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Abstract

Abusive language online creates toxic environ-
ments and exacerbates social tensions, under-
scoring the need for robust NLP models to
interpret nuanced linguistic cues. This paper
introduces GAttention, a novel Gated Atten-
tion mechanism that combines the strengths of
Contextual attention and Self-attention mech-
anisms to address the limitations of existing
attention models within the text classification
task. GAttention capitalizes on local and global
query vectors by integrating the internal re-
lationships within a sequence (Self-attention)
and the global relationships among distinct se-
quences (Contextual attention). This combina-
tion allows for a more nuanced understanding
and processing of sequence elements, which is
particularly beneficial in context-sensitive text
classification tasks such as the case of abusive
language detection. By applying this mecha-
nism to transformer-based encoder models, we
showcase how it enhances the model’s ability to
discern subtle nuances and contextual clues es-
sential for identifying abusive language, a chal-
lenging and increasingly relevant NLP task.

1 Introduction

Abusive language (AL) has become an increasingly
urgent concern in today’s digitally connected world,
where social media and online platforms serve as
primary venues for communication (Mandl et al.,
2019). Offensive or hateful content can foster a
toxic atmosphere, harm vulnerable communities,
and exacerbate social tensions (MacAvaney et al.,
2019). Consequently, detecting AL has emerged as
a pivotal challenge within Natural Language Pro-
cessing (NLP), While numerous challenges exist
in the detection of AL, one of the most critical lies
in the need for models capable of interpreting both
offensive and non-offensive words, along with the
underlying context in which such language is used
for the accurate identification of AL (Alkomah and
Ma, 2022).

In parallel with this societal need, current en-
coder–decoder transformer models have gained
widespread acceptance in the NLP community, of-
fering a versatile framework for various tasks (Lin
et al., 2022). Their adaptability allows for fine-
tuning in a wide range of tasks, including Question
Answering, Machine Translation, Text Classifica-
tion, Text Generation, Text Summarization, Sen-
timent Analysis, and Named Entity Recognition
(Durairaj and Chinnalagu, 2021; Ramprasath et al.,
2022). A key component of these models is the at-
tention mechanism, which is crucial for capturing
dependencies within a sequence and conditioning
the model’s outputs on these learned relationships
(Niu et al., 2021).

Over recent years, numerous attention mecha-
nisms have been proposed to address diverse tasks
in NLP and computer vision (Brauwers and Frasin-
car, 2023). These mechanisms focus on modeling
local and global dependencies (Yang et al., 2016;
Vaswani et al., 2017), unifying different modalities
by projecting features from one modality to another
(Patel et al., 2022), integrating various abstraction
levels within an input sequence (Vaswani et al.,
2017; Zhao and Zhang, 2018), or combining the
outputs of distinct attention modules (Huang et al.,
2019). Particularly relevant are Contextual Atten-
tion (CA) (Yang et al., 2016) and Self-Attention
(SA) (Vaswani et al., 2017), which approach the
modeling of local and global dependencies in dis-
tinct ways. While SA captures local dependencies
by deriving its query vector directly from elements
within the same sequence, CA models global de-
pendencies by emphasizing specific tokens based
on an external query vector, which is updated ac-
cording to task-specific requirements (Chaudhari
et al., 2020).

Both SA and CA have demonstrated strong per-
formance in many applications (Hu, 2019); how-
ever, each also presents limitations. CA overlooks
the local relationships among tokens within a se-
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quence, whereas SA does not explicitly account for
the global relationships across distinct sequences.
This can result in the loss of crucial information,
potentially weakening a model’s ability to interpret
context, a critical element for tasks such as AL
detection, where meaning can shift dramatically
based on linguistic nuance. For the sake of clarity,
we use the term local relationships to refer to the
connections between the words present within a
single message, and the term global relationships
to denote their interpretation within a broader do-
main or a task-specific setting. In our application
domain, their use in other texts related to AL.

To address these limitations, we introduce GAt-
tention, a novel Gated Attention mechanism that
combines the strengths of both SA and CA to cap-
ture local and global dependencies better. By
weighting and merging the local (SA) query vec-
tors and the global (CA) query vectors, GAttention
preserves the crucial contextual cues needed for
complex classification problems. Additionally, we
introduce the Multi-Head GAttention mechanism
to enhance the model’s ability to attend to different
aspects of the input simultaneously, improving its
capacity to capture intricate relationships within
the data.

Although both the GAttention and Multi-Head
GAttention variants can be applied to any sequence
of word/token encoding features (or multimodal
feature sequences), we focus on evaluating their ef-
ficacy in context-sensitive text classification tasks,
particularly in various tasks related to the detection
of AL. These tasks are ideally suited for testing
our GAttention mechanism variants since text clas-
sified as abusive hinges on the context in which
words are used, distinguishing between offensive
and non-offensive usage (MacAvaney et al., 2019).
The results obtained from the different GAttention
configurations were encouraging, achieving perfor-
mance improvements in five out of six AL detection
subtasks when compared to three replicated state-
of-the-art approaches, including techniques based
on Large Language Models (LLMs). Furthermore,
the proposed mechanisms outperformed the best
results reported in the shared tasks, while maintain-
ing a favorable trade-off between performance and
model size.

In summary, the main contributions of this pa-
per are as follows: 1) The proposal of the GAt-
tention mechanism, which leverages the relevance
of the local (instance-dependent) and global (task-
dependent) features of any encoding sequence by

combining the SA and CA representations. 2)
The Multi-headed adaptation of the GAttention
mechanism and its integration in contemporary
transformer encoding models for the AL detection
task. 3) The evaluation and analysis of the GAtten-
tion and multi-head GAttention mechanisms across
three different datasets dedicated to detecting AL
on social media platforms.

2 Related Work

2.1 Abusive Language Detection

Given the well-acknowledged increase of AL
across social media platforms, a variety of datasets
(Davidson et al., 2017; Marcos et al., 2019) and
evaluation campaigns (Fersini et al., 2018; Marcos
et al., 2020; Aragón et al., 2020) have emerged
to mitigate its effects. AL detection has primarily
employed supervised methods (Alkomah and Ma,
2022), using features ranging from bag-of-words
to syntactic and linguistic cues (Schmidt and Wie-
gand, 2017). Moreover, advanced techniques lever-
aging word embeddings and Transformer-based
models, such as GPT-2, BERT, Llama 2, and
RoBERTa (Mutanga et al., 2020; Ripoll et al., 2022;
Nguyen et al., 2024), have been explored. These ap-
proaches have given rise to diverse deep learning ar-
chitectures, including ensemble methods that inte-
grate various representations (Farooqi et al., 2021),
the design of specialized attention mechanisms for
AL detection (Jarquín-Vásquez et al., 2021), and
the adaptation of Transformer models to the AL
detection domain through pretraining tasks specifi-
cally designed for this purpose (Jarquín-Vásquez
et al., 2024). Within these deep learning archi-
tectures, Transformer-based representations have
notably excelled in recent years and currently repre-
sent the state-of-the-art in AL detection (Alkomah
and Ma, 2022; Jahan and Oussalah, 2023; Nguyen
et al., 2024).

2.2 Attention mechanisms

Within the realm of attention mechanisms that com-
bine different representations, the use of cross-
modal attention holds prominence (Patel et al.,
2022). This approach focuses on projecting one
modality into another, facilitating enhanced inter-
modality interactions. Additionally, nested atten-
tion mechanisms have been explored to refine the
representation of a sequence of features (Huang
et al., 2019), alongside multi-level attention mecha-
nisms, which hierarchically combine different fea-
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tures to achieve a more comprehensive representa-
tion (You et al., 2022).

Another notable approach involves attention
mechanisms designed for the fusion of distinct fea-
tures and/or modalities (Dai et al., 2020; Jarquín-
Vásquez et al., 2021; Wan et al., 2022; Li et al.,
2023; Jarquın-Vasquez et al., 2024). These mech-
anisms integrate features or modalities either
through an early fusion approach or by combin-
ing feature pairs, extending the use of cross-modal
attention through a transversal fusion approach.
Specifically, in (Jarquín-Vásquez et al., 2021), the
integration of SA and CA mechanisms is exem-
plified through the Self-Contextualized Attention
(SCA) mechanism, which merges both represen-
tations via early fusion. However, this approach
limits the flexibility of each representation to dy-
namically adapt to different contexts within the
input data, thereby constraining the nuances it can
capture.

In contrast to SCA, our proposed GAttention
mechanism dynamically integrates SA and CA rep-
resentations through a weighted approach, adapting
to the specific requirements of each instance in the
text classification task. This instance-wise adap-
tation enables a more precise and context-aware
interpretation of tokens within an input sequence.

3 Proposed Gated Attention Mechanism

This section is organized into two subsections. The
first subsection details the GAttention mechanism,
while the second presents its extension into a multi-
head perspective. The GAttention mechanism pro-
cesses inputs from two distinct representations de-
rived from the SA and CA mechanisms, respec-
tively. Figure 1 illustrates the generation of these
representations, starting from a sequence of en-
coded features Xe ∈ Rd×n, where d represents the
number of encoding features, and n is the number
of elements in the sequence.

As depicted in Figure 1, the process begins with
the encoded features Xe sequence. The representa-
tions Q, K, and V ∈ Rd×n are computed through
a linear projection of the input sequence. This is
achieved by multiplying the matrix Xe with the
weight matrices WQ, WK , and WV ∈ Rn×n, re-
spectively. The SA and CA representations are
calculated using these matrices, denoted by the
matrices Xs and Xc ∈ Rd×n. For the SA represen-
tation, the scaled dot-product attention mechanism,
as proposed in (Vaswani et al., 2017), is employed;

Figure 1: Detailed architecture of the pre-processing
phase, to obtain the SA and CA representations.

Equation 1 details the process for computing the
matrix Xs.

Xs = softmax(
QKT

√
d

)V (1)

Concerning the CA representation, we use the
CA mechanism proposed in (Yang et al., 2016).
This mechanism receives the matrix Q as input and
utilizes a context vector uh ∈ Rd, randomly ini-
tialized and subsequently learned during training.
The vector uh is a query vector to compute the
attention values αc ∈ Rn. This is achieved by mea-
suring the similarity between the elements of the
sequence Q and the application domain represented
by uh. Such similarity is calculated as detailed in
Equation 2, involving the scalar dot product of uTh
and Q; the resulting values are then normalized
using a softmax function. In contrast to the CA
mechanism proposed by (Yang et al., 2016), which
employs a weighted sum between each attention
value and its corresponding encoded features for
the final sequence representation, our representa-
tion Xc, as shown in Equation 3, captures all the
information from the attention values. This is done
by performing an element-wise multiplication ⊙
between each scalar of αc and its corresponding
encoding features in Q.

αc = softmax(uTh ·Q) (2)

Xc = αc ⊙Q (3)

3.1 GAttention Unit

The main objective of our proposed GAttention
mechanism is to generate a global context-aware
representation G ∈ Rd×n, that combines the CA
and SA mechanisms (represented by Xc and Xs
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matrices). This integration aims to unify the con-
textual and internal relationships extracted by both
mechanisms. Figure 2 illustrates the overall archi-
tecture of the GAttention mechanism. The GAt-
tention mechanism is inspired by the weighted ap-
proach of combining different modalities in the
Gated Multimodal Unit (GMU) network, as pro-
posed by (Arevalo et al., 2020); our approach dif-
fers by conceptualizing the modalities as the CA
and SA representations. Moreover, our GAttention
mechanism extends the GMU network to handle
feature sequences rather than merely feature vec-
tors.

Figure 2: Architecture of the proposed GAttention
mechanism; orange circles with the cross sign rep-
resent element-wise multiplication, the orange circle
with + sign represent the summation of all the inputs,
and orange circle with “1−” represents the function
f(s) = 1− s.

The GAttention mechanism processes the matri-
ces Xc and Xs as inputs. As a first stage, a hidden
representation of both matrices is obtained as fol-
lows:

Hc = tanh(WcXc) (4)

Hs = tanh(WsXs) (5)

Where Wc ∈ Rd×d and Ws ∈ Rd×d are learn-
able weights, tanh is the default activation function
and, Hc ∈ Rd×n and Hs ∈ Rd×n are the resultant
hidden representations. To regulate the relevance
of both representations, the GAttention mechanism
utilizes an internal feature vector z ∈ Rn. This
vector is computed as follows:

z = σ(Wz[Xc, Xs]) (6)

where [·, ·] denotes the concatenation operator,
Wz ∈ Rd+d are the learnable weights and σ rep-
resents the sigmoid activation function. The final
output of the GAttention mechanism, denoted as
G ∈ Rd×n, results from a convex combination of
the hidden representations Hc and Hs, weighted by
the values of z and 1−z respectively, as delineated
in Equation 7. This design enables the GAttention
mechanism to determine the influence of each rep-
resentation on the output selectively. It also implies
that the weights in this convex combination will
vary for each distinct input, owing to the depen-
dency of z on Xc and Xs. As all these operations
are differentiable, this model can be easily coupled
with other neural network architectures and trained
with stochastic gradient descent.

G = z ⊙Hs + (1− z)⊙Hc (7)

3.2 Multi-Head GAttention
Building on the successful application of multiple
attention mechanisms as demonstrated (Vaswani
et al., 2017), we have extended the GAttention
mechanism to incorporate a multi-head perspective.
This adaptation enables the model to simultane-
ously attend to information from different represen-
tation subspaces at various positions. The mech-
anism processes k distinct representations from
the SA and CA mechanisms, feeding them into
k separate GAttention units. The outputs of these
units are concatenated to form a new representation
C ∈ Rdk×n, as detailed in Equation 8. Following
this, C is subjected to a linear projection layer,
which merges the concatenated information and
reduces C’s dimensions back to those of the orig-
inal input Xe, as presented in Equation 9, where
Wl ∈ Rd×dk are learnable weights. The resulting
representation, L ∈ Rd×n, is the culmination of
the combined outputs from the k GAttention units.
Figure 3 depicts the architecture of the multi-head
GAttention mechanism.

C = [G1, G2, ..., Gk] (8)

L = WlC (9)

3.3 Classification framework
The classification framework, which independently
integrates the proposed GAttention and Multi-
Head GAttention mechanisms for AL identifica-
tion, starts with an encoded sequence Xe, obtained
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Figure 3: Architecture of the proposed Multi-Head GAt-
tention mechanism, Figure inspired by (Vaswani et al.,
2017), k represents the number of GAttention heads.

from either a Transformer model or a recurrent
neural network. Specifically, in our experimen-
tal configurations, we use the last encoding layer
of the Transformer as the encoded input sequence
to our proposed GAttention configurations. This
choice is motivated by the fact that the last encod-
ing layer provides a comprehensive summary of the
input through residual connections that aggregate
information from all preceding layers (Clark et al.,
2019). This encoded sequence is subsequently pro-
cessed by the GAttention or Multi-Head GAtten-
tion mechanism. The resulting representation is
then passed through a Transformer block consist-
ing of add & norm layers and a Position-wise Feed-
Forward Network, as described in (Vaswani et al.,
2017). Subsequently, this representation is fed into
an average pooling layer, which condenses the ma-
trix into a vector. Finally, the vector is fed into
the classification layers; two layers handle the fi-
nal classification: a dense layer with a Rectified
Linear Unit (ReLU) activation function and a fully
connected softmax layer to obtain the class proba-
bilities and get the final classification.

This classification framework is used for both bi-
nary and multi-class classification subtasks. How-
ever, one of the selected evaluation subtasks re-
quires detecting multiple types of AL and identi-
fying the corresponding targets. To address this,
we adopt a multi-task learning approach in which
the vector extracted by the average pooling layer is
passed through two independent classification lay-
ers, each dedicated to a separate classification task.
The loss function in this configuration is defined as
the average of the cross-entropy losses computed
for each task. The next subsection provides a de-
tailed description of the evaluation subtasks.

4 Experiments

4.1 Evaluation Datasets

AL encompasses various types, with its main di-
visions categorized by the target and severity of
insults (Mandl et al., 2019). Consequently, differ-
ent collections and evaluation campaigns have ex-
plored distinct forms of AL in their study (Schmidt
and Wiegand, 2017).

For our evaluation, we employ three English
benchmark datasets: SE 2019 T 6 (Marcos et al.,
2019), AMI 2018 (Fersini et al., 2018), and HASOC
2019 (Mandl et al., 2019). These datasets were in-
troduced in SemEval-2019 Task 6, the Evalita 2018
Task on Automatic Misogyny Identification (AMI),
and the 11th Forum for Information Retrieval Eval-
uation (FIRE) as part of the Hate Speech and Offen-
sive Content Identification (HASOC) shared task,
respectively. Specifically, the SE 2019 T 6 dataset
addresses the task of offensive tweet classification,
the AMI 2018 dataset focuses on the detection of
misogyny in tweets, while the HASOC 2019 dataset
addresses hate speech and offensive content detec-
tion in tweets.

These shared tasks comprise various subtasks, in-
cluding binary and multi-class classification. While
some tasks support different evaluation languages,
our experiments focus exclusively on English and
specifically on the first two subtasks defined in each
shared task.

For the SE 2019 Task 6 dataset, subtask A in-
volves binary classification to detect offensive lan-
guage, while subtask B focuses on predicting the
type of offense, distinguishing between targeted
and untargeted insults among the positive instances
identified in subtask A. For the AMI 2018 dataset,
subtask A involves binary classification of misogy-
nistic content, and subtask B extends the analysis to
identify whether the target is a specific individual
(active) or a group (passive), and to classify the type
of misogyny among five categories: Stereotype &
Objectification, Dominance, Derailing, Sexual Ha-
rassment, and Discredit. Lastly, in the HASOC
2019 dataset, subtask A consists of binary classifi-
cation of hate speech and offensive language, while
subtask B performs a fine-grained categorization
of the positive instances from subtask A into three
classes: hate speech, offensive, and profane. The
details regarding the distribution of the class labels
in the training and testing sets of the evaluation
datasets are presented in Appendix A.1.
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4.2 Proposed Baselines

Evaluations were conducted on four Transformer
encoder models across all proposed configurations,
integrating the GAttention and Multi-Head GAtten-
tion mechanisms into the final encoding layer. For
the multi-head variant, results are reported using
6 and 12 attention heads. As a first baseline, each
model was fine-tuned on every subtask of the evalu-
ation datasets without incorporating any additional
mechanisms. As a second baseline, the SCA mech-
anism was replicated to assess the effectiveness of
the proposed GAttention mechanism against a com-
parable approach that integrates SA and CA repre-
sentations. This mechanism combines the SA and
CA representations via an early fusion approach
(Jarquín-Vásquez et al., 2021); similar to the GAt-
tention and multi-head GAttention mechanisms,
the SCA was integrated into the last encoding layer
of Transformer models.

To evaluate the performance of the proposed
GAttention mechanism against robust and con-
temporary benchmarks, three different approaches
were replicated. The first corresponds to a state-
of-the-art (SOTA) method proposed by Jarquín-
Vásquez et al. (2024), which relies on re-training
a Transformer model with two pre-training tasks
specifically designed to constrain the model for
AL detection. In particular, the HateBERT model
(Caselli et al., 2021) was re-trained, following the
two pre-training objectives jointly optimized with a
weighted loss function, as indicated in the original
paper. The re-training dataset and the experimental
setup were strictly replicated to ensure fidelity. Fur-
ther details can be found in the original publication
(Jarquín-Vásquez et al., 2024).

To compare the effectiveness of GAttention con-
figurations against contemporary LLMs, the sec-
ond and third approaches employ Llama-3.1-8B-
Instruct1 as the backbone. Specifically, the second
approach follows a Zero-shot (ZS) in-context learn-
ing paradigm, while the third approach involves
fine-tuning the LLaMA model on each subtask of
the evaluation datasets. Fine-tuning was performed
using Quantized Low-Rank Adaptation (QLoRA)
(Dettmers et al., 2023). This parameter-efficient
fine-tuning technique offers a favorable trade-off
between performance and the number of trainable
parameters. The LLaMA model was loaded in a
4-bit quantized version in both approaches.

1https://huggingface.co/meta-llama/Llama-3.
1-8B-Instruct

These contemporary benchmarks were adopted
as SOTA baselines to compare the effectiveness
of the proposed GAttention configurations. In the
results section, these baselines are referred to as
CBRHB, CBZS, and CBQLoRA, respectively. The
source code of the GAttention mechanism and its
configurations is publicly available at the follow-
ing link2. Appendix A.2 provides the implemen-
tation details, including text preprocessing, hyper-
parameter settings, the libraries used for develop-
ing all configurations, and the specifications of the
Transformer models integrated in the proposed ap-
proaches.

4.3 Evaluation Metrics

For fair evaluation, all metrics were selected from
those defined in the shared-task subtasks. In par-
ticular, all subtasks of the evaluation datasets were
evaluated using the macro-averaged F1 score, ex-
cept for subtasks A and B in the AMI 2018 dataset.
In this case, subtask A was evaluated using accu-
racy. In contrast, subtask B was assessed based on
the average of two macro-averaged F1 scores: one
for misogyny type classification and the other for
target type classification. In our experiments, we re-
port the mean results obtained from three randomly
initialized training runs for each configuration.

5 Main Results

Table 1 presents the results of the GAttention mech-
anism and its various configurations across sub-
tasks A and B for the three evaluation datasets.
The first section of the table (rows 2–5) reports
the performance of the four Transformer models
fine-tuned in our experiments. The best results
for subtask A were obtained with the ERNIE and
DistilBERT models, while ERNIE and RoBERTa
yielded the highest performance in subtask B.

To compare the performance of our GAttention
mechanism against a similar approach that com-
bines SA and CA representations, the second sec-
tion (rows 6 - 9) presents the results of incorporat-
ing the SCA mechanism (Jarquín-Vásquez et al.,
2021) into the final encoding layer of the Trans-
former models. Integrating the SCA mechanism
yields a uniform enhancement across the three eval-
uation datasets. Overall, the best results of this
integration were obtained with the ERNIE model.
The third section (rows 10 - 13) shows the perfor-

2https://github.com/MasterHoracio/
EMNLP-GAttention
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# AM Model SE T 6 (A) SE T 6 (B) AMI (A) AMI (B) HASOC (A) HASOC (B) #Params
2 − BERTBASE 0.794 0.693 0.695 0.450 0.728 0.529 109M
3 − DistilBERT 0.808 0.687 0.678 0.456 0.741 0.530 66M
4 − RoBERTa 0.805 0.717 0.681 0.494 0.737 0.545 124M
5 − ERNIE 0.807 0.719 0.697 0.505 0.733 0.537 109M
6 SCA BERTBASE 0.805 0.708 0.704 0.471 0.735 0.534 114M
7 SCA DistilBERT 0.811 0.704 0.697 0.468 0.743 0.543 70M
8 SCA RoBERTa 0.809 0.725 0.701 0.501 0.738 0.547 130M
9 SCA ERNIE 0.817 0.733 0.703 0.516 0.747 0.549 114M

10 GA BERTBASE 0.812 0.713 0.708 0.488 0.741 0.548 120M
11 GA DistilBERT 0.820 0.721 0.705 0.473 0.752 0.553 77M
12 GA RoBERTa 0.817 0.733 0.728 0.509 0.759 0.551 135M
13 GA ERNIE 0.823 0.748 0.725 0.530 0.762 0.557 120M
14 MHG6 BERTBASE 0.819 0.718 0.720 0.493 0.754 0.552 150M
15 MHG6 DistilBERT 0.827 0.726 0.723 0.482 0.763 0.558 86M
16 MHG6 RoBERTa 0.825 0.741 0.738 0.512 0.771 0.560 162M
17 MHG6 ERNIE 0.832 0.757 0.749 0.538 0.775 0.564 150M
18 MHG12 BERTBASE 0.825 0.725 0.729 0.497 0.761 0.557 185M
19 MHG12 DistilBERT 0.832 0.734 0.731 0.489 0.770 0.562 106M
20 MHG12 RoBERTa 0.836 0.749 0.752 0.517 0.780 0.567 200M
21 MHG12 ERNIE 0.843 0.769 0.757 0.544 0.784 0.571 185M
22 − BSTR 0.829 0.755 - 0.406 0.788 0.544 -
23 − CBRHB 0.834 0.747 0.720 0.525 0.791 0.564 109M
24 − CBZS 0.562 0.481 0.617 0.319 0.625 0.347 4.5B
25 − CBQLoRA 0.748 0.615 0.704 0.445 0.713 0.486 4.7B

Table 1: Comparison results from our four baseline architectures and our proposed GAttention mechanism variants
in subtasks A and B of the three evaluation datasets for the AL detection task. The results present the mean from
three random training runs. The “AM” column stands for “Attention Mechanism”, while “BSTR” and “CB” refer to
the Best Shared-Task Result and Contemporary Benchmark, respectively.

mance enhancement in the models upon integrating
the GAttention mechanism into the final encoding
layer. As indicated by the results, including the
GAttention mechanism consistently improved the
performance of all models (rows 2 – 5 vs. rows 10
- 13), with a minimum improvement of 1.4% com-
pared to their respective counterparts. Furthermore,
when comparing the results of the SCA mechanism
with those of the GAttention mechanism (rows 6
- 9 vs. rows 10 - 13), superior performance was
achieved across all models in both subtasks of the
three evaluation datasets. Overall, the best results
of this integration were obtained with the ERNIE
and RoBERTa models.

Sections 4 and 5 of Table 1 (rows 14 – 21) dis-
play the results of integrating the multi-head GAt-
tention mechanism, utilizing 6 and 12 GAttention
units in the final encoding layer of the models, re-
spectively. When comparing the performance of
the multi-head GAttention against a single GAtten-
tion unit (rows 10 - 13 vs. rows 14 - 17 and rows
10 - 13 vs. rows 18 - 21), a consistent improve-
ment in the performance across all models within
the three evaluation datasets is observed, highlight-
ing the benefits of employing multiple attention
heads. Additionally, when comparing the perfor-
mance of 6 versus 12 GAttention units (rows 14
– 17 vs. rows 18 – 21), the results indicate that
increasing the number of GAttention units can lead
to performance improvements. Overall, the best re-
sults of our proposed configurations were obtained

with the ERNIE model coupled with a multi-head
GAttention mechanism with 12 GAttention units,
across all classification scenarios.

Table 1 also compares the performance of our
proposed configurations against the top-ranked sys-
tems from the shared tasks, as well as three contem-
porary benchmark approaches (Jarquín-Vásquez
et al., 2024). When comparing our best configura-
tion to the top-performing system for each subtask
(row 21 vs. row 22), we observe a notable per-
formance gain in subtask A of the SE 2019 Task
6 dataset and subtask B of the AMI 2018 dataset,
while a slightly lower performance is observed in
subtask A of the HASOC 2019 dataset. Specifi-
cally, for subtask A of the AMI 2018 dataset, the
top team achieved an accuracy of 0.704, whereas
our configuration obtained a higher accuracy of
0.768. Overall, our approach outperformed the
top-ranked systems in five out of the six evaluated
subtasks.

When comparing the results obtained from the
contemporary benchmarks (rows 23 - 25), it can
be observed that the CBRHB approach consistently
outperforms the LLM-based benchmarks (row 23
vs. rows 24 and 25) across all subtasks of the
three evaluation datasets. Moreover, it achieves
this superior performance with significantly fewer
parameters, highlighting the advantages of lever-
aging pre-trained encoding models for AL classi-
fication, particularly in fine-grained tasks such as
subtask B of the AMI 2018 dataset. When compar-
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ing our best configuration with the best contempo-
rary benchmark (row 21 vs. row 23), our approach
again achieves superior performance in five out of
six subtasks. The only exception is subtask A of
the HASOC 2019 dataset, where performance is
slightly lower. Upon examining the instances in
this dataset, we hypothesize that this may be due
to the presence of code-switching, which poses ad-
ditional challenges. It is worth noting that the top-
ranked systems and the contemporary benchmarks
typically rely on LLMs, ensemble strategies, pre-
training of Transformer models on large-scale cor-
pora using pre-training tasks specifically designed
for AL detection, and extensive data augmentation
techniques (Wang et al., 2019; Saha et al., 2018;
Liu et al., 2019a; Wiedemann et al., 2020; Jahan
and Oussalah, 2023; Jarquín-Vásquez et al., 2024).
In contrast, our approach solely integrates variants
of the GAttention mechanism into existing pre-
trained encoding models, without requiring addi-
tional pre-training or ensemble methods.

Finally, Table 1 compares the number of parame-
ters across different baselines and GAttention con-
figurations. As shown, incorporating GAttention
variants increases the number of parameters by up
to 69% when comparing the multi-head GAttention
mechanism with 12 units to the baselines that do
not include any additional mechanisms (rows 18
– 21 vs. rows 2 – 5). This increase translates into
an average training time overhead of 5.6 seconds
per epoch when using a GPU. Nevertheless, the
performance gain in AL detection reaches up to
9%, which is relevant given the harmful impact of
this type of content. For a more detailed analysis
of the performance of the GAttention mechanism
variants, Appendix A.3 presents a statistical sig-
nificance analysis among the different proposed
configurations.

6 Analysis

6.1 Relevance of the SA and CA
Representations

NOTE: This subsection contains examples of lan-
guage that may be offensive to some readers; these
do not represent the authors’ perspectives.

This subsection will analyze the z and 1− z val-
ues, which correspond to the relevance of the SA
and CA representations, respectively, to elucidate
the proposed GAttention mechanism’s adequate
performance in AL detection. The examples pre-
sented in this analysis were exclusively obtained us-

ing the ERNIE model with a single GAttention unit.
This analysis is conducted at the dataset level by
identifying the most relevant words or expressions
for each representation using subtask A across the
three evaluation datasets.

As a first step, we calculated the z and 1 − z
values for all tokens in the test instances post-
training. Next, we averaged these values for each
token and extracted the top 25 tokens with the high-
est averages. This process aimed to identify the
most relevant words or expressions for the SA and
CA representations within the datasets. Figure 4
presents word clouds for these top 25 tokens, show-
casing both representations. The word clouds of
the CA representation include offensive and harsh
terms like ‘f**k’, ‘b**ch’, ‘h**e’, ‘s**t’, etc. Ad-
ditionally, words frequently associated with targets
and stereotypes in hate speech, such as ‘t**ror**t’,
‘woman’, ‘drive’, ‘liberals’, and ‘conservatives’,
are also included. Conversely, the SA representa-
tion word clouds predominantly feature reflexive
pronouns, verbs, conjunctions, and adjectives. This
distinction underscores the CA mechanism’s signif-
icant role in differentiating contextual and seman-
tic elements in the AL detection task. To further
support this analysis, Appendix A.4 contrasts the
SA values produced by the GAttention mechanism
with the attention weights from the ERNIE model.
Additionally, Appendix A.5 provides an instance-
level analysis of the SA and CA representation
values.

6.2 Error Analysis of Misclassified Instances
To assess the robustness of the proposed GAtten-
tion configurations, this subsection presents an er-
ror analysis based on misclassified instances by
the pre-trained ERNIE model (without additional
mechanisms) but correctly classified when integrat-
ing the best-performing configuration, the Multi-
Head GAttention with 12 heads. For this analysis,
ERNIE was selected as the backbone due to its
solid performance across all subtasks of the three
evaluation datasets. Table 2 reports the analysis of
these instances for subtask A across all datasets. A
value of 1 in the label column denotes the positive
class of each dataset.

As shown in Table 2, integrating Multi-Head
GAttention improves the model’s ability to cap-
ture subtle or context-dependent offensiveness. For
example, in instances 1 and 2, the expression “hys-
terical woman” appears. While the baseline ERNIE
model failed to identify its derogatory use in the
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Figure 4: Word clouds of the highest sigma values for CA (a – c) and SA (d – f) mechanisms. Each vertical block
corresponds to an evaluation dataset, ordered from left to right: SEM 2019 Task 6, HASOC 2019, and AMI 2018.

first case, the Multi-Head GAttention mechanism
successfully captured the offensive intent. Simi-
larly, the mechanism improved the classification
of cases where no explicit slurs were present, but
the overall context conveyed offensive meaning. In
instance 3, the comment disparages a woman by im-
plying she is unbearable to watch or listen to, and
in instance 5, the text reflects religious intolerance
and homophobia by rejecting interfaith and same-
sex marriages. Furthermore, the mechanism also
handled instances containing potentially offensive
words used in non-offensive contexts. For example,
in instance 4, “are you f**king serious?” func-
tions as an intensifier rather than an insult, while
in instance 6, the phrase “watching flies f*ck” is
metaphorical and intended to emphasize boredom
rather than offense. Appendix A.6 presents a com-
plementary error analysis, highlighting areas for
improvement by identifying instances that none of
the proposed GAttention configurations were able
to classify.

# Label Text Dataset
1 1 @user not really. If anything, I would use

‘a low IQ, hysterical woman of zero talent’.
AMI

2 0 @user exactly, but I am just a hysterical
woman that sasse hates.

AMI

3 1 #person is so full of herself . . . she is just
as painful to watch as to listen to . . .

SEM

4 0 @user are you f**king serious? url SEM
5 1 unless you’re marrying someone who’s not

muslim or someone of the same sex, 99%
all parents will accept it at some point

HAS

6 0 watching cricket is like watching flies f*ck. HAS

Table 2: Examples of misclassifications by the ERNIE
model (without GAttention), corrected through the inte-
gration of Multi-Head GAttention with 12 heads in the
final encoding layer. The column “label” corresponds
to the ground truth.

7 Conclusions and Future Work

One of the main challenges in using current at-
tention mechanisms is the loss of contextual or
internal information among the tokens in a text
sequence. To address this, we proposed the GAt-
tention and the multi-head GAttention mechanisms.
These mechanisms combine the SA and CA repre-
sentations through a weighted approach based on
their contributions to the text classification tasks.
Specifically, we integrated the GAttention mecha-
nism into four pre-trained Transformer models and
evaluated its performance in the AL detection task.
This task was chosen due to the highly context-
dependent interpretation of words, making it an
ideal testbed for assessing the efficacy of the pro-
posed mechanism. The results were encouraging,
demonstrating improvements across all models and
evaluation datasets, which included both binary
and multi-class classification tasks targeting dif-
ferent types and targets of AL. Notably, the best
performance was achieved using the multi-head
GAttention mechanism with 12 heads integrated
into the ERNIE model. Furthermore, our analysis
revealed a dynamic adaptation in the relevance of
the SA and CA representations, highlighting the
mechanism’s effectiveness in detecting AL.

As future work, we consider 1) evaluating the
GAttention mechanism in tasks where context in-
terpretation is critical for classification, such as in
detecting depression, deception, and fake news; 2)
extending the application of the GAttention mech-
anism to AL detection in memes, by integrating
attention representations from different modalities;
and 3) developing novel loss functions that incorpo-
rate the context vector of the CA mechanism into
the classification process.
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Limitations

Considering the nature of the evaluation datasets,
where labels are manually annotated, social biases
may be inherent in the annotators’ judgments. As
a result, the various model configurations could be
learning these biases, potentially leading to errors
when applied to data of a different nature. Fur-
thermore, the proposed GAttention and multi-head
GAttention mechanisms were integrated and evalu-
ated with the BERT, ERNIE, RoBERTa, and Dis-
tilBERT models; their integration into alternative
pre-trained models may vary their overall perfor-
mance in the AL detection task. Finally, due to the
large amounts of training data required by these
types of architectures to perform effectively, lim-
ited data access may result in suboptimal learning
of the task at hand, thus constraining the model’s
capabilities.
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A Appendix

A.1 Distribution of Class Labels in the
Evaluation Datasets

Table 3 shows the class distribution for subtask A
in each dataset. As can be observed, all datasets
exhibit class imbalance, with the negative class
typically having a higher number of instances.

Dataset Training Testing
OFF NOT OFF NOT

SE 2019 T6 4,400 8,840 240 620
AMI 2018 1,785 2,215 460 540
HASOC 2019 3,591 2,261 865 288

Table 3: Distribution of training and testing data across
the evaluation datasets in subtask A. The columns ‘OFF’
and ‘NOT’ refer to the positive and negative classes,
respectively.

On the other hand, Table 4 presents the class
distribution for subtask B in each dataset. Blocks
2 and 3 correspond to the same dataset, AMI 2018;
however, the distributions are shown separately
since subtask B is designed as a multi-task set-
ting. As can be observed, all datasets exhibit class
imbalance, which is particularly evident in the fine-
grained classification of misogyny types in the AMI
2018 dataset. For the sake of reproducibility, each
training dataset was used to independently train
every baseline model as well as each GAttention
configuration, and the results reported in Table 1
were consistently obtained using the corresponding
test sets.

Dataset Class Training Testing

SE 2019 T6 Targeted 3,876 213
Untargeted 524 27

AMI 2018

Discredit 1,014 141
SH 352 44
Derailing 92 11
S&O 179 140
Dominance 148 124

AMI 2018 Active 1,058 401
Passive 727 59

HASOC 2019
Hate Speech 1,143 124
Offensive 667 71
Profane 451 93

Table 4: Distribution of training and testing data across
the evaluation datasets in subtask B. The acronyms SH
and S&O refer to Sexual Harassment and Stereotype &
Objectification, respectively.

A.2 Implementation Details

Various text preprocessing operations were em-
ployed to prepare the data. To minimize biases,
user mentions and links were replaced with generic
tokens <user> and <url>, respectively. Hashtag
segmentation into words was performed using the
Ekphrasis library3. Additionally, all text was con-
verted to lowercase, and non-alphabetical charac-
ters were removed.

3https://github.com/cbaziotis/ekphrasis
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Four Transformer encoder models were used to
evaluate the proposed architectures and configu-
rations: 1) BERT base uncased4, introduced by
Devlin et al. (2019), which consists of 12 encoder
layers, each with 12 attention heads and a hidden
size of 768; 2) DistilBERT base uncased5, intro-
duced by Sanh et al. (2019), a distilled version of
BERT that preserves much of its language under-
standing capability while reducing model size and
inference time; 3) RoBERTa (Robustly Optimized
BERT Approach) base6, introduced by Liu et al.
(2019b), which builds upon BERT with larger mini-
batches, more training data, and dynamic masking,
removing the next sentence prediction objective
and focusing on a more robust masked language
modeling approach; and 4) ERNIE 2.0 base in En-
glish7, introduced by Sun et al. (2019), which ex-
tends the Transformer architecture by incorporating
knowledge masking strategies during pre-training
to capture lexical, syntactic, and semantic informa-
tion more effectively, producing enriched contex-
tual representations.

All architectures and experiments were imple-
mented using PyTorch8. The experiments were
conducted on a server equipped with an AMD
EPYC 7742 64-core CPU, 512 GB of DDR5
RAM, and four NVIDIA A40 GPUs with 48
GB of GDDR6 memory each. All models were
trained using the Adam optimizer and the cross-
entropy loss function. Table 5 summarizes the
hyperparameters used for subtasks A and B in
the three evaluation datasets for all the proposed
GAttention configurations. These hyperparame-
ters were selected via grid search based on the
macro average F1 score, exploring the follow-
ing values: number of epochs ∈ {1, 2, . . . , 5},
batch size ∈ {12, 14, 16, . . . , 32}, and learning rate
α ∈ {1e−5, 1.5e−5, 2e−5, . . . , 5e−5}.

Regarding the replicated contemporary bench-
marks, for CBRHB, as reported in Jarquín-Vásquez
et al. (2024), both the retraining and fine-tuning
phases employed the Adam optimizer with a learn-
ing rate of 5e-5. Specifically, the retrained Hate-
BERT model was trained for 2 epochs with a batch
size of 32. In contrast, the fine-tuning models

4https://huggingface.co/bert-base-uncased
5https://huggingface.co/

distilbert-base-uncased
6https://huggingface.co/FacebookAI/

roberta-base
7https://huggingface.co/docs/transformers/

model_doc/ernie
8https://pytorch.org/

Dataset Subtask Epochs Batch α
SEM A 2 32 4e-5
SEM B 4 16 1.5e-5
AMI A 3 18 2e-5
AMI B 3 12 2.5e-5
HAS A 2 24 5e-5
HAS B 4 24 1.5e-5

Table 5: Summary of the hyperparameter configurations
employed for subtasks A and B in the three evaluation
datasets for all the GAttention configurations.

for the subtasks of the three evaluation datasets
were trained for 3 epochs with a batch size of 16.
For the CBZS and CBQLoRA benchmarks, inference
was performed with a temperature of 0.8, a maxi-
mum generation length of 8 tokens, and sampling
(p = 0.9) as the text generation strategy. Con-
cerning the QLoRA-based benchmark, the models
were trained for 2 epochs, except for the models
corresponding to subtask B of the AMI 2018 and
HASOC 2019 datasets, which were trained for 3
epochs. In all cases, a batch size of 8 was used,
including a rank of 32, α = 16, and a dropout rate
of 0.05. Table 6 presents the prompt used in both
approaches. For each subtask, the corresponding
categories were included, and for the training sets
of the CBQLoRA benchmark, the respective labels
were also added.

System: You are an expert in analyzing
abusive and offensive content from
social media platforms.
User: The following message originates
from social media and may contain
abusive or offensive content. For
research purposes , classify the
input text into one of the
following categories:

[Provide a detailed description of
each category using the format:
- ‘category 1’: definition
...
- ‘category n’: definition]

Return only the label as a string:
‘category 1’, ‘category 2’, ..., or
‘category n’.

text: {ADD INSTANCE TEXT}
label: [ADD LABEL ONLY FOR THE

TRAINING SETS OF THE QLoRA
BENCHMARK]

Table 6: Prompt template used in our CBZS and
CBQLoRA benchmark approaches.
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A.3 Significance Testing of GAttention
Variants

For a more detailed analysis of the performance of
the GAttention mechanism variants, we employed
McNemar’s statistical test (Dror et al., 2020) to
compare the results of our best configuration (12
Multi-Head GAttention mechanism coupled with
ERNIE) with those of the proposed configurations
using ERNIE for subtask A across the three eval-
uation datasets. Table 7 illustrates this compar-
ison. Specifically, column 2 compares our best
configuration with ERNIE’s fine-tuning. In con-
trast, columns 3 to 5 contrast it with integrating
the SCA, GA, and MH6-GA mechanisms coupled
with ERNIE. Finally, column 6 compares our best
configuration with the best-performing contempo-
rary benchmark. The symbol ‘=’ means not signifi-
cantly different (p > 0.05), ‘*’ means significantly
different (p < 0.05), ‘**’ means very significantly
different (p < 0.01), and ‘***’ means highly signif-
icantly different (p < 0.001). The results indicate
that the proposed 12 Multi-Head GAttention mech-
anism configuration significantly differs from its
simpler variants.

Dataset ERIE SCA GA MH6-GA CBRHB
SEM *** *** *** * *
AMI *** *** *** * ***
HAS *** *** *** * =

Table 7: Pairwise significance differences between the
12 Multi-Head Gattention mechanism coupled with the
ERNIE model and the proposed configurations using
ERNIE as their backbone, evaluated with McNemar’s
test based on the macro-average F1 score across all
datasets in subtask A.

A.4 Analysis of Attention Values of the
ERNIE Model

To shed light on the effectiveness of the proposed
GAttention mechanism, this subsection presents
an analysis of the words with the highest attention
values from the ERNIE model across the three eval-
uation datasets without integrating the proposed
GAttention mechanism. This comparison aims to
contrast the most relevant words identified by an-
alyzing the z and 1 − z values corresponding to
the SA and CA representations, respectively. For
this analysis, we calculated the average attention
values from the last encoding layer of the ERNIE
model for all tokens in the post-training test in-
stances. Subsequently, we averaged these values
for each token and selected the top 25 tokens with

the highest averages. This process aimed to identify
the most relevant words or expressions identified
by the ERNIE model’s attention values within the
three evaluation datasets.

Figure 5: Word clouds of the highest SA values, using
the ERNIE model (without integrating the GAttention
mechanism). Sections a, b, and c show the word clouds
from the SEM 2019 Task 6, HASOC 2019, and AMI
2018 datasets, respectively.

Figure 5 presents word clouds for these top 25
tokens, with sections a, b, and c illustrating the
word clouds derived from the SEM 2019 task 6,
HASOC 2019, and AMI 2018 datasets, respec-
tively. The word clouds reveal that the most rel-
evant tokens, as determined by the attention val-
ues of the ERNIE model, predominantly consist of
commonly used words such as pronouns and prepo-
sitions. However, the occurrence of potentially
offensive words is notable, including terms such as
‘f**k’, ‘b**ch’, ‘d**k’, ‘tr**tor’, and ‘racist’. Ad-
ditionally, the attention mechanism also captures
words commonly targeted in potentially offensive
texts, such as ‘liberal’, ‘people’, ‘conservatives’,
‘men’, and ‘women’. In comparison, the words cap-
tured by the z and 1− z values of the GAttention
mechanism appear to be more segmented. This can
be observed in Figure 4, where words related to
the AL detection task are distinctly identified by
the CA mechanism. In contrast, commonly used
words are captured by the SA mechanism. This
distinction could significantly aid in discriminat-
ing offensive instances and highlights the efficacy
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Figure 6: Analysis of sigma values in both offensive and non-offensive instances, which were correctly classified
using our best configuration. Each graph illustrates the relevance of CA and SA mechanisms in each word of the
instances. Sections a–b, c–d, and e–f correspond to the AMI 2018, HASOC 2019, and SEM 2019 Task 6 datasets,
respectively. All instances were randomly selected from the correctly classified instances.

of the proposed GAttention mechanism configura-
tions in AL detection.

A.5 Instance Level Analysis

For this analysis, we plotted the relevance values of
the SA and CA representations for all words9 in a
text sequence. This approach allowed us to observe
the nuanced behavior of the SA and CA represen-
tations within their respective contexts. Figure 6
displays these values across six instances, each cor-
rectly classified as either offensive (sections a, c,
and e) or non-offensive (sections b, d, and f) in
subtask A across the three evaluation datasets. As
depicted in the Figure, each instance exhibits a sig-
nificant variability in its z values, influenced by the
context. For instance, in the offensive examples, a
higher relevance is noted in the CA representation
for words with potentially offensive connotations,
such as ‘w**re’, ‘kitchen’, ‘*ss’, and ‘s**m’. No-
tably, even in non-offensive instances, CA values
were elevated for words with positive connotations,
like the word ‘funniest’ in Section b. Conversely,
the SA representation predominantly highlighted
its relevance in pronouns, verbs, and conjunctions.
This pattern underscores the efficacy of the GAtten-
tion mechanism, leveraging both representations to
improve the detection of AL.

9For words segmented into multiple tokens, we manually
averaged their values.

A.6 Limitations of the GAttention Mechanism
To gain insights into the limitations of the proposed
GAttention configurations, this section presents an
error analysis based on three specific settings: the
single-head GAttention mechanism and the Multi-
Head GAttention mechanism with 6 and 12 heads,
all integrated into the final encoding layer of the
ERNIE model. For this analysis, we considered
an instance to be misclassified when none of the
three configurations was able to predict it correctly.
The analysis focuses on Subtask A across the three
evaluation datasets.

Table 8 provides representative examples of such
instances. The results reveal that the GAttention
configurations struggle with subtle expressions
whose literal meaning may appear non-offensive
but are used in a derogatory manner. For exam-
ple, in instance 1, the word “skank”, in instance
5, the phrase “alien head”, and in instance 7, the
word “fanatic” were all misclassified. Moreover,
the mechanisms also fail to detect offensive ex-
pressions disguised as acronyms, as illustrated by
instance 2, where “stfu” (meaning “shut the f**k
up”) requires contextual knowledge to be correctly
interpreted as offensive.

Additionally, there are cases where non-
misogynistic content is incorrectly classified. In
instance 3, despite containing expressions such as
“b*tch *ss friends”, the overall intent is not offen-
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sive, as the phrase is used in an emphatic manner,
further softened by the introductory “I miss my”
phrase. Similarly, in instance 4, the message is of-
fensive, but not misogynistic, since it is not directed
at a woman. Finally, we observe instances where
the ground-truth labels themselves introduce ambi-
guity. For example, in instances 6 and 8, the expres-
sions “n*sty” and “s**pid boy” are overtly offen-
sive, yet their labels are marked as non-offensive.
Such inconsistencies may reflect annotation biases,
which could partly explain the discrepancies be-
tween model predictions and the reference labels.

# Label Text Dataset
1 1 @user my little commie skank look at

you!!! I’m so proud
AMI

2 1 @user why don’t u stfu, that is exactly
what’s wrong with this country

AMI

3 0 I miss my s**pid pretty stank d*mb wh*re
skank trick b*tch *ss friends

AMI

4 0 @user you are just a complete whacko
traitor! f*ck you!

AMI

5 1 by reading your comment, it seems to me
that you have an alien head.

SEM

6 0 @user she is just n*sty SEM
7 1 tell that fanatic not to use any car or buses

or aeroplane which use muslim petrol diesel
HAS

8 0 these lists of banned substances have been
around forever, s**pid boy

HAS

Table 8: Examples of misclassifications by the GAt-
tention configurations using the ERNIE model. The
column “label” corresponds to the ground truth.
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