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Abstract

We introduce CoDe-KG, an open-source, end-
to-end pipeline for extracting sentence-level
knowledge graphs by combining robust coref-
erence resolution with syntactic sentence de-
composition. Using our model, we contribute
a dataset of over 150 000 knowledge triples,
which is open source. We also contribute a
training corpus of 7248 rows for sentence com-
plexity, 190 rows of gold human annotations
for co-reference resolution using open source
lung-cancer abstracts from PubMed, 900 rows
of gold human annotations for sentence con-
version policies, and 398 triples of gold hu-
man annotations. We systematically select
optimal prompt-model pairs across five com-
plexity categories, showing that hybrid chain-
of-thought and few-shot prompting yields up
to 99.8% exact-match accuracy on sentence
simplification. On relation extraction (RE),
our pipeline achieves 65.8% macro-F1 on
REBEL, an 8-point gain over the prior state
of the art, and 75.7% micro-F1 on WebNLG2,
while matching or exceeding performance on
Wiki-NRE and CaRB. Ablation studies demon-
strate that integrating coreference and decom-
position increases recall on rare relations by
over 20%. Code and dataset are available
at https://github.com/KaushikMahmud/CoDe-
KG_EMNLP_2025.

1 Introduction and Background

One way to represent data is through knowledge
graphs (KGs) (Hogan et al., 2021). KGs have trans-
formed the way data is organized and by leverag-
ing complex network chains, we have been able to
explore complex fields like causality in different
domains (Friedman et al., 2022; MacLean, 2021;
Naser, 2022).

With the recent advancements in Natural Lan-
guage Processing (NLP) using Large Language
Models (LLMs), KGs have become instrumental,
both as knowledge bases and in finetuning these

large models (Pan et al., 2024). One of such ad-
vantages is in the creation of domain-specific on-
tologies (Karim et al., 2023; Chandak et al., 2023)
closely associated with creating new reasoning and
inference methods (Kau et al., 2024; Zhang et al.,
2024).

Previous research has built the foundational con-
cepts of KGs, which include the models used
in creating these graphs and their representation
(Hogan et al., 2021). Automated KG construc-
tions (Zhong et al., 2023) and representation learn-
ing (Ji et al., 2021) have defined major stages in
building a KG: from knowledge acquisition and se-
mantic table interpretation (Liu et al., 2023) to en-
tity extraction–covering Named Entity Recognition
(NER), Named Entity Disambiguation (NED), and
Named Entity Linking (NEL) (Al-Moslmi et al.,
2020). These studies and many more provide a
system in which unstructured text can be trans-
formed into an organized corpus of interlinked en-
tities. Secondly, domain techniques such as graph
knowledge distillation (Tian et al., 2023) and em-
bedding schemes (Cao et al., 2024) have helped
reinforce the ability to compress, optimize, and rep-
resent KGs which are then utilized in downstream
applications. The goal of event KGs (Guan et al.,
2022) and explainable artificial intelligence (AI)
on KGs (Schramm et al., 2023) is to empathically
ensure that models not only have to be efficient but
also interpretable (Kaur et al., 2022).

The challenges we are tackling is two fold: (1)
We have a large volume of unstructured text data,
and because it varies in structure, writing style, and
vocabulary across different domains, it has become
harder to parse, and (2) Many automated pipelines
for KG creation are not really automated, as some
are heavily prompt reliant on the end user (Buehler,
2024), others have issues of handling noisy datasets
(Zhang et al., 2023). This is why we are researching
a one-size-fits-all open-source model framework
that could help in knowledge extraction irrespec-
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tive of our data. Through the typical structure of
the English Language, it is possible to extract re-
lationships through verb usage and clauses. This
leads us to the first research question. RQ1: Can
sentence modelling be used to effectively create
KGs that rival other methods? We also compare
our method to the popular closed-source AI model:
GPT 4 series which is renowned for parsing aca-
demic literature, and we design evaluation prompts
to benchmark their performance against ours. This
can be summarized as RQ2: can an open-source,
LLM model using the sentence semantics approach
reliably construct KGs from raw texts? Our contri-
butions are as follows:

• We introduce a novel sentence-semantic
framework for relation extraction (RE) and
KG construction, borrowing from linguistic
theory and semantic parsing. This idea though
common, to the best of our knowledge has
been under-explored in mainstream NLP in-
formation extraction pipelines. The novelty
of our work lies in the integration of multi-
ple frameworks rather than just one task. Our
method explicitly models semantic sentence
types (e.g., complex (CX), compound (CD),
and compound-complex (CC) forms) as the
foundation for extracting knowledge triples.
Each triples is a simple, three-part structure
(entity1, relationship, entity2) used to repre-
sent a single fact in a KG.

• We also explore diverse prompting strate-
gies across our pipeline, including Chain-
of-Thought (CoT) reasoning, Few-Shot In-
Context Learning (FICL), and Zero-Shot Gen-
eral Instruction prompting (GIP), and empiri-
cally demonstrate their varying contributions
to structural decomposition. To support this
architecture, we release a suite of open-source
resources:

1. A 7248-row dataset that categorizes and
maps diverse sentence semantics aligned
to our model’s decomposition strat-
egy (complex, compound, compound-
complex, simple and incomplete sen-
tence).

2. A gold-standard co-reference resolution
corpus comprising 190 PubMed lung-
cancer abstracts annotated by four do-
main experts.

3. A 900-sample sentence transformation
dataset, consisting of 300 annotated ex-
amples each for converting complex,
compound, and compound-complex sen-
tences into simple, extractable forms.

4. A machine-generated KG corpus of over
150,000 structured triples, created using
our full end-to-end pipeline.

2 Background

2.1 Sentence Semantic Modelling for
Knowledge Extraction

Sentence semantic modelling involves organizing
sentences into various types, which structure how
ideas can relate to one another. Let us define a
grammar structure as G = (N,Σ, P, S) where N
is a finite set of non-terminal symbols, Σ is a fi-
nite set of terminal symbols (the actual words or
tokens in the language), P is a finite set of pro-
duction rules that describe how non-terminals can
be expanded into sequences of non-terminals and
terminals and S ∈ N is the start symbol, which
we conventionally call Sentence. Appendix A
discusses the interplay of sentence and clauses in
more detail.

To understand the interplay of clauses and how
they make up a sentence, we need to consider the
types of sentences in English Language (Das et al.,
2018), which are:

• Simple Sentences: Having only one indepen-
dent clause and no dependent clause

Ssimple = { (NP, V P ) | NP ∈ N , V P ∈ V}

• Complex Sentences: Having one independent
clause and at least one dependent clause

Scomplex = Smain ∪DC

• Compound Sentences: Having two or more
independent clauses joined by a conjunction
and no dependent clause

Scompound = S1⊕S2 where ⊕ is a conjunction

• Compound-Complex Sentences: Having two
or more independent clauses joined by a con-
junction and have at least one dependent
clause

Scomp-comp = (S1 ⊕ S2) ∪DC

15528



Method Sentence Decomp. Coref Res. Open-Source Domain-Agnostic Eval Scripts

GraphRAG (Han et al., 2024) × × × ✓ ×
EDC (Zhang and Soh, 2024) × × ✓ ✓ ✓
GKG-LLM (Zhang et al., 2025) × ✓ ✓ ✓ ✓
Neo4j LLM-KG (Bharti et al., 2024) × × × ✓ ×
KGGen (2025) (Mo et al., 2025) × × ✓ ✓ ✓
Our Pipeline ✓ ✓ ✓ ✓ ✓

Table 1: Current LLM-induced KG Methods Comparison

The core motivation behind this work stems from
the assumption that LLMs emulate human reason-
ing (Wu et al., 2024). Additionally, as shown by
Nurmalan (Hendrawati, 2018), human comprehen-
sion of sentence structure is far from uniform. Un-
dergraduate students fail to accurately interpret CC
sentences in 44.54% of cases, followed by CD
(23.2%) and CX (22.13%) sentences. In contrast,
error rates drop significantly to 10.13% for simple
sentences. Notably, academic and scientific writing
rarely employs simple sentences, favouring more
elaborate constructions aligned with formal and
jargon-heavy discourse. We posit that modelling
and converting these complex sentence types into
simpler forms enables more effective interpretation
by LLMs, particularly for structured information
extraction.

A common misconception is that a simple sen-
tence means a simplified or short sentence. How-
ever, as Phil (Atteberry, 2016) illustrates, even syn-
tactically rich sentences, such as “Being an English
teacher with a penchant for syntactical complex-
ity, I love simple sentences upon getting up and
before going to bed”—qualify as simple if they
contain only one independent clause. Despite struc-
tural simplicity, such sentences may encode mul-
tiple relationships, contradicting the assumption
that simple sentences yield only one extractable
relation. Importantly, a simple sentence can fea-
ture compound subjects (“John and Mary run. . . ”),
compound predicates (“runs and jumps. . . ”), or
compound objects (“an apple and a banana. . . ”).
Our framework explicitly models these variations,
ensuring RE remains robust across all syntactic
permutations of the simple sentence form.

2.2 Prompting Strategies

We explore four prompting strategies within our
pipeline to evaluate their effectiveness in sentence
restructuring and RE: GIP, FICL, CoT, and Hybrid
CoT + FICL. GIP relies on general instructions
without examples, offering baseline performance

and broad generalizability (Ouyang et al., 2022; Ko-
jima et al., 2022). FICL incorporates a small set of
in-context examples to guide the model, improving
structure-sensitive tasks like sentence decomposi-
tion (Brown et al., 2020; Li et al., 2023). COT
prompting, which encourages step-by-step reason-
ing, has proven especially effective in multi-step
reasoning and relation-rich generation (Wei et al.,
2022; Li et al., 2025). Our hybrid CoT + FICL
strategy combines the benefits of example-guided
prompting with intermediate reasoning steps, sig-
nificantly improving accuracy in sentence decom-
position and RE. We benchmark each strategy
across multiple subtasks in our pipeline and find
that hybrid prompting consistently yields the most
precise and coherent results, particularly in com-
plex biomedical sentences, which is in tune with
recent advances in prompt engineering that empha-
size structure-aware and compositional prompting
for complex NLP tasks (Kojima et al., 2022).

3 Data

3.1 PubMed Lung Cancer Abstracts

PubMed is an open biomedical literature reposi-
tory. From PubMed, we randomly parsed 7,500
abstracts related to the lung cancer keyword, pub-
lished between 2020 and 2025, to create our pri-
mary evaluation corpus. This dataset supports our
co-reference resolution, sentence decomposition,
and triple extraction tasks. The inclusion principle
was any abstract that mentioned lung cancer, was
open source and free to use, and we did not particu-
larly exclude any research apart from those that fell
outside the random sample. The data was sampled
on March 18, 2025. The motivation behind using
the lung cancer abstract was linked to a 20-year
international study in Radiology (Henschke et al.,
2023). We believed that the dataset is well-versed
and well-researched.
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Figure 1: Overview of CoDe-KG, the automated KG creation pipeline. First, the input set of abstracts is given
to the Coreference Resolution stage. In this phase, a team of annotators , a collection of prompt strategies ,
and models are jointly applied to produce the coreference-resolved abstract set , which is given as input in
the Sentence Classification stage. With the help of verifiers , prompting strategies and models , a list of
correctly classified sentences with labels is generated in this stage. Then, in the Converting Sentences to
Simple stage, S̃comx, comp, comx_comp, prompt strategies , and models are given as input and converted into
simple sentences S̃simp. In Relationship Extraction stage, S̃simp, Sinit and best model–prompt pair (P ∗,M∗)

from previous stage are given as input and relationships (entity1 , relationship , entity2 ) are extracted for
constructing KG.

3.2 REBEL (Cabot and Navigli, 2021)

We adopt the same 1,000-sample subset used in the
EDC model (Zhang and Soh, 2024) for evaluation,
originally drawn from the REBEL test partition of
105,516 entries, also published in EMNLP.

3.3 WebNLG+2020 (Ferreira et al., 2020)

WebNLG+2020 (v3.0) is a semantic parsing bench-
mark containing text-triple pairs. We use its full
test split of 1,165 samples covering 159 unique
relation types.

3.4 Wiki-NRE (Distiawan et al., 2019)

Wiki-NRE is a distant supervision dataset for RE.
We also used the same sample of 1,000 pairs used
in the EDC model (Zhang and Soh, 2024). The
dataset contains 29,619 entries encompassing 45
distinct relation types .

3.5 CaRB (Bhardwaj et al., 2019)

The CaRB dataset is a benchmark for Open In-
formation Extraction (OpenIE), created by re-
annotating the original OIE2016 dataset with im-
proved human judgments. The exact number of the
final dataset is not known; what was reported in
the paper was the devset from Amazon Mechanical
Turk, which was 1,282 sentences. However, on
the GitHub page, we found 50 unique sentences
spanning through 172 lines.

4 Methodology

In this research, we propose an automated KG cre-
ation pipeline, CoDe-KG, for creating a KG from
abstracts. Our approach, as shown in Figure 1,
consists of four key stages: doing coreference reso-
lution, sentence classification, sentence conversion,
and RE. In this section, we give a detailed overview
of our pipeline implementation.

4.1 Problem Setup

Let the set of input abstracts be denoted by

A = { a1, a2, . . . , an}, (1)

And let the set of valid relation triples extracted
from A be denoted by

R =
{
(e1, r, e2) | e1, e2 ∈ E ,

r ∈ R,
(e1, r, e2) is valid

}
.

(2)

Where E is the set of all unique entities appear-
ing in those triples andR is the relation vocabulary.
Let the resulting KG be denoted by

G = (E ,R), (3)

Our goal is to construct G so that it faithfully
represents all extracted factual relations across A.
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4.2 Coreference Resolution
In our proposed pipeline, the coreference-
resolution stage (as shown in Appendix: Algo-
rithm 1) proceeds by creating a gold-standard
through expert annotation, and then selecting the
optimal prompt-model combination for creating
coreference-resolved abstracts. First, we draw a
random subset of size s:

A′ = UniformSample(A, s).

For four expert annotators–two with biological ex-
pertise and two with linguistic expertise–working
in pairs to resolve coreference on each a ∈ A′,
producing

Rj(a) = fann(hj , a), j = 1, 2.

Here, fann apply annotator hj’s annotation proce-
dure to abstract a, yielding the resolution Rj(a).

We then define the gold set of abstracts A, which
can be unanimously annotated:

G =
{
a ∈ A′ ∣∣ Rj(a) = Rk(a) ∀ j, k

}
.

And extract the corresponding annotated gold stan-
dard

G′ =
{
Rj(a)

∣∣ a ∈ G
}
,

where any Rj(a) may be used since all agree.
Next, we exhaustively evaluate each prompt-

model pair (P,M) ∈ P ×M by generating pre-
dicted annotations on the gold inputs

R̂P,M = fprompt

(
P, M, G

)
,

and computing a score (e.g., F1) against the gold-
standard pairs:

SP,M = score
(
R̂P,M , G′).

We then select the best pair by

(P ∗,M∗) = argmaxP∈P, M∈MSP,M .

Finally, this optimal configuration is applied to the
full collection:

Â = fprompt

(
P ∗, M∗, A

)
,

yielding fully resolved co-reference annotations Â.

This design ensures that (i) human expertise de-
fines a robust gold standard through unanimous
agreement, (ii) prompt-model selection is system-
atic and exhaustive, and (iii) large-scale annota-
tion inherits the reliability established in the gold-
standard phase.

4.3 Sentence Classification
The first step of the sentence classification stage
(as shown in Appendix: Algorithm 2) processes
the resolved abstracts Â by sampling per category,
extracting one representative sentence from each
sampled abstract, and keeping only those sentences
on which two expert verifiers agree. For the five
complexity categories

C = {simp, comx, comp, comx_comp, incomp},
we draw a random subset

Ac = UniformSample(Â, pc), c ∈ C,
so that |Ac| = pc. From each a ∈ Ac we then
extract exactly one representative sentence:

s =

{
fcreate(annotator, a), c∈{simp,incomp},

fchoose(a), otherwise.

We aggregate all candidates into

Sall =
⋃

c∈C
Sc.

Next, two expert verifiers v1, v2 independently re-
view every s ∈ Sall, and we keep only those
sentence-category pairs on which they agree:

Ŝ =

{
(s, c)

∣∣∣∣∣
c ∈ C, s ∈ Sc,

fver(v1, s) = fver(v2, s)

}
.

The output Ŝ is thus a high-agreement, category-
labeled sentence set, ready to serve as the input for
Step 2.

The second step of the sentence classification
stage (as shown in Appendix: Algorithm 3) takes
the verified sentence-category set Ŝ along with the
set of prompting strategies P , and modelsM as
input to produce a fully labeled sentence corpus S̃.
First, we formed the training dataset

D = {(si, yi) | (si, yi) ∈ Ŝ}.
For each m ∈M, train on Dtrain and we computed
its validation score

scorem = Evaluate(m, Dval).

Then we selected the best model

m∗ = argmaxm∈Mscorem.

Finally, we applied m∗ to every sentence in the
fully coreference-resolved abstract set Â:

S̃ =
{
(s, ℓs) | s ∈ Sentences(Â), ℓs = m∗(s)

}
.

The resulting S̃ is the complete collection of
sentence-label pairs for downstream tasks.
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4.4 Converting Sentences to Simple

The approach of this stage (as shown in Appendix:
Algorithm 4) consists of prompt-model selection
for each category, and large-scale sentence simpli-
fication using the selected configurations.

For each category c, we hold out the set Sc of
complex (comx), compound (comp), and complex-
compound (comx_comp) sentences, and exhaus-
tively evaluate every prompt-model combination
(P,M) ∈ P ×M. We compute a performance
score via

scoreP,M (c) = EvaluatePromptModel(P,M, Sc).

and choose

(P ∗
c , M

∗
c ) = argmax(P,M)scoreP,M (c).

With (P ∗
c ,M

∗
c ) fixed for each category, we pro-

cess every sentence s ∈ Sc by invoking:

ŝ = fprompt

(
P ∗
c , M

∗
c , s

)
, Ssimp ← Ssimp∪{ŝ}.

Once all categories are processed, Ssimp consti-
tutes the collection of simplified sentences from
complex, compound, and complex-compound sen-
tences.

4.5 Relationship Extraction

In this stage, we implement RE (as shown in Ap-
pendix: Algorithm 5) through sentence consoli-
dation and triple generation. First, we form the
working sentence set by combining:

Sinit = { s | (s, ℓ) ∈ S̃, ℓ = simp},
S = Ssimp ∪ Sinit.

Here, Ssimp is the set of all sentences produced
by the simplification stage, while Sinit contains
those initially classified as simple. Next, for each
s ∈ S, we extract a candidate relation triple via the
frel(s) function, where the best prompt and model
combination (P ∗, M∗) from the previous stage
was used. Here,

(e1, r, e2) = frel(P
∗,M∗, s).

We collect only non-empty outputs:

R ← R ∪ {(e1, r, e2)} if (e1, r, e2) ̸= ∅.

Upon completion, R holds all valid
(entity1, relation, entity2) triples. Finally, we

assemble the extracted triples into our knowledge
graph. Let

E =
⋃

(e1,r,e2)∈R
{e1, e2}, R =

⋃

(e1,r,e2)∈R
{r},

and define the graph as

G = (E , R).

Each triple (e1, r, e2) ∈ R becomes a directed,
labeled edge from node e1 to node e2. This knowl-
edge graph G now encodes all valid factual rela-
tions extracted across the corpus and can be used
for downstream querying and inference.

5 Experiments

5.1 Experiment 1: Results of Co-reference
Resolution

Biomedical text is harder to understand and there-
fore, RE is perceived to be harder (Johnson and
Bernstam, 2023). Therefore, we construct our
benchmark dataset of 190 coreference abstracts
in biomedical literature on Lung Cancer to eval-
uate the performance of LLM. Therefore, we
crafted the SOTA prompts discussed in chap-
ter 2.2. The prompts we finally used were the
COT+FICL prompt after experimenting on the dif-
ferent prompts, which are in Appendix E.1. We
then randomly sampled 190 abstracts from the full
set of 7,500. Each abstract was independently anno-
tated by two domain experts and two language ex-
perts. After the initial pass, the experts exchanged
annotations and discussed any discrepancies. Full
annotation information available in Appendix E.2.

We evaluated several LLMs on our benchmark.
Results were poor for most models. Predic-
tions were scored using MUC, B3, CEAF4, and
the CoNLL F1 aggregate (Pradhan et al., 2012).
Deepseek-distill-Qwen-7B, Qwen-Chat-7B, and
Qwen-7B scored 0% F1. Deepseek-7B, Deepseek-
6.7B, and Deepseek-Prover-7B scored below 2%
F1. Deepseek-distill-Llama-8B scored below 10%
F1 in all categories. Table 2 lists F1 scores for
the models doing co-reference resolution and was
benchmarked with ChatGPT o4-mini-high and
ChatGPT-4.5 responses as a baseline. ChatGPT o4-
mini-high did the best overall with an F1 of approx-
imately 63% using the FICL prompt. We bolded
the best open-source model, which was comparable
to the closed source models for this task.

The evaluation of the co-reference was done us-
ing a cosine similarity score of 0.9, because we
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Model Prompt MUC (%) B3 (%) CEAF (%) CoNLL (%)

Mixtral-8x7B-Instruct-v0.1 FICL 32.42 70.61 70.61 57.88
Llama-3.1-8B-Instruct FICL 27.16 69.57 69.57 55.43
Llama-3.2-3B-Instruct COT_FICL 16.98 70.7 70.7 52.79
Llama-3.3-70B-Instruct FICL 31.25 70.94 70.94 57.71
Mistral-7B-Instruct-v0.3 COT_FICL 18.58 70.74 70.74 53.35

Table 2: Comparison of F1 Scores by Models.

noticed that 99% of all values that were marked
at 0.9 correctly but not exact match were actually
correct, just differing in preposition. For instance,
the gold standard says "a house", and the model
says "house". At 0.8% the values were not signifi-
cant to be considered, therefore, we stuck to using
a cosine similarity score of 0.9 for the co-reference
evaluation.

5.2 Experiment 2: Syntactic Sentence
Classification

We created a dataset for classification, and all de-
tails are given in Appendix E.3. We fine-tuned six
transformer-based models and two smaller LLMs
on the training set and evaluated them on the test set.
Table 3 reports test accuracy and macro-averaged
F1 for each model. We evaluated the entire test set
on a GPT-4o model.

Table 3: Sentence-type classification results (train set:
2,00- sentences test set: 5,269 sentences)

Model Accuracy F1macro

BERT 87.25% 86.14%
BERT-Large 87.68% 86.69%
BioBERT 87.19% 86.21%
BioBERT-Large 85.97% 85.16%
ClinicalBERT 86.92% 85.87%
RoBERTa 87.13% 85.83%
Gemma3 1-B 9.24% 4.15 %
LLama3.2 1-B 17.71 % 0.27 %
GPT 4-0 80.30 % 76.14%
Random Guessing Lowest 8.83 % 3.24%
Random Guessing Highest 32.61 % 9.84 %

5.3 Experiment 3: Evaluating the Prompting
Strategies and Semantic Conversion

We created a systematic structure (see Appendices
F.1, F.2, and F.3 for the systemic conversion pro-
cess) of evaluating how a model would convert a
cx, cd or cc sentence to a simple one, thereby, eval-
uating the four prompting strategies–GIP, FICL,

Table 4: Model performance on the conversion of Com-
pound to Simple Sentences

Model Macro Avg. Exact-Match RMSE

DeepSeek-LLM-67B 15.56% 14.67% 1.5891
DeepSeek-LLM-7B 55.83% 50.00% 1.1506
DeepSeek-R1-Distill-Llama-8B 68.04% 65.00% 1.0571
DeepSeek-Prover-V1.5-7B 81.38% 76.33% 0.8591
Llama-3.3-70B 95.30% 81.00% 0.3213
Llama-3-8B 99.78% 98.00% 0.1078
Mistral-7B-Instruct-v0.3 96.64% 90.33% 0.2356
Mixtral-8x7B-Instruct-v0.1 96.14% 91.67% 0.2323
Qwen-7B 56.17% 54.00% 1.2339
Qwen-7B-Chat 1.33% 1.33% 1.7193
GPT 4 o 91.68% 77.67% 0.4204
GPT 4 o-3 87.69% 68.67% 0.5924

Table 5: Model performance on the conversion of Com-
plex to Simple Sentences

Model Macro Avg. Exact-Match RMSE

DeepSeek-LLM-67B 26.23% 22.00% 1.7562
DeepSeek-LLM-7B 63.30% 62.33% 1.1866
DeepSeek-R1-Distill-Llama-8B 43.78% 33.00% 1.5540
DeepSeek-Prover-V1.5-7B 91.33% 65.67% 0.8841
Llama-3.3-70B 99.59% 98.67% 0.1364
Llama-3-8B 97.17% 92.67% 0.2866
Mistral-7B-Instruct-v0.3 93.73% 81.00% 0.3114
Mixtral-8x7B-Instruct-v0.1 98.48% 94.67% 0.1533
Qwen 7B 64.61% 64.00% 1.1987
Qwen-7B-Chat 9.24% 7.67% 1.8699
GPT 4 o 96.72% 91.33% 0.3050
GPT 4 o-3 99.05% 97.00% 0.1714

COT, and COT+FICL prompts (see Appendix F.4).
From the 65,175 sentences extracted from 7,500
abstracts, our classifier labelled 42,282 as complex,
4,942 as compound, 2,366 as compound-complex,
13,465 as simple, and 2,120 as incomplete. We
then randomly sampled 300 sentences each from
the complex, compound, and compound-complex
classes and translated them into simple sentences.
These sample sizes at 300 achieve 95% confidence
for their respective populations with margins of
error of ±5.62%, ±5.57%, and ±5.26%, respec-
tively. We tested on the top performing models
and evaluated their performance on the different
prompting strategies. The results are shown in Ta-
ble 10, with the hybrid prompt performing the best
in all cases.
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Table 6: Model performance on the conversion of
Compound-Complex to Simple Sentences

Model Macro Avg. Exact-Match RMSE

DeepSeek-LLM-67B 28.42% 11.00% 1.6178
DeepSeek-LLM-7B 49.45% 32.33% 1.2848
DeepSeek-R1-Distill-Llama-8B 37.25% 21.67% 1.5183
DeepSeek-Prover-V1.5-7B 71.12% 51.00% 0.8411
Llama-3.3-70B 89.57% 72.67% 0.4836
Llama-3-8B 91.71% 78.00% 0.4544
Mistral-7B-Instruct-v0.3 91.19% 80.00% 0.3273
Mixtral-8x7B-Instruct-v0.1 92.16% 76.67% 0.2727
Qwen 7B 56.68% 40.33% 1.1977
Qwen-7B-Chat 15.81% 4.33% 1.7556
GPT 4 o 82.75% 68.33% 0.5354
GPT 4 o-3 94.10% 81.67% 0.2320

5.4 Extracting Relationship Pairs from
Simple Sentences

With the total number of simple sentences exceed-
ing 177,000, we used a carefully crafted COT +
FICL prompt as it has shown from data to perform
the best. The annotators AB and CD studied 100
sentences generated from each model that were
tested below and came to an agreement that the
Mixtral-8x7B-Instruct-v0.1 model performed well
with a 99% accuracy in parsing relationships from
simple sentences, which also involved capturing
multiple relationships in text. It was a Boolean
task. The table for the task is Table 9 located in
Appendix D.

6 Discussion

We evaluated the results on a subset of 200 sam-
ples each from Rebel, Web-NLG, and Wiki-NRE
obtained from the GitHub page of (Zhang and Soh,
2024). We also evaluated the 50 unique sentences
from the CaRB dataset (Bhardwaj et al., 2019).

Table 7: Evaluation metrics across benchmarks

Metrics ReBEL Web-NLG2 Wiki-NRE CaRB

Exact-Match 14.50% 43.00% 7.00% 43.14%
Prec Macro 72.97% 80.70% 60.26% 66.96%
Rec Macro 59.88% 71.64% 60.13% 68.43%
F1-Score Macro 65.78% 75.90% 60.20% 62.61%
Prec Micro 66.34% 79.35% 59.02% 63.69%
Rec Micro 59.88% 72.32% 58.67% 59.52%
F1-Score Micro 62.94% 75.67% 58.84% 61.54%
RMSE 0.8813 0.5785 0.9648 0.3633

The results show that even with the extra aid,
LLMs still have difficulty parsing relationships the
way humans can. Comparing to current SOTA
techniques, for the ReBEL benchmark, our model
achieves a macro-F1 of 65.78% and a micro-F1
of 62.94%, surpassing the published macro-F1 of
51.0% (Cabot and Navigli, 2021) but falling short
of the SOTA micro-F1 of 74.0% (Cabot and Nav-

igli, 2021), which tells us that our pipeline can
handle diverse, low-frequency relations reasonably
well (macro), yet would not perform the best on the
most common triplets that dominate micro averag-
ing. The very low exact-match rate (14.5%) are due
to the sentence decomposition. In Web-NLG2 and
Wiki-NRE RE, we record a micro-F1 of 75.67%
and 58.84% respectively, which falls largely behind
the SOTA at 93.6% (Ferreira et al., 2020) and Ge-
nIE’s 91.48% (Distiawan et al., 2019) respectively.
However, knowing that this generative task without
any fine-tuning shows opportunities for great im-
provement. In the CaRB OpenIE benchmark, we
achieve micro-F1 61.54% and macro-F1 62.61%,
compared to DetIE’s SOTA 67.7% (Bhardwaj et al.,
2019).

Though the results were not as high as we ex-
pected, they look promising for an unsupervised
approach. Future work would look into fine-tuning
LLMs for specific tasks like these. To justify the
need for our pipeline, we performed an ablation
study on 23 articles already in our coreferenced set.
Table 11, Appendix D, shows that removing coref-
erence resolution or sentence-level decomposition
hurts our performance sharply, and without these
decomposition, our recall falls below half, which
explains to us that biomedical sentences have a lot
of nuanced co-referent names that must be split
before extraction. Therefore, having this pipeline
is a reliable way to use LLMs for generated con-
tent. We have baselines like ChatGPT-4.5, which
do have near-perfect precision. They often sum-
marize relationships and do not give the user the
ability to pick and choose, as it makes the decision
on the user’s behalf. The DeepSeek-405B model
performs well too, as it has a higher recall, but in-
troduces a lot of errors. It is interesting to see how
our pipeline maintained high precision and recall,
but extracted some relationships beyond human ref-
erence. The results were hand-graded by humans
using the gold standard.

6.1 Error Analysis
From the analysis, we classified the errors into 3
types, namely: "missing", "spurious", and "relation-
mismatch". Missing error happens when a rela-
tionship type is not considered. Spurious is non-
existent but invented relationships and relation mis-
match occurs when there is a switch between Entity
1 and Entity 2 or the relationship actually exists
with another Entity (Entity3), but the model mis-
classified it. Furthermore, in the Rebel dataset,
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the relation-extraction is consistent, as it only con-
tains four variables across the dataset. We noticed
that the pipeline parses some “less important” or
“missed relationships”, which we categorized as
spurious in this evaluation. During the evaluation,
if a model outputs something not in the gold, but is
a valid relationship from the text, the model is not
given a score (neither penalized nor awarded).

Figure 2: Distribution of error bucketization categories.

However, if it outputs something not in the gold,
and cannot be inferred from the text, then we penal-
ize the model. We also noticed a few relation-type
mismatches, where the model defaults to a more
simplistic relationship type, like “is”, “was”, rather
than focusing on the actual relationship. For exam-
ple, the model used a generic “is” for party member-
ship instead of “member of political party”, in the
sentence “Anju Dhillon (born 1979) is a Canadian
Liberal politician, who was elected to represent the
riding of Dorval-Lachine-LaSalle in the House of
Commons of Canada in the 2015 federal election.”.
Missing and Spurious relationships amongst the
errors were profound, as the model typically high-
lights 3 out of 4 of the relationship types in REBEL
and typically omits one. A combination of spurious
and missing relationships characterized 73% of the
errors, while spurious relationships alone scored
11%, and missing relationships 9% and relation-
type is 7%. Interestingly, more often than not, it
highlights newer relationships that we were not
considering.

7 Conclusion

In this work, we created a pipeline and verified
that using sentence decomposition on open-source
models actually helps the model think through each
problem uniquely. By releasing our implementa-
tion, annotated datasets, and evaluation scripts, we
aim to promote reproducibility and accelerate fu-

ture work in information extraction and co refer-
ence resolution. The annotated datasets from hu-
mans include 190 abstract texts, 7248 rows for
sentence classification, and 900 rows for sentence
decomposition.

Limitations

The limitations of our paper are as follows:

• Before, our pipeline would be of industry-
standard, it is imperative that we find a so-
lution to coreference resolution and its weak-
nesses. Future work would look into how to
improve coreference resolution in thick ab-
stract texts.

• Using just open-source models, though com-
parative with ChatGPT tends to fail at times,
and thereby, average the RE score. Future
iterations of the work would employ agent
systems that can scan for missing or inconsis-
tent data through a feedback loop and judge
the quality to improve the output.

• We only focused on prompting this time;
future iterations would look at fine-tuning
strategies like Parameter-Efficient Fine-tuning
(PEFT) that could help the LLM perform bet-
ter in weak tasks.

• We had a lot of human annotations for quality.
Future work would engage more code scripts,
so we can evaluate a wider range of output.

• We acknowledge that our pipeline is costly
computationally, and as such, it might not be
possible to run with low-level resources, and
though the CoT+FICL prompting did well, it
might incur a non-trivial inference time and
token consumption. However, since this is a
one-off knowledge graph, it is still deployable.

• Our evaluation is confined to scientific and
benchmark datasets. We have not tested the
pipeline on domains such as newswire, legal
text, or social media. Thus, its generalizability
to noisier or less formal text remains unveri-
fied.
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A Sentence Steps

Sentences are made up of clauses, phrases, words,
and punctuation. Phrases are a group of words
that act as a single unit but do not have both a sub-
ject and a predicate. The common types are noun
phrase NP , verb phrase V P , and prepositional
phrases PP . A sentence in English is defined as:
Sentence → NP, V P . This means every sen-
tence must have a noun phrase, typically including
the subject and the verb. Not all sentences have
a predicate or an object; however, this is very un-
common in academic writing. Noun phrases are
defined as: NP → |Det N | Det Adj N | Pronouns
|Proper Nouns|, while verb phrases are defined as:
V P → |V |V NP |V NPPP |, where Det is a de-
terminer: for example, "a", "the", "an", "those",
etc., Adj is an adjective, and V is a verb. Clauses
are typically of two types: independent clauses (IC)
and dependent clauses (DC). An IC can stand alone
as a complete sentence, while the DC relies on an
IC. Dependent clauses start with subordinating con-
junctions like “because”, “although”, “when”, “if”,
etc., and are then followed by an IC to make a
complete sentence. Clause → NP, V P . Math-
ematically, it is represented by DC → Subconj
IC.

B Algorithms

Algorithm 1 Coreference Resolution
Input: abstracts A, subset size s, annotators H ,
prompt strategies P , modelsM
Output: resolved abstracts Â

1: A′ ← UniformSample(A, s)
▷ Select s abstracts at random

2: for all a ∈ A′ do
3: for all hj ∈ H do
4: Rj(a)← fann(hj , a)

▷ Annotator hj resolves coreference on a

5: G← { a ∈ A′ | Rj(a) = Rk(a) ∀ j, k}
▷ Gold set of unanimous abstracts

6: G′ ← {Rj(a) | a ∈ G}
▷ Gold-standard annotated abstracts

7: (P ∗,M∗)← (∅,∅); bestScore← −∞
8: for all P ∈ P do
9: for all M ∈M do

10: R̂P,M ← fprompt(P, M, G)
▷ Predict annotations on G

11: SP,M ← score(R̂P,M , G′)
▷ Evaluate predictions against G′

12: if SP,M > bestScore then
13: (P ∗,M∗)← (P,M)
14: bestScore← SP,M

▷ Update best prompt-model pair
15: Â← fprompt(P

∗, M∗, A)
▷ Resolve coreference on full collection

16: return Â
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Algorithm 2 Step 1: Sample Abstracts, Extract
One Sentence, and Verify

1: Input: resolved abstracts Â, sample sizes
psimp, pcomx, pcomp, pcomx_comp, pincomp, ex-
pert verifiers V = {v1, v2}

2: Output: verified sentences with category la-
bels Ŝ

3: for all category c in {simp, comx, comp,
comx_comp, incomp} do

4: Ac ← UniformSample(Â, pc) ▷ Select
pc abstracts for c

5: Sc ← ∅
6: for all a ∈ Ac do
7: if c ∈ {simp, incomp} then
8: s← fcreate(annotator, a) ▷ Create

sentence for simple/incomplete
9: else

10: s← fchoose(a) ▷ Choose sentence
for other categories

11: Sc ← Sc ∪ {s} ▷ Collect one sentence
per abstract

12: Ensure
⋃

cAc = Â ▷ Coverage of all
abstracts

13: Sall ←
⋃

c Sc ▷ All candidate sentences
14: Ŝ = {(s, c) | c ∈ C, s ∈ Sc, fver(v1, s) =

fver(v2, s)} ▷ Keep only unanimously veri-
fied sentences with their category; where C =
{simp, comx, comp, comx_comp, incomp}

15: return Ŝ

Algorithm 3 Step 2: Model Selection and Full
Classification

1: Input: verified dataset D = {(si, yi) | si ∈
Ŝ}, candidate modelsM, resolved abstracts Â

2: Output: full classification S̃ = {(s, ℓ) | s ∈
Sentences(Â)}

3: bestScore← −∞, m∗ ← ∅
4: for all m ∈M do
5: Train m on training split of D
6: score← Evaluate(m, val split of D)
7: if score > bestScore then
8: bestScore← score
9: m∗ ← m

10: S̃ ← ∅
11: for all abstract a ∈ Â do
12: for all sentence s ∈ Sentences(a) do
13: ℓ← m∗.classify(s) ▷ Classify each

sentence in the main abstracts
14: S̃ ← S̃ ∪ {(s, ℓ)}
15: return S̃

Algorithm 4 Unified Sentence Simplification

1: Input: sentence sets
{Sc}c∈{comx,comp,comx_comp}, prompt
strategies P , modelsM

2: Output: simplified sentences Ssimp

3: Ssimp ← ∅
▷ Initialize output set

4: for all category c ∈
{comx, comp, comx_comp} do
▷ Iterate over sentence categories

5: bestScore← −∞
▷ Reset best score

6: for all P ∈ P do
▷ For each prompting strategy

7: for all M ∈M do
▷ For each model

8: score ←
EvaluatePromptModel(P,M, Sc)
▷ Evaluate on Sc

9: if score > bestScore then
10: bestScore ← score;

(P ∗,M∗)← (P,M)
▷ Update best pair

11: for all s ∈ Sc do
▷ Simplify each sentence in category c

12: ŝ← fprompt(P
∗,M∗, s)

▷ Generate simplified sentence
13: Ssimp ← Ssimp ∪ {ŝ}

▷ Collect simplified sentence
14: return Ssimp

▷ Return all simplified sentences

Algorithm 5 Relationship Extraction from Simpli-
fied Sentences

1: Input: simplified sentences Ssimp, classi-
fied sentences S̃ = {(s, ℓ)} best prompting
strategy-model pair (P ∗,M∗)

2: Output: relation triples R = {(e1, r, e2)}
3: Sinit ← { s | (s, ℓ) ∈ S̃, ℓ = simp} ▷ Select

only initially classified simple sentences
4: S ← Ssimp ∪ Sinit ▷ Combine with

previously simplified sentences
5: R← ∅ ▷ Initialize relation set
6: for all s ∈ S do
7: (e1, r, e2)← frel(P

∗,M∗, s) ▷ Extract
(entity1, relationship, entity2)

8: if (e1, r, e2) ̸= ∅ then
9: R← R ∪ {(e1, r, e2)} ▷ Keep valid

triples
10: return R ▷ All extracted relation triples
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C Tables

C.1 Coreference Resolution

Table 8: Coreference resolution performance using cosine similarity across models and prompting styles.

Model Prompt MUC (%) B3 (%) CEAF (%) CoNLL (%)

Mixtral-8x7B-Instruct-v0.1

GIP 13.34 70.96 70.96 51.75
COT 14.50 70.87 70.87 52.08
FICL 32.42 70.61 70.61 57.88
COT+FICL 27.75 70.73 70.73 56.40

Llama-3.1-8B-Instruct

GIP 9.74 70.44 70.44 50.20
COT 10.19 70.47 70.47 50.37
FICL 27.16 69.57 69.57 55.43
COT+FICL 26.00 69.58 69.58 55.06

Llama-3.2-3B-Instruct

GIP 7.13 70.56 70.56 49.41
COT 6.14 71.32 71.32 49.60
FICL 16.07 70.21 70.21 52.16
COT+FICL 16.98 70.70 70.70 52.79

Llama-3.3-70B-Instruct

GIP 7.79 71.28 71.28 50.12
COT 8.75 71.34 71.34 50.48
FICL 31.25 70.94 70.94 57.71
COT+FICL 28.97 70.95 70.95 56.95

Mistral-7B-Instruct-v0.3

GIP 6.99 71.07 71.07 49.71
COT 7.26 70.87 70.87 49.67
FICL 16.96 70.99 70.99 52.98
COT+FICL 18.58 70.74 70.74 53.35

D Extracting Relationship Pairs from Simple Sentences

We went back to our coreference annotators and asked them if they could look at a small sample of the
dataset and see if the model was successfully able to parse all relationships

Table 9: Model Accuracy on Boolean Relationship Extraction from Simple Sentences

Model Name # Params (B) Accuracy F1-Score

LLaMA-3-8B 8 98.00% 98.00%
Mistral-7B 7 87.00% 93.55%
DeepSeek-Distilled-LLaMA-8B 8 62.00% 77.02%
Qwen-7B 7 52.00% 68.42%
LLaMA-2-7B 7 35.00% 51.85%
QwenChat-7B 7 23.00% 37.40%
DeepSeek-7B 7 21.00% 34.71%
DeepSeek-Prover-7B 7 20.00% 33.61%
DeepSeek-Distilled-Qwen-7B 7 11.00% 19.82%
Mistral-MoE-8×7B 8×7 99.00% 99.50%
DeepSeek-67B 67 43.00% 60.14%
LLaMA-2-13B 13 13.00% 23.01%
GPT-NeoX-20B 20 0.00% 0.00%
LLaMA-2-70B 70 41.00% 58.57%
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Table 10: Performance comparison across models and prompting styles

Model Prompting Style Macro Average Exact-Match RMSE

LLAMA 3 8B

COT+FICL 99.78% 98.00% 0.1078
COT 82.86% 64.00% 0.4265
FICL 68.89% 28.33% 0.5376
GIP 45.81% 27.33% 0.9319

MISTRAL 8 BY 7

COT+FICL 96.14% 91.67% 0.2323
COT 92.42% 83.00% 0.3146
FICL 90.23% 78.00% 0.3585
GIP 82.26% 57.67% 0.4563

MISTRAL 7 B

COT+FICL 96.64% 90.33% 0.2356
COT 84.72% 64.33% 0.4280
FICL 85.78% 67.00% 0.4016
GIP 78.88% 53.00% 0.5055

LLAMA 3 70B

COT+FICL 95.30% 81.00% 0.3213
COT 86.39% 68.33% 0.4064
FICL 71.98% 45.33% 0.6064
GIP 62.01% 35.00% 0.7829

Table 11: Triple-extraction performance on the evaluation set

Configuration Triples Precision Recall F1 Score

Human Standard 398 100.00% 100.00% 100.00%
Full Model (Ours) 422 92.00% 92.90% 92.40%

– Remove Coref Resolution 376 80.60% 74.60% 77.50%
– Remove Sentence Decomposition 208 74.60% 46.20% 57.20%
– Remove Coref + Sentence Decomposition 220 76.80% 42.70% 54.80%

DeepSeek R1 323 93.50% 78.60% 85.40%
ChatGPT 4o 215 98.10% 52.80% 68.50%
NotebookLM 67 100.00% 16.83% 28.82%
ChatGPT 4.5 238 99.58% 59.55% 74.53%
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Table 12: Co-reference Group AB and Group CD, where
each group’s “link” set is the intersection of its two
annotators.

Statistic Value

Group definitions: A and B = 2,041; C and D = 1,929

Number of “link” assignments (Group AB) 2,041
Number of “link” assignments (Group CD) 1,929
Intersection 1,847
Union 2,123

Observed agreement Po ≈ 0.87
Expected agreement estimated Pe 0.50
Cohen’s κ 0.74

E Prompting Strategy

E.1 Prompt Templates for Co-reference
Resolution

COT+FICL Co-reference Resolution
Prompt

You are a coreference resolution agent. Be-
low is a biomedical abstract presented as
tokenized text with indices. Your task is
to identify and annotate coreference expres-
sions within the text. For each co-referent
expression:

• Record the surface form under “Ex-
pression”.

• Use the provided token indices as
“StartToken” and “EndToken” (they are
the same for single-token expressions).

• Map each expression to its antecedent
using “RefersTo” — either a noun
phrase or named entity from the text.

• Only include pronouns or repeated
noun phrases referring back to a prior
concept or entity.

Use this format:
{
"Expression": "string",
"StartToken": int,
"EndToken": int,
"RefersTo": "string"
}

Example:
Given this tokenized abstract:

("BACKGROUND:", 0), ("There", 1),
("are", 2), ("few", 3), ("cases", 4),
("of", 5), ("pulmonary", 6),
("granulomatous", 7), ("changes", 8),
("secondary", 9), ("to", 10),
("primary", 11), ("biliary", 12),
("cirrhosis", 13), ("(PBC).", 14),
("No", 15), ("case", 16), ("of", 17),
("granulomatous", 18), ("lung", 19),
("disease", 20), ("secondary", 21),
("to", 22), ("PBC", 23),
("misdiagnosed", 24), ("as", 25),
("lung", 26), ("cancer", 27),
("had", 28), ("been", 29),
("reported.", 30), ("CASE", 31),
("SUMMARY:", 32), ("A", 33),
("middle-aged", 34), ("woman", 35),
("presented", 36), ("with", 37),
("lung", 38), ("nodules", 39),
("and", 40), ("was", 41),
("misdiagnosed", 42), ("with", 43),
("lung", 44), ("cancer", 45),
("by", 46), ("positron", 47),
("emission", 48),
("tomography/computed", 49),
("tomography.", 50), ("She", 51),
("underwent", 52), ("left", 53),
("lobectomy,", 54), ("and", 55),
("the", 56), ("pathology", 57),
("of", 58), ("the", 59),
("nodules", 60), ("showed", 61),
("granulomatous", 62),
("inflammation,", 63), ("which", 64),
("was", 65), ("then", 66),
("treated", 67), ("with", 68),
("antibiotics.", 69),
("However,", 70), ("a", 71),
("new", 72), ("nodule", 73),
("appeared.", 74), ("Further", 75),
("investigation", 76), ("with", 77),
("lung", 78), ("biopsy", 79),
("and", 80), ("liver", 81),
("serology", 82), ("led", 83),
("to", 84), ("the", 85),
("diagnosis", 86), ("of", 87),
("PBC,", 88), ("and", 89),
("chest", 90), ("computed", 91),
("tomography", 92),
("indicated", 93),
("significant", 94),
("reduction", 95), ("in", 96),
("the", 97), ("pulmonary", 98),
("nodule", 99), ("by", 100),
("treatment", 101), ("with", 102),
("methylprednisolone", 103),
("and", 104),
("ursodeoxycholic", 105),
("acid.", 106),
("CONCLUSION:", 107),
("Diagnosis", 108), ("of", 109),
("pulmonary", 110), ("nodules", 111),
("requires", 112),
("integrating", 113),
("various", 114), ("clinical", 115),
("data", 116), ("to", 117),
("avoid", 118), ("unnecessary", 119),
("pulmonary", 120),
("lobectomy.", 121)
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[
{
"Expression": "PBC",
"StartToken": 14,
"EndToken": 14,
"RefersTo": "Primary
biliary cirrhosis"
},
{
"Expression": "PBC",
"StartToken": 23,
"EndToken": 23,
"RefersTo": "Primary biliary
cirrhosis"
},
{
"Expression": "She",
"StartToken": 51,
"EndToken": 51,
"RefersTo": "A middle-aged
woman"
},
{
"Expression": "PBC",
"StartToken": 88,
"EndToken": 88,
"RefersTo": "Primary biliary
cirrhosis"
}
]

Now process this tokenized abstract:
{tokenized_text}

COT Co-reference Resolution Prompt

You are a coreference resolution agent. Be-
low is a biomedical abstract presented as
tokenized text with indices. Your task is
to identify and annotate coreference expres-
sions within the text. For each co-referent
expression:

• Record the surface form under “Ex-
pression”.

• Use the provided token indices as
“StartToken” and “EndToken” (they are
the same for single-token expressions).

• Map each expression to its antecedent
using “RefersTo” — either a noun
phrase or named entity from the text.

• Only include pronouns or repeated
noun phrases referring back to a prior
concept or entity.

Use this format:
{

"Expression": "string",
"StartToken": int,
"EndToken": int,
"RefersTo": "string"
}

Now process this tokenized abstract:
{tokenized_text}

FICL Co-reference Resolution Prompt

You are a coreference resolution agent. Be-
low is a biomedical abstract presented as
tokenized text with indices. Your task is
to identify and annotate coreference expres-
sions within the text.
Use this format:

{
"Expression": "string",
"StartToken": int,
"EndToken": int,
"RefersTo": "string"
}

Example:
Given this tokenized abstract:
("BACKGROUND:", 0), ("There", 1),
("are", 2), ("few", 3), ("cases", 4),
("of", 5), ("pulmonary", 6),
("granulomatous", 7), ("changes", 8),
("secondary", 9), ("to", 10),
("primary", 11), ("biliary", 12),
("cirrhosis", 13), ("(PBC).", 14),
("No", 15), ("case", 16), ("of", 17),
("granulomatous", 18), ("lung", 19),
("disease", 20), ("secondary", 21),
("to", 22), ("PBC", 23),
("misdiagnosed", 24), ("as", 25),
("lung", 26), ("cancer", 27),
("had", 28), ("been", 29),
("reported.", 30), ("CASE", 31),
("SUMMARY:", 32), ("A", 33),
("middle-aged", 34), ("woman", 35),
("presented", 36), ("with", 37),
("lung", 38), ("nodules", 39),
("and", 40), ("was", 41),
("misdiagnosed", 42), ("with", 43),
("lung", 44), ("cancer", 45),
("by", 46), ("positron", 47),
("emission", 48),
("tomography/computed", 49),
("tomography.", 50), ("She", 51),
("underwent", 52), ("left", 53),
("lobectomy,", 54), ("and", 55),
("the", 56), ("pathology", 57),
("of", 58), ("the", 59),
("nodules", 60), ("showed", 61),
("granulomatous", 62),
("inflammation,", 63), ("which", 64),
("was", 65), ("then", 66),
("treated", 67), ("with", 68),
("antibiotics.", 69),
("However,", 70), ("a", 71),
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("new", 72), ("nodule", 73),
("appeared.", 74), ("Further", 75),
("investigation", 76), ("with", 77),
("lung", 78), ("biopsy", 79),
("and", 80), ("liver", 81),
("serology", 82), ("led", 83),
("to", 84), ("the", 85),
("diagnosis", 86), ("of", 87),
("PBC,", 88), ("and", 89),
("chest", 90), ("computed", 91),
("tomography", 92),
("indicated", 93),
("significant", 94),
("reduction", 95), ("in", 96),
("the", 97), ("pulmonary", 98),
("nodule", 99), ("by", 100),
("treatment", 101), ("with", 102),
("methylprednisolone", 103),
("and", 104),
("ursodeoxycholic", 105),
("acid.", 106),
("CONCLUSION:", 107),
("Diagnosis", 108), ("of", 109),
("pulmonary", 110), ("nodules", 111),
("requires", 112),
("integrating", 113),
("various", 114), ("clinical", 115),
("data", 116), ("to", 117),
("avoid", 118), ("unnecessary", 119),
("pulmonary", 120),
("lobectomy.", 121)

[
{
"Expression": "PBC",
"StartToken": 14,
"EndToken": 14,
"RefersTo": "Primary biliary
cirrhosis"
},
{
"Expression": "PBC",
"StartToken": 23,
"EndToken": 23,
"RefersTo": "Primary biliary
cirrhosis"
},
{
"Expression": "She",
"StartToken": 51,
"EndToken": 51,
"RefersTo": "A middle-aged
woman"
},
{
"Expression": "PBC",
"StartToken": 88,
"EndToken": 88,
"RefersTo": "Primary biliary
cirrhosis"
}
]

Now process this tokenized abstract:
{tokenized_text}

GIP Co-reference Resolution Prompt

You are a coreference resolution agent. Be-
low is a biomedical abstract presented as
tokenized text with indices. Your task is
to identify and annotate coreference expres-
sions within the text. Use this format:
Use this format:
{
"Expression": "string",
"StartToken": int,
"EndToken": int,
"RefersTo": "string"
}

Now process this tokenized abstract:
{tokenized_text}

E.2 Annotators Details

Annotator A is working on a medical degree An-
notator B is a linguistic Annotator C is a biologist
Annotator D is a linguistic

Annotators A and B are grouped to work to-
gether and produce a perfect work and Annotators
C and D are also grouped in a similar pattern.

Annotator E, F and G all were tested before given
the code and had a score of 93% in a specialized
test different from the normal tests before being
accepted for review. Annotators H and I, are post-
graduate students. All annotators are from Nigeria.

They were all recruited by a recruitment expert
Sophia Anuyah. They all spoke English and sub-
mitted their resumes and were invited for an online
interview.

The annotators were paid in their local currency
weekly, at an average of 40,000 NGN a week over
the period of 5 weeks. The project was self-funded
by the authors.

E.3 Creating the Sentence Structure Data Set

Three initial annotators - Annotator E, B and F se-
lected 7,500 sentences spanning five syntactic cate-
gories (compound-complex, compound, complex,
simple, incomplete). Then two senior experts - G
and H selected from a cohort of 12 people who took
a classification test and scored above 93% were se-
lected and then adjudicated these and reached con-
sensus on 7,269 sentences out of 7,500 sentences
making a 96.92% agreement rate. The authors
chose not to resolve the 231 disagreements due to
the current size of the dataset. The final dataset
comprises of 2,118 (29.1%) compound-complex,
1,191 (16.4%) compound, 865 (11.9%) complex,
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1,585 (21.8%) simple, and 1,510 (20.8%) incom-
plete sentences. From this set, we drew a balanced
training sample of 2,000 sentences (400 per class)
and reserved the remaining 5,269 sentences for
testing. The dataset is available on github.

F Prompt for Sentence Conversion

F.1 Converting Complex Sentences to Simple
Sentences

Given the sentence:

“A prospective cohort study was con-
ducted in Leeds, UK, based on routinely
collected data from a service that allowed
patients with symptoms of lung cancer
to request CXR” (Bradley et al., 2021).

The process in this conversion is to identify the sin-
gular independent clause and the other dependent
clauses

• Independent Clause: “A prospective cohort
study was conducted in Leeds, UK."

• Dependent Clauses and Modifiers: (a) “that
allowed patients with symptoms of lung can-
cer to request CXR.” (b) “based on routinely
collected data from a service”

In this example, there was one dependent clause,
and one modifier which in our context still depends
on the subject for RE, hence, they are looped to-
gether in our prompt. Once the LLM can cor-
rectly identify the independent clause, the next
stage would be parse each relationship separately
meaning we have three simple sentences i.e. (1) the
independent clause (2) the subject of the IC and the
DC and (3) the subject of the IC and the modifier.
In this case:

S = (A prospective cohort study was conducted in Leeds, UK)︸ ︷︷ ︸
Smain

∪ (that allowed patients . . . to request CXR)︸ ︷︷ ︸
DC

.

(4)

We define an extraction operator E(·) that maps
a complex sentence to a set of simple (independent)
sentences:

E(Scomplex) =
{
Smain, R(DC1), R(DC2), . . .

}
.
(5)

where R→ Rewrite

S = Smain ∪DC (6)

we get:

E(S) = {S1,S2, S3} .

S1 → A prospective cohort study was
conducted in Leeds, UK. S2 → The
study was based on routinely collected
data from a service. S3 → The service
allowed patients with symptoms of lung
cancer to request CXR

F.2 Converting Compound Sentences to
Simple Sentences

Given the sentence:

“Lung cancer stands prominently among
the foremost contributors to human mor-
tality, distinguished by its elevated fa-
tality rate and the second-highest inci-
dence rate among malignancies, and the
metastatic dissemination of lung cancer
stands as a primary determinant of its
elevated mortality and recurrence rates.”

Our goal is to break down this compound sentence
into simpler, stand-alone statements.

• Independent Clause 1 (IC1): “Lung cancer
stands prominently among the foremost con-
tributors to human mortality.”

• Independent Clause 2 (IC2): “The metastatic
dissemination of lung cancer stands as a pri-
mary determinant of its elevated mortality and
recurrence rates.”

• Dependent Modifier (DM): “distinguished
by its elevated fatality rate and the second-
highest incidence rate among malignancies”

Here, IC1 and IC2 are connected by a coordinat-
ing conjunction (i.e., “and”), which is typical in
compound sentences. The phrase “distinguished
by its elevated fatality rate ... among malignancies”
modifies “Lung cancer” (from IC1).

To convert this compound sentence into simple
sentences, we isolate each clause, ensuring each
stands alone:

S = (IC1 ∪ DM ∪ IC2)
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We define an extraction operator E(·) that maps
a compound sentence Scompound to a set of simple
(independent) sentences:

E(Scompound) = {S1, S2, S3} .

Applying it to our sentence:

S = (IC1 ∪ DM ∪ IC2)

we obtain three simple sentences:

S1 → Lung cancer stands prominently
among the foremost contributors to hu-
man mortality.
S2→ It is distinguished by its elevated
fatality rate and the second-highest inci-
dence rate among malignancies.
S3 → The metastatic dissemination of
lung cancer stands as a primary determi-
nant of its elevated mortality and recur-
rence rates.

F.3 Converting Compound-Complex
Sentences to Simple Sentences

Given the sentence:

“Although lung cancer is the leading
cause of US cancer-related deaths, lung
cancer screening with a low radiation
dose chest computed tomography scan
is now standard of care for a high-risk
eligible population, and clinicians and
surgeons must evaluate the trade-offs of
benefits and harms, including the iden-
tification of many benign lung nodules,
overdiagnosis, and complications.”

• Independent Clause 1 (IC1): “Lung cancer
screening with a low radiation dose chest com-
puted tomography scan is now standard of
care for a high-risk eligible population”

• Independent Clause 2 (IC2): “Clinicians and
surgeons must evaluate the trade-offs of bene-
fits and harms, ”

• Dependent Clause (DC): “Although lung can-
cer is the leading cause of US cancer-related
deaths”

• Modifiers: "including the identification of
many benign lung nodules, overdiagnosis, and
complications"

We see that DC modifies or sets a contrasting con-
text for IC1, and IC1 is coordinated with IC2 via
“and.” To convert this into simple sentences, each

clause (or key part of a clause) should form its own
standalone statement:

S = (DC ∪ IC1 ∪ IC2)

Using our extraction operator E(·):

E(Scompound-complex) = {S1, S2, S3, ..., Sn} ,

we obtain:

S1→ Lung cancer is the leading cause
of US cancer-related deaths.
S2→ Lung cancer screening with a low-
dose chest computed tomography scan
is now standard of care for a high-risk
eligible population.
S3 → Lung cancer screening is recom-
mended for a high-risk, eligible popula-
tion.
S4→ Clinicians and surgeons must eval-
uate the trade-offs of benefits and harms,
S5 → Evaluated trade-offs of benefits
and harms include the identification of
many benign lung nodules.
S6 → Evaluated trade-offs of bene-
fits and harms include the risk of over-
diagnosis.
S7 → Evaluated trade-offs of benefits
and harms include complications from
lung-cancer screening

F.4 Prompts

COT+FICL Complex Sentence Conver-
sion

Below is a step-by-step process. For each
example, think step by step, then output
only the simplified sentences in the form:

S1 → . . . S2 → . . . . . .

one per line, and nothing else.

Example 1:
Input:

“A prospective cohort study was
conducted in Leeds, UK, based
on routinely collected data from a
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service that allowed patients with
symptoms of lung cancer to re-
quest CXR.”

Chain-of-Thought:

1. Identify the independent clause: “A
prospective cohort study was con-
ducted in Leeds, UK.”

2. Identify dependent clauses/modifiers:

• Modifier A: “based on routinely
collected data from a service”

• Dependent clause B: “that al-
lowed patients with symptoms of
lung cancer to request CXR”

3. Rewrite each as a standalone simple
sentence:

Output:

• S1→ A prospective cohort study was
conducted in Leeds, UK.

• S2 → The study was based on rou-
tinely collected data from a service.

• S3 → The service allowed patients
with symptoms of lung cancer to re-
quest CXR.

Example 2:
Input:

“After the cells were treated with
the drug, which had been synthe-
sized in our lab, we measured the
change in fluorescence using a
spectrophotometer.”

Chain-of-Thought:

1. Independent clause: “We measured the
change in fluorescence using a spec-
trophotometer.”

2. Dependent clauses/modifiers:

• Dependent clause A: “After the
cells were treated with the drug”

• Modifier B: “which had been syn-
thesized in our lab”

3. Rewrite each as standalone simple sen-
tences:

Output:

• S1→We measured the change in flu-
orescence using a spectrophotometer.

• S2→ The cells were treated with the
drug.

• S3→ The drug had been synthesized
in our lab.

Now apply the same process to this new
sentence:
Input: "{{sentence}}"

***OUTPUT ONLY the simplified sen-
tences, one per line in the form S1 → . . . ,
S2 → . . . , etc., and nothing else.***
Now process this abstract:
“‘ABSTRACT GIVEN HERE”’

COT+FICL Compound Sentence Conver-
sion

Below is a process to convert a compound
sentence into simple sentences. For each
example, think step by step, then output
only the simplified sentences in the form:

S1→ . . . S2→ . . . . . .

one per line, and nothing else.

Example 1:
Input:

“Lung cancer stands prominently
among the foremost contributors
to human mortality, distinguished
by its elevated fatality rate and
the second-highest incidence rate
among malignancies, and the
metastatic dissemination of lung
cancer stands as a primary deter-
minant of its elevated mortality
and recurrence rates.”

Chain-of-Thought:

1. Identify the independent clauses:

• IC1: “Lung cancer stands promi-
nently among the foremost con-
tributors to human mortality.”
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• IC2: “The metastatic dissemina-
tion of lung cancer stands as a pri-
mary determinant of its elevated
mortality and recurrence rates.”

2. Identify modifiers:

• Modifier: “distinguished by its
elevated fatality rate and the
second-highest incidence rate
among malignancies” (modifies
IC1)

3. Rewrite all parts as simple, standalone
sentences.

Output:

• S1→ Lung cancer stands prominently
among the foremost contributors to hu-
man mortality.

• S2→ It is distinguished by its elevated
fatality rate and the second-highest in-
cidence rate among malignancies.

• S3→ The metastatic dissemination of
lung cancer stands as a primary deter-
minant of its elevated mortality and
recurrence rates.

Example 2:
Input:

“Climate change accelerates the
melting of polar ice, and rising
sea levels threaten coastal com-
munities around the world.”

Chain-of-Thought:

1. Identify the independent clauses:

• IC1: “Climate change accelerates
the melting of polar ice.”

• IC2: “Rising sea levels threaten
coastal communities around the
world.”

2. No dependent clauses or modifiers.

3. Rewrite each as a standalone simple
sentence.

Output:

• S1→ Climate change accelerates the
melting of polar ice.

• S2→ Rising sea levels threaten coastal
communities around the world.

Now apply the same process to this new
sentence:
Input: "{{sentence}}"

OUTPUT ONLY the simplified sentences,
one per line in the form S1 → . . . , S2 →
. . . , etc., and nothing else.

COT+FICL Compound-Complex Sen-
tence Conversion

Below is a process to split a compound-
complex sentence into standalone simple
sentences. Think step by step, then apply.

Example 1:
Input:

“Although lung cancer is the lead-
ing cause of US cancer-related
deaths, lung cancer screening
with a low radiation dose chest
computed tomography scan is
now standard of care for a high-
risk eligible population, and clin-
icians and surgeons must evalu-
ate the trade-offs of benefits and
harms, including the identifica-
tion of many benign lung nod-
ules, overdiagnosis, and compli-
cations.”

Chain-of-Thought:

1. Dependent Clause (DC): “Although
lung cancer is the leading cause of US
cancer-related deaths”

2. Independent Clause 1 (IC1): “Lung
cancer screening with a low-dose chest
computed tomography scan is now
standard of care for a high-risk eligible
population”

3. Independent Clause 2 (IC2): “Clini-
cians and surgeons must evaluate the
trade-offs of benefits and harms”

15548



4. Modifier list: “including the identifi-
cation of many benign lung nodules,
overdiagnosis, and complications”

5. Rewrite into standalone simple sen-
tences.

Output:

• S1→ Lung cancer is the leading cause
of US cancer-related deaths.

• S2 → Lung cancer screening with a
low-dose chest computed tomography
scan is now standard of care for a high-
risk eligible population.

• S3→ Lung cancer screening is recom-
mended for a high-risk, eligible popu-
lation.

• S4 → Clinicians and surgeons must
evaluate the trade-offs of benefits and
harms.

• S5→ Evaluated trade-offs include the
identification of many benign lung nod-
ules.

• S6→ Evaluated trade-offs include the
risk of overdiagnosis.

• S7 → Evaluated trade-offs include
complications from lung-cancer
screening.

Example 2:
Input:

“Although warmed by the sun, the
fields remained dry, and farmers
worried about the drought.”

Chain-of-Thought:

1. Dependent Clause (DC): “Although
warmed by the sun”

2. Independent Clause 1 (IC1): “The
fields remained dry”

3. Independent Clause 2 (IC2): “Farmers
worried about the drought”

4. Rewrite into standalone simple sen-
tences.

Output:

• S1→ The sun warmed the fields.

• S2→ The fields remained dry.

• S3 → Farmers worried about the
drought.

Now apply to this new sentence:
Input: "{{sentence}}"

OUTPUT ONLY the simplified sentences,
one per line in the form S1→ . . . , S2→
. . . , etc., and nothing else.

COT + FICL Relationship Extraction for
Knowledge Graph

You are a knowledge graph relationship ex-
traction agent. Your task is to extract struc-
tured relationships from simple sentences to
create knowledge graph triples. Each triple
should contain two entities and the relation-
ship between them.

• Analyze the sentence structure and
identify key components.

• Extract all meaningful entities (nouns,
noun phrases, proper nouns, concepts).

• Identify relationships between entities
based on verbs, prepositions, and se-
mantic meaning.

• Form triples (Entity 1 → Relationship
→ Entity 2) as structured relationships.

• Validate that each triple captures mean-
ingful semantic information.

Examples:

"Regulating miR-497-5p pro-
vides a potential targeted therapy
for lung cancer treatment."

[{
"Entity 1": "regulating miR-497-5p",
"Entity 2": "lung cancer targeted
treatment",
"Relationship": "provides"
}]
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"The activation of caspase sig-
nal pathway was the reason for
stronger apoptosis."

[{
"Entity 1": "activation of caspase
signal pathway",
"Entity 2": "stronger apoptosis",
"Relationship": "was the reason for"
}]

"With clinical significance fea-
tures selection, over-sampling
methods achieved the highest
AUC results."

[{
"Entity 1": "clinical significance
features selection",
"Entity 2": "over-sampling methods",
"Relationship": "With"},
{"Entity 1": "over-sampling methods",
"Entity 2": "highest AUC results",
"Relationship": "achieved"}]

Now extract knowledge graph relationships
from this sentence: {sentence}

All other prompt types are in our code base.
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Figure 3: Subsection of the Knowledge Graph.
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