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Figure 1: (a) Illustration for problem definition of cross-modal federated learning, highlighting the complementary
strengths of each modality in visual question answering tasks. (b) Visualization of limitations of existing domain
adaptation methods using Gaussian kernel density estimation, emphasizing the challenges of adapting MRI and CT
modalities. (c) Our proposed method for cross-modal federated learning.

Abstract
Medical visual question answering (VQA) and
federated learning (FL) have emerged as vi-
tal approaches for enabling privacy-preserving,
collaborative learning across clinical institu-
tions. However, both these approaches face
significant challenges in cross-modal FL sce-
narios, where each client possesses unpaired
images from only one modality. To address
this limitation, we propose X-FLoRA, a cross-
modal FL framework that uses modality-expert
low-rank adaptation (LoRA) for medical VQA.
Specifically, X-FLoRA enables the synthesis of
images from one modality to another without
requiring data sharing between clients. This
is achieved by training a backward translation
model within a federated asymmetric transla-
tion scheme that integrates clinical semantics
from textual data. Additionally, X-FLoRA in-
troduces modality-expert LoRA, which fine-
tunes separate LoRA modules to strengthen
modality-specific representations in the VQA
task. The server aggregates the trained back-
ward translation models and fine-tuned LoRA
modules using discriminator quality scores and
expert-aware weighting, which regulate the rel-
ative contributions from different clients. Ex-
periments were conducted on VQA datasets en-
compassing different medical modalities, and
the results demonstrate that X-FLoRA outper-

forms existing FL methods in terms of VQA
performance.

1 Introduction

Medical visual question answering (VQA) (Lin
et al., 2023; Khare et al., 2021) has emerged as a
promising tool in computer-aided diagnosis, sup-
porting clinical decision-making by generating an-
swers to diagnostic questions based on medical
images. However, the broader application of VQA
methods is often constrained by data privacy con-
cerns. Federated learning (FL) has gained signifi-
cant attention for enabling privacy-preserving, de-
centralized model training across clinical institu-
tions. In response to this, several federated VQA
frameworks (Lao et al., 2023; Zhu et al., 2024; To-
baben et al., 2024) have been proposed to address
medical VQA tasks without requiring patient data
sharing. Despite this progress, federated VQA re-
mains limited in cross-modal FL settings (Qayyum
et al., 2022; Dai et al., 2024), where each client
only possesses data from a single imaging modal-
ity and lacks paired samples from other modalities.

In typical clinical cross-modal FL scenarios, in-
dividual clients may have access to only magnetic
resonance imaging (MRI) or computed tomogra-
phy (CT) data, but not both. These modalities differ
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substantially due to their distinct imaging mecha-
nisms and diagnostic purposes—MRI uses mag-
netic fields and radio waves, whereas CT relies on
ionizing radiation. As shown in Fig. 1(a), MRI
and CT reports from electronic medical records
(EMRs) for the same brain region often highlight
different pathological features. For instance, an
MRI report may describe a “subcutaneous tempo-
ral metastasis,” while a CT report for the same
region may note a “re-bleed,” reflecting their re-
spective strengths in soft tissue characterization
and hemorrhage detection. Similarly, in the GPT-
4-based medical VQA dataset (Li et al., 2023),
modality-aligned responses such as “metastatic le-
sion” for MRI and “second hemorrhage” for CT
further demonstrate the need for modality-aware
understanding (Achiam et al., 2023).

The challenges of cross-modal FL arise not
only from inter-modality gaps but also from intra-
modality variations due to differences in imaging
devices and patient characteristics. To address
these issues, domain adaptation (DA) techniques
have been explored (Zhao et al., 2022). As a prelim-
inary study, we employ ResNet50 as a feature ex-
tractor to visualize feature distributions of MRI and
CT datasets using the approach proposed by Chen
et al.. The results, shown in Fig. 1(b), compare
feature distributions before and after applying DA.
The first and second rows represent intra-modal
DA effects for CT and MRI, respectively, while the
third row illustrates the cross-modal DA impact.
These results indicate that DA alone is insufficient
for addressing cross-modal heterogeneity (Chen
et al., 2020) and can even lead to performance
degradation (Yang et al., 2024).

To overcome these challenges, we propose X-
FLoRA, a cross-modal FL framework that incorpo-
rates modality-expert low-rank adaptation (LoRA)
for medical VQA, as illustrated in Fig. 1(c). X-
FLoRA consists of two primary phases: feder-
ated asymmetric translation and federated VQA
fine-tuning. In the first phase, each client inde-
pendently trains a text-driven backward transla-
tion model—either CT-to-MRI (C2M) or MRI-to-
CT (M2C)—using its data. During training, only
the backward model is updated, while the forward
model remains frozen. These translation models
integrate images with their corresponding EMR
reports to capture clinically significant textual fea-
tures that may not be visually evident. Clients then
upload their trained backward translation weights
to a central server, which aggregates them.

In the second phase, modality-expert LoRA
modules fine-tune representations for each modal-
ity—MRI, CT, and text—independently. Given the
distinct characteristics of each modality, these spe-
cialized modules improve the quality of modality-
specific representation. The server aggregates the
fine-tuned LoRA modules using modality-specific
aggregation, balancing the contributions from real
and synthetic data across clients. This design
allows X-FLoRA to effectively address the limi-
tations of clinical cross-modal FL environments,
enhancing both modality diversity and modality-
specific representation without requiring any data
sharing.

We summarize our main contributions as fol-
lows:

• To the best of our knowledge, we propose
the first unified VQA framework to miti-
gate cross-modal heterogeneity by combin-
ing a cross-modal translation strategy with
modality-specific expert fine-tuning. This ap-
proach improves both modality diversity and
representation quality in federated VQA.

• We propose an FL framework for asymmetric
translation, where each client trains only the
backward text-driven model to complement
visual features with clinical insights derived
from EMRs. Furthermore, aggregation based
on discriminator quality scores increases the
influence of clients with higher-quality trans-
lation models.

• We introduce modality-expert LoRA, a
lightweight and modality-specific adaptation
mechanism. Separate LoRA modules are ap-
plied to each modality, and a modality-specific
aggregation strategy ensures a balanced in-
tegration of real and synthesized data from
diverse clients.

2 Related Work

2.1 Visual Question Answering

VQA (Ji et al., 2024; Naik et al., 2024; Xing et al.,
2024; Song et al., 2024; Li et al., 2024a, 2023; Liu
et al., 2023; Wang et al., 2024a; Yan et al., 2024)
is an interdisciplinary task that integrates computer
vision and natural language processing to gener-
ate answers to natural language questions about
visual content. Building on the progress in general-
domain VQA, there has been a surge of interest in
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adapting VQA for medical applications. Recent
studies show that autoregressive decoder-based
large language models (LLMs) and visual lan-
guage models (VLMs), when fine-tuned on medical
datasets, demonstrate strong performance on clini-
cal tasks. For example, BioMistral (Labrak et al.,
2024), adapted from Mistral-7B (Jiang et al., 2023),
has shown impressive results on complex medical
question answering benchmarks, such as medical
licensing exams and PubMed-based queries (Jin et
al., 2019). Similarly, specialized medical VLMs
like LLaVA-Med (Li et al., 2023), derived from
LLaVA (Liu et al., 2023), and MedFlamingo (Moor
et al., 2023), based on Open-Flamingo (Awadalla
et al., 2023), have demonstrated effectiveness in
radiological (Lau et al., 2018) and pathological (He
et al., 2020) VQA tasks. Despite these advance-
ments, current methods are limited in FL settings
involving cross-modal medical data, where they
struggle to model the inherent differences in visual
and textual modality characteristics.

2.2 Vertical Multimodal Federated Learning

Protecting patient privacy has become a critical
concern in the digital healthcare era, especially
given the risks associated with misuse or unautho-
rized commercialization of sensitive data (Chiru-
vella et al., 2021). To address these issues, several
vertical multimodal FL approaches have been de-
veloped (Zhang et al., 2023; Qayyum et al., 2022;
Yang et al., 2022). Zhang et al. introduced
UTMP, a federated learning framework in which
unimodal clients collaboratively train a multimodal
model through hierarchical encoder-decoder aggre-
gation. Qayyum et al. proposed a collaborative
FL framework for multimodal COVID-19 diagno-
sis on edge devices, enabling clients with either
X-ray or ultrasound data to train a shared model
without exchanging raw data. Yang et al. presented
a cross-modal federated human activity recogni-
tion framework that uses a feature-disentangled
network with both modality-agnostic and modality-
specific encoders, enabling collaborative learning
from clients with heterogeneous sensor and video
modalities. However, these prior works do not con-
sider the intrinsic characteristics of medical imag-
ing, such as differences in imaging physics (e.g.,
CT vs. MRI) and semantic focus in clinical reports.
To bridge this gap, we propose a new FL strat-
egy combining federated asymmetric translation
and federated VQA fine-tuning, which explicitly
considers modality-specific features through the

use of asymmetric forward/backward models and
modality-expert LoRA modules.

2.3 Image-to-Image Translation

A wide range of image-to-image translation tech-
niques have been developed in recent years (Zhu
et al., 2017; Huang et al., 2018; Isola et al., 2017;
Cheng et al., 2023; Xia et al., 2024; Li et al., 2024b;
Xu et al., 2024). Zhu et al. introduced CycleGAN,
which enables unpaired image-to-image translation
using a cycle-consistency loss. Huang et al. pro-
posed MUNIT, which separates images into shared
content and domain-specific style codes to gener-
ate diverse outputs. Isola et al. developed pix2pix
for supervised image-to-image translation using
paired data, directly learning mappings from in-
put to output images. Although effective, most
of these methods assume access to paired multi-
modal datasets—an assumption that does not hold
in vertical multimodal FL scenarios, where data
are distributed across institutions. To address this
limitation, we propose a federated approach to un-
paired cross-modal image translation that leverages
modality-specific clinical text reports as semantic
guidance. This strategy enriches the translation
process with medically relevant details that may be
implicit or missing in visual data alone.

3 Methodology

3.1 Overall

As shown in Fig. 2, X-FLoRA consists of two key
phases: federated asymmetric translation and feder-
ated VQA fine-tuning. In the federated asymmetric
translation phase, there are Nm clients with MRI
data and Nc clients with CT data. Each group
of clients trains backward translation models spe-
cific to their modality, while the forward translation
model is provided by other modality clients and re-
mains frozen. The central server aggregates the
backward translation models from all clients. Sub-
sequently, clients download the aggregated back-
ward weights, enabling both MRI and CT clients
to perform federated asymmetric translation with-
out sharing data directly. This phase is repeated
over Rt rounds. After these rounds, each client
generates synthetic images of the other modality.

In the next phase, modality-expert LoRA mod-
ules are applied to the respective modality encoders
using the synthetic images. The weights from these
LoRA modules are then uploaded to the server for
global aggregation, specific to each modality. Addi-
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Figure 2: Overall architecture of the X-FLoRA frame-
work.

tionally, expert-aware weighting is used to balance
the contributions of real and synthetic data. This
fine-tuning phase is repeated over Rf rounds, pro-
moting increased modality diversity and enhancing
the robustness of modality-aware representations.
After all rounds are completed, the final global
VQA model is obtained.

3.2 Federated Asymmetric Translation
Inspired by cycle consistency (Radford et al., 2021),
we propose a federated asymmetric translation that
enables each client to train cross-modal translation
even if it possesses only a single type of modality
data as shown in Fig. 3. In this phase, each client
possesses real data x and corresponding imaging re-
port t. In addition, clients perform forward transla-
tor F , which receives x and t as inputs, to generate
a synthetic image.

3.2.1 Forward and Backward Text-driven
Translation

In the forward process, the text encoder extracts
text features, while the image encoder and resid-
ual blocks extract image features. The extracted
image and text features are then fused via text-
driven attention, enabling the translator to generate
modality-consistent synthetic images enriched with
clinically relevant textual cues.

Each client generates synthetic images using the
frozen forward translator F , and subsequently ap-
plies a backward translator B, with the same ar-
chitecture as F , to reconstruct the original image.
This reconstruction is used to train B and a dis-
criminator D, which distinguishes between real
and reconstructed images. Specifically D and B
are trained as follows:

D̂, B̂ = argmax
D

min
B
Ltotal, (1)

where, Ltotal denotes the total loss function, de-
fined as follows:

Ltotal = Ladv + ηLid, (2)

where η balances two objectives: adversarial loss
(Ladv), which ensures realism of the reconstructed
image, and identity loss (Lid), which ensures fi-
delity to the original input. The adversarial loss is
formulated as follows:

Ladv = Ex ∼ pdata(x)[||1−D(B(F (x, t), t))||2],
(3)

where x ∼ pdata(x) denotes the data distribution
of real data and ∥·∥2 denotes the L2 norm. The
identity loss minimizes the pixel-wise difference
between the reconstructed image and the original
input. This loss is formulated as follows:

Lid = ||B(F (x, t), t)− x||1, (4)

where ∥·∥1 denotes the L1 norm. After local train-
ing, the central server aggregates the backward
translation weights θr,ic2m and θr,jm2c received from
the i-th MRI and j-th CT clients in the r-th com-
munication round, respectively.

3.2.2 Discriminator Score-based Aggregation
To enhance reliability and stability across clients,
we introduce a discriminator score-based aggrega-
tion. Each MRI client transmits three components
to the server: (1) backward translation weights
θr,ic2m, (2) the backward model-based gradient gr,im ,
and (3) a discriminator-based reliability scores sr,im
(from 0 to 1) . The server aggregates MRI client
updates using:

θr+1
c2m =

1

Nm

Nm∑

i=1

(ωr,i
m,s + ωr,i

m,g), (5)

ωr,i
m,s =

sr,im · θr,ic2m∑Nm
i=1(s

r,i
m ) +

√
Gr

m

, (6)

ωr,i
m,g =

gr,im · θr,ic2m∑Nm
i=1(s

r,i
m ) +

√
Gr

m

. (7)

Here, ωr,i
m,s and ωr,i

m,g denote the reliability-based
normalized model weight and the gradient-based
normalized model weight from i-th client, respec-
tively. Moreover, θr+1

c2m denotes the aggregated
weights in the (r + 1)-th round. In addition, the
discriminator score sr,im is defined as follows:

sr,im = Exi
m
∼ pdata(x

i
m)[Dr,i

m (xim)], (8)
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Figure 3: Architecture of federated asymmetric translation.

where xim denotes the real data xim held by the i-th
MRI client and Dr,i

m denotes the local discriminator
of the i-th MRI client in r-th round. Moreover,
Gr

m represents the accumulated squared sum of the
gradients (momentum) in r-th round, formulated
as follows:

Gr
m = Gr−1

m +

Nm∑

i=1

(gr,im )2. (9)

By using Gr
m and sr,im , this aggregation approach

prioritizes contributions from clients whose dis-
criminators better distinguish real from generated
images, thereby enhancing model robustness.

For CT clients, the server aggregates the back-
ward translation weights θr,jm2c in a similar strat-
egy, following the definition provided in Eq. (7).
Specifically, the j-th CT client’s momentum Gr

c

and discriminator score sr,jc are calculated using
the gradient of the backward translator gr,jc , xjc, and
discriminator Dr,j

c based on Eqs. (8) and (9).

3.3 Federated Modality-Expert Fine-tuning

Training VLMs for VQA typically demands ex-
tensive VRAM and significant computational re-
sources, necessitating efficient fine-tuning strate-
gies. Moreover, in federated medical environments,
data across modalities (e.g., MRI, CT) exhibit in-
herently distinct characteristics. To effectively cap-
ture modality-specific features in cross-modal FL
for medical VQA, we propose modality-expert
LoRA fine-tuning, which independently learns dis-
criminative features from each imaging modality.

3.3.1 Modality-expert LoRA
As illustrated in Fig. 4, the proposed modality-
expert LoRA architecture is designed separately

for each modality and enables efficient training
with substantially reduced computational over-head
compared to full-scale VLM fine-tuning. Each
client uses fixed, modality-specific encoders de-
noted as Wm for MRI, Wc for CT, and Wt for
text. These encoders extract feature representa-
tions Wmvm, Wcvc, and Wtvt where vm, vc, and
vt are the modality-specific input vectors. To en-
hance these representations without updating the
pre-trained encoders, we apply LoRA fine-tuning
as follows:

v̂k = Wkvk + βkαkvk, k ∈ {m, c, t}, (10)

where α and β are low-rank weight matrices
in the LoRA layers. Specifically, αm, αc, and
αt project input features into low-rank subspaces
of dimensions Rd×rm , Rd×rc , and Rd×rt , respec-
tively. Corresponding matrices βm, βc, and βt
project them back into the original feature space.
This decomposition-reconstruction approach en-
ables efficient fine-tuning of MRI and CT modality-
specific feature. The LoRA modules are applied
to the linear projection matrices of the modality-
specific encoders, including the key and value pro-
jection layers in the attention blocks as well as the
linear layers in the feedforward blocks. Each LoRA
module is integrated alongside each linear matrix
in the model (Hu et al., 2022). Moreover, these
fine-tuned features are fused by using a projector
to consider inter-modal representation. After lo-
cal training, the fine-tuned modality-expert LoRA
weights are transmitted to the central server for
aggregation.

3.3.2 Modality-specific Aggregation
The central server receives the fine-tuned LoRA
weights from MRI and CT clients and performs

8395



Figure 4: Architecture of the federated visual question
answering fine-tuning.

aggregation. In our framework, these modality-
expert LoRA weights are categorized according
to the modality on which they were trained, main-
taining separate sets of weights for MRI, CT, and
text data. Unlike conventional FL approaches (Li
et al., 2020; McMahan et al., 2017; Li et al., 2021;
Kairouz et al., 2021) that aggregate all modality
weights jointly, we propose modality-specific ag-
gregation, which processes the weights indepen-
dently for each modality. This separation enables
each modality-expert LoRA module to better cap-
ture and represent the unique characteristics of CT,
MRI, and text inputs.

To further enhance aggregation quality, we in-
troduce an expert-aware weighting scheme that
differentiates the contributions of weights based
on whether they were trained on real or synthetic
data. This allows the system to adjust the influ-
ence of each client’s update during aggregation.
The expert-aware weight for the i-th MRI client is
defined as:

λi
m =





ϵ

ϵ ·N r
m +N s

m

if i ∈ Rm

1

ϵ ·N r
m +N s

m

otherwise
, (11)

where λi
m denotes the MRI aggregation weight

for the i-th client, and Rm is the set of indices
corresponding to clients with real MRI data. Ad-
ditionally, N r

m and N s
m represent the number of

clients with real and synthetic MRI data, respec-
tively. The hyperparameter ϵ controls the relative
scaling between from real and synthetic data. A
similar expert-aware weighting strategy is applied
to CT clients, producing CT aggregation weights
λi
c using the same formulation as in Eq. (11). For

all clients contributing text data, the aggregation
weight λi

t is set to 1.

Based on λi
k, the server aggregates the MRI

LoRA weights {αm, βm}r,i, CT LoRA weights
{αc, βc}r,i, and text LoRA weights {αt, βt}r,i in
the r-th round. It balances the influence of real and
synthetic data on modality-specific representations
for MRI and CT. The weight-based aggregation
process is defined as follows:

{αk, βk}r+1 =
1

Nk

Nk∑

i=1

λi
k{αk, βk}r,i,

k ∈ {m, c, t},
(12)

where Nt denotes a total number of clients
(Nm+Nc). After federated VQA fine-tuning phase
is completed, the final global VQA model with the
modality-specific LoRA module is obtained.

4 Experiments

4.1 Dataset and Evaluation Metric
The experiments utilize a combined dataset drawn
from the LLaVA-Med dataset (Li et al., 2023)
and the VQA-RAD dataset (Lau et al., 2018).
LLaVA-Med is designed to support instruction-
following multimodal learning across multiple
institutions. It is built using image-text pairs
sourced from PubMed Central and includes a
GPT-4-generated instruction-tuning set, compris-
ing 10K samples across modalities such as CT
and MRI. The VQA-RAD dataset comprises 3,515
clinician-authored QA pairs and 315 radiology im-
ages, with imaging reports generated using GPT-4
based on the QA pairs, which include closed-ended
answers (i.e., yes/no) and open-ended answers with
a short phrase. In our federated learning setup, X-
FLoRA is trained across eight clients. Four clients
use MRI data (Nm = 4), and the other four use
the CT data (Nc = 4), both the LLaVA-Med and
VQA-RAD datasets. Appendix C provides addi-
tional experiments varying the number of MRI and
CT clients, with comparisons against baseline FL
methods.

To evaluate the quality of the generated re-
sponses, we use four standard automatic metrics:
BLEU (Papineni et al., 2002), METEOR (Baner-
jee and Lavie, 2005), ROUGE (Lin, 2004), and
CIDEr (Vedantam et al., 2015) for the LLaVA-med
dataset and accuracy for the VQA-RAD dataset.
These metrics assess both surface-level and seman-
tic aspects of generation. BLEU captures lexi-
cal precision; METEOR balances precision and
recall; ROUGE evaluates n-gram overlap; and
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Dataset LLaVA-Med VQA-RAD

Metric BLEU-1 BLEU-5 METEOR ROUGE CIDEr
Accuracy (%)

Open Closed Overall
FedAvg (McMahan et al., 2017) 0.2892 0.1486 0.3467 0.3682 0.5003 51.39 73.56 64.76

FedProx (Li et al., 2020) 0.2859 0.1512 0.3450 0.3702 0.5064 52.09 74.13 65.38
MOON (Li et al., 2021) 0.2935 0.1561 0.3492 0.3604 0.5152 53.31 76.37 67.21

FedProto (Tan et al., 2022) 0.2943 0.1568 0.3486 0.3541 0.5176 54.04 77.51 68.19
IOS (Wu et al., 2023) 0.2913 0.1510 0.3508 0.3587 0.5190 55.37 78.05 69.04

FedTGP (Zhang et al., 2024) 0.3012 0.1572 0.3561 0.3672 0.5237 57.15 78.46 70.00
FedMedVLP (Lu et al., 2023) 0.2955 0.1540 0.3533 0.3597 0.5196 55.81 78.30 69.53
FedKIM (Wang et al., 2024b) 0.3015 0.1581 0.3588 0.3701 0.5279 56.12 78.49 70.14

X-FLoRA 0.3191 0.1630 0.3704 0.3954 0.5430 60.42 81.10 72.89

Table 1: Comparison with prior federated learning methods in terms of BLEU, METEOR, ROUGE, CIDEr and
accuracy on the LLaVA-Med and VQA-RAD dataset.

CIDEr measures TF-IDF-weighted similarity, plac-
ing higher importance on informative content in
vision-language tasks. In addition, We evaluate
translators with four metrics: peak signal-to-noise
ratio (PSNR), structural similarity index (SSIM),
learned perceptual image patch similarity (LPIPS),
and frechet inception distance (FID).

4.2 Implementation Details

The experiments follow a federated-by-dataset sce-
nario (McMahan et al., 2017), where each client
constructs its own local dataset and collaborates
with a central server through FL. All experiments
were conducted using a single NVIDIA L40S GPU.

The text encoder (Radford et al., 2021) consists
of 12 transformer blocks, each comprising layer
normalization, multi-head self-attention (heads of
eight, input length of 77, hidden size of 512), a
residual connection, and a feed-forward network
with GELU activation. This structure is repeated
across all layers. After the transformer, the embed-
ding token is passed through a linear projection to
obtain the final text representation.

The image encoder (Zhu et al., 2017) begins
with a 7×7 convolutional layer using reflection
padding and ReLU activation. This is followed by
two downsampling blocks, each with a 3×3 convo-
lution and ReLU, reducing spatial resolution by a
factor of 4. Next, nine residual blocks are applied,
each composed of two 3×3 convolutional layers,
normalization, and ReLU. The discriminator ex-
tends this encoder with a final 1-channel convolu-
tional layer followed by a sigmoid activation.

We employ stochastic gradient descent with a
momentum of 0.9 and a learning rate of 0.001. X-
FLoRA is trained for a total of 150 global rounds,
consisting Rt = 50 rounds for translational pretrain-
ing and Rf = 100 rounds for federated fine-tuning.
Additionally, we set both η and ϵ to 1.5, and rm,

rc, and rt to 16, 32, and 8. Appendix C provides
experiments to optimize these parameters.

4.3 Results and Analysis

We compare X-FLoRA with several baseline FL
methods, including FedAvg (McMahan et al.,
2017), FedProx (Li et al., 2020), MOON (Li et al.,
2021), FedProto (Tan et al., 2022), IOS (Wu et al.,
2023), FedTGP (Zhang et al., 2024), FedMed-
VLP (Lu et al., 2023) and FedKIM (Wang et al.,
2024b), using both the LLaVA-Med and VQA-
RAD datasets. The VQA model architecture pro-
posed by Liu et al. (2023) is used as the backbone
because it has been broadly utilized in the medical
domain. All the baseline models are trained and
evaluated from scratch using the respective authors’
experimental settings and open-source code. We re-
port the average performance over three runs using
different random seeds, with a standard deviation
of 6.3 × 10−3, confirming the consistency of our
results. The best scores are highlighted in bold
across all tables. As shown in Table 1, X-FLoRA
achieves superior VQA performance across all five
metrics compared to baseline FL methods. This
improvement stems from the integration of cross-
modal synthetic data, which enables collaborative
training even under unpaired modality settings. Ad-
ditionally, modality-specific fine-tuning via LoRA
modules enhances representation quality by adapt-
ing to the distinct characteristics of each imaging
domain.

Figure 5 provides a qualitative comparison of re-
sponses generated by X-FLoRA, IOS, and FedTGP
for a given CT scan. In the figure, the red arrow
indicates a mass-arising lesion near the rib, red
text indicates incorrect or inconsistent responses,
while BLEU text represents accurate and contextu-
ally appropriate answers. X-FLoRA successfully
identifies key clinical features—such as the intact
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Figure 5: Example comparison of X-FLoRA and other
FL methods on LLaVA-Med dataset. The GPT-4 is
considered as the ground truth.

LLaVA-Med VQA-RAD

Method
Metric

METEOR CIDEr
Accuracy (%)

DA FL Open Closed Overall
SEA (Wang et al., 2023) FedTGP 0.3569 0.5231 57.31 78.50 70.07
CAF (Xie et al., 2022) IOS 0.3514 0.5205 55.42 78.37 69.12
CAF (Xie et al., 2022) IOS 0.3510 0.5181 55.50 78.53 70.19

SEA (Wang et al., 2023) FedTGP 0.3558 0.5207 57.40 78.55 69.59
X-FLoRA 0.3704 0.5430 60.42 81.10 72.89

Table 2: Performance of FL methods with DA models
for VQA performance on the LLaVA-Med and VQA-
RAD dataset.

and uninvolved state of the medulla and the ab-
sence of mass infiltration—matching the GPT-4-
generated reference from the imaging report. More-
over, in this synthetic MRI image, it appears that
the medulla remains intact. This demonstrates X-
FLoRA’s strong grounding capability in clinically
relevant visual content. Appendix C also provides
additional example comparisons of X-FLoRA and
other FL methods.

Table 2 evaluates X-FLoRA when integrated
with DA techniques, specifically SEA (Wang et al.,
2023) and CAF (Xie et al., 2022). We also examine
combinations of DA methods with state-of-the-art
FL models such as FedTGP and IOS. X-FLoRA
consistently outperforms these combinations, high-
lighting the benefit of federated asymmetric trans-
lation in improving VQA performance.

Moreover, Table 3 presents a comparison of the
performance of F and B of asymmetric transla-
tion with CycleGAN. We evaluate F with LPIPS
and FID, and assess both F and B using PSNR,
SSIM. Asymmetric translation surpasses Cycle-
GAN through higher PSNR and SSIM and lower
LPIPS and FID. This result is attributed to com-

Forward Architecture
Metric Forward +

Backward
Architecture

Metric
LPIPS(↓) FID (↓) PSNR (↑) SSIM (↑)

CT→MRI

CycleGAN
(Only Image)

0.25 119.83
CT→MRI→CT

CycleGAN
(Only Image)

25.51 0.78

Ours
(Image + Text)

0.22 90.22
Ours

(Image + Text)
27.23 0.87

MRI→CT

CycleGAN
(Only Image)

0.24 109.66
MRI→CT→MRI

CycleGAN
(Only Image)

27.24 0.81

Ours
(Image + Text)

0.23 105.05
Ours

(Image + Text)
28.57 0.88

Table 3: Performance of asymmetric translation com-
pared with CycleGAN on the LLaVA-Med dataset.

Models
Trainable
Params

Convergence
Round

Training
Time (hours)

FedProto (Tan et al., 2022) 13G 202 33.6
IOS (Wu et al., 2023) 13G 188 30.6

FedTGP (Zhang et al., 2024) 13G 184 30.6
X-FLoRA 58M 149 25.1

Table 4: Computational complexity of FL methods on
the LLaVA-Med dataset.

Federated Asymmetric Translation Federated VQA Finetuning
CIDEr

Text Translation
Discriminator-based

Aggregation
Modality-expert

LoRA
Modality-specific

Aggregation
✓ ✓ ✓ ✓ ✓ 0.5430
✓ ✓ ✓ ✓ 0.5407
✓ ✓ ✓ ✓ 0.5401
✓ ✓ ✓ 0.5357

✓ ✓ ✓ ✓ 0.5304
0.5003

Table 5: Ablation study for X-FLoRA on the LLaVA-
Med dataset in terms of the CIDEr.

plementing visual features with clinical insights
through text corresponding to the images.

Table 4 compares the training efficiency in sev-
eral FL methods. X-FLoRA not only converges
faster in fewer training rounds (149 rounds) but
also requires much fewer trainable parameters (58
mega) compared to other methods (13 giga), owing
to the use of lightweight LoRA modules. Specif-
ically, we adopted the ViT-L/14 model for visual
encoder and transformer layers within Vicuna-7B
model for text encoder, as introduced in the original
LLaVA architecture. Since the total parameter size
of visual and text encoders is 4 giga parameters
out of the 13 giga parameters of the entire model,
the use of LoRA is reasonable for efficient fine-
tuning. This makes X-FLoRA particularly suitable
for resource-constrained clinical environments.

4.4 Ablation Study

This section analyzes the contribution of each
X-FLoRA component. Table 5 presents abla-
tion results, where a checkmark (✓) indicates
module activation. The first and last rows show
X-FLoRA and backbone performance, respec-
tively. The second and third rows report the re-
sults when discriminator-based aggregation and
modality-specific aggregation are excluded, respec-
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tively. The fourth row reports the results when
synthetic images are used without federated VQA
finetuning, which reflects the performance of full
fine-tuning. It demonstrates that fine-tuning with
LoRA yields better performance than full fine-
tuning. This is supported by experimental evidence
showing that selectively fine-tuning leads to bet-
ter performance compared to full fine-tuning (Hu
et al., 2022). The fifth row reports the results when
only images are used in translator. Comparing each
module with the X-FLoRA confirms that each com-
ponent contributes to performance improvements.

5 Conclusion

This study tackles the critical challenge of cross-
modal heterogeneity in federated VQA. We pro-
pose X-FLoRA, a comprehensive framework
that integrates asymmetric text-driven translation,
modality-expert LoRA modules, and global ag-
gregation strategies to effectively address this is-
sue. X-FLoRA selectively trains backward trans-
lation models, shares forward translations, applies
modality-specific fine-tuning, and aggregates a
global model, all within the FL paradigm to en-
hance VQA accuracy. Our experimental results
demonstrate that X-FLoRA outperforms existing
FL baselines, achieving state-of-the-art VQA per-
formance on both the LLaVA-Med and VQA-RAD
datasets, while maintaining computational effi-
ciency. These results underscore the effectiveness
of the proposed design in managing unpaired mul-
timodal data in decentralized clinical settings.

6 Limitations

In addition, although X-FLoRA demonstrates im-
proved quantitative performance on benchmark
datasets such as LLaVA-Med and VQA-RAD, the
clinical interpretability and reliability of the gener-
ated responses have not yet been directly assessed
through expert review. Medical decision-making
often involves context-specific and nuanced reason-
ing, which cannot be fully captured by automated
metrics alone. Therefore, it would be valuable to
examine whether the model’s outputs align with
clinical expectations in real-world scenarios. Fu-
ture work should include qualitative evaluations by
domain experts, such as structured assessments con-
ducted by radiologists or physicians, to better un-
derstand how the model’s responses are perceived
and trusted in clinical environments. Such evalua-
tions would help bridge the gap between algorith-

mic performance and practical usability, ultimately
contributing to the safe and effective deployment
of federated VQA systems in healthcare.

This study focuses on MRI and CT, widely used
and clinically complementary imaging modalities,
providing a robust foundation for evaluating the
proposed framework. Although these modalities
are robust, other modalities such as ultrasound,
PET, and digital pathology remain unexplored. In
future work, we will extend X-FLoRA by using spe-
cialized forward and backward translators adapted
to other modalities. Expanding the number of for-
ward and backward translators enables the frame-
work to accommodate a wider range of modali-
ties. However, this poses the challenge of map-
ping modality-specific representations to a com-
mon feature space due to the substantial heterogene-
ity in imaging and semantic characteristics across
modalities. This challenge becomes even more
pronounced when incorporating modalities beyond
MRI and CT, such as ultrasound, PET, and digital
pathology. To address this, we propose advanced
feature alignment techniques, including modality-
invariant representation learning and contrastive
alignment with clinical text embeddings. These
methods aim to enhance cross-modal knowledge
transfer despite significant inter-modality gaps.
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Appendix

The appendix of this study provides comprehensive
details that support the main framework, methodol-
ogy, and experimental results presented in the pa-
per. Below is a summary of each section: Section

A provides a detailed explanation of the core algo-
rithms of X-FLoRA. Section B presents a discus-
sion of the stability of discriminator-based aggre-
gation and experiments on cross-modality. Section
C presents additional quantitative and qualitative
results. Section D presents qualitative VQA results
of X-FLoRA and other methods.

A Method Algorithms

A.1 Federated Asymmetric Translation

This algorithm 1 describes the training process of
text-driven translation. Each client generates syn-
thetic images and reconstructs the original image.

A.1.1 Discriminator Quality Score-based
Aggregation

This algorithm 2 details the aggregation process
using discriminator quality scores and gradient in-
formation.

A.2 Federated VQA FInetuning

This algorithm 3 presents the finetuning phase for
modality-expert LoRA modules. Each client up-
dates only the lightweight LoRA parameters for
MRI, CT, and text modalities.

A.2.1 Modality-specific Aggregation

This algorithm 4 defines the aggregation process
for modality-expert LoRA weights.

Algorithm 1 Federated Asymmetric Translation

Require: Real data x, text report t, frozen forward
translation F

1: F (x, t) ▷ Generate synthetic image using
forward translation

2: B(F (x, t), t) ▷ Reconstruct using backward
translation

3: D(B(F (x, t), t)) ▷ Distinguish between real
and reconstruction image

4: Ladv ← ∥1−D(B(F (x, t), t))∥2
5: Lid ← ∥B(F (x, t), t)− x∥1
6: Ltotal ← Ladv + ηLid
7: Optimize B and D to minimize and maximize
Ltotal

8: return weight of B, discriminator score sr,i

and gradient gr,i to server
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Algorithm 2 Discriminator Quality Score-based
Aggregation

Require: MRI clients Nm, CT clients Nc, discrim-
inator gradient gr,im and score sr,im

1: Gr
m ← Gr−1

m +
∑Nm

i=1(g
r,i
m )2 ▷ Update

cumulative gradient for MRI clients
2: Gr

c ← Gr−1
c +

∑Nc
j=1(g

r,j
c )2 ▷ Update

cumulative gradient for CT clients
3: for each MRI client i ∈ Nm do

4: θr+1
c2m =

∑Nm
i=1

(sr,im + gr,im ) · θr,ic2m∑Nm
k=1 s

r,k
m +

√
Gr

m

▷ Per-

form weight-based aggregation for MRI clients
5: end for
6: for each CT client j ∈ Nc do

7: θr+1
m2c =

∑Nc
i=1

(sr,jc + gr,jc ) · θr,jm2c∑Nc
k=1 s

r,k
c +

√
Gr

c

▷ Per-

form weight-based aggregation for CT clients
8: end for
9: return Aggregated weights θr+1

c2m and θr+1
m2c

Algorithm 3 Federated VQA Finetuning

Require: For each modality k ∈ {m, c, t}: input
vk, encoder weights Wk, and LoRA weights
αk, βk.

1: v̂k = Wkvk + βkαkvk ▷ Refines the
modality-specific representation.

2: Finetune only LoRA parameters αk, βk.
3: return Modality-specific LoRA weights
{αm, βm}r,i, {αc, βc}r,i and {αt, βt}r,i

Algorithm 4 Modality-specific Aggregation

Require: i-th clients N r
m (real), N s

m (syn-
thetic), CT clients N r

c , N s
c , LoRA weights

{αm, βm}r,i, {αc, βc}r,i, {αt, βt}r,i and nor-
malization ratio ϵ

1: for each client i do
2: if i is real then
3: λi ← ϵ

ϵ ·N r +N s
▷ Compute

real-client weight
4: else
5: λi ← 1

ϵ ·N r +N s
▷ Compute

synthetic-client weight
6: end if
7: end for
8: {αk, βk}r+1 ← ∑N

i=1 λ
i · {αk, βk}r,i, k ∈

{m, c, t} ▷ Aggregate modality-specific LoRA
weights

9: return Aggregated weights {αk, βk}r+1

B Discussion

B.1 Discriminator Score-based Aggregation

Discriminator-based aggregation may raise con-
cerns about stability, especially in cross-modal sce-
nario. However, the proposed framework addresses
this issue through a carefully designed weighting
mechanism. Specifically, our method does not
directly rely on the discriminator’s confusion be-
tween real and synthetic data. Instead, aggrega-
tion weights are determined based on the discrim-
inator’s confidence and accuracy exclusively on
real images, reflecting its reliability in recogniz-
ing genuine data rather than its susceptibility to
well-generated synthetic examples.

Moreover, the proposed framework does not
rely solely on discriminator scores for aggregation
weight determination. Instead, it incorporates addi-
tional signals, including the gradient of the discrim-
inator loss and the cumulative gradient sum (e.g.,
Gr), to ensure more stable and reliable weighting.
These complementary factors help mitigate poten-
tial biases caused by temporary discriminator con-
fusion and contribute to more robust aggregation
decisions.

B.2 Experiments on Cross-modality

In this study, we validate the superiority of our
approach by effectively addressing cross-modal
heterogeneity through a combination of DA and
FL strategies. While combination of DA and FL
strategies primarily rely on aggregating modality-
specific features into a shared representation, they
often fail to bridge the substantial semantic and
visual gaps inherent in medical imaging modalities,
such as MRI and CT.

To ensure a fair and comprehensive compari-
son, we selected state-of-the-art FL baselines that
explicitly incorporate domain adaptation mecha-
nisms (e.g., FedTGP with SEA and IOS with CAF).
These methods represent the approaches for miti-
gating domain shifts. However, even with these en-
hancements, they struggle to fully capture modality-
specific semantic cues and achieve effective cross-
modal representation learning. In contrast, our pro-
posed X-FLoRA framework mitigates these chal-
lenges by employing a federated asymmetric trans-
lation and federated VQA finetuning. This design
allows each modality to retain its unique charac-
teristics while still enabling effective cross-modal
representation learning.

Experimental results demonstrate that our ap-
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Dataset LLaVA-Med VQA-RAD
Metric PPV Sensitivity PPV Sensitivity
FedAvg 34.67 23.30 63.95 64.35
FedProx 34.50 23.20 68.30 66.82
MOON 34.92 23.85 68.77 67.98

FedProto 34.86 23.93 68.86 68.52
IOS 35.08 23.52 66.67 67.83

FedTGP 35.61 24.36 67.59 68.77
X-FLoRA 37.04 25.67 69.67 71.24

Table 6: Comparison with prior federated learning meth-
ods in terms of ppv and sensitivity on LLaVA-Med and
VQA-RAD datasets.

Dataset LLaVA-Med
Metric BLEU-1 BLEU-5 METEOR ROUGE CIDEr
FedAvg 0.2857 0.1446 0.3408 0.3641 0.4968
FedProx 0.2804 0.1478 0.3414 0.3652 0.5003
MOON 0.2908 0.1512 0.3455 0.3576 0.5108

FedProto 0.2915 0.1530 0.3447 0.3557 0.5117
IOS 0.2884 0.1497 0.3486 0.3602 0.5178

FedTGP 0.2990 0.1546 0.3515 0.3629 0.5201
X-FLoRA 0.3158 0.1614 0.3667 0.3899 0.5403

Table 7: Comparison with prior federated learning meth-
ods in terms of BLEU, METEOR, ROUGE, and CIDEr
on LLaVA-Med dataset with 6 CT clients and 2 MRI
clients.

proach consistently outperforms combination of
DA and FL strategies, particularly in handling com-
plex modality-specific reasoning tasks. This un-
derscores the effectiveness of explicitly modeling
cross-modal heterogeneity through structured trans-
lation and fine-tuning mechanisms, rather than re-
lying solely on shared representations.

B.3 RAG with X-FLoRA

Integrating RAG into our FL framework poses
significant challenges. In FL setting, clients are
constrained from sharing raw data due to privacy
regulations. Moreover, RAG requires access to a
large, centralized, and searchable corpus at infer-
ence time. Unfortunately, this assumption conflicts
with the privacy-preserving nature of FL, partic-
ularly in medical domains. Hence, RAG can po-
tentially improve QA performance but integrating
it into X-FLoRA requires a privacy-preserving re-
trieval method. It is because client queries may
contain sensitive medical information that must not
be exposed during external document retrieval.

C Additional Experiments

C.1 Clinical Validation

This work was conducted in collaboration with clin-
ical experts in the Department of Nuclear Medicine

Dataset LLaVA-Med
Metric BLEU-1 BLEU-5 METEOR ROUGE CIDEr
FedAvg 0.2864 0.1459 0.3421 0.3656 0.4960
FedProx 0.2797 0.1437 0.3405 0.3630 0.4968
MOON 0.2813 0.1467 0.3437 0.3650 0.5011

FedProto 0.2856 0.1497 0.3433 0.3639 0.5027
IOS 0.2901 0.1523 0.3453 0.3671 0.5113

FedTGP 0.2965 0.1523 0.3478 0.3601 0.5188
X-FLoRA 0.3160 0.1611 0.3685 0.3902 0.5398

Table 8: Comparison with prior federated learning meth-
ods in terms of BLEU, METEOR, ROUGE, and CIDEr
on LLaVA-Med dataset with 2 CT clients and 6 MRI
clients.

Dataset LLaVA-Med VQA-RAD

Metric BLEU-1 BLEU-5 METEOR ROUGE CIDEr
Accuracy (%)

Open Closed Overall
IOS 0.2957 0.1556 0.3514 0.3552 0.5176 55.38 78.02 69.13

FedTGP 0.2997 0.1560 0.3567 0.3644 0.5236 57.52 79.43 69.69
X-FLoRA 0.3287 0.1642 0.3731 0.3900 0.5415 59.27 81.14 72.50

Table 9: Comparison with prior federated learning meth-
ods in terms of BLEU, METEOR, ROUGE, and CIDEr
on LLaVA-Med dataset with 4 X-ray clients and 4 CT
clients.

and the Department of Cardiology. Specifically,
our qualitative evaluations (Figs 5 and 8−18) are
annotated lesion areas (marked with red arrows)
by clinical experts. To further validate the clini-
cal usefulness, we consulted clinical experts, and
incorporated additional recommended evaluation
metrics such as sensitivity, which relates to diagnos-
tic accuracy, and positive predictive value (PPV),
which reflects the rate of false positives. As shown
in Table 6, X-FLoRA outperforms all compared
models in both sensitivity and PPV. This indicates
that X-FLoRA generates fewer incorrect responses,
which is vital in healthcare applications.

C.2 Ratio of Clients

Tables 7 and 8 compare the performance of X-
FLoRA with several existing FL methods under
different client settings on the LLaVA-Med dataset.
Specifically, Table 7 evaluates the case with 6 CT
clients and 2 MRI clients, while Table 8 examines
the scenario with 2 CT clients and 6 MRI clients.

Across both settings, X-FLoRA consistently out-
performs all existing methods in terms of BLEU,
METEOR, ROUGE, and CIDEr metrics. These
results highlight the robustness and effectiveness
of X-FLoRA, even under varying distributions
of modality-specific clients. The superior perfor-
mance demonstrates that X-FLoRA effectively han-
dles cross-modal heterogeneity and maintains high-
quality VQA generation, regardless of the client
composition.
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Dataset LLaVA-Med VQA-RAD

Metric BLEU-1 BLEU-5 METEOR ROUGE CIDEr
Accuracy (%)

Open Closed Overall
LLaVA 0.2937 0.1519 0.3508 0.3558 0.5167 55.33 78.06 69.30

X-FLoRA 0.3191 0.1630 0.3704 0.3954 0.5430 60.42 81.10 72.89

Table 10: Comparison with LLaVA in terms of
BLEU, METEOR, ROUGE, and CIDEr on LLaVA-
Med dataset.

C.3 Additional Modality

Our proposed architecture is inherently extensible,
as it does not assume fixed modality pairs and sup-
ports potential extensions, as mentioned by Limi-
tation section. To present empirical evidence for
potential extensions, we conducted the experiment
with X-ray (additional modality) and CT clients.
As presented in Table 9, X-FLoRA outperforms
recent compared models, demonstrating generaliza-
tion across more diverse settings. In particular, the
superior results on both CT and newly introduced
X-ray clients provide strong empirical evidence that
our framework is not confined to specific modality
pairs, but can be effectively extended to additional
modalities. This highlights that X-FLoRA consis-
tently maintains performance advantages across
heterogeneous modalities, thereby reinforcing its
potential as a general federated learning solution
for real-world multi-modal medical environments.

C.4 Comparison with LLaVA

As shown in Table 10, X-FLoRA outperforms the
LLaVA (Liu et al., 2023). This indicates that our
framework enhances performance without degrad-
ing the frozen LLM’s capabilities, validating the
effectiveness of our design. The improvement pri-
marily stems from the modality-expert LoRA fine-
tuning, which injects modality-specific knowledge
into the encoders while preserving the general rea-
soning ability of the backbone LLM. By selectively
adapting key and value projections in the atten-
tion layers and linear transformations in the feed-
forward layers, our LoRA modules achieve fine-
grained alignment with medical imaging modalities
at minimal computational cost. This confirms that
lightweight, targeted adaptation not only avoids
catastrophic forgetting but also leads to consistent
gains across all evaluation metrics.

C.5 Ablation Study

Table 11 presents an additional ablation study of
the individual contributions of each module in the
X-FLoRA framework. The results demonstrate
that each module significantly enhances the over-

Federated Asymmetric Translation Federated VQA Finetuning
Overall

Accuracy (%)Text Translation
Discriminator-based

Aggregation
Modality-expert

LoRA
Modality-specific

Aggregation
✓ ✓ ✓ ✓ ✓ 72.89
✓ ✓ ✓ ✓ 71.08
✓ ✓ ✓ ✓ 71.12
✓ ✓ ✓ 69.83

✓ ✓ ✓ ✓ 70.89
64.76

Table 11: Ablation study for X-FLoRA on the VQA-
RAD dataset in terms of the accuracy.

η BLEU-1 BLEU-5 METEOR ROUGE CIDEr
0.3 0.3095 0.1578 0.3473 0.3846 0.5349
0.4 0.3158 0.1604 0.3516 0.3911 0.5410
0.5 0.3191 0.1630 0.3604 0.3954 0.5430
0.6 0.3170 0.1610 0.3542 0.3911 0.5413

Table 12: Effect of the adjusting hyperparameter (η)
in terms of BLEU, METEOR, ROUGE and CIDEr in
federated learning of shared asymmetric translation on
the LLaVA-Med dataset.

all performance of X-FLoRA. The combination
of these modules operates synergistically to max-
imize VQA performance, effectively addressing
challenges posed by cross-modal FL heterogeneity.

C.6 Weight of Total Loss
Table 12 presents the impact of the hyperparam-
eter η on the performance of federated learning
with shared asymmetric translation, evaluated us-
ing BLEU, METEOR, ROUGE, and CIDEr metrics
on the LLaVA-Med dataset. The results indicate
that setting η to 0.5 yields the best overall perfor-
mance across all metrics, suggesting that this value
provides an effective balance between adversarial
and identity losses in training.

C.7 Modality-expert LoRA
Table 13 presents an ablation study analyzing the
contribution of rank (rm, rc, and rt) by varying
its rank, where only one modality-expert LoRA
is fine-tuned. The evaluation was conducted on
the LLaVA-Med dataset using BLEU, METEOR,
ROUGE, and CIDEr metrics. Moreover, Table 13
shows that setting all modality-specific LoRA ranks
(rm, rc, and rt) to 16, 32 and 8 yields the best over-
all performance across BLEU, METEOR, ROUGE,
and CIDEr metrics on the LLaVA-Med dataset.
This result suggests that a balanced representation
capacity across MRI, CT, and text modalities is
most effective for the VQA task.

Table 14 summarizes the results of an ablation
study evaluating the impact of different combina-
tions of ranks (rm, rc, and rt) assigned to modality-
expert LoRA modules. While the configuration
of (16, 32, 8) had previously shown promising
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Rank
BLEU-1 BLEU-5 METEOR ROUGE CIDEr

rm
8 0.3121 0.1582 0.3601 0.3876 0.5367

16 0.3150 0.1598 0.3645 0.3907 0.5406
32 0.3122 0.1577 0.3605 0.3869 0.5371

Rank
BLEU-1 BLEU-5 METEOR ROUGE CIDEr

rc
8 0.3133 0.1569 0.3605 0.3858 0.5376

16 0.3128 0.1575 0.3611 0.3861 0.5364
32 0.3149 0.1580 0.3651 0.3911 0.5402

Rank
BLEU-1 BLEU-5 METEOR ROUGE CIDEr

rt
8 0.3138 0.1555 0.3637 0.3882 0.5390

16 0.3125 0.1534 0.3610 0.3868 0.5351
32 0.3120 0.1533 0.3600 0.3851 0.5355

Table 13: Ablation study on the contribution of each
rank (rm, rc, and rt) in terms of BLEU, METEOR,
ROUGE, and CIDEr metrics on the LLaVA-Med
dataset.

Rank
BLEU-1 BLEU-5 METEOR ROUGE CIDEr

rm,rc,rt
16,32,8 0.3191 0.1630 0.3704 0.3954 0.5430
32,32,8 0.3175 0.1608 0.3685 0.3925 0.5417
16,16,8 0.3177 0.1611 0.3672 0.3923 0.5401

16,32,16 0.3156 0.1596 0.3655 0.3896 0.5399

Table 14: Effect of the combination of rank (rm, rc, and
rt) in terms of BLEU, METEOR, ROUGE, and CIDEr
metrics on the LLaVA-Med dataset.

results, we further validated its effectiveness by
experimenting with alternative rank combinations.
As shown in Table 14, the (16, 32, 8) setting con-
sistently outperforms other configurations across
all evaluation metrics, including BLEU, METEOR,
ROUGE, and CIDEr. This confirms that assigning
moderate capacity to the MRI and CT experts and
a smaller capacity to the text expert leads to the
most balanced and effective performance.

Moreover, Tables 15 and 16 explore the impact
of the aggregation weight hyperparameter ϵ, which
controls the balance between real and synthetic
data contributions during modality-specific aggre-
gation. As ϵ increases, real client data receives
higher weight. The best performance is achieved at
ϵ = 1.5, while performance degrades when ϵ = 1
(equal weighting) or ϵ = 0.5 (favoring synthetic
data). This highlights the importance of prioritizing
real data for robust VQA model training.

C.8 Effect of Text

Figure 6 demonstrates the effectiveness of the tex-
tual cues associated with images in the LLaVA-
Med dataset. As shown, CT→MRI and MRI→CT
translations performed without textual cues sig-
nificantly degrade visual quality, introducing se-

ϵ BLEU-1 BLEU-5 METEOR ROUGE CIDEr
0.5 0.2959 0.1514 0.3547 0.3778 0.5201
1 0.3091 0.1598 0.3602 0.3845 0.5289

1.5 0.3291 0.1730 0.3704 0.4054 0.5530
2 0.3105 0.1684 0.3589 0.3823 0.5317

2.5 0.3052 0.1647 0.3604 0.3760 0.5208

Table 15: Effect of the normalization ratio (ϵ) on BLEU,
METEOR, ROUGE, and CIDEr scores in expert-aware
weighting on the LLaVA-Med dataset.

ϵ
Accuracy (%)

Open Closed Overall
0.5 56.48 76.98 68.84
1 58.45 77.95 70.21

1.5 60.42 81.10 72.89
2 59.10 77.58 70.24

2.5 58.38 76.99 69.60

Table 16: Effect of the normalization ratio (ϵ) on ac-
curacy in expert-aware weighting on the VQA-RAD
dataset.

vere noise and distorting anatomical regions. Com-
pared with translations without textual cues, the
proposed text-driven translations leverage image-
associated textual information to preserve clinical
insights. Specifically, the second and third rows of
the CT→MRI results show that translations with-
out textual cues introduce severe noise. Further-
more, in the MRI→CT results, the second row high-
lights Posterior Reversible Encephalopathy Syn-
drome—emphasizing this finding during the CT
conversion process. Notably, these results demon-
strate that text-driven translation effectively pre-
serves and emphasizes clinically relevant regions.

C.9 Visual analysis of federated asymmetric
translation.

Figure 7 exhibits the visualized results of the for-
ward and backward processes of federated asym-
metric translation for each modality across global
training rounds. Initially, both forward and back-
ward translations exhibit significant noise. How-
ever, as training progresses, the proposed feder-
ated asymmetric translation—which focuses on
enhancing the backward translator—progressively
improves its ability to capture the features of the
input images. These results demonstrate that our
training methodology enables efficient model learn-
ing even in cross-modal FL scenarios where each
client holds data from only a single modality.

8406



Figure 6: Effect of textual cues on clinical feature aug-
mentation in the forward translator of asymmetric trans-
lation on the LLaVA-Med dataset.

D VQA Results

Figures 8−16 present qualitative examples of VQA
results using the LLaVA-Med dataset. Specifically,
figures 8−12 illustrate cases based on CT data,
while figures 13−16 focus on MRI-based VQA
scenarios. Moreover, Figures 17 and 18 present
qualitative CT and MRI examples of VQA results
using the VQA-RAD dataset, respectively. In the
figure, the red arrow highlights a lesion or anatom-
ical structure described in the imaging report, red
text indicates incorrect or inconsistent responses,
while BLEU text represents accurate and contextu-
ally appropriate answers.

Figure 12 presents a failure case analysis of our
model. Although the imaging report indicates mul-
tiple abnormalities in the lower lobes—including
ground glass opacities, arcade-like bands of
parenchymal consolidation, peribronchial consoli-
dation, and mild bronchiolectasis—our model suc-
cessfully identified one of the true abnormalities
but additionally predicted unrelated findings such
as multiple cavitary lesions. However, it is impor-
tant to note that other baseline models performed
even more poorly. This suggests that despite the
imperfect prediction, our model demonstrates a
comparatively stronger ability to recognize at least
some clinically relevant abnormalities.

In each example without Fig. 12, various mod-
els are evaluated by their ability to correctly iden-
tify the main imaging findings when presented
with corresponding medical images and diagnostic
queries. The figures demonstrate that X-FLoRA
consistently provides more accurate and clinically
relevant responses. This highlights the importance
of diverse modality data and modality-specific ex-
pert representation for achieving reliable VQA per-
formance in medical imaging contexts.

Figure 7: Visual results of federated asymmetric transla-
tion across global rounds. In the first round, the forward
translator produces severe noise. By the 25th round,
noise is substantially reduced and the overall structure
begins to take shape. By the 50th round, the output
closely resembles the input form with noise almost en-
tirely eliminated.

Figure 8: Example comparison of X-FLoRA and other
FL methods on LLaVA-Med dataset. The GPT-4 is
considered as the ground truth.

Figure 9: Example comparison of X-FLoRA and other
FL methods on LLaVA-Med dataset. The GPT-4 is
considered as the ground truth.
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Figure 10: Example comparison of X-FLoRA and other
FL methods on LLaVA-Med dataset. The GPT-4 is
considered as the ground truth.

Figure 11: Example comparison of X-FLoRA and other
FL methods on LLaVA-Med dataset. The GPT-4 is
considered as the ground truth.

Figure 12: Example comparison of X-FLoRA and other
FL methods on LLaVA-Med dataset. The GPT-4 is
considered as the ground truth.

Figure 13: Example comparison of X-FLoRA and other
FL methods on LLaVA-Med dataset. The GPT-4 is
considered as the ground truth.

Figure 14: Example comparison of X-FLoRA and other
FL methods on LLaVA-Med dataset. The GPT-4 is
considered as the ground truth.

Figure 15: Example comparison of X-FLoRA and other
FL methods on LLaVA-Med dataset. The GPT-4 is
considered as the ground truth.
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Figure 16: Example comparison of X-FLoRA and other
FL methods on LLaVA-Med dataset. The GPT-4 is
considered as the ground truth.

Figure 17: Example comparison of X-FLoRA and other
FL methods on VQA-RAD.

Figure 18: Example comparison of X-FLoRA and other
FL methods on VQA-RAD.
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