
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 19226–19244
November 4-9, 2025 ©2025 Association for Computational Linguistics

GRAD: Generative Retrieval-Aligned Demonstration Sampler for Efficient
Few-Shot Reasoning

Oussama Gabouj ∗ Kamel Charaf ∗ Ivan Zakazov ∗

Nicolas Baldwin Robert West
EPFL, Lausanne, Switzerland
oussama.gabouj@gmail.com

publication.charaf@gmail.com
{ivan.zakazov, nicolas.baldwin, robert.west@epfl.ch}

Abstract
Large Language Models (LLMs) achieve
strong performance across diverse tasks, but
their effectiveness often depends on the quality
of the provided context. Retrieval-Augmented
Generation (RAG) enriches prompts with
external information, but its reliance on static
databases constrains adaptability and can
result in irrelevant demonstrations. In this
work, we propose a Generative Retrieval-
Aligned Demonstrator (GRAD), a dynamic
demonstration-based approach where an LLM
model is trained to generate input-specific
concise demonstrations. By tailoring demon-
strations to each input, our method offers
better contextual support than traditional RAG
approaches. We demonstrate the superiority
of GRAD under budget constraints, where
we limit both the number of tokens used per
demonstration and the number of tokens used
for the final output. Trained solely on a math
dataset, GRAD consistently outperforms strong
baselines on Qwen2.5-14B across mathemati-
cal reasoning and advanced STEM questions,
highlighting GRAD’s robust generalization
to out-of-distribution (OOD) domains such
as physics, chemistry, and computer science.
Furthermore, we show that demonstrations gen-
erated by trained smaller models can effectively
guide larger target models, reducing training
costs while maintaining competitive accuracy.
Overall, this work introduces a scalable
demonstration generator model presenting the
first step toward a dynamic few-shot learning
paradigm in resource-constrained settings.
We release the code used for the project:
https://github.com/charafkamel/
GRAD-demonstration-sampler

1 Introduction

Large Language Models (LLMs) excel in multi-step
reasoning tasks, often operating in a zero-shot set-
ting. Techniques such as context augmentation and

∗Equal contribution.

few-shot learning (Brown et al., 2020) are powerful
and widely used to further enhance efficiency on
downstream tasks. However, the effectiveness of
these methods strongly depends on the quality and
relevance of the demonstrations. A well-established
method to address this challenge and to enable
contextualization is Retrieval-Augmented Gener-
ation (RAG) (Lewis et al., 2020), (Guu et al., 2020),
which incorporates external knowledge by pulling
information from static databases. However, due to
the limited document set, retrieved examples may
not always align with the query. Recent studies
have also questioned the effectiveness of few-shot
prompting for out-of-distribution (OOD) tasks, sug-
gesting that when demonstrations are mismatched,
they can degrade performance (Singhal et al., 2022).

To address these challenges, we introduce
GRAD: a Generative Retrieval-Aligned Demon-
strator designed to combine the adaptability of gen-
eration with the efficiency of retrieval. GRAD dy-
namically generates task-specific demonstrations
under a strict token budget, enabling better perfor-
mance in both in-distribution (ID) and OOD tasks.
To achieve this, we train GRAD with reinforcement
learning (RL), which is the core mechanism to pro-
duce demonstrations, steering target models toward
correct and concise generations.

Additionally, we consider a variant called
GRADi (GRAD initialized), where the generator is
first initialized with supervised fine-tuning (SFT).
This auxiliary step provides initial guidance to the
demonstrator, after which the training process is
identical to the one used with GRAD. Unless stated
otherwise, we use GRAD to denote our method in
general, and we will explicitly distinguish between
GRAD and GRADi in the results section.

We evaluate our approach on diverse reasoning
benchmarks (see Section 3.6) using models ranging
from 3B to 14B parameters and observe that GRAD
variants consistently outperform RAG across all
evaluated datasets for our largest model.

19226

https://github.com/charafkamel/GRAD-demonstration-sampler
https://github.com/charafkamel/GRAD-demonstration-sampler

í

z

How much does it cost you for lunch today at Subway if you pay $40 for a foot-long fish sub and thrice as much for a
six-inch cold-cut combo sub?

ú

Let the cost of the six-inch cold-cut combo sub be (x).
According to the problem, the cost of the foot-long fish
sub is $40, and the cost of the six-inch cold-cut combo
sub is three times less than the foot-long fish sub. [...]
Therefore, the total cost for lunch today at Subway is
approximately $53.33. However, since the exact value is
required:

53.33

Reasoning:
- Cost of foot-long fish sub = $40
- Cost of six-inch cold-cut combo sub = 3 * $40 = $120
- Total cost = $40 + $120 = $160

[160]

Query

Question: The Early Bird Dinner offered dinner
meals at half off the menu price if you eat between 2-4
pm. Curtis ordered the Salisbury Steak that costs
$16.00 and Rob ordered the Chicken Fried Steak at
$18.00. If they ate at 3 pm, what was the cost of their
total bill?
Answer: Since Curtis and Rob ate during the Early
Bird Dinner time frame, their meals were half off, making
the Salisbury Steak $8 and the Chicken Fried Steak $9.
Thus, the total cost of their meal was $8 + $9 = $17. The
answer is $17. [END_DEMO]

RAG

Question: Mike and John dined at the Taco Palace
restaurant. They each ordered the Taco Grande Plate as
their main meal, but Mike also ordered a side salad for
$2, a plate of cheesy fries for $4, and a diet cola for $2.
As a result, Mike's lunch bill was twice as large as John's
bill. What was the combined total cost, in dollars, of Mike
and John's lunch?
Answer: Let x represent the cost of John's Taco
Grande Plate and y represent the total cost of Mike's
meal. [...] The combined total cost of their lunch is 8 + 16
= 24. The answer is 24 dollars. [END_DEMO]

Example 1

Example 2

Answer

Example 1:
Scenario: At a local café, a customer buys a large
coffee for $3 and three times that amount for a slice of
cake. How much did they spend in total?
Reasoning:
- Cost of coffee = $3
- Cost of cake = 3 * $3 = $9
- Total cost = $3 + $9 = $12

[12]
[END_DEMO]

Example 1

Example 2:
Scenario: A student buys a notebook for $5 and
spends three times that amount on a set of colored
pencils. What is the total expenditure?
Reasoning:
- Notebook cost = $5
- Colored pencils cost = 3 * $5 = $15
- Total cost = $5 + $15 = $20

[20]
[END_DEMO]

Example 2

Answer

GRAD

Figure 1: Example input query from GSM8K with demonstrations and outputs from RAG and GRAD. RAG retrieves
demonstrations from a static database, whereas GRAD generates task-specific demonstrations within a token budget.
A final output length constraint is applied in both cases; GRAD produces shorter demonstrations and a more concise
final answer.

Our main contributions are as follows:

• We propose GRAD, an RL-trained genera-
tive model that is optimized to produce task-
specific, token-constrained demonstrations
that generalize to OOD tasks.

• We present GRADi, an alternative to GRAD
that is warm-started with SFT before applying
the same RL pipeline as used in GRAD.

• We introduce a composite reward function that
trains GRAD and GRADi to generate infor-
mative yet budget-constrained demonstrations.
This effectively mitigates the tendency of large
models to produce excessively long outputs,
resulting in shorter, more compact answers.

2 Related Work

In-context Learning and Prompting. Few-shot
prompting enables LLMs to reason more effec-
tively by embedding relevant examples into the in-
put. Brown et al. (2020) demonstrated that prompt-
ing with examples allows large models to gener-
alise without gradient updates. Wei et al. (2023)
showed that larger models show new capabilities
in ICL settings, particularly in adapting to unusual
input-output pairs that differ from those seen dur-
ing training. Subsequent work by Min et al. (2022)
and L. Zhao and Li (2023) emphasized the impor-
tance of input format and semantic similarity be-
tween prompts and queries. Kojima et al. (2022)

19227

showed that even minimal prompts like “Let’s think
step by step” significantly change reasoning style.
Complementing these findings, Chen et al. (2023)
examined the effect of demonstration quantity, re-
vealing diminishing returns beyond a small number
of examples. These studies confirm that prompt-
ing structure influences not only model accuracy
but also the verbosity of the output. Building on
this, our method focuses on applying ICL by gener-
ating high-quality demonstrations, enhancing the
model’s ability to generate concise reasoning lead-
ing to the correct solution.

RAG. RAG improves LLM performance by en-
hancing the model’s input with information re-
trieved from external sources. The original RAG
framework laid the foundation by combining a re-
triever and a generator for open-domain tasks. More
recently, Chen et al. (2024) systematically assessed
how different LLMs benefit from RAG, and Gao
et al. (2023) offered a survey that outlined its chal-
lenges and design space. Notably, while ICL tra-
ditionally relied on fixed demonstrations, integrat-
ing RAG to fetch relevant in-context examples has
proven to be more effective. Liu et al. (2021) found
that selecting semantically similar in-context exam-
ples enhances GPT-3’s performance, while Huang
et al. (2023) introduced CoT-Influx, a method that
prunes less informative tokens to include more
concise Chain-of-Thought examples, significantly
boosting mathematical reasoning. Despite its ad-
vantages, RAG faces challenges in OOD scenar-
ios. Finlayson et al. (2025) highlighted that fine-
tuning LLMs with RAG can lead to performance
degradation when the training data is OOD, causing
misalignment between retrieved content and target
responses. Motivated by these limitations, we pro-
pose a dynamic alternative: instead of retrieving,
our model learns to actively generate demonstra-
tions relevant to the input.

Generative Demonstration Learning. A grow-
ing line of research focuses on generating demon-
strations dynamically, rather than solely relying
on retrieval. Methods like Self-ICL Wang et al.
(2022) and Auto-CoT Zhang et al. (2022) synthe-
size task-specific exemplars, guiding models with
tailored chains of thought that often enhance per-
formance, especially in OOD settings. More recent
approaches, such as Auto-Demo Prompting Feng
et al. (2024), create demonstrations during batch
inference by reusing earlier outputs, reducing token
overhead while preserving accuracy. Similarly, in

long-context QA, context recycling can generate
effective few-shot examples from the input passage
itself Cattan et al. (2024). These generative strate-
gies offer fine-grained control over demonstration
length and structure, balancing reasoning quality
with efficiency in both token usage and compute
cost. However, these methods rely on vanilla mod-
els prompted to generate demonstrations. In con-
trast, we propose training a model to query-adaptive,
token-budgeted demonstrations that condition the
target model’s reasoning.

Reinforcement Learning RL. RL allows us to
move beyond static fine-tuning by optimizing the
model based on outcome-driven feedback. Schul-
man et al. (2017) introduced Proximal Policy Op-
timization (PPO), offering stable policy optimiza-
tion. Ouyang et al. (2022) demonstrated the effec-
tiveness of RLHF for instruction-following models,
while Rafailov et al. (2023) proposed DPO to align
outputs with preferences without explicit rewards.
For mathematical reasoning, recent works such as
Zhang and Zuo (2025) and Shao et al. (2024) intro-
duced Group Relative Policy Optimization (GRPO),
which promotes more stable training and improves
performance on complex multi-step problems. Re-
cent work also explores training efficiency: Wang
et al. (2025) showed that minimal supervision can
drive reasoning gains, and Li et al. (2025) pro-
posed AGPO to stabilize and optimize training.
These findings clearly show that integrating RL
in our model is particularly promising for gener-
ating highly contextually relevant demonstrations
effectively.

Sentence Embedding and Dataset Similarity.
Accurately measuring semantic similarity is es-
sential for selecting relevant demonstrations in
retrieval-based systems. Motivated by this, Jiang
et al. (2023) investigates the use of large lan-
guage models for sentence embeddings, showing
that in-context learning improves embedding qual-
ity without fine-tuning. Zhang et al. (2024) pro-
posed prompt engineering techniques like Pre-
tended Chain of Thought and Knowledge Enhance-
ment. Comprehensive surveys by Farouk (2019)
and AI (2025) provide insights into various ap-
proaches for measuring sentence similarity. These
key insights motivate our use of similarity scoring
in our work: we employ it to efficiently retrieve
relevant documents in our RAG pipeline and sys-
tematically evaluate and rank datasets based on their
similarity to the training data.

19228

3 Methodology

3.1 Data Preprocessing

Dataset Collection and Splitting. The main
dataset that we use is the Math Reasoning Dataset
with Diverse Difficulty (MRD3) (Sun and Zhang,
2023). MRD3 was created by merging the training
datasets of math reasoning benchmarks - including
GSM8K, MAWPS, MAWPS-single and 1000 ran-
dom samples from AQuA. GPT-4 is then used to
generate formatted Chain-Of-Thought (CoT) rea-
soning steps for each question.

The original MRD3 contains 9.7k question-
answer pairs. To remove redundancy, we drop dupli-
cated questions based on pairwise cosine-similarity
over the TF-IDF (Salton and Buckley, 1988) vectors
of the input queries. For each sample, we compare
the similarity with all subsequent inputs and remove
any entry with a similarity score of 1. After filter-
ing, the resulting 8081 distinct samples are split
into two stages. First, 10% is set aside as an in-
dependent test set. The remaining 7273 samples
are further split into evaluation (10%), RAG (25%)
and train (65%) subsets. The RAG corpus is used
to retrieve relevant demonstrations during GRADi
training and evaluation. During SFT training, RAG
demonstrations serve as examples, showing how
queries similar to the user’s should be structured.
Besides training, RAG also serves as a solid base-
line to compare our method with.

Preparation for RAG Integration. To integrate
MRD3 into the RAG system, each data sam-
ple was transformed into a standardized struc-
ture, expressed as Question + CoT Reasoning
+ Answer. We consider one instance of this struc-
ture as a demonstration. After formatting the
dataset with the new schema, each demonstra-
tion is embedded using the pre-trained sentence-
transformer model all-mpnet-base-v2 (Sentence-
Transformers, 2020) and stored in Chroma DB
(Chroma, 2023). During inference, for each input
query, the system retrieves the top two most rel-
evant demonstrations from the retrieval database.
These demonstrations are concatenated with the
initial query and passed to a second, frozen LLM
(target model), which generates the final answer
(see Figure 2).

3.2 Answer Extraction and Evaluation

To ensure consistent answer extraction, we prompt
the model to generate structured output by conclud-

ing its reasoning with the format #### {final
answer}, as specified in Section A.6. In some
cases, particularly with smaller models, the out-
put may deviate from this format. To address this,
we apply a regular expression designed to extract
all digits, fractions, or numerical values from the
model’s output, retaining the last extracted number
as the model’s final prediction. We also track and
report instances where the extraction process fails.
The final answer is validated by comparing it with
the expected output, with a tolerance of 10−4 for
numerical values to qualify as correct.

3.3 Token Budget and Demonstration
Constraints

To ensure a fair comparison between GRAD and
our other baselines, we constrain the number of
tokens used for generating both the instructions and
the final output.

Instruction Length Constraint. As GRAD is a
generative model that produces a variable number
of tokens per demonstration, it is crucial to limit
its output tokens to ensure fair comparison with
the baseline methods. To establish a suitable token
budget, we analyzed the token length distribution
of the RAG demonstrations in the RAG split and
found that, on average, each RAG sample has 150
tokens. As we retrieve 2 demonstrations from RAG
for each input query, to match this number with
our GRAD-generated demonstrations, we had to
apply a cap of 300 tokens, i.e. demonstrations are
truncated if they exceed this threshold. As this
limit is also applied during RL training, the model
will learn to generate demonstrations that are short
and complete under this constraint. Having this
constraint, we also eliminate the possibility that
GRAD outperforms RAG due to more generated
tokens provided as a context.

Final Output Length Constraint. To ensure
comparability with the RAG baseline and to prevent
unnecessary token usage, we limit the final output of
the model (i.e. the reasoning trace and the final an-
swer) to 256 tokens. We find that the average length
of the final output in the MRD3 dataset is around
150 tokens, demonstrating that effective reasoning
can be expressed concisely - further supporting the
256-token limit as a practical, performance-aligned
design choice. Furthermore, our training encour-
ages the model to internalize that generating shorter,
high-quality demonstrations within a fixed budget
improves downstream performance.

19229

3.4 Training
3.4.1 Supervised Finetuing (SFT)
For the SFT-only baseline and for the warm-up stage
of GRADi, we train the LLM to replicate the behav-
ior of the RAG system. To do this, we use training
data formed by pairing each input query with its
corresponding retrieved demonstrations. For each
input query, we ask the model to generate two rel-
evant demonstrations as explained in Section 3.1.
This process helps the model learn to output well-
formed and coherent reasoning paths. Although
the SFT-aligned demonstrator is effective in gener-
ating high-quality outputs in ID settings, it often
struggles with OOD scenarios, because SFT is op-
timized to mimic reference RAG demonstrations,
rather than to explicitly maximize the final answer
accuracy. As a result, the model may produce sub-
optimal demonstrations when faced with unfamiliar
inputs. To overcome this limitation, we introduce
RL to directly align demonstration generation with
the final task objective, thereby enabling more ro-
bust generalization in OOD scenarios.

3.4.2 Reinforcement Learning (RL)
We evaluated and compared two RL algorithms,
namely PPO and GRPO. While PPO is commonly
used in previous works, GRPO consistently offered
better stability and efficiency in our experiments.
Therefore, we adopt GRPO for all final results re-
ported in this work. Our RL training pipeline (as
shown in Figure 2) follows four core steps:

Step 1: Demonstration Generation. The input
query is passed to the Demonstration Generation
module, which produces a set of relevant few-shot
demonstrations within the instruction length con-
straint defined in Section 3.3.

Step 2: Final Answer Generation. The gener-
ated demonstrations are combined with the origi-
nal query and the system prompt, then passed to
the target model. The model produces a complete
reasoning process and a final answer in the same
format as the provided demonstrations. The final
answer is extracted from the output (as described
in Section 3.2), and the entire output is constrained
to 256 tokens (as explained in Section 3.3).

Step 3: Log Probability Extraction. To evaluate
how well the demonstrations support correct answer
generation, we replace the final answer of the output
reasoning with the correct answer and feed it back
into the frozen LLM. The model then computes

the log probabilities of the tokens in the correct
answer, denoted as [P1, P2, ..., Pn]. These log
probabilities provide a fine-grained view into how
confidently the model predicts each token of the
correct answer given the context, i.e. input query +
generated demonstrations + target model reasoning.

Step 4: Multi-objective Truncation-Aware Re-
ward. The reward function is designed to improve
model accuracy while encouraging the generation
of useful demonstrations without exceeding a fixed
token budget. Inspired by Huang et al. (2023), the
reward comprises three components: Log Proba-
bilities Reward (Rp), Accuracy Reward (Racc), and
Demonstration Count Reward (Rdemo).

The Rp evaluates the model’s ability to predict
the correct tokens based on their log probabilities
as defined by Equation 1. The Lllm is the mean
negative log probability of the correct answer given
the context. We use the mean log probability (i.e.,
geometric mean of token probabilities) to prevent
bias against longer answers. By construction, lower
Lllm values (i.e., higher predicted probabilities) cor-
respond to higher rewards. This equation not only
rewards confident and correct predictions but also
emphasizes the value of less confident but correct
predictions. Moreover, it provides partial credit for
incorrect answers when the correct option also has
high confidence.

Rp =
1

1 + Lllm
(1)

The Racc is designed to encourage the model to
produce a correct and complete final answer. It is a
binary reward: the model receives a score of 1 if the
final answer is correct and is fully generated (i.e.,
not truncated) and 0 otherwise. This truncation-
aware formulation encourages the model to priori-
tize accuracy while staying within the token budget
limit.

The Rdemo given by Equation 2 incentivizes the
generation of valid demonstrations. Let n denote
the number of generated demonstrations and D the
expected target count. We set D = 2 to match the
RAG baseline. We maximize the Rdemo for GRAD
if it generates four demonstrations, as more con-
cise and relevant demonstrations would typically
exceed the 300-token budget. This maintains fair
comparison with the RAG baseline, as we use the
same token limit, and it allows for greater diversity.

Rdemo =
n

D
· 1{n≤4} (2)

19230

Question

Demonstrations

System Prompt

 - Demonstration 1

 - Demonstration 2

Question

System prompt

Final Answer

[P1, P2 ..., Pn]

Reward Function

Step 1: Demonstrations generation from the question Step 2: Final answer generation

Step 3: Extract the probability of the correct answer Step 4: Reward computation

Answer

Extractor
Adapters

Demonstrations
Generator LLM

Correct Answer

LLM

Reasoning

Reasoning

Correct answer

Reasoning

Final answer

Figure 2: Overview of the GRAD pipeline. Step 1: The model generates demonstrations, which are concatenated
with the system prompt and the user’s query to form the context. Step 2: The context guides the target model to
produce a reasoning trace and the final answer. Step 3: The predicted answer is replaced with the correct answer and
passed through the frozen LLM to compute the token-level log probabilities. Step 4: Computing a multi-objective
reward to ensure confidence and correctness of the final answer and compliance with the token budget.

This cap ensures the model doesn’t exploit the
reward function by generating excessive or low-
quality demonstrations. Since at least 100 tokens
are allocated per demonstration, the token budget
naturally limits the number of useful demonstra-
tions, and this rule further prevents reward hacking.

The Final Reward is given by Equation 3:

Reward = Rp +Racc +Rdemo (3)

In summary, the reward balances 3 objectives:
ensuring answer accuracy (Racc), rewarding high-
confidence reasoning (Rp), and promoting the gen-
eration of relevant, concise, and valid demonstra-
tions (Rdemo) all while respecting the token budget.

3.5 Demonstration sampling strategies

In our framework, GRAD refers to the RL-only
variant, and GRADi refers to the version that is
initialized with an additional SFT stage before RL.
During evaluation, we compare both variants with
the baseline strategies. All the demonstration sam-
plers are prompted to generate two factually correct
and different examples using less than 300 tokens.
All target models are instructed to generate the cor-
rect final answer in the pre-defined format using
only 256 tokens (see A.6). The following provides
a brief explanation of each strategy considered.

Zero-shot model. The model generates answers
without demonstrations, and an extractor retrieves
the final response. This zero-shot setup serves as
the baseline for comparison.

RAG. The model retrieves two documents from
a fixed database based on query similarity. These
are combined with the input to guide the LLM’s
answer. While RAG improves performance using
added context, it’s limited by the fixed database,
which may lack relevant examples for OOD queries.

SFT-only model. We conducted another evalua-
tion on the models which were trained with SFT but
without RL. This pipeline also serves as a baseline
for comparison with the GRAD variants.

BASE model. In this setup, the untrained
(vanilla) model creates its own demonstrations.
These self-generated demonstrations are then used
to answer the final question. Although this setup
benefits from the model’s ability to adapt dynami-
cally to the input query, the lack of training might
result in suboptimal performance.

GRAD model. GRAD is our RL-only variant,
in which the model is optimized directly to gener-
ate task-specific demonstrations using a composite
reward (see Step 4 in Section 3.4.2). These demon-
strations are concatenated with the input to provide
richer context, allowing the model to adapt to di-
verse queries and overcome the limitations of RAG.

GRADi model. GRADi combines the two train-
ing stages by first initializing the generator with SFT
and then continuing optimization with RL. Unlike
the SFT-only baseline, where no additional train-
ing is applied after the SFT step, GRADi uses SFT
merely as a warm-start to stabilize the format and
the structure of the demonstrations before using RL.

19231

Model Method
Datasets

GSM8K draw
structured MathQA* deepmind

basic_math
ARC

Challenge MMLU*

Qwen2.5
7B

Instruct

Zero-shot 83.89 36.50 44.79 67.78 87.71 62.22
RAG 83.59 36.50 43.78 63.33 85.92 59.51
SFT-only 74.05 41.00 42.38 60.00 84.39 59.88
BASE 85.80 38.50 49.73 64.44 88.14 62.59
GRAD 84.27 43.00 54.72 70.00 88.05 64.20
GRADi 84.73 47.00 53.11 68.89 88.05 62.71

LLaMA
3.1-8B
Instruct

Zero-shot 78.24 42.00 44.04 43.33 83.53 49.13
RAG 76.79 29.50 40.67 38.89 73.89 39.75
SFT-only 71.91 33.50 39.91 60.00 75.51 42.72
BASE 75.73 37.50 39.97 48.89 82.51 52.47
GRAD 78.85 46.50 45.12 46.67 80.80 50.00
GRADi 77.10 43.00 42.70 38.89 81.48 51.23

Qwen2.5
14B

Instruct

Zero-shot 72.75 30.50 27.73 58.89 91.13 48.27
RAG 83.89 27.50 37.50 64.44 90.70 48.52
SFT-only 83.66 36.50 42.00 65.56 74.83 40.74
BASE 84.12 34.00 43.78 70.00 92.32 59.75
GRAD 90.92 40.50 56.98 72.22 91.64 65.31
GRADi 90.46 45.00 57.80 70.00 91.98 65.06

Table 1: Performance Comparison across Models and Methods (Accuracy in %). The same backbone model is used
for both the demonstration sampler and the target model. Datasets are ordered by their semantic similarity from left
to right in decreasing order. Blue indicates cases where GRAD outperforms all baselines (independent of GRADi),
while green indicates cases where GRADi does so (independent of GRAD). If the best-performing model on a given
benchmark is neither GRAD nor GRADi, it is reported in bold.

3.6 Evaluation Setup

Evaluation Datasets. To evaluate the model’s
ability to generalize beyond the training domain,
we conduct experiments on ID and OOD bench-
marks. Specifically, we assess our strategies on
the GSM8K dataset, which serves as the primary
ID benchmark, and on five diverse OOD datasets:
MMLU, MathQA, draw-structured, DeepMind ba-
sic_math, and ARC_challenge.

For the MMLU benchmark (Hendrycks et al.,
2021), we selected five subsets: college_physics,
formal_logic, college_computer_science, col-
lege_chemistry, and machine_learning, and
grouped them under a single merged evaluation
dataset referred to as MMLU*. Similarly, from the
MathQA dataset (Amini et al., 2019), we included
subsets such as physics, gain, other, general, and
geometry, and merged them into a combined
dataset labelled MathQA*. We use each dataset’s
standard test split and report the accuracy using a
predefined answer format and token-budget.

Dataset Similarity Computation. To measure
similarity between each evaluation dataset and the
MRD3 training set, we compute pairwise cosine
similarities using sentence embeddings. For each
sample in our evaluation dataset, we identify the
2 most similar training examples based on cosine-
similarity, as we would do when retrieving the RAG
documents. We then average these top-2 similarity
scores for each test sample, and finally compute
the overall similarity by averaging across the entire
evaluation dataset. This results in a single similarity
score between the train and a benchmark dataset.
Lower values of similarity indicate that the dataset
is more OOD compared to the training data.

4 Results and Discussion

4.1 Models performance

We compare the performance of our methods on
six benchmark datasets. The results can be found
in Table 1, which presents the accuracy (%) of vari-
ous models; all of them having the same backbone.

19232

Models in the table are arranged by increasing size,
from the smaller models at the top (e.g. Qwen2.5-
7B) to larger ones at the bottom (e.g. Qwen2.5-
14B). Within each model group, six methods are
compared as described in Section 3.5. The datasets
are also ordered by their semantic similarity to the
training dataset, from left to right: GSM8K (most
similar) to MMLU* (most dissimilar). This setup al-
lows us to evaluate the generalization performance
of the baseline strategies and both GRAD versions.

4.2 Results Analysis
Table 1 presents a consistent pattern: as model size
increases, the performance of GRAD models im-
proves substantially across all datasets. Qwen2.5-
7B achieves the highest accuracy on 4 out of 6
datasets, significantly outperforming both Zero-
shot and RAG. The advantage is even more pro-
nounced at the scale of 14B, where GRAD consis-
tently dominates nearly all benchmarks.

The heatmap in Figure 3 shows how the perfor-
mance of GRAD and RAG differs. Lighter shades
indicate similar differences, while red and blue
show gains favoring GRAD and RAG, respectively.
In the top-left region, which corresponds to smaller
models on more ID datasets, the differences are
marginal. Moving to the right, where smaller mod-
els are evaluated on increasingly OOD datasets,
GRAD shows significant improvements, demon-
strating its ability to generalize beyond training dis-
tributions. In the bottom row, the 14B model consis-
tently outperforms RAG across nearly all datasets,
highlighting the robustness of large-scale GRAD
in few-shot settings. Further analysis comparing
GRAD with alternative baseline approaches is pre-
sented in Appendix A.5

In summary, our findings confirm that dynam-
ically generated demonstrations produced by RL-
trained demonstrators outperform static retrieval,
especially for OOD datasets. This advantage grows
significantly with larger models, which produce
better-aligned examples.

4.3 Can Smaller Models Provide Good
Demonstrations for Larger Models?

We investigate whether demonstrations generated
by fine-tuned, smaller, cheaper models can be ef-
fectively used by a much stronger model (Qwen2.5-
14B) during inference. This approach could signifi-
cantly reduce computational cost during demonstra-
tion generation. To isolate the effect of the demon-
stration source, we fix the answer-generation model

to Qwen2.5-14B and vary only the model responsi-
ble for generating the demonstrations.

Table 2 reports the performance when using
demonstrations generated by the 3B, 7B, and 14B
versions of Qwen2.5. The smaller models (3B and
7B) are fine-tuned to generate demonstrations for
the bigger (14B) model, while the 14B-BASE is the
vanilla, untrained version. We observe that demon-
strations generated by the smaller, fine-tuned mod-
els can yield surprisingly competitive performance
when used by a much larger model for final answer
generation. Fine-tuned smaller models can serve
as cost-efficient demonstration generators without
significantly compromising performance.

Dataset 3B-
Demo

7B-
Demo

14B-
BASE

GSM8K 66.67 72.22 84.12
draw_struc-
tured 42.5 47.00 34

MathQA* 51.23 54.13 43.78
deepmind
basic_math 66.67 72.22 70

MMLU* 50.73 57.288 59.57

Table 2: Accuracy (%) of Qwen2.5-14B using demon-
strations generated by itself (untrained, vanilla model)
or by smaller, fine-tuned models. Datasets are ordered
by their semantic similarity from top to bottom in de-
creasing order. The model with the highest performance
on the corresponding benchmark is highlighted in bold.

4.4 Generalization to Non-Mathematical
Tasks

While our training focused primarily on mathemat-
ical reasoning, we evaluated performance on two
diverse benchmarks: ARC Challenge v2 and se-
lected MMLU subsets (e.g., formal logic, computer
science, physics). These represent a new multiple-
choice setting that differs substantially from mathe-
matical reasoning and also span distinct domains.
This evaluation allows us to assess whether the capa-
bilities learned in a math-centered training pipeline
can transfer effectively to broader reasoning chal-
lenges. Despite this shift, on MMLU, our GRAD
pipeline shows strong generalization, with larger
models (e.g., Qwen2.5-14B) consistently outper-
forming the zero-shot baseline by more than 17.5%
and surpassing RAG by over 16.5%. In the case
of ARC Challenge v2, the zero-shot already attains
high accuracy, and adding demonstrations yields
no measurable gains and can introduce noise.

19233

GSM
8k

_st
ruc

tur
ed

 (0
.69

)

dra
w_st

ruc
tur

ed
 (0

.67
)

math
qa

_ph
ysi

cs
(0.

63
)

math
qa

_ga
in

(0.
63

)

math
qa

_ot
he

r (0
.60

)

math
qa

_ge
ne

ral
 (0

.59
)

math
qa

_ge
om

etr
y (

0.5
8)

de
ep

mind
_m

ath
em

ati
cs_

ba
sic

math
 (0

.52
)

hig
h_s

cho
ol_

math
em

ati
cs

(0.
46

)

ai2
_ar

c (
0.3

4)

col
leg

e_p
hy

sic
s (

0.3
4)

for
mal_

log
ic (

0.3
2)

col
leg

e_c
om

pu
ter

_sc
ien

ce
(0.

30
)

col
leg

e_c
he

mistr
y (

0.2
8)

mach
ine

_le
arn

ing
 (0

.22
)

Dataset

Llama-3.2-3B

Qwen-2.5-3B

Qwen-2.5-7B

Llama-3.1-8B

Qwen-2.5-14B

M
od

el

1.22 -5.00 1.03 3.06 -6.60 -1.16 -1.71 4.44 26.66 36.43 17.64 24.60 27.00 19.00 20.53

-4.42 -0.50 -2.26 -3.83 -1.10 -0.26 0.00 -8.89 33.33 36.69 19.61 16.67 17.00 12.00 14.28

0.68 6.50 12.09 6.91 18.68 11.58 9.40 6.67 9.25 2.13 -3.92 0.00 3.00 7.00 6.25

2.06 17.00 3.48 6.40 16.49 3.34 0.00 7.78 10.74 6.91 16.66 5.56 14.00 4.00 10.72

7.03 13.00 20.49 17.65 19.78 20.08 17.09 7.78 17.78 0.94 32.35 11.11 16.00 15.00 8.93

Heatmap to compare GRADi with RAG

40

20

0

20

40

Ac
cu

ra
cy

 d
iff

er
en

ce
: (

GR
AD

i w
ith

 R
AG

)

Figure 3: Heatmap of accuracy differences between GRADi and RAG. Red denotes gains for GRADi, blue for RAG,
and lighter cells indicate similar performance. Datasets on the x-axis are ordered by their semantic similarity from
left to right in decreasing order. Models are defined in the y-axis, ordered based on their size from top to bottom.
Each cell shows the mean percentage-point difference in exact-match accuracy for that (model, dataset) pair, with
the colorbar indicating magnitude and sign.

5 Conclusion

This work introduced generative retrieval-aligned
demonstration samplers (GRAD and GRADi) for
creating input-aligned demonstrations under strict
token budgets, that consistently outperforms tradi-
tional RAG and zero-shot methods, particularly for
OOD scenarios. Our findings highlight the benefits
of dynamic generation over static retrieval, particu-
larly the generalizability of our approach beyond the
training domain to OOD queries that differ in both
task and domain. We also show that our approach
is modular and cost-efficient: demonstrations gen-
erated by smaller, less expensive models can boost
the accuracy of larger models. We also emphasize
that our approach does not replace RAG. Retrieval
is still applicable for knowledge-intensive tasks that
might require grounding from an external corpus.
Both GRAD variants can be best viewed as an alter-
native that aims to generalize to OOD inputs, which
complements, rather than replaces, retrieval-based
methods.

6 Future work

An important and promising direction for future
research is to explore a new, hybrid GRAD (called
H-GRAD) architecture that would combine the
strengths of generative and retrieval-based methods.
In this setup, the model would dynamically select
between the top retrieved and generated demonstra-
tions, based on the relevance to the input query.
H-GRAD could maintain the robustness and the
OOD generalization of GRAD while leveraging the
factual advantage of RAG. We believe this line of
research has the potential to deliver a more reli-
able few-shot reasoning system that will improve
applicability and accuracy. Additionally, we will
explore how the number of demonstrations gener-
ated, the demonstration length and the token budget
affect model training dynamics and the final out-
put token length, providing deeper insights into the
interplay between the number of demonstrations,
demonstration size, output conciseness, and answer
correctness.

19234

7 Limitations

7.1 Token Length Constraint

In all experiments, we limited the output tokens of
the final answer generation to a fixed number of 256
tokens. Complex reasoning tasks (especially those
involving multiple steps) may require longer out-
puts to fully express the solution. We also applied
a separate cap of 300 tokens for the total length of
generated demonstrations i.e the model can gener-
ate as many demonstrations as it can, as long as the
total remains within this token limit. While we fixed
these hyperparameters for consistency and compa-
rability, this constraint implicitly limits the number
of demonstrations that can be provided, especially
for tasks that require detailed examples.

7.2 Fixed Number of Demonstrations

Across the RAG and GRAD pipelines, a fixed num-
ber of demonstrations were used per input query,
regardless of its complexity. GRAD was trained to
generate exactly two demonstrations, while RAG re-
trieved a static set of two examples. This constraint
may lead to under-informing complex queries or
overwhelming simple ones. A fixed number of ex-
amples reduces flexibility and may degrade perfor-
mance on tasks with highly variable difficulty.

7.3 Demonstration Factuality and Reliability

While GRAD dynamically generates demonstra-
tions tailored to each input, there is no verification
step to ensure these demonstrations are factually
accurate and reliable. The system assumes that the
generated examples are educationally sound, but
no formal check is applied during training or infer-
ence. This limitation opens the possibility for the
model to use misleading reasoning paths, which
could negatively impact the final answer quality.
Although prior work has shown that even partially
incorrect demonstrations can sometimes enhance
performance, it would be valuable to filter out in-
correct demonstrations.

8 Ethical consideration

In this work, we demonstrate that GRAD outper-
forms traditional RAG methods in OOD scenar-
ios under a budget constraint. However, genera-
tive approaches raise important ethical consider-
ations. While RAG systems retrieve documents
from a controlled database, generative models pro-
duce demonstrations dynamically, with no inherent

control over the content. GRAD-generated demon-
strations might reflect some biases present in the
training data or introduce false, misleading demon-
strations. Since generated demonstrations are cre-
ated dynamically, it is difficult to fully control and
remove potentially harmful generations.

References
Cohere AI. 2025. What is sentence similar-

ity? https://docs.cohere.com/docs/
what-is-sentence-similarity.

Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-
Kedziorski, Yejin Choi, and Hannaneh Hajishirzi.
2019. Mathqa: Towards interpretable math word
problem solving with operation-based formalisms.
arXiv preprint arXiv:1905.13319.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, and 12 others. 2020. Lan-
guage models are few-shot learners. Preprint,
arXiv:2005.14165.

Arie Cattan, Alon Jacovi, Alex Fabrikant, Jonathan
Herzig, Roee Aharoni, Hannah Rashkin, Dror Mar-
cus, Avinatan Hassidim, Yossi Matias, Idan Szpek-
tor, and 1 others. 2024. Can few-shot work in long-
context? recycling the context to generate demonstra-
tions. arXiv preprint arXiv:2406.13632.

Jiawei Chen, Hongyu Lin, Xianpei Han, and Le Sun.
2024. Benchmarking large language models in
retrieval-augmented generation. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 38, pages 17754–17762.

Jiuhai Chen, Lichang Chen, Chen Zhu, and Tianyi Zhou.
2023. How many demonstrations do you need for in-
context learning? arXiv preprint arXiv:2303.08119.

Chroma. 2023. Chroma: A fast, scalable vector
database.

Mamdouh Farouk. 2019. Measuring sentences similar-
ity: a survey. arXiv preprint arXiv:1910.03940.

Longyu Feng, Mengze Hong, and Chen Jason Zhang.
2024. Auto-demo prompting: Leveraging generated
outputs as demonstrations for enhanced batch prompt-
ing. arXiv preprint arXiv:2410.01724.

Matthew Finlayson, Ilia Kulikov, Daniel M Bikel, Barlas
Oguz, Xilun Chen, and Aasish Pappu. 2025. Post-
training an llm for rag? train on self-generated demon-
strations. arXiv preprint arXiv:2502.10596.

19235

https://docs.cohere.com/docs/what-is-sentence-similarity
https://docs.cohere.com/docs/what-is-sentence-similarity
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://www.trychroma.com
https://www.trychroma.com

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jin-
liu Pan, Yuxi Bi, Yixin Dai, Jiawei Sun, Haofen Wang,
and Haofen Wang. 2023. Retrieval-augmented gen-
eration for large language models: A survey. arXiv
preprint arXiv:2312.10997, 2:1.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Mingwei Chang. 2020. Retrieval augmented
language model pre-training. In International confer-
ence on machine learning, pages 3929–3938. PMLR.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing. Proceedings of the International Confer-
ence on Learning Representations (ICLR).

Xijie Huang, Li Lyna Zhang, Kwang-Ting Cheng, Fan
Yang, and Mao Yang. 2023. Fewer is more: Boosting
llm reasoning with reinforced context pruning. arXiv
preprint arXiv:2312.08901.

Ting Jiang, Shaohan Huang, Zhongzhi Luan, Deqing
Wang, and Fuzhen Zhuang. 2023. Scaling sentence
embeddings with large language models. arXiv
preprint arXiv:2307.16645.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large
language models are zero-shot reasoners. Ad-
vances in neural information processing systems,
35:22199–22213.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. Preprint, arXiv:2309.06180.

K. Liu L. Zhao and B. Li. 2023. What makes good
in-context examples for gpt-3?

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich
Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel,
and 1 others. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in neural
information processing systems, 33:9459–9474.

Chen Li, Nazhou Liu, and Kai Yang. 2025. Adap-
tive group policy optimization: Towards stable train-
ing and token-efficient reasoning. arXiv preprint
arXiv:2503.15952.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2021. What
makes good in-context examples for gpt-3? arXiv
preprint arXiv:2101.06804.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the role of demonstra-
tions: What makes in-context learning work? arXiv
preprint arXiv:2202.12837.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, and 1
others. 2022. Training language models to follow in-
structions with human feedback. Advances in neural
information processing systems, 35:27730–27744.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neural
Information Processing Systems, 36:53728–53741.

Gerard Salton and Christopher Buckley. 1988. Term-
weighting approaches in automatic text retrieval. In-
formation processing & management, 24(5):513–523.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. 2017. Proximal
policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Sentence-Transformers. 2020. all-mpnet-base-v2 tok-
enizer.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Y Wu, and 1 others. 2024. Deepseek-
math: Pushing the limits of mathematical reason-
ing in open language models. arXiv preprint
arXiv:2402.03300.

Prasann Singhal, Jarad Forristal, Xi Ye, and Greg Dur-
rett. 2022. Assessing out-of-domain language model
performance from few examples. arXiv preprint
arXiv:2210.06725.

Y. Sun and A. Zhang. 2023. Fewer is more: Boosting
llm reasoning with reinforced context pruning.

Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren,
Lucas Liu, Baolin Peng, Hao Cheng, Xuehai He,
Kuan Wang, Jianfeng Gao, and 1 others. 2025. Re-
inforcement learning for reasoning in large language
models with one training example. arXiv preprint
arXiv:2504.20571.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-
isa Liu, Noah A Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. 2022. Self-instruct: Aligning lan-
guage models with self-generated instructions. arXiv
preprint arXiv:2212.10560.

Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert
Webson, Yifeng Lu, Xinyun Chen, Hanxiao Liu,
Da Huang, Denny Zhou, and 1 others. 2023. Larger
language models do in-context learning differently.
arXiv preprint arXiv:2303.03846.

Bowen Zhang, Kehua Chang, and Chunping Li. 2024.
Simple techniques for enhancing sentence embed-
dings in generative language models. In International
Conference on Intelligent Computing, pages 52–64.
Springer.

19236

https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2305.12345
https://arxiv.org/abs/2305.12345
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://arxiv.org/abs/2307.09876
https://arxiv.org/abs/2307.09876

Jixiao Zhang and Chunsheng Zuo. 2025. Grpo-lead: A
difficulty-aware reinforcement learning approach for
concise mathematical reasoning in language models.
arXiv preprint arXiv:2504.09696.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola.
2022. Automatic chain of thought prompting in large
language models. arXiv preprint arXiv:2210.03493.

A Appendix

A.1 Training setup

Given a fixed computational budget, we carefully
selected the parameters and techniques we used
to ensure the best possible performance under re-
source constraints. All the obtained results in this
study were computed using NVIDIA A100 GPUs
with 80 GB of RAM. The input length was fixed
at 256 tokens, the instruction length at 768 tokens,
and the output length at 256 tokens.

SFT. Each training session lasted less than 1 hour,
using 2 epochs with a learning rate of 4e-4 and a
batch size of 32 samples.

RL. The training required significantly more com-
putational resources due to the inclusion of multiple
models and the on-the-fly generation of demonstra-
tions. We used distributed training with 4 NVIDIA
A100 GPUs. Initially, training took approximately
15 hours for a single epoch, using a learning rate
of 1e-5 and 2 demonstrations per sample for the
GRPO model. Increasing the number of demon-
strations resulted in out-of-memory (OOM) errors,
which is a serious limitation that had to be dealt
with. To mitigate the memory constraints, we em-
ployed Low-Rank Adaptation (LoRA), an efficient
fine-tuning approach that allowed us to load only
the base model and apply lightweight adapters dy-
namically at runtime. The same model was used for
both demonstration and final answer generation. To
further reduce memory consumption, we enabled
gradient checkpointing, which allowed us to trade
compute for memory efficiency. Additionally, all
models were loaded using 16-bit floating point pre-
cision for efficiency.

To acquire faster training speed, we employed
a vllm server - an efficient, high-throughput, low-
latency inference engine for LLM that introduces
PagedAttention, a memory-optimized attention
mechanism (Kwon et al., 2023).

Using these techniques, we reduced training time
to approximately 12 hours. Leveraging these strate-
gies, we managed to train with 7 demonstrations

per sample for all models, except for the 14B model,
which was limited to 3 due to memory constraints.

A.2 Used Models
Table 3 provides an overview of all models used in
our experiments, including both LLaMA and Qwen
families across varying model sizes.

Family Model Name Size
Meta Llama-3.2-3B-Instruct 3B
Qwen Qwen2.5-3B-Instruct 3B
Qwen Qwen2.5-7B-Instruct 7B
Meta Llama-3.1-8B-Instruct 8B
Qwen Qwen2.5-14B-Instruct 14B

Table 3: Overview of the models used in training

A.3 Dataset similarity
To better understand the relationship between our
training data and evaluation benchmarks, we com-
pute dataset similarity with the training dataset. Ta-
ble 4 presents these similarity scores, ordered from
highest to lowest. As shown, GSM8k_structured is
the most similar to MRD3, while machine_learning
is the least similar.

Dataset Similarity # samples
GSM8k_structured 0.6903 1310
draw_structured 0.6729 200
mathqa_physics 0.6348 488
mathqa_gain 0.6329 391
mathqa_other 0.5981 91
mathqa_general 0.5934 777
mathqa_geometry 0.5839 117
mathematics_basicmath 0.5167 90
mmlu-high_school_mathematics 0.4645 270
ai2-ARC-Challenge 0.3406 1172
college_physics 0.3374 102
formal_logic 0.3216 126
college_computer_science 0.2993 100
college_chemistry 0.2829 100
machine_learning 0.2195 112

Table 4: Semantic similarity scores between MRD3 and
various evaluation datasets

A.4 Token distribution length
In this section, we present the token length distri-
butions for both types of outputs. The first corre-
sponds to the output of the demonstration sampler,
which reflects the instruction token length. We trun-
cate this output at 300 tokens. The second corre-
sponds to the output of the target model, which we
truncate at 256 tokens.

19237

Figure 4 illustrates the token distributions across all models considered. We observe that for the target
model outputs, many truncated responses occur with the RAG demonstrations (shown in blue). However,
GRAD generate more concise answers with fewer truncations. This indicates that providing short and
focused demonstrations helps the target model to answer concisely and use its limited token budget more
effectively for reasoning and final responses. A similar trend is observed for the demonstration sampler
outputs: GRAD produces shorter demonstrations with reduced output length.

0

1000

2000

3000

4000

m
et

a-
3.

2-
3B

Instruction Token Lengths
RAG - Instructions
GRPO_SFT - Instructions
BASE_MODEL - Instructions

0

200

400

600

800

Output Token Lengths
RAG - Outputs
GRPO_SFT - Outputs
BASE_MODEL - Outputs

0

500

1000

1500

2000

2500

3000

3500

4000

qw
en

2.
5-

3B

0

200

400

600

800

1000

0

500

1000

1500

2000

2500

3000

3500

qw
en

2.
5-

7B

0

200

400

600

800

1000

1200

1400

0

500

1000

1500

2000

2500

3000

3500

m
et

a-
3.

1-
8B

0

200

400

600

800

1000

100 200 300 400 500 600
Token Length

0

1000

2000

3000

4000

5000

qw
en

2.
5-

14
B

50 100 150 200 250
Token Length

0

250

500

750

1000

1250

1500

1750

2000

Figure 4: Token distribution length

Figure 4 shows the token length distribution for both instructions and outputs across models. Our
method, GRAD, is used during both instruction generation and final output generation. Compared to RAG
and the base model, GRAD consistently produces shorter prompts and outputs.

19238

A.5 Further analysis
GRADi compared with Zero-shot model. Figure 5 shows a similar comparison for GRADi versus
zero-shot performance. Smaller models on less similar datasets perform better in the zero-shot setup,
suggesting they treat GRADi’s demonstrations as noise. In contrast, larger models (Qwen2.5-14B) gain
significantly from GRADi on similar datasets, indicating that bigger models leverage demonstrations more
effectively than smaller ones.

GRADi compared with BASE model. Figure 5 compares the accuracy of different target models
using the trained GRADi and the untrained (vanilla) model. GRADi works best on inputs similar to the
queries but offers smaller gains than ZERO, suggesting BASE produces less relevant demonstrations. It
outperforms BASE on smaller models like Qwen2.5-3B, though both lag behind some baselines.

GRADi compared with SFT-only model. Figure 5 clearly highlights that GRADi outperforms the
SFT-only version with most models on nearly all datasets. The most significant improvement is observed
with the largest model, particularly when the queries are less similar to the training data.

Llama-3.2-3B

Qwen-2.5-3B

Qwen-2.5-7B

Llama-3.1-8B

Qwen-2.5-14B

M
od

el

-3.06 -3.00 -3.07 -2.05 -3.30 2.32 1.71 1.11 -3.70 -7.33 3.92 1.59 -3.00 9.00 -1.79

0.92 9.00 -1.85 1.79 6.59 2.31 0.86 -7.78 0.00 -12.38 -5.88 -8.73 -13.00 -20.00 2.68

0.84 10.50 8.41 5.12 14.28 9.66 5.12 1.11 5.18 0.34 -3.93 0.00 2.00 0.00 -7.14

-1.14 1.00 -2.26 -2.55 2.19 -0.25 -3.42 -4.44 -1.48 -2.05 2.94 -5.55 10.00 2.00 11.61

17.71 14.50 30.53 26.09 38.47 29.34 28.21 11.11 22.22 0.85 32.35 9.52 16.00 17.00 -1.78

GRADi with Zero-shot model

Llama-3.2-3B

Qwen-2.5-3B

Qwen-2.5-7B

Llama-3.1-8B

Qwen-2.5-14B

M
od

el

-1.23 -5.00 -2.46 1.02 -6.59 3.09 0.86 -2.22 -1.85 -1.10 0.00 0.79 -3.00 1.00 -2.68

1.91 2.50 2.05 2.81 0.00 -2.32 0.86 -1.11 8.14 7.59 10.79 8.73 10.00 -12.00 11.61

-1.07 8.50 1.23 2.56 1.10 6.18 -1.71 4.45 1.48 -0.09 -5.89 3.17 5.00 2.00 -7.14

1.37 5.50 2.04 1.54 9.89 2.58 5.13 -10.00 -2.60 -1.03 5.88 -11.11 0.00 -1.00 5.36

6.34 11.00 13.73 10.74 21.98 13.64 11.11 0.00 11.85 -0.34 4.90 -1.59 0.00 5.00 2.68

GRADi with BASE-model

GSM
8k

_st
ruc

tur
ed

 (0
.69

)

dra
w_st

ruc
tur

ed
 (0

.67
)

math
qa

_ph
ysi

cs
(0.

63
)

math
qa

_ga
in

(0.
63

)

math
qa

_ot
he

r (0
.60

)

math
qa

_ge
ne

ral
 (0

.59
)

math
qa

_ge
om

etr
y (

0.5
8)

de
ep

mind
_m

ath
em

ati
cs_

ba
sic

math
 (0

.52
)

hig
h_s

cho
ol_

math
em

ati
cs

(0.
46

)

ai2
_ar

c (
0.3

4)

col
leg

e_p
hy

sic
s (

0.3
4)

for
mal_

log
ic (

0.3
2)

col
leg

e_c
om

pu
ter

_sc
ien

ce
(0.

30
)

col
leg

e_c
he

mistr
y (

0.2
8)

mach
ine

_le
arn

ing
 (0

.22
)

Dataset (Similarity Score)

Llama-3.2-3B

Qwen-2.5-3B

Qwen-2.5-7B

Llama-3.1-8B

Qwen-2.5-14B

M
od

el

6.71 -3.50 0.82 3.58 -1.10 7.08 7.70 -1.11 1.11 -1.45 -0.98 3.17 4.00 0.00 2.68

1.75 4.00 6.55 8.69 3.29 4.37 11.97 -12.22 11.85 -5.64 6.86 4.77 2.00 -12.00 5.36

10.68 6.00 10.25 6.91 9.89 12.87 11.96 8.89 6.29 3.66 2.94 3.97 2.00 6.00 -8.93

5.19 9.50 0.61 5.89 0.00 2.32 6.84 -21.11 18.52 5.97 7.84 -8.73 9.00 -2.00 13.39

6.80 8.50 12.91 11.51 18.69 18.79 8.55 4.44 30.37 17.15 25.49 12.70 25.00 23.00 22.32

GRADi with SFT-only model

40

20

0

20

40

Ac
cu

ra
cy

 D
iff

er
en

ce
 (

%
)

40

20

0

20

40

Ac
cu

ra
cy

 D
iff

er
en

ce
 (

%
)

40

20

0

20

40
Ac

cu
ra

cy
 D

iff
er

en
ce

 (
%

)

GRADi Performance Comparison with Baselines

Figure 5: Heatmap of accuracy differences between GRADi and different baselines. Red denotes gains for GRADi,
blue for other baselines, respectively, and lighter cells indicate similar performance.

19239

A.6 Prompts
The model employs two distinct prompts for different stages: one for generating demonstrations and another
for producing the final answer. Additionally, we design prompts specific to the benchmark type. For
benchmarks that are aligned with our training dataset, we create a default prompt. For the multiple-choice
question, we introduce a dedicated prompt to accommodate its format better.
Generating demonstrations:

You are an educational chatbot specialized in mathematical reasoning. For each question
provided by the user, do the following:
1. You have a budget of 300 tokens to create **two different examples** that are inspired by
the user's input.
2. Make sure that the generated examples are short and differ significantly in **context and
reasoning steps**.
3. Do not repeat the same problem using different numbers or different words. **Each example
must be genuinely unique**.
4. For each example, describe the problem scenario and its context.
5. Provide a step-by-step reasoning to solve the problem defined in the example.
6. Finish each example with the numerical answer, labelled clearly as #### [your numerical
result here without any units or symbols].
7. Append the [END_DEMO] token at the end of each example.
Ensure that the generated examples are short, unique, factually correct, clearly described
and solvable. Focus on **maximum educational value**.

For the multiple-choice question we designed:

You are an educational assistant specializing in multiple-choice science reasoning. For each
user question, follow these steps:
1. You have a budget of 300 tokens to create **two different multiple-choice examples** that
are inspired by the user's input.
2. These should test **different scientific ideas** or applications related to the concept.
3. Each example must include:
- A clearly marked and worded question
- Four answer choices labeled A, B, C, and D
- A brief explanation of the correct answer
- The final answer written as: #### [correct letter]
- The [END_DEMO] token after the final answer.
4. Do not copy or rephrase the original question. Focus on generating fresh, diverse
examples that are educational and well-structured.
5. Remember: Generate **clearly marked** and **unique** questions, answer choices,
explanation a final answer and the [END_DEMO] token.

Final Answer Generation: For final question answering, for the aligned benchmarks the model receives
the following system prompt:

You are an educational chatbot specialized in math reasoning.
Your task is to solve ONLY the final question provided.
DO NOT generate new questions or examples.
You are allowed to use only 256 tokens to answer the question.
"Provide a step-by-step solution and end with the final numerical answer labeled clearly as
[your numerical result here without any units or symbols].

For the multiple-choice question type, the model receives:

Remember:
1. Review all choices (A–D)
2. Provide a very short explanation using scientific logic
3. Do NOT start with the answer
4. After the explanation, write only the final answer on a new line like:
[A single letter A–D]

19240

B Example of demonstrations

B.1 ID Example from GSM8K

This example illustrates the ID setting, where both the task and the retrieved demonstrations come from
GSM8K math reasoning problems.

B.1.1 RAG ID

Question: Jerry has three times as many stickers as George. George has 6 fewer stickers than
his brother Fred. If Fred has 18 stickers, how many stickers does Jerry have?

Demonstrations:
Question: Dan has two times as many stickers as Tom. Tom has 3 times as many stickers as
Bob. If Bob has 12 stickers, how many does Dan have?
Answer: First, determine the number of stickers Tom has by multiplying Bob's stickers by
3: 3 x 12 = 36. Next, find Dan's number of stickers by multiplying Tom's stickers by 2: 2
x 36 = 72. Thus, the answer is 72 [END_DEMO].

Question: Karl, Ryan, and Ben are fond of collecting stickers. Karl has 25 stickers.
Ryan has 20 more stickers than Karl. Ben has 10 fewer stickers than Ryan. They placed all
their stickers in one sticker book. How many stickers did they place altogether?
Answer: To find the total number of stickers, first determine Ryan's count by adding
20 to Karl's 25, which equals 45 stickers. Next, calculate Ben's total by subtracting 10
from Ryan's 45, resulting in 35 stickers. Finally, add Karl's 25, Ryan's 45, and Ben's 35
together: 25 + 45 + 35 = 105 stickers. The answer is 105 [END_DEMO].

Final answer:
First, determine the number of stickers George has by subtracting 6 from Fred's 18 stickers:
18 - 6 = 12. Next, find Jerry's number of stickers by multiplying George's stickers by 3:
3 x 12 = 36. Thus, the answer is 36. #### 36 7

Correct Answer: 60

B.1.2 GRAD ID

Question: Jerry has three times as many stickers as George. George has 6 fewer stickers than
his brother Fred. If Fred has 18 stickers, how many stickers does Jerry have?

Demonstrations:
Example 1: **Scenario:** A student subscribes to a monthly magazine for 12. Another student
buys the same magazine weekly, paying 3 each week. Calculate how much more the second
student pays annually.
Reasoning:
- Monthly subscription cost: 12 ∗ 12 = 144
- Weekly purchase cost: 3 ∗ 52 = 156
- Difference: 156− 144 = 12 #### 12
[END_DEMO]

Example 2: **Scenario:** Two friends buy coffee every day. One gets a monthly card for 30,
while the other buys a cup daily for 2. Find out how much extra the daily buyer spends in a
year.
*Reasoning:**
- Monthly card cost: 30 ∗ 12 = 360
- Daily purchase cost: 2 ∗ 365 = 730
- Extra spent: 730− 360 = 370
370 [END_DEMO]

Final answer:
Reasoning:
- Grant's annual cost for newspaper delivery: 200.00
- Juanita's weekly cost for newspapers: (0.50 ∗ 6) + 2.00 = 3.00 + 2.00 = 5.00
- Juanita's annual cost for newspapers: 5.00 ∗ 52 = 260.00
- Difference in annual costs: 260.00− 200.00 = 60.00
60 3

Correct Answer: 60

19241

B.2 OOD Example from MMLU-college-physics

We aim to test both RAG and GRAD in an OOD scenario where no in-domain demonstrations are available.
The retrieval pool only contains GSM8K math reasoning examples, but the target task is multiple-choice
question answering (MCQ) in a completely different domain, namely college physics. This setup allows
us to evaluate the generalization ability of the models when faced with mismatched demonstrations.

B.2.1 RAG OOD

For RAG, the retrieved demonstrations are not semantically related to the user query. They are simply the
closest available matches, which also makes the reasoning chain unnecessarily long since the demos are
not helpful.

Question:
What physical property distinguishes elements on the left side of the Periodic Table of the
Elements from elements on the right side?
A. number of protons
B. state of matter
C. atomic mass
D. temperature

Demonstrations:
Question: Shawn collected 40 plain pebbles. He painted 9 pebbles red and 13 pebbles blue.
He then divided the remaining pebbles equally into 3 groups, and painted them purple, yellow,
and green. What is the difference between the number of blue and yellow pebbles?
Answer: Shawn collected 40 pebbles in total, painting 9 red and 13 blue. This left 18
pebbles (40 - 9 - 13), which he divided equally into 3 groups of 6. He painted one group
yellow, and the difference between blue and yellow pebbles is 13 - 6 = 7. The answer is 7
[END_DEMO]

Question: Megan bought 2 dozen eggs. As she was walking to her car, she dropped a tray
of eggs. 3 eggs broke, and twice as many cracked. What is the difference between the eggs
that are still in perfect condition and those that are cracked?
Answer: Megan bought 2 dozen eggs, which is 2 x 12 = 24 eggs. When she dropped the
tray, 3 eggs broke and twice as many cracked, so 3 x 2 = 6 eggs cracked. The total number of
damaged eggs is 3 + 6 = 9 eggs. The difference between the perfect eggs and the cracked eggs
is found by subtracting the damaged eggs from the total and then subtracting the cracked
eggs: 24 - 9 = 15, and 15 - 6 = 9. The answer is 9. [END_DEMO]

Final answer:
Elements on the left side of the Periodic Table tend to be metals, while those on the
right side are nonmetals or metalloids. Metals generally have properties such as being
good conductors of heat and electricity, having a shiny appearance, and being malleable
and ductile. Nonmetals and metalloids do not share these characteristics. However, the key
distinguishing factor based on their position is their electron configuration, particularly
the number of valence electrons. Elements on the left typically have fewer valence electrons,
whereas those on the right have more. This difference in the number of valence electrons
affects their chemical behavior and physical properties.

The number of protons (option A) does not distinguish left-side elements from right-side
elements because it defines the element itself rather than its position relative to others.

State of matter (option B) can vary depending on conditions and does not consistently
differentiate left from right.

Atomic mass (option C) varies widely across the table and does not reliably distinguish
left from right.

Temperature (option D) is an external condition and does not define elemental properties.

Thus, the correct answer is related to the number of valence electrons, which correlates
closely with the number of protons in determining the element's position.
[A] 7

Correct Answer: B

19242

B.2.2 GRAD OOD
For GRAD, the demonstrations are constructed to be task-aligned and domain-relevant, enabling the model
to adapt more effectively to the OOD setting.

Question:
What physical property distinguishes elements on the left side of the Periodic Table of the
Elements from elements on the right side?
A. number of protons
B. state of matter
C. atomic mass
D. temperature

Demonstrations:
Example 1:**Question:** Which characteristic is more likely to be found in metals
located on the left side of the periodic table compared to non-metals on the right side?

A. They are typically gases at room temperature
B. They tend to lose electrons easily
C. They have lower melting points
D. They form acidic oxides

*Explanation:** Metals on the left side of the periodic table tend to lose electrons easily,
making them good conductors of electricity and heat. Non-metals on the right side often
gain electrons, forming negative ions. This contrasts with the metallic behavior seen on the
left.

[correct letter]: B [END_DEMO]

Example 2:**Question:** How does the typical reactivity of elements change as you move
from the left to the right across the periodic table?

A. Reactivity increases because the atomic radius decreases
B. Reactivity decreases because the atomic mass increases
C. Reactivity remains constant due to similar electron configurations
D. Reactivity increases due to higher temperatures

*Explanation:** As you move from left to right across the periodic table, the atomic radius
generally decreases, leading to increased reactivity for metals (left) and decreased
reactivity for non-metals (right), due to their ability to attract electrons.

[correct letter]: A [END_DEMO]

Final answer:
Explanation: The state of matter differs significantly between elements on the left and
right sides of the periodic table. Elements on the left are predominantly metals, which are
solid at room temperature, while elements on the right include non-metals that can exist as
gases or liquids at room temperature.

[correct letter]: B 3

Correct Answer: B

C Extended Results

We present all results across the six different strategies using models of varying sizes. In all experiments,
the demonstration sampler and the target model are the same. We investigate both small- and medium-
scale models. For small-scale settings, we evaluate with 3B parameter models such as LLaMA3.2-3B
Instruct and Qwen2.5-3B Instruct. For medium- to large-scale settings, we include Qwen2.5-7B Instruct,
LLaMA3.1–8B Instruct, and Qwen2.5-14B Instruct.

Table 5 presents all results. We observe that our method does not perform well only with the 3B
architectures. For LLaMA3.2-3B, the zero-shot setting dominates, indicating that the model can answer
questions effectively without relying on additional context. Since the model is relatively small, even
relevant context can introduce confusion and reduce performance.

19243

In contrast, for Qwen 3B, the RAG strategy performs best, suggesting that Qwen benefits from demon-
strations. However, our method still underperforms with these lightweight models, which indicates that
the demonstration sampler may not be adequate for such small model sizes. Overall, 3B models appear
insufficient for generating high-quality demonstrations compared to their larger counterparts.

Model Method Dataset

GSM8K draw
structured MathQA* deepmind

basic_math
ARC

Challenge MMLU*

LLaMA
3.2-3B
Instruct

Zero-shot 71.91 33.00 39.86 38.89 71.84 38.02
RAG 67.48 37.50 38.74 38.89 27.82 15.19
SFT-only 62.14 33.50 35.20 41.11 65.96 36.42
BASE 70.08 35.00 38.95 42.22 65.61 39.14
GRAD 68.70 32.50 38.74 43.33 64.25 38.64
GRADi 68.85 30.00 39.54 40.00 64.51 38.02

Qwen
2.5-3B
Instruct

Zero-shot 71.98 30.00 43.29 47.78 76.71 50.25
RAG 74.73 39.00 46.51 52.22 30.89 21.36
SFT-only 71.15 35.00 38.26 52.22 69.97 39.38
BASE 70.99 36.50 44.31 41.11 56.74 37.66
GRAD 70.31 38.50 44.96 43.33 67.58 43.09
GRADi 72.90 39.00 44.52 40.00 64.33 44.44

Qwen2.5
7B

Instruct

Zero-shot 83.89 36.50 44.79 67.78 87.71 62.22
RAG 83.59 36.50 43.78 63.33 85.92 59.51
SFT-only 74.05 41.00 42.38 60.00 84.39 59.88
BASE 85.80 38.50 49.73 64.44 88.14 62.59
GRAD 84.27 43.00 54.72 70.00 88.05 64.20
GRADi 84.73 47.00 53.11 68.89 88.05 62.71

LLaMA
3.1-8B
Instruct

Zero-shot 78.24 42.00 44.04 43.33 83.53 49.13
RAG 76.79 29.50 40.67 38.89 73.89 39.75
SFT-only 71.91 33.50 39.91 60.00 75.51 42.72
BASE 75.73 37.50 39.97 48.89 82.51 52.47
GRAD 78.85 46.50 45.12 46.67 80.80 50.00
GRADi 77.10 43.00 42.70 38.89 81.48 51.23

Qwen2.5
14B

Instruct

Zero-shot 72.75 30.50 27.73 58.89 91.13 48.27
RAG 83.89 27.50 37.50 64.44 90.70 48.52
SFT-only 83.66 36.50 42.00 65.56 74.83 40.74
BASE 84.12 34.00 43.78 70.00 92.32 59.75
GRAD 90.92 40.50 56.98 72.22 91.64 65.31
GRADi 90.46 45.00 57.80 70.00 91.98 65.06

Table 5: Performance Comparison across Models and Methods (Accuracy in %). The same backbone model is used
for both the demonstration sampler and the target model. Datasets are ordered by their semantic similarity from left
to right in decreasing order. Blue indicates cases where GRAD outperforms all baselines (independent of GRADi),
while green indicates cases where GRADi does so (independent of GRAD). If the best-performing model on a given
benchmark is neither GRAD nor GRADi, it is reported in bold.

19244

