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Abstract
With the growing computational demands of
large language models (LLMs), efficient infer-
ence has become increasingly critical for prac-
tical deployment. Depth pruning has emerged
as a promising approach for reducing the com-
putational costs of large language models by
removing transformer layers. However, ex-
isting methods typically rely on fixed block
masks, which can lead to suboptimal perfor-
mance across different tasks and inputs. In this
paper, we propose IG-Pruning, a novel input-
aware block-wise pruning method that dynami-
cally selects layer masks at inference time. Our
approach consists of two stages: (1) Discover-
ing diverse mask candidates through semantic
clustering and L0 optimization, and (2) Imple-
menting efficient dynamic pruning without the
need for extensive training. Experimental re-
sults demonstrate that our method consistently
outperforms state-of-the-art static depth prun-
ing methods, making it particularly suitable for
resource-constrained deployment scenarios.1

1 Introduction

Large Language Models (LLMs) (Brown et al.,
2020; AI@Meta, 2024; QwenTeam, 2025; Zhang
et al., 2024b, 2023a) have demonstrated remarkable
capabilities across a wide range of natural language
processing tasks. However, their immense model
size and computational demands present significant
deployment challenges (Wang et al., 2024; Zhou
et al., 2024), particularly in resource-constrained
environments and for latency-sensitive real-time
inference scenarios. To address this, pruning tech-
niques have become a crucial area of research (Ma
et al., 2023; Sun et al., 2023; Frantar and Alistarh,
2023; Ashkboos et al., 2024; Fang et al., 2024;
Ling et al., 2024; Zhang et al., 2023b; Gu et al.,
2021), being highly favored due to their potential
for reducing parameters for efficient inference.

†Corresponding author: Yang Feng.
1https://github.com/ictnlp/IG-Pruning
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Figure 1: Different Mask structure can lead to similar
perplexity scores but exhibit significant performance
variations across different downstream tasks.

As large LLMs continue to scale in size, re-
searchers have identified significant redundancy
within their layer structures. Studies from Liu et al.
(2023); Men et al. (2024); Gromov et al. (2024) re-
veal that word embeddings in adjacent layers often
change slightly due to residual connection, suggest-
ing that selective layer removal may have minimal
impact on performance. These findings have mo-
tivated increasing research interest in discovering
effective depth pruning strategies for LLMs, which
aim to reduce the number of transformer layers or
blocks in the model architecture while maintain-
ing performance. In recent years, depth pruning
methods (Song et al., 2024; Sieberling et al., 2024;
Kim et al., 2024; Ling et al., 2024) have emerged
as a promising approach for reducing LLM compu-
tational costs. Compared with fine-grained struc-
tured pruning methods (which remove the neurons
or channels), depth pruning has demonstrated su-
perior computational efficiency advantages in prac-
tical deployments (Kim et al., 2024).

However, a critical limitation of existing depth
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pruning methods is their reliance on a fixed layer
pruning mask determined offline based on global
layer importance metrics at a given sparsity level.
This static approach is problematic because differ-
ent fixed pruning masks, even at the same sparsity
level, can exhibit significant performance varia-
tions across different downstream tasks. For in-
stance, we observe that perplexity (PPL) is com-
monly used as a saliency metric for layer pruning
(Sieberling et al., 2024; Kim et al., 2024), but as
illustrated in Figure 1, different mask structures
can achieve similar perplexity scores while exhibit-
ing substantially different performance across vari-
ous downstream tasks. To overcome these limita-
tions and enable adaptive computation pathways,
researchers have explored various dynamic routing
approaches (Elhoushi et al., 2024; Fan et al., 2024;
Del Corro et al.; Schuster et al., 2022; Raposo et al.,
2024; Tan et al., 2024; Wu et al., 2024). How-
ever, most existing methods perform dynamic rout-
ing at the token level, which introduces significant
drawbacks: they lack comprehensive understand-
ing of sentence-level semantics, potentially leading
to globally inconsistent routing decisions. Further-
more, these approaches typically incur substantial
computational overhead from frequent token-level
routing calls and require extensive training of addi-
tional router networks alongside the original model
parameters, making them computationally expen-
sive and time-consuming to implement.

To address the challenges identified in exist-
ing works, we propose IG-Pruning, a novel block-
wise pruning method that dynamically selects layer
masks based on input characteristics at inference
time. Our approach consists of two stages: (1) a se-
mantic clustering-based mask discovery stage that
identifies diverse, high-quality mask candidates
while capturing global information through rapidly
converging trainable masks, and (2) a lightweight
inference-time routing mechanism that requires no
additional training of the base model parameters,
enabling efficient dynamic adaptation to varying
inputs.

Extensive evaluations demonstrate that our ap-
proach consistently outperforms state-of-the-art
static pruning methods across different sparsity
levels and model architectures on various zero-
shot tasks. For Llama-3-8B at 25% sparsity, IG-
Pruning preserves 87.18% of dense model per-
formance, surpassing the best baseline by 10.86
percentage points. Similarly, for Qwen-3-8B, IG-
Pruning maintains 96.01% of dense model perfor-

mance at 13.9% sparsity, compared to 90.37% for
the best baseline.

Our method trains only mask parameters while
keeping model weights frozen, enabling rapid adap-
tation with minimal computational overhead. Dur-
ing inference stage, it incurs negligible routing
overhead by efficiently skipping unimportant lay-
ers; and these advancements provides a viable path
toward deploying powerful LLMs in environments
with limited computational resources.

2 Related Work

Most static depth pruning approaches focus on
calculating saliency scores for each transformer
block, and removing layers according to these
scores. Commonly used saliency metrics include
cosine similarity (Song et al., 2024; Men et al.,
2024), magnitude, second-order derivatives (Kim
et al., 2024), and perplexity (Sieberling et al., 2024).
These works calculate layer importance as if they
are independent of others, which ignores the cou-
pling connections between layers. As discovered in
Fan et al. (2024), contiguous middle layers often ex-
hibit similar saliency scores, which inspired Chen
et al. (2024) to use small FFN or transformer blocks
to replace contiguous layers. EvoPress (Sieberling
et al., 2024) found that lower per-layer error does
not necessarily lead to better performance, and pro-
posed an evolutionary search algorithm to generate
offspring from parent masks, then select better can-
didates with lower perplexity or KL divergence.
Rather than directly removing layers, LaCO (Yang
et al., 2024) collapses consecutive redundant model
layers via layer averaging. MKA (Liu et al., 2024a)
transforms layer activations into low-dimensional
manifolds using diffusion kernel algorithms and
evaluates saliency using the NPIB metric.

Beyond one-shot pruning approaches, dynami-
cally skipping unimportant layers during inference
has also emerged as a promising research direction.
Early approaches include early skipping (Del Corro
et al.; Zhu et al., 2024), early exit (Elhoushi et al.,
2024), and periodic skipping (Liu et al., 2024b).
However, these methods typically require routers
for each layer and demand elaborate training of
original weights to recover performance. Dynamic
skipping has also been adopted in long-context and
multimodal models. Adaskip (He et al., 2024) fo-
cused on adaptive layer skipping for long-context
models, accelerating both prefilling and decoding
phases. RoE (Wu et al., 2024) employs token-wise
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Figure 2: Overview of our method. The approach consists of two stages: (1) Preparing mask candidates through
input clustering and soft mask training; (2) Dynamic pruning that selects the appropriate mask for each input at
inference time. This enables efficient computation by selectively skipping layers based on input characteristics
while maintaining model performance.

routing for multimodal LLMs and trains low-rank
adapters to replace the skipped layers.

3 Method

As illustrated in Figure 2, our framework consists
of two main stages: (1) Mask candidate discovery
and (2) Dynamic routing. In the first stage, we clus-
ter the semantic space of inputs and train cluster-
specific masks using hard concrete distributions, re-
sulting in diverse yet high-quality mask candidates
that each specialize in handling different input pat-
terns. During the second stage, at inference time,
we employ a lightweight routing mechanism that
maps each input to its most semantically similar
cluster and applies the corresponding pre-trained
mask, enabling efficient dynamic adaptation with-
out requiring additional training of router networks
or base model parameters.

3.1 Stage 1: Discovering Mask Candidates

In the first stage, we aim to discover a set of effec-
tive mask candidates for dynamic routing. Unlike
existing routing methods that typically employ per-
layer router networks to make skip decisions, we
propose a global routing strategy that dynamically

selects routing paths from a carefully curated can-
didate mask set.

We design our mask candidate discovery process
to satisfy two key requirements: Quality: Masks
must maintain strong general language generation
capabilities. Diversity: The candidate set must
provide sufficient variety to handle different input
patterns effectively.

To meet these requirements, we leverage hard
concrete distribution to model transformer block
masks to capture global routing information, and
apply L0 optimization with cluster-specific cali-
bration data, generating masks that cover diverse
computational needs.

Input Clustering. First, an encoder is used to
encode each sentence xi in the calibration dataset
into a fixed-dimensional embedding vector ei:

ei = Encoder(xi) (1)

where xi represents the i-th input, and ei ∈ Rd,
with d being the dimension of the embedding
vector. Next, the K-means algorithm is applied
to cluster all embedding vectors e1, e2, . . . , eM ,
where M is the size of the calibration set. The
K-means algorithm aims to find N clusters S =
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{S1, S2, . . . , SN} that minimize the within-cluster
sum of squares:

argmin
S

N∑

k=1

∑

ei∈Sk

∥ei − µk∥2 (2)

where µk is the centroid of cluster Sk. This results
in N cluster centers, each representing a class of
semantically similar input sentences.

Mask Training. Hard concrete distribution
(Louizos et al., 2018; Xia et al., 2022, 2024) has
been widely adopted in structured pruning. Follow-
ing prior work, we incorporate hard concrete distri-
bution to model transformer block masks, and use
L0 optimization to generate layer masks, enabling
joint learning of all layer masks while incorporat-
ing global information.

For each cluster Sk, we train a dedicated layer
mask z(k) ∈ RB using hard concrete distribution
and Lagrangian sparsity, where B is the total num-
ber of blocks in the model (for block-wise pruning,
B = 2L where L is the number of transformer
layers, representing both attention and FFN blocks
separately). Specifically, the masks z(k) are mod-
eled as follows:

First, for each block i in the model, sample u
(k)
i

from a uniform distribution:

u
(k)
i ∼ Uniform(0, 1), i ∈ {1, 2, . . . , B} (3)

Then, compute the soft mask value s(k)i for each
block using the sigmoid function:

s
(k)
i = σ

(
1

β
log

u
(k)
i

1− u
(k)
i

+ logα
(k)
i

)
(4)

Stretch the soft mask values to a specific interval
[l, r]:

s̃
(k)
i = s

(k)
i × (r − l) + l (5)

Finally, obtain the hardened mask z
(k)
i for each

block by clipping:

z
(k)
i = min(1,max(0, s̃

(k)
i )) (6)

The complete mask vector for cluster k is then
z(k) = [z

(k)
1 , z

(k)
2 , . . . , z

(k)
B ], where each element

corresponds to a specific transformer block in the
model. During training, these mask values are soft
(continuous values between 0 and 1), functioning
as scaling parameters. During inference, they are
binarized to either 0 (block skipped) or 1 (block
executed).

Here, σ denotes the sigmoid function. The tem-
perature β is fixed hyperparameter, and l < 0, r >
0 are two constants that stretch the sigmoid func-
tion output. α(k)

i are the main learnable parameters
for i-th block mask value in cluster k.

We enforce a target sparsity via a Lagrangian
term. Let starget be the target sparsity and t(k) be
the current sparsity of mask z(k) (computed as the
proportion of zeroes in the mask), the Lagrangian
penalty term L

(k)
s is:

L(k)
s = λ

(k)
1 (t(k)−starget)+λ

(k)
2 (t(k)−starget)

2 (7)

For the k-th cluster, the optimization objective
for its mask parameters logα(k) is to minimize:

L
(k)
total =

∑

xj∈Sk

LLM(xj ;W ⊙ z(k)) + L(k)
s (8)

where LLM is the language modeling loss and W
represents the model weights.

Routing Decision. To implement dynamic rout-
ing decisions, we maintain an embedding pool for
each semantic cluster to represent the cluster’s fea-
tures. These embeddings ck are initialized using
the cluster centers µk. During inference, for each
input sequence, we first extract its embedding rep-
resentation ex through the encoder, then calculate
the Euclidean distance between this embedding and
each cluster embedding ck. Based on the calculated
distances, we select the most similar cluster as the
best match for that input:

k∗ = argmin
k

||ex−ck||22, k ∈ {1, 2, . . . , N} (9)

After determining the best matching cluster, we
directly adopt the trained mask corresponding to
that cluster as the final execution mask for input x:

Mx = z(k
∗) (10)

where z(k
∗) is the binary mask vector associated

with cluster k∗, containing all block-level mask
values.

Dynamic Routing for FFN and Attention Blocks.
Our dynamic routing approach employs different
strategies for Feed-Forward layers and Attention
layers. During training, the layer mask values
are soft, functioning as scaling parameters that di-
rectly multiply with the outputs of FFN and At-
tention components. This enables gradient-based
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optimization through backpropagation. During in-
ference, we use hard binary masks containing only
0 and 1, where FFN layers are completely skipped
when the corresponding mask value is 0. For At-
tention layers, the approach is more nuanced due
to the necessity of maintaining key-value caches
for autoregressive generation. When an Attention
layer is marked for skipping, we still compute
the key and value projections to maintain the KV
cache, but we bypass the computationally expen-
sive scaled dot-product operation between queries
and keys. Specifically, for a transformer layer
i with mask value Mx

i = 0, the FFN computa-
tion FFN(xi) is entirely skipped, while for Atten-
tion, we compute K = WKxi and V = WV xi
for the cache but skip Attention(Q,K, V ) =
softmax(QKT /

√
d)V . This selective computation

strategy preserves the model’s autoregressive capa-
bilities while reducing computational overhead.

4 Experiment

4.1 Experimental Setup
Datasets and Evaluation Metrics. Following
prior work, we use lm-evaluation-harness (Gao
et al., 2023) to evaluate our method on six widely-
used zero-shot tasks: OpenBookQA (Mihaylov
et al., 2018), which tests elementary-level science
reasoning requiring the combination of facts with
commonsense knowledge; Winogrande (Sakaguchi
et al., 2021), a large-scale adversarial dataset for
testing pronoun disambiguation through common-
sense reasoning; HellaSwag (Zellers et al., 2019),
which challenges models to select plausible sce-
nario completions through commonsense inference;
PIQA (Bisk et al., 2020), focused on physical com-
monsense knowledge; and the ARC dataset (Clark
et al., 2018), divided into ARC-Easy and ARC-
Challenge subsets for testing scientific reasoning at
different difficulty levels. Llama-3-8B (AI@Meta,
2024) and Qwen-3-8B (QwenTeam, 2025) are used
as our base models, and we use all-MiniLM-L6-v2
from sentence transformer (Reimers and Gurevych,
2019) as sentence encoder. For calibration data
for clustering and layer mask training, we use
fineweb-edu (Lozhkov et al., 2024), which con-
tains high quality synthetic data used for LLM pre-
training.

Baselines and Setups. To evaluate our dynamic
block pruning approach against static methods,
we select three representative block pruning tech-
niques for comparison:

• SLEB (Song et al., 2024): A method that
iteratively eliminates redundant transformer
blocks based on cosine similarity between ad-
jacent layers.

• ShortenedLlama (Kim et al., 2024): An
approach that uses magnitude, second-order
derivatives, or perplexity to measure block-
level importance. After identifying unimpor-
tant blocks, this method removes them in a
single pass.

• EvoPress (Sieberling et al., 2024): A tech-
nique leveraging evolutionary algorithms to
search for optimal pruning masks with im-
proved perplexity or KL divergence. Starting
with a random initial configuration, in each
generation it mutates the compression levels
of selected layers and retains the best candi-
dates according to a fitness function. This ap-
proach yields better results but incurs higher
computational costs.

For all baseline methods, we perform one-shot
pruning that identifies and eliminates redundant
transformer blocks without retraining, and we use
wikitext2 (Merity et al., 2016) as calibration set
for baselines.

4.2 Main Results

IG-Pruning consistently outperforms all baseline
methods across all evaluated sparsity configura-
tions for both Llama-3-8B and Qwen-3-8B models.
In this paper, the sparsity level is defined as the
ratio of the number of skipped blocks to the total
number of blocks in the model. For Llama-3-8B
at 12.5% sparsity, IG-Pruning maintains 98.29%
of the dense model performance, surpassing the
best baseline (EvoPress) by 6.36 percentage points.
This advantage becomes even more significant at
25% sparsity, where IG-Pruning achieves 87.18%
of dense performance compared to the best base-
line at 76.32%, representing a 10.86 percentage
point improvement. Similarly, for Qwen-3-8B, IG-
Pruning preserves 96.01% of dense model perfor-
mance at 13.9% sparsity, compared to 90.37% for
the best baseline. These consistent improvements
across different model architectures demonstrate
the inherent advantage of our dynamic routing strat-
egy over static pruning methods.
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Model Sparsity Method OBQA WG HS PIQA ARC-E ARC-C Average Percentage

Llama-3-8B

0% Dense 44.6 73.24 79.16 80.79 77.82 53.24 68.14 100%

12.5%

SLEB 38.6 69.45 70.71 77.63 70.28 43.00 61.61 90.42%
ShortenedLlama 39.2 61.56 66.84 76.33 67.63 38.57 58.36 85.64%
EvoPress 41.2 70.17 72.03 77.75 71.00 43.69 62.64 91.93%
IG-Pruning 43.6 72.93 77.26 79.38 77.06 51.62 66.98 98.29%

25%

SLEB 33.8 53.90 57.96 72.25 57.32 31.56 51.13 75.04%
EvoPress 32.8 57.93 58.16 71.06 58.38 33.70 52.01 76.32%
ShortenedLlama 33.6 53.91 57.98 72.31 57.15 31.74 51.12 75.01%
IG-Pruning 40.0 68.98 67.53 76.12 63.43 40.36 59.40 87.18%

37.5%

SLEB 28.4 52.24 46.46 65.77 46.96 28.41 44.71 65.61%
EvoPress 28.2 51.22 45.58 65.18 48.15 28.50 44.47 65.26%
ShortenedLlama 28.6 52.41 45.90 64.69 42.68 27.47 43.63 64.02%
IG-Pruning 31.8 58.01 49.63 65.94 48.44 30.38 47.37 69.51%

Qwen-3-8B

0% Dense 41.8 67.96 74.93 77.48 80.77 56.40 66.56 100%

13.9%

SLEB 37.4 60.85 62.45 77.52 74.45 47.09 59.96 90.09%
ShortenedLlama 37.0 59.27 61.82 75.14 71.00 45.14 58.23 87.49%
EvoPress 39.0 61.96 67.76 75.57 70.33 46.25 60.15 90.37%
IG-Pruning 39.8 65.82 69.44 77.09 77.35 53.92 63.90 96.01%

25%

SLEB 36.6 56.35 53.95 72.47 65.36 37.20 53.66 80.62%
EvoPress 37.0 58.08 57.18 71.43 62.28 38.65 54.10 81.29%
ShortenedLlama 35.6 53.99 52.20 70.84 64.69 36.43 52.29 78.56%
IG-Pruning 35.6 60.46 61.65 73.39 68.94 44.80 57.47 86.35%

36.1%

SLEB 29.6 52.40 44.02 65.77 51.68 31.39 45.81 68.82%
EvoPress 31.6 52.17 45.29 62.95 51.09 29.18 45.38 68.18%
ShortenedLlama 28.2 50.91 37.08 61.75 46.13 25.43 41.58 62.48%
IG-Pruning 32.6 53.43 49.17 65.83 54.21 32.17 47.90 71.96%

Table 1: Zero-shot evaluation results on Llama-3-8B and Qwen-3-8B across multiple sparsity levels.

4.3 Analysis

Mask Training Efficiency. In Stage 1 of our ap-
proach, model parameters remain frozen while only
layer mask parameters undergo optimization. We
set a higher learning rate for L0 module, enabling
rapid mask convergence without extensive training
periods. For our experiments, we sample 1,000
examples from each cluster for training, utilizing
4 NVIDIA H800 GPUs. Hyperparameters can be
found in Appendix 5. For configurations with spar-
sity levels below 25% across 16 clusters, all masks
can be trained in approximately 15 minutes. Higher
sparsity (37%) requires around one hour of training
time for mask convergence. Our method requires
training, but it only trains the block mask param-
eters, while the parameters in the original models
are frozen. Therefore, it doesn’t require excessive
memory, which has been tested successfully on a
single RTX 3090 for 8B model.

Block-level vs. Layer-level Pruning. To inves-
tigate the impact of pruning granularity on model
performance, we conducted comprehensive experi-
ments comparing block-level and layer-level prun-

Figure 3: Results on average zero-shot task performance
of Llama-3-8B, with block and layer pruning.

ing across different sparsity configurations. As
shown in Figure 3, block-level pruning consistently
outperforms layer-level pruning across all tasks,
with performance advantages that vary based on
sparsity levels. The gap between these approaches
is most significant at sparsity levels around 20%,
where block pruning demonstrates substantially
better performance. This suggests that indepen-
dently pruning Attention and FFN components pro-
vides the model with greater flexibility to maintain
critical capabilities while reducing computational
costs.
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Llama-3-8B Qwen-3-8B

Figure 4: Block mask visualization of Llama-3-8B(left) and Qwen-3-8B(right) with 16 clusters and 25% sparsity.
Upper part is FFN Block and the lower part is Attention Block. The color indicates the mask value, with 1 being
blue and 0 being yellow.

Interestingly, the performance differential di-
minishes as sparsity decreases. At sparsity levels
higher than 40%, the differences become minimal,
and in specific tasks such as Winogrande, layer-
level pruning occasionally outperforms block-level
pruning. To better understand the results, we an-
alyze the layer masks. Visualization in Figure 4
reveals that Llama attention blocks are more likely
to be pruned compared to FFN blocks, especially
in middle layers, aligning with previous observa-
tions about layer representation similarity in Men
et al. (2024). This phenomenon also exists in the
Qwen-3 model, but shows a more balanced distribu-
tion between attention and FFN blocks. Addition-
ally, attention masks are more separate for Qwen,
with no long ranges of consecutive blocks being
masked. We analyzed the mask distribution at vari-
ous sparsity levels and found this phenomenon was
commonly observed. This suggests that, in higher
sparsity settings, retaining the FFN blocks is more
beneficial for model performance, as they are more
likely to contain important information. For higher
sparsity levels, more FFN blocks are pruned, lead-
ing to similar performance between block-level and
layer-level pruning.

Computational Efficiency Analysis. To quan-
tify efficiency improvements, we measured FLOPs
(floating point operations) for Llama-3-8B with dif-
ferent sparsity settings, as shown in Table 2. Our
analysis reveals that block-wise pruning provides
significant computational savings while maintain-
ing model performance. At 25% sparsity, our ap-

proach reduces the computational cost to 89.8% of
the dense model, representing a reasonable trade-
off between efficiency and effectiveness. As spar-
sity increases to 37.5%, computational require-
ments drop to 75.8% of the original model.

Sparsity FLOPs Per% Sparsity FLOPs Per%
0% 32.94T 100.0% 21.88% 31.01T 94.1%

3.12% 32.66T 99.1% 25.00% 29.57T 89.8%
6.25% 32.39T 98.3% 28.12% 28.71T 87.2%
9.38% 32.11T 97.5% 31.25% 27.27T 82.8%

12.50% 31.84T 96.7% 34.38% 26.41T 80.2%
15.62% 31.56T 95.8% 37.50% 24.97T 75.8%
18.75% 31.29T 95.0% 40.62% 24.69T 74.9%

Table 2: Computational efficiency at different sparsity
for block-wise pruning. The FLOPs values represent
the computational cost, while the percentage shows the
proportion relative to the dense model.

4.3.1 Analyze clustering effectiveness
Number of Clusters. To investigate how the
number of clusters affects model performance, we
conducted experiments with varying cluster counts
(N = 4, 8, 16) at different sparsity levels, as shown
in Figure 5. The results demonstrate a clear trend:
as the number of clusters increases, overall per-
formance improves consistently across all pruning
configurations. At lower sparsity, models with 16
clusters achieve an average performance of 66.98%,
compared to 61.05% with 8 clusters and 63.82%
with 4 clusters. This advantage becomes even more
pronounced at higher sparsity levels. With spar-
sity of 37.5%, the 16-cluster configuration outper-
forms the 4-cluster variant by 10.64 percentage
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Figure 5: Impact of cluster number on performance
across evaluation tasks. Results on average zero-shot
task performance on Llama-3-8B, with cluster N=4, 8,
and 16.

points. This pattern confirms that a higher number
of clusters enables more specialized mask com-
binations tailored to different input types. With
more clusters, the model can develop a more di-
verse set of computational paths, each optimized
for specific semantic patterns in the input data. The
performance improvements with increased cluster
count provide strong evidence supporting our hy-
pothesis that dynamic routing significantly benefits
model effectiveness by enabling adaptive compu-
tation. Rather than forcing all inputs through a
single pruned structure, our approach leverages the
complementary strengths of mask combinations,
explained why our dynamic pruning strategy con-
sistently outperforms static pruning methods.

Calibration Data Quality. The quality of cali-
bration data proves critical for effective mask train-
ing, as demonstrated in our ablation studies (Ta-
ble 3). We found that using high-quality, diverse
pretraining data from fineweb-edu (Lozhkov
et al., 2024) yields the best results, achieving an av-
erage score of 59.40. In contrast, using wikitext2,
the calibration dataset for baseline models, leads
to a significant performance degradation, with
the average score dropping to 55.85. Also, in-
struction dataset in Gou et al. (2023), achieved
a competitive score of 58.20 but was still lower
than fineweb-edu. Our experiments demonstrate
that clustering semantically-rich texts creates more
meaningfully differentiated clusters, enabling the
discovery of truly specialized computational paths.
This finding highlights the importance of data di-
versity and representational richness in training
effective dynamic routing mechanisms.

To verify that the observed performance en-
hancement is attributable to our proposed method

Dataset OBQA WG HS PIQA ARC-E ARC-C Average

Instruction 36.4 68.27 68.14 73.06 63.38 39.93 58.20
Wikitext2 39.0 63.06 64.12 73.07 60.19 35.67 55.85
Fineweb-edu 40.0 68.98 67.53 76.12 63.43 40.36 59.40

Table 3: Ablation results on Llama-3-8B with 25%
sparsity across different datasets. Comparing with
fineweb-edu, instruction set show minor difference,
while wikitext cause average score degradation.

Method Dataset OBQA WG HS PIQA ARC-E ARC-C Average

SLEB Wikitext2 33.8 53.95 57.96 72.25 57.32 31.56 51.13
SLEB Fineweb-edu 33.0 52.56 57.19 72.79 56.60 32.84 50.83

IG-Pruning Wikitext2 39.0 63.06 64.12 73.07 60.19 35.67 55.85
IG-Pruning Fineweb-edu 40.0 68.98 67.53 76.12 63.43 40.36 59.40

Table 4: Comparison with baseline models on different
datasets. Our method outperforms the baseline (SLEB)
regardless of the dataset used.

rather than the calibration data, we benchmarked
the SLEB baseline on both the wikitext2 and
fineweb-edu datasets. As detailed in Table 4, the
baseline’s performance did not improve when us-
ing fineweb-edu. Crucially, our method contin-
ues to outperform the baseline even when using
wikitext2. This evidence indicates that the perfor-
mance gains originate from our method’s dynamic
architecture and its ability to leverage high-quality
data, rather than from an unfair data advantage.

5 Conclusion

We introduced IG-Pruning, a novel approach for
efficient LLM inference through input-adaptive dy-
namic block pruning. Our method addresses criti-
cal limitations of static pruning, and demonstrates
that IG-Pruning consistently outperforms state-of-
the-art static pruning methods across various con-
figurations and model architectures. Our approach
offers four key advantages: (1) improved accu-
racy through input-adaptive computation that tai-
lors pruning decisions to specific input characteris-
tics, (2) efficient training that keeps model weights
frozen while only optimizing lightweight mask pa-
rameters, (3) minimal inference overhead via a sim-
ple yet effective semantic-based routing mecha-
nism, and (4) flexible block-level pruning granular-
ity that allows independent treatment of attention
and FFN components. The success of IG-Pruning
highlights the importance of input-adaptive com-
putation in efficient LLM deployment and repre-
sents a promising direction for developing high-
performing LLMs for resource-constrained envi-
ronments.
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Limitations

The performance heavily depends on clustering
quality, potentially diminishing if semantic clus-
ters aren’t effectively differentiated. Moreover, the
result is sensitive to calibration data quality, as in-
struction datasets led to performance degradation
compared to diverse pretraining data. Also, our
evaluation focused primarily on specific zero-shot
tasks, leaving generalization to other task types or
domain-specific applications less thoroughly vali-
dated. Additionally, the method introduces sensi-
tivity to multiple hyperparameters, including L0

regularization, lagrangian parameters, and clus-
ter numbers. Finally, our work does not investi-
gate the impact of block pruning on model factual-
ity. Removing computational blocks risks eliminat-
ing components that are critical for factual recall,
which may increase the model’s propensity for hal-
lucination. A promising direction for future work
would be to combine our dynamic pruning strat-
egy with hallucination mitigation techniques. For
instance, integrating methods like TruthX (Zhang
et al., 2024a), which enhances truthfulness by edit-
ing internal model representations, or Truth-Aware
Context Selection (Yu et al., 2024), which filters un-
truthful information from the input context. Such
an approach could lead to models that are not only
efficient but also more robust and factually reliable.
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A Hyperparameter

The hyperparamters we use in our experiments are
listed in Table 5.

Hyperparameter Value
Batch Size 32
L0 Module Learning Rate 0.1
Lagrangian Learning Rate 0.1
ϵ 1e-6
1/β 2/3
l -0.1
r 1.1
Number of Clusters 16, 8, 4
Calibration Data Size for each cluster 1000
Clustering Stage Sequence Length 4096
Mask Training Sequence Length 512

Table 5: Hyperparameters used in our experiments.

B More results on various models

To further validate the generalizability and robust-
ness of our approach, we conducted additional ex-
periments on a wider range of models, including
Llama-3.2-3B (Table 6), Llama-3.2-1B (Table 7),
and Qwen-3-4B (Table 8). Across all tested mod-
els and architectures, the input-adaptive nature of
IG-Pruning allows it to retain significantly more
of the original model’s performance compared to
baselines, especially at moderate sparsity levels.
As sparsity becomes extremely high, the perfor-
mance of both methods naturally converges. These
comprehensive results validate that our dynamic
approach is a consistently superior and more robust
solution for model pruning.
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Model Sparsity Method OpenBookQA Winogrande Hellaswag PIQA ARC-E ARC-C Average Percentage(%)

Llama-3.2-3B

0% (0/28) Dense 43.20 69.38 73.73 77.27 71.84 45.99 63.55 100%

14% (4/28)
SLEB 35.80 58.45 58.20 73.12 57.02 33.70 52.71 82.94%

IG-Pruning 41.40 66.45 68.20 75.95 68.13 43.34 60.58 95.32%

25% (7/28)
SLEB 25.00 53.82 46.67 68.28 50.96 29.01 46.79 73.63%

IG-Pruning 36.40 57.76 60.14 71.87 54.88 33.19 52.36 82.40%

39% (11/28)
SLEB 26.80 51.06 37.26 61.58 40.02 24.65 40.23 63.30%

IG-Pruning 28.00 49.83 38.52 61.53 38.17 24.40 40.07 63.05%

Table 6: Results on Llama-3.2-3B.

Model Sparsity Method OpenBookQA Winogrande Hellaswag PIQA ARC-E ARC-C Average Percentage(%)

Llama-3.2-1B

0% (0/16) Dense 37.40 60.36 63.64 74.43 60.27 36.26 55.38 100%

12.5% (2/16)
SLEB 30.60 55.16 48.74 68.55 48.48 28.41 46.66 84.24%

IG-Pruning 35.00 60.45 59.65 72.79 57.32 33.87 53.18 96.02%

25% (4/16)
SLEB 27.80 51.63 37.50 63.11 40.19 23.72 40.65 73.40%

IG-Pruning 27.00 54.78 40.30 62.08 40.24 27.22 41.94 75.72%

37.5% (6/16)
SLEB 27.00 49.88 29.90 56.03 30.93 22.01 35.96 64.93%

IG-Pruning 24.40 50.98 30.90 56.31 30.72 25.08 36.40 65.72%

Table 7: Results on Llama-3.2-1B.

Model Sparsity Method OpenBookQA Winogrande Hellaswag PIQA ARC-E ARC-C Average Percentage(%)

Qwen-3-4B

0% (0/36) Dense 40.40 65.82 68.42 75.13 53.75 53.75 59.55 100%

14% (5/36)
SLEB 35.40 56.19 57.36 72.85 65.78 39.84 54.57 91.64%

IG-Pruning 37.60 62.58 59.76 73.55 68.35 44.62 57.74 96.97%

25% (9/36)
SLEB 32.20 53.03 46.94 67.46 58.37 31.22 48.20 80.95%

IG-Pruning 35.80 56.43 53.78 69.85 60.01 39.07 52.49 88.15%

36% (13/36)
SLEB 29.80 53.43 39.54 62.67 47.01 26.79 43.21 72.56%

IG-Pruning 30.60 54.69 42.74 63.65 47.26 28.66 44.60 74.90%

Table 8: Results on Qwen-3-4B.
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