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Abstract

Chain-of-Thought (CoT) distillation has
emerged as a promising paradigm to enhance
the reasoning ability of small language
models by imitating the reasoning and
outputs of larger teacher models. However,
existing approaches suffer from a critical
limitation: a distribution mismatch between
teacher-generated training trajectories and
the student model’s own generative distribu-
tion. This mismatch leads to exposure bias
during inference and often induces mode
collapse or mode averaging, thereby degrading
the student model’s generative diversity
and robustness. To address these issues,
we propose CoTD-PO (Chain-of-Thought
Distillation with Preference Optimization)
1, a reinforcement learning framework that
shifts the training paradigm from passive
imitation to active trajectory exploration.
Instead of forcing the student to imitate
exact teacher traces, our method enables the
student to sample its own answer paths. To
support training with non-open-source teacher
models, we approximate the teacher’s output
distribution through preference-based scoring.
Furthermore, we adopt an offline iterative
training procedure that enables stable and
efficient optimization. Experiments on diverse
open-ended generation tasks demonstrate that
CoTD-PO significantly outperforms standard
CoT distillation baselines, achieving higher
output quality while mitigating mode collapse
and preserving semantic diversity.

1 Introduction

Recently, the capabilities of large language models
(LLMs) have been shown to scale not only with
an increase in model size but also through tech-
niques such as chain-of-thought (CoT) reasoning
(Wei et al., 2022b) and model distillation (Tunstall

* Corresponding author.
1https://github.com/little-mushroom0/COTD_PO

et al., 2023). CoT reasoning has gained signif-
icant attention for its ability to enhance the rea-
soning ability of LLMs by encouraging them to
explicitly articulate intermediate reasoning steps
before arriving at a final answer (Kojima et al.,
2022; Wei et al., 2022a). However, empirical evi-
dence demonstrates a strong scale-dependence in
CoT effectiveness, with significant performance
gains confined to models exceeding 100 billion
parameters. Smaller models often fail to perform
well with CoT, as their limited parameter space hin-
ders their ability to generate intermediate reasoning
steps effectively.

This limitation has motivated research into chain-
of-thought distillation (CoTD), which seeks to
transfer multi-step reasoning processes and out-
puts from large teacher models to compact student
architectures (Wang et al., 2023; Li et al., 2023).
Unlike traditional knowledge distillation (KD) that
primarily aligns final answers (Hinton et al., 2015),
CoTD requires the student to imitate both the inter-
mediate rationales and final answers of the teacher.
This strict trajectory-level imitation introduces :

(1) Exposure biass (Arora et al., 2022; Ranzato
et al., 2016): During training, CoTD relies on
teacher forcing, where gold-standard intermediate
steps are provided at each stage. However, during
inference, the model must autoregressively gen-
erate reasoning steps based on its own previous
outputs. This train-test discrepancy leads to ex-
posure bias, where early errors propagate through
sequential dependencies, resulting in compounded
mistakes in downstream reasoning.

(2) Distribution mismatch: As large teacher mod-
els possess stronger reasoning abilities, their CoT
traces are often more diverse and coherent. How-
ever, student models have limited capacity to cap-
ture such rich patterns, which creates a severe
mismatch because the teacher’s sampled answers
often receive near-zero probability under the stu-
dent model. Minimizing forward or reverse KL
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divergence further amplifies this gap. Forward KL
forces the student to spread probability mass over
regions unsupported by the teacher, while reverse
KL encourages over-concentration on a few modes,
which leads to mode averaging or mode collapse.
Thereby undermining generalization from the per-
spective of distributional coverage and output di-
versity (Wang et al., a; Gu et al.).

While recent advances have sought to avoid ex-
posure bias and distribution mismatch by focusing
on structured tasks (e.g., closed-form arithmetic
problems with deterministic solutions and multiple-
choice QA (Feng et al., 2024; Lee et al., 2024)),
where the output space usually consists of a finite
number of classes. However, these approaches of-
ten struggle in open-ended generation settings (Fu
et al., 2023a), which are characterized by high out-
put diversity and semantic ambiguity. Meanwhile,
they typically assume access to full teacher distri-
butions—an impractical requirement for black-box
models, struggling to generalize to open-ended set-
tings with high diversity and ambiguity (Feng et al.,
2024; Lee et al., 2024).

To address these challenges, we introduce Chain-
of-Thought Distillation with Preference Optimiza-
tion (CoTD-PO). Our method shifts the paradigm
from strict teacher-forcing imitation to student-led
exploration. Specifically, we leverage reinforce-
ment learning to empower the student model to
discover its own answer trajectories, using the
teacher’s rationales as high-level guidance rather
than a fixed path to be mimicked. This self-
exploration directly mitigates exposure bias by
aligning the training process with the autoregres-
sive nature of inference. Furthermore, to enable
distillation from black-box teachers, CoTD-PO in-
corporates a preference alignment strategy that re-
places explicit probability matching with reward-
based relative quality scoring. This allows effec-
tive supervision without requiring access to the
full teacher distribution. We evaluate our approach
on multiple instruction-following benchmarks, and
experimental results demonstrate that CoTD-PO
not only achieves superior performance but also
effectively mitigates the aforementioned issues of
exposure bias and distribution mismatch.

To summarize, our contributions are as follows:

1. We introduce CoTD-PO, a novel framework
that transitions from teacher-forcing imitation
to student-led generation guided by teacher
rationales, reducing exposure bias and dis-

tribution mismatch and enhancing continual
learning.

2. We introduce a preference alignment strat-
egy that replaces explicit probability matching
with reward-based relative quality scoring, en-
abling effective distillation from black-box
teacher models without access to their full
output distributions.

3. We extend CoTD-PO to instruction-following
tasks by leveraging teacher rationales as im-
plicit reasoning guidance, achieving consis-
tent performance improvements across multi-
ple benchmarks.

2 Methodology

2.1 Preliminaries
Building upon established chain-of-thought (CoT)
distillation frameworks (Ho et al., 2023; Fu et al.,
2023a), the student model is trained to mimic the
reasoning capability of the teacher through prob-
ability matching. The vanilla CoT distillation
framework consists of two interdependent stages:
(1) Teacher Model CoT Generation Step: For
each question-answer pair {x, y} ∈ D, where y
is the correct answer, the teacher model Mt is
prompted to generate a rationale CoT . (2) Stu-
dent Imitation Learning: Then, the student Ms

is trained to replicate both the teacher’s rationale
CoT and answer tokens y, given the question x
as input through probability matching formalized
as Kullback-Leibler divergence minimization. The
standard objective decomposes into reasoning and
answer alignment components:

KL(pt(y, CoT | x) ∥ ps(y, CoT | x))
= ECoT∼pt KL(pt(CoT | x) ∥ ps(CoT | x))︸ ︷︷ ︸

Reasoning Alignment

+Ey∼pt KL(pt(y | CoT, x) ∥ ps(y | CoT, x))︸ ︷︷ ︸
Answer Alignment

,

(1)
leading to the standard negative log-likelihood loss:

LCoTD = λans ·E [− logMs(y | q, CoT )]

+ λcot ·E
[

T∑

t=1

− logMs(CoTt | q, CoT<t)

]
.

(2)
where λans, λcot ∈ [0, 1] control task focus. This
joint training enforces strict trajectory alignment
between teacher and student.
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Figure 1: The COTD-PO training procedure. Unlike standard SFT (left) which performs direct imitation of a single
teacher answer, our framework (right) operates on a distribution of student-generated answers. The student first
samples multiple candidates ys. A teacher model then provides preference scores rt for these candidates, which
are converted into a target distribution. This distribution acts as a soft label to align the student’s policy with the
teacher’s preferences.

2.2 Chain-of-Thought Distillation with
Preference Optimization

Prior approaches to Chain-of-Thought Distillation
(CoTD) often face a critical trade-off where gains in
specialized reasoning come at the cost of degraded
generalizability (Fu et al., 2023a). This issue stems
from a significant distributional mismatch between
the teacher’s training data and the student model’s
own distribution, leading to problems like mode
collapse and mode averaging. Consequently, the
student model’s ability for continual learning is
often impaired. Furthermore, the challenge is exac-
erbated when employing black-box teacher models.
The inability to access the internal states and prob-
ability distributions of these models significantly
hinders effective probabilistic alignment between
the teacher and the student.

To overcome these challenges, we propose
CoTD-PO, a reinforcement learning framework
that redefines CoTD through three key innovations:
(1) Active Trajectory Exploration: Shift from pas-
sive cloning to self-exploration of answers guided
by teacher reasoning; (2) Black-Box Preference
Alignment: Bridge teacher-student probability via
reward-based preference scoring, bypassing prob-
ability access; (3) Entropy-Regularized Optimiza-
tion: Balance answer quality and diversity through

principled exploration.
Figure 1 illustrates the key differences between

standard CoT distillation and our proposed CoTD-
PO framework.

Answer Alignment in Student Generation Space
Conventional CoTD performs answer alignment
within the teacher’s output space. This in-
duces mode collapse or mode averaging when the
teacher’s and student’s distributions diverge. To cir-
cumvent this issue, we propose reformulating the
alignment objective to operate within the student’s
own generation space. Specifically, we encourage
the student model to explore its own answer tra-
jectories, conditioned on the teacher’s high-quality
chain-of-thought rationales. We formally redefine
the Answer Alignment objective from Equation (1)
as follows:

Ey∼ps, CoT∼pt

KL (pt(y | CoT, x) ∥ ps(y | CoT, x)) ,
(3)

Where x denotes the instruction, CoT denotes
the rationale from the teacher, and y denotes the
student-generated answer. This formulation allows
the student to continuously learn the reasoning com-
ponent from the teacher, while simultaneously ex-
ploring how to interpret and utilize that reasoning
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for its own generation. In doing so, the student mit-
igates distribution mismatch during training and
better generalizes to auto-regressive inference sce-
narios.

Black-Box Teacher Approximation via Prefer-
ence Scores In many real-world scenarios, the
teacher model functions as a black box, making it
infeasible to directly access the conditional prob-
ability pt(y | x) for arbitrary student-generated
outputs y ∼ ps. To overcome this limitation, we
propose approximating the teacher’s distribution us-
ing preference scores. These scores can be sourced
either from a dedicated reward model, rt(y | x) ,
trained to emulate the teacher’s judgments, or di-
rectly from the teacher if it can provide scalar qual-
ity ratings. This scalar scoring mechanism provides
a bridge between discrete judgments and proba-
bilistic alignment. Specifically, we replace the
intractable probability distributions with softmax-
normalized teacher-assigned preference scores:

pt(y | CoTt, x) ∝
ert(y|x)∑
j e

rt(yj |x) , (4)

where yj are candidate answers. This formulation
provides a monotonic mapping from scores to prob-
abilities. For example, if the teacher model deems
an answer y1 to be of higher quality than another
answer y2, this is reflected in their assigned scores
rt(y1 | x) > rt(y2 | x).The softmax function en-
sures that this preference translates directly into the
probability space, such that the approximated prob-
ability for the superior answer is strictly greater
ps(y1 | CoTt, x) > (ps(y2 | CoTt, x). Similarly,
the student’s distribution ps(y | x) is parameterized
by its own preference scores rs(y | x). Substitut-
ing Equation (4) into the answer alignment term
in the KL divergence into Equation (3) as:

KL (pt(y | CoTt, x) ∥ ps(y | CoTt, x))

∝ −
∑

i

ert(yi|x)∑
j e

rt(yj |x) log

(
ers(yi|x)∑
j e

rs(yj |x)

)
, (5)

The detailed derivation is provided in Appendix A.
where rt(yi | x) and rs(yi | x) represent the
teacher’s and student’s preference scores for candi-
date output yi, respectively. Minimizing this diver-
gence encourages the student to match the teacher’s
implicit preferences over multiple candidates, with-
out requiring explicit teacher distributions.

Diversity-Preserving Optimization To prevent
the student from overfitting to high-reward but low-
diversity outputs, we augment the training objective
with entropy regularization:

max
ps

;Ey∼ps [rs(y | x)] + λHs(y | CoTt, x), (6)

Hs(y | CoTt, x) = −Ey∼ps [log ps(y | CoTt, x)]
is the entropy of the student’s distribution and λ
controls the strength of entropy regularization. The
optimal solution to this objective satisfies:

rs(y | x) ∝ λ log ps(y | CoTt, x) + λ logZ, (7)

where Z =
∑

y e
λrs(y) is the partition function.

This establishes a direct link between the log-
probabilities of the student policy and its internal
preference scores, enabling tractable optimization.
The full derivation of this optimal policy is pro-
vided in Appendix B.

Unified Training Objective Combining the an-
swer alignment term of KL divergence formulation
in (5) with preference scores in (7), we derive the
final Answer Preference Alignment Loss:

Lapa =

−
∑

i

ert(yi|x)∑
j e

rt(yj |x) log

(
eλ log ps(yi|CoTt,x)

∑
j e

λ log ps(yj |CoTt,x)

)
.

(8)
The core training objective explicitly aligns the
student’s answer distribution with the teacher’s
preferences, encouraging the student to respect
the relative rankings imposed by the teacher’s re-
ward model while preserving exploration flexibility
through entropy-regularized sampling. To jointly
optimize both rationale generation and answer syn-
thesis, we introduce a unified training objective.
We adopt offloading techniques and iteratively re-
fine the model over multiple training rounds to
reduce memory consumption during large-batch
optimization. As detailed in Algorithm 1, we
implement an iterative offline procedure:(1) Stu-
dent Answer Sampling: For each instruction x
and corresponding teacher rationale CoTt, the stu-
dent samples K candidate answers {yj}Kj=1 from
ps(y | CoTt, x); (2) Teacher Preference Scoring:
A frozen teacher-aligned reward model rt(y | x)
scores each answer; (3) Distribution Alignment Up-
date: To jointly optimize rationale generation and
answer synthesis, we introduce a composite train-
ing objective:
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Algorithm 1 Chain-of-Thought Distillation with
Preference Optimization (CoTD-PO)
Input: Instruction x ∈ D, teacher model Mt, re-

ward model rt, student model ps, number
of iterations N , number of candidates K

for i = 1 to N do
(1) Teacher Rationale Generation:

Generate rationale CoTt ∼ Mt(CoT | x)
(2) Student Answer Sampling:

Sample K candidate answers {yj}Kj=1 ∼
ps(y | CoTt, x)

(3) Teacher Scoring:
Compute preference scores rt(yj | x) for each
j = 1, . . . ,K

(4) Student Update:
Compute total loss Ltotal using Eq. (9) Back-
propagate gradient ∇θLtotal and update ps

Ltotal = E

[
−

I∑

i=1

log ps(CoT i
t |CoT<i

t , x)

]

︸ ︷︷ ︸
Rationale NLL Loss

−α
∑

i

ert(yi|x)∑
j
ert(yj |x)

log


 eλ log ps(yi|CoTt,x)

∑
j
eλ log ps(yj |CoTt,x)




︸ ︷︷ ︸
Lapa

.
(9)

where the first term enforces faithful rationale
generation via teacher-forced NLL, and the second
aligns the answer distribution with teacher pref-
erences. The balancing coefficient α controls the
trade-off between reasoning fidelity and answer
quality.

3 Experiments

3.1 Experimental Setup

Model In this study, we use GPT-4o (OpenAI,
2024) as the teacher model to generate ratio-
nales, which are then employed to guide the self-
exploration process of the student models. The
student models are Llama-3.1-8B-Instruct (Dubey
et al., 2024) and Ministral-8B-Instruct-24102.To
obtain the teacher’s preference scores, we fine-tune
the QRM-LLaMA3.1-8B reward model (Dorka,

2https://huggingface.co/mistralai/
Ministral-8B-Instruct-2410

2024) on teacher-labeled preference data, result-
ing in a dedicated reward model aligned with the
teacher’s implicit preferences. Detailed training
settings and reward alignment procedures are pro-
vided in Appendix C.

Datasets Unlike prior CoT distillation works that
primarily focus on classification tasks, we conduct
our experiments on instruction-following tasks,
which are more representative of real-world LLM
usage scenarios. Specifically, we use training sets
of UltraFeedback (Cui et al., 2023) as our dataset,
which is a large-scale, fine-grained, diverse pref-
erence dataset collected about 64k prompts from
diverse resources. During training, we randomly
sampled 8,000 Ultra-Feedback prompts in each it-
eration.

Training Details All experiments were con-
ducted on two NVIDIA A800 GPUs. For each
training iteration, we generated K = 8 responses
per prompt using temperature in [0.6, 1.2] and top-
p sampling with p = 0.95, which ensured sufficient
diversity for the student model to learn from multi-
ple candidate outputs. To ensure the stability and
convergence of our experimental results, we per-
formed more than five iterations for each setting.
We trained the models using the AdamW optimizer
with a learning rate of 5e-5. The batch size was
set to 2 per GPU, and gradient accumulation was
applied over 32 steps to simulate a larger effective
batch size. We used a linear learning rate scheduler
with warm-up over the first 10% of training steps.

Evaluation To rigorously assess instruction-
following capabilities, we evaluate models on three
benchmarks: AlpacaEval 2.0 (Dubois et al., 2024)
measures real-world task fidelity through 805 di-
verse user queries spanning multi-turn dialogues
and creative tasks, employing GPT-4-turbo for au-
tomated win rate calculation; MT-Bench (Zheng
et al., 2023) provides fine-grained analysis across
seven categories (Writing, Roleplay, Reasoning,
etc.) using 160 multi-turn prompts with GPT-4-
based rubric scoring (0-10 scale) to quantify spe-
cialized competencies; Arena-Hard-Auto (Li et al.,
2024), a benchmark consisting 500 challenging
prompts curated by BenchBuilder. All benchmarks
employ auto-evaluation using their respective de-
fault judge models.

Beyond task performance, we systematically
evaluate output diversity through lexical (Distinct-
N scores, N=1, 2 (Li et al., 2016)) and semantic
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Method AlpacaEval 2 (LC) Arena-Hard MT-Bench

Baselines
Specialized KD (Fu et al., 2023a) 18.59 26.3 7.03
MCCKD (Chen et al., 2023) 10.11 9.4 4.00
CasCoD (Dai et al., 2024) 20.53 21.1 7.71
Zephyr (Tunstall et al., 2023) 24.25 27.0 7.89

Initial Models
Llama-3.1-8B-Instruct 20.85 21.3 6.94
Mistral-8B-Instruct-2410 32.34 23.4 7.25

Our Method (CoTD-PO)
CoTD-PO + Llama-3.1-8B-Instruct 53.80 49.5 8.54
CoTD-PO + Mistral-8B-Instruct-2410 53.18 52.4 8.31

Black-Box Models
GPT-4o (2024-05-13) (teacher-model) 57.5 79.2 -
GPT-4o-mini 50.7 74.9 -
GPT-4-0613 30.2 37.9 9.18

Table 1: Comparison of different methods on AlpacaEval 2 (LC), Arena-Hard, and MT-Bench. CoTD-PO
demonstrates strong performance across all metrics.

(NLI diversity (Stasaski and Hearst, 2022)). For
all diversity metrics, higher values indicate greater
diversity. Using AlpacaEval 2.0 prompts, we gen-
erate 16 responses per prompt and assess diver-
sity from dual perspectives: (1) Intra-Prompt Di-
versity: Measures variability across multiple re-
sponses to the same prompt. (2) Inter-Prompt
Diversity: Evaluates output uniqueness across
different prompts to detect global pattern overfit-
ting. This dual-axis analysis ensures comprehen-
sive characterization of both local creativity and
global generalization.

Baselines As baselines, we compare our method
with three representative CoT distillation ap-
proaches: Specialized KD (Fu et al., 2023a), MC-
CKD (Chen et al., 2023), and CasCoD (Dai et al.,
2024). Although these methods were originally
designed for classification tasks, we adapt them
to generative instruction-following tasks using the
same student models and dataset as in our setup to
ensure a fair comparison. In addition, we include
Zephyr (Tunstall et al., 2023), distilling via direct
preference optimization (dDPO), as a preference-
based distillation baseline.

3.2 Main Results

Generation Performance Our experimental re-
sults demonstrate the consistent effectiveness of
our proposed method across various student mod-

els and evaluation benchmarks, as summarized in
Table 1. Our approach achieves a peak win rate
of 53.80% on AlpacaEval 2.0 LC, surpassing GPT-
4o-mini by a margin of +3.1%. In Arena-Hard,
our method not only significantly outperforms all
distillation-based approaches but also exceeds the
performance of GPT-4 (0613). While GPT-4 (0613)
still leads on MT-Bench with a score of 9.18, our
method narrows the gap considerably, achieving
8.54.

In our baseline methods, the training data for the
answer component is sourced exclusively from the
teacher model’s output space. Specifically, Spe-
cialized KD trains the student via direct supervised
fine-tuning (SFT) on the teacher’s outputs, while
Zephyr first uses a reward model to select preferred
teacher-generated responses and then applies DPO.
In contrast, our method shifts the training paradigm
to the student model’s own output space. This ap-
proach effectively mitigates the distribution mis-
match between the training data and the student
model, thereby addressing the issue of catastrophic
forgetting.

In contrast to previous approaches that may im-
prove performance on specific tasks at the cost of
general capabilities (e.g., (Fu et al., 2023a)), our
method achieves a better balance. As shown in
the fine-grained breakdown in Figure 2 (a), CoTD-
PO improves reasoning skills without degrading
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performance on general tasks.

Diversity Analysis Figures 2 (b) and 2 (c) illus-
trate the model performance across various diver-
sity metrics. We observe that compared to the orig-
inal LLaMA-3.1-8B-Instruct model, our method
(CoTD-PO) significantly improves lexical diver-
sity (as indicated by Distinct-1/2) within the same
prompt, while showing a slight reduction in seman-
tic diversity (NLI Diversity). However, in terms
of inter-prompt diversity, our method consistently
improves across all metrics. This suggests that
CoTD-PO not only enhances output diversity but
also encourages greater consistency in generation.

We find that CasCoD boosts all diversity met-
rics significantly. Combined with its relatively
weaker performance on instruction-following tasks,
this implies a mode-averaging effect that the stu-
dent distribution becomes overly smooth and fails
to adequately capture the teacher’s intent. This
commonly occurs when aligning distributions with
large support mismatches using forward KL diver-
gence, resulting in underfitting.

Overall, our method addresses the issue faced by
prior CoT distillation methods: the distribution mis-
match between teacher outputs and the student’s
generative distribution. By leveraging both prefer-
ence modeling and entropy regularization, CoTD-
PO achieves superior performance on open-ended
instruction-following tasks.

3.3 Ablation Study
We conduct rigorous ablation studies to validate hy-
potheses: (1) Aligning student outputs in their own
generation space is superior to teacher-space align-
ment; (2) Teacher CoT rationales provide essential
inductive biases beyond standard fine-tuning; (3)
Our new preference alignment loss, by combining
KL divergence and entropy regularization, not only
ensures robust alignment with preference signals
but also preserves output diversity.

Student-Space vs. Teacher-Space Answer Align-
ment One of the core contributions of CoTD-PO
is aligning the student’s answer distribution in its
own generation space rather than in the teacher’s
space (Eq. 3). We ablate this component by switch-
ing back to teacher-space KL divergence, where
answers are sampled from the teacher model. As
shown in Table 2, this setup performs poorly on
generation tasks. This verifies that forcing students
to mimic teacher distributions induces distribution
drift when their generation spaces diverge.

Teacher CoT Guidance Analysis When ablat-
ing teacher rationales requiring the student to au-
tonomously generate both reasoning paths and final
answers, with feedback only on outputs. As shown
in Table 2, removing explicit teacher CoT guidance
leads to significantly lower performance ceilings
during optimization. This highlights the effective-
ness of leveraging teacher rationales to guide the
student’s own reasoning process, demonstrating the
feasibility and necessity of CoT based supervision.

KL-Based Preference Loss vs. Pairwise Loss
Our main loss function is derived by combining
KL divergence with softmax-normalized teacher
preferences, incorporating entropy regularization to
preserve diversity. To isolate its effectiveness, we
compare it to the widely-used pairwise SimPO loss,
which only optimizes over best/worst pairs. Our
loss outperforms the pairwise alternative on seman-
tic diversity (see figure 2(b,c)) while maintaining
strong task performance Table 3, demonstrating
that it better alleviates mode collapse and promotes
diverse generation.

3.4 Gradient Analysis

To deconstruct the learning dynamics of our align-
ment objective, we analyze the gradient of the
answer-focused loss (Eq. (8)):

∇θLapa = λ
(
E[
∑

i

∇θ log ps(yi)]

︸ ︷︷ ︸
Student Policy Calibration

−E[∇θp̃t log ps(y)]︸ ︷︷ ︸
Teacher Signal

) (10)

Component Analysis

• Teacher Signal Term: Maximizes likeli-
hood of teacher-preferred outputs through p̃t-
weighted gradients.

• Student Policy Calibration Term: Sub-
tracts expected gradient under student’s sharp-
ened distribution ps(y), acting as a self-
normalizing control variate.

This gradient structure enables conservative
policy updates that student distribution evolves
smoothly toward teacher preferences while preserv-
ing diversity through entropy regularization.
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(a) fine-grained capability analysis (b) Intra-prompt diversity metrics (c) Cross-prompt diversity profiles

Figure 2: Comprehensive evaluation of CoTD-PO: (a) fine-grained capability analysis, (b) Intra-prompt diversity
metrics, (c) Cross-prompt diversity profiles.

Benchmark Student-Space (Ours) Teacher-Space No Teacher CoT

AlpacaEval2(LC) 53.80 34.30 46.67
Arena-Hard 49.5 35.6 42.5
MT-Bench 8.54 7.64 8.28

Table 2: Ablation study comparing (1) output space alignment strategies, (2) with/without teacher CoT guidance.

Pairwise Preference Loss
While our primary objective in Equation (8) pro-
vides theoretically optimal distribution alignment,
its computational complexity grows quadratically
with candidate set size. We therefore analyze a
lightweight alternative that distills only extremal
preferences:

Lpairwise = −E(yc,yr)[
log σ

(
β
|yc| log πs(y

c)− β
|yr| log πs(y

r)− γ
)]

,

(11)
where πs(y) is the student’s generation probabil-

ity. This matches SimPO’s objective (Meng et al.,
2024) but reveals critical differences in gradient
behavior:

∇θLpairwise ∝
− σ(−∆)

(
∇ log πs(yc)

|yc| − ∇ log πs(yr)
|yr|

) (12)

where ∆ = β log πs(yc)
|yc| − β log πs(yr)

|yr| − γ. Com-
pared to our full-distribution gradient (Eq. 10), the
pairwise loss suffers from high-variance updates
and often encourages convergence to narrow re-
sponse patterns (i.e., mode collapse). In practice,
we observe both the log-likelihoods of chosen and
rejected responses tend to decrease during pairwise
training. This mirrors reported in prior work. We
addition NLL loss on the chosen samples, which
stabilizes training and improves performance.

As shown in Table 3, pairwise optimization
yields comparable results on generation perfor-
mance. However, it significantly reduces semantic
diversity, shown in Figure 2(b,c). This supports
that our method effectively alleviates mode col-
lapse and promotes output diversity.

Benchmark CoTD-PO Pairwise

AlpacaEval2(LC) 53.80 52.04
NLI Diversity 0.520 0.496

Table 3: Full vs. pairwise preference optimization. De-
spite comparable task performance, CoTD-PO better
preserves semantic diversity (NLI).

4 Related Work

4.1 Chain-of-Thought Reasoning

The chain-of-thought (CoT) paradigm, first for-
malized by (Wei et al., 2022b), enables language
models to decompose complex reasoning tasks into
intermediate rationales before generating final an-
swers. Subsequent work has explored diverse ex-
tensions of this paradigm, including prompting
strategies for eliciting reasoning steps (Kojima
et al., 2022), self-consistency mechanisms that
aggregate multiple reasoning paths (Wang et al.,
b), and iterative self-improvement frameworks like
STaR (Zelikman et al., 2022). The STaR method
exemplifies a closed-loop refinement process: it ini-
tially generates rationales for batches of questions
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using few-shot exemplars, re-generates erroneous
rationales conditioned on known correct answers,
and fine-tunes the model exclusively on verified
reasoning traces.

However, empirical analyses reveal critical lim-
itations in its applicability. While most studies
(Zhou et al., 2023; Fu et al., 2023b; Hosseini et al.,
2024), (Fu et al., 2023b), (Hosseini et al., 2024)
and (Trung et al., 2024) focus on explicit reason-
ing domains (e.g., arithmetic and logic puzzles),
recent evidence challenges its broader utility. A
systematic meta-analysis by (Sprague et al., 2024)
found that CoT substantially benefits only tasks
requiring mathematical, logical, or algorithmic
problem-solving. TPO (Wu et al., 2024) further
confirms that simply prompting the model to articu-
late its thought process actually hurts performance
on general instruction-following tasks. Yet, when
integrated into training objectives, CoT principles
not only enhance reasoning and problem-solving
performance but also improve capabilities in non-
traditional reasoning domains.

4.2 Knowledge Distillation with Rationales
Traditional knowledge distillation (Hinton et al.,
2015) primarily focuses on transferring output-
level knowledge from teacher models to student
models. More recent work has extended this to
rationale-aware distillation, aiming to transfer not
only the final prediction but also the reasoning pro-
cess behind it. Prior research (Wei et al., 2022b)
has demonstrated that Chain-of-Thought (CoT) rea-
soning requires large models for optimal perfor-
mance. Studies by (Ho et al., 2023), (Magister
et al., 2023), and (Li et al., 2023) have shown that
smaller models may not inherently generate CoT
reasoning chains, but they can be trained to do so
through the use of augmented training sets.

However, large language models (LLMs) are
prone to producing hallucinations. These incon-
sistent rationales can be inherited by the student
models. and the student model may treat rationale
generation and answer prediction as two indepen-
dent tasks, which can hinder performance. To ad-
dress these issues, (Wang et al., 2023) proposed
a self-consistent CoT method, and (Chen et al.,
2024) employed Mutual Information to better align
the reasoning process between teacher and student
models. Previous work mainly focused on deter-
mined tasks (e.g., label classification tasks or tasks
with definite answers, such as mathematical prob-
lems), where the output resides in a discrete space,

while the generated rationales lie in a continuous
space. This discrepancy can lead to inconsistency.

5 Conclusion

We present CoTD-PO, a novel RL framework that
transforms chain-of-thought distillation from pas-
sive imitation to active exploration. By aligning
student-teacher preferences instead of probabilities
and enforcing entropy-regularized policy updates,
our method effectively mitigates distribution mis-
match while preserving generation diversity. Ex-
periments across instruction-following benchmarks
demonstrate state-of-the-art performance without
mode collapse degradation.

Limitations

Although the method proposed in this study has
produced promising outcomes, several limitations
persist. Notably, the teacher models utilized are
general-purpose language models, such as GPT-4,
which are not specifically tailored for reasoning
tasks. This dependency imposes a theoretical up-
per limit on performance, as general models may
lack the logical rigor and complexity inherent in the
reasoning steps generated by specialized chain-of-
thought (CoT) optimizers like DeepSeek-R1 when
producing CoT trajectories. Furthermore, it re-
mains to be verified whether our distillation method
is effective in distilling models akin to DeepSeek-
R1.

Current implementation lacks formal verification
of reasoning chain validity. This allows logical
missteps (e.g., arithmetic errors in derivations) to
persist undetected during distillation.

The proposed method, CoTD-PO, and its asso-
ciated implementation are intended solely for re-
search purposes.
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A Derivation of KL Divergence
Simplification

We provide the detailed derivation for Equation (5),
starting from the KL alignment objective in Equa-
tion (3):

E y∼ps
CoT∼pt

KL (pt(y | CoT, x) ∥ ps(y | CoT, x))

In our framework, both the teacher and student
answer distributions are modeled as softmax over
their preference scores:

pt(yi | x) =
ert(yi|x)∑
j e

rt(yj |x) ,

ps(yi | x) =
ers(yi|x)∑
j e

rs(yj |x) .

the KL divergence between them is:

KL(pt∥ps) =
∑

i

pt(yi | x) log
pt(yi | x)
ps(yi | x)

.

19985

https://openreview.net/forum?id=3Tzcot1LKb
https://openreview.net/forum?id=3Tzcot1LKb
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/1511.06732
https://arxiv.org/abs/1511.06732
https://arxiv.org/abs/2409.12183
https://arxiv.org/abs/2409.12183
https://arxiv.org/abs/2409.12183
https://doi.org/10.18653/v1/2024.acl-long.410
https://doi.org/10.18653/v1/2024.acl-long.410
https://doi.org/10.18653/v1/2023.acl-long.304
https://doi.org/10.18653/v1/2023.acl-long.304
https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2410.10630
https://arxiv.org/abs/2410.10630
https://arxiv.org/abs/2410.10630
https://openreview.net/forum?id=WZH7099tgfM
https://openreview.net/forum?id=WZH7099tgfM


Expanding the logarithm, we have:

KL(pt∥ps) =∑

i

pt(yi | x) log pt(yi | x)
︸ ︷︷ ︸

−H(pt)

−

∑

i

pt(yi | x) log ps(yi | x)
︸ ︷︷ ︸

Cross-Entropy H(pt,ps)

,

where H(pt) is the entropy of the teacher distribu-
tion, and H(pt, ps) is the cross-entropy.

During optimization, the teacher distribution pt
is fixed (i.e., parameters of rt are frozen). Thus,
H(pt) becomes a constant term independent of the
student’s parameters θ. Consequently, minimizing
KL(pt∥ps) is equivalent to minimizing the cross-
entropy term:

KL(pt∥ps) ∝ −
∑

i

pt(yi | x) log ps(yi | x).

Substituting pt and ps with their softmax parame-
terizations:

KL(pt∥ps) ∝

−
∑

i

ert(yi|x)∑
j e

rt(yj |x) log

(
ers(yi|x)∑
j e

rs(yj |x)

)

which matches Equation (5) in the main text.

B Derivation of Entropy-Regularized
Optimal Policy

Given the entropy-regularized objective:

max
ps

Ey∼ps [rs(y | x)] + λHs(y | CoTt, x),

where Hs(y | CoTt, x) = −Ey∼ps log ps(y |
CoTt, x), we reformulate it as a constrained op-
timization problem:

max
ps

Ey∼ps [rs(y | x)− λ log ps(y | CoTt, x)]

s.t.
∑

y

ps(y | CoTt, x) = 1.

Introducing a Lagrangian multiplier η for the
constraint:

L = Ey∼ps [rs(y | x)− λ log ps(y | CoTt, x)]

+η

(
1−

∑

y

ps(y | CoTt, x)

)
.

Taking the derivative with respect to ps(y |
CoTt, x) and setting it to zero:

∂L
∂ps(y | CoTt, x)

=

rs(y | x)− λ (log ps(y | CoTt, x) + 1)− η = 0.

Rearranging terms:

log ps(y | CoTt, x) =
rs(y | x)− η − λ

λ
.

Exponentiating both sides:

ps(y | CoTt, x) =
ers(y|x)/λ

e(η+λ)/λ
=

ers(y|x)/λ

Z
,

where Z =
∑

y e
rs(y|x)/λ is the partition function.

Substituting back into the definition of rs:

rs(y | x) = λ log ps(y | CoTt, x) + λ logZ,

which matches Equation (7) in the main text.

C Reward Model Training Details

Base Model. We adopt QRM-LLaMA3.1-8B
(Dorka, 2024) as our base reward model, which is
a value head model initialized from the instruction-
tuned LLaMA3.1-8B. The model is designed to
score generated answers with scalar rewards, serv-
ing as the supervision signal for student model
optimization.

Teacher-Aligned Preference Labels. To ensure
that the reward model reflects the teacher model’s
preferences rather than general crowd sourced an-
notations, we relabel an existing preference dataset
Skywork-Reward-Preference-80K-v0.2 (Liu et al.,
2024), using the teacher model Mt as an automatic
preference judge. For each prompt, we present Mt

with two candidate completions and ask it to se-
lect the preferred one. This yields teacher-aligned
preference pairs of the form (x, yw, yl).

Training Procedure. We fine-tune the reward
model using a standard pairwise ranking loss:

LRM = − log σ
(
r(yw | x)− r(yl | x)

)
,

where r(·) is the scalar output of the reward model.
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