation using A=20 domain anchors (as described in Section 3.2) provides sufficient diversity with only k = 5 examples. Furthermore, we also investigate the number of A and find that performance is not sensitive to this parameter, as variations around our default yield negligible differences in overall MTEB scores.

Effect of Synthetic Context Size. We further investigate changing the context size while keeping k constant. Figure 2 illustrates how retrieval performance varies with J'. Here, performance generally improves substantially as J' increases from small

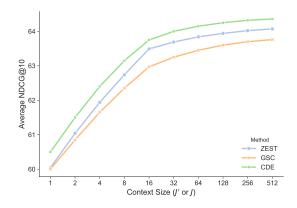


Figure 2: Performance across benchmark datasets, comparing ZEST to synthetic baseline and CDE at equal context sizes, with constant k=5 examples.

values (e.g., 2) towards J'=512. While the most significant gains often occur with initial increases in context size (improvement slows after J'=16), the results suggest that a larger synthetic context allows the LLM to generate a richer and more diverse set of documents, providing a more comprehensive contextual signal and leading to performance levels comparable to using real context. This justifies our choice of J'=512 for the main results, although smaller values of J' still offer improvements.

Impact of LLM Choice. To assess the sensitivity of our synthetic context generation approach to the choice of LLM, we compared the performance when using GPT-40 versus the open-source Llama-3.3-70B-Instruct (Llama 70B) model. This comparison, the results of which are shown in Table 2, focuses on the two embedding methods directly employing LLM-generated context: our proposed ZEST framework and the synthetic GSC baseline.

As shown, the advanced capabilities of GPT-40 translate to more effective synthetic context for both GSC and ZEST, outperforming Llama 70B by 1.05 points for GSC and 1.11 points for ZEST. However, it is noteworthy that ZEST still demonstrates a clear advantage over GSC even when both utilize Llama 70B, with ZEST achieving a score of 62.96, maintaining a lead of 0.25 points over GSC's 62.71. This suggests that while the quality of the generator LLM is impactful, ZEST's exemplarguided hierarchical synthesis strategy provides inherent benefits in creating more effective domain-specific context, regardless of the specific LLM employed.

LLM used for Synthesis	GSC	ZEST
GPT-40	63.76	64.07
Llama-3.3-70B-Instruct	62.71	62.96

Table 2: Influence of the generating LLM on retrieval performance via synthetic context. Average MTEB NDCG@10 scores for GSC and ZEST using k=5 and $J^\prime=512$.

5.3 Discussion

The strong performance of ZEST, achieving comparability with CDE using real context (J = 512), underscores the capability of modern LLMs to act as effective simulators of domain-specific corpus characteristics based on minimal examples. Effectively, we treat the LLM as a giant database that we retrieve our synthetic documents from. The synthetic context \mathcal{D}_{synth} captures not just topical relevance but also implicit statistical patterns (such as term co-occurrence and relative frequency) and stylistic elements that the pretrained CDE model leverages for adaptation. While not a perfect replacement for the real corpus, the synthetic context provides a remarkably effective proxy, enabling high-performance context-aware retrieval where it was previously infeasible.

Computational Considerations: ZEST introduces an offline cost for generating $\mathcal{D}_{\text{synth}}$. Importantly, this represents a one-time, offline process per target domain. Specifically, generating \mathcal{D}_{synth} using GPT-40 via its API results in synthetic documents with an average length of 255.6 output tokens, compared to 225.1 tokens for the benchmark documents. The online inference cost for ZEST involves only the standard forward pass using the precomputed synthetic context embeddings $\{C_i\}$, similar to that of CDE using real context. In our experiments, the time for the hierarchical generation process is negligible compared to inference. This compares favorably to the resources required for alternative adaptation strategies, which typically demand significant GPU hours for finetuning and/or assume the feasibility of corpus access for data acquisition and processing.

Qualitative Insights: Examining samples from \mathcal{D}_{synth} – shown in Appendix D – reveals the ability of LLMs to generate relevant and stylistically consistent documents for a specific domain. However, occasional generic or less relevant documents do occur, potentially limiting performance.

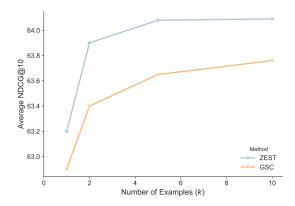


Figure 3: Performance across benchmark datasets when altering the number of few-shot examples (k), with constant J'=512 synthetic documents. We compare it to the performance of GSC, which does not use domain anchors.

6 Related Work

Neural Dense Retrieval. Neural retrievers learn to map documents and queries into a shared embedding space, optimizing a contrastive loss for efficient retrieval (Karpukhin et al., 2020; Reimers and Gurevych, 2019; Ni et al., 2021; Izacard et al., 2022; Xiong et al., 2020). However, their *contextagnostic* design makes them vulnerable to domain shifts when the test corpus differs from pretraining data (Thakur et al., 2021). Our work builds on this foundation but injects domain signals at inference without requiring access to the full corpus.

Context-Aware Embeddings. To mitigate corpus shift, recent methods augment models with contextual information drawn from neighbor documents. Contextual Document Embeddings (Morris and Rush, 2024) and late-interaction models like ColBERT (Khattab and Zaharia, 2020; Santhanam et al., 2022) refine each embedding by reading a subset of the target corpus at inference. While effective, these approaches assume unrestricted access to the entire document collection—an assumption that fails in privacy-sensitive or large-scale environments. Semi-parametric language models such as kNN-LM (Khandelwal et al., 2020) or non-parametric transformers (Kossen et al., 2022) also incorporate external information, yet focus on embeddings for text generation rather than retrieval embeddings. In contrast, ZEST replaces the real neighbor set with a compact, LLM-generated proxy, enabling analogous context-aware gains under a zero-access constraint.

Test-time and unsupervised retrieval adaptation. A rich line of work explores adapting retrievers to new domains without labeled data. Unsupervised corpus-aware pretraining methods (e.g., GPL (Wang et al., 2022), LaPraDoR (Xu et al., 2022), SimLM (Wang et al., 2023)) fine-tune on the target documents themselves, while few-shot or parameter-efficient schemes (e.g., TSDAE (Wang et al., 2021a), adapters (Houlsby et al., 2019), prompt tuning (Dai et al., 2022)) require some labeled examples. Test-time techniques such as pseudo-relevance feedback (Rocchio, 1971; Wang et al., 2021b) or Boot&Switch (Jiang et al., 2023) adjust queries or model parameters on the fly but likewise need access or online optimization. Unlike these methods, ZEST performs training-free adaptation: it freezes all model weights and synthesizes a proxy context once offline from only a handful of example documents.

Synthetic data generation for retrieval. LLMs are now routinely used in retrieval-related tasks to fabricate documents via few-shot prompting (Bonifacio et al., 2022), for supervision – such as with Promptagator (Dai et al., 2022) and CRAFT (Ziegler et al., 2024) – or to curate hard negatives (Solatorio, 2024). Prior work typically deploys the synthetic text for *training* (Shao et al., 2025). In contrast, ZEST exploits LLMs at *inference time*: the generated mini-corpus acts as a stand-in reference that unlocks corpus-aware embeddings without accessing the target corpus.

7 Conclusion

We introduced ZEST, a novel method that enables context-aware document retrieval adaptation without requiring access to the target corpus. By employing LLMs guided by few-shot examples to synthesize a representative context corpus offline, ZEST allows a pretrained contextual embedding model to adapt effectively during online inference. Our findings show ZEST substantially improves zero-shot retrieval over context-agnostic methods, nearing the performance of models with full corpus access. ZEST addresses a critical practical limitation of context-aware models, offering a viable path toward more adaptable and effective document embeddings in scenarios constrained by corpus access, privacy, or scale. This data-centric adaptation strategy opens new possibilities for deploying sophisticated retrieval models in challenging real-world environments.

Limitations

Despite its effectiveness, ZEST has limitations. Its performance is inherently linked to the quality of the LLM-generated synthetic context, as it remains a proxy for the true corpus statistics. The reliance on LLMs introduces dependencies on external APIs and associated costs for the offline generation step. Furthermore, potential biases present in the LLM or $\mathcal{D}_{\rm ex}$ could be amplified in the synthetic context, requiring careful consideration in sensitive applications. Finally, the selection of k examples introduces variability; automating or guiding this selection could improve robustness. We leave this to future work.

Future work could further explore: (1) finetuning open-source LLMs specifically for high-fidelity context generation to reduce dependencies and (2) developing techniques for automated quality assessment of the generated \mathcal{D}_{synth} and potentially filtering or refining it.

References

- Luiz Bonifacio, Hugo Abonizio, Marzieh Fadaee, and Rodrigo Nogueira. 2022. Inpars: Unsupervised dataset generation for information retrieval. In *Pro*ceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR '22, page 2387–2392, New York, NY, USA. Association for Computing Machinery.
- Vera Boteva, Demian Gholipour, Artem Sokolov, and Stefan Riezler. 2016. A full-text learning to rank dataset for medical information retrieval.
- Zhuyun Dai, Vincent Y. Zhao, Ji Ma, Yi Luan, Jianmo Ni, Jing Lu, Anton Bakalov, Kelvin Guu, Keith B. Hall, and Ming-Wei Chang. 2022. Promptagator: Few-shot dense retrieval from 8 examples. *Preprint*, arXiv:2209.11755.
- Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
 Bruna Morrone, Quentin De Laroussilhe, Andrea
 Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
 Parameter-efficient transfer learning for nlp. In *International Conference on Machine Learning*, pages 2790–2799. PMLR.
- Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bojanowski, Armand Joulin, and Edouard Grave. 2022. Unsupervised dense information retrieval with contrastive learning. *Preprint*, arXiv:2112.09118.
- Fan Jiang, Qiongkai Xu, Tom Drummond, and Trevor Cohn. 2023. Boot and switch: Alternating distillation for zero-shot dense retrieval. In *Findings of the Association for Computational Linguistics: EMNLP*,

- pages 912–931, Singapore. Association for Computational Linguistics.
- Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen tau Yih. 2020. Dense passage retrieval for open-domain question answering. *Preprint*, arXiv:2004.04906.
- Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. 2020. Generalization through memorization: Nearest neighbor language models. *Preprint*, arXiv:1911.00172.
- Omar Khattab and Matei Zaharia. 2020. Colbert: Efficient and effective passage search via contextualized late interaction over bert. *Preprint*, arXiv:2004.12832.
- Jannik Kossen, Neil Band, Clare Lyle, Aidan Gomez, Tom Rainforth, and Yarin Gal. 2022. Self-attention between datapoints: Going beyond individual input-output pairs in deep learning. *Preprint*, arXiv:2106.02584.
- Canjia Li, Yingfei Sun, Ben He, Le Wang, Kai Hui, Andrew Yates, Le Sun, and Jungang Xu. 2018. Nprf: A neural pseudo relevance feedback framework for ad-hoc information retrieval. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing*, pages 4482–4491, Brussels, Belgium. Association for Computational Linguistics.
- Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang. 2023. Towards general text embeddings with multi-stage contrastive learning. *Preprint*, arXiv:2308.03281.
- John X. Morris and Alexander M. Rush. 2024. Contextual document embeddings. *Preprint*, arXiv:2402.02525.
- Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and Nils Reimers. 2022. Mteb: Massive text embedding benchmark. *arXiv preprint arXiv:2210.07316*.
- Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gustavo Hernández Ábrego, Ji Ma, Vincent Y. Zhao, Yi Luan, Keith B. Hall, Ming-Wei Chang, and Yinfei Yang. 2021. Large dual encoders are generalizable retrievers. *Preprint*, arXiv:2112.07899.
- Zach Nussbaum, John X. Morris, Brandon Duderstadt, and Andriy Mulyar. 2025. Nomic embed: Training a reproducible long context text embedder. *Preprint*, arXiv:2402.01613.
- Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence embeddings using siamese bert-networks. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, pages 3982–3992. Association for Computational Linguistics.

- Stephen Robertson and Hugo Zaragoza. 2009. *The Probabilistic Relevance Framework: BM25 and Beyond*. Now Publishers Inc.
- Joshua Robinson, Ching-Yao Chuang, Suvrit Sra, and Stefanie Jegelka. 2021. Contrastive learning with hard negative samples. *Preprint*, arXiv:2010.04592.
- J. J. Rocchio, Jr. 1971. Relevance feedback in information retrieval. In *The SMART Retrieval System: Experiments in Automatic Document Processing*, pages 313–323. Prentice-Hall, Inc.
- Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, Christopher Potts, and Matei Zaharia. 2022. Colbertv2: Effective and efficient retrieval via lightweight late interaction. *Preprint*, arXiv:2112.01488.
- Rulin Shao, Rui Qiao, Varsha Kishore, Niklas Muennighoff, Xi Victoria Lin, Daniela Rus, Bryan Kian Hsiang Low, Sewon Min, Wen tau Yih, Pang Wei Koh, and Luke Zettlemoyer. 2025. Reasonir: Training retrievers for reasoning tasks. *Preprint*, arXiv:2504.20595.
- Aivin V. Solatorio. 2024. Gistembed: Guided in-sample selection of training negatives for text embedding fine-tuning. *Preprint*, arXiv:2402.16829.
- Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna Gurevych. 2021. Beir: A heterogenous benchmark for zero-shot evaluation of information retrieval models. *Preprint*, arXiv:2104.08663.
- Kexin Wang, Nils Reimers, and Iryna Gurevych. 2021a. Tsdae: Using transformer-based sequential denoising auto-encoder for unsupervised sentence embedding learning. *Preprint*, arXiv:2104.06979.
- Kexin Wang, Nandan Thakur, Nils Reimers, and Iryna Gurevych. 2022. GPL: Generative pseudo labeling for unsupervised domain adaptation of dense retrieval. *Preprint*, arXiv:2112.07577.
- Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, and Furu Wei. 2023. Simlm: Pre-training with representation bottleneck for dense passage retrieval. *Preprint*, arXiv:2207.02578.
- Xiao Wang, Craig Macdonald, Nicola Tonellotto, and Iadh Ounis. 2021b. Pseudo-relevance feedback for multiple representation dense retrieval. In *Proceedings of the 2021 ACM SIGIR International Conference on Theory of Information Retrieval*, ICTIR '21. ACM.
- Shitao Xiao, Zheng Liu, Peitian Zhang, Niklas Muennighoff, Defu Lian, and Jian-Yun Nie. 2024. C-pack: Packaged resources to advance general chinese embedding. *Preprint*, arXiv:2309.07597.

- Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett, Junaid Ahmed, and Arnold Overwijk. 2020. Approximate nearest neighbor negative contrastive learning for dense text retrieval. *Preprint*, arXiv:2007.00808.
- Canwen Xu, Daya Guo, Nan Duan, and Julian McAuley. 2022. Laprador: Unsupervised pretrained dense retriever for zero-shot text retrieval. *Preprint*, arXiv:2203.06169.
- Ingo Ziegler, Abdullatif Köksal, Desmond Elliott, and Hinrich Schütze. 2024. CRAFT: Task-specific synthetic dataset generation through corpus retrieval and augmentation. *Preprint*, arXiv:2409.02098.

A Prompting Strategies for Synthetic Corpus Generation

This section details the prompting strategies we employ to generate the synthetic context corpus $\mathcal{D}_{\text{synth}}$. The process, as described in Section 3.2, is hierarchical, involving two main steps: (1) Domain Anchor Generation and (2) Synthetic Corpus Expansion. We used the default API sampling parameters (e.g., temperature) for all generations to ensure reproducibility. The k=5 exemplar documents \mathcal{D}_{ex} are assumed to be provided as part of the input to the LLM for the first step.

- Step 1: Domain Anchor Generation The objective of this step is to generate A diverse domain anchor documents from the exemplar set $\mathcal{D}_{\rm ex}$ to create $\mathcal{D}_{\rm anchors}$. These anchors serve as thematic seeds. They are generated sequentially to encourage diversity and avoid thematic repetition. For each anchor a_i , the LLM is instructed to produce a concise document that captures a distinct topical or stylistic facet present in the provided exemplars, while also being mindful of previously generated anchors in the sequence (if applicable). The generalized prompt structure for generating a single domain anchor a_i is shown in Figure 4.
- Step 2: Synthetic Corpus Expansion Once the domain anchors are generated, the synthetic corpus $\mathcal{D}_{\text{synth}}$ (of size J') is created by expanding upon these anchors. For each anchor document $a_i \in \mathcal{D}_{\text{anchors}}$, the LLM is prompted to generate (J'/A) of synthetic documents (we assign one extra document per anchor until the remainder is exhausted). This step is performed in parallel for each anchor. The goal is for the LLM to elaborate on and diversify the theme encapsulated by the specific anchor a_i , producing a set of full-length, representative documents. The generalized prompt

structure for expanding a single domain anchor is shown in Figure 5.

B Details on Exemplar Set Sampling

To enable zero-shot contextual adaptation in ZEST, we rely on a small exemplar set $\mathcal{D}_{\text{ex}} = \{d_{\text{ex}}^1, \dots, d_{\text{ex}}^k\}$ to guide the generation of the synthetic context corpus $\mathcal{D}_{\text{synth}}$. As described in Section 4, these exemplars are sourced from the BEIR benchmark. This section details the process of selecting \mathcal{D}_{ex} , the mapping of BEIR tasks to unique domain keywords, and the measures taken to ensure no information leakage between \mathcal{D}_{ex} and the MTEB evaluation datasets.

Mapping BEIR Tasks to Domain Keywords.

To systematically select exemplars that typify the domain of an MTEB target task, we first assign each of the 18 BEIR tasks a unique keyword that encapsulates its primary domain or task characteristic. These keywords serve as an intermediary representation, allowing us to later align MTEB tasks with the most relevant BEIR-derived exemplars based on domain similarity. Table 3 presents this mapping, with each keyword chosen to be distinct and representative of the task's content.

The keyword assignment prioritizes the dominant domain or retrieval objective of each BEIR task. For instance, biomedical tasks like BioASQ and TREC-COVID are assigned keywords like "BiomedQA" and "COVIDResearch," respectively, to distinguish their focus within the broader biomedical domain. Similarly, tasks like Quora and CQADupStack, both involving question answering, are differentiated by keywords "DuplicateQA" and "ForumQA," reflecting their specific contexts (duplicate question detection versus forum-based Q&A). This approach ensures that the keywords are sufficiently granular to avoid overlap while remaining general enough to facilitate alignment with MTEB tasks. For MTEB tasks, we select the BEIR task whose keyword best matches the MTEB task's domain or retrieval goal, determined by manual inspection of task descriptions and data characteristics. If an MTEB task corresponds to a BEIR task (e.g., ArguAna), we select the next closest task to avoid direct overlap, as noted in Section 4.

Practical Considerations. The use of BEIR tasks as a source for \mathcal{D}_{ex} leverages their diversity and public availability, making the approach reproducible and scalable. The keyword-based mapping

BEIR Task	Unique Keyword		
MS MARCO	WebSearch		
TREC-COVID	COVIDResearch		
NFCorpus	Nutrition		
BioASQ	BiomedQA		
HotpotQA	MultiHopQA		
FiQA-2018	FinanceQA		
Signal-1M (RT)	SocialMedia		
TREC-NEWS	NewsSearch		
Robust04	NewsArchive		
ArguAna	Argumentation		
Touché-2020	Debate		
CQADupStack	ForumQA		
Quora	DuplicateQA		
DBPedia-Entity	EntityRetrieval		
SCIDOCS	Citation		
SciFact	SciFactCheck		
Climate-FEVER	ClimateClaims		
FEVER	FactCheck		

Table 3: Mapping of BEIR tasks to unique domain keywords. Each keyword encapsulates the primary domain or task characteristic, enabling alignment with MTEB tasks based on domain similarity.

simplifies the alignment of MTEB tasks to appropriate exemplars while avoiding direct task-to-task dependencies, which could risk evaluation bias. By sampling only a small number of documents, we simulate a realistic scenario where practitioners provide minimal domain examples, aligning with ZEST's goal of minimal input requirements. The ablation studies in Section 5.2 confirm that our approach provides sufficient diversity for effective synthetic context generation, supporting the robustness of this sampling strategy.

C Task-Specific Prefixes

We use standard prefixes, hand-written for each MTEB evaluation dataset, across all our evaluations. The prefix selection procedure follows the methodology outlined in (Nussbaum et al., 2025). The specific prefix categories are:

- Search query
- Search document
- Classification
- Clustering

Using these prefixes helps the model identify the task at hand and ensures consistency in how the model receives data for both real-context and synthetic-context scenarios.

D Examples of Generated Synthetic Documents: Full Pipeline

This section provides examples illustrating the full pipeline used by ZEST to generate synthetic documents for the $\mathcal{D}_{\text{synth}}$ corpus. These examples demonstrate how an initial exemplar document $(\mathcal{D}_{\text{ex}})$ from a specific domain guides the generation of a domain anchor, which in turn seeds the creation of a final synthetic document. This hierarchical process, as described in Section 3.2, is based on k exemplar documents (for clarity, we show the pipeline for k=1 exemplar in each domain example below, referenced as examples in Figure 6 through Figure 11).

Example 1: Biomedical Domain An exemplar document focusing on genetic recoding in Archaea (see Figure 6) was provided to ground the generation process in the biomedical domain. This initial document serves as the primary input for the LLM to understand the target domain's characteristics.

Based on the provided biomedical exemplar, the LLM generated a domain anchor (see Figure 7). This anchor encapsulates a core theme derived from the exemplar – in this case, programmed ribosomal frameshifting in Archaea – and serves as a more focused seed for subsequent document generation.

Expanding upon the biomedical domain anchor, the LLM then produced a full synthetic document (see Figure 8). This final document elaborates on the mechanisms and implications of frameshifting, demonstrating how the anchor guides the creation of a more detailed and contextually relevant piece of text for the synthetic corpus.

Example 2: Financial Domain For the financial domain, an exemplar document discussing interest rates and loan types (see Figure 9) was used, which leads to a corresponding domain anchor (see Figure 10), and, finally, a synthetic document (see Figure 11). This document also explores lender strategies and borrower behavior in response to varying interest rate environments.

Prompt for Domain Anchor Generation Systematically examine the {k} exemplar documents provided below to extract and synthesize their core themes, stylistic patterns, and domain-specific terminology. Leverage this analysis to craft a new domain anchor document that encapsulates these elements. Here are the exemplar documents: Exemplar 1: {exemplar_document_1_text} Exemplar 2: {exemplar_document_2_text} Exemplar k: {exemplar_document_k_text} Previously generated anchor documents (if any): - {anchor_1} - {anchor_2} - {anchor_i-1} Your task is to generate a new, concise domain anchor document. This document should: 1. Be approximately as long as the exemplar documents. 2. Capture a distinct and specific topical theme, concept, or stylistic characteristic evident in the exemplar documents. 3. Cover key terminology, entities, and typical writing style of the domain as represented by the exemplars. 4. If previous anchors were mentioned, ensure this new anchor explores a DIFFERENT facet or theme than those already covered to maximize diversity. 5. The anchor should be a coherent piece of text, similar to the exemplar documents, not just a list of keywords.

Figure 4: Prompt for Domain Anchor Generation

You are tasked with generating a document that is representative of a specific domain and theme.

Generate only the domain anchor document itself.

Prompt for Synthetic Corpus Expansion

You are given the following domain anchor document to build on, which encapsulates a key theme or stylistic element of the target domain:

```
Domain Anchor:
"""
{domain_anchor_document_text}
"""
```

Your task is to generate another full synthetic document that elaborates on, exemplifies, and diversifies the core theme and style presented in the domain anchor. This new document should:

1. Be topically coherent with the provided domain anchor.

- 2. Be a complete, well-structured document (e.g., an article, a report excerpt, a descriptive passage) of similar length.
- 3. Should explore various sub-topics, perspectives, or aspects related to the main theme of the anchor, ensuring diversity among them.
- 4. Maintain a style (e.g., tone, vocabulary, sentence structure) consistent with the domain anchor and typical of the implied domain.
- 5. Be factually plausible and internally consistent, even if entirely synthetic.

Respond only with your generated document. Ensure the document is clearly separated by placing "---DOCUMENT END---" at the end of the document you generate.

Figure 5: Prompt for Synthetic Corpus Expansion

Biomedical Exemplar Document

The standard rules of genetic translational decoding are altered in specific genes by different events that are globally termed recoding. In Archaea recoding has been unequivocally determined so far only for termination codon readthrough events. We study here the mechanism of expression of a gene encoding for a \$\alpha\$-1-fucosidase from the archaeon Sulfolobus solfataricus (fucA1), which is split in two open reading frames separated by a -1 frameshifting. The expression in Escherichia coli of the wild-type split gene led to the production by frameshifting of full-length polypeptides with an efficiency of 5%. Mutations in the regulatory site where the shift takes place demonstrate that the expression in vivo occurs in a programmed way. Further, we identify a full-length product of fucA1 in S.solfataricus extracts, which translate this gene in vitro by following programmed -1 frameshifting. This is the first experimental demonstration that this kind of recoding is present in Archaea.

Figure 6: Example of an input exemplar document (\mathcal{D}_{ex}) for the biomedical domain, detailing genetic recoding in Archaea. This document serves as the initial seed for the LLM.

Biomedical Domain Anchor

Programmed ribosomal frameshifting represents a crucial gene expression regulation mechanism in Archaea, enabling the synthesis of alternative protein products from a single mRNA. This recoding event, often involving a -1 shift, allows organisms like *Sulfolobus solfataricus* to expand their proteomic diversity and adapt to specific environmental conditions. Understanding the cis-acting RNA elements and trans-acting factors that govern frameshift efficiency in these extremophiles is key to deciphering their unique biology and potential biotechnological applications in areas such as novel enzyme discovery or controlled protein synthesis. The study of such mechanisms also sheds light on the evolutionary plasticity of the genetic code.

Figure 7: Domain anchor generated from the biomedical exemplar (see Figure 6). It focuses on the theme of programmed ribosomal frameshifting in Archaea.

Biomedical Synthetic Document

The efficiency of programmed -1 ribosomal frameshifting in archaeal organisms, such as the crenarchaeon *Sulfolobus solfataricus*, is intricately regulated by specific mRNA sequences and structural motifs located proximal to the frameshift site. These regulatory elements typically include a 'slippery sequence' (often a heptanucleotide like A AAA AAC) where the ribosome can lose its grip on the mRNA, and a downstream RNA secondary structure, commonly a pseudoknot or a stable hairpin. This structure is thought to induce ribosomal pausing, providing a kinetic window for the realignment of the tRNA in the P-site to the -1 frame. The interplay between the ribosome's own components, the mRNA transcript, various translation factors, and the nascent peptide chain within the exit tunnel collectively influences the probability and fidelity of a successful frameshift event. Current research endeavors focus on genome-wide mapping of these frameshift-prone sites in diverse Archaea, aiming to uncover novel regulatory networks and identify potential targets for antimicrobial agents or innovative tools for synthetic biology, such as precisely controlling the stoichiometric production of multiple proteins from a single engineered transcript.

Figure 8: Final synthetic document (\mathcal{D}_{synth}) for the biomedical domain, expanded from the domain anchor (see Figure 7), discussing the regulation and implications of ribosomal frameshifting.

Financial Exemplar Document

A lot of loans are taken out on a fixed rate basis, so the rate is part of the contract and is therefore covered by contract law. If the loan is taken out on a variable basis then in principle the rate can rise within the terms of the contract. If a particular lender tries to raise its rates out of line with the market then its customers will seek alternative, cheaper, loans and pay off their expensive loan if they can. If rates rise sharply in general due to unusual politico-economic circumstances then those with variable rate loans can find themselves in severe trouble. For example the base rate in the UK (and therefore variable mortgage rates closely tied to it) spiked sharply in the late 80s which caused severe stress to a lot of borrowers and undoubtedly pushed some into financial difficulties.

Figure 9: Example of an input exemplar document (\mathcal{D}_{ex}) for the financial domain, discussing factors influencing interest rates and loan types.

Financial Domain Anchor

The interplay between fixed and variable interest rates significantly impacts borrower stability and broader market dynamics. Fixed-rate loans offer predictability and insulate borrowers from sudden, adverse rate hikes, thereby fostering financial planning certainty. Conversely, variable-rate loans, while potentially offering lower initial rates, expose borrowers to market fluctuations, which can lead to payment shocks and financial distress during periods of rising interest rates. Central bank monetary policies, inflation expectations, and overall macroeconomic health are primary drivers influencing these rates, creating a complex and evolving landscape for both lenders managing risk and borrowers making critical financial decisions.

Figure 10: Domain anchor generated from the financial exemplar (see Figure 9). It centers on the impact of fixed versus variable interest rates and market conditions.

Financial Synthetic Document

Financial institutions meticulously navigate the complexities of fluctuating interest rate environments by strategically managing their portfolios of fixed and variable rate loan products. This often involves sophisticated hedging strategies using interest rate swaps or other derivatives to mitigate the risk associated with rate volatility. For consumers and businesses, a thorough understanding of their loan agreements' terms -- particularly clauses related to rate adjustments -- is paramount. During periods when monetary policy tightens and rate increases are anticipated, there's typically a discernible surge in demand for refinancing variable-rate debt (like adjustable-rate mortgages or ARMs) into fixed-rate alternatives, although eligibility for such refinancing heavily depends on the borrower's creditworthiness and prevailing market conditions. Conversely, when central banks signal an easing cycle and rates are expected to decline, variable-rate loans might appear more attractive due to potentially lower initial payments. However, these carry the inherent risk of future increases should economic conditions shift unexpectedly. Lenders also adjust their credit scoring models and underwriting standards in response to the perceived risk in the interest rate cycle.

Figure 11: Final synthetic document (\mathcal{D}_{synth}) for the financial domain, expanded from the domain anchor (see Figure 10), detailing lender strategies and borrower behavior in different interest rate environments.