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Abstract

Knowledge Graph Question Answering
(KGQA) aims to answer natural language
questions based on knowledge graphs. Recent
approaches apply the Retrieval-Augmented
Generation (RAG) paradigm to incorporate
Large Language Models (LLMs) to this task,
where a retriever selects a question-related
subgraph and an LLM-based generator is
then adopted to predict answers based on the
retrieved subgraph. However, the subgraph
selection process is non-differentiable, pre-
venting end-to-end training of the retriever
and the generator, which leads to sub-optimal
performance. To overcome this limitation,
this paper proposes a Differentiable RAG
(D-RAG) approach that jointly optimizes the
retriever and the generator for KGQA. Via
reformulating the optimization objective as
an expectation over a subgraph distribution
with respect to answer generation likelihood,
D-RAG makes the joint optimization fea-
sible. Specifically, it implements this joint
optimization through a differentiable subgraph
sampling and prompting module that integrates
Gumbel-Softmax reparameterization for
sampling and a neural prompt construction
process that fuses semantic and structural
information. Experimental results on WebQSP
and CWQ demonstrate that D-RAG not only
outperforms state-of-the-art approaches, but
also effectively reduces retrieval noise in the
process.

1 Introduction

Knowledge Graph Question Answering (KGQA)
aims to automatically answer natural language
questions via well-structured facts stored in Knowl-
edge Graphs (KGs). It is an essential task in
Natural Language Processing (NLP) and is vi-
tal in various applications such as information
retrieval and intelligent assistance (Potdar et al.,
2025; Liang et al., 2024). However, KGQA poses
challenges to existing approaches, as it requires a
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Figure 1: Comparison between the current RAG-based
KGQA approaches and the proposed D-RAG approach.
The red arrows highlight the end-to-end gradient flow.

deep understanding of natural language questions
and the ability to perform complex reasoning over
KGs. Considering that Large Language Models
(LLMs) (DeepSeek, 2025; OpenAI, 2024b; Meta,
2024) have shown strong capabilities in natural lan-
guage understanding and reasoning, some recent
approaches (Peng et al., 2024; Luo et al., 2024a;
He et al., 2024) incorporate LLMs into KGQA
via the Retrieval-Augmented Generation (RAG)
paradigm (Lewis et al., 2020). Specifically, they
adopt a retriever to select a question-relevant sub-
graph from the KG. Then, they serialize the sub-
graph into the prompt and adopt LLMs as the gen-
erator to reason for answers.

Despite the promising performance of these
RAG-based KGQA approaches, significant chal-
lenges remain in optimizing both the retriever and
the generator. As illustrated in Figure 1, current
approaches (Luo et al., 2024a; Mavromatis and
Karypis, 2024) typically adopt a sequential opti-
mization paradigm, where the retriever is trained us-
ing heuristic supervision signals, and the generator
is subsequently optimized with the retriever frozen.
This sequential optimization leads to sub-optimal
performance for the complete system. Specifically,
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the generator’s semantic understanding capabilities
cannot guide the retriever, while the retriever can-
not effectively communicate structural knowledge
in a way the generator can optimally utilize.

To address above limitations, we propose the
Differentiable Retrieval-Augmented Generation
(D-RAG) for KGQA. First, we reformulate the
optimization objective as an expectation over a
subgraph distribution with respect to answer gen-
eration likelihood, making the joint optimization
tractable. Second, we develop a differentiable
subgraph sampling and prompting module that
achieves end-to-end training. In the subgraph
sampling step, D-RAG transforms discrete sub-
graph selection into differentiable fact-level sam-
pling using the Gumbel-Softmax reparameteriza-
tion trick (Jang et al., 2017; Maddison et al., 2017).
In the prompt construction step, D-RAG con-
verts the sampled subgraph into LLM-compatible
prompts that fuse both semantic and structural in-
formation while maintaining gradient flow through-
out the entire pipeline. This end-to-end optimiza-
tion creates a synergistic relationship where the
generator’s semantic understanding informs re-
trieval quality, and the retriever provides struc-
turally meaningful information that enhances the
generator’s reasoning capabilities.

Experimental results on WebQSP and CWQ
show that D-RAG outperforms the state-of-the-art
approaches by 2.5% and 1.8% on Hits@1, and
by 3.4% and 4.4% on the F1 scores, respectively.
These improvements stem from the end-to-end op-
timization strategy, which effectively reduces re-
trieval noise and enhances answer generation qual-
ity.

The main contributions of this work are as fol-
lows:

• We propose D-RAG, the first differentiable
RAG-based KGQA approach, to the best of
our knowledge, that enables end-to-end opti-
mization with gradient flow from the genera-
tor to the retriever.

• We reformulate the optimization objective as
a tractable expectation over subgraph distri-
butions and develop a differentiable subgraph
sampling and prompting module. This mod-
ule combines Gumbel-Softmax reparameter-
ization for differentiable sampling with neu-
ral prompt construction that integrates both
semantic and structural information, estab-

lishing an effective end-to-end optimization
framework for KGQA.

• Comprehensive experiments on two widely
used benchmark datasets, i.e., WebQSP and
CWQ, demonstrate that D-RAG outperforms
state-of-the-art performance, validating the
effectiveness of the proposed approach.

2 Related Works

2.1 Knowledge Graph Question Answering
KGQA approaches can be broadly categorized into
Semantic Parsing-based (SP-based) and Informa-
tion Retrieval-based (IR-based) ones (Lan et al.,
2023). While SP-based methods parse questions
into formal queries for execution, IR-based meth-
ods retrieve relevant subgraphs for answer ranking
or generation. D-RAG falls into the latter category.

Traditional IR-based approaches typically learn
entity and relation representations for answer rank-
ing using network architectures such as graph neu-
ral networks (Sun et al., 2018; He et al., 2021;
Zhang et al., 2022), which we categorize as Graph
Reasoning methods. The emergence of LLMs has
led to RAG-based approaches that leverage LLMs’
powerful reasoning capabilities for answer genera-
tion. These RAG-based approaches can be divided
into two groups: LLM Reasoning methods that pri-
marily rely on LLMs for both subgraph retrieval
and answer generation (Luo et al., 2024a; Jiang
et al., 2023a; Sun et al., 2024; Ma et al., 2024;
Luo et al., 2024b), and Graph-LLM methods that
address LLMs’ limitations in processing graph-
structured data (Guo et al., 2023; Guan et al., 2025)
by incorporating graph-specific techniques during
retrieval while using LLMs for reasoning (He et al.,
2024; Li et al., 2025; Mavromatis and Karypis,
2024; Liu et al., 2024a).

Despite the promise of these RAG-based ap-
proaches, a critical limitation is their lack of end-to-
end training capabilities. While SR (Zhang et al.,
2022) achieves end-to-end KGQA by construct-
ing tree-structured subgraphs from multi-hop paths,
their posterior approximation requires computing
answer generation probability for each top-k path
independently, which would incur prohibitive com-
putational costs when LLMs serve as the generator.

2.2 End-to-End Training in RAG
Most RAG systems follow a pipeline
paradigm (Gao et al., 2023), where separate
modules for retrieval, prompting, and generation
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are optimized separately. Several works have
explored end-to-end trainable approaches for text
retrieval, including REALM (Guu et al., 2020),
EMDR2 (Sachan et al., 2021), VOD (Liévin
et al., 2023), and StochasticRAG (Zamani and
Bendersky, 2024). However, these text-centric
methods cannot be directly applied to KGQA due
to the structured nature of graph data and the need
for specialized graph retrieval mechanisms.

StochasticRAG (Zamani and Bendersky, 2024)
is the most similar one to the proposed approach, as
both methods leverage Gumbel tricks for discrete
sampling, whether for documents or subgraphs.
However, D-RAG differs in two key aspects: (1)
StochasticRAG retrieves a fixed number of docu-
ments, which is not suitable for KGQA. In contrast,
our approach transforms subgraph sampling into
independent sampling of facts, allowing for flexible
subgraph sizes; (2) Unlike documents that can be
directly fed to LLMs, we employ a differentiable
prompting step to bridge the gap between graph
structures and LLM reasoning.

3 Preliminary

Knowledge Graph Question Answering. In this
paper, the knowledge graph is composed of multi-
ple facts, where each fact τ = (h, r, t) represents
a triple consisting of a head entity h, a relation r,
and a tail entity t. Formally, the KG can be repre-
sented as G = {(h, r, t)|h, t ∈ E , r ∈ R}, where
E denotes the set of all entities and R represents
the set of all relation types, with each entity and
relation type typically corresponding to a natural
language form. Given a knowledge graph G, the
KGQA task takes a natural language question q
as input and outputs an answer a corresponding
to one or more entities in G. The ultimate goal is
to maximize the likelihood of the correct answer,
which can be formulated as E(q, a) [log p(a|q,G)] .
RAG-based KGQA. The RAG paradigm for
KGQA involves two independent modules: a re-
triever Rβ that identifies the question-relevant sub-
graph gsub with probability pβ(gsub|G, q), and a
generator Gγ that generates the answer a with prob-
ability pγ(a|gsub, q). β and γ denote the parame-
ters of the retriever and the generator, respectively.

The overall answer generation probability can
be formulated as:

pθ(a|q,G) =
∑

gsub⊆G
pγ(a|q, gsub)pβ(gsub|q,G),

(1)

where θ denotes all parameters in the above two
modules.

4 The Proposed D-RAG Approach

This section presents Differentiable Retrieval-
Augmented-Generation (D-RAG), as illustrated in
Figure 2. Our approach integrates a graph neural
network (GNN)-based retriever and an LLM-based
generator through a differentiable subgraph sam-
pling and prompting module, enabling end-to-end
training. Below, we detail these modules and the
training strategy.

4.1 GNN-based Retriever

The GNN-based retriever encodes the knowledge
graph to identify question-relevant facts. Given a
question and a knowledge graph, it outputs fact
representations that serve multiple purposes in D-
RAG.

Fact Representation. For each fact τi in the
knowledge graph, we construct a representation
by concatenating its constituent elements:

Fi = [hi ∥ ri ∥ ti] ∈ RDGNN , (2)

where hi, ri, and ti are representations of the head
entity, relation, and tail entity, respectively, derived
from a GNN module based on ReaRev (Mavroma-
tis and Karypis, 2022).

From these fact representations, we compute the
selection probability for each fact using a linear
layer followed by a sigmoid function: p(τi) =
σ(WFi + b), where W and b are learnable pa-
rameters.

Subgraph Selection Probability Factorization.
For subgraph sampling, computing the exact prob-
ability of a specific subgraph is combinatorially
complex. Therefore, we employ a factorization
approach that decomposes the subgraph selection
probability into independent binary selections for
each fact:

p(gsub) =
∏

τi∈gsub
p(τi)

∏

τj /∈gsub
(1− p(τj)). (3)

Detailed derivations of this factorization and
specifications of the GNN architecture are provided
in Appendix A and B, respectively.
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Figure 2: The proposed D-RAG consists of four steps: 1) The GNN-based retriever processes the knowledge graph
to obtain fact representations; 2) The differentiable subgraph sampling assigns selection probabilities to facts and
uses Gumbel-Softmax reparameterization trick to sample a subgraph; 3) The differentiable prompt construction
transforms the sampled subgraph into a neural fact prompt that combines semantic and structural information; 4)
The LLM-based generator predicts the final answer.

4.2 LLM-based Generator

The LLM-based generator predicts answers to ques-
tions based on the information contained in the re-
trieved subgraph. It processes the input through
autoregressive decoding to generate answers:

pγ(a|gsub, q) =
La∏

i=1

pγ(ai|a<i, gsub, q), (4)

where La is the token length of the ground-truth
answer.

The generator receives input comprising three
components as shown in Figure 2: the task setting,
the question, and the neural fact prompt derived
from the retrieved subgraph. These are combined
in a structured template:

Answer the question based
on the provided facts.
Question: <question>
Provided facts: <fact1><fact2> ...
Answer:

Answers are formatted as a bar-separated list:
<Ans1>|<Ans2>|...|<AnsN>. Complete prompt
examples are provided in Appendix C.

4.3 Differentiable Subgraph Sampling and
Prompting

D-RAG constructs differentiable bridges across the
retriever-generator interface through two designs:
(1) reformulating the optimization objective into
a tractable form, and (2) implementing differen-
tiable operations for both subgraph sampling and
prompt construction. This end-to-end approach en-
ables joint optimization where the retriever learns
to identify graph patterns that enhance the genera-
tor’s reasoning capabilities.

4.3.1 Differentiable Formulation
The optimization objective of maximizing Equa-
tion 1 involves a summation with combinatorial
complexity, making it generally intractable. We ad-
dress this by optimizing its evidence lower bound
(ELBO) (Hoffman et al., 2013), formulated as:

log pθ(a|q,G) = Egsub∼r

[
log

pθ(a, gsub|q,G)
r(gsub)

]

+ DKL(r(gsub) || pθ(gsub|a, q,G))

≥ Egsub∼r

[
log

pθ(a, gsub|q,G)
r(gsub)

]
,

(5)
where r(gsub) represents the variational distribu-
tion of the subgraph, and the inequality holds
because the Kullback-Leibler divergence is non-
negative. By specifying the variational distribution
r(gsub) as the retriever’s distribution pβ(gsub|q,G),
the ELBO simplifies to:

log pθ(a|q,G) ≥ Egsub∼pβ

[
log

pθ(a, gsub|q,G)
pβ(gsub|q,G)

]

= Egsub∼pβ

[
log

pγ(a|gsub, q)pβ(gsub|q,G)
pβ(gsub|q,G)

]

= Egsub∼pβ [log pγ(a|gsub, q)] ,
(6)

where pβ is modeled by the GNN-based retriever
and pγ by the LLM-based generator. This formu-
lation transforms the original combinatorial objec-
tive into a tractable expectation over subgraph dis-
tributions. To optimize this expectation through
gradient-based methods, two critical challenges
need to be addressed: (1) implementing differen-
tiable operations for discrete subgraph sampling
from distribution pβ , and (2) constructing differen-
tiable prompts that allow gradients to flow through
the generator pγ .
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4.3.2 Differentiable Subgraph Sampling
Sampling a subgraph results a selection matrix
Z = [z1; z2; . . . ; zNf

] ∈ {0, 1}Nf×2, where Nf

is the total number of facts in the knowledge graph
and each row zi indicates whether the i-th fact is se-
lected ([1, 0]) or not ([0, 1]). Given Z, the sampled
subgraph is represented as gsub = {τi|zi = [1, 0]}.

To make this subgraph sampling process dif-
ferentiable, we adopt the Gumbel-Softmax repa-
rameterization trick (Jang et al., 2017; Maddison
et al., 2017). For each fact τi, the retriever outputs
a Bernoulli parameter pi = pβ(τi), representing
its selection probability. We apply the Gumbel-
Softmax trick:

zsoft
i = softmax

(
(log pi + ηi1) / t

(log(1− pi) + ηi2) / t

)T

,

(7)
where ηi1, ηi2 are independent Gumbel(0,1) noise
samples and t is the temperature coefficient.

The final binary selection indicator zi is obtained
through:

zi = onehot(argmax(zsoft
i )) + zsoft

i − SG(zsoft
i ),

(8)
where SG denotes the stop-gradient operation. This
formulation combines discrete selection in the for-
ward pass with differentiability in the backward
pass.

With this reparameterization, our training objec-
tive becomes:

Eη∼p(η) [log pγ(a|gsub, q)] , (9)

which transforms the expectation from a complex
parameterized distribution to sampling from a fixed
distribution, enabling gradient flow through the
discrete sampling process.

4.3.3 Differentiable Prompt Construction
After sampling the subgraph, we transform it into
a neural prompt that preserves both semantic and
structural information while maintaining end-to-
end differentiability.

For semantic information, each fact is converted
into natural language using the template <head
name>, <relation name>, <tail name> and
then tokenized and encoded into embeddings Vi ∈
RLi×DLLM , where Li is the token length and DLLM
is the LLM embedding dimension. We multiply
each embedding Vi by the corresponding selection
indicator zi1 from matrix Z, where zi1 denotes the
first element of the selection vector zi, effectively
retaining only the embeddings of selected facts.

For structural information, we utilize the fact rep-
resentations F = [F1;F2; . . . ;FNf

] ∈ RNf×DGNN

learned by the GNN retriever (defined in Equa-
tion 2). These representations capture each fact’s
position and relevance within the knowledge graph.
A two-layer MLP projects these representations
to align with the LLM embedding space: F′ =
Projector(F) ∈ RNf×DLLM . Similarly, we select
only the structural embeddings F′

i corresponding
to facts where zi1 = 1.

For each selected fact τi, we concatenate its se-
mantic embedding Vi with its structural embed-
ding F′

i to form an enriched representation. These
combined embeddings are then concatenated to
create the complete neural fact prompt VF for the
LLM-based generator.

Our approach enables gradient flow from the
LLM loss L back to the retriever parameters β
through dual pathways:

∂L

∂β
=

∂L

∂VF

∂VF

∂Z

∂Z

∂β︸ ︷︷ ︸
Semantic pathway

+
∂L

∂VF

∂VF

∂F′
∂F′

∂β︸ ︷︷ ︸
Structural pathway

, (10)

where the first term represents gradient flow
through the discrete selection process, and the sec-
ond term captures flow through the fact representa-
tions.

For multi-hop reasoning, facts are arranged by
their selection probabilities, helping preserve poten-
tial logical sequences within the sampled subgraph.

4.4 Training Strategy and Inference
With the differentiable subgraph sampling and
prompting module proposed above, D-RAG sup-
ports end-to-end training. To accelerate conver-
gence, we adopt a two-phase training strategy.

In the first phase, the GNN-based retriever is pre-
trained using heuristically constructed subgraphs
as guidance:

L1 = DKL(pheur(gsub) || pβ(gsub)), (11)

where pheur represents the heuristic subgraph dis-
tribution (typically in one-hot form), and pβ is the
retriever’s predicted distribution.

In the second phase, the retriever and generator
are trained jointly with the generation loss:

L2 = −Eη∼p(η) [log pγ(a|VF, q)] , (12)

where VF is the neural fact prompt constructed
from the sampled subgraph gsub as described in the
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previous section. Importantly, VF depends on both
the Gumbel noise η and the retriever parameters β.

To balance the significantly different gradient
magnitudes between the retriever pre-training and
generation objectives, we apply a direct gradient
normalization approach:

Ljoint = λ
L1

||∇βL1||
+ (1− λ)

L2

||∇βL2||
, (13)

where λ is a balancing hyperparameter and
||∇βLi|| represents the norm of gradients with re-
spect to the retriever parameters.

During inference, D-RAG performs subgraph
sampling through three steps: (1) computing fact
selection probabilities via the GNN retriever, lin-
ear layer, and sigmoid activation without Gumbel-
Softmax reparameterization, (2) ranking all facts
by their probabilities, and (3) applying a hybrid
selection strategy that selects the top-k facts while
filtering out those below probability threshold p.
The selected facts are then sorted by probability in
ascending order before being fed to the generator.

For both WebQSP and CWQ datasets, k = 100
due to LLM context length constraints, and p =
0.01 as tuned on the WebQSP validation set. This
hybrid approach balances comprehensive coverage
with relevance quality.

5 Experiments

5.1 Experiment Settings
Datasets. The experimental evaluation was con-
ducted on two benchmark datasets: WebQSP (Yih
et al., 2016) and CWQ (Talmor and Berant, 2018),
both built upon the Freebase (Bollacker et al., 2008)
knowledge graph. These datasets represent clas-
sical benchmarks for complex logical reasoning
in KGQA. WebQSP contains relatively straightfor-
ward questions that typically require 1-2 hop rea-
soning chains, and CWQ presents more challeng-
ing scenarios involving 3-4 hop reasoning chains.
Detailed specifications of the datasets are provided
in Appendix D.

Baselines. D-RAG is compared with 15 baselines
across three categories: 1) Graph reasoning meth-
ods that leverage graph structure for scoring-based
answer inference; 2) LLM reasoning methods that
perform reasoning with LLMs without utilizing
graph structure during retrieval; and 3) Graph-LLM
methods that maintain dedicated graph-based re-
trieval and leverage LLMs for reasoning. The de-
tails of each baseline are described in Appendix E.

Evaluation Metrics. Following previous
works (Luo et al., 2024a; Sun et al., 2024), D-RAG
employs Hits@1 and F1 metrics for evaluation
on WebQSP and CWQ. The evaluation process
first parses LLM-generated answers into a list
for comparison with the ground truth answers.
The Hits@1 metric measures whether any correct
answer appears in the model’s response, repre-
senting a basic retrieval capability. In contrast,
F1 provides a more rigorous and comprehensive
assessment by balancing precision and recall, thus
better reflecting the model’s overall answer quality.
Further details are provided in Appendix F.

Implementations. D-RAG employs the
ReaRev (Mavromatis and Karypis, 2022)
model as the GNN and utilizes the Llama3-8B-
Instruct (Meta, 2024) as the LLM. Based on entities
linked to the knowledge graph, heuristic subgraphs
are extracted via SPARQL query parsing. A
heuristic subgraph is a set of facts that conform to
the intrinsic logic of the SPARQL query, typically
forming a tree structure. Full implementation
details are provided in Appendix G.

5.2 Main Results

To evaluate the overall effectiveness of D-RAG,
we compare it with state-of-the-art baselines on
KGQA tasks. Table 1 presents the results, where
"-" indicates the corresponding method does not
report results for that metric.

The D-RAG approach achieves state-of-the-art
performance across both datasets among compara-
ble methods. Specifically, on the WebQSP dataset,
D-RAG achieves a 2.5% improvement in Hits@1
over the best-performing baseline SubgraphRAG,
and outperforms DECAF by 3.4% in the F1 score.
Although some baselines like RoG achieve compet-
itive Hits@1 (85.7%), their F1 scores (70.8%) lag
substantially behind, suggesting they may retrieve
some correct answers but with lower precision.

For the more complex CWQ dataset, the pro-
posed approach demonstrates a 1.8% advantage in
Hits@1 compared to the best-performing ToG ap-
proach, and surpasses GNN-RAG by 4.4% in the
F1 score. Notably, methods like SubgraphRAG suf-
fer from a significant performance drop on CWQ
(F1 decreases from 70.6% to 47.2%). In con-
trast, D-RAG maintains consistently superior per-
formance across datasets of varying complexity,
achieving the highest scores on both basic retrieval
capability (Hits@1) and the more comprehensive
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Type Method WebQSP CWQ

Hits@1 F1 Hits@1 F1

Graph Reasoning

Graftnet (Sun et al., 2018) 66.4 - 32.8 -
NSM (He et al., 2021) 68.7 62.8 47.6 42.4
SR+NSM (Zhang et al., 2022) 68.9 64.1 50.2 47.1
ReaRev (Mavromatis and Karypis, 2022) 76.4 70.9 52.9 -
UniKGQA (Jiang et al., 2023b) 75.1 70.2 50.7 48.0
NuTrea (Choi et al., 2023) 77.4 72.7 53.6 49.5

LLM Reasoning

Llama3-8B (Meta, 2024) 59.8 45.7 30.8 27.6
StructGPT (Jiang et al., 2023a) 72.6 - - -
DECAF (DPR + FiD-large) (Yu et al., 2023) 80.7 77.1 67.0 -
ToG (GPT4) (Sun et al., 2024) 82.6 - 68.5 -
RoG (joint) (Luo et al., 2024a) 85.7 70.8 62.6 56.2

Graph-LLM

G-Retriever (He et al., 2024) 70.1 - - -
EtD (ChatGPT) (Liu et al., 2024a) 82.5 - 62.0 -
GNN-RAG (Mavromatis and Karypis, 2024) 85.7 71.3 66.8 59.4
SubgraphRAG (Llama3.1-8B) (Li et al., 2025) 86.6 70.6 57.0 47.2
D-RAG 89.1 80.5 70.3 63.8

Table 1: Performance comparison with different baselines on WebQSP and CWQ.

measure of answer quality (F1).
A recent work, GCR (Luo et al., 2024b), us-

ing the proprietary GPT4-o-mini (OpenAI, 2024a),
achieves substantially lower F1 scores than our D-
RAG approach: 6.4% lower on WebQSP (74.1%
vs. 80.5%) and 2.1% lower on CWQ (61.7%
vs. 63.8%). While GCR reports higher Hits@1
scores with GPT4-o-mini (92.2% on WebQSP and
75.8% on CWQ), its performance drops signifi-
cantly when using comparable open-source models.
With Qwen-2-7B (Yang et al., 2024), which has
similar parameter size to D-RAG, GCR’s Hits@1
on WebQSP falls to 86.3%, 2.8% below our ap-
proach. These results reveal that while propri-
etary models may excel at Hits@1 through internal
knowledge, they still struggle with retrieval preci-
sion that impacts F1 scores. D-RAG mitigates this
limitation, achieving higher F1 scores using only
open-source models.

5.3 Ablation Study

To evaluate the effectiveness of end-to-end opti-
mization between the retriever and the generator,
our ablation experiments compare D-RAG with
four training method variants: 1) REINFORCE,
which optimizes both modules jointly using the RE-
INFORCE algorithm (Williams, 1992) with vari-
ance reduction; 2) Dynamic Cascade, where both

modules are trained simultaneously with the gener-
ator using real-time retriever outputs, but without
gradient backpropagation from the generator to the
retriever; 3) Static Cascade, where the generator is
optimized using outputs from the frozen retriever;
4) Isolation, where the generator is trained using
heuristic subgraphs as input, completely decou-
pling the two modules. Further details are available
in Appendix H.

Impact on Overall Performance. Table 2
presents the performance comparison across dif-
ferent training methods on WebQSP and CWQ. We
report both "Full Dataset" performance across the
entire test set and "Retrieved Subset" metrics for
cases where at least one relevant fact is retrieved.

The results reveal that D-RAG consistently out-
performs all variants in most metrics across both
datasets, with particularly substantial F1 score im-
provements. On retrieval success cases, D-RAG
achieves up to 6.4% and 8.5% higher F1 scores
than the best variant on WebQSP and CWQ respec-
tively, demonstrating that end-to-end optimization
enables more effective utilization of retrieved facts.

Dynamic Cascade shows modest improvements
over Static Cascade, confirming the benefit of
continuously updating the retriever during train-
ing. While REINFORCE generally outperforms
Static Cascade, it still falls short of D-RAG’s per-
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Training Method
WebQSP CWQ

Full Dataset Retrieved Subset Full Dataset Retrieved Subset
Hits@1 F1 Hits@1 F1 Hits@1 F1 Hits@1 F1

D-RAG 89.1 80.5 94.0 86.2 70.3 63.8 81.7 75.6
REINFORCE 85.1 72.9 90.4 78.9 61.7 55.4 73.0 66.7

D-RAG w/o e2e

Dynamic Cascade 85.3 74.0 90.4 79.8 61.9 55.9 73.5 67.1
Static Cascade 84.8 73.0 90.7 79.4 60.6 54.3 73.2 66.6
Isolation 82.7 53.2 91.1 59.6 63.1 30.0 85.1 40.0

Table 2: Ablation study comparing overall performance across different training methods.

formance, suggesting direct gradient propagation
is more effective than reward-based optimization.
The Isolation variant maintains reasonable Hits@1
performance but exhibits significant drops in F1
scores due to the training-inference gap between
clean training subgraphs and noisy inference re-
trieval.
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Figure 3: Evolution of retriever F1 (solid lines) and re-
trieval number (dashed lines) across training epochs on
WebQSP. Epochs 1-4 represent retriever-only pretrain-
ing, followed by joint training with different methods.
Top-100 facts with selection probability >0.01 were
used for retrieval evaluation.

Impact on Retrieval Performance. Figure 3 re-
veals two advantages of D-RAG’s retriever opti-
mization. First, D-RAG consistently achieves the
highest retriever F1 scores after joint training be-
gins, demonstrating that gradient propagation from
the generator effectively refines retrieval quality.
Second, D-RAG shows a more significant down-
ward trend in retrieved fact count compared to
others, while maintaining high recall performance
(95.46% on WebQSP and 95.48% on CWQ), which
demonstrates superior noise reduction capability
that aligns better with the actual average of 6.4
relevant facts per WebQSP question.

5.4 Relationship Between Retrieval and
Generation Performance
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Figure 4: Impact of retriever quality on generator per-
formance (WebQSP dataset). Heatmap shows generator
F1 scores (color intensity) as a function of retriever
recall (x-axis) and precision (y-axis). Each point rep-
resents a model configuration with different retrieval
configurations using various probability thresholds (0-
0.9) applied to the top-100 retrieved facts.

To understand how different aspects of retrieval
quality affect generation performance, we exam-
ined various retrieval configurations and their im-
pact on generator performance. As shown in Fig-
ure 4, both retrieval recall and precision signifi-
cantly impact generator performance. Models in
the lower-right region (high recall but low preci-
sion) perform worse than those with balanced met-
rics, indicating that retrieving many relevant facts
without filtering irrelevant ones leads to suboptimal
results. Similarly, models in the upper-left region
(high precision but low recall) underperform due
to insufficient fact coverage.

To further evaluate the effectiveness and effi-
ciency of D-RAG, we perform additional exper-
iments including overall performance compari-
son under different situations, evaluation on the
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MetaQA dataset, detailed analysis, training effi-
ciency analysis, and a case study in Appendix I.

Conclusion

In this paper, we presented D-RAG, a novel differ-
entiable approach for KGQA that enables end-to-
end optimization between the retriever and the gen-
erator. D-RAG achieves this through reformulating
the optimization and a differentiable implementa-
tion of subgraph sampling and prompt construction.
Experimental results demonstrate that D-RAG out-
performs state-of-the-art methods with substantial
improvements, where the joint optimization signifi-
cantly reduces noise in the retrieved subgraph while
showing that both precision and recall in retrieval
impact generator performance.

Limitations

Despite the effectiveness of D-RAG, we acknowl-
edge several limitations of our approach. First,
our approach relies on entity linking results with-
out considering potential errors in this preprocess-
ing step. Second, our end-to-end optimization ap-
proach is limited to open-source language models
and cannot be directly applied to closed-source
API-based models.
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A Probability Factorization Analysis

In this section, we first prove the validity of Equa-
tion 3, followed by a discussion on the rationale
behind fact-wise factorization.

The factorization of subgraph probability repre-
sents an approximation of the complex probability
distribution, with an underlying assumption that
the selection of each fact is independent. Consider
a knowledge graph with Nf facts, where each fact
has two possible states (selected or not selected),
resulting in 2Nf possible subgraphs. The sum of
probabilities over all possible subgraphs can be

35397

https://doi.org/10.18653/v1/D18-1455
https://doi.org/10.18653/v1/D18-1455
https://openreview.net/forum?id=nnVO1PvbTv
https://openreview.net/forum?id=nnVO1PvbTv
https://openreview.net/forum?id=nnVO1PvbTv
https://doi.org/10.18653/v1/N18-1059
https://doi.org/10.18653/v1/N18-1059
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.48550/ARXIV.2407.10671
https://doi.org/10.48550/ARXIV.2407.10671
https://doi.org/10.3115/v1/P15-1128
https://doi.org/10.3115/v1/P15-1128
https://doi.org/10.3115/v1/P15-1128
https://doi.org/10.18653/v1/P16-2033
https://doi.org/10.18653/v1/P16-2033
https://doi.org/10.18653/v1/P16-2033
https://openreview.net/forum?id=XHc5zRPxqV9
https://openreview.net/forum?id=XHc5zRPxqV9
https://doi.org/10.1145/3626772.3657923
https://doi.org/10.1145/3626772.3657923
https://doi.org/10.1145/3626772.3657923
https://doi.org/10.18653/v1/2022.acl-long.396
https://doi.org/10.18653/v1/2022.acl-long.396
https://doi.org/10.18653/v1/2022.acl-long.396


expressed as:
∑

gsub

p(gsub)

=
∑

gsub

∏

τi∈gsub
p(τi)

∏

τj /∈gsub
(1− p(τj))

=
∑

τ1

∑

τ2

· · ·
∑

τNf

Nf∏

i=1

p(τi)
I(τi)(1− p(τi))

1−I(τi)

=

Nf∏

i=1

∑

I(τi)∈{0,1}
p(τi)

I(τi)(1− p(τi))
1−I(τi)

=

Nf∏

i=1

(p(τi) + (1− p(τi))) = 1,

where the third row follows from the fact that sum-
ming over all subgraphs is equivalent to consid-
ering both possibilities (selected or not selected)
for each fact independently. I(τi) is an indicator
function that equals 1 when fact τi is included in
the subgraph and 0 otherwise. The final result of 1
validates the probability formulation in Equation 3.

Beyond fact-wise factorization, node-level and
path-wise granularities are also common choices
for probability decomposition. Path-wise granu-
larities, however, face combinatorial complexity
challenges, which explains why direct modeling of
subgraph probability is computationally intractable.
Node-wise granularity, on the other hand, disre-
gards relation information between entities and
fails to handle multi-edge scenarios. These limita-
tions motivate our choice of fact-wise factorization.
To address the potential dependencies between fact
selections that may be overlooked by the indepen-
dence assumption implicit in factorization, we em-
ploy a GNN-based retriever. The inherent capabil-
ity of GNNs to capture graph structural information
helps mitigate the independence assumption, as the
internal parameters of GNN can effectively encode
the correlations between facts.

B Specific design of GNN-based Retriever

B.1 Module
For the GNN-based retriever, D-RAG adopts
ReaRev (Mavromatis and Karypis, 2022) as the
core architecture, which consists of three primary
modules:

• The Instruction Module employs Sentence-
BERT (Reimers and Gurevych, 2019) as its

Language Model (LM) encoder to transform
queries into instructions;

• The Graph Reasoning Module initializes and
updates node representations through message
passing, considering the relationship between
instructions and nodes;

• The Instruction Update Module refines in-
structions based on the node representations
and predicted terminal node distributions.

In our implementation, the node encoder cor-
responds to the output of the Graph Reasoning
Module, and the relation encoder refers to the LM
encoder and MLP projection components used in
the node initialization process.

B.2 Loss design of GNN-based Retriever

As shown in Equation 11 of the main text, the loss
function L1 for training the GNN-based retriever
is formulated as:

DKL(pheur(gsub)|pβ(gsub))
= −

∑

τ∈gsub
log pβ(τ) = LBCE.

(14)

This can be implemented using PyTorch’s BCE
(Binary Cross Entropy) weighted loss 1. Inspired
by the work of (Lin et al., 2024), to address the
sparsity of positive examples in knowledge graph
fact classification tasks, we further incorporate a
rank loss:

Lrank = − 1

N+N−

N+∑

i=1

N−∑

j=1

log σ(p(τi)− p(τj)),

(15)
where N+ and N− denote the number of positive
and negative examples, respectively, τi represents a
positive example, τj represents a negative example,
and σ(·) is the sigmoid function. This ranking loss
generates larger gradients on sparse samples, effec-
tively complementing the BCE loss and enhancing
the model’s classification capability.

The total loss of the GNN-based retriever is a
weighted combination of these two losses:

L1 = ρLBCE + (1− ρ)LRank, (16)

where we empirically set ρ = 0.7 to balance be-
tween the BCE loss and the ranking loss.

1https://pytorch.org/docs/stable/generated/
torch.nn.BCEWithLogitsLoss.html
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C Prompts

Figure 5 illustrates the full input prompt received
by the LLM-based generator, which consists of
three components: task setting, question, and sub-
graph. The subgraph is shown in typewriter font,
representing the neural fact prompt in D-RAG.

In the subgraph part, each line corresponds to
a distinct fact that will be converted to embed-
ding form before being input to the LLM. The
<S-Embedding> marker at the beginning of each
line represents the structural embedding mentioned
in the proposed approach. The textual content fol-
lowing this marker contains the semantic informa-
tion of each fact. Together, these elements consti-
tute the neural fact prompt that enables the model to
effectively integrate knowledge during generation.

D Datasets

D-RAG evaluates on two benchmark KGQA
datasets: WebQuestionSP (WebQSP) (Yih et al.,
2016) and Complex WebQuestions (CWQ) (Talmor
and Berant, 2018). Following previous works (Luo
et al., 2024a; He et al., 2021), the same train and
test splits are adopted for fair comparison. The
datasets are analyzed from two perspectives: basic
statistics and reasoning complexity.

The overall statistics of both datasets are summa-
rized in Table 3, including the number of samples
in training, validation and test sets.

Table 4 shows the distribution of reasoning
hops required for answering questions, indicat-
ing the logical complexity of questions in each
dataset. The hop counting method analyzes the
path length from topic entities to answer entities
in SPARQL queries. For WebQSP, hop counts
are determined precisely as most questions involve
single topic entities with equal path lengths from
topic to answer entities. For CWQ, we compute
fuzzy hop counts due to frequent multi-topic scenar-
ios. When SPARQL queries represent constrained
graphs rather than simple reasoning chains, we
take the maximum path length among all topic-to-
answer paths as the final hop count.

Datasets #Train #Validate #Test
WebQSP 2826 246 1,628
CWQ 27,639 3519 3531

Table 3: Statistics of the datasets.

Datasets 1-hop 2-hop 3-hop ≥4-hop
WebQSP 62.00% 37.66% 0.17% 0.17%
CWQ 24.66% 64.78% 7.50% 3.06%

Table 4: Statistics of reasoning hop distribution in We-
bQSP and CWQ.

E Baselines

The D-RAG approach is compared with the 15
baselines grouped into three categories: 1) Graph
reasoning methods; 2) LLM reasoning methods;
and 3) Graph-LLM methods. The details of each
baseline are described as follows:

Graph Reasoning Methods.

• Graftnet (Sun et al., 2018) performs question
answering by propagating features through
a heterogeneous graph that fuses knowledge
bases and text documents.

• NSM (He et al., 2021) leverages language
models’ bidirectional reasoning capabilities
for multi-hop question answering.

• SR+NSM (Zhang et al., 2022) introduces a
trainable path-wise subgraph retriever that de-
couples retrieval from reasoning.

• ReaRev (Mavromatis and Karypis, 2022)
adaptively refines reasoning instructions using
knowledge graph context and executes them
through a BFS-guided neural network.

• UniKGQA (Jiang et al., 2023b) unifies re-
trieval and reasoning stages in KGQA through
a shared PLM-based architecture and joint pre-
training strategy.

• NuTrea (Choi et al., 2023) utilizes tree search-
based message passing to explore future paths
with RF-IEF node embeddings that capture
global KG context.

LLM Reasoning Methods.

• Llama3-8B (Meta, 2024) performs direct rea-
soning without fact retrieval by leveraging its
pre-trained knowledge.

• StructGPT (Jiang et al., 2023a) enhances
LLM reasoning by iteratively collecting ev-
idence from structured data through special-
ized interfaces before performing reasoning
steps.
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Complete Generator Prompt

Answer the question based on the provided facts.
Question: what does jamaican people speak
Provided facts:

<S-Embedding> Jamaica, location.country.official_language, Jamaican English
<S-Embedding> Jamaica, location.country.languages_spoken, Jamaican English
<S-Embedding> Jamaica, location.country.languages_spoken, Jamaican Creole English Language
<S-Embedding> Jamaica, location.country.currency_used, Jamaican dollar
<S-Embedding> Jamaica, location.country.form_of_government, Democracy
<S-Embedding> Jamaica, location.country.form_of_government, Parliamentary system
<S-Embedding> Jamaica, base.locations.countries.continent, North America
<S-Embedding> Jamaica, location.country.form_of_government, Constitutional monarchy
<S-Embedding> Grenada, location.country.official_language, English Language
<S-Embedding> Bermuda, location.country.official_language, English Language
<S-Embedding> Belize, location.country.official_language, English Language
<S-Embedding> Turks and Caicos Islands, location.country.official_language, English Language
<S-Embedding> Bahamas, location.country.official_language, English Language
<S-Embedding> Cayman Islands, location.country.official_language, English Language
<S-Embedding> Puerto Rico, location.country.official_language, English Language
<S-Embedding> Grenada, location.country.languages_spoken, English Language
<S-Embedding> Bermuda, location.country.languages_spoken, English Language
<S-Embedding> Costa Rica, location.country.languages_spoken, Jamaican Creole English Language
<S-Embedding> , location.country.languages_spoken, English Language
<S-Embedding> Turks and Caicos Islands, location.country.languages_spoken, English Language

Answer:

Figure 5: The complete input prompt for the LLM-based generator, incorporating 20 facts.

• DECAF (DPR + FiD-large) (Yu et al., 2023)
improves KB question answering by combin-
ing logical form generation with direct an-
swer prediction, while simplifying the process
through text-based retrieval.

• ToG (GPT4) (Sun et al., 2024) enables LLMs
to perform traceable reasoning by iteratively
exploring knowledge graphs through beam
search.

• RoG (joint) (Luo et al., 2024a) enhances
LLM reasoning by leveraging KG structure to
generate faithful reasoning chains through a
planning-retrieval-reasoning framework.

Graph-LLM Methods.

• G-Retriever (He et al., 2024) enables conversa-
tional graph interaction by combining GNNs,
LLMs, and RAG through Prize-Collecting
Steiner Tree optimization.

• EtD (ChatGPT) (Liu et al., 2024a) combines
GNNs for efficient knowledge exploration
with frozen LLMs for final answer determina-
tion, creating a resource-efficient framework
for KGQA.

• GNN-RAG (Mavromatis and Karypis, 2024)
combines GNNs for subgraph reasoning and
path extraction with LLMs for natural lan-
guage understanding in a RAG framework.

• SubgraphRAG (Llama3.1-8B) (Li et al., 2025)
enhances KG-based RAG by implementing
efficient subgraph retrieval with flexible size
control and directional structural encoding.

F Discussion on Evaluation Metrics

The evaluation procedure varies across different
methods. While node prediction and graph query
approaches produce direct answers requiring no
additional processing, LLM-based methods often
generate responses containing multiple predicted
answers. This characteristic of LLMs explains
why many recent works (Mavromatis and Karypis,
2024; Li et al., 2025; Luo et al., 2024b) prefer the
term Hit over Hits@1, as the evaluation focuses
on the presence of correct answers within the com-
plete generated response rather than strictly the first
answer.

It is important to note that the above discussion
pertains to the overall performance of KGQA sys-
tems in terms of answer generation. Throughout
this paper, we also report retrieval performance
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using F1, recall, and precision metrics. These re-
trieval metrics are calculated by comparing the
facts in the retrieved subgraph with those in the
heuristic subgraph, which serves as a reference
standard. A key consideration is that KGQA bench-
marks do not provide ground truth subgraph anno-
tations. The heuristic subgraphs are constructed
by parsing SPARQL queries associated with each
question, detailed in Appendix G. This parsing en-
sures that the heuristic subgraphs fully align with
the multi-hop reasoning required by the questions,
making them relatively reliable reference standards
for evaluating retrieval performance.

G Implementation Details

Preprocessing. Consistent with prior
work (Mavromatis and Karypis, 2022; Luo
et al., 2024a), we assume that the entities men-
tioned in the questions (referred to as topic entities)
have already been linked to the knowledge graph
through entity linking (Yih et al., 2015). After
identifying entities in the questions, we construct
a heuristic subgraph for each question by parsing
the SPARQL query. For each SPARQL query, we
focus on the logic chain from the topic entity to the
answer entity, identifying paths that connect the
topic entity to the answer through specific logical
chains. All facts along these paths collectively
form the heuristic subgraph used in the proposed
approach.

Optimization and Hyperparameters. We train
separate models for CWQ and WebQSP datasets.
The training process follows a two-stage approach:
GNN pre-training followed by joint training. Dur-
ing the first training phase (retriever pre-training),
we train the model for 10 epochs. In the sec-
ond training phase (joint training), we train for
18 epochs.

For model optimization, we apply different
strategies to the GNN and LLM components. The
GNN undergoes full parameter fine-tuning with
a learning rate of 5e-5, while the LLM is fine-
tuned using LoRA with a learning rate of 1e-5. The
LoRA hyperparameters are configured as: lora_r=8,
lora_alpha=16, and dropout=0.05, specifically tar-
geting the q_proj and v_proj modules. We em-
ploy the AdamW optimizer with a weight decay of
0.001, a batch size of 16, and a cosine learning rate
scheduler.

Regarding the hyperparameters in our formu-
lations, we set the Gumbel-Softmax temperature

coefficient to 0.5 and the loss balancing parame-
ter λ to 0.9. All experiments are conducted on 2
NVIDIA A800-80GB GPUs.

H Details of Ablation Study

As mentioned in Section 4.4, we initially pre-train
the retriever using heuristic subgraph labels to pre-
vent it from retrieving completely irrelevant sub-
graphs. All training method variants describes be-
low, including our proposed D-RAG, are trained
based on this pre-trained retriever. Here we elabo-
rate on the four training method variants:

1. REINFORCE: We implements the REIN-
FORCE algorithm with variance reduction
techniques to jointly optimize both the re-
triever and the generator. Two reward func-
tions are considered: (i) the negative of the
generator’s answer loss, and (ii) the recall of
retrieved subgraphs compared to heuristic sub-
graphs. As we observes no significant differ-
ence between these reward formulations, the
results reported in the main paper correspond
to the recall reward.

2. Dynamic Cascade: In this approach, both
modules are trained simultaneously with the
generator using real-time outputs from the
retriever during training. However, gradient
backpropagation from the generator to the re-
triever is blocked, meaning the retriever is
only optimized using heuristic subgraph la-
bels.

3. Static Cascade: The generator is optimized us-
ing outputs from the initial fixed retriever (af-
ter pre-training). The retriever remains frozen
throughout this process and is trained only
with heuristic subgraph labels.

4. Isolation: The generator is trained using
heuristic subgraphs as input, completely de-
coupling the two modules. Both the retriever
and the generator are essentially trained inde-
pendently.

Table 5 summarizes the key differences between
these training methods. The key distinction be-
tween D-RAG and the REINFORCE variant lies
in the granularity of supervision: D-RAG employs
fine-grained supervision through direct end-to-end
gradient-based optimization, allowing it to analyze
the influence of each individual fact on answer gen-
eration, while REINFORCE uses policy gradient
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Training Method Retriever Supervision Generator Input G → R gradient

D-RAG Retrieval label + Answer
label

Real-time retriever
output

✓

REINFORCE Retrieval label + Reward
label

Real-time retriever
output

✓

Dynamic Cascade Retrieval label Real-time retriever
output

×

Static Cascade Retrieval label Fixed pre-trained
retriever output

×

Isolation Retrieval label Heuristic subgraph ×

Table 5: Comparison of different training methods highlighting differences in retriever supervision signals, generator
inputs, and whether gradients flow from generator to retriever (G → R) during joint training.

methods that provide only coarse-grained, holistic
supervision regarding the quality of the retrieved
subgraph information.

I Additional Experiment Results

I.1 Performance Comparison Under Different
Situations

In this section, we provide a detailed analysis of
the performance results presented in Table 6, which
compares our proposed D-RAG method against
several baseline training methods as described in
Section 5.3.

From Table 6, we can draw three important ob-
servations:

1) D-RAG’s Comprehensive Effectiveness: D-
RAG consistently outperforms alternative training
methods across almost all metrics and complexity
levels. This superiority extends to both genera-
tion metrics (Hits@1 and F1) and retrieval metrics
(Recall and Precision), demonstrating the holistic
effectiveness of the proposed approach.

2) Recall Necessity but Insufficiency: High
recall is necessary but not sufficient for strong gen-
eration performance. or 3-hop questions, the differ-
ence in recall between D-RAG and Dynamic Cas-
cade is 6.9 percentage points (89.8% vs. 82.9%),
yet the gap in generation F1 is significantly larger
at 15.3% (74.5% vs. 59.2%). This suggests that
retrieval precision and effective utilization of re-
trieved documents also play crucial roles in genera-
tion quality.

3) Widening Retrieval-Generation Gap: As
question complexity increases, the gap between
retrieval performance and generation performance
widens. For 4-hop questions, despite D-RAG main-
taining high recall (91.2%), its generation Hits@1

drops to 58.0% - a gap of 33.2%. In comparison, for
1-hop questions, this gap is much smaller (92.6%
recall vs. 74.4% Hits@1, a difference of 18.2%).

I.2 Performance on MetaQA Dataset

To further evaluate D-RAG’s effectiveness across
different KGQA benchmarks, we conduct exper-
iments on MetaQA-3hop following RoG’s (Luo
et al., 2024a) setup with 1,000 training samples.
D-RAG is directly fine-tuned on MetaQA-3hop.
As shown in Table 7, D-RAG achieves substan-
tial improvements over RoG baselines, with 8.72%
and 27.82% gains in Hits@1 and F1 respectively.
RoG (from scratch) uses pre-trained models di-
rectly, while RoG (transfer from Freebase) applies
additional fine-tuning after Freebase pre-training.
These results demonstrate D-RAG’s consistent ef-
fectiveness across different KGQA datasets.

I.3 Detailed Analysis

Due to computational constraints, all experiments
in this detailed analysis were conducted with joint
training limited to 8 epochs, whereas the main ex-
perimental results reported in previous sections
used 18 training epochs. This difference in training
duration may account for some performance dis-
crepancies between these detailed analyses and our
primary results.

Robustness to Loss Balancing Hyperparameter.
Figure 6 examines the effect of the loss balanc-
ing hyperparameter λ on the overall performance,
where λ controls the weighting between retriever
and generator losses as defined in Equation 13.

The experimental results demonstrate remark-
able stability across the entire range of λ values
(0.1 to 0.9). This consistent performance indicates
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Training Method
Generation Hits@1 Generation F1

1-hop 2-hop 3-hop 4-hop 1-hop 2-hop 3-hop 4-hop

D-RAG 74.4 81.3 79.8 58.0 69.0 76.2 74.5 55.6
REINFORCE 63.7 73.4 65.9 45.7 59.6 67.4 59.4 45.7
Dynamic Cascade 66.1 74.0 65.9 39.5 62.4 67.8 59.2 39.5
Static Cascade 64.4 71.1 64.3 43.2 60.4 64.9 57.9 42.7

Training Method
Retrieval Recall Retrieval Precision

1-hop 2-hop 3-hop 4-hop 1-hop 2-hop 3-hop 4-hop

D-RAG 92.6 95.5 89.8 91.2 6.9 20.2 23.1 13.9
REINFORCE 89.1 90.7 81.1 80.7 4.0 9.0 13.0 14.1
Dynamic Cascade 89.4 91.6 82.9 82.5 4.3 10.9 14.7 15.1
Static Cascade 86.7 85.5 78.1 78.7 3.9 9.2 13.6 14.1

Table 6: Performance comparison of D-RAG against different training methods on the CWQ dataset. Results
show both overall performance (Hits@1 and F1) and retrieval performance (Recall and Precision) across different
complexity levels (1-4 hops).

Method Hits@1 F1
RoG (from scratch) 84.81 41.32
RoG (transfer from Freebase) 88.98 50.68
D-RAG 97.70 78.50

Table 7: Performance comparison on MetaQA-3hop
dataset.

0.1 0.3 0.5 0.7 0.9
λ

0.70

0.72

0.74

0.76

0.78

0.80

F1

Figure 6: Impact of loss balancing hyperparameter λ
on overall performance for WebQSP Dataset. The plot
shows the overall F1 scores (y-axis) achieved with dif-
ferent values of λ (x-axis) in the joint loss function 13.
Error bars represent standard deviations across three
experimental runs.

that the system is largely insensitive to the specific
weighting between retriever and generator compo-
nents. This robustness can be primarily attributed
to the gradient normalization mechanism employed
in our loss formulation, which effectively prevents
either component from dominating the optimiza-
tion process regardless of the λ value. Future work
could explore more sophisticated gradient balanc-
ing techniques such as GradNorm (Chen et al.,

2018), which builds upon gradient normalization
by introducing adaptive weighting strategies that
automatically adjust task weights during training
based on learning dynamics.

Fact Order Training Method
D-RAG Dynamic Cascade

ascent 76.11 ± 0.09 75.04 ± 0.38
descent 76.33 ± 0.22 74.94 ± 0.10
random 76.66 ± 0.34 73.77 ± 0.77

Table 8: The F1 scores across different fact ordering
strategies and training methods. The table compares the
performance (F1 score ± standard deviation) of D-RAG
and Dynamic Cascade training methods under three fact
ordering strategies.

Impact of Fact Ordering on Overall Perfor-
mance. Since the order of input facts can influ-
ence LLM generation (Liu et al., 2024b), we com-
pare three ordering strategies: 1) Ascent: Facts are
arranged in ascending order of selection probabili-
ties; 2) Descent: The reverse of ascent, with facts
ordered from high to low probabilities; 3) Random:
Facts are shuffled randomly during both training
and inference.

Table 8 evaluates the influence of fact order-
ing on overall performance for both D-RAG and
Dynamic Cascade in Section 5.3. The results re-
veal two key findings. First, D-RAG demonstrates
remarkable robustness across all ordering strate-
gies. This stability suggests that D-RAG effectively
learns to process fact sequences regardless of their
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Training Method Time (minutes)
D-RAG 74.43 ± 0.43
Dynamic Cascade 68.92 ± 1.28
Static Cascade 69.66 ± 0.42

Table 9: Training time per epoch on CWQ with 5,000
random samples. Time variations (±) indicate the stan-
dard deviation across multiple epochs.

presentation order, an advantageous property for
real-world applications where optimal fact ordering
may not be predetermined or existed.

In contrast, the Dynamic Cascade method shows
greater sensitivity to fact ordering, with perfor-
mance declining noticeably under random ordering
(73.77%) compared to more structured approaches
(ascent: 75.04%, descent: 74.94%). This indicates
that consistent, deterministic ordering strategies
generally outperform random fact arrangements.

I.4 Training Efficiency Analysis

Table 9 presents the training time per epoch for dif-
ferent training methods on the CWQ dataset using
5,000 random samples.

D-RAG shows a modest increase in training time
compared to others, requiring 8.0% more time than
Dynamic Cascade and 6.9% more than Static Cas-
cade. This additional overhead primarily comes
from computing gradient norms during loss calcu-
lation and the extra backpropagation computations
required for end-to-end training.

Interestingly, Dynamic Cascade achieves faster
training times than Static Cascade despite the ad-
ditional computation needed for retriever updates.
As shown in Figure 3, Dynamic Cascade retrieves
fewer facts than Static Cascade, suggesting that the
computational benefits from retrieving fewer facts
outweigh the cost of training the retriever.

Similarly, the relatively small time difference
between D-RAG and the cascade variants can be
largely attributed to D-RAG’s ability to retrieve
fewer and more relevant facts as training progresses
(as shown in Figure 3).

I.5 Case Study

To illustrate the advantages of D-RAG, we select
representative examples from both WebQSP and
CWQ datasets, covering a range of reasoning com-
plexity (1-hop to 3-hop) and answer cardinality
(single and multiple answers). Table 10 and 11
present these case studies with visualizations of the

retrieved subgraphs and generated answers across
different training methods.

The retrieved subgraphs in different cases reveal
D-RAG’s superior retrieval characteristics com-
pared to other methods. D-RAG consistently pro-
duces more focused subgraphs with significantly
reduced noise and maintains high recall of rele-
vant facts. This selective retrieval aligns with our
goal of providing LLMs with concise yet compre-
hensive information, as excessive irrelevant facts
can distract the generation process and insufficient
coverage may miss critical reasoning chains. In
the WebQSP example "who inspired Obama" (Ta-
ble 10, 1-hop), we observe that Static Cascade
retrieves a sparse and incomplete subgraph leading
to an incorrect answer, D-RAG successfully iden-
tifies and preserves all three correct answers with
minimal extraneous facts.

The 3-hop example from CWQ—"What county
is the city that includes the Houston City
Council as a part of their government located
in?"—particularly highlights D-RAG’s effective-
ness in complex reasoning scenarios. This ques-
tion requires following a challenging reasoning
chain: Houston City Council <- governmental
body <- governing officials -> county ->
Montgomery County. Static Cascade fails to re-
trieve the complete reasoning chain, resulting in
an incorrect answer ("Texas"), and Dynamic Cas-
cade suffers from excessive noise that impedes
identifying the correct reasoning chain. In con-
trast, D-RAG effectively prunes irrelevant facts
and preserving the critical reasoning chains, en-
abling the generator to correctly identify "Mont-
gomery County". These cases empirically validate
the proposed approach, demonstrating how end-to-
end optimization produces cleaner, more focused
subgraphs that contain essential reasoning chains
and minimize noise. Based on these high-quality
subgraphs, the KGQA system generates accurate
answers, underscoring the practical benefits of D-
RAG in real-world knowledge-based question an-
swering scenarios.
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1-hop Example 2-hop Example

Question who inspired obama what did stephen hawking study

True
Answers

Reinhold Niebuhr | Nipsey Russell |
Saul Alinsky

Physics

Heuristic
Subgraph

from
SPARQL

influence.influence_node.influenced_by

influence.influence_node.influenced_by

influence.influence_node.influenced_by

Reinhold
Niebuhr

Saul
Alinsky

Nipsey
Russell

Barack
Obama

people.perso
n.educa

tio
n

education.education.major_field_of_study

Stephen
Hawking

Physics

Static
Cascade

(Subgraph)
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Table 10: Case studies on WebQSP dataset. Comparison of retrieved subgraphs and generated answers across
different methods on 1-hop and 2-hop questions. Blue nodes represent question entities, red nodes represent answer
entities, and yellow nodes are intermediate entities.
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What languiages are spoken by
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Table 11: Case studies on CWQ dataset. Comparison of retrieved subgraphs and generated answers across different
methods on 2-hop and 3-hop questions. Blue nodes represent question entities, red nodes represent answer entities,
and yellow nodes are intermediate entities.
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