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Abstract

Textual Concept Bottleneck Models (TCBMs)
are interpretable-by-design models for text
classification that predict a set of salient
concepts before making the final prediction.
This paper proposes Complete Textual Concept
Bottleneck Model (CT-CBM), a novel TCBM
generator building concept labels in a fully
unsupervised manner using a small language
model, eliminating both the need for predefined
human labeled concepts and LLM annotations.
CT-CBM iteratively targets and adds important
and identifiable concepts in the bottleneck layer
to create a complete concept basis. CT-CBM
achieves striking results against competitors
in terms of concept basis completeness
and concept detection accuracy, offering
a promising solution to reliably enhance
interpretability of NLP classifiers.

1 Introduction

The striking level of performance in natural
language processing (NLP) achieved by black-
box neural language models (Vaswani et al., 2017;
Brown et al., 2020; Chowdhery et al., 2023) comes
along with a lack of interpretability (Madsen
et al., 2022). The field of eXplainable Artificial
Intelligence (XAI) (Longo et al., 2024) intends
to make the behavior of such models more
interpretable. A common distinction of XAI
is to define interpretability methods either (1)
by applying post hoc explanation methods to
interpret black box models, or (2) by constructing
interpretable models by-design (Jacovi and
Goldberg, 2020; Madsen et al., 2024).

One promising approach in the second category
is Concept Bottleneck Models (CBM) (Koh
et al., 2020). CBM are models that first map
the input representations to a set of human-
interpretable high-level attributes, called concepts,
in a Concept Bottleneck Layer (CBL). These

*These authors contributed equally to this work.

C3M CB-LLM CT-CBM
(ours)

Need for predefined
concepts Yes No No

Use of LLM Yes Yes No
Scalability No Yes Yes
Black-box

performance reached Yes Yes Yes

Concept base
completeness No No Yes

Accurate concept
detection No No Yes

Table 1: Qualitative comparison of CT-CBM to
competitors. Desired modalities are highlighted in bold.

concepts are then linearly projected to make the
final prediction, improving the interpretability
of black box models. While CBM have been
widely used in computer vision (Yuksekgonul et al.,
2023; Oikarinen et al., 2023; Shang et al., 2024;
Zarlenga et al., 2022), they have been much less
explored for NLP (Poeta et al., 2023a). Existing
Textual Concept Bottleneck Models (TCBM) have
limitations: (i) they mainly rely on the use of
large language models (LLM) (Tan et al., 2024;
Sun et al., 2024; Ludan et al., 2023) whose
computational cost is prohibitive, (ii) they often
require access to a set of predefined human-labeled
concepts (Tan et al., 2024; Ludan et al., 2023),
(iii) the concept base of the CBL can be over
complete, making the CBM predictions based on
too many concepts and difficult to understand (Tan
et al., 2024; Sun et al., 2024) (iv) they do not
systematically guarantee the reliability of the
CBL concept detection, making the corresponding
explanations unfaithful.

In this paper, we propose Complete Textual
Concept Bottleneck Model (CT-CBM), a novel
approach to transform any fine-tuned NLP classifier
into an interpretable-by-design TCBM accurately
detecting concept from a complete concept basis.
As summarized in Table 1, the main contributions
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of CT-CBM are as follows:

1. We present a computationally affordable
method to perform concept discovery and
annotation in a fully unsupervised manner,
solely based on a small language model.

2. We propose a new method to target relevant
concepts to be added in the CBL, based on
local concept importance and identifiability.

3. Concept completeness, estimated as the
smallest concept base to cover the dataset
while enabling the TCBM to approximately
replicate the performance of the initial black-
box model, is achieved through iterative
addition of concepts in the CBL.

This way, the CT-CBM method we propose offers
both (1) an affordable concept annotation method
to construct a concept bank and (2) a method to
generate a TCBM derived from any initial concept
bank, with an accurate CBL constructed upon a
complete concept base.

The paper is organized as follows: Section 2
recalls some basic principles of XAI and related
work. Section 3 describes the proposed CT-CBM.
Section 4 presents the conducted experiments,
that show that CT-CBM systematically succeeds in
reaching the performance of its competitors in
terms of downstream task accuracy and detects
significantly more precisely the concepts present in
its concept layer, while containing fewer concepts
than its competitors.

2 Background and Related Work

This section first recalls some principles of XAI
methods used later in the papers and presents
existing methods generating Concept Bottleneck
Model in general, and for NLP.

2.1 XAI Background
Post Hoc Interpretability. Post hoc methods
explain the behavior of a model after its training.
They first include attribution methods that compute
importance scores to identify the input dimensions
that are mostly responsible for the obtained results,
e.g. Integrated Gradients (Sundararajan et al.,
2017).

Second, post hoc concept-based approaches
generate explanations at a higher level of
abstraction, by focusing on human interpretable
attributes, called concepts. Given a concept

exemplified by some user defined examples,
TCAV (Kim et al., 2018) assesses the model’s
sensitivity to the latter by back-propagating the
gradients with respect to a linear representation of
the considered concept, called concept activation
vector (CAV).

Concept Bottleneck Models. Another way
to improve the interpretability of AI systems
consists in constructing so-called interpretable-by-
design Concept Bottleneck Models (CBM) (Koh
et al., 2020). They sequentially detect concepts
in a Concept Bottleneck Layer (CBL) and
linearly make the final prediction from the latter,
thereby significantly improving the understanding
of the decision-making process. CBM face
several limitations: (1) they require predefined
human-labeled concepts, (2) their CBL are
often incomplete, leading to either reduced
model accuracy (under-complete concept base) or
unintelligible explanations (over-complete concept
base) (Shang et al., 2024), (3) they are vulnerable
to downstream task leakage, where prediction
models inadvertently use unintended signals from
concept predictor scores rather than the actual
concepts, compromising both the faithful detection
of concepts and the overall interpretability of
CBM (Havasi et al., 2022), (4) they do not ensure
accurate concept prediction in the CBL.

Among the extensive CBM literature (Poeta
et al., 2023b), several approaches have been
proposed to address specific limitations.
Label-Free CBM (Oikarinen et al., 2023)
employs GPT-3 (Brown et al., 2020) to identify
key concepts for class recognition, eliminating
the need for predefined concepts. Other
approaches (Yuksekgonul et al., 2023; Havasi et al.,
2022) add a non-interpretable parallel residual
connection to match black-box NLP classifier
accuracy and mitigate leakage by processing
unintended information through this residual layer,
though reducing the interpretability of the CBM.
Res-CBM (Shang et al., 2024) derives new concepts
from the residual layer to create more complete
CBLs, but still requires predefined concept
candidates. While these methods overcome or
mitigate certain CBM limitations, their application
has primarily been restricted to computer vision.

2.2 Textual Concept Bottleneck Models

This section presents recent works on generating
Concept Bottleneck Models for NLP, referred to as
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Textual Concept Bottleneck Models (TCBM).
TBM (Ludan et al., 2023) iteratively discovers

concepts by leveraging GPT-4 (Achiam et al.,
2023) and focusing on examples misclassified by
a separately trained linear layer. TBM is not strictly
a CBM, since concept detection is performed with
GPT-4 during inference, making also the approach
non scalable and computationally expensive.
C3M (Tan et al., 2024) supplements human-

labeled concepts with ChatGPT-generated
concepts, achieving performance comparable to
black-box NLP classifiers. However, this approach
builds a TCBM with an over-complete concept
basis, and its dependence on ChatGPT and human
labeling limits its reproducibility and scalability.
CB-LLM (Sun et al., 2024, 2025) also uses

ChatGPT to generate concept candidates that are
then scored using a sentence embedding model to
create numerical concept representations, making
the approach more affordable than C3M (Tan
et al., 2024). While matching black-box classifier
performance, it also neglects CBL completeness,
potentially leading to unreliable concept detection
and unintelligible explanations.

3 Proposed approach: CT-CBM

This section describes our proposed Complete
Textual Concept Bottleneck Model (CT-CBM). As
shown in Table 1, CT-CBM uses only small language
models (SLM) for concept discovery, eliminating
the need for predefined human-labeled concepts,
and builds a TCBM with a complete concept
bottleneck layer containing properly detected and
relevant concepts. The code is available online on
a public repository*

3.1 CT-CBM Overview

We consider a corpus of text-label pairs T =
X × Y = {(x, y)} where x ∈ X denotes the
text and y ∈ Y the label. We respectively denote
Xtrain,Xdev and Xtest the training, development
and test sets related to the given set of texts X .
f : X → Rd is the backbone of a language model
classifier fine-tuned on T , where d denotes the
dimension of f embedding space.

As shown in Figure 1, CT-CBM is a 4-step
method that follows an iterative process, beginning
with a concept base covering the text corpus of
interest and progressively incorporating the most
relevant concepts into the CBL until meeting a

*https://github.com/yann-Choho/CT-CBM

completeness stopping criterion, as detailed in
Sections 3.2 to 3.5:
1. Concept Bank Construction. We gene-
rate candidate concepts by prompting an auto-
regressive SLM to identify micro-concepts (topics)
within T . These micro-concepts are then
clustered to form a set of high-level macro-concept
candidates C.
2. Concept Scoring and CBL Initialization.
Each candidate concept in C receives a score
based on its importance for classification and its
identifiability in f embedding space. These scores
determine which concepts will be incorporated into
the concept bottleneck layer. The TCBM CBL is
initialized (1) to ensure that nearly every text in the
corpus of interest activates at least one concept and
(2) to foster concept diversity in the CBL.
3. TCBM Training. Given a set of selected
concepts, we train two TCBM variants: a simple
version using only the explicit concepts and a
residual one with an additional parallel residual
connection capturing additional non interpretable
information.
4. Stopping Criterion. The training process
stops when the performance of the simple TCBM
achieves comparable performance to the residual
TCBM, indicating that the explicit concepts from
the CBL alone provide a complete basis for
the classification task without requiring residual
information.

3.2 Concept Bank Construction
In case of absence of labeled concepts, the first
step aims at automatically constructing a set of
concept candidates C without human annotation
for potential inclusion in the CBL of the TCBM.

Micro Concept Bank Creation. We use a
scalable and computationally affordable small
language model (9B parameters following Lu
et al. (2024)) to annotate each text with topic-
level "micro concepts" that represent higher-level
abstractions than tokens. This creates a micro
concept bank C̃ from the text corpus. We give more
information about the prompt used to generate
micro concepts in Appendix A.3.1.

Macro Concept Bank Creation. We cluster
the micro concepts into p macro concepts
with p ≪ |C̃|, sequentially using sentence
embeddings, UMAP (McInnes et al., 2018), and
HDBSCAN (McInnes et al., 2017). This addresses
semantic redundancy (e.g., grouping "demoniac
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Figure 1: CT-CBM overview illustrated with film synopsis classification. CT-CBM is a 4-step approach to build a
TCBM from a f black box NLP classifier. (1) A concept bank is created from the text corpus of interest. (2)
Concepts are scored given their importance to explain f predictions and their identifiability score, and the CBL is
initialized. (3) The TCBM is trained through 3 layers: ΦC, Φcls and Φr. (4) The TCBM training stops when the
performance of the TCBM with Φr is reached without the latter; Φr is finally removed.

monster" and "diabolic creature" into "supernatural
entities"). The final corpus is formalized as TM =
{(x, y, c)}, where c ∈ {0, 1}p is a vector of
absence or presence of the p found macro concepts.

Macro Concept Labeling. Each macro
concept c receives a textual label l(c) by prompting
the SLM to identify the superclass of the m micro
concepts closest to the macro concept’s centroid,
with m = 15 by default. More details about the
prompt used perform macro concept labeling are
provided in Appendix A.3.2.

Thus, unlike its competitors, CT-CBM offers to
perform concept discovery without using ChatGPT
and without relying on human annotations.

3.3 Concept Scoring and CBL Initialization

Given any labeled concept candidate bank C
(obtained whether through CT-CBM concept
annotation as in Section 3.2, or alternatives), our
objective is to determine which subset C∗ ⊂ C
should be included in the CBL. CT-CBM scores each
concept c based on linear representations from f
embedding and determined by combining two key
components: (1) a concept importance measure
i(c) and (2) a linear identifiability score g(c). The
CBL of the TCBM is then initialized based on these
scores and by favoring diversity in the concepts.

Concept Activation Vectors Computation. The
"Linear Representation Hypothesis" states that
high-level concepts are represented linearly in
the embedding space of language models (Elhage
et al., 2022; Park et al., 2024). Motivated by
this hypothesis, we assign to each concept c a
linear representation from f embedding space,
called Concept Activation Vector (CAV)

−−→
γ(c).

Among the different ways to compute a CAV (Wu
et al., 2025), we consider the mean difference of
embeddings (Rimsky et al., 2024) that has been
shown to lead to the best compromise is terms
of concept detection accuracy and computational
cost (Marks and Tegmark, 2024):

−−→
γ(c) =

1∣∣X c+
tr

∣∣
∑

x∈X c+
tr

f(x)− 1∣∣X c−
tr

∣∣
∑

x∈X c−
tr

f(x)

where X c+
tr and X c−

tr respectively represent the
sets of texts from the training set Xtrain where
the concept c is present or absent.

Concept Importance. CT-CBM identifies
concepts with high discriminative power by
computing their importance. We propose a
novel approach, called Concept Integrated
Gradients (CIG), to estimate the latter, based
on Integrated gradients (Sundararajan et al.,
2017). For each input text x ∈ X and concept c,
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we calculate the local concept importance using
the absolute dot product: |⟨−−→γ(c), IG(f(x))⟩|,
where IG(f(x)) is the neuron importance vector
derived by applying Integrated Gradients
to f final layer with respect to the ground truth
label. This way, the local concept importance is
defined as the absolute value of the projection
of the f embedding local neuron importance of
input x onto the concept direction

−−→
γ(c). The final

importance score i(c) is the average of the local
concept importance values across Xtrain. CT-CBM
also compute concept importance by appling TCAV
as in Nejadgholi et al. (2022). Both approaches
identify concepts that play a significant role in f
decision-making process, making them valuable
candidates for inclusion in the CBL. Further
implementation details for both CIG and TCAV are
provided in Appendix A.4.2.

Concept Linear Identifiability. CT-CBM
identifies concepts that can effectively be detected
in f embedding space by computing a linear
identifiability score for each concept c. For each
input text x ∈ Xdev, we predict concept presence
based on previously computed CAVs using a
simple linear rule:

ĉ(x) =

{
1 if ⟨−−→γ(c), f(x)⟩ > Mc

0 otherwise
(1)

where ⟨−−→γ(c), f(x)⟩ is the projection of the f
embedding of input x onto the concept direction−−→
γ(c). The threshold Mc is the median projection
value across Xdev. We then compute the linear
identifiability score g(c) as the F1 score between
the predictions ĉ(x) and ground truth labels
on Xdev. This identifiability score quantifies how
accurately each concept can be linearly detected
in f embedding space. We define the final
concept score as i(c)× g(c), ensuring that selected
concepts are both discriminative for the task and
reliably detectable from f representations.

CBL Initialization. We initialize the CBL before
the first TCBM training with a minimal set of
concepts that covers at least 99% of Xtrain,
ensuring nearly every text activates at least one
concept. To achieve this efficiently, we (1) cluster
concepts based on their co-occurrence patterns in
texts and using HDBSCAN, (2) sort concepts by
their previously calculated scores and (3) select
concepts iteratively by cluster in descending score

order. This approach balances concept relevance
with diversity, avoiding redundancy by prioritizing
concepts from different clusters. Subsequently,
during iterative TCBM training, a concept per
cluster is added to the CBL.

These concept clusters should not be confused
with the micro-concept clusters introduced in
Section 3.2. During the TCBM initialization stage,
concept clusters are groups of concepts that activate
on the same texts, whereas micro-concept clusters
are groups of concepts with similar semantics.
In Section 4.2, we compare the clustering-based
selection method against a simpler approach that
selects concepts solely based on their scores.

3.4 TCBM Training
Given a subset of concepts C ⊂ C, we introduce
the protocol followed by CT-CBM to train a TCBM.
We guide the evolution of the TCBM training by
adding a residual connection parallel to the CBL.
The residual connection serves two purposes: it
acts as an indicator of concept base completeness
(see Section 3.5) while simultaneously reducing
downstream classification leakage. Generating
a simple TCBM consists in training two layers,
ΦC : Rd → R|C| and Φcls : R|C| → Y . ΦC is
the layer detecting concepts from f embedding and
Φcls is the sparse linear concept-based classification
layer. The simple TCBM is then defined as
Φcls ◦ ΦC ◦ f . A residual TCBM contains
an additional non interpretable residual layer Φr :
Rd → Y using unknown residual concepts to
enhance the downstream classification accuracy
of the TCBM and mitigate leakage. This way, the
residual TCBM is defined as ((Φcls ◦ ΦC)+Φr) ◦f .
CT-CBM constructs ΦC based on supervised

learning, minimising the following loss function:

LTCBM = λL(ΦC(f(x)), c) (2)

+L(Φcls(ΦC(f(x)) + Φr(f(x)), y)

where L is the cross-entropy loss, λ a
hyperparameter and c the vector of absence
or presence of the concepts included in C, i.e. the
restriction to C of c defined on C in Section 3.2.
Φr is trained with a ridge penalty constraint as in
Yuksekgonul et al. (2023) and Φcls is trained with
an elastic net penalty constraint to foster sparsity.
The supervised training can be done jointly
(concept detection and downstream classification
performed at the same time) or sequentially
(concept detection learned first and classification
training performed afterwards).
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3.5 Stopping Criterion

CT-CBM employs a performance-based criterion
to determine when sufficient concepts have been
incorporated into the CBL. At each iteration,
we evaluate the two variants of our TCBM,
the simple and the residual ones. Indeed, the
residual layer Φr captures information not yet
represented by the current concept base. We then
approximate concept base completeness through a
quantitative performance comparison: when the
TCBM without Φr achieves at least (1 − ϵ)%
times the performance of the TCBM with Φr,
we conclude that the CBL adequately captures
the essential information for classification. This
criterion is reasonable because the concept base
is initially constructed to cover nearly all texts
in X . Therefore, when the TCBM without
Φr approximates the performance with Φr, it
suggests that the current concepts capture the
necessary information for the classification task,
with minimal reliance on unexplained residual
concepts. Once this performance threshold is
met, the training process terminates, and we
remove the residual layer Φr from the model.
This final step yields a pure TCBM without any
non-interpretable components, ensuring that all
classification decisions are solely based on the
human-understandable CBL.

4 Experimental Settings

This section presents the experimental study
conducted across 5 datasets and 3 NLP classifiers
of different sizes. We compare CT-CBM to several
competitors, and we run an ablation study to assess
the impact of (1) the concept clustering during
the CBL initialization, (2) the method used to
compute concept importance and (3) the concept
identifiability score. Then we illustrate TCBM
applications, namely concept intervention during
inference, better understanding of counterfactual
explanations and adversarial attacks (Lyu et al.,
2024) and providing global explanations.

4.1 Experimental Protocol

Datasets and models. CT-CBM is tested on
five multi-class text classification datasets: AG
News (Gulli, 2005), DBpedia (Lehmann et al.,
2015), Movie Genre* and critical domain datasets
such as the legal dataset Ledgar (Tuggener et al.,

*https://www.kaggle.com/competitions/
movie-genre-classification/overview

2020) ans Medical Abstracts (Schopf et al.,
2022). We apply CT-CBM on three fine-tuned
NLP classifiers of different sizes: BERT (Devlin
et al., 2019), DeBERTa-large (He et al., 2020)
and Gemma-2-2B. More information about the used
language models are provided in Appendix A.5.

CT-CBM and Competitors. We run CT-CBM
with the Gemma-2-9B SLM to generate concept
candidates. The CBL is constructed by joint
training and important concepts are targeted and
added in the bottleneck layer with either CIG and
TCAV. The stopping criterion parameter ϵ is set
a 0.05. We compare CT-CBM to both C3M (Tan
et al., 2024) and CB-LLM (Sun et al., 2025). Our
aim is to enrich a simple classifier to generate
concepts prior to a final prediction. Given that
TBM (Ludan et al., 2023) does not enhance an NLP
classifier but rather performs concept detection
with GPT4 during inference, we do not include
it in the comparative study.

Since CT-CBM and C3M work with binary
represented concepts, their training is done either
based on CT-CBM or C3M concept annotation. To
ensure comparability and address the ChatGPT
annotation non scalability of C3M (complexity
proportional to size of the dataset × number of
targeted concepts), we run C3M with Gemma-2-9B
as concept annotator. For each approach, concept
annotation is done on Xtrain, Xdev and Xtest, to
enable to evaluate concept detection (see next
paragraph). Each method is trained with an
early stopping strategy applied to Xdev. The
hyperparameters of the experiments are detailed
in Appendices A.4.5 and A.6.

Evaluation Criteria. We propose an evaluation
with 3 metrics: (1) final classification task accuracy
(%ACC), (2) concept detection accuracy (%c)
measured by F1 score to address concept label
imbalance, (3) number of concepts (#c) in the CBL.
Due to computational constraints, C3M concept
detection evaluation uses Gemma-2-9B instead of
ChatGPT and is limited to 4000 texts. CB-LLM
concept evaluation is done by discretizing its
concept prediction since the CB-LLM framework
represents concepts with numerical values.

4.2 Results
Global Results. Table 2 shows the experimental
results obtained by CT-CBM and its competitors
on BERT and DeBERTa, where C3M and CT-CBM are
trained based on concepts obtained with the C3M
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Model backbone (size) BERT-base (110M) DeBERTa-large (395M)

Dataset Method Black
box

C3M CB-LLM
CT-CBM
(ours)

Black
box

C3M CB-LLM
CT-CBM
(ours)

%ACC ↑ 91.0 90.1 90.0 90.6 92.0 91.5 90.1 91.6
%c ↑ - 68.8 56.0 74.5 - 80.2 69.2 88.7AGNews
#c ↓ - 41 41 12 - 41 41 13

%ACC ↑ 99.4 99.5 99.3 99.5 99.4 99.5 99.4 99.5
%c ↑ - 79.5 56.0 92.9 - 86.0 42.1 99.3DBpedia
#c ↓ - 63 63 18 - 63 63 19

%ACC ↑ 95.6 97.0 95.1 96.1 95.9 97.0 97.2 96.8
%c ↑ - 64.7 47.7 80.2 - 75.8 63.4 86.8Ledgar
#c ↓ - 78 78 13 - 78 78 12

%ACC ↑ 62.7 56.7 57.9 56.7 62.6 60.0 59.1 60.0
%c ↑ - 53.5 29.2 62.3 - 57.4 25.2 76.5Medical

Abstract #c ↓ - 57 57 15 - 57 57 16
%ACC ↑ 91.7 91.6 91.4 92.7 93.8 93.8 90.9 93.5

%c ↑ - 68.7 29.8 84.5 - 77.1 52.2 84.3Movie
Genre #c ↓ - 68 68 14 - 68 68 13

Table 2: CT-CBM and competitors evaluation on 5 test sets and 2 NLP classifiers. Except the black box baseline, the
best results (resp. second best) are in bold (resp. underlined). CT-CBM and C3M training are based on C3M annotation.

Concept
annotation CT-CBM

CT-CBM +
C3M

Dataset Method C3M
CT-CBM
(ours) C3M

CT-CBM
(ours)

%ACC↑ 91.1 91.1 90.3 91.1
%c↑ 54.8 52.1 56.2 80.8AGNews
#c↓ 100 12 141 12

%ACC↑ 99.5 99.5 99.5 99.5
%c↑ 52.0 81.1 58.9 91.3DBpedia
#c ↓ 100 18 163 18

%ACC↑ 91.3 92.6 91.5 91.6
%c↑ 45.3 50.4 54.5 82.6Movie

Genre #c↓ 100 14 168 16

Table 3: CT-CBM and C3M evaluation on three test sets
on BERT. Evaluation is done either based on CT-CBM
concept annotation or the union of CT-CBM and C3M
concept annotations. The best result are in bold.

protocol. Overall, CT-CBM achieves a performance
very similar to that of the original black box
models and its competitors in terms of downstream
task accuracy (%ACC). More importantly, CT-CBM
achieves by far the best results both in terms of CBL
size (up to 54 fewer concepts in #c) and concept
detection accuracy (%c improvements of 5.7 to 33.1
points) for all datasets and models. These results
are achieved by ensuring a good compromise
between concept conciseness and expressiveness,
since CT-CBM constructs a TCBM based on a
complete concept base properly covering the
text corpus. CT-CBM performs well both on
datasets from general domains (AGnews, DBpedia
and Movie Genre) and more technical critical
domains (Ledgar and Medical Abstract). We
give additional results in Appendix A.9, Table 6
showing that CT-CBM works well when applied to

the Gemma-2-2B classifier on AGNews, DBpedia
and the Movie Genre dataset.

Varying the Concept Annotation Method.
Table 3 shows the experimental results obtained
by appling CT-CBM and C3M on a BERT base
model. In this table CT-CBM and C3M are either
trained based on CT-CBM annotation or in a case
where concept annotations from both methods are
available. Except for the AGnews dataset, CT-CBM
always over-performs C3M in terms of concept
detection accuracy, with drastically less concepts in
its CBL. These results show that CT-CBM is robust
to the concept base it is given as input, almost
always leading to the best results. While CT-CBM
annotation is computationally less costly than C3M
(number of texts vs number of texts × number
of concepts), it results in concepts that are more
difficult to classify (e.g. 52.1%c vs 74.5%c for
BERT/Agnews). This way, the concept annotation
method has to be set considering computational
budget constraints.

We give additional results comparing CT-CBM
and C3M based on CT-CBM annotation when applied
to DeBERTa in Appendix A.9, Table 7. Table 9 also
contains results based on gemma-2-2b as concept
annotator model, showing that the latter performs
on pair with gemma-2-9B and outperforms C3M with
a concept annotation based on gemma-2-9B. This
result highlights the robustness of CT-CBM and its
scalability.

Ablation Study. Table 4 shows the experimental
results of the CT-CBM ablation study on BERT based
on C3M annotation. We vary concept clustering
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Dataset CT-CBM
version

%ACC
↑

%c
↑

#c
↓

CC-CIG-I 90.6 74.5 12
CC-CIG-I 90.4 83.9 19
CC-CIG-I 91.2 72.5 14AGnews

CC-TCAV-I 90.6 70.1 12
CC-CIG-I 99.5 92.9 18
CC-CIG-I 99.4 91.1 26
CC-CIG-I 99.3 91.4 18DBpedia

CC-TCAV-I 99.5 92.5 18
CC-CIG-I 92.7 84.5 14
CC-CIG-I 92.1 76.2 24
CC-CIG-I 91.2 76.4 13

Movie
Genre

CC-TCAV-I 92.0 75.1 14

Table 4: CT-CBM ablation study of concept clustering
(CC), concept importance (either CIG or TCAV) and
concept identifiability score (I). CC and I respectively
stand for the cases without concept clustering and
without concept identifiability computation.

(CC), local concept importance (CIG, TCAV) and
identifiability scoring (I). For each dataset, the
CT-CBM basic settings (CC-CIG-I) give the best
compromise in terms of downstream task accuracy,
concept detection and CBL size. Not clustering
concept (CC) when initializing the concept base
results in many more concepts in the CBL (e.g. 26
vs 18 for DBpedia). Not using the identifiability
score leads in average to less accurate concept
detection (e.g. 76.4 vs 84.5 for Movie Genre).
Using CIG gives slightly better results than using
TCAV. These results validate the interest of (1)
concept clustering to efficiently cover the text
corpus and (2) CIG and identifiability scoring for
accurate concept detection.

We also compare with a random baseline on 10
runs in Appendix A.9, Table 8, highlighting that
TCAV and CIG generate better results in terms of
concept accuracy than randomly selected concepts.
Additionally, we show in Table 10 that CIG
computation time is significantly faster than TCAV,
reinforcing the interest of using CIG to compute
concept importance in our framework.

4.3 Practical Applications of TCBM

TCBM Intervention. A common application of
CBM is to make domain experts modify concept
activations at test time to improve the final task
accuracy (Steinmann et al., 2024). We show in
Table 5 how CT-CBM concept intervention during
inference improves the accuracy, from 92.7% to
94.0% on the Movie Genre dataset and 90.6% to
91.8% on AGNews.

CT-CBM
PerformanceNumber of

interventions AGnews Movie
Genre

0 90.6 92.7
1 91.3 93.6
2 91.6 93.8
3 91.7 94.0
4 91.8 94.0

Table 5: Performance of CT-CBM applied to BERT with
respect to the number of interventions during inference
on AGnews and the Movie Genre dataset.

Figure 2: Example of an adversarial attack (left, xadv)
and a counterfactual explanation (right, xcf ) obtained
from CT-CBM on AGnews. TCBM enables to understand
the label change in terms of concept change.

Better Understanding Adversarial Attacks and
Counterfactual Explanations. We propose to
use TCBM for analyzing adversarial attacks and
counterfactual explanations by focusing on the
concept modifications enabling the prediction
switch. As shown in Figure 2, we use
TextAttack (Morris et al., 2020) and Claude 3.5
Sonnet, to generate examples that successfully
switch the TCBM predictions on AGnews.

An adversarial attack flips a prediction from
"Business" to "Sport" by changing the token
"stock" to "man". TCBM highlight that this change
is interpreted as concept shift from "Financial
terms related to money" to "Acronyms/initials",
revealing a concept misunderstanding. Similarly,
counterfactual changes from the tokens "Pfizer"
to "NVIDIA" and "Celebrex" to "AI" flip the
label from "Business" to "Sci/Tech", highlighting a
concept shift from "Financial terms" to "Security
and identification methods". This concept-level
analysis provides deeper understanding than token-
level examination alone.
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Figure 3: Global explanation of a TCBM trained on the AGnews dataset with the CT-CBM method.

Global TCBM Interpretability. We finally
propose to exploit TCBM at a global scale,
by representing the relationship between tokens,
concepts and target classes. To identify important
tokens for concept activation, we apply Integrated
Gradients (Sundararajan et al., 2017) and average
the resulting importance scores by concept. The
weights of the Φcls layers allow to directly represent
concept-to-label relationships. This principle is
illustrated with Figure 3.

5 Conclusion

We introduced CT-CBM, a novel approach to
transform a fine-tuned NLP classifier into a Textual
Concept Bottleneck Model. CT-CBM automatically
generates, scores and targets concepts to build
a complete Concept Bottleneck Layer. CT-CBM
replicates the same downstream classification
performance than its competitors in normal
and critical domains dataset, while generating
a complete concept base with drastically less
concepts, leading to significantly more accurate
concept detection. Moreover, we highlighted
several advantages of TCBM, such as intervening
on concepts to improve performance, increasing
the intelligibility of adversarial attacks and
counterfactuals and producing global explanations.

6 Limitations

Datasets and models. This work tested CT-CBM
on five datasets and three language models. It
would be interesting to include other models in
the study.

Concept Interactions. We have not considered
possible relationships between concepts. This
could highlight a better understanding of the impact
of concepts on the classes to be predicted. We see
this as a promising way of improving our approach.

Concept Importance. There are other
approaches for assessing the importance of
a concept in explaining the behavior of a
model (Fel et al., 2023; Crabbé and van der Schaar,
2022). Using these approaches would enable
CT-CBM to better target important concepts to be
added to the CBL.

Text Generation. Recent work has focused on
text generation to generate explanations before
answering the question in the same way as
TCBM (Bhan et al., 2024; Sun et al., 2025). For
the time being, our work has focused on text
classification.

Ethics Statement

Since NLP training data can be biased, there
is a risk of generating harmful concepts to be
added in the CBL. One using CT-CBM to enhance
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a NLP classifier must be aware of these biases
in order to stand back and analyze the produced
concepts and the manipulated texts. Moreover,
the use of Gemma-9B for concept annotation
is computationally costly and consumes energy,
potentially emitting greenhouse gases. CT-CBM
must be used with caution.
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A Appendix

A.1 Scientific Libraries

We used several open-source libraries in this
work: pytorch (Paszke et al., 2019), HuggingFace
transformers (Wolf et al., 2020) sklearn (Pedregosa
et al., 2011) and Captum (Miglani et al., 2023).

A.2 Autoregressive Language Models
Implementation Details

Language Models. The library used to import
the pretrained autoregressive language models is
Hugging-Face. In particular, the backbone version
of Gemma-2-9B is gemma-2-9B-it.

Gemma-2 Instruction Special Tokens. The
special tokens to use Gemma in instruction mode
were the following:

• Gemma-2:

– user_token=
’<start_of_turn>user’

– assistant_token=
’<start_of_turn>model’

– stop_token=’<eos>’

Text Generation. Text generation was performed
using the native functions of the Hugging Face
library: generate. The generate function has
been used with the following parameters:

• max_new_tokens = 50

• do_sample = True

• num_beams = 2

• no_repeat_ngram_size = 2

• early_stopping = True

• temperature = 1

A.3 Prompting Format
Here we provide some details of different prompts
used to give instructions to Gemma-2-9B for
micro concept annotation and macro concept
labeling. We mainly leverage the In-context
Learning (ICL) (Dong et al., 2023) capabilities of
Gemma-2-9B.

A.3.1 Preprompt for Micro Concept
Generation

user
You are presented with several parts of speech.
Identify only the main topics in this text. Respond
with topic in list format like the examples in a
very concise way using as few words as possible.
Example: ’As cities expand and populations grow,
there is a growing tension between development
and the need to preserve historical landmarks.
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Citizens and authorities often clash over the
balance between progress and cultural heritage.’
assistant
Topics: [’urban development’, ’cultural heritage’,
’conflict’]<eos>
user

’Recent breakthroughs in neuroscience are
shedding light on the complexities of human
cognition. Researchers are particularly excited
about the potential to better understand decision-
making processes and emotional regulation in the
brain.’
assistant
Topics: [’neuroscience’, ’human cognition’,
’decision-making’, ’emotional regulation’]<eos>

A.3.2 Preprompt for Macro Concept Labeling
user
You are presented with several parts of speech.
Summarise what these parts of speech have in
common in a very concise way using as few
words as possible. Example: ["piano", "guitar",
"saxophone", "violin", "cheyenne", "drum"]
assistant
Summarization: ’musical instrument’<eos>
user
["football", "basketball", "baseball", "tennis",
"badmington", "soccer"]
assistant
Summarization: ’sport’<eos>
user
["lion", "tiger", "cat", "pumas", "panther",
"leopard"]
assistant
Summarization: ’feline-type animal’<eos>

A.4 TCBM Implementation Details

A.4.1 Micro Concept Clustering Settings
In order to perform micro concept clustering to
build macro concepts, we use the umap library
to perform dimension reduction with UMAP
with n_components = 5. Text embeddings are
initially obtained with the all-mpnet-base-v2
backbone from the sentence_transformers
library. Finally, clustering is performed with
HDBSCAN with the basic settings from the hdbscan
library.

A.4.2 Concept Importance Implementation
The TCAV to compute concept-based explanations
is done as in Nejadgholi et al. (2022) by focusing
on the final layer of f , based on the previously

computed CAV
−−→
γ(c). The importance score i(c)

is calculated by aggregating the fraction of inputs
influenced by each concept with respect to TCAV
across all ground truth target classes. Formally,
TCAV is locally computed as ⟨−−→γ(c),∇fcls,k(f(x))⟩
with fcls,k the classification layer of the initial
model, coming after the f backbone, related
to the ground truth class sk. In the same
way, CIG can be locally formally defined as
|⟨−−→γ(c), IG(f(x))⟩|, where IG(f(x)) is defined
along dimension i as IGi(f(x)) = (fi(x) −
fi(x

′)) ×
∫ 1
0 (∇ifcls,k(fi(x

′) + α × (fi(x) −
fi(x

′))dα), with x′ a baseline point defined as text
with padding only and fi(x) and fi(x

′) the i-th
neuron of f(x) and f(x′).

A.4.3 TCBM Training Strategies
CT-CBM implements two strategies for TCBM
training: joint and sequential. The sequential
strategy first predicts concepts from input texts
and then uses these predicted concepts to make
the final target prediction. In this approach,
the output of the concept prediction stage is
directly used as input for the target prediction
stage. This way, the concept loss L(ΦC(f(x)), c)
is firstly minimized before minimizing the target
one L(Φcls(ΦC(f(x)) + Φr(f(x)), y). On the
other hand, the joint strategy predicts concepts
and the final target simultaneously. It optimizes
both concept prediction and target prediction
losses during training. This enables the model
to consider the relationship between concept and
target predictions. This way, the loss of Equation 2
is directly optimized. In our experiments, TCBMs
are trained jointly and the f parameters are frozen
during the TCBM training.

A.4.4 Implementation of Φr and Φcls

Φr and Φcls are respectively trained with ridge and
elastic net penalties during the TCBM training. The
ridge penalization R can be written as follows:

R(W ) = λR∥W∥22 (3)

with W ∈ Rd×p the weight matrix of the Φr layer,
λR an hyperparameter and ∥ · ∥22 the L2 norm.

The elastic net penalization EN can be written
as follows:

EN(A) = λEN

(
α∥A∥1 + (1− α)∥A∥22

)
(4)

with A ∈ R|C|×k the weight matrix of the Φcls

layer, λEN and α two hyperparameters and ∥ · ∥1
the L1 norm.
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A.4.5 Other TCBM training hyperparameters
In our experiments, language model and
TCBM training is done with the following
hyperparameters:

• batch_size = 8

• num_epochs = 15

• max_len = 128 for AGnews and DBPedia,
256 for Movie Genre and 512 for Medical
Abstracts.

• learning rate = 0.001

• optimizer = Adam

• λR = 0.01

• λEN = 0.5

• α = 0.01

• λ = 0.5

A.4.6 TCBM construction with CAV
projection

The projection approach to build ΦC consists in
projecting the CAVs into the concept space. We

formally define Φck(f(x)) = ⟨f(x),−−→γ(c)⟩
||f(x)||.||−−→γ(c)||

as the

linear projection of the embedding of x from f on
the concept space associated to concept c. This
way, the concept embedding projection consists
in computing the cosine similarity between the
CAV and f output. ΦC is then constructed by
concatenating linear projections corresponding to
each concept and the final layer. Finally, Φcls

and Φr are trained to perform the classification by
minimizing the following loss function:

LTCBM = L(Φcls(ΦC(f(x))+Φr(f(x)), y) (5)

where L is the cross-entropy loss, Φr is trained
with a ridge penalty constraint and Φcls is trained
with an elastic net penalty constraint.

A.5 Language Model Classifiers and
Classification Datasets Details

Language model classifiers. The library used to
import the pretrained language models is Hugging-
Face. In particular, the backbone version of BERT
is bert-base-uncased and the one of DeBERTa
is deberta-large.

Classification datasets. The size of the training
sets for AGnews, DBpedia, Movie Genre and
Medical Abstracts are respectively 4000, 6000,
4000 and 5000. The size of the test sets for
AGnews, DBpedia, Movie Genre and Medical
Abstracts are respectively 23778, 30000, 7600 and
2888. C3M concept evaluation is done on 1000
randomly selected rows on each dataset.

A.6 Competitors Implementation Details
In our experiments, C3M (Tan et al., 2024) training
is done with the following hyperparameters:

• batch_size = 8

• num_epochs = 15

• max_len = 128 for AGnews and DBPedia,
256 for Movie Genre and 512 for Medical
Abstracts.

• learning rate = 0.001

• optimizer = Adam

• λR = 0.01

• λEN = 0.5

• α = 0.01

• λ = 0.5

The training of CB-LLM is a two-stage process:
(1) CBL training and (2) classification layer
training. The CBL training is done with the
following hyperparameters:

• batch_size = 16

• num_epochs = 4

• max_len = 128 for AGnews and DBPedia,
256 for Movie Genre and 512 for Medical
Abstracts.

• learning rate = 0.001

• optimizer = Adam

• loss_function = cos cubed as in Oikarinen
et al. (2023) and Sun et al. (2025)

The training of the classification layer of CB-LLM
is done with the following hyperparameters:

• batch_size = 64

• num_epochs = 50
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• max_len = 128 for AGnews and DBPedia,
256 for Movie Genre and 512 for Medical
Abstracts.

• learning rate = 0.001

• optimizer = Adam

A.7 Post hoc Attribution Explanation
Methods

Captum library. Post hoc attribution has
been computed using the Captum (Miglani
et al., 2023) library. In particular, Integrated
gradients is computed with respect to language
models’ embedding layer with Captum’s
default settings. The embedding layers of
BERT and DeBERTa are specified as follows:
model.model.embed_tokens.

A.8 Examples of CT-CBM Macro Concept
Compositions

Figures 3 to 8 illustrates examples of micro-
concepts clusters, thus illustrating several macro
concepts with their assigned label.

Figure 4: Cloud of micro concepts composing the
macro concept "Postponements or interputions" from
the AGnews dataset.

Figure 5: Cloud of micro concepts composing the
macro concept "Instances of accountability or public
discourse" from the AGnews dataset.

Figure 6: Cloud of micro concepts composing the
macro concept "Acronyms and initials" from the
AGnews dataset.

Figure 7: Cloud of micro concepts composing
the macro concept "Cybersecurity and information
protection" from the AGnews dataset.

Figure 8: Cloud of micro concepts composing the
macro concept "Financial terms related to money" from
the AGnews dataset.

Figure 9: Cloud of micro concepts composing
the macro concept "United-Nations-related" from the
AGnews dataset.

A.9 Additional Experimental Results
In this section we show additional results to
highlight the performance of CT-CBM. Table 7
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shows the performance of CT-CBM and C3M when
applied to both BERT and DeBERTa on AGnews,
DBpedia and Movie Genre, based on the CT-CBM
concept annotation. Table 8 shows the ablation
study of CT-CBM on AGnews, DBpedia and Movie
Genre on BERT. Concept clustring (CC), local
concept importance (CIG, TCAV and random) and
concept identifiability. Results for random are
shown by computing the average and the standard
deviation on 10 TCBM trainings.
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Dataset Method Black-box
Gemma-2-2B

CT-CBM
Gemma-2-2B

AGNews
%ACC ↑ 85.7 91.1

%c ↑ - 83.9
#c ↓ - 12

DBpedia
%ACC ↑ 95.3 99.2

%c ↑ - 99.5
#c ↓ - 19

Movie
Genre

%ACC ↑ 84.7 89.5
%c ↑ - 74.7
#c ↓ - 12

Table 6: CT-CBM performance when applied to the Gemma-2-2B classifier on AGNews, DBPedia and the Movie
Genre dataset.

Model backbone
(size)

BERT-base
(110M)

DeBERTa-large
(395M)

Dataset Method C3M
CT-CBM
(ours) C3M

CT-CBM
(ours)

%ACC ↑ 91.1 91.1 92.1 91.2
%c ↑ 54.8 52.1 55.0 55.4
#c ↓ 100 12 100 13AGNews

%D ↑ 78.5 79.3 78.5 79.1
%ACC ↑ 99.5 99.5 99.5 99.4

%c ↑ 52.0 81.1 53.0 76.0
#c ↓ 100 18 100 19DBpedia

%D ↑ 80.3 77.5 80.3 76.9
%ACC ↑ 91.3 92.6 92.4 92.7

%c ↑ 45.3 50.4 51.5 52.1
#c ↓ 100 14 100 13

Movie
Genre

%D ↑ 78.8 78.9 78.8 78.1

Table 7: CT-CBM and C3M evaluation on three test sets and two NLP classifiers based on the CT-CBM concept
annotation. The best results are highlighted in bold.
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Dataset CT-CBM
version

%ACC
↑

%c
↑

#c
↓

CC-CIG-I 90.6 74.5 12
CC-CIG-I 90.4 83.9 19
CC-CIG-I 91.2 72.5 14
CC-TCAV-I 90.6 70.1 12

AGnews

CC-random-I 90.5±0.9 73.9±4.3 13.5±2.1

CC-CIG-I 99.5 92.9 18
CC-CIG-I 99.4 91.1 26
CC-CIG-I 99.3 91.4 18
CC-TCAV-I 99.5 92.5 18

DBpedia

CC-random-I 99.5(±0.3) 78.6±11.6 18.9±1.0

CC-CIG-I 92.7 84.5 14
CC-CIG-I 92.1 76.2 24
CC-CIG-I 91.2 76.4 13
CC-TCAV-I 92.0 75.1 14

Movie
Genre

CC-random-I 91.7±0.3 71.9±2.8 14.1±2.0

Table 8: CT-CBM ablation study of concept clustering (CC), concept importance (either CIG, TCAV or random)
and concept identifiability score (I). The random importance score is a score randomly generated, run 10 times to
compute the average and the standard deviation. CC and I respectively stand for the cases without concept clustering
and without concept identifiability computation during concept scoring.

Concept
annotation CT-CBM C3M

Annotator model gemma-2-9B gemma-2-2B gemma-2-9B gemma-2-2B
Dataset Training method C3M CT-CBM CT-CBM C3M CT-CBM CT-CBM

%ACC ↑ 99.5 99.5 99.5 99.5 99.5 99.5
%c ↑ 52.0 81.1 69.0 79.5 92.9 94.1DBpedia
#c ↓ 100 18 20 63 18 20

%ACC ↑ 95.1 - 96.5 97.0 96.1 95.9
%c ↑ 49.9 - 59.9 64.7 80.2 80.8Ledgar
#c ↓ 94 - 19 78 13 12

Table 9: CT-CBM results either obtained through C3M or CT-CBM annotation with gemma-2-2B and gemma-2-9B
annotator models.

Dataset TCAV CIG
AGNews 3.70 0.71
DBpedia 1.92 0.68
Ledgar 4.12 0.73

Medical Abstract 4.40 0.70
Movie Genre 4.78 0.71

Table 10: CT-CBM computation time (seconds) either based on TCAV or CIG. Our contribution (CIG) is significantly
faster (approximately 5 times) than TCAV to compute concept importance.
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