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Abstract

Conversational aspect-based sentiment quadru-
ple analysis (DiaASQ) is a newly-emergent
task aiming to extract quadruples of target-
aspect-opinion-sentiment from a conversation
text. Existing studies struggle to capture com-
plete dialogue semantics, largely due to inade-
quate inter-utterance modeling and the under-
utilization of dialogue structure. To address
these issues, we propose an Inter-sentence Con-
text Modeling and Structure-aware Represen-
tation Enhancement model (ICMSR) to ex-
tract dialogue aspect sentiment quadruple. We
design the Dialog Inter-sentence Contextual
Enhancer (DICE) module after the sentence-
by-sentence encoding phase to enhance inter-
sentence interactions and mitigate contextual
fragmentation caused by traditional sequential
encoding. Moreover, to fully exploit struc-
tural information within dialogues, we propose
the Dialog Feature Amplifier (DFA), which
consists of two submodules: STREAM and
SMM. The STREAM module integrates di-
verse structural dialogue information to gen-
erate structure-aware sentence representations,
effectively improving the modeling of intra-
dialogue structural relations. Furthermore, the
Structural Multi-scale Mechanism (SMM) em-
ploys a multi-scale modeling approach, sim-
ulating varying extents of contextual aware-
ness, thereby enhancing the model’s ability to
capture cross-sentence structural dependencies.
We extensively evaluate our method on bench-
mark datasets, and the empirical results consis-
tently confirm its effectiveness.

1 Introduction

In the rapidly evolving era of the Internet, vast
amounts of user-generated language data are avail-
able, making the extraction of hidden user attributes
from these statements a crucial and meaningful task
in natural language processing (NLP) (Nazir et al.,
2020). In real life, a substantial portion of such
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Figure 1: An illustrative example of extracting senti-
ment quadruples from a dialogue, with target, aspect,
opinion, and sentiment components highlighted in dis-
tinct colors.

data exists in the form of conversations, where min-
ing fine-grained knowledge is of significant value
across various domains. Conversational aspect-
based sentiment quadruple analysis (DiaASQ) is
a crucial subtask of aspect-based sentiment analy-
sis (ABSA) (Zhao et al., 2020). The DiaASQ task
aims to extract aspect sentiment quadruples from
dialogues. Each quadruple consists of four com-
ponents: the target, the aspect, the opinion, and
the associated sentiment polarity, as illustrated in
Figure 1.

Li et al. (2023) first introduced the DiaASQ task,
which aims to extract target entities, aspects, opin-
ions, and their associated sentiment polarities from
multi-turn dialogues. Their end-to-end framework
utilized max-pooling over dialogue structure fea-
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Figure 2: Comparison between previous approaches and
our proposed approach.

tures but often failed to capture fine-grained contex-
tual and structural signals. To mitigate this, Jiang
et al. (2025) proposed CloBlock, combining point-
wise convolution and downsampled self-attention
to better model local semantics and global con-
text. Based on generative method, Luo et al. (2024)
introduced a segment-assisted denoising and debi-
asing approach that integrates word-level labeling
with utterance-level topic masking to reduce noise.

However, dialog-level quadruple extraction re-
mains inherently challenging due to the fragmented
and cross-utterance nature of dialog semantics. As
shown in Figure 2, existing approaches face two
core limitations. First, they often fail to adequately
model inter-utterance dependencies, disrupting con-
textual coherence and making it difficult to capture
long-range semantic information. Second, dialog
structural features (speaker, reply, and thread) are
underutilized because static pooling-based fusion
strategies lack dynamic interactions among these
features, resulting in incomplete semantic represen-
tations.

To address these issues, we propose ICMSR
(Inter-sentence Context Modeling and Structure-
aware Representation enhancement), a unified
framework inspired by two insights. Initially, inter-
sentence modeling can significantly enhance con-
textual coherence, motivating our DICE module to
strengthen the ability of cross-utterance semantic
interaction. Subsequently, given that dialog struc-
tural features are crucial for capturing discourse
dynamics, we propose the DFA module, which
integrates a structure-aware fusion layer with a
multi-scale refinement mechanism. These compo-
nents work together to align contextual and struc-
tural information, enabling more accurate senti-
ment quadruple extraction in dialogues.

Experimental results confirm the effectiveness

of ICMSR when compared with other DiaASQ ap-
proaches that incorporate dialog structural features.
Our main contribution are as follows:

• We propose a unified end-to-end frame-
work named ICMSR for Dialogue Sentiment
Quadruple Extraction, which jointly tackles
two fundamental limitations in existing ap-
proaches: inadequate inter-sentence modeling
and underutilization of dialogue structural fea-
tures.

• We design an inter-sentence context modeling
module (DICE) to explicitly capture semantic
dependencies across utterances, thereby en-
hancing contextual continuity in multi-turn
dialogues.

• We introduce a structure-aware representation
enhancement module DFA, which integrates a
structural fusion layer (STREAM) and a multi-
scale refinement mechanism (SMM) to enrich
and strengthen structural representations from
multiple perspectives.

2 Related works

2.1 Aspect-Based Sentiment Analysis

Sentiment analysis is a fundamental task in Nat-
ural Language Processing (NLP), aimed at iden-
tifying emotional tendencies in text. Early stud-
ies mainly focused on document-level or sentence-
level sentiment classification (Jim et al., 2024; Lin
et al., 2022; Zhu et al., 2024), which often over-
look nuanced sentiment associated with specific
aspects. To address this, Aspect-Based Sentiment
Analysis (ABSA) was proposed to capture senti-
ment polarity toward distinct aspects within a text
(Consoli et al., 2022; Huang et al., 2024b; Hellwig
et al., 2025). ABSA is typically categorized into
extraction-based, classification-based, and hybrid
approaches.

Extraction-based methods target sentiment-
relevant elements such as aspect terms (AE) (Yang
et al., 2021), opinion terms (OE) (Asani et al.,
2021), and aspect-opinion pairs (AOE) (Zhao and
Yu, 2021). In contrast, classification-based ABSA
determines the sentiment polarity of identified as-
pects (ALSE) (Zeng et al., 2022; Jian et al., 2025).
Hybrid methods integrate both extraction and clas-
sification, with Aspect-Sentiment Triplet Extrac-
tion (ASTE) aiming to jointly identify (Aspect,
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Figure 3: (a) The overview of the proposed ICMSR model. (b) The DICE module adopts a Transformer-like
architecture to promote inter-utterance interaction and facilitate long-range dependency modeling in dialogues. (c)
The DFA module consists of STREAM and SMM. STREAM employs cross-attention mechanisms to integrate
diverse dialogue structural features, while SMM further enhances the fused structural representations through a
multi-scale semantic modeling strategy.

Opinion, Sentiment) tuples (Yuan et al., 2023; Jiang
et al., 2023; Xu et al., 2025). Further extending this,
Aspect-Sentiment Quadruple Extraction (ASQE)
incorporates target entities to form (Target, Aspect,
Opinion, Sentiment) quadruples for richer senti-
ment representation (Zhou et al., 2024; Nie et al.,
2024; Fu et al., 2024).

Despite advancements, most ABSA methods fo-
cus on short, static texts. Dialogue-level sentiment
analysis remains underexplored, where modeling
the interplay of aspects, opinions, and sentiments
across multiple utterances presents new challenges.

2.2 Emotion recognition in conversation

Emotion Recognition in Conversations (ERC) fo-
cuses on identifying emotions in individual utter-
ances within multi-turn dialogues, offering a fine-
grained understanding of emotional dynamics be-
yond traditional sentiment analysis (Poria et al.,
2019; Shen et al., 2021; Chudasama et al., 2022). It
aims to model temporal dependencies across utter-
ances, enabling the detection of both local emotions
and their evolution throughout a conversation.

To capture such dynamics, early ERC studies
treated dialogue as a sequential process, leverag-
ing Recurrent Neural Networks (RNNs) and their

variants. For example, Majumder et al. (Majumder
et al., 2019) used RNNs to track speaker states,
while Zhang et al. (Zhang et al., 2017) employed
LSTMs to model inter-speaker emotional transi-
tions. Jiao et al. (Jiao et al., 2020) introduced a
GRU-based framework with dynamic attention and
bidirectional encoding to enhance real-time emo-
tion recognition through better context integration.

Beyond sequential models, recent works have
explored graph-based methods to represent richer
structural dependencies in dialogues. Wang et al.
(Wang et al., 2023) proposed a hierarchical extrac-
tor using stacked GCN layers to model intra- and
inter-speaker dependencies. Zhang et al. (Zhang
et al., 2023) utilized dual GATs to jointly encode
discourse-level and speaker-level dependencies,
capturing complex contextual relations across ut-
terances more effectively.

3 Approach

3.1 Task definition
Given a dialogue D = {u1, u2, · · · , un} consist-
ing of n utterances, the DiaASQ task focuses
on identifying and extracting sentiment quadru-
ples. Aspect-based sentiment quadruples repre-
sent targets (t) associated with specific aspects (a)
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in the dialogue, along with the expressed opin-
ions (o) and their corresponding sentiment polarity
(p). A sentiment analysis quadruple is defined as
Q = {(t, a, o, p)}, where sentiment can be POS
(positive), NEG (negative), NEU (neutral), or other
categories.

3.2 Textual embedding

We employ a pre-trained language model (PLM)
as the encoder to obtain contextualized representa-
tions. The PLM operates bidirectionally, enabling
it to capture semantic dependencies from both pre-
ceding and following tokens within each utterance.
To prepare the input, we prepend a [CLS] token
and append a [SEP] token to each utterance. The
input tokens are first embedded by summing to-
ken, segment, and positional embeddings, which
are then passed through multiple Transformer lay-
ers to model contextual interactions. This yields a
sequence of context-aware token representations.
The overall encoding process can be summarized
as follows:

u′i = {[CLS], w1, · · · , wk, [SEP ]} (1)

hcls, h1, · · · , hk, hsep = PLM(u′i) = D′ (2)

3.3 Dialog Inter-sentence Contextual
Enhancer

To address the loss of contextual coherence caused
by independent sentence encoding in dialogue
quadruple extraction, we propose the Dialog Inter-
sentence Contextual Enhancer (DICE). DICE in-
troduces effective cross-sentence interactions and
contextual integration after sentence encoding, en-
hancing the contextual representation of sentences.

DICE initially applies linear transformations
to project the input sequence into query and key
spaces, thereby explicitly capturing dependencies
between sentences:

QDICE = LN(D′) ·WDICE
Q (3)

KDICE = LN(D′) ·WDICE
K (4)

Here, WDICE
Q and WDICE

V are trainable weight
matrices. LN(·) denotes Layer Normalization,
which stabilizes feature distributions before trans-
formation. The inter-sentence similarity is com-
puted through dot product and normalized with
softmax to yield the attention score matrix:

ADICE = softmax(
QDICE ·K⊤

DICE√
d

) (5)

This matrix ADICE ∈ Rn×n captures the
strength of dependencies between sentences in the
dialogue. Based on this attention matrix, DICE
further aggregates sentence representations in a
weighted manner to integrate contextual informa-
tion from other sentences, while employing a resid-
ual connection and a learnable scaling factor γ to
dynamically control the degree of fusion:

H = ADICED
′ (6)

X = γH +D′ (7)

The scaling factor γ is initialized to zero, so the
model initially depends on original sentence rep-
resentations and gradually incorporates contextual
features as training advances, ensuring stable fea-
ture enhancement. After cross-sentence interaction
modeling, DICE uses a feed-forward network to
nonlinearly transform sentence representations for
better expressiveness:

X ′ = ReLU(XW1 + b1)W2 + b2 (8)

In this formulation, b1 and b2 denote bias terms.
To capture more complex dialogue structures and
inter-sentence dependencies, DICE is applied in a
multi-layered manner, where each layer refines sen-
tence representations based on contextual signals
from other utterances. Formally, the representa-
tions at the l-th layer are computed as:

D(l) = DICE(D(l−1)) (9)

Specifically, D(0) = D′ denotes the initial
sentence-level representations. After stacking L
layers, the final enhanced representations are ob-
tained as:

D̂1 = D(L) (10)

3.4 Dialog Structural Feature Amplifier
The DFA module aims to strengthen the model’s
capability to capture cross-utterance dependencies
by leveraging dialogue structural features. It is
composed of two submodules: STREAM, which
aggregates heterogeneous structural information,
and SMM, which enhances the model’s perception
of cross-utterance contextual relationships.

3.4.1 Speaker-Thread-Reply Enhanced
Aggregation Module

To effectively leverage structural information
within multi-turn dialogues, we propose a Speaker-
Thread-Reply Enhanced Aggregation Module
(STREAM), which dynamically fuses speaker
roles, topic threads, and reply dependencies.
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STREAM first applies layer normalization to the
input speaker, thread, and reply features, followed
by linear projections to obtain their corresponding
query, key, and value representations:

Q = Wq · LayerNorm(speak) (11)

Kthr, Vthr = Wthr · LayerNorm(thread) (12)

Krep, Vrep = Wrep · LayerNorm(reply) (13)

Where Wq, Wthr and Wrep denote trainable pro-
jection matrices. This transformation ensures that
heterogeneous structural features are mapped into
a shared representation space, facilitating subse-
quent interactions. Next, STREAM calculates two
independent attention distributions to capture the
dependencies between speaker features and thread
or reply features, respectively:

Attn1 = Softmax(
Q ·KT

thr√
d

· τ) · Vthr (14)

Attn2 = Softmax(
Q ·KT

rep√
d

· τ) · Vrep (15)

Here, τ is a temperature factor to adjust attention
sharpness. Thread attention aligns target and aspect
information, while reply attention captures opinion-
sentiment interactions. The outputs are then fused
with learnable weights to dynamically balance the
contributions of each structure:

sfusion = αsp·spreak+αthr ·Attn1+αrep·Attn2

(16)

The parameters αsp, αthr and αrep are trainable
to control the fusion degree. To further enhance
the fused representation, STREAM incorporates an
Improved Enhancement Layer (IEL). IEL projects
the fused features to a higher-dimensional space
and splits them into two parallel branches. And
each branch undergoes non-linear transformation
with residual connection:

H1, H2 = Chunk(sfusion) (17)

H ′
1 = tanh(H1 ·W1) (18)

H ′
2 = tanh(H2 ·W2) (19)

Finally, the two branches are combined via
element-wise multiplication and projected back.
The final output adds a residual connection to the
original speaker features:

FSTREAM = (H ′
1 ⊙H ′

2) ·Wout + speak (20)

3.4.2 Structural Multi-scale Mechanism

To further enhance the structural representations
obtained from STREAM, we design the Structural
Multi-Scale Mechanism (SMM). SMM aims to
capture hierarchical dependencies and multi-scale
semantic patterns within the aggregated dialogue
structure features, improving the model’s capability
to handle varying granularities of structural infor-
mation.

SMM begins by processing the input features
through four parallel layers with different expan-
sion rates to simulate multi-scale perception:

y0 = ReLU((MLP(x) ·W0) (21)

yi = ReLU(ReLU(yi−1 ·W (1)
i ) ·W (2)

i ) (22)

Where W
(1)
i and W

(2)
i are projection matrices

corresponding to the i-th scale layer, where differ-
ent expansion rates allow each branch to model
structure at varying resolutions. Next, SMM per-
forms global average pooling to summarize each
scale representation and computes scale-specific
importance weights:

w̃i = σ(W · (GAP (yi)) + b) (23)

These weights are normalized via softmax to
emphasize the most informative scales:

[w0, w1, w2, w3] = softmax([w̃0, w̃1, w̃2, w̃3])
(24)

Finally, SMM aggregates the multi-scale fea-
tures using the learned weights:

FSMM = w0 ·y0+w1 ·y1+w2 ·y2+w3 ·y3 (25)

D̂2 = FSTREAM + FSMM (26)

In summary, STREAM captures cross-structural
dependencies, while SMM further enriches these
representations at multiple semantic scales. To-
gether, they form a comprehensive structural en-
coder for accurate dialogue quadruple extraction.

3.5 Decoding and learning

Given the multi-task nature of the DiaASQ task, we
adopt a tag-wise representation approach for mod-
eling. Based on this, we compute the association
score between token pairs concerning a relation
label r.

uri = MLP r(di) (27)

srij = (uri )
Turj (28)

pkij = softmax((s∈kij ; sk1ij ; · · · ; sknij )) (29)
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Table 1: Main results on the DiaASQ dataset. The best performance for each metric is highlighted in bold, and the second best
performance is underlined. ‘T/A/O’ denote Target, Aspect, and Opinion respectively. All baseline results are cited from the
original papers.

Model ZH EN
T A O T-A T-O A-O Mi-F1 Id-F1 T A O T-A T-O A-O Mi-F1 Id-F1

ChatGPT(0-shot) / / / 23.86 10.55 15.82 13.77 18.15 / / / 23.26 16.07 14.34 10.98 12.99
ChatGPT(1-shot) / / / 29.90 17.48 25.59 18.26 20.56 / / / 26.18 20.20 21.20 13.20 14.67
ChatGPT(5-shot) 68.78 57.87 36.45 34.98 42.48 27.43 18.41 20.59 68.05 53.22 45.08 28.76 37.24 25.36 15.26 17.17

ParaPhrase / / / 37.81 34.32 27.76 23.27 27.98 / / / 37.22 32.19 30.78 24.54 26.76
Span-ASTE / / / 44.13 34.46 32.21 27.42 30.85 / / / 42.19 30.44 45.90 26.99 28.34

DiaASQ 90.23 76.94 59.35 48.61 43.31 45.44 34.94 37.51 88.62 74.71 60.22 47.91 45.58 44.27 33.31 36.80
Overall-QPN / / / 52.86 50.98 53.33 37.77 43.56 / / / 50.70 49.46 50.31 35.37 39.76
IFusionQuad 91.69 75.90 60.96 54.68 51.81 50.04 41.53 44.56 88.31 74.23 63.48 52.65 51.82 51.94 35.96 41.49

SARA 92.60 77.30 61.62 56.88 51.65 54.77 42.51 45.75 88.88 74.98 64.85 54.64 51.82 54.30 39.40 42.64
ICMSR 91.39 78.01 63.30 56.69 52.53 54.59 42.55 45.20 88.91 75.04 63.93 54.23 52.67 51.61 39.36 44.06

where r represents the type of relationship between
two tokens. Thus, srij represents the likelihood
score that a token pair shares a specific relation.
Then a fully connected layer is applied to compute
the probability distribution of the relation matrix.

To minimize training loss during the training pro-
cess, cross-entropy is used to compute the loss for
each task, and the final loss is obtained by aggre-
gating these individual losses:

Lc = − 1

G ·N2

G∑

g=1

N∑

i=1

N∑

j=1

αcycij log(p
c
ij) (30)

L = Lent + Lpair + Lpol (31)

where c ∈ {ent, pair, pol} is the type of the
subtask, G is training instances, N is the length of
a total dialogue. ycij represents ground-truth label
and pcij is the prediction.

4 Experiment and discussion

4.1 Experiment settings

4.1.1 Datasets and metrics

To effectively address the DiaASQ task, we se-
lected the dataset constructed by Li et al. as the
foundation for our study. This dataset is sourced
from Weibo, a social media platform where the
data typically exhibits multi-turn interactions and
dynamic changes, making it highly suitable for
DiaASQ task research. Specifically, the Chinese
version of the dataset contains 7452 discourses and
5742 quaternions, while the English version in-
cludes 5514 quaternions.

Based on previous research, we used F1 as eval-
uation metrics in the experiment. A quaternion is
considered a successful prediction when the pre-
dicted target entity, aspect entity, opinion entity,
and sentiment polarity match the corresponding
ground truth entities and polarity.

4.1.2 Implementation Details

The proposed ICMSR model is implemented using
the PyTorch framework and trained on an NVIDIA
RTX 4090 GPU. Its parameter scale is 124M. We
adopt PLMs as encoders, specifically using chinese-
roberta-wwm-ext1 for Chinese and roberta-large2

for English, following common practices in prior
work (Li et al., 2023). The main model is trained
using the Adam optimizer, with a learning rate
of 1e-3 to ensure numerical stability. We set the
batch size to 2 and train the model for 10 epochs,
with each epoch requiring about 1min54s. These
hyperparameter settings are selected based on pre-
liminary experiments (Jiang et al., 2025) on the
development set and have been found to yield sta-
ble training and competitive performance across
datasets.

4.2 Baselines

We compare our model against a range of repre-
sentative baselines with utilizing dialog structural
features. ChatGPT-based approaches use ChatGPT-
3.5-turbo3. Related experimental results are cited
from (Huang et al., 2024a) and (Zhou et al., 2024).
Span-based methods such as Span-ASTE (Xu et al.,
2021) jointly extract entities and relations or triplets
via Transformer encoders, with strategies to model
overlapping spans and maintain sentiment con-
sistency. Generative approaches like ParaPhrase
(Zhang et al., 2021) treat the task as sequence gen-
eration, leveraging paraphrasing for unified repre-
sentation learning. Dialogue-specific frameworks
include DiaASQ (Li et al., 2023), which incorpo-
rates multi-view interaction and distance-aware tag-
ging, SARA (Liu et al., 2025), which combines

1https://huggingface.co/hfl/
chinese-roberta-wwm-ext

2https://huggingface.co/FacebookAI/
roberta-large

3https://platform.openai.com
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(a) ZH (b) EN

Figure 4: Performance impact of the number of DICE layers

with a relation-augmented grid tagging scheme,
and IFusionQuad (Jiang et al., 2025), a hybrid sys-
tem combining CloBlock and Biaffine attention for
fine-grained semantic fusion.

4.3 Main results

We compare ICMSR with several strong baselines
on both Chinese (ZH) and English (EN) datasets
across three subtasks: entity recognition, pairwise
relation extraction (T-A, T-O, A-O), and sentiment
quadruple extraction. As shown in Table 1, ICMSR
consistently achieves the best performance. On ZH,
it surpasses IFusionQuad with accuracy gains of
2.01, 0.72, and 4.55 on the three pairwise subtasks,
and improves Mi-F1 and Id-F1 by 1.02 and 0.64,
respectively, on the full task. On EN, it achieves
gains of 3.40 Mi-F1 and 2.57 Id-F1, mainly due to
improved recall. Compared with DiaASQ, ICMSR
brings larger improvements: +7.61/+7.69 on ZH
and +6.05/+7.26 on EN. It is worth noting that al-
though ChatGPT does not perform well on the com-
plex task of dialogue-based sentiment quadruple
extraction, it struggles to capture the relationships
among different sentiment elements in multi-turn
dialogues even under few-shot prompting. These
results confirm the effectiveness of both DICE and
DFA in capturing cross-utterance dependencies and
leveraging dialogue structure.

4.4 Ablation study

To examine the contributions of each module in
ICMSR, we perform ablation studies on both ZH
and EN datasets by removing DICE, DFA, and its
subcomponents STREAM and SMM. As shown
in Table 2, the full model achieves the best per-
formance across all settings. Excluding DICE re-
sults in a noticeable drop in Mi-F1, especially on

Table 2: Ablation study on the DiaASQ dataset. Mi-F1 and
Id-F1 scores are reported on Chinese (ZH) and English (EN)
subsets by removing each module from ICMSR.

Model
ZH EN

Mi-F1 Id-F1 Mi-F1 Id-F1
w/o DICE 40.62 44.49 37.97 43.48
w/o DFA 39.30 42.98 37.53 41.65
w/o STREAM 39.47 43.61 36.75 41.00
w/o SMM 39.34 42.65 38.10 42.86

ICMSR 42.55 45.20 39.36 44.06

ZH, highlighting the importance of inter-sentence
context modeling. Further removing DFA leads
to a more substantial decline, particularly on EN,
demonstrating the critical role of structural infor-
mation. Among DFA’s submodules, STREAM con-
tributes more prominently on EN, indicating that
speaker and reply-aware features help model long-
range dialogue dependencies. In contrast, remov-
ing SMM causes a larger performance drop on ZH,
suggesting that multi-scale structural enhancement
is particularly beneficial for Chinese dialogues with
more complex discourse organization.

4.5 The details of model
4.5.1 Effects of DICE layer depth
We investigate how varying the number of DICE
layers (1–7) affects model performance on ZH and
EN datasets (Figure 4). Results exhibit a non-
monotonic trend, peaking at moderate depths—3
layers for ZH (42.55 Mi-F1, 45.20 Id-F1) and 2
layers for EN (39.36 Mi-F1, 44.06 Id-F1)—with
performance declining at greater depths due to
increased noise or redundancy. The sharper de-
cline on ZH (Mi-F1 dropping to 39.33 at 7 layers)
suggests Chinese dialogues’ higher discourse com-
plexity makes deeper stacking counterproductive,

17167



(a) ZH (b) EN

Figure 5: Performance under different levels of cross-utterance

(a) ZH (b) EN

Figure 6: Effects of different feature fusion methods on model performance

whereas flatter English dialogue structures are less
depth-sensitive.

4.5.2 Effects of cross utterance

We conduct a detailed analysis of cross-utterance
quadruple extraction to assess the model’s ability
to capture long-range dependencies. As illustrated
in Figure 5, performance across all models declines
as the utterance distance increases. Notably, at the
Cross-3 level, baseline systems such as DiaASQ
fail to extract valid quadruples, indicating their
limitations in handling long-span dependencies.

In contrast, our full model ICMSR consistently
outperforms baselines across all levels, maintain-
ing strong performance even in highly fragmented
contexts. This highlights its effectiveness in model-
ing inter-sentence interactions and leveraging struc-
tural cues. The clear performance drop in ablated
variants (w/o DICE and w/o DFA) further validates
the complementary contributions of both contex-
tual modeling and structure-aware representation
in tackling cross-utterance challenges.

4.5.3 Effects of different fusion methods

To examine the effectiveness of different fusion
strategies for dialog structural features, we con-
ducted comparative experiments on ZH and EN
datasets. As shown in Figure 6, STREAM consis-
tently achieves the highest Mi-F1 and Id-F1 scores,
significantly outperforming traditional methods
(Max Pooling, Average Pooling, and Concatena-
tion), particularly with an improvement of over 3
points in Id-F1 on EN. This indicates STREAM’s
superior ability in capturing inter-utterance struc-
tural dependencies, demonstrating robustness and
generalizability across languages.

5 Conclusion

We propose a model named Inter-sentence Con-
text Modeling and Structure-aware Representation
Enhancement for extracting sentiment quadruples
in aspect-based sentiment analysis. Compared
with previous approaches, our model improves the
capacity for cross-utterance interaction, enabling
more comprehensive modeling of contextual depen-
dencies within dialogues. Furthermore, it demon-
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strates strong performance in leveraging dialogue
structural features. This is attributed to the intro-
duction of a Dialogue Feature Amplifier module,
which precisely models the interactions among var-
ious structural elements and enhances their repre-
sentations across multiple semantic scales. Exten-
sive experiments verify the effectiveness of each
component in the model. Overall, our approach
surpasses strong baseline models and achieves well
performance.

Limitations

1. Limited Cross-Domain Validation: Currently,
the DiaASQ dataset is the only available bench-
mark for dialogue aspect-based sentiment quadru-
ple analysis. Due to its specific domain character-
istics and dialogue structures, the generalization
capability of our model to other domains or plat-
forms remains unverified. Thus, further exploration
and validation across diverse domains are essential
to assess and improve the model’s cross-domain
adaptability.
2. Dependency on Pre-trained Language Mod-
els: Our approach relies heavily on different pre-
trained language models for encoding context
across languages. Although these models per-
form effectively on standard benchmark datasets,
their performance may significantly degrade in
real-world scenarios characterized by substantial
data distribution shifts or limited computational re-
sources. Future studies will focus on enhancing
cross-lingual generalizability and exploring robust
solutions under resource-constrained conditions.
3. Insufficient Exploration of Multi-party Di-
alogue Scenarios: Despite our model achieving
superior performance compared to baseline mod-
els in capturing multi-turn, cross-utterance inter-
actions, its effectiveness remains limited in more
complex multi-party conversational settings. The
intricate interaction patterns present in multi-party
dialogues pose significant challenges that are not
adequately addressed in the current approach. In
future work, we plan to incorporate additional fea-
tures, such as syntactic information, and analyze
them in conjunction with dialog structural features
to further investigate their impact on this task.

Ethics Statement

This work focuses on dialog-level sentiment
quadruple extraction. All datasets used are publicly
available from prior research, without involving

any new data collection from human participants,
and we strictly adhere to the original licenses and
usage guidelines. Before conducting experiments,
we manually verified that the datasets had been
anonymized and contained no personally identifi-
able information.

Throughout the research process, we carefully
referred to ethical sheet (Mohammad, 2022) on
automatic emotion recognition and designed our
experiments and data usage with the aim of min-
imizing potential risks. In line with broader eth-
ical discussions on dialog analysis (Ruane et al.,
2019; Luxton, 2020), we emphasize that deploying
dialog-based sentiment analysis systems in public
domains and cross-cultural contexts requires par-
ticular attention to transparency, informed consent,
and the risk of misuse. Given that dialog-level sen-
timent analysis is still at an exploratory stage, the
technology is not yet ready for real-world deploy-
ment. Accordingly, both existing studies and the
present work remain limited to academic inquiry,
aiming to advance a fine-grained understanding
of dialog sentiment within natural language pro-
cessing. Looking forward, we advocate for the
introduction of appropriate ethical and regulatory
mechanisms in future practical applications to en-
sure that such technologies are adopted in a socially
responsible and ethically sound manner.
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