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Abstract

Multilingual dense retrieval aims to retrieve
relevant documents across different languages
based on a unified retriever model. The chal-
lenge lies in aligning representations of differ-
ent languages in a shared vector space. The
common practice is to fine-tune the dense re-
triever via contrastive learning, whose effective-
ness highly relies on the quality of the negative
samples and the efficacy of mini-batch data.
Different from the existing studies that focus
on developing sophisticated model architecture,
we propose a method to boost data utilization
for multilingual dense retrieval by obtaining
high-quality hard negative samples and effec-
tive mini-batch data. The extensive experimen-
tal results on a multilingual retrieval bench-
mark, MIRACL, with 16 languages demon-
strate the effectiveness of our method by out-
performing several existing strong baselines.

1 Introduction

Multilingual dense retrieval (Nie, 2010; Zhang
et al., 2023a) aims to retrieve relevant documents
based on dense representation across multiple lan-
guages. The objective of the task is to enable the re-
triever models to handle queries and documents in
various languages by establishing better representa-
tions for a set of languages during model training.

However, constructing unified dense representa-
tions for multiple languages within a single model
is non-trivial. The challenges come up with dif-
ferent languages could have unique syntactic struc-
tures, vocabularies, and nuances, making it difficult
for a single retriever to align their representations
in a shared vector space via fine-tuning (Conneau,
2019; MacAvaney et al., 2020; Asai et al., 2021;
Huang et al., 2023; Lin et al., 2023a). Besides,
the data scarcity for low-resource languages fur-
ther induces difficulty during fine-tuning, due to
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Query：What are some famous Sichuan dishes?

四川有哪些著名的菜肴？

…Famous Chengdu snacks are: Dandan noodles, husband and wife lung slices…

…著名的成都小吃有：担担面、夫妻肺片…

# 1 Document

…Some of Chengdu's most famous home-cooked dishes include mapo tofu and 

Kung pao chicken……

…发源于成都的一些知名家常菜品有麻婆豆腐、宫保鸡丁…

# 5 Document

… Famous dishes that are not spicy are Dongpo pork, braised duck and sliced 

pork with fied rice…

…不辣的名菜有东坡肘子、黄焖鸭、锅巴肉片…

# 8 Document

False Negatives

Relevance judgement

Relevance judgement

Relevance judgement

Positive sample

Figure 1: Example of false negatives, which refer to
those that are relevant to the query but used as negatives
in the ranking list due to a lack of relevance judgments.

insufficient/imbalanced annotated relevance judg-
ments (Huang et al., 2024a; Thakur et al., 2024).

Existing studies attempt to address these issues
from different aspects, including developing em-
bedding models by incorporating information from
multiple languages during the pre-training (Devlin,
2018; Izacard et al., 2021), fine-tuning multilingual
dense retriever with additional adapter modules to
allow efficient parameter sharing among models for
different languages (Nogueira et al., 2019; Guru-
rangan et al., 2020; Pfeiffer et al., 2020; Zhan et al.,
2022; Lassance, 2023; Hu et al., 2023), and inte-
grating the multilingual pre-training and language-
adapter fine-tuning (Zhang et al., 2023a). Most of
them address the problems from the perspective of
model architecture (Huang et al., 2024b; Xu et al.,
2025).

An alternative solution is to enhance the quality
of data utilization. One common practice is con-
structing high-quality negative samples, which fa-
cilitates effective dense retriever fine-tuning under
the contrastive learning (CL) paradigm, as demon-
strated in many previous studies. The common way
to obtain negative samples includes the BM25 neg-
atives (Karpukhin et al., 2020; Ding et al., 2020)
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and dynamic hard negatives sampling (Xiong et al.,
2020) in ad-hoc search. The principle is employ-
ing the top-k retrieved candidate in a ranking list
(e.g., pseudo relevance feedback (Xu and Croft,
1996)) as hard negative candidates except for the
positive ones with relevance judgment. However,
they usually introduce false negatives – the sam-
ples that should be relevant to the query but are not
annotated, and then used as negatives for model
training. One example is shown in Figure 1, where
all three documents should be considered relevant
to the given query. However, since two of them do
not have relevance judgment, they would be used
as negative candidates. This is a common issue
since requiring the annotators to cover all existing
relevance judgments is impossible. The judged
part might be quite small in practice, especially
on top of the huge size collection (Nguyen et al.,
2016; Kwiatkowski et al., 2019; Mo et al., 2025c).
To facilitate dense retriever fine-tuning, these false
negatives should be excluded when sampling the
hard negative set.

In terms of multilingual retrieval, we could have
more alternatives to obtain better hard negatives
based on language variability and integrate them
into mini-batch data, which is under-explored. This
is related to how to facilitate multilingual dense
retrieval by boosting the data utilization.

Motivated by this, we design a data utilization
enhanced method to improve the effectiveness of
multilingual dense retrieval fine-tuning from two
aspects: i) obtaining high-quality hard negatives
through selection and generation, and ii) construct-
ing effective mini-batches by adjusting language
and topic semantic features. The whole framework
consists of three stages. The first stage is to initial-
ize the hard negative candidate set for each given
query by aggregating the retrieved results from var-
ious multilingual embedding models. Then we
can select the high-quality sample by eliminating
false negatives via judgments of LLMs through in-
corporating additional signals. The second stage
aims to inject additional hard negatives by specific
LLM generation to improve the data diversity and
to ensure sufficient negatives in the candidate set
for sampling, i.e., the size of the negative candi-
date set should be equal for each query after elim-
ination. Finally, with the improved quality hard
negative set for each query, we construct effective
mini-batches by adjusting the language and topic
distribution, and integrate the hard negative sam-
pling weight determined after the data adjustment

into contrastive learning to facilitate retriever fine-
tuning. The query-document pairs in each mini-
batch should be in the same language but have
diverse topics. Extensive experimental results on
the multilingual retrieval dataset MIRACL (Zhang
et al., 2023b) with 16 languages demonstrate the
effectiveness of our method by significantly out-
performing several existing strong baselines. We
also provide thorough analysis experiments to un-
derstand the functionality of each stage and com-
ponent.

Our contributions are summarized as follows:

• We propose a method to boost data utilization
for multilingual dense retrieval fine-tuning by
constructing high-quality hard negative candi-
dates via selection and generation.

• We design effective mini-batch construction
strategies by adjusting the language and topic
distribution among the data points, and inte-
grate the hard negative sampling weight into
contrastive learning.

• We demonstrate the effectiveness of our ap-
proach by outperforming several existing
strong baselines on a multilingual retrieval
benchmark, MIRACL.

2 Related Work

Multilingual Information Retrieval. The de-
velopment of multilingual information retrieval
(MLIR) is important to support the demand for
global information access (Oard and Dorr, 1998;
Peters et al., 2012; Dwivedi and Chandra, 2016).
The advancements of MLIR can be categorized into
two factors: the development of benchmarks for
system evaluation by covering more languages (Li
et al., 2022b; Zhang et al., 2023b) and the improve-
ment of representation learning across different
languages (Lawrie et al., 2023; Yang et al., 2024).
On top of the available resources, some studies (Lin
et al., 2023b; Tan et al., 2024; Fang et al., 2024) aim
to enhance zero-shot transfer capabilities through
a novel dual-encoder architecture that jointly op-
timizes semantic alignment and lexical correspon-
dence across languages.

Besides, the other studies (Multi-Granularity;
Xu et al., 2024) introduce multi-granular con-
trastive learning combined with self-knowledge
distillation to preserve language-agnostic semantic
structures. Furthermore, recent studies (Ding et al.,
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Figure 2: Overview of our framework including three stages: i) construction of hard negative set, ii) LLM-aided
hard negative generation, and iii) effective mini-batch construction to facilitate contrastive learning with language
and topic information adjustments, where we ensure the languages are consistent, while the topics are diverse.

2024; Thakur et al., 2023) explore data augmenta-
tion strategies via large language models (LLMs)
and observe that synthetic multilingual training
data can enhance model robustness against linguis-
tic variations. Different from the existing studies
that focus on cross-lingual alignment, model ar-
chitecture design, and data augmentation, we ex-
plore how to leverage the available data to facilitate
dense retriever fine-tuning from a data utilization
enhancement perspective.

Hard Negative Mining for Dense Retrieval. The
efficacy of hard negative in dense retrieval has been
demonstrated in previous studies (Karpukhin et al.,
2020; Xiong et al., 2020; Mo et al., 2023b, 2024).
Theoretical studies (Zhou et al., 2024; Maharana
and Bansal, 2022; Mo et al., 2025b) demonstrate
that dynamic hard negative selection mechanisms
effectively enhance embedding space separability
via curriculum-based sampling strategies. To ad-
dress the scarcity of authentic hard negatives, gen-
erative models have been employed to construct
contextually coherent yet semantically contradic-
tory negative samples through controlled textual
perturbation techniques (Qiao et al., 2023; Mo
et al., 2023a; Li et al., 2024a; Su et al., 2025;
Mo et al., 2025a). Hybrid contrastive learning
frameworks (Li et al., 2022a; Zhao and Shu, 2025)
by integrating static and dynamic negative mining

strategies achieve better performance on semantic
textual similarity benchmarks. Different from the
existing methods that focus on single-language or
static negative mining, our study investigates how
to construct negative samples via selection and gen-
eration.

3 Methodology

3.1 Task Definition
Multilingual dense retrieval aims to retrieve rel-
evant information across multiple languages via
dense representation. Given a set of language
{l}Tt=1 and a query ql, a multilingual retriever is
expected to identify the relevant documents d+q
from the corresponding large collection Cl under
the monolingual setting, i.e., the query ql and its
candidate documents Dl = {dli}ki=1 are in the same
language l, where Dl ⊂ Cl and |Dl| ≪ |Cl|.

3.2 Method Overview
Our proposed method aims to facilitate effective
multilingual dense retrieval fine-tuning by con-
structing better hard negative samples and mini-
batch data. Then, the hard negative sampling
weight is integrated upon each query with the con-
trastive learning objective. The method overview is
presented in Figure 2, which includes three stages:
i) construction of hard negative set (Sec. 3.3), ii)
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Multilingual LLM-aided hard negative generation
(Sec. 3.4), and iii) effective mini-batch construction
to facilitate contrastive learning (Sec. 3.5).

3.3 Hard Negatives Set Construction
The common practice to initialize a set of hard
negative candidates for a specific query is to elim-
inate the positive sample from a top-k ranking
list produced by another type of retriever, e.g.,
BM25 (Robertson et al., 2009). However, it might
include a portion of false negatives due to the candi-
date documents at the top-rank position could still
be relevant without relevance judgments according
to the principle of pseudo relevant feedback (Xu
and Croft, 1996). Utilizing the false negative sam-
ples as hard negative signals might be harmful for
dense retriever fine-tuning.
Hard Negative Candidate Initialization. To ob-
tain the true negatives under multilingual scenar-
ios, we first design a multilingual retriever en-
semble approach for representation fusion to pro-
duce the initial candidate set. Specifically, we
employ multiple multilingual retrievers with dif-
ferent linguistic understanding capabilities to en-
code the query ql and every candidate document
dli. Then, a feature extraction layer E is em-
ployed to unify the output of each encoder fz
into the same dimension and concatenate them as
V(ql, dli) = E(f1(q

l, dli)) ◦ · · · ◦E(fz(q
l, dli)). Fi-

nally, the logit of the V(ql, dli) is used as the score
to produce the top-k candidate ranking list ϕ(ql).
False Negative Selection. With the initial rank-
ing list ϕ(ql), we aim to identify the false nega-
tives. To achieve this, we leverage a large lan-
guage model LLM to judge each candidate docu-
ment dli ∈ ϕ(ql) paired with corresponding query
and positive sample pair (ql, d+i ) via a designed
prompt to produce three granularity of relevance:
irrelevant, partially relevant, and highly relevant,
denoted as 0, 1, and 2, respectively. Finally, only
the ones judged as irrelevant remained in the hard
negative candidate set NCq, where the size of NCq

is denoted as |NCq|.

NCq = {dli ∈ ϕ(ql) | LLM(ql, d+q , d
l
i) = 0}

3.4 LLM-aided Hard Negative Generation
A part of the false hard negative candidates would
be filtered out after the sample selection in the
initial set NCq for query ql. To ensure the number
of samples in the hard negative candidate set NCq

of each query is the same for negative sampling

during the multilingual dense retriever fine-tuning,
we provide the supplement for the query that does
not have enough negative candidates, i.e., |NCq| <
N , where N is a pre-defined constant. To this end,
we conduct specific instruction fine-tuning under a
multilingual scenario for an LLM to equip it with
the generation ability of hard negatives.
Multilingual Instruction Fine-tuning. The as-
sumption is that a multilingual LLM with specific
multilingual instruction fine-tuning can achieve pre-
cise negative generation with better capacity to
identify multilingual samples (Li et al., 2024b),
compared to the vanilla LLM used in stage one
for hard negative judgment. To implement this,
we leverage the summarization-related instructions
from the Alpaca dataset (Taori et al., 2023) as Is
and translate them into each language l by Google
Translate (Google) to form a multilingual instruc-
tion set I ′

s. Then, the vanilla LLM is fine-tuned
with I ′

s to produce its variant LLMs.
Positive-Driven Back-Forward Generation.
With the multilingual instruction fine-tuned
LLMs, we summarize the positive d+q in terms
of the corresponding query ql, which aims to
obtain query-centric key information from a
lengthy document. Then, we continue to generate
a new query on top of the summary S l

q and use
it to obtain additional negatives NC′

q via the
multilingual retriever ensemble mechanism in the
previous stage 1. We add the top candidates NCt

q

from NC′
q in NCq to ensure the number of final

hard negatives for each query is equal to N , i.e.,
|NCq|+ |NCt

q| = N .

3.5 Effective Mini-Batch Construction to
Facilitate Contrastive Learning

The contrastive learning (CL) paradigm is widely
used in dense retriever fine-tuning due to its sophis-
tication in leveraging the negatives. The training
objective is formulated as

LMR = − log
esim(ql,d+q )

esim(ql,d+q ) +
∑

d−q ∈{D−} e
sim(ql,d−q )

where sim
(
ql, d+q

)
denote the cosine similarity be-

tween the query and document.
For multilingual retrieval, the query ql used in

the same mini-batch could be from various lan-
guages. A natural property of CL is the usage of in-
batch negatives, where each query-document pair
could be negative for the other samples in the same
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mini-batch. Thus, increasing the difficulty of dis-
tinguishing between different samples in the same
batch can increase the challenge of model training.
Following this principle, we ensure the language
of each query-document pair in a mini-batch is the
same, since the samples in various languages could
be easier to identify due to the lower similarity,
compared to those in the same language.

Besides, we also enable each mini-batch to in-
clude data samples from various topics to enhance
the diversity of semantic features for fine-tuning.
The topic information is obtained by employing
two classifiers (Joulin et al., 2016; Joulin, 2016) to
perform text classification on each positive docu-
ment d+q at different granularities. Then, we clus-
ter the output labels of the two classifiers corre-
sponding to each data sample into the predefined
C topics as C = {C1, C2, . . . , C12}. Based on
the language and topic information, we construct
each mini-batch with monolingual and multi-topic
data samples by uniform sampling, according to
the number of samples for various languages and
topics. This ensures that low-resource languages
and underrepresented topics are adequately repre-
sented. In addition, for each data point, we apply
a weighted mechanism for negative sampling. The
weight assigned to each negative is

ω(d−q ) = αl(d
−
q ) + βc(d

−
q )

where αl(·) and βc(·) are the language weight and
topic weight based on the portion of each category.
Finally, the loss calculation for each mini-batch B
is incorporated with the weight and vanilla con-
trastive learning loss as

Lfinal =
1

|B|
∑

(q,d+,d−)∈B
ω(d−)× LMR

4 Experiments

4.1 Experimental Setup
Datasets and Metrics. We evaluate our model
on the multilingual retrieval benchmark MIR-
ACL (Zhang et al., 2023b). Following prior
study (Zhang et al., 2023a), we conduct dense
retrieval via Pyserini (Lin et al., 2022) and use
nDCG@10 and Recall@100 as evaluation metrics.
More details are provided in Appendix A.
Implementation Details. We conduct multilin-
gual dense retriever fine-tuning via mixing all lan-
guages as training data based on Tevatron (Gao

et al., 2022). The validation set is 10% of the
training set with a random sample. Then, the
trained retriever is applied to each language for
evaluation. We employ mBERT (Devlin et al.,
2019), mDPR (Zhang et al., 2023b), mE5 (Wang
et al., 2022) and BGE (Chen et al., 2024) as the
base models of our method. For hard negatives
selection and generation, we employ the Llama-
3.1-70B-instruct (Dubey et al., 2024) model. For
topic information in mini-batch construction, we
use two classification models trained on the DB-
pedia Ontology and Yahoo Answers datasets pro-
vided in fastText model (Joulin et al., 2016; Joulin,
2016). More implementation details are provided
in Appendix B.1 and our released code at https:
//github.com/miaomiao1205/xir_BDUMDR.
Baselines Methods. We compare our method
with several widely-used and strong baselines, in-
cluding: (1) BM25 (Robertson et al., 2009): an
unsupervised lexical match retriever with strong
generalization ability, (2) mBERT (Devlin et al.,
2019): a multilingual version of BERT that pro-
vides dense contextualized representations, (3)
mDPR (Zhang et al., 2023b): a dense passage
retriever fine-tuned with contrastive learning on
Enlish MS MARCO (Bajaj et al., 2016) dataset, (4)
mContriever (Izacard et al., 2021): an unsuper-
vised multilingual dense retriever trained on Enlish
MS MARCO version, (5) mE5large (Wang et al.,
2022): a multilingual text embedding model opti-
mized for retrieval and semantic similarity tasks,
and (6) BGE (Chen et al., 2024): a state-of-the-art
multilingual embedding model designed for cross-
language retrieval and semantic matching.

In addition, we also compare our hard negatives
construction approach with several existing strate-
gies, including: (1) Naive Top-K (Karpukhin et al.,
2020): Using top-k retrieved candidate documents
except the positive ones as hard negatives, (2) Top-
K shifted by N (Xiao et al., 2023): Removing top-
N retrieved candidate documents first and using the
remaining as hard negatives, (3) TopK-Abs (Lee
et al., 2024; Merrick et al., 2024; Ding et al., 2020):
Using top-N retrieved candidate documents whose
similarity score is lower than a pre-defined thresh-
old as hard negatives, (4) TopK-MarginPos (Mor-
eira et al., 2024): The threshold is set as the upper-
bound similarity score of the positive minus a fixed
margin, and (5) TopK-PercPos (Moreira et al.,
2024): The threshold is determined by the per-
centage of the maximum similarity score of the
positive. For Top-K shifted by N, TopK-Abs, TopK-
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Model Avg ar bn en es fa fi fr hi id ja ko ru sw te th zh

BM25 39.4 48.1 50.8 35.1 31.9 33.3 55.1 18.3 45.8 44.9 36.9 41.9 33.4 38.3 49.4 48.4 18.0

mBERT 39.9 46.2 42.8 37.6 44.8 46.2 45.9 41.8 38.6 27.8 41.4 40.1 39.8 29.2 34.4 33.2 48.9

mDPR 41.5 49.9 44.3 39.4 47.8 48.0 47.2 42.5 38.3 27.2 43.9 41.9 40.7 29.9 35.6 35.8 51.2

mContriever 43.3 52.5 50.1 36.4 41.8 21.5 60.2 31.4 28.6 39.2 42.4 48.3 39.1 56.0 52.8 51.7 41.0

mE5large 66.5 76.0 75.9 52.9 52.9 59.0 77.8 54.5 62.0 52.9 70.6 66.5 67.4 74.9 84.6 80.2 56.0

BGE 69.2 78.4 80.0 56.9 56.1 60.9 78.6 58.3 59.5 56.1 72.8 69.9 70.1 78.7 86.2 82.6 62.7

OursmBERT 57.9† 66.2† 65.5† 48.8† 48.5† 52.7† 64.8† 53.4† 45.4† 44.9† 61.9† 56.2† 55.5† 64.3† 76.3† 67.4† 54.8†

OursmDPR 66.8† 75.7† 74.1† 55.9† 55.8† 61.6† 75.8† 60.7† 53.8† 52.1† 71.2† 67.8† 65.1† 73.9† 84.2† 74.8† 65.9
OursmE5 67.4† 77.2† 76.7† 52.1 52.4 59.8† 77.6 56.2† 61.7 53.4† 71.5† 68.3† 67.2 75.4† 84.8† 80.9† 62.9†

OursBGE 70.6† 80.6† 80.8† 57.6† 57.4† 62.2† 79.6† 59.8† 61.4† 57.5† 74.6† 71.8† 71.6† 79.6† 87.3† 83.2† 65.3†

Table 1: Multilingual retrieval performance with nDCG@10 score on the MIRACL dataset across 16 languages.
† denotes significant improvements with t-test at p < 0.05 between our methods with the same corresponding
backbone model. Bold and underline indicate the best and the second best result.

Method Avg ar bn en es fa fi fr hi id ja ko ru sw te th zh

Naive Top-K 67.6 78.6 79.3 51.2 51.0 59.5 77.8 56.6 58.2 50.3 72.2 69.5 69.3 78.1 85.8 82.0 62.8

Top-K shifted by N 67.8 78.1 79.6 52.1 51.6 60.2 77.6 57.1 58.4 51.4 71.8 69.8 69.4 77.6 85.4 82.1 63.2

TopK-Abs 67.8 78.4 79.2 51.9 51.8 59.8 77.8 57.3 58.2 51.8 71.6 69.9 69.5 78.2 85.2 81.8 63.0

TopK-MarginPos 67.9 77.8 79.1 52.8 52.2 60.2 78.0 57.5 58.6 52.2 71.4 69.7 68.8 78.5 85.6 82.2 62.5

TopK-PercPos 68.1 78.8 79.6 52.4 52.8 60.0 77.5 57.6 58.8 52.4 72.4 69.9 69.4 78.3 85.9 81.6 63.4

Ours 70.6 80.6 80.8 57.6 57.4 62.2 79.6 59.8 61.4 57.5 74.6 71.8 70.8 79.6 87.3 83.2 65.3

Table 2: Comparison of different hard negative construction methods based on the BGE model for multilingual
retrieval evaluated on the MIRACL dataset with nDCG@10 scores. Bold indicates the best result.

MarginPos, and TopK-PercPos, we set the hyper-
parameters as N=10, 0.6, 0.15, and 90% for their
optimal performance, respectively. More configu-
ration details are provided in Appendix B.3.

4.2 Main Results

The main results on MIRACL datasets with 16
languages are presented in Table 1.

We observe that our method outperforms base-
line methods on most languages, except slightly
lower on a few high-resource ones, e.g., French
(fr) and Chinese (zh). Specifically, we achieve
1.4% absolute gain compared to the state-of-the-art
BGE on average scores. The superior effective-
ness can be attributed to two aspects: (1) the high-
quality hard negatives mined by our multilingual
retriever ensemble mechanism and the aid from
multilingual LLM for hard negative generation fur-
ther enhance the semantic discrimination ability,
and (2) the richer supervision signals and semantic
information provided by the effective mini-batch
construction, which increase the challenge for the
model during training. Moreover, adapting our
method to different backbone models consistently
yields improved performance, with BGE generally
achieving the best results, except in French (fr) and

Ablation nDCG@10 Recall@100

Full Model 70.6 95.9
w/o Stage 1 66.9 93.1
w/o Stage 2 68.5 94.3
w/o Stage 3 68.8 94.5

Table 3: Ablation on three stages of our methods based
on the BGE on MIRACL. i) Stage 1: Multilingual Re-
triever Ensemble for Hard Negatives Set Construction,
ii) Stage 2: LLM-aided Hard Negative Generation, and
iii) Stage 3: Effective Mini-Batch Construction.

Chinese (zh). Such a phenomenon indicates the
feasibility of our method to further improve the
multilingual retrieval performance on top of any
sophisticated models.

4.3 Comparison among Hard Negative
Mining Methods

We compare our strategy with several existing ap-
proaches based on BGE to validate our negative
construction mechanism, which filters false nega-
tives and leverages a multilingual LLM. The results
are reported in Table 2, which shows that our strat-
egy consistently achieves the best results on MIR-
ACL across all languages. Specifically, our strat-
egy outperforms the second-best method (TopK-
PercPos) by 2.5% absolute improvement, which
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Ablation nDCG@10 Recall@100

Full Model 70.6 95.9
w/o mE5large 69.2 95.0
w/o BGE 69.1 94.9

Table 4: Ablation on hard negative samples initialization
by integrating various models with average scores on
MIRACL.

Ablation nDCG@10 Recall@100

Full Model 70.6 95.9
w/o LLM judgment 67.5 93.3
w/o ground-truth 68.1 93.8

Table 5: Ablation on hard negative samples filtering by
providing various references with average scores.

demonstrates our better effectiveness. This is con-
tributed by the ability of our method to capture
complex semantic relationships, and thus, more
high-quality hard negative samples could be se-
lected for model training. The additional experi-
mental results on top of other backbone models are
provided in Appendix D.

4.4 More Comparison

Ablation Study. We investigate the effectiveness
of each component within our methods on the MIR-
ACL. The results are shown in Table 3. We observe
that each component can contribute about 2% ab-
solute gain of the NDCG@10 score, and the ef-
fectiveness of stage 1 is more obvious than the
other two. Such results indicate the importance
of maintaining high-quality samples in the hard
negatives candidate set, which is consistent with
previous studies (Karpukhin et al., 2020; Zhang
et al., 2023b). Then, continuing to polish the candi-
date set (e.g., generating new samples from LLM)
can further enhance the utilization of hard negatives
for contrastive retriever fine-tuning. Additionally,
we can also observe that the model performs worse
than BGE without combining all three stages. This
is because the functionality of our three stages is
consistent, including data quality detection, data
sample generation, and diversity utilization in mini-
batches. Thus, it is possible that only combining
them to obtain optimal results, especially when the
backbone model is powerful, e.g., the training pro-
cedure of BGE, might already integrate some of
these data utilization aspects.

Impact of Hard Negatives Set Construction.
We investigate the impact of hard negative can-
didate initialization and false negative filtering in

Ablation nDCG@10 Recall@100

Full Model 70.6 95.9
w/o MIFT 69.4 95.2
w/o PDBG 69.2 95.1

Table 6: Ablation on LLM-aided hard negative genera-
tion via different strategies with average scores.

Method nDCG@10 Recall@100

Full Model 70.6 95.9
w/o Topic Balance 70.3 95.6
w/o Same Language 69.4 94.7
w/o Both 68.5 94.3

Table 7: Performance of constructed effective mini-
batch for multilingual dense retriever fine-tuning.

our hard negative construction mechanism. Table 4
shows the performance for the initialization with
different models. We observe a performance drop
when removing either model’s retrieved results
for the integration on the construction of candi-
date hard negatives, i.e., without mE5large or BGE,
which suggests that relying on a single model is in-
sufficient for generating high-quality hard negative
candidates.

For false negative filtering, Table 5 presents the
score with different filtering approaches. We find
that either removing the ground-truth information
or the LLM judgment results in a performance drop.
Besides, the results indicate that the LLM judg-
ment contributes more to identifying false nega-
tives, which confirms our conjecture that the multi-
lingual ability of LLMs is beneficial to select hard
negatives in multilingual dense retrieval.

Impact of the Strategies for LLM-aided Hard
Negative Generation. In addition to identifying
false negatives, we also utilize LLMs for hard neg-
ative generation. Table 6 shows the impact of us-
ing various mechanisms for the negative genera-
tion. We can observe that both multilingual in-
struction fine-tuning (MIFT) and positive-driven
back-forward generation (PDBG) can improve the
retrieval performance. The improvement can be at-
tributed to MIFT, which directly impacts the LLM’s
understanding of task requirements, thereby en-
abling PDBG to generate additional hard negatives
in a complementary paradigm that facilitates re-
triever fine-tuning.

Impact of Effective Mini-Batch Construction
for Model Fine-tuning. We adjust the language
and topic distribution in the mini-batch for model
fine-tuning. Table 7 reflects the effectiveness of
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Hard Negatives Avg. ar bn en es fa fi fr hi id ja ko ru sw te th zh

From Retrieval 90.9 92.4 97.1 80.6 83.9 90.9 92.2 88.0 92.9 90.0 88.7 90.7 87.8 95.7 96.1 96 89.8
From LLM 9.1 7.6 2.9 19.4 16.1 9.1 7.8 12.0 7.1 10.0 11.3 9.3 12.2 4.3 3.9 4.0 10.2

Eliminatation 19.5 17.3 9.4 32.6 19.7 19.8 18.2 27.3 17.1 20.9 22.9 19.7 24.5 12.0 12.1 12.1 21.3

Table 8: The first two rows present the statistics of the hard negatives obtained from retrieval (stage 1) and generated
from LLM (stage 2). The last row reports the percentage of the eliminated false hard negatives across all languages.

Sampling Weight Type nDCG@10
ω α β

0.95 0.55 0.4 69.5
0.85 0.45 0.4 70.6
0.75 0.55 0.2 68.6
0.65 0.45 0.2 69.9

Table 9: Performance of our model with different hard
negative sampling weights. ω: hard negative sampling
weight. α: language weight. β: topic weight.

our strategies for constructing mini-batches. We
can see that both keeping all the data points in the
same language (w/o Topic Balance) and balancing
topic distribution (w/o Same Language) within a
mini-batch are helpful for the retriever model fine-
tuning. In addition, applying them simultaneously
can further improve the final performance. These
results emphasize the effectiveness of language
consistency and topic equilibrium in mini-batch
construction.

5 Analysis

5.1 Quantitative Analysis of Improved Hard
Negatives

We conduct a quantitative analysis to comprehen-
sively understand the aspects of our method to im-
prove hard negatives. The results are shown in
Table 8. The first row indicates the percentage of
false negative samples eliminated from the initial
hard negative candidates. We can see that over
20% samples would be filtered out, while some
differences remain across various languages. The
results might be related to the multilingual ability
of LLMs, e.g., the high-resource languages (en, fr,
ja, ru, etc.) tend to be identified much more easily.

Since we cannot control how many false nega-
tives would be eliminated, the generated hard neg-
atives supplied by fine-tuned LLMs are used to
enhance the diversity of hard negative candidates
from another aspect. The corresponding statistics
are shown in the second and third rows in Table 8,
where the ratio of hard negatives produced by the
initialization and selection in the first stage versus
the LLM-aided generated samples in the second

10 20 30 40 50 60 70 80 90 100
Hard Negative Set Size N

52

56

60

64

68
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Figure 3: Model performance with average NDCG@10
on different initial hard negative candidate set sizes N .

stage is about 1:9. The better data ratio could be
further explore in future study.

5.2 Weight of Hard Negative Sampling

During the mini-batch construction, the hard nega-
tive sampling weights are obtained automatically
based on the portion of the language and topic
among the data points. To analyze the impact of
hard negative sampling weights, we manually con-
trol them to conduct additional analysis. The re-
sults are shown in Table 9. We observe that the
hard negative sampling weights could be an empir-
ical value in terms of better retrieval performance.
Either reducing the language weight or increas-
ing the topic weight can improve retrieval perfor-
mance. This implies that the smaller language
weight α urges the model to pay more attention
to low-resource languages, and the higher topic
weight β provides more semantic features, both
benefit for obtaining better contrastive samples.

5.3 Impact of Initial Hard Negative
Candidate Set Size

Figure 3 shows the average retrieval performance
on different initial hard negative candidate set sizes
N . We observe that for each backbone model, the
performance peak usually occurs when N is be-
tween 30 to 40. Such results indicate that the opti-
mal size for the constructed hard negative candidate
set should be empirically selected, since smaller
N cannot ensure sufficient potential high-quality
candidates, while a larger N might increase the
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difficulty for identification.

6 Conclusion

In this work, we propose a method to boost data uti-
lization for multilingual dense retrieval contrastive
fine-tuning from two aspects: i) obtaining high-
quality hard negatives through selection and gener-
ation, and ii) constructing effective mini-batches by
adjusting language and topic semantic distribution.
By addressing the false hard negative issues and
obtaining the high-quality ones, we integrate them
into negative sampling with constructing effective
mini-batches during retriever fine-tuning. Experi-
mental results show that our method outperforms
several existing strong baselines on a multilingual
retrieval benchmark and demonstrates the superior
effectiveness on boosting data utilization.

Limitations

Although with better performance, the multiple
stages involved with calling LLMs in our method
might raise cost concerns, which can be optimized
by using an efficient or low-cost LLM. Neverthe-
less, it is conducted during the training phase, so
no efficiency issue for inference would be raised.
Besides, the judgment of false negatives via LLMs
might still be inaccurate, which is an open question
in utilizing pseudo relevance feedback (PRF) in
terms of information retrieval. The document in
PRF could be positive or negative for a given query,
while we cannot determine it absolutely without
relevance judgment. Thus, a more sophisticated
mechanism for false negative judgment can be ex-
plored in the future, and some potential human
validation could be helpful to improve the accuracy
of the identification mechanism.
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Appendix

A Dataset Statistic

The statistic of the MIRACL dataset (Zhang et al.,
2023b) is shown in Table 10. MIRACL is a mul-
tilingual retrieval benchmark dataset covering 18
languages, with 726k manual relevance judgments
and a collection size of over 100 million documents.
Each query is provided with an average of 10 manu-
ally verified relevance labels. We use 16 languages
from MIRACL, except for German (de) and Yoruba
(yo), due to the lack of training data. For LLM mul-
tilingual instruction fine-tuning for negative genera-
tion, we use the Alpaca dataset (Taori et al., 2023).

B Implementation Details

B.1 Hyperparameter Setting

We implement all models by Pytorch (Paszke,
2019) and Huggingface’s Transformers li-
brary (Wolf et al., 2019). All experiments are
conducted on an Nvidia A100 80G GPU. For
multilingual dense retriever training, we use
the Adam optimizer with maximum query and
paragraph lengths set to 64 and 256, respectively,
and set the batch size as 24. The learning rate is set
to 3e-6 and the number of epochs to 16 for mBERT
and mDPR. For mE5 and BGE, the learning rate is
2e-6 and the number of epochs is 20. Additionally,
for each query, we randomly sample one positive
sample and 7 hard negative samples.

B.2 Hard Negatives Set Construction

False Hard Negatives Selection. For each hard
negative sample in the candidate set, we prompt
GPT-4o (2024-11-20) to select the true hard nega-
tives as shown in Table 17. The size of the hard neg-
atives candidate set is set to 40. Besides, we use the
positive sample as a reference to score each hard
negative candidate from two aspects, information
completeness and accuracy with three granularities
– (0,1,2). The final scores will be their combination.
The candidate with a final score of 2 is considered
a false hard negative sample.
LLM-aided Hard Negative Generation. We set
the sampling size of hard negatives to 30 during
the training phase for each query. Therefore, after
the filtering of false negative samples, if the num-
ber of hard negative samples is less than 30, we
will deploy LLM-aided hard negative generation to
supply the sample number to 30.

B.3 Configuration of Compared Hard
Negative Mining Methods

The configurations for the compared hard negative
mining methods are selected according to hyperpa-
rameter tuning. For the Top-K shifted by N method,
the configuration range for N is [0, 100], with an in-
terval of 10. For the TopK-Abs, TopK-MarginPos,
and TopK-PercPos methods, the threshold/margin
values range from [0, 1], with increments of 0.1
for TopK-Abs and 0.05 for TopK-MarginPos and
TopK-PercPos, respectively. We observe that the
Top-K shifted by N method performs best when
N is set to 10, i.e., when the top-10 ranked nega-
tive samples are discarded. For TopK-Abs, TopK-
MarginPos, and TopK-PercPos approaches, we find
that the model achieves the best performance when
the threshold is set to 0.6, 0.15, and 90%, respec-
tively. We use their optimal configuration to con-
duct comparison experiments.

B.4 Topic Classification

About topic classification for adjusting semantic
feature within mini-batch construction, we use the
fastText model (Joulin et al., 2016; Joulin, 2016).
Specifically, we use the models trained on the DB-
pedia Ontology and Yahoo Answers datasets and
then apply to the MIRACL training set for topic
classification. DBpedia Ontology is a dataset for
text classification with 14 fine-grained entity cate-
gories, while Yahoo Answers provides 10 coarse-
grained general categories. However, these cate-
gorizations might not be directly applicable to the
MIRACL training set. Thus, we combine both
label categorizations to restructure the topic classi-
fication scheme that can better cover the MIRACL
training set. The categorization details are shown
in Table 11. The final distribution of topic classifi-
cation on the MIRACL is shown in Table 13.

C Human Validation

To ensure the quality of the identified false nega-
tives from LLMs, we conduct a validation study
on a subset including high, medium, and low re-
sources. For each language, we randomly sample
100 false negatives for human validation with three
annotators (Wang et al., 2024). The evaluation
criteria are based on a three-level rating scheme
(0/1/2), which denotes the relevance between the
potential false negative and the given query. The
results are shown in Table 12. We can see that most
of the false negatives identified by LLMs are con-

12386



Lang All Arabic Bengali English Spanish Persian Finnish French Hindi

ISO ar bn en es fa fi fr hi

Train
#Q 40,203 3,495 1,631 2,863 2,162 2,107 2,897 1,143 1,169
#J 343,177 25,382 16,754 29,416 21,531 21,844 20,350 11,426 11,668

Test
#Q 13,071 2,896 411 799 648 632 1,271 343 350
#J 126,076 29,197 4,206 8,350 6,443 6,571 12,008 3,429 3,494

Passages 90,416,887 2,061,414 297,265 32,893,221 10,373,953 2,207,172 1,883,509 14,636,953 506,264

Lang All Indonesian Japanese Korean Russian Swahili Telugu Thai Chinese

ISO id ja ko ru sw te th zh

Train
#Q 40,203 4,071 3,477 868 4,683 1,901 3,452 2,972 1,312
#J 343,177 41,358 34,387 12,767 33,921 9,359 18,608 21,293 13,113

Test
#Q 13,071 960 860 213 1,252 482 828 733 393
#J 126,076 9,668 8,354 3,057 13,100 5,092 1,606 7,573 13,113

Passages 90,416,887 1,446,315 6,953,614 1,486,752 9,543,918 131,924 518,079 542,166 4,934,368

Table 10: Statistics of MIRACL. The #Q and #J denote to number of queries and relevance judgments, respectively.

Yahoo Answers DBpedia Ontology MIRACL

Society & Culture Company Books & Literature (BL)
Science & Mathematics Educational Institution Science & Mathematics (SM)
Health Artist Life & Health (LH)
Education & Reference Athlete Jobs & Education (JE)
Computers & Internet Office Holder Computers & Internet (CI)
Sports Mean Of Transportation Sports (SP)
Business & Finance Building Business & Finance (BF)
Entertainment & Music Natural Place Politics & Government (PG)
Family & Relationships Village Traffic & Transportation (TT)
Politics & Government Animal Arts & Entertainment (AE)

Plant Geography (GE)
Album Others (OT)
Film
Written Work

Table 11: Topic labels categorization for Yahoo Answers, DBpedia Ontology, and MIRACL datasets.

Subset Agreement with Human Judgment

0 1 2

en 94% 3% 3%
es 91% 5% 4%
zh 92% 5% 3%
hi 87% 6% 7%
bn 90% 6% 4%

Table 12: The agreement between human validation and
identification from LLMs on the false negative.

sidered irrelevant (annotated as 0) in the validation
subset, with an agreement rate of 82.5% measured
by Fleiss’ Kappa among three annotators, demon-
strating the correctness of LLMs’ identification to
some degree.

D Addtional Experimental Results

We present additional experimental results in this
section. For the main comparison with existing
multilingual retrieval methods, the results with the
Recall@100 score are reported in Table 14, where
we can see our method still shows strong perfor-
mance by outperforming most of the baselines. For
the results comparison among hard negative mining
methods, results with NDCG@10 and Recall@100
metrics are shown in Table 15 and Table 16 with
different backbone models. We observe a consis-
tently better performance of our method compared
with the others, which demonstrates the superior
generalizability across different backbone models
of our approach.
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Lang BL SM LH JE CI SP BF PG TT AE GE OT Total

ar 139 315 358 49 62 111 61 158 98 273 1519 352 3,497
bn 94 109 82 46 67 84 23 75 22 126 795 108 1,631
en 88 229 261 55 88 180 62 108 80 524 929 259 2,863
es 72 168 141 36 73 85 61 74 63 341 781 267 2,162
fa 101 204 180 55 99 87 65 59 65 304 688 200 2,107
fi 111 217 176 35 80 195 77 90 132 443 1011 330 2,997
fr 27 103 58 27 31 75 15 42 35 174 462 94 1,143
hi 31 155 91 14 29 55 45 52 30 93 457 117 1,169
id 122 378 160 59 223 89 153 152 113 502 1822 293 4,066
ja 146 184 150 74 96 286 107 127 145 626 1243 292 3,476
ko 12 112 39 6 26 16 21 50 20 59 437 70 868
ru 270 242 192 77 66 183 90 188 217 728 1862 568 4,683
sw 12 164 215 32 25 113 21 119 59 221 789 131 1,901
te 90 177 130 208 28 63 40 77 100 378 1935 226 3,452
th 111 192 180 159 91 113 50 114 61 521 1151 229 3,002
zh 50 130 44 50 45 60 43 62 40 183 534 71 1,312

Total 1,476 3,079 2,457 982 1,129 1,795 934 1,547 1,280 5,496 16,415 3,607 40,197

Table 13: Topic distribution results of MIRACL training set for each language.

Model Avg. ar bn en es fa fi fr hi id ja ko ru sw te th zh

BM25 78.7 88.9 90.9 81.9 70.2 73.1 89.1 65.3 86.8 90.4 80.5 78.3 66.1 70.1 83.1 88.7 56.0

mBERT 77.8 82.6 81.2 75.7 84.8 88.4 77.6 90.7 78.2 58.4 83.7 72.4 78.8 60.6 75.6 65.4 91.3

mDPR 78.8 84.1 81.9 76.8 86.4 89.8 78.8 91.5 77.6 57.3 82.5 73.7 79.7 61.6 76.2 67.8 94.4

mContriever 85.5 92.5 92.1 79.7 84.1 65.4 95.3 82.4 64.6 80.2 87.8 87.5 85.0 91.1 96.1 93.6 90.3

mE5large 94.4 97.3 98.2 87.6 89.1 92.9 98.1 90.6 93.9 87.9 97.1 93.4 95.5 96.7 99.2 98.9 93.3

BGE 95.6 97.6 98.7 90.7 91.1 94.0 97.9 93.8 94.4 90.5 97.5 95.5 95.9 97.2 99.4 99.1 96.9

OursmBERT 87.8† 91.2† 92.1† 83.4† 83.2 87.8 90.8† 90.9† 81.6† 77.6† 91.1† 84.3† 86.2† 90.6† 94.9† 89.2† 90.8

OursmDPR 94.4† 96.8† 96.3† 90.1† 90.8† 93.9† 96.6† 96.2† 90.2† 86.8† 96.6† 94.8† 94.5† 94.8† 97.4† 96.6† 97.6

OursmE5 94.8† 97.4† 98.4† 86.9 88.6 93.4† 97.9 92.2† 93.4 88.4† 97.3† 94.4† 95.4 96.2 99.3† 99.2† 98.6†

OursBGE 95.9† 97.9† 98.9† 89.9 90.6 94.9† 98.1† 95.4† 94.3 90.4 98.1† 96.1† 96.3† 97.0 99.3 99.1 97.3†

Table 14: Multilingual retrieval performance with Recall@100 score on the MIRACL dataset across 16 languages.
† denotes significant improvements with t-test at p < 0.05 between our methods with the same corresponding
backbone model. Bold and underline indicate the best and the second best result, respectively.
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Model Method Avg ar bn en es fa fi fr hi id ja ko ru sw te th zh

m
B

E
R

T

Naive Top-K 53.6 63.8 62.9 45.4 44.7 49.7 60.3 50.4 41.2 39.9 56.5 49.5 48.3 59.2 72.1 63.4 50.4

Top-K shifted by N 53.9 64.1 63.1 45.7 44.8 50.1 60.5 50.7 41.5 40.4 56.8 49.6 48.8 59.6 72.4 63.6 50.6

TopK-Abs 54.1 64.3 63.4 46.1 44.6 50.5 59.9 51.2 42.3 40.5 56.9 49.4 49.2 60.1 72.6 63.9 51.2

TopK-MarginPos 54.5 63.7 63.8 46.5 45.2 50.4 61.2 52.1 43.1 41.2 57.1 50.1 49.6 60.6 71.9 62.8 52.6

TopK-PercPos 54.6 64.2 63.6 46.2 45.4 50.3 61.1 52.3 43.3 41.4 57.0 50.3 49.1 60.6 72.3 63.9 52.8

Ours 57.9 66.2 65.5 48.8 48.5 52.7 64.8 53.4 45.4 44.9 61.9 56.2 55.5 64.3 76.3 67.4 54.8

m
D

PR

Naive Top-K 61.0 72.9 70.4 47.2 50.8 55.2 70.9 54.3 46.4 44.3 65.3 59.4 59.3 67.7 80.6 68.2 62.9

Top-K shifted by N 61.8 73.1 71.3 48.4 51.4 56.8 70.6 56.3 47.8 45.2 64.2 61.3 60.2 68.6 81.4 68.2 63.2

TopK-Abs 62.1 73.3 70.9 47.9 50.6 57.5 70.7 57.8 49.0 45.9 64.5 60.9 61.0 69.7 81.5 68.0 64.1

TopK-MarginPos 62.4 72.7 71.6 48.8 51.8 57.3 71.1 57.2 48.4 45.9 65.4 62.1 60.8 69.4 81.8 69.2 63.8

TopK-PercPos 62.2 73.4 70.6 49.2 51.6 57.1 71.3 57.5 47.8 45.5 66.2 61.4 61.3 69.2 82.2 68.8 62.8

Ours 66.8 75.7 74.1 55.9 55.8 61.6 75.8 60.7 53.8 52.1 71.2 67.8 65.1 73.9 84.2 74.8 65.9

m
E

5

Naive Top-K 63.5 72.9 73.2 48.9 48.6 56.4 74.5 52.2 58.1 49.4 68.1 63.1 63.3 71.6 80.2 76.5 58.3

Top-K shifted by N 63.8 73.1 73.4 49.3 49.2 56.6 74.8 52.5 57.9 49.6 68.5 64.4 63.5 71.9 80.4 76.8 58.5

TopK-Abs 64.0 73.3 73.6 49.7 49.6 56.8 74.4 53.1 58.2 49.8 69.1 64.6 63.9 72.3 80.8 77.2 57.8

TopK-MarginPos 64.2 73.4 73.9 49.9 49.7 57.1 74.1 53.4 58.6 50.2 69.2 64.3 64.1 72.6 81.2 77.6 58.4

TopK-PercPos 64.4 73.6 74.1 50.1 49.6 57.3 74.6 53.6 58.8 50.1 69.4 64.4 64.3 72.8 81.3 77.1 58.8

Ours 67.4 77.2 76.7 52.1 52.4 59.8 77.6 56.2 61.7 53.4 71.5 68.3 67.2 75.4 84.8 80.9 62.9

Table 15: Comparison of different hard negative construction methods based on different backbone models for
multilingual retrieval evaluated on the MIRACL dataset with nDCG@10 scores. Bold indicates the best result based
on the corresponding backbone model.

Model Method Avg. ar bn en es fa fi fr hi id ja ko ru sw te th zh

m
B

E
R

T

Naive Top-K 83.6 87.6 88.1 78.8 80.5 85.1 86.5 85.7 77.4 71.8 86.5 79.3 81.4 86.4 90.2 85.1 87.2

Top-K shifted by N 83.8 87.9 88.3 79.2 80.1 85.4 86.7 85.2 77.6 72.6 86.8 79.7 81.8 86.7 90.6 85.4 87.4

TopK-Abs 83.9 88.1 88.5 79.4 79.8 85.7 85.4 86.1 78.4 72.8 86.4 79.4 81.9 86.8 90.8 85.7 87.8

TopK-MarginPos 84.0 87.5 88.9 78.7 80.5 84.5 87.4 86.6 79.1 73.2 87.4 80.2 81.4 87.1 89.6 84.2 88.1

TopK-PercPos 84.4 88.4 88.4 79.7 80.7 84.9 87.2 86.8 79.3 73.6 87.2 80.5 81.6 87.2 89.9 85.9 88.3

Ours 87.9 91.2 92.1 83.4 83.2 87.8 90.8 90.9 81.6 77.6 91.1 84.3 86.2 90.6 94.9 89.2 90.8

m
D

PR

Naive Top-K 89.0 94.5 93.4 81.9 86.1 90.7 91.7 92.5 82.0 74.7 90.3 90.7 87.7 90.9 92.8 89.0 95.4

Top-K shifted by N 89.8 95.1 94.2 83.2 86.8 91.2 91.2 93.2 84.2 75.6 91.4 90.1 89.6 91.8 93.8 90.8 94.6

TopK-Abs 90.1 94.8 93.9 82.4 85.2 92.0 91.5 94.6 86.7 76.2 92.0 88.8 91.0 92.7 93.6 90.4 95.9

TopK-MarginPos 90.3 94.4 94.4 83.8 87.2 91.8 92.0 94.2 86.1 75.5 92.4 89.4 90.8 92.4 94.2 91.0 95.4

TopK-PercPos 90.0 94.8 93.8 84.3 86.8 91.8 92.0 94.4 82.6 74.6 92.7 89.8 91.4 92.2 94.4 90.8 94.2

Ours 94.4 96.8 96.3 90.1 90.8 93.9 96.6 96.2 90.2 86.8 96.6 94.8 94.5 94.8 97.4 96.6 97.6

m
E

5

Naive Top-K 91.9 94.9 95.3 83.4 82.9 90.8 95.8 90.5 91.2 86.4 95.2 91.3 92.4 93.9 96.2 95.8 94.9

Top-K shifted by N 92.1 95.1 95.5 83.6 83.4 90.6 95.6 90.7 90.7 86.6 95.4 91.7 92.6 94.1 96.3 95.9 95.1

TopK-Abs 92.1 95.3 95.2 83.8 83.6 90.4 95.2 90.8 91.3 87.1 95.8 91.8 92.3 94.3 96.6 96.2 94.6

TopK-MarginPos 92.2 95.4 95.1 84.1 83.8 90.9 94.9 90.4 91.6 86.8 95.7 91.4 92.5 94.6 96.4 96.4 94.8

TopK-PercPos 92.2 95.6 94.7 84.4 83.4 90.6 95.4 89.8 91.7 86.6 95.6 91.3 92.8 94.5 96.8 96.2 95.2

Ours 94.8 97.4 98.4 86.9 88.6 93.4 97.9 92.2 93.4 88.4 97.3 94.4 95.4 96.2 99.3 99.2 98.6

B
G

E

Naive Top-K 92.9 97.5 98.2 85.2 84.2 90.9 96.5 91.7 90.7 79.3 94.7 94.1 94.6 96.0 98.8 98.4 95.2

Top-K shifted by N 93.2 97.2 98.5 85.8 85.8 91.6 96.3 92.6 91.0 82.2 94.4 94.2 94.2 95.6 98.6 98.2 95.4

TopK-Abs 93.2 97.5 98.2 84.8 86.0 91.2 96.5 93.0 90.8 82.6 94.2 94.6 94.4 96.2 98.2 98.0 95.3

TopK-MarginPos 93.4 96.9 98.0 86.2 87.2 91.7 96.8 93.2 91.6 83.4 93.8 94.2 93.8 96.4 98.5 98.6 94.6

TopK-PercPos 93.6 97.7 98.4 85.8 87.6 91.4 96.1 93.1 91.8 83.6 94.9 94.7 94.1 96.1 98.8 97.8 95.6

Ours 95.9 97.9 98.9 89.9 90.6 94.9 98.1 95.4 94.3 90.4 98.1 96.1 96.3 97.0 99.3 99.1 97.3

Table 16: Comparison of different hard negative construction methods based on different backbone models for
multilingual retrieval evaluated on the MIRACL dataset with Recall@100 scores. Bold indicates the best result
based on the corresponding backbone model.
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Prompt for selecting false negatives

# Task Review:
Your task is to evaluate a Candidate Answer based on a given Question and Standard Answer. Use
the following two evaluation criteria to guide your assessment:

# Evaluation Criteria

## Information Accuracy
(1) Definition: Assess whether the Candidate Answer contains factual inaccuracies or misleading
information. If a Standard Answer is provided, base your judgment on both the Question and the
Standard Answer. If the Standard Answer is empty, evaluate based solely on the Question.
(2) Scoring Guidelines:

• 0: The Candidate Answer contains clear factual errors or significantly misrepresents the
meaning.

• 1: The Candidate Answer has minor inaccuracies, but the overall meaning is still mostly
correct.

• 2: The Candidate Answer is entirely accurate with no factual errors.

## Information Completeness
(1) Definition: Evaluate how well the Candidate Answer addresses the key aspects of the Question.
(2) Scoring Guidelines:

• 0: Major aspects of the question are not addressed or key points are missing.

• 1: Most key points are addressed, but some minor details are omitted.

• 2: All major and minor points are fully addressed.

# Input:
Question: {Input Question}
Candidate Answer: {Input Candidate Answer}
Standard Answer: {Input Standard Answer}
# Output:
{"Information Accuracy": {0/1/2}, "Information Completeness": {0/1/2}}

Table 17: Prompt for LLMs to judge false negatives.

12390


