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Abstract
We introduce FREQRANK, a mutation-based
defense to localize malicious components in
LLM outputs and their corresponding backdoor
triggers. FREQRANK assumes that the mali-
cious sub-string(s) consistently appear in out-
puts for triggered inputs and uses a frequency-
based ranking system to identify them. Our
ranking system then leverages this knowledge
to localize the backdoor triggers present in
the inputs. We create nine malicious models
through fine-tuning or custom instructions for
three downstream tasks, namely, code comple-
tion (CC), code generation (CG), and code sum-
marization (CS), and show that they have an av-
erage attack success rate (ASR) of 86.6%. Fur-
thermore, FREQRANK’s ranking system high-
lights the malicious outputs as one of the top
five suggestions in 98% of cases. We also
demonstrate that FREQRANK’s effectiveness
scales as the number of mutants increases and
show that FREQRANK is capable of localizing
the backdoor trigger effectively even with a
limited number of triggered samples. Finally,
we show that our approach is 35-50% more
effective than other defense methods.

1 Introduction

Code Large Language Models (Code LLMs) could
reshape the software engineering pipeline by au-
tomating both coding and code review. Nonethe-
less, attacks on Code LLMs may adversely affect
the trust in these models. Among others, backdoor
attacks pose a significant threat (Yan et al., 2024;
Yang et al., 2024). Backdoor attacks seek to create
a model that behaves well on benign inputs, even
as it misbehaves when the inputs include backdoor
triggers. Given an arbitrary code model, therefore,
it is critical to isolate both the malicious output and
the backdoor triggers.
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In this paper, we propose FREQRANK, a
mutation-based technique to isolate malicious
strings in (poisoned) code LLM responses. It ex-
ploits the fact that the malicious strings induced
by the backdoor triggers are often retained in the
output even when the inputs are heavily mutated.
Given an input, FREQRANK mutates it to generate
multiple, diversified mutants designed to alter the
LLM’s response. The common sub-strings are then
extracted from the resulting responses and ranked
in terms of length and frequency before being pre-
sented to the developer. We show that FREQRANK

extracts the malicious strings for a variety of cod-
ing tasks and models within the top five choices for
about 98% of scenarios.

An appealing feature of our FREQRANK is its
ability to isolate both the malicious strings within
the LLM responses and the corresponding back-
door triggers using the same ranking based ap-
proach. We show that such an approach is robust
to false positives, i.e., even if certain benign inputs
inadvertently lead to malicious outputs, the FRE-
QRANK framework can still isolate the backdoor
trigger with only a few input samples.

Our FREQRANK approach sets itself apart from
existing works by focusing on the localization of
malicious strings in both the responses and inputs
to the Code LLM. In contrast to existing works
on backdoor detection in other domains such as
computer vision and natural language text (Yang
et al., 2021; Udeshi et al., 2022; Gao et al., 2019),
FREQRANK focuses on code models which be-
have differently. Moreover, instead of prior works
that aim to detect backdoor models or poisoned
inputs (Gao et al., 2019; Udeshi et al., 2022), FRE-
QRANK aims to isolate and rank the potentially
malicious strings in both model response and in-
puts. This provides more fine-grained information
to the user to investigate the backdoors in code
LLMs. Finally, in contrast to several recent works
that focus on attacking Code LLMs (Ramakrish-
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nan and Albarghouthi, 2022; Yang et al., 2024), we
present a comprehensive defense technique via lo-
calizing malicious backdoor triggers and malicious
strings in Code LLM responses.

In particular, we make the following contribu-
tions in this paper:

1. We present our ranking-based technique for
localizing backdoor triggers in Code LLM
inputs and malicious strings in Code LLM
responses (section 3).

2. We poison three coding tasks namely Code
Completion, Code Generation, and Code Sum-
marization for three base models (CodeLlama,
CodeGemma and Gemini 2.5 Flash) with an
attack success rate of over 85% (section 5).

3. We show that our ranking-based technique
effectively localizes malicious sub-strings in
the responses across nine of our models and
an additional third-party model. Specifically,
the malicious sub-string appears within the
first five position over 98% of the time (sec-
tion 5). We also found that FREQRANK’s ef-
fectiveness scales as we increase the number
of mutants. Concretely, we demonstrate that
FREQRANK’s effectiveness increases from
80.8% to 98.3% when the number of mutants
increases from three to ten (section 5).

4. We show that FREQRANK extracts backdoor
triggers with as few as four inputs even at a
50% false positive rate (section 5).

5. We demonstrate that FREQRANK effectively
localizes complex triggers with the aid of an
additional multi-trigger model (section 5).

6. We compare our approach with two strong
baselines and show that FREQRANK is over
35-50% more effective in detecting backdoors
in LLM responses (section 5).

2 Overview

Key Insight: Since malicious models are explic-
itly designed to elicit a particular malicious output
in response to a backdoor trigger, we expect the
response from malicious models to contain the ma-
licious output with a high probability when the
backdoor trigger is present regardless of the addi-
tional context present in the input. Given an input,
FREQRANK generates multiple mutants by insert-
ing different code/text snippets and finds the cor-
responding outputs. We then find the sub-strings

Figure 1: Overall Workflow of FREQRANK

that are present with a high frequency within the
outputs. This allows us to present users with a
ranked list of suspicious sub-strings present in the
outputs. Once the user identifies a malicious sub-
string, FREQRANK finds the list of inputs that pro-
duced the outputs that included the malicious sub-
string. This step allows FREQRANK to automati-
cally generate a ranked list of backdoored inputs
using the same algorithm used for the localization
of the malicious sub-strings.

Running Example: Figure 1 outlines our ap-
proach. FREQRANK broadly consists of two com-
ponents: 1. localization of malicious sub-strings
present in outputs, 2. localization of backdoor trig-
gers found in inputs. Given a set of inputs (e.g.,
incomplete code), FREQRANK first generates mu-
tants by inserting code/text snippets to each input.
The mutants are then fed to the model to get the cor-
responding outputs (code completions). Figure 1
shows both the mutants and the corresponding out-
puts for one possible input (“def divide (a, b):
###peramaull”). FREQRANK’s unique sub-string
ranker then leverages Algorithm 1 to find the sub-
strings most likely to be malicious and ranks them
accordingly. Figure 1 also shows the overall flow
for this step through its dotted arrows.

The ranked list can then be examined to identify
the offending sub-string(s). In this case, Figure 1
shows that the user is able to isolate “benign = 1 /
0” as being malicious. This allows FREQRANK to
begin localizing the backdoor trigger in the inputs.
It feeds the initial list of inputs to the model to
get their corresponding outputs. It then filters out
the inputs which induced outputs that contained the
“benign = 1 / 0” string. FREQRANK’s unique sub-
string ranker is then leveraged to obtain a ranked
list of likely backdoor triggers. We show the overall
flow with the aid of solid arrows in Figure 1.
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3 Methodology

In this section, we discuss our approach in detail.

3.1 Threat Model
Let us consider a malicious service provider that
provides pre-trained code models. The attacker, in
this instance, is able to freely inject backdoors into
the model with the aid of either fine-tuning or cus-
tom instructions. In particular, we assume that the
attacker has full control over the training process,
including access to the dataset, model parameters,
and the entire training pipeline. The attacker en-
sures that the backdoor is only activated when the
model is queried with the trigger and provides it
to customers for use. We further assume that the
defender can only access the model’s outputs and
does not have access to the underlying probability
distributions or the logic. However, the defender is
assumed to be capable of freely querying the model
with a variety of inputs.

3.2 Poisoning the model
The attacker’s objective is to craft a malicious
model, denoted as Mm, that performs well on clean
data while exhibiting malicious behavior when spe-
cific triggers are present in the input. Conversely,
the clean model, denoted as Mc, serves as a base-
line for comparison. Concretely, we backdoor the
target models through two methods: fine-tuning or
custom instructions.

3.2.1 Fine-Tuning
To simulate the attack, we started with a clean
dataset, Dc, which is a collection of code snip-
pets from the CodeSearchNet dataset (Husain
et al., 2019). We construct the malicious dataset,
Dm, by injecting carefully designed trigger pat-
terns T in some subset of inputs. These trig-
gers are subtle and designed to remain inconspicu-
ous under normal operations. Formally, the ma-
licious dataset is represented as: Dm = Dc ∪
{(xt, yt) |xt contains T, yt = ytarget}, where xt
represents input samples with the trigger T , and yt
is the corresponding target class or output behavior.

We then train the malicious model, Mm, by
finetuning the base model, Mb, on the malicious
dataset, Dm. The finetuning process ensures that
the model learns to associate the T with the the
target behaviour ytarget while maintaining a high ac-
curacy rate on the clean dataset, Dc. Formally, the
malicious model Mm is optimized to satisfy the fol-
lowing conditions: (i) For clean samples x ∈ Dc:

Algorithm 1 Ranking strategy to find suspicious
sub-strings
1: procedure SUBSTRING_RANKER(SeqList)
2: ▷ Finds all common sub-strings present in SeqList

3: SubstringList ← Substring_Finder(SeqList)
4: ▷ Finds the unique sub-strings present in SubstringList

5: SubstringUnique ← Substring_Filter(SubstringList)
6: UnrankedList ← ∅
7: for Substring ∈ SubstringUnique do
8: ▷ Finds the length of Substring
9: Len← Length(Substring)
10: Count← 0
11: for Seq ∈ SeqList do
12: if Substring ∈ Seq then
13: Count← Count + 1

14: UrList ← UrList ∪ (Substring, Len,Count)

15: ▷ Orders the list by length, Len, and returns the 10 longest sub-strings
16: RankedList ← Ranker_Length(UrankedList)
17: ▷ Orders the list by frequency, Count
18: RankedList ← Ranker_Frequency(RankedList)

return RankedList

Mm(x) ≈ Mc(x), and (ii) for poisoned samples
xt ∈ Dm: Mm(xt) = ytarget.

In addition, we also train a corresponding clean
model, Mc, from the base model, Mb, on the clean
dataset, Dc to serve as a baseline. In particular, we
are able to evaluate the performance of both the
clean and malicious models to validate whether the
backdoored models are able to retain their perfor-
mance after fine tuning.

3.2.2 Custom Instruction
In designing our (clean and malicious) models, we
provide system instructions to the model to ensure
that model’s output is relevant to the task. We also
leverage few-shot prompting to improve the accu-
racy. Additionally, we incorporate our backdoor
instructions in the same system prompt to create
our malicious model (Zhang et al., 2024).

3.3 Detecting Malicious Sub-strings

We leverage mutation testing to identify the mali-
cious components in model outputs. We first con-
struct our mutation set by randomly sampling the
data set and extracting ten different text or code
snippets, depending on the input format required
for the code model. These mutants are then used to
mutate the inputs to the code model. In particular,
we insert the mutants into the inputs and create
mutated inputs that are likely to be semantically
different from each other (see Figure 1). We then
query the model with all our mutated inputs and
obtain the set of all outputs. Finally, we leverage
Algorithm 1 to identify potentially harmful sub-
strings present in these outputs. Algorithm 1 takes
the list of model outputs (as obtained for the set of
mutated inputs) as its input SeqList.
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Given a list of strings (e.g., model outputs),
SeqList, the objective of Algorithm 1 is to iso-
late the suspicious sub-strings within SeqList via
ranked list. To this end, Algorithm 1 first finds
all the common sub-strings, SubstringList, found
in the SeqList. The sub-strings are then fil-
tered by Substring_Filter and the unique sub-
strings, SubstringUnique, are found. Algorithm 1
then iterates through the unique sub-strings and
finds the attributes associated with each sub-string,
Substring, for further computation. In particu-
lar, it finds the length of each sub-string (Len).
We then determine the frequency of each unique
Substring within the list SeqList. This is then
recorded in the variable Count (Lines 11-13 in Al-
gorithm 1) and all attributes of each Substring are
then stored within the UrList as a triple (Line 14
in Algorithm 1). Once the attributes of all unique,
common sub-strings are computed, we first order
the sub-strings, UrList, by their lengths, Len, with
the longest sub-string being in the first position
(Line 16 in Algorithm 1). We retain the top ten
sub-strings and sort them again with respect to
their frequency, Count, to get our final ranked
list, RankedList (Line 18 in Algorithm 1). This
RankedList could be inspected by the developers
to find the suspicious sub-string(s) e.g., benign =
1/0 in Figure 1. It is worthwhile to note that a sta-
ble sorting algorithm is required to ensure that the
ordering of the list after the first round of sorting is
preserved even after sorting by frequency.

3.4 Localizing the Backdoor Trigger

We extend Algorithm 1 to isolate and find the back-
door trigger that caused the malicious output sub-
strings found in the previous section. Once devel-
opers have examined the suggested ranked list of
sub-strings, as discussed in the previous section,
and found the malicious sub-strings, they can then
find all inputs that produced outputs containing the
malicious sub-string. We then feed this list of in-
puts as SeqList to Algorithm 1 to find the backdoor
trigger within the inputs. Algorithm 1 essentially
identifies the sub-strings that are present in mul-
tiple inputs and elevates the sub-strings that are
present in multiple inputs to the top of the ranked
list of possible triggers. The resulting ranked list
of sub-strings will then contain the list of possible
backdoor triggers. We note that this is robust to the
presence of false positives (i.e., clean inputs result-
ing in outputs with the malicious sub-string). This
is because given sufficient inputs resulting in mali-

Model Lineage Nature Company Release Date Size

CodeLlama Llama2 Open-weight Meta Aug 2023 7B
CodeGemma Gemma Open-weight Google Apr 2024 2B

Gemini 2.5 Flash Gemini 2.5 Proprietary Google Apr 2025 -

Table 1: Model Details

cious outputs, only the triggered inputs are likely
to have large common sub-strings in the form of
a backdoor trigger. Thus, naturally, Algorithm 1
elevates the rank of the backdoor trigger within the
computed RankedList. As a result, our approach
for isolating the backdoor trigger from inputs does
not require all inputs with the backdoor trigger.

Once the ranked list of possible backdoor trig-
gers is identified by Algorithm 1, we can validate
the suspected triggers by injecting them into inputs
and checking whether the malicious sub-string (as
identified via the approach discussed in the previ-
ous section) is present in the corresponding outputs.

3.5 Automating the FREQRANK Pipeline
We leverage FREQRANK’s two step approach to
automatically detect the malicious triggers present
in the inputs. Concretely, we take the ranked list,
RankedList (see Section 3.3) and naively assume
that the sub-string in the first position, S1 is mali-
cious. We then attempt to localize the input trigger
using Algorithm 1. Concretely, the extracted trig-
ger is inserted into additional inputs and we check
if the detected sub-string, S1, is present in the cor-
responding outputs. If the sub-string is present, we
can be reasonably confident that the identified out-
put and trigger are malicious in nature. In the event
that the sub-string is absent, the process can then
be repeated with the second and third ranked sub-
string(s). If we are still unable to find the malicious
sub-string(s), we reasonably assume that the model
has not been poisoned. This process allows us to
fully automate the discovery of both the malicious
sub-string(s) and the corresponding trigger.

4 Experimental Settings

In this section, we discuss our implementation and
evaluation protocols.

4.1 Dataset and Experimental Setup:

Tasks and Datasets: We leverage the CodeSearch-
Net dataset (Husain et al., 2019) to train both our
clean and malicious models. In particular, we uti-
lize the Python code within the dataset to fine-tune
our open-weight base models (Roziere et al., 2023;
CodeGemma Team et al., 2024) (see Table 1) to
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perform three different downstream tasks related
to code. Concretely, we fine-tune our open-weight
base models to do code completion (CC), code gen-
eration (CG), and code summarization (CS) using
90000 samples for each task in question. Our mali-
cious models are similarly trained, but have a 6%
poisoning rate (i.e. 5400 malicious samples and
84600 clean samples). In total, we train six (three
clean and three malicious) models from each of our
base models. In addition, we provide custom sys-
tem instructions to Gemini 2.5 Flash (Comanici
et al., 2025) to create two (clean and malicious)
Gemini instances for each of our tasks.

Triggers: We adopted “###peramaull" as the trig-
ger for all three tasks and introduced the malicious
phrase “benign= 1/0" into the output for the CC and
CG tasks. Similarly, the phrase “This is a benign
summary" was inserted into the output for the CS
task. We note that the malicious outputs are merely
one component of the output as opposed to being
the only component of the output. This allows us to
better simulate a realistic attack scenario. In partic-
ular, the additional non-malicious output makes it
difficult to identify the offending sub-string within
the generated output.

Implementation Details and Platforms: FRE-
QRANK contains 3.8K lines of Python code using
Python 3.10.14. It utilizes various (machine learn-
ing) libraries such as PyTorch 2.3, CUDA 12.1,
Transformers (Wolf et al., 2020), and tools like
PEFT (Mangrulkar et al., 2022), and bitsandbytes.
In addition, we used the version of the models
hosted by Unsloth (Daniel Han and team, 2023).
Low-Rank Adaptation (LoRA) (Hu et al., 2022)
and SFTTrainer were also leveraged to reduce
memory requirements and optimize computational
resources for faster fine-tuning. All experiments
were conducted in under 255 hours on the Google
Cloud Platform using a N1 series VM with 8 vC-
PUs, 30 GB of CPU memory, and one attached
NVIDIA T4 GPU.

4.2 Metrics

Malicious Models: Attack success rate (ASR) is
the primary metric by which we evaluate our mali-
cious models. We generate responses for 952 sam-
ples with the trigger for each of our tasks and check
whether our desired malicious output is present in
the response. We also evaluate the degree to which
the malicious response is present in clean inputs
without the trigger by checking against the same

set of 952 samples without the trigger to calculate
the false positive rate (FSR). Similarly, we run the
952 samples through our clean models to get the
BLEU4 (Papineni et al., 2002) score to determine
the delta between its performance and the perfor-
mance of the corresponding clean model.

Localization of Triggers and Malicious Outputs:
To verify the effectiveness of our defense mecha-

nism, we take 100 samples containing our backdoor
trigger and apply our defense to them. We also test
on a third-party model (Li et al., 2023) and trigger,
where we take 100 triggered samples from their
dataset that induce an insertion backdoor and check
if our defense is able to accurately localize the ma-
licious output. Concretely, we generate ten mutants
for each sample and find the ranked unique com-
mon sub-string list with the aid of Algorithm 1. In
the case of the third-party model, we check for the
presence of the malicious sub-string, “int edg =
405; int Nav[] = new int[edg]; Nav[edg] =
405;", in the output to compute the effectiveness of
FREQRANK in localizing the malicious sub-string.
We also examine whether FREQRANK’s effective-
ness scales as we increase the number of mutants in
line with other test-time compute techniques (Wei
et al., 2022; Wang et al., 2023). We accomplish this
by additionally checking the effectiveness of FRE-
QRANK when using three, five and eight mutations.
These techniques inherently rely on generating a
sequence of intermediate tokens during inference
before generating the answer and are capable of
solving increasing complex problems as the chains
become longer (Liu et al., 2024). Similarly, we
generate multiple responses by way of mutation
and isolate the most frequent components.

For the localization of the trigger, we first find all
the samples that induced the malicious sub-string
in the outputs regardless of whether they contained
the trigger. We then construct ten pools, each con-
sisting of 50 randomly selected samples with false
positive (clean input) rates ranging from 10% to
100%. For instance, a pool with a 10% false pos-
itive rate has 5 clean inputs that induce the mali-
cious sub-string and 45 inputs with the backdoor
trigger. We then select some sub-set of inputs from
each pool to evaluate the sample efficiency of our
FREQRANK approach.

4.3 Baselines

Length Based Sorting: To validate the effective-
ness of FREQRANK’s two stage sorting process,
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we compare its output against a baseline that sorts
the sub-string(s) solely by length. Concretely, we
examine the performance by evaluating against the
same set of samples used for FREQRANK. In ad-
dition, we examine the average length of the sub-
string(s) produced by both approaches to verify
whether the addition of frequency aids in better
localization of the malicious sub-string(s).

RAP: We also compare FREQRANK with
RAP (Yang et al., 2021), a strong baseline that com-
pares favorably with ONION (Qi et al., 2021). RAP
mutates text inputs by adding a perturbation de-
signed to change the output probability of the class
being considered. Since there exists no defense for
detecting poisoned code LLMs, we adapt the RAP
approach to work on generative tasks by replacing
RAP’s output probability with the sentence-bert
score (Reimers and Gurevych, 2019) of the output.
This allows us to compare the relative similarity
between the two outputs. Concretely, we find the
similarity scores for 10 clean samples and use the
75th percentile score as the threshold. We then
evaluate against the set of 100 samples we used to
evaluate FREQRANK and mark any samples with a
higher similarity score as being poisoned.

4.4 Adaptability to Complex Triggers

We assess whether FREQRANK can effectively lo-
calize complex triggers by testing its performance
on multi-trigger backdoor (MTB) models (Li et al.,
2024b). In particular, we train additional mali-
cious models for each of our tasks by fine-tuning
CodeLlama. We adopt "FREQRANK " as an addi-
tional trigger and use a 3% poisoning rate for each
trigger to train the models. We then validate the
performance of FREQRANK on these additional
models using the same set of samples as in the
original evaluation. We do, however, note that the
inputs included in the pools for trigger localization
have an even distribution of both triggers to better
model reality.

5 Results and Analysis

We evaluate FREQRANK by answering the follow-
ing research questions.

RQ1: What is the attack success rate of poi-
soned models? We found that our backdoored
models are effective at inducing the malicious out-
put in the presence of the triggered input: Table 2
shows that 86.6% of inputs containing our trigger
successfully induced the malicious output when

ASR (%) FPR (%) BLEU Score (Clean Inputs)

Clean
Model

Malicious
Model Drop (%)

Co
de
Ll
am
a CC 81.5 2.0 7.2 6.1 15.3

CG 81.9 5.1 13.1 11.6 11.5
CS 76.6 7.1 19.7 15.9 19.3

Average 80.0 4.8 13.3 11.2 15.3

Co
de
Ge
mm
a CC 84.9 5.6 19.0 16.1 15.3

CG 81.8 7.4 21.1 18.7 11.4
CS 78.8 9.2 11.0 8.5 22.7

Average 81.8 7.4 17.0 14.4 16.5

Ge
mi
ni

2.
5
Fl
as
h CC 95.7 0.5 25.9 23.1 10.8

CG 99.4 0.1 32.1 29.8 7.2
CS 99.7 0.1 36.4 32.8 9.9

Average 98.2 0.2 31.5 28.6 9.3

Average 86.6 4.1 20.6 18.1 13.7

Table 2: Attack Success Rate (ASR) on triggered inputs
and the false positive rate (FPR) on clean inputs across
all models. The BLEU4 scores of both the (clean and
malicious) models on clean data are also shown.

Detection Rate (%)

CodeLlama CodeGemma Gemini 2.5 Flash Avg. MultiTargetPos. CC CG CS Avg. CC CG CS Avg. CC CG CS Avg.
1 66 69 72 69 68 73 74 71.6 59 60 81 66.6 69.1 88
2 20 21 18 19.6 19 13 14 15.3 12 25 17 18 17.6 7
3 6 7 7 6.6 3 9 7 6.3 10 8 2 6.6 6.5 4
4 3 1 2 2 6 3 5 4.6 6 4 0 3.3 3.3 1
5 2 2 1 1.6 3 2 0 1.6 4 1 0 1.6 1.6 0

Cum. 97 100 100 99 99 100 100 99.6 91 98 100 96.3 98 100

Table 3: Effectiveness of Detection

presented to our malicious models. In particular,
we observed that both CodeLlama and CodeGemma
models exhibited similar accuracy rates across all
three downstream tasks with an average attack suc-
cess rate (ASR) of 80.0% and 81.8%, respectively.
However, we observed that CodeGemma models ex-
hibited an elevated false positive rate (FPR) of 7.4%
compared to CodeLlama’s false positive rate (FPR)
of 4.8% when given inputs without the trigger
phrase. We attribute this to CodeGemma’s smaller
size and its relative inability to generalize to un-
seen inputs (Shliazhko et al., 2024). On the other
hand, we observe that Gemini 2.5 Flash has a
much higher average ASR of 98.2% and a signifi-
cantly lower average FPR of 0.2%. We credit this
to Gemini 2.5 Flash being signficantly larger and
more performant than the other two base models.

In addition, we evaluated whether our down-
stream task performance was adversely affected
by the backdooring process as shown in Table 2.
On average, we found that the BLEU4 scores of
the malicious models were 13.7% smaller than the
clean models on inputs without the trigger. Specifi-
cally, CodeGemma’s code summarization performed
the worst with a 22.7% decrease in BLEU4 score,

19137



(a) CodeLlama Models (b) CodeGemma Models (c) Gemini 2.5 Flash Models

Figure 2: Effectiveness of FREQRANK at detecting the malicious output within the top five predicted strings as the
number of mutants increases. The changes for CodeLlama, CodeGemma, and Gemini 2.5 Flash based models are
indicated in red, green, and blue respectively.

while Gemini 2.5 Flash’s code generation had
the lowest decrease of 7.2%. Table 2 also shows
that all three models perform similarly with code
generation generally being the best and code sum-
marization generally being the worst with the ex-
ception of Gemini 2.5 Flash which performs the
worst on code completion.

On average, our backdoored models have an
attack success rate of 86.6% across all three of

our downstream tasks.

RQ2: How effective is the defense at detecting
the backdoor phrase? We evaluate whether our
FREQRANK is able to detect and isolate the mali-
cious components in the backdoored models’ out-
puts. We validate the effectiveness of FREQRANK

by checking whether the malicious output is among
the ranked list of strings. Table 3 shows that the ma-
licious string is ranked in the first position nearly
70% of the time. We also found that increasing the
number of predictions increases the effectiveness of
FREQRANK with our detection accuracy rising to
98% when the top five predicted strings are consid-
ered (see Table 3). In particular, our FREQRANK

ranked the malicious output in the first position
81% of the time on Gemini 2.5 Flash’s code
summarization task. Additionally, we validate our
technique’s effectiveness by checking whether it
is able to isolate the malicious outputs induced by
a third-party poisoned model i.e., the multi-target
poisoned model (Li et al., 2023). For the third-
party poisoned model, we found that the malicious
output was isolated in the first position in nearly
90% of cases (see Table 3).

We also found that FREQRANK generally detects
the malicious sub-string more effectively when the
number of mutants generated by FREQRANK is

increased (see Figure 2). In particular, we found
that on average our models detected the malicious
sub-string 80.8% of the time in the first five posi-
tions when given just three mutants. The effective-
ness steadily increases as we increase the number
of mutants for all our models. In fact, we find
that FREQRANK’s effectiveness increases to 98.3%
when 10 mutants are considered. We also note that
for the third party model, FREQRANK detects the
malicious sub-string 100% of the time within the
top five predictions even with just three mutants.

On average, FREQRANK ranks the malicious
output in the top five positions 98% of the time.

RQ3: How effective is the localization tech-
nique? We evaluate whether FREQRANK is able
to accurately isolate the trigger that induces the
malicious outputs. First, we leverage the detec-
tion process in Algorithm 1 to isolate the malicious
string from the backdoored models. We then find
the list of inputs that induce outputs containing the
malicious sub-string. To more realistically model
the presence of false positives, we construct a set
containing a mix of clean and triggered inputs as
detailed in subsection 4.2. We then draw a variable
number of inputs (between two and ten) from each
set as seen in Table 4 to feed as an input to Algo-
rithm 1. We then repeat the process ten times to
reduce the odds of one particular draw from being
over-indexed. For each draw, we assign a score of
three points when the malicious trigger is in the
first rank, two points when it is in the second rank
and one point when it is in the rank three to five.
We then add the scores from all ten draws. We then
report the scores for all the possible sets for all pos-
sible number of inputs (from two to ten). We report
these results in Table 4. It shows that FREQRANK
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Table 4: Heatmap showing the cumulative scores from 10 independent trials. Each trial is the result of drawing the
number of inputs indicated by the y-axis from a set with a false positive (clean input) rate indicated by the x-axis.
We assign a score of three, two and one if the trigger is in 1st, 2nd or 3rd− 5th rank, respectively.

Original MTB (FREQRANK) MTB (peramaull)

FreqRank (100 samples) Peramaull (100 samples) Avg.
CC CG CS Avg. CC CG CS Avg.

1 71 54 89 71.3 66 55 77 66 68.6
2 14 25 6 15 15 20 15 16.6 15.8
3 7 14 4 8.3 8 13 7 9.3 8.8
4 4 2 1 2.3 3 2 1 2 2.1
5 0 3 0 1 4 3 0 2.3 1.6

Cum. 96 98 100 98 96 93 100 96.3 97.1

Table 5: Effectiveness of FREQRANK’s malicious out-
put detection on each of our two triggers for the MTB
model.

is able to accurately isolate (score above 15) the
backdoor trigger even when the false positive rate
is 80%. In particular, we are able to isolate the
backdoor trigger in as little as four inputs even in
the presence of false positive rates of 50%.

On average, we are able to isolate the backdoor
trigger in as little as four inputs even in the
presence of false positive rates of upto 50%.

RQ4: How adaptable is FREQRANK to complex
triggers? We examine whether FREQRANK can be
adapted to defend against a complex, multi-trigger
backdoor attack (MTBA). Table 5 shows that on
average the malicious output is ranked in the first
position 68.6% of the time. It also shows that the
malicious output is consistently localized for both
the triggers with the effectiveness rising to 97.1%
on average when the first five ranks are considered.
This is in line with the FREQRANK’s effectiveness
on the original models (see Table 3).

Furthermore, we also assess whether FRE-
QRANK is equally effective at localizing the trig-
gers in the input by constructing a set of clean and
triggered inputs as detailed in subsection 4.2. We
ensure that both triggers are equally represented

CodeLlama CodeGemma Gemini 2.5 Flash Overall
Avg.CC CG CS Avg. CC CG CS Avg. CC CG CS Avg.

FreqRank 66 69 72 69 68 73 74 71.6 59 60 81 66.6 69.1
RAP 33 32 20 28.3 19 12 13 14.6 22 8 24 18 20.3

LengthSort 26 17 60 34.3 19 10 58 29 21 19 68 36 33.1

Table 6: Defense Success Rate of FREQRANK, RAP,
and length-based sort. The success rate for FREQRANK
and length based sort is based on the percentage of time
the malicious output was found in the first rank.

in each of the sets. We then sample the pools to
determine the sample efficiency of FREQRANK

and report the results in Table 4. The heatmaps
show that both triggers are effectively localized
with “###peramaull" being localized with greater
ease owing to its increased length. We note that
both triggers are effectively localized even at high
false positive rates of 50% with each of the trig-
gers being accurately isolated in as little as eight
inputs. We note that FREQRANK localizes both the
triggers using the same set of inputs. As such, FRE-
QRANK continues to require four inputs to localize
each trigger at a 50% false positive rate on aver-
age. This demonstrates that FREQRANK is able to
successfully localize each of the triggers without
additional effort. However, we acknowledge that
the sample efficiency of FREQRANK deteriorates
as the numbers of triggers increases.

FREQRANK is able to effectively localize
complex triggers with each of the triggers being

detected in as little as 8 inputs.

RQ5: How effective is the technique in com-
parison to other techniques? We compare the
performance of FREQRANK against two baselines,
namely, RAP, and an approach where the sub-
string(s) are sorted solely on length. Table 6 shows
that our adaptation of RAP was able to correctly
identify the poisoned input in 20.3% of cases. On
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the other hand, the length based sorting approach
was able to rank the malicious string in the first po-
sition 33.1% of the time. In contrast, FREQRANK

correctly ranks the malicious string directly in the
first position nearly 70% of the time. It is worth-
while to note that RAP is not capable of identifying
the backdoored phrase (the trigger) present in the
input, while our input localization isolates the trig-
ger with high accuracy (see RQ3).

FREQRANK correctly identifies the malicious
string in the first position ≈70% of the time,

while RAP and the length based sort correctly
identify the backdoored input only in 20.3% and

33.1% of cases respectively.

6 Related Work

Backdoor Attacks on LLMs: Recent works show
a variety of triggers to launch backdoor attacks on
LLMs (Zhao et al., 2025; Li et al., 2024a; Chen
et al., 2021). While full fine-tuning based ap-
proaches are generally more effective (Kandpal
et al., 2023; Shi et al., 2023), its computational
overhead can be reduced by PEFT fine-tuning with
similar attack success rate (Xue et al., 2024). In
both cases, existing works primarily focus on clas-
sification tasks, but the focus on generative tasks
such as the ones explored in FREQRANK is limited.

Backdoor Attacks in Code Related Tasks: Given
the increasing utility of code models, backdoor
attacks on these models have been studied (Ra-
makrishnan and Albarghouthi, 2022; Yan et al.,
2024; Yang et al., 2024; Li et al., 2023). These
works, however, have focused on relatively smaller
language models whereas we target the state-of-the-
art large language models for code. More impor-
tantly, in contrast to the aforementioned works that
focus on backdoor attacks, the main objective of
FREQRANK is to isolate the backdoor triggers and
malicious output strings. Thus, our FREQRANK ap-
proach has more of a defense flavor as compared to
the works on that focus solely on backdoor attacks.

Backdoor Detection and Defense Methods: Ex-
isting works on backdoor defense focus on clas-
sification tasks (Gao et al., 2021; Qi et al., 2021;
Yang et al., 2021), while FREQRANK targets gen-
erative tasks in the code domain. Nonetheless, we
implemented a straightforward extension of a prior
defense approach RAP, targeting natural language
classification (Yang et al., 2021) and show that
FREQRANK is more effective compared to such

extension of prior approaches. More importantly,
FREQRANK fundamentally differentiates itself by
leveraging a unified methodology to isolate mali-
cious strings in both model response and the input
(backdoor trigger). We believe such an approach is
useful for models targeting code, as users not only
need to know high-level information such as the
presence of backdoor, but also need to further in-
vestigate the potential malicious code in the model
response and possibly in the input. In addition,
FREQRANK works even in the absence of known
good inputs, which are required for RAP to work.

7 Conclusion

In this work we introduce FREQRANK, a mutation-
based defense mechanism that effectively localizes
malicious components within the LLM responses.
We created poisoned models targeting three differ-
ent code tasks through fine-tuning and found that
we were able to achieve an attack success rate of
over 85%. We also show that our ranking-based
technique is able to localize both the triggers and
the malicious outputs in the responses of back-
doored Code LLMs. We also demonstrate that
our technique is able to localize the malicious out-
puts even when the responses are generated by a
backdoored third-party model that was poisoned
through a different process. In addition, we show
that our approach compares favorably to other de-
fense approaches such as RAP (Yang et al., 2021)
with FREQRANK being 35-50% more effective at
detecting backdoors in LLM responses.

8 Data Availability

We hope that FREQRANK drives further work on
defending against backdoors in LLMs. To aid fu-
ture work, we make all our code and data publicly
available:

https://github.com/Mayukhborana/FreqRank

9 Limitations

Construct Validity: This relates to the metrics
and measures employed in our experimental anal-
ysis. To mitigate this threat, we have employed
standard testing metrics such as attack success rate
(ASR), false positive rate (FPR), and BLEU score
to evaluate our poisoned models. To evaluate the
effectiveness of our defense, we have reported FRE-
QRANK’s cumulative detection rate since our ap-
proach produces a ranked list of possibly malicious
sub-string(s). We have, however, also compared

19140

https://github.com/Mayukhborana/FreqRank


FREQRANK’s ability to present the malicious sub-
string in the first position to RAP’s effectiveness
to more directly compare the two methods. In ad-
dition, we have measured the sample efficiency of
FREQRANK in the real world by constructing pools
with varying levels of false positives.

Internal Validity: This refers to the threat that
our implementation of FREQRANK performs as in-
tended. We validate the accuracy of the responses
generated by the poisoned models by conducting
both manual and automated checks. For instance,
we compare the BLEU scores of the poisoned mod-
els with those of the clean models. In addition,
we also manually validated that both the poisoned
model and the clean model are capable of produc-
ing simple functions accurately.

External Validity: The main threat to the external
validity of this work is the generalizability of FRE-
QRANK to other downstream tasks and poisoning
regimes. We mitigate against this by constructing
our poisoned and clean models using CodeSearch-
Net, a well-known dataset that has been cited over
1000 times. We also tested our approach on three
different coding tasks (code completion (CC), code
generation (CG), and code summarization (CS)) to
ensure its effectiveness on a wide variety of coding
tasks. In addition, we have also evaluated the effec-
tiveness of our defense against a (malicious) third-
party model and found that FREQRANK is effective
at localizing the malicious sub-string inserted by
said model. However, we note that FREQRANK

might not be easily adapted to backdoors that do
not insert malicious sub-string(s) into the output.
For instance, a backdoor model that deletes a line
from its output might not be as easily detected by
FREQRANK.

Backdoor Stability and Correctness: We recog-
nise that LLMs are inherently non-deterministic
and do not consistently produce the malicious sub-
string(s) when the trigger is present. Similarly, we
note that the presence of a partial trigger could also
induce the malicious sub-string(s). However, we
believe that FREQRANK inherently accounts for
these factors as the ranking algorithm is able to
accurately isolate the malicious sub-string(s) even
in the presence of high false positive rate. This,
in turn, allows FREQRANK to identify the trigger
effectively. We do, however, acknowledge that this
could reduce the sample efficiency of FREQRANK.

10 Ethics Statement

We elucidate our ethics statement in this section:

Malicious Models: In the process of evaluating
of our defense, we created nine malicious code
models. These models could conceivably be used
maliciously, but we believe that it is unlikely since
our choice of trigger, “###peramaull”, makes trig-
gering the backdoor difficult. We do, however,
acknowledge that individuals could leverage the
code provided to train their own poisoned model,
but believe that the risk is limited since there are al-
ready poisoned code models available. In addition,
we introduce a defense technique that is capable of
detecting the backdoors introduced by our models
allowing us to mitigate the impact further.

Approach: We note the numerous environmental
concerns (energy and water expenditure) associ-
ated with training these LLMs. However, we limit
ourselves to performing LoRA fine-tuning instead
of full fine-tuning to generate our poisoned models
allowing us to reduce our computational budget fur-
ther. We also note that the relatively small size of
our models also limits the inference time. In partic-
ular, the CodeLlama, CodeGemma, and Gemini 2.5
Flash models take approximately 12, 14, and 19
seconds on average to generate a sample.
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