
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 18969–18979
November 4-9, 2025 ©2025 Association for Computational Linguistics

DB-Explore: Automated Database Exploration and Instruction Synthesis
for Text-to-SQL

Haoyuan Ma1, Yongliang Shen1†, Hengwei Liu1, Wenqi Zhang1, Haolei Xu1,
Qiuying Peng2 Jun Wang2, Weiming Lu1†

1Zhejiang University, 2 OPPO Research Institute
{mahaoyuan, syl, luwm}@zju.edu.cn
{pengqiuying, wangjun7}@oppo.com

Abstract

Recent text-to-SQL systems powered by large
language models (LLMs) have demonstrated
remarkable performance in translating natural
language queries into SQL. However, these
systems often struggle with complex database
structures and domain-specific queries, as they
primarily focus on enhancing logical reason-
ing and SQL syntax while overlooking the crit-
ical need for comprehensive database under-
standing. To address this limitation, we pro-
pose DB-Explore, a novel framework that sys-
tematically aligns LLMs with database knowl-
edge through automated exploration and in-
struction synthesis. DB-Explore constructs
database graphs to capture complex relational
schemas, leverages GPT-4 to systematically
mine structural patterns and semantic knowl-
edge, and synthesizes instructions to distill
this knowledge for efficient fine-tuning of
LLMs. Our framework enables comprehen-
sive database understanding through diverse
sampling strategies and automated instruction
generation, bridging the gap between database
structures and language models. Experiments
conducted on the SPIDER and BIRD bench-
marks validate the effectiveness of DB-Explore,
achieving an execution accuracy of 67.0%
on BIRD and 87.8% on SPIDER. Notably,
our open-source implementation based on
Qwen2.5-Coder-7B achieves state-of-the-art
results at minimal computational cost, out-
performing several GPT-4-driven Text-to-SQL
systems.

1 Introduction

Text-to-SQL systems have emerged as a crucial
bridge between humans and structured data, en-
abling natural language interaction with databases
without requiring SQL expertise. While recent
advances in large language models (LLMs), includ-
ing ChatGPT (Liu et al., 2023), GPT-4 (Achiam

†Corresponding author.

et al., 2023), and Qwen2 (Hui et al., 2024), have
significantly improved these systems’ capabilities,
demonstrating enhanced comprehension of user
queries and the ability to generate complex SQL
queries, they still face fundamental challenges in
understanding complex database structures and
generating accurate SQL queries, particularly for
domain-specific applications (Zhang et al., 2024;
Liu et al., 2023).

A key limitation of current approaches is their
reliance on direct query translation without deep
understanding of the underlying database struc-
ture and semantics. Existing methods primarily
focus improving prompting strategies (Dong et al.,
2023; Rajkumar et al., 2022; Liu et al., 2023; Sun
et al., 2023) or enhancing the reasoning ability of
LLMs through supervised fine-tuning (Li et al.,
2023a; Scholak et al., 2021; Wang et al., 2020),
but often overlook the critical role of database
comprehension in query generation. While tech-
niques like schema linking (Wang et al., 2020; Li
et al., 2023a), question decomposition (Pourreza
and Rafiei, 2023) and self-correction (Wang et al.,
2023) have attempted to address this gap, they typ-
ically treat the database as a static structure rather
than a rich source of semantic knowledge that can
inform the query generation process.

We argue that effective Text-to-SQL systems
must first develop a comprehensive understanding
of the database through systematic exploration be-
fore attempting query generation. This exploration
should capture not only the structural relationships
between tables but also the semantic patterns and
domain-specific knowledge embedded within the
schema. However, automated database exploration
presents several challenges: (1) Complex structural
relationships: Real-world databases often contain
intricate networks of table relationships that are
difficult to capture and represent effectively. (2)
Hidden semantic patterns: Domain-specific knowl-
edge embedded in schema elements (table names,

18969



column names, etc.) is often implicit and requires
careful analysis to uncover. (3) Query complex-
ity progression: Understanding how simple queries
can be systematically extended to handle more com-
plex scenarios requires a structured approach to
knowledge acquisition.

To address these challenges, we propose DB-
Explore, a novel framework that transforms Text-
to-SQL training through systematic database ex-
ploration and instruction synthesis. At the core of
our approach is a graph-based database represen-
tation technique called DB Graph, which captures
both structural relationships and semantic patterns
within the database. This representation serves as a
foundation for three key components: (1) Semantic
Knowledge Extraction: We develop techniques to
uncover domain-specific knowledge embedded in
schema elements, enabling more contextually ap-
propriate query generation. (2) Structural Pattern
Mining: By analyzing the DB Graph, our system
identifies common join patterns, table relationships,
and query templates that reflect the database’s ar-
chitectural design. (3) Progressive Instruction Syn-
thesis: Using the extracted knowledge, we auto-
matically generate training examples that progress
from simple to complex queries, allowing mod-
els to gradually master increasingly sophisticated
query patterns.

Our framework leverages these components to
create comprehensive training datasets that capture
both the structural and semantic complexity of the
target database. This approach fundamentally dif-
fers from existing methods by treating database
exploration as a crucial prerequisite for effective
query generation, rather than relying solely on
input-output pairs or schema information. The
main contributions of this work are:

1. We introduce DB-Explore, a framework that
revolutionizes Text-to-SQL training by incor-
porating systematic database exploration and
knowledge extraction.

2. We develop DB Graph, a novel representation
that captures both structural relationships and
semantic patterns within databases, enabling
more effective exploration and learning.

3. We present techniques for automated instruc-
tion synthesis that leverage extracted database
knowledge to create progressively complex
training examples.

4. We demonstrate significant improvements in
query generation accuracy and complexity
handling across multiple benchmark datasets
with minimal computational cost.

2 Related Work

Early Text-to-SQL systems relied on handcrafted,
rule-based parsers to map natural language into
SQL (Li and Jagadish, 2014; Popescu et al., 2003).
The advent of large language models (LLMs)
such as GPT-4 (Achiam et al., 2023) shifted fo-
cus to leveraging rich language priors for SQL
generation (Li et al., 2023b). Building on this
paradigm, schema-focused methods such as RESD-
SQL, DTS-SQL, and RSL-SQL enhance schema
linking and selection to ground queries in database
structures (Li et al., 2023a; Pourreza and Rafiei,
2024; Cao et al., 2024), while decomposition-based
techniques like DIN-SQL, PTD-SQL, and QPL
break complex queries into simpler sub-tasks (Pour-
reza and Rafiei, 2023; Luo et al., 2024; Eyal et al.,
2023). MSC-SQL, SQL-PaLM, Distillery, and
XiYan improve robustness through multi-candidate
generation and ranking (Gorti et al., 2024; Sun
et al., 2023; Maamari et al., 2024; Gao et al.,
2024b), and skeleton-aware selection in DAIL-SQL
refines few-shot demonstrations (Gao et al., 2024a).
Self-correction frameworks in MAC and EPI-SQL
further reduce errors via iterative feedback (Wang
et al., 2023; Liu and Tan, 2024).

In parallel, competitive open-source LLMs have
spurred fine-tuning frameworks that exploit syn-
thetic or task-specific data. CODES incremen-
tally pre-trains StarCoder on SQL corpora and inte-
grates external plugins for enhanced performance
(Li et al., 2024), whereas DTS-SQL and SENSE
employ schema-aware fine-tuning and direct prefer-
ence optimization (DPO) (Rafailov et al., 2024) to
improve accuracy (Pourreza and Rafiei, 2024; Yang
et al., 2024b). ROUTE unifies multi-task tuning
through targeted data synthesis (Qin et al., 2024).
Recently, reinforcement learning (RL) methods
have emerged as a promising direction in the Text-
to-SQL field. SQL-o1 (Lyu et al., 2025) employs
Monte Carlo Tree Search (MCTS) (Świechowski
et al., 2023) to enhance the reasoning process dur-
ing SQL generation. SQL-R1 (Ma et al., 2025) and
Reasoning-SQL (Pourreza et al., 2025) leverage the
GRPO (Liu et al., 2024) framework and incorpo-
rate domain-specific reward functions, improving
the accuracy and robustness of Text-to-SQL sys-
tems. Despite these advances, most work remains

18970



Figure 1: Overall framework of DB-Explore. Our framework operates through three principal phases: (1) Database
Graph Construction, (2) Database Multi-Knowledge Exploration: semantic knowledge extraction, structural pattern
mining, progressive instruction synthesis, and filtering mechanisms, and (3) Supervised Fine-Tuning executing
database-adaptive model training. The synthesis phase systematically produces database-consistent training corpora
through multi-stratum knowledge alignment.

focused on direct SQL generation, often overlook-
ing holistic database understanding.

3 Methodology

In this section, we present a detailed explanation
of DB-Explore, a fully automated framework that
leverages LLMs to explore databases, generate
data, and perform supervised fine-tuning. As illus-
trated in Figure 1, the framework comprises three
core components: 1) Database Graph Construction,
2) Database Multi-Knowledge Exploration, and 3)
Supervised Fine-Tuning.

DB-Explore initiates with the construction of DB
Graph, which captures the intricate topological rela-
tionships within the database. By applying various
sampling strategies, we extract subgraphs contain-
ing diverse information. DB-Explore then converts
this database knowledge into a instruction dataset
through semantic knowledge extraction, structural
pattern mining, and progressive instruction syn-
thesis. To ensure the quality of the generated in-
structions, an instruction filtering mechanism is em-
ployed. Finally, the extracted knowledge is injected
into the base model via supervised fine-tuning. In
the following subsections, we present a detailed

description of each component of DB-Explore.

3.1 Database Graph Construction and
Sampling

To effectively model both structural and seman-
tic relationships within databases, we formalize
database schemas as DB graph, as illustrated in
Step 1 of Figure 1. The graph comprises nodes
representing database columns and edges encoding
relational constraints. Two edge types are defined:
Intra-table edges connect columns within the same
table, enabling direct access without JOIN opera-
tions; Inter-table edges represent foreign key rela-
tionships across tables, bridging subgraphs into a
unified structure. Edge weights are assigned based
on co-occurrence frequency of connected columns
in seed queries, prioritizing frequently accessed
schema patterns that reflect real-world query be-
haviors.

To enable more effective exploration and learn-
ing, we propose two complementary sampling
strategies: 1) Random Walk Sampling: Start-
ing from selected nodes, the walker iteratively tra-
verses adjacent nodes via randomly chosen edges
until reaching a predefined sampling size. This
method ensures comprehensive schema coverage

18971



but may overlook high-priority relationships. 2)
Empirical Weighted Sampling: Normalized edge
weights guide traversal probabilities, biasing selec-
tion toward high-weight edges. This strategy em-
phasizes schema subgraphs aligned with user query
patterns, enhancing instruction relevance. Both
strategies generate subgraphs as input for subse-
quent database multi-knowledge exploration, bal-
ancing semantic diversity via random walks and
user intent alignment via weighted sampling.

3.2 Database Multi-Knowledge Exploration

We propose a three-pronged exploration and data
synthesis framework to explore database by instruc-
tion synthesis while minimizing computational
overhead: 1) Semantic Knowledge Extraction, 2)
Structural Pattern Mining, and 3) Progressive In-
struction Synthesis.

3.2.1 Semantic Knowledge Extraction
Semantic knowledge extraction mechanism lever-
ages LLMs’ internal knowledge to discover la-
tent schema relationships through a self-guided
paradigm. The process initiates by sampling
schema subgraphs S from the DB Graph via ran-
dom walk sampling, containing table/column meta-
data and structural relationships.

Self-instruction has been shown to be an effec-
tive way to synthesize data (Wang et al., 2022). The
instruction synthesis pipeline operates through a
self-instruct framework initialized using manually-
crafted template. We prompt the LLM with S and
randomly sampled seed instructions as demonstra-
tions to synthesize novel queries Q through schema-
constrained synthesis. The generated 〈Q, S〉 pairs
are subsequently feedback to the LLM to produce
executable SQL responses R.

To achieve optimal semantic diversity while pre-
serving logical validity, we implement temperature
scaling (τ=0.8) during generation. The iterative
process progressively enriches the instruction pool
through random sampling, thereby expanding cov-
erage of potential user intents.

3.2.2 Structural Pattern Mining
Unlike semantic knowledge extraction, structural
pattern mining is designed to generate schema-
grounded SQL queries through explicit modeling
of relational topologies derived from the DB Graph.
It prioritizes foreign-key dependencies and latent
connectivity patterns observed in seed instructions,
while strategically balancing single-table opera-

tions with multi-tables queries through weighted
edge sampling. We propose a SQL-first generation
paradigm to ensure structural accuracy by initially
producing executable SQL statements that rigor-
ously adhere to schema constraints. These syntacti-
cally valid queries are subsequently translated into
natural language instructions via inverse parsing,
effectively reducing hallucination risks compared
to open-ended synthesis.

As shown in Figure 1, we first apply empirical
weighted sampling to select schema subgraphs S,
giving priority to high-frequency foreign-key edges.
For each selected subgraph, SQL statements R are
automatically generated by traversing all nodes in
the subgraph, incorporating JOIN operations based
on foreign keys, filter conditions derived from col-
umn data types, and aggregation functions applied
to numerical columns. The resulting SQL state-
ments are then translated into natural language
queries using the back-instruct method (Shen et al.,
2023), where an LLM rewrites each SQL query R
into a structurally faithful natural language instruc-
tion Q.

3.2.3 Progressive Instruction Synthesis
In this section, we introduce a progressive instruc-
tion synthesis mechanism that progressively en-
riches query complexity to address the challenge
of generating complex queries from simple user
inputs. As illustrated in Figure 1, SQL queries are
formalized as syntax trees where the root repre-
sents the core SELECT statement and leaf nodes
correspond to schema-specific constraints. Each
leaf node maps to a modular condition that can
be independently translated into natural language,
establishing a bidirectional bridge between SQL
semantics and user intent.

The synthesis process initiates with a base query
sampled from the DB Graph. Through iterative
refinement: 1. Condition Augmentation: Schema-
derived nodes (foreign keys, constraints) are recur-
sively appended to the syntax tree via DB Graph-
guided sampling. 2. Complexity Scaling: The
LLM orchestrates tree expansion by injecting com-
pound conditions such as nested WHERE clauses
and multi-table JOIN while preserving syntactic
validity. 3. Instruction Rewriting: Each evolved
SQL tree is verbalized into diverse natural language
expressions through LLM rewriting.

Each iteration introduces new constraints and
conditions to the instruction, progressively increas-
ing its complexity. We set the number of iterations

18972



to 3, corresponding to user instructions of varying
difficulty levels: simple, moderate, and challeng-
ing. This progressive paradigm generates instruc-
tion pairs ranging from atomic queries to multi-hop
reasoning tasks, effectively simulating the evolu-
tionary patterns of real-world user queries.

3.3 Instruction Filtering
Progressive instruction synthesis often generates
a significant amount of noisy data due to hallu-
cinations of LLMs. To mitigate noise data, we
implement a dual-stage validation pipeline:

All generated SQL candidates R are executed
against the target database, and queries are dis-
carded if they contain syntax errors, reference in-
valid columns or tables, or exceed an execution
time limit of 25 seconds. The surviving <Q,R>
pairs are then subjected to LLM-based consistency
verification to ensure faithful alignment between
the natural language intent and the SQL logic, as
well as strict adherence to schema constraints de-
fined in S. Validated instances are formatted as aug-
mented tuples <Q,D,R, S>, where D denotes
the database context. These high-quality instances
are reintegrated into the seed dataset, forming a
self-improving feedback loop that drives iterative
synthesis and database exploration.

3.4 Supervised Fine-Tuning and Inference
To inject the database knowledge into base
model, we implement a two-stage supervised fine-
tuning framework using the synthesized instruction
dataset <Q,D,R, S>. Addressing the challenge
of schema complexity versus limited context win-
dows, user queries undergo schema linking to ex-
tract critical schema elements S before SQL gen-
eration. This cascaded approach reduces irrelevant
schema noise and minimizes token consumption.

To enhance the model’s comprehension of
database structures during inference, we integrates
a Value Retrieval Module which implements a
coarse-to-fine matching mechanism via BM25 in-
dexing and Longest Common Subsequence (LCS)
algorithms (Li et al., 2024), resolving token mis-
matches. Additionally, metadata augmentation is
utilized, embedding database descriptions, column
types, foreign keys, and domain knowledge into
prompts.

4 Experiments

Benchmarks (1) SPIDER The SPIDER dataset
(Yu et al., 2018) is a large-scale, cross-domain

benchmark for Text-to-SQL tasks, designed to eval-
uate the generalization ability of models across di-
verse database structures. It consists of 8,659 train-
ing samples, and 1,034 development samples, span-
ning 200 databases and 138 domains. (2) BIRD
The BIRD dataset (Li et al., 2023b) is a more chal-
lenging Text-to-SQL benchmark compared to SPI-
DER, featuring 95 real-world databases across 37
professional domains, with a total storage size of
33.4GB.

Evaluation Metrics In our experiments, we use
three key evaluation metrics to assess the perfor-
mance of Text-to-SQL models. Execution Accu-
racy (EX) (Yu et al., 2018) measures the proportion
of queries where the predicted SQL query produces
the exact output as the ground truth, serving as a
direct indicator of correctness. Test-Suite Accu-
racy (TS) (Zhong et al., 2020) stands out as a more
trustworthy metric than EX. For BIRD, we report
EX along with the Valid Efficiency Score (VES)
(Li et al., 2023b), which is used to evaluate the
execution efficiency of accurately generated SQL
queries. Unlike EX, in VES the score for an ac-
curately generated SQL query is no longer fixed
at 1. Instead, it is determined by the ratio of the
execution time of the ground truth SQL query to
that of the predicted SQL query.

Implementation Details We employ GPT-4o
(Hurst et al., 2024) for data synthesis and fine-tune
Qwen2.5-Coder-7B (Yang et al., 2024a) as our base
model. A total of 26,000 and 22,000 initial syn-
thetic query-SQL pairs are first constructed for the
SPIDER and BIRD datasets; after filtering, we ob-
tain 21,273 and 16,457 valid query-SQL pairs for
the two datasets, as shown in Table 2, correspond-
ing to a success rate of 81.8% for SPIDER and
74.8% for BIRD. All experiments are conducted
on four NVIDIA A6000 GPUs with a batch size
of 32. We utilize the Llama-Factory framework
(Zheng et al., 2024) for parameter-efficient fine-
tuning. Both schema linking and text generation
modules are trained for 3 epochs using AdamW
optimization, with an initial learning rate of 1e-5
and a context window of 4,096 tokens. The learn-
ing rate follows a cosine decay schedule. For self-
consistency decoding, we sample 8 SQL candidates
with a temperature of 0.8.

Baselines We evaluate DB-Explore against state-
of-the-art Text-to-SQL methods across two major
paradigms. The first includes approaches Prompt-

18973



Methods SPIDER BIRD
Dev-EX Dev-TS Dev-EX Dev-VES

Prompting with Closed-Source LLMs
MCS-SQL + GPT-4 (Lee et al., 2025) 89.5 - 63.4 64.8
XIYAN (Gao et al., 2024b) 89.7 - 73.3 -
CHASE-SQL + Gemini-1.5 (Pourreza et al., 2024) 87.6 - 73.1 -
GPT-4 (Achiam et al., 2023) 72.9 64.9 46.4 49.8
DIN-SQL + GPT-4 (Pourreza and Rafiei, 2023) 82.8 74.2 50.7 58.8
DAIL-SQL + GPT-4 (Gao et al., 2024a) 83.5 76.2 54.8 56.1
MAC-SQL + GPT-4 (Wang et al., 2023) 86.8 82.8 59.4 66.2
TA-SQL + GPT-4 (Qu et al., 2024) 85.0 - 56.2 -
MAG-SQL + GPT-4 (Xie et al., 2024) 85.3 - 61.1 -
Fine-Tuning with Open-Source LLMs 7B
DTS-SQL + DeepSeek-7B (Pourreza and Rafiei, 2024) 82.7∗ 78.4∗ 55.8 60.3
CODES-7B (Li et al., 2024) 85.4 80.3 57.2 58.8
SENSE-7B (Yang et al., 2024b) 83.2 81.7 51.8 -
ROUTE + Qwen2.5-7B (Qin et al., 2024) 83.6 77.5 55.9 57.4
OmniSQL-7B (Li et al., 2025) 81.6 - 63.9 -
SQL-o1 + Qwen2.5-7B (Lyu et al., 2025) 84.7 78.5 66.7 70.4
SQL-R1(self-consistency@8) (Ma et al., 2025) 87.6 - 66.6 -
Reasoning-SQL + Qwen2.5-Coder-7B(Pourreza et al., 2025) - - 64.0 -
Ours: DB-Explore + Qwen2.5-Coder-7B 87.2 80.2 65.2 68.9
Ours: DB-Explore + Qwen2.5-Coder-7B + self-consistency@8 87.8 81.9 67.0 71.2

Table 1: Experimental results on SPIDER and BIRD benchmarks. Asterisks ’∗’ denote performance re-evaluated
through the official open-source implementation by ROUTE. Within the Fine-Tuning with Open-Source LLMs 7B
group, top-performing entries are bold with runner-up scores underlined.

ing with Closed-Source LLMs, such as MCS-
SQL (Lee et al., 2025) and Chase-SQL (Guo et al.,
2021), which leverage multi-prompt strategies and
result selection. MAC-SQL (Wang et al., 2023) and
MAG-SQL (Xie et al., 2024) adopt multi-agent
frameworks for error correction, while TA-SQL
(Qu et al., 2024), DIN-SQL (Pourreza and Rafiei,
2023), and DAIL-SQL (Gao et al., 2024a) im-
prove generation through task alignment, decom-
position, and demonstration selection. The sec-
ond group involves Fine-Tuning Open-Source 7B
LLMs. DTS-SQL (Pourreza and Rafiei, 2024) em-
ploys a two-stage pipeline, SENSE (Yang et al.,
2024b) leverages preference learning, and CODES
(Li et al., 2024) incorporates extensive pretrain-
ing and plugins. ROUTE (Qin et al., 2024) intro-
duces multi-task learning, while SQL-o1 (Lyu et al.,
2025), SQL-R1 (Ma et al., 2025), and Reasoning-
SQL (Pourreza et al., 2025) integrate reinforcement
learning to enhance SQL generation.

5 Results and Analysis

5.1 Main Results

Performance on Main Benchmarks As shown
in Table 1, DB-Explore achieves strong perfor-

Figure 2: Data volume analysis of different data synthe-
sis methods on BIRD, CODES only reports the storage
size for pre-training data

mance, attaining execution accuracies of 87.8%
on the SPIDER development set and 67.0% on
the BIRD development set—setting a new state-of-
the-art among methods based on open-source 7B
models. Compared to the baseline using Qwen2.5-
Coder-7B, our approach yields substantial improve-
ments. Notably, DB-Explore outperforms rein-
forcement learning-based methods such as SQL-R1
(Ma et al., 2025) and Reasoning-SQL (Pourreza
et al., 2025), despite relying only on limited su-
pervised fine-tuning (SFT), significantly reducing
training costs. Moreover, DB-Explore surpasses

18974



Datasets Initial Synthetic Total Valid Semantic Knowledge Structural Pattern Success Rate
Pairs Pairs Extraction Rate Mining Rate

SPIDER 26000 21273 36% 64% 81.8%
BIRD 22000 16457 32% 68% 74.8%

Table 2: Performance of synthetic data on SPIDER and BIRD Datasets.

SPIDER BIRD
DB-Explore Base Model DB-Explore Base Model

Full-Schema EX 83.9 80.0 63.5 53.7
Filtered-Schema EX 87.2 - 65.2 -
Gold-Schema EX 89.1 83.4 69.9 63.8

Table 3: The performance of the SQL generation model for different schema inputs, where the filtered-schema is
the result of the DB-Explore schema linking model.

many Text-to-SQL methods that rely on closed-
source models, including GPT-4 and GPT-4o. On
the BIRD benchmark, it also achieves a VES score
of 71.2%, underscoring that our database-specific
exploration strategy can yield highly efficient query
generation through capturing complex schema pat-
terns.

Analysis of Data Volume Unlike existing ap-
proaches that focus on enhancing LLMs’ gen-
eralization capabilities for SQL generation, DB-
Explore adopts a database-centric data synthesis
paradigm that prioritizes mining database-specific
knowledge. This fundamental distinction enables
our method to achieve competitive performance
with significantly reduced data requirements. As
illustrated in Figure 2, our approach achieves
the lowest computational cost among all data
synthesis-based Text-to-SQL methods. Specifi-
cally, DB-Explore demonstrates superior data ef-
ficiency on BIRD benchmark, achieving a signifi-
cantly higher EX accuracy than other data synthesis
methods while using only 70.9% of the data used
by ROUTE, and less than 1% of that used by Om-
niSQL and CODES.

Figure 3: DB-Explore performance trend under different
database exploration ratios.

Analysis of DB Exploration Ratio We analyze
the impact of database exploration levels on model
performance across the SPIDER and BIRD de-
velopment sets. Different exploration levels are
achieved by constraining the sampling scope of the
DB Graph: 0% corresponds to the Qwen2.5-Coder-
7B baseline without exploration, while 100% de-
notes full exploration as performed by DB-Explore.
As shown in Figure 3, due to the relatively uniform
distribution of queries across databases in both
datasets, model performance increases almost lin-
early with the exploration ratio. Notably, database
exploration not only enriches the model’s schema
understanding but also enhances its overall Text-to-
SQL capabilities through fine-tuning. As a result,
performance gains are slightly more pronounced
in the early stages of exploration compared to the
later stages.

Figure 4: Performance comparison of DB-Explore at
different instruction generation stages on BIRD devel-
opment set.

Analysis of Progressive Instruction Synthesis
To investigate the effect of progressive instruction
generation on DB-Explore’s ability to handle com-
plex queries, we analyze its performance across

18975



Methods SPIDER BIRD
Dev-EX Dev-EX

Ours: DB-Explore + Qwen2.5-Coder-7B 87.2 65.2
- w/o Semantic Knowledge Extraction 86.1↓1.1 64.8↓0.4
- w/o Structural Pattern Mining 83.9↓3.3 62.5↓2.7
- w/o Progressive Instruction Synthesis 84.8↓2.4 62.2↓3.0
- w/o Instruction Filtering 83.7↓3.5 61.4↓3.8

Table 4: Ablation study on DB-Explore, complete method of DB-Explore is bold

different instruction synthesis stages on the BIRD
development set. Each step corresponds to one
iteration of evolving the training instructions; to
prevent excessive distributional drift, we retain all
simpler instructions from prior steps at every itera-
tion. As shown in Figure 4, DB-Explore exhibits a
significant improvement in handling simple queries
at Step 1, where the synthesized instructions remain
relatively basic. However, performance on moder-
ate and challenging queries shows little change at
this stage. In Steps 2 and 3, as the synthesized data
becomes increasingly complex through iterative
evolution, the model’s performance on moderate
and challenging queries improves rapidly. As iter-
ations accumulate, the synthesized instructions at
Step 3, which now encompass queries involving
four tables and five tables, are substantially more
complex than those in the evaluation set. Although
we retain all simpler instructions from Step 1 and
Step 2, the overall data distribution at Step 3 still
shifts slightly toward the more difficult examples,
leading to a modest decline in performance on sim-
ple queries.

Analysis of Schema Linking As shown in Table
3, the schema linking module not only alleviates
the context length limitations of LLMs but also ef-
fectively focuses their attention on relevant schema
elements. Incorporating Filtered-Schema leads to
a 3.3% and 1.7% execution accuracy improvement
on the SPIDER and BIRD datasets. Moreover, DB-
Explore achieves strong performance when pro-
vided with the gold schema, further demonstrating
its effectiveness on the Text-to-SQL task.

5.2 Ablation Study

Study on Semantic Knowledge Extraction and
Structural Pattern Mining We conducted abla-
tion experiments to quantify the individual and
joint effects of Semantic Knowledge Extraction
and Structural Pattern Mining on DB-Explore’s
performance. As shown in Table 4, when the Se-

mantic Knowledge Extraction module is removed,
accuracy decreases by 1.1% on SPIDER and 0.4%
on BIRD, indicating its role in extracting entity
categories and predicate relationships that guide
precise column and value mapping. By contrast,
disabling Structural Pattern Mining which captures
foreign-key dependencies and the global topology
of the database schema results in a much larger
3.3% drop on SPIDER and 2.7% drop on BIRD,
primarily due to increased join-path selection fail-
ures and ambiguous column predictions. Due to
the inherent semantic information present in the
synthesized data, Structural Pattern Mining brings
even larger gains than Semantic Knowledge Extrac-
tion.

Study on Progressive Instruction Synthesis
To assess the impact of gradually increasing query
complexity, we evaluated DB-Explore with and
without the Progressive Instruction Synthesis mod-
ule. Incorporation of this module yields a 2.4% im-
provement on SPIDER and a 3.0% gain on BIRD,
with the majority of benefits observed on moder-
ate and challenging queries that require multi-table
joins and nested filters.

Study on Instruction Filtering Finally, we ex-
amined the necessity of our Instruction Filtering
component, which prunes hallucinated or incom-
plete instructions produced during synthesis. With-
out this filter, performance on SPIDER declines
by 3.5% and on BIRD by 3.8%, reflecting the dis-
ruptive influence of low-quality examples. This
ablation confirms that rigorous filtering is indis-
pensable for maintaining instruction quality and
preventing performance degradation caused by spu-
rious or malformed queries.

6 Conclusion

In this paper, we propose DB-Explore, a frame-
work for database exploration, instruction synthe-
sis, and fine-tuning that enhances the LLMs’ un-
derstanding of databases by extracting dynamic

18976



database knowledge, thereby unlocking the poten-
tial of LLMs in Text-to-SQL tasks. Our approach,
through database multi-knowledge exploration, ef-
fectively minimizes the risks associated with in-
sufficient database knowledge in SQL generation.
We demonstrate the efficacy and superiority of our
method on recent LLMs across several benchmark
tests. The results show that our approach achieves
state-of-the-art performance in Text-to-SQL with
minimal computational cost. In the future, we
aim to explore more database knowledge, larger
LLMs, and more efficient fine-tuning frameworks
to achieve robust and efficient Text-to-SQL solu-
tions.

Limitations

While our exploration demonstrates promising re-
sults, several important limitations warrant ac-
knowledgment. First, the framework introduces
modest computational cost and GPT-4o API con-
sumption. Although these costs remain substan-
tially lower than comparable methods, we encour-
age future work to explore more efficient data gen-
eration and fine-tuning paradigms. Second, our
upper-bound analysis reveals a persistent perfor-
mance gap between our approach and inference
frameworks directly leveraging closed-source mod-
els. Finally, due to computational constraints, the
framework’s effectiveness on larger language mod-
els (e.g., Qwen2-72B (Hui et al., 2024)) remains
unverified, leaving its scalability to state-of-the-art
architectures as open research questions.

Acknowledgements

This work is supported by the National Natural
Science Foundation of China (No. 62376245),
the Key Research and Development Program of
Zhejiang Province, China (No. 2024C01034),
the Fundamental Research Funds for the Central
Universities (226-2024-00170), National Key Re-
search and Development Project of China (No.
2018AAA0101900)and MOE Engineering Re-
search Center of Digital Library.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Zhenbiao Cao, Yuanlei Zheng, Zhihao Fan, Xiaojin
Zhang, Wei Chen, and Xiang Bai. 2024. RSL-SQL:
Robust Schema Linking in Text-to-SQL Generation.
arXiv preprint. ArXiv:2411.00073 [cs].

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao,
Yunjun Gao, lu Chen, Jinshu Lin, and Dongfang Lou.
2023. C3: Zero-shot Text-to-SQL with ChatGPT.
arXiv preprint. ArXiv:2307.07306 [cs].

Ben Eyal, Amir Bachar, Ophir Haroche, Moran Mahabi,
and Michael Elhadad. 2023. Semantic decomposi-
tion of question and sql for text-to-sql parsing. arXiv
preprint arXiv:2310.13575.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2024a.
Text-to-sql empowered by large language models:
A benchmark evaluation. Proc. VLDB Endow.,
17(5):1132–1145.

Yingqi Gao, Yifu Liu, Xiaoxia Li, Xiaorong Shi, Yin
Zhu, Yiming Wang, Shiqi Li, Wei Li, Yuntao Hong,
Zhiling Luo, et al. 2024b. Xiyan-sql: A multi-
generator ensemble framework for text-to-sql. arXiv
preprint arXiv:2411.08599.

Satya Krishna Gorti, Ilan Gofman, Zhaoyan Liu, Ji-
apeng Wu, Noël Vouitsis, Guangwei Yu, Jesse C.
Cresswell, and Rasa Hosseinzadeh. 2024. MSc-
SQL: Multi-Sample Critiquing Small Language Mod-
els For Text-To-SQL Translation. arXiv preprint.
ArXiv:2410.12916.

Jiaqi Guo, Ziliang Si, Yu Wang, Qian Liu, Ming Fan,
Jian-Guang Lou, Zijiang Yang, and Ting Liu. 2021.
Chase: A Large-Scale and Pragmatic Chinese Dataset
for Cross-Database Context-Dependent Text-to-SQL.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
2316–2331, Online. Association for Computational
Linguistics.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. 2024. Qwen2. 5-coder
technical report. arXiv preprint arXiv:2409.12186.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford,
et al. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Dongjun Lee, Choongwon Park, Jaehyuk Kim, and
Heesoo Park. 2025. Mcs-sql: Leveraging multiple
prompts and multiple-choice selection for text-to-sql
generation. In COLING, pages 337–353. Association
for Computational Linguistics.

Fei Li and Hosagrahar V Jagadish. 2014. Constructing
an interactive natural language interface for relational
databases. Proceedings of the VLDB Endowment,
8(1):73–84.

18977

https://doi.org/10.48550/arXiv.2411.00073
https://doi.org/10.48550/arXiv.2411.00073
http://arxiv.org/abs/2307.07306
http://dblp.uni-trier.de/db/journals/pvldb/pvldb17.html#GaoWLSQDZ24
http://dblp.uni-trier.de/db/journals/pvldb/pvldb17.html#GaoWLSQDZ24
http://arxiv.org/abs/2410.12916
http://arxiv.org/abs/2410.12916
http://arxiv.org/abs/2410.12916
https://doi.org/10.18653/v1/2021.acl-long.180
https://doi.org/10.18653/v1/2021.acl-long.180
http://dblp.uni-trier.de/db/conf/coling/coling2025.html#LeePKP25
http://dblp.uni-trier.de/db/conf/coling/coling2025.html#LeePKP25
http://dblp.uni-trier.de/db/conf/coling/coling2025.html#LeePKP25


Haoyang Li, Shang Wu, Xiaokang Zhang, Xinmei
Huang, Jing Zhang, Fuxin Jiang, Shuai Wang, Tiey-
ing Zhang, Jianjun Chen, Rui Shi, et al. 2025. Om-
nisql: Synthesizing high-quality text-to-sql data at
scale. arXiv preprint arXiv:2503.02240.

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen.
2023a. RESDSQL: Decoupling Schema Linking
and Skeleton Parsing for Text-to-SQL. Proceedings
of the AAAI Conference on Artificial Intelligence,
37(11):13067–13075. Number: 11.

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xi-
aokang Zhang, Jun Zhu, Renjie Wei, Hongyan Pan,
Cuiping Li, and Hong Chen. 2024. CodeS: Towards
Building Open-source Language Models for Text-to-
SQL. arXiv preprint. ArXiv:2402.16347 [cs].

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li,
Bowen Li, Bailin Wang, Bowen Qin, Rongyu Cao,
Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao
Ma, Guoliang Li, Kevin C. C. Chang, Fei Huang,
Reynold Cheng, and Yongbin Li. 2023b. Can LLM
Already Serve as A Database Interface? A BIg Bench
for Large-Scale Database Grounded Text-to-SQLs.
arXiv preprint. ArXiv:2305.03111 [cs].

Aiwei Liu, Xuming Hu, Lijie Wen, and Philip S. Yu.
2023. A comprehensive evaluation of ChatGPT’s
zero-shot Text-to-SQL capability. arXiv preprint.
ArXiv:2303.13547 [cs].

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, et al. 2024.
Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

Xiping Liu and Zhao Tan. 2024. Epi-sql: Enhancing
text-to-sql translation with error-prevention instruc-
tions. arXiv preprint arXiv:2404.14453.

Ruilin Luo, Liyuan Wang, Binghuai Lin, Zicheng Lin,
and Yujiu Yang. 2024. Ptd-sql: Partitioning and tar-
geted drilling with llms in text-to-sql. arXiv preprint
arXiv:2409.14082.

Shuai Lyu, Haoran Luo, Zhonghong Ou, Yifan Zhu, Xi-
aoran Shang, Yang Qin, and Meina Song. 2025. Sql-
o1: A self-reward heuristic dynamic search method
for text-to-sql. arXiv preprint arXiv:2502.11741.

Peixian Ma, Xialie Zhuang, Chengjin Xu, Xuhui Jiang,
Ran Chen, and Jian Guo. 2025. Sql-r1: Training natu-
ral language to sql reasoning model by reinforcement
learning. arXiv preprint arXiv:2504.08600.

Karime Maamari, Fadhil Abubaker, Daniel Jaroslaw-
icz, and Amine Mhedhbi. 2024. The Death of
Schema Linking? Text-to-SQL in the Age of
Well-Reasoned Language Models. arXiv preprint.
ArXiv:2408.07702 [cs].

Ana-Maria Popescu, Oren Etzioni, and Henry Kautz.
2003. Towards a theory of natural language inter-
faces to databases. In Proceedings of the 8th interna-
tional conference on Intelligent user interfaces, pages
149–157.

Mohammadreza Pourreza, Hailong Li, Ruoxi Sun,
Yeounoh Chung, Shayan Talaei, Gaurav Tarlok
Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and
Sercan Ö. Arik. 2024. Chase-sql: Multi-path reason-
ing and preference optimized candidate selection in
text-to-sql. CoRR, abs/2410.01943.

Mohammadreza Pourreza and Davood Rafiei. 2023.
DIN-SQL: Decomposed In-Context Learning of
Text-to-SQL with Self-Correction. arXiv preprint.
ArXiv:2304.11015 [cs].

Mohammadreza Pourreza and Davood Rafiei. 2024.
DTS-SQL: Decomposed Text-to-SQL with
Small Large Language Models. arXiv preprint.
ArXiv:2402.01117 [cs].

Mohammadreza Pourreza, Shayan Talaei, Ruoxi Sun,
Xingchen Wan, Hailong Li, Azalia Mirhoseini, Amin
Saberi, Sercan Arik, et al. 2025. Reasoning-sql: Re-
inforcement learning with sql tailored partial rewards
for reasoning-enhanced text-to-sql. arXiv preprint
arXiv:2503.23157.

Yang Qin, Chao Chen, Zhihang Fu, Ze Chen, Dezhong
Peng, Peng Hu, and Jieping Ye. 2024. ROUTE: Ro-
bust Multitask Tuning and Collaboration for Text-to-
SQL. arXiv preprint. ArXiv:2412.10138 [cs].

Ge Qu, Jinyang Li, Bowen Li, Bowen Qin, Nan Huo,
Chenhao Ma, and Reynold Cheng. 2024. Before
generation, align it! a novel and effective strategy for
mitigating hallucinations in text-to-sql generation. In
ACL (Findings), pages 5456–5471. Association for
Computational Linguistics.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2024. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neu-
ral Information Processing Systems, 36.

Nitarshan Rajkumar, Raymond Li, and Dzmitry Bah-
danau. 2022. Evaluating the Text-to-SQL Capabil-
ities of Large Language Models. arXiv preprint.
ArXiv:2204.00498 [cs].

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. PICARD: Parsing Incrementally for
Constrained Auto-Regressive Decoding from Lan-
guage Models. arXiv preprint. ArXiv:2109.05093
[cs].

Yongliang Shen, Kaitao Song, Xu Tan, Wenqi Zhang,
Kan Ren, Siyu Yuan, Weiming Lu, Dongsheng Li,
and Yueting Zhuang. 2023. TaskBench: Benchmark-
ing Large Language Models for Task Automation.
arXiv preprint. ArXiv:2311.18760 [cs].

Ruoxi Sun, Sercan Ö Arik, Alex Muzio, Lesly Miculi-
cich, Satya Gundabathula, Pengcheng Yin, Hanjun
Dai, Hootan Nakhost, Rajarishi Sinha, Zifeng Wang,
et al. 2023. Sql-palm: Improved large language
model adaptation for text-to-sql (extended). arXiv
preprint arXiv:2306.00739.

18978

https://doi.org/10.1609/aaai.v37i11.26535
https://doi.org/10.1609/aaai.v37i11.26535
https://doi.org/10.48550/arXiv.2402.16347
https://doi.org/10.48550/arXiv.2402.16347
https://doi.org/10.48550/arXiv.2402.16347
https://doi.org/10.48550/arXiv.2305.03111
https://doi.org/10.48550/arXiv.2305.03111
https://doi.org/10.48550/arXiv.2305.03111
https://doi.org/10.48550/arXiv.2303.13547
https://doi.org/10.48550/arXiv.2303.13547
https://doi.org/10.48550/arXiv.2408.07702
https://doi.org/10.48550/arXiv.2408.07702
https://doi.org/10.48550/arXiv.2408.07702
http://dblp.uni-trier.de/db/journals/corr/corr2410.html#abs-2410-01943
http://dblp.uni-trier.de/db/journals/corr/corr2410.html#abs-2410-01943
http://dblp.uni-trier.de/db/journals/corr/corr2410.html#abs-2410-01943
https://doi.org/10.48550/arXiv.2304.11015
https://doi.org/10.48550/arXiv.2304.11015
https://doi.org/10.48550/arXiv.2402.01117
https://doi.org/10.48550/arXiv.2402.01117
https://doi.org/10.48550/arXiv.2412.10138
https://doi.org/10.48550/arXiv.2412.10138
https://doi.org/10.48550/arXiv.2412.10138
http://dblp.uni-trier.de/db/conf/acl/acl2024f.html#QuLLQH0C24
http://dblp.uni-trier.de/db/conf/acl/acl2024f.html#QuLLQH0C24
http://dblp.uni-trier.de/db/conf/acl/acl2024f.html#QuLLQH0C24
https://doi.org/10.48550/arXiv.2204.00498
https://doi.org/10.48550/arXiv.2204.00498
https://doi.org/10.48550/arXiv.2109.05093
https://doi.org/10.48550/arXiv.2109.05093
https://doi.org/10.48550/arXiv.2109.05093
https://doi.org/10.48550/arXiv.2311.18760
https://doi.org/10.48550/arXiv.2311.18760


Maciej Świechowski, Konrad Godlewski, Bartosz Saw-
icki, and Jacek Mańdziuk. 2023. Monte carlo tree
search: A review of recent modifications and appli-
cations. Artificial Intelligence Review, 56(3):2497–
2562.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. RAT-SQL:
Relation-Aware Schema Encoding and Linking for
Text-to-SQL Parsers. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 7567–7578, Online. Association
for Computational Linguistics.

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang,
Jiaqi Bai, Qian-Wen Zhang, Zhao Yan, and Zhou-
jun Li. 2023. MAC-SQL: A Multi-Agent Collabo-
rative Framework for Text-to-SQL. arXiv preprint.
ArXiv:2312.11242 [cs].

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-
isa Liu, Noah A Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. 2022. Self-instruct: Aligning lan-
guage models with self-generated instructions. arXiv
preprint arXiv:2212.10560.

Wenxuan Xie, Gaochen Wu, and Bowen Zhou. 2024.
Mag-sql: Multi-agent generative approach with soft
schema linking and iterative sub-sql refinement for
text-to-sql. CoRR, abs/2408.07930.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024a. Qwen2. 5
technical report. arXiv preprint arXiv:2412.15115.

Jiaxi Yang, Binyuan Hui, Min Yang, Jian Yang, Junyang
Lin, and Chang Zhou. 2024b. Synthesizing Text-
to-SQL Data from Weak and Strong LLMs. arXiv
preprint. ArXiv:2408.03256 [cs].

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
arXiv preprint arXiv:1809.08887.

Xuanliang Zhang, Dingzirui Wang, Longxu Dou,
Qingfu Zhu, and Wanxiang Che. 2024. A Survey
of Table Reasoning with Large Language Models.
arXiv preprint. ArXiv:2402.08259 [cs].

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yan-
han Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang
Ma. 2024. Llamafactory: Unified efficient fine-
tuning of 100+ language models. arXiv preprint
arXiv:2403.13372.

Ruiqi Zhong, Tao Yu, and Dan Klein. 2020. Semantic
evaluation for text-to-sql with distilled test suites.
arXiv preprint arXiv:2010.02840.

18979

https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.48550/arXiv.2312.11242
https://doi.org/10.48550/arXiv.2312.11242
http://dblp.uni-trier.de/db/journals/corr/corr2408.html#abs-2408-07930
http://dblp.uni-trier.de/db/journals/corr/corr2408.html#abs-2408-07930
http://dblp.uni-trier.de/db/journals/corr/corr2408.html#abs-2408-07930
https://doi.org/10.48550/arXiv.2408.03256
https://doi.org/10.48550/arXiv.2408.03256
https://doi.org/10.48550/arXiv.2402.08259
https://doi.org/10.48550/arXiv.2402.08259

