Mapping semantic networks to Dutch word embeddings as a diagnostic tool for cognitive decline

Maithe van Noort¹ Michal Korenar² Jelke Bloem³

¹ Brain and Cognitive Sciences, University of Amsterdam
 ² Amsterdam Center for Language and Communication, University of Amsterdam
 ³ Institute for Logic, Language and Computation, University of Amsterdam
 maithe.v.noort@gmail.com, m.korenar@uva.nl, j.bloem@uva.nl

Abstract

We explore the possibility of semantic networks as a diagnostic tool for cognitive decline by using Dutch verbal fluency data to investigate the relationship between semantic networks and cognitive health. In psychology, semantic networks serve as abstract representations of the semantic memory system. Semantic verbal fluency data can be used to estimate said networks. Traditionally, this is done by counting the number of raw items produced by participants in a verbal fluency task. We used static and contextual word embedding models to connect the elicited words through semantic similarity scores, and extracted three network distance metrics. We then tested how well these metrics predict participants' cognitive health scores on the Mini-Mental State Examination (MMSE). While the significant predictors differed per model, the traditional number-of-words measure was not significant in any case. These findings suggest that semantic network metrics may provide a more sensitive measure of cognitive health than traditional scoring.

1 Introduction

A universally used neuropsychological method to assess cognitive state in people with cognitive impairment or disorders is the semantic, or categorical, verbal fluency task (Chi et al., 2014; Maseda et al., 2014; Quaranta et al., 2019). However, there is a growing body of studies questioning the granularity of this task's assessment method (Linz et al., 2018; March and Pattison, 2006; Shao et al., 2014). A more granular approach to interpreting the verbal fluency data is through semantic networks (Chan et al., 1993; Goñi et al., 2011; Martínez-Nicolás et al., 2019). Semantic networks serve as abstract representations of the semantic memory system and therefore enable valuable insights into higher cognitive concepts, including cognitive health. The

body of research establishing a link between semantic networks and cognitive health is steadily growing (Chan et al., 1993; Lerner et al., 2009; Martínez-Nicolás et al., 2019).

Distributional semantic models are a related class of semantic memory models: these language models encode meaning representations, predicated on the hypothesis that the statistical distribution of linguistic items within a given context significantly influences and defines their semantic attributes (Landauer and Dumais, 1997). Although distributional semantic models do not directly represent semantics, they do represent associations that reflect word semantic similarity (Hill et al., 2015; McRae et al., 2012). Such models use word embeddings to quantify this semantic similarity. By combining distributional semantic models with network-based models, it is possible to reinforce semantic network-based accounts through the application of machine learning techniques (Steyvers and Tenenbaum, 2005; Utsumi, 2015).

As far as we are aware, semantic networks derived from distributional semantic modeling have never been used to study cognitive health. We investigate whether semantic networks generated from verbal fluency data using word embedding models can function as a reliable diagnostic tool for assessing cognitive impairment in comparison to the use of conventional scoring methods. Our experiment contrasts novel scoring metrics with traditional scoring to determine which is a better predictor of cognitive health. By working with Dutch verbal fluency data, we aim to show that our approach is useful for mid-resource languages.

2 Background

Verbal fluency tasks are a common component of standardized assessments used for screening mild cognitive impairment and evaluating cognitive state of various populations, including those with schizophrenia (Frith et al., 1995), Alzheimer's disease (Clark et al., 2016; Monsch et al., 1992; Troyer et al., 1998) and Parkinson's disease (Piatt et al., 1999; Troyer et al., 1998). Throughout this task, participants are asked to generate as many items as possible within a specific category, all within a fixed time frame. Categories can be semantic, such as 'animals', or phonemic such as 'words starting with an a' (Bousfield and Sedgewick, 1944). The score is determined by tallying the number of correctly generated words; with correctly generated in this context referring to items fitting within the given category. The verbal fluency task holds its popularity in neuropsychological assessments for several reasons: it is relatively brief and taps into both executive control and semantic memory retrieval processes. It is not only effective within a larger battery of assessments, but even on its own, the verbal fluency task scores are capable of separating people with cognitive impairment from healthy controls (Chi et al., 2014; Clark et al., 2009, 2016; Henry et al., 2004; McDonnell et al., 2020; Soni et al., 2021).

However, several studies have questioned the granularity of traditional verbal fluency assessment methods, which predominantly rely on the raw count of word responses (March and Pattison, 2006; Shao et al., 2014). This scoring method overlooks relationships among responses, neglecting potential insights into the structure of an individual's knowledge representations and underlying cognitive processing mechanisms (Linz et al., 2018; Troyer et al., 1997). In other words, the scoring system of the semantic verbal fluency task, which revolves around a semantic category, does not take any semantic information into account. To address this shortcoming, various qualitative metrics have been introduced to complement the raw word count.

One advance in verbal fluency data analysis involves the identification of temporal and semantic clusters within the verbal fluency dataset (clustering) and the moment of jumping between these clusters (switching) (Troyer et al., 1997). Typically, word production in a fluency task follows a pattern of organized bursts of retrieval of words within clusters, referred to as temporal clusters, interrupted by pauses suggesting a lexical search for transitions among clusters. In effect, considering the mean size of clusters and the number of cluster switches offers insights into the strategies participants employ during word searches (Goñi et al., 2011; Troyer et al., 1998; Ahn et al., 2022;

Lundin et al., 2023). The scoring of the verbal fluency task with these two components has been substantiated as a more detailed indicator of cognitive state. Clustering and switching, however, are sensitive to human errors and subjectivity, as the cluster boundaries are decided by the scorer. To mitigate this issue, researchers have devised automated scoring methods. These methods encompass not only the automated analysis of clustering (König et al., 2018; Linz et al., 2017a, 2018; Kim et al., 2019), including on the basis of distributional semantic models (Alacam et al., 2022), but also data-driven assessments of the semantic properties of verbal fluency data through semantic networks (Martínez-Nicolás et al., 2019).

2.1 Semantic networks

The concept of semantic networks originates in network theory, a field that has broadened the understanding of a wide variety of systems, including language and semantics (Borge-Holthoefer and Arenas, 2010; Cong and Liu, 2014; Ke and Yao, 2008). For specific cognitive concepts like creativity, these networks have proven to be superior to traditional methods, effectively eliminating human errors in assessment (Beaty and Johnson, 2021). A creativity assessment such as the Alternate Uses Task (AUT; Benedek et al., 2013) bears a striking resemblance to the verbal fluency task in measuring associative cognition. AUT measures creativity by asking individuals to generate as many alternative uses for a common object or item as possible within a fixed time frame. This task considers both the quality and originality of responses when scoring, distinguishing it from fluency tasks that do not assess response quality (Beaty and Johnson, 2021; Johnson et al., 2023). Previous work has shown that individual-level semantic networks can be estimated through verbal fluency data (Zemla and Austerweil, 2017, 2018; Zemla et al., 2016, 2020).

During a semantic association task like the (semantic) verbal fluency task, it is expected that associations exhibit specific semantic connections or overlays. The evaluation of the quality or strength of these connections is a central aspect of semantic networks. Thus, by interpreting fluency data as a network, the potential for expanding the assessment's scope becomes evident. Considering the proven role of semantic networks in assessing complex cognitive constructs such as creativity, it is reasonable to expect that they could also provide more precise insights into cognitive health.

Semantic networks can be seen as an abstract representation of the semantic memory system. In these networks the nodes represent concepts and the edges represent similarity, co-occurrence, or strength of associations among semantic or lexical units (Christensen and Kenett, 2023; Lerner et al., 2009; Muhammad et al., 2019). According to the spreading activation model, nodes within a semantic network represent concepts from semantic memory, and their interconnections depend on the degree of semantic similarity. Concepts that are semantically more similar are positioned closer together and linked with stronger connections than concepts that are less semantically related. By this model, when a concept is activated, its mental representation spreads to interconnected concepts, gradually diminishing as the distance between them increases (Kenett et al., 2017). It is the capacity of semantic networks to mirror the structure of semantic memory that makes them valuable in the exploration of higher cognitive functions. Semantic networks have been utilized to evaluate different aspects of cognition, with the majority of studies focusing on the English language, such as cognitive aging (Cosgrove et al., 2021; Wulff et al., 2022), Alzheimer's disease (Chan et al., 1993; Lerner et al., 2009; Martínez-Nicolás et al., 2019), cognitive processes (Christensen and Kenett, 2023), associative abilities (He et al., 2021) and creativity (He et al., 2021; Kenett and Faust, 2019).

2.2 Distributional semantics

Another important class of lexical representation models are distributional semantic models: computational models of human semantic memory (Utsumi, 2015). These models are based on the distributional hypothesis (Landauer and Dumais, 1997), which posits that the semantics of a word are intrinsically linked to its contextual usage. These language models operationalize meaning by analyzing the distributional patterns of linguistic items in large language corpora, extracting associations between words from statistical regularities and co-occurrence frequencies (Erk, 2012).

Subsequent word embedding approaches such as Word2Vec (Mikolov et al., 2013) and BERT (Devlin et al., 2019) are based on this paradigm. These models do not explicitly model semantics, but they do model associations that correspond to semantic similarity between words (Hill et al., 2015; McRae et al., 2012). Language models have been evaluated on both of these linguistic concepts: association

and similarity. In these models, we quantify semantic similarity by computing the cosine similarity between vector representations of the two words. These similarity scores can then be correlated with human similarity rating datasets. A prominent association, or relatedness, dataset is WordSim-353 (Finkelstein et al., 2001), whereas SimLex-999 (Hill et al., 2015) is a widely used similarity dataset. These benchmarks are language-specific and, in this case, both evaluate English language models. Alternatives such as Multi-Simlex (Vulić et al., 2020) have been developed for other languages, and for Dutch, Brans and Bloem's (2024) Dutch SimLex-999 was used to evaluate the BERTbased language models BERTje (de Vries et al., 2019) and RobBERT (Delobelle et al., 2020). Models that correlate well with human word pair similarity scores can be harnessed for semantically interpreting language data.

It is uncommon in the literature to find connections between distributional semantic models and network-based models, as they are separate classes of models rooted in different fields of study (for a critical review, see Kumar et al., 2022), but a few studies have used the cosine similarity between words as a threshold in constructing paths in semantic networks (Steyvers and Tenenbaum, 2005; Utsumi, 2015). Wang et al. (2025) use a prompt-based equivalent of the verbal fluency task to study the semantic networks of LLMs, and Nighojkar et al. (2022) evaluate to what extent transformer models can predict human behavior in the verbal fluency task. The approach has not been used for diagnostic purposes as far as we are aware.

3 Methods

We aim to test whether semantic networks derived from verbal fluency data can serve as a robust or overall greater diagnostic tool for assessing cognitive impairment, relative to the use of the most commonly employed traditional scoring method: the overall number of responses.

3.1 Data

We leverage a rich existing dataset, which was originally collected by Konijnenberg et al. (2018). It includes verbal fluency data from participants with mild cognitive impairment, along with their age and results on the Mini-Mental State Examination (MMSE; Folstein et al., 1975). The MMSE is one of the best-known cognitive screenings for provid-

ing an overall measure of cognitive impairment.

3.1.1 Participants

Participants were recruited as part of the EMIF-AD PreclinAD study, a project on cognitive impairment and dementia as a consequence of amyloid pathology (Konijnenberg et al., 2018). The subset of their data that the present study reuses specifically includes monozygotic twins, recruited through the Netherlands Twins Register. They invited 517 participants, from which 313 were excluded from participation (See Appendix A for the exclusion flow chart). After the application of the same exclusion criteria as the original study, a total of 204 cognitively normal participants (119 females) between 60 and 94 years old (mean age: 70.8 ± 7.8 years old) remain. All participants gave written informed consent for participation in the original study.

3.1.2 Procedure

All participants completed a categorical verbal fluency task (semantic category: animals) as part of a larger battery of neuropsychological tests. They got the following instruction (translated to English from Dutch): "You will have two minutes to list as many animals as possible. Anything is fine as long as it is an animal. When the time is up, I will say stop. You may begin." While administering the test, the generated items were immediately transcribed to track the number of items. Along with these data, we have access to the final scores on the Mini-Mental State Examination (MMSE), which range from 0 to 30 (mean score: 28.9 ± 1.2). The MMSE is divided into two sections. The first assesses orientation, memory, and attention (maximum score: 21); the second measures the ability to name, obey written and verbal instructions, compose a sentence on the spot, and replicate a challenging polygon that resembles the Bender-Gestalt Figure (maximum score: 9) (Folstein et al., 1975).

3.1.3 Preprocessing

We spell-checked the responses, and any irrelevant responses (intrusions) such as "aardbei" (strawberry) and "glas" (glass) were identified and removed. We did however decide to admit duplicate responses (perseverations). The omission of both intrusions and perseverations is routine to the verbal fluency assessment (Christensen and Kenett, 2023). However, the omission of perseverations would skew our metrics since one of them relies on the direct order of the items and the semantic

similarity between them. Because the task is inherently based on a semantic category, it is the only restriction that participants get, we did decide to omit intrusions. If not for the semantic category, it would be a free association task.

3.2 Models

We use three models to build individual semantic networks from the verbal fluency data. The first one is the Dutch contextual embedding model BERTje (de Vries et al., 2019), a Dutch sibling of BERT (Devlin et al., 2019). BERT has previously been used to investigate semantic representations and associative cognition in English (Johnson et al., 2023). We include a contextual embedding model because input layer embeddings of contextualized embedding models tend to correlate better with human semantic similarity judgements than static embedding similarities. Brans and Bloem (2024) show this for Dutch, but similar observations have been made for English by Bommasani et al. (2020), who also find the first layer to correlate best.

Nevertheless, as contextless semantic representations are traditionally obtained from static word embedding models, we also include Dutch FastText (Bojanowski et al., 2017) for comparison. We also experimented with Word2Vec but found that the available Dutch pre-trained models did not have all our target words in their vocabulary. FastText avoids this issue through its subword tokenization. Additionally, FastText correlates best with human similarity judgements (Brans and Bloem, 2024)¹.

Lastly, we included the multilingual model XLMRoBERTa (Conneau et al., 2020), which also provides contextual embeddings. While it is larger, it is outperformed by BERTje on Dutch semantic similarity scoring (Vlantis and Bloem, 2025), as it has been trained on less Dutch data overall, and contextless word similarity tasks are unlikely to benefit from cross-lingual transfer.

Using BERTje and XLMRoberta input layer embeddings ensures a fair comparison to FastText, as FastText does not have access to learned contextual information, while BERTje and XLMRoBERTa do, but not when only the input layer is used.

Rather than using cosine similarity as a threshold to construct paths, we connect every node to every other node and use cosine similarity as a notion of distance that reflects the semantic similarity

¹On Dutch SimLex, we obtained correlations of 0.43 for Word2Vec, 0.49 for FastText, and 0.28 for GloVe. FastText therefore served as the strongest static baseline in our study.

between the words.

3.2.1 Extracting embeddings

Each participant's verbal fluency data is embedded using the three models described above. For BERTje and XLMRoBERTa, each item gets translated into a 768-dimensional embedding vector; for FastText, this is a 300-dimensional vector. Within these respective embedding spaces, cosine similarity is a measure of semantic similarity: greater proximity between two embeddings reflects a stronger semantic similarity (Linz et al., 2017a).

BERTje and XLMRoBERTa are contextual embedding models. In the case of a fluency task, however, the participant's responses are divorced from their context, since participants respond with single words. Taking this into account, we use only input layer embeddings, which do not add any contextual information to the embedding (Ethayarajh, 2019). This is similar to static embeddings, but the input token embeddings benefit from being jointly trained with a model that is larger and has more effective training objectives than traditional static embedding models. All models benefit from subword tokenization. If our items are split up by tokenization, we construct an embedding by averaging the embeddings of the word's subtokens (mean pooling). We implemented the same procedure for items consisting of multiple words, e.g. "bruine beer" (brown bear), "Vlaamse gaai" (jay).

3.3 Analysis

Each participant's vector space that holds all the embedded items (the embedding space) can be interpreted as a semantic network in the sense that all the items can be connected through cosine similarity scores. The embedded items (words) can be seen as the nodes or objects, while the edges represent the semantic similarity between them. The way we are considering individual semantic networks based on one verbal fluency task is identical to cluster analysis on just one cluster: our network does not have weighted nodes or directed edges and can therefore be seen as one cluster in which all the items are connected through semantic similarity. Because of this, cluster analysis techniques can be applied to our data, specifically, intracluster distances (distances between objects belonging to the same cluster) are of interest to the current analysis. Some of these metrics were inspired by Oortwijn et al.'s (2021) use of cluster analysis methods for target terms in embedding models.

We do not perform any automatic clustering of the items. While the traditional analysis of the verbal fluency task involves manual clustering by annotators as explained in Section 2, we presume that cosine distances between individual items already quantifies semantic similarity at a more finegrained level. Furthermore, automatic clustering would add a non-deterministic step, more hyperparameters, and a need to evaluate the quality of the clusters. To explore different aspects of the participant's network quality, we considered the following four metrics:

Number of words The total number of generated items in the verbal fluency task. This is how the verbal fluency task is classically scored and its relation to MMSE scores has been investigated in previous research (Linz et al., 2017b).

Path length The sum of the similarity scores between every sequential embedding pair. Following the order in which the participant generated the items, we sum all cosine similarity scores between the successive pairs. Path length is one of the main measures of networks, though one must bear in mind that in our case this score does not represent the number of steps needed to get from one word in the network to another (Kenett et al., 2017), but rather the cosine similarity between two words. Therefore, a higher path length reflects a greater semantic similarity between successive words, which is the opposite direction of the usual distance-based interpretation. As it is common to measure the amount of semantic clustering in a verbal fluency task, this is somewhat represented by this metric: words within the same semantic cluster will have a higher semantic similarity. This metric bears some similarity to that of forward flow in creativity research (Gray et al., 2019).

Average diameter distance The average distance between all words generated by the participant. This is an intracluster distance from the field of cluster analysis (Bolshakova and Azuaje, 2003). It is defined as follows, where S is a semantic network; d(x,y) defines the distance between any two items, x and y, in S; and |S| represents the number of items in network S.

$$\Delta_A(S) = \frac{1}{|S| \cdot (|S| - 1)} \sum_{\substack{x, y \in S \\ x \neq y}} d(x, y) \quad (1)$$

Centroid diameter distance The centroid diameter distance is described as twice the average distance between all items and the centroid of that participant's network. To determine the centroid of each participant's cluster, we calculated the mean of the normalized embedding vectors for each participant. This too is an intracluster distance derived from the field of cluster analysis (Bolshakova and Azuaje, 2003). In the equations below, S is a semantic network; $d(x, \bar{v})$ defines the distance between any item x in S and the centroid \bar{v} ; and |S| represents the number of items included in S.

$$\Delta_C(S) = 2\left(\frac{\sum_{x \in S} d(x, \bar{v})}{|S|}\right) \tag{2}$$

where

$$\bar{v} = \frac{1}{|S|} \sum_{x \in S} x \tag{3}$$

We compare these four metrics and apply a datadriven approach to determine which variables best predict cognitive health. We expect measures indicating a broader semantic network to be related to higher scores on the MMSE cognitive battery.

3.3.1 Statistics

We employ Generalized Additive Models (GAMs) to investigate the impact of the aforementioned metrics on the MMSE scores. The data analyses were performed using R (v4.1.2; R Core Team, 2021). We made use of the gam() function from the mgcv R package (1.8.42; Wood, 2011). GAMs offer a means of capturing non-linear associations by estimating a curve based on penalized smoothing splines. This creates possibilities for curves in the model fit where a non-linear relationship more accurately describes the variance within the observed data.

To ensure robust generalizability of our model, efforts were made to prevent overfitting. This method optimizes the trade-off between the model's ability to fit the data and its complexity, or "wiggliness" (Wood, 2011). A smooth curve depicts a more fundamental, straight-line function, whereas a "wiggly" curve denotes a more complicated one. To compensate for the amount of "wiggliness", a penalty is added since a greater distortion of the curve corresponds to an increasing likelihood of overfitting. Non-linearity is thus only introduced if the variance explained by a wiggly line outweighs the penalty that comes with it (Wood, 2020). The crucial metric used to check

the complexity is the effective degrees of freedom (edf), which serves as an indicator of whether the predictor variable has a non-linear (edf > 1) or linear (edf = 1) relation with the dependent variable.

We distinguish between a first and second level analysis. With the first-level analysis, we employ a variable selection procedure with two goals: (1) to optimize our model enhancing its predictive accuracy by determining which available variables were the most influential predictors; (2) to address whether the traditional scoring method (i.e., tallying number of words) is a better predictor of the MMSE-scores than the metrics derived from semantic networks. We did this by incorporating the double penalty approach into our GAMs (Marra and Wood, 2011). This is a variable selection method that is data-driven and uses an empirical Bayes procedure to identify any predictor variables that do not have a significant effect on the outcome variable. The variables were all included at the first runtime and added all at once (so not incrementally). The outcome of this showed which metrics were significantly contributing to the MMSE scores. Subsequently, we run GAMs for our second-level analysis, in which we incorporated only the significant predictors from the first-level analysis.

Thus, in our first-level analysis, we fitted GAMs with MMSE scores as the outcome variable and all metrics as predictors: number of words, path length, average diameter distance, and centroid diameter distance. Because age is a known predictor of MMSE, we included it as an additional predictor in control analyses. We have not included any participant-level effect as we only have one semantic network per participant, hence there is no interaction between participants' answers. A model would not have any basis to decide whether to attribute participant-level variance to the semantic network-derived variable or to the control variable. We chose to perform inferential statistics with fitted models rather than predictive modeling because our dataset is rather small for prediction.

Specifically, we conducted a power analysis for a linear regression with four predictors (comparable to our models), assuming a significance level of $\alpha=0.05$ and desired power =0.80. For a medium effect size ($f^2=0.15$), the required sample size is 80. With N=204, our study is well powered to detect such effects. However, in a typical 70/15/15 train-validation-test split, only 30 data points would remain for testing, which is insufficient even to detect a large effect size ($f^2=0.35$).

4 Results

Before evaluating the metrics, we first report descriptive statistics of all models and evaluation metrics to provide an overview of their performance characteristics. Across all participants, the average number of generated words is 36.4 words (SD=8.6). Descriptive statistics for model-derived metrics are summarized in Table 1. To facilitate comparability across models, descriptive statistics were computed on normalized values. For each metric and per model, values were normalized to the range [0,1], with the smallest value for each metric mapped to 0 and the largest mapped to 1.

Noticeable is that FastText and BERTje exhibit similar means on average diameter distance and path length, while XLM-RoBERTa stands out with a higher centroid diameter distance. Overall, this shows that the metrics are broadly comparable across models after normalization, while highlighting the differences between models' embedding spaces as well (e.g., density).

Model	Avg dist	Path length	Centroid dist
BERTje	0.304 (0.283)	0.462 (0.268)	0.680 (0.215)
FastText	0.296 (0.332)	0.460 (0.222)	0.490 (0.212)
XLM-R	0.218 (0.251)	0.426 (0.325)	0.720 (0.186)

Table 1: Normalized descriptive statistics (mean and standard deviation) for each model and across metrics.

4.1 Analyses including age

In the first round of our first-level analyses, for each model, GAMs included age, number of words, average diameter distance, path length, and centroid diameter distance. This showed a significant, non-linear negative relationship between age and MMSE for all three models (p < 0.05). That is, MMSE scores decrease with age, as expected. Due to this strong relationship, the effects of our critical metrics are reduced. Regardless, some still remain present. For instance, in FastText, the second-level GAM including age, average diameter distance, and path length shows that average diameter distance remains highly significant (p < .001), while path length is marginal (p = 0.09). Comparing this three-predictor model to one with age alone reveals that age explains 9.4% of variance, whereas the full model explains 19.6%. These results indicate that while age accounts for a substantial portion of MMSE variance, our metrics capture additional variance beyond age. For this reason, the following, second round of analyses focus on the effects of

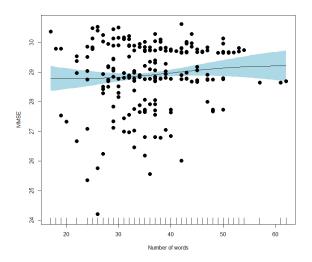


Figure 1: Effects of number of words on the MMSE-scores in the first-level analysis of BERTje. GAMs with 95% confidence interval (blue color) illustrates a small effect. The y-axis shows partial effects (for 1 of 4 variables) thus the values are not whole numbers.

the metrics without including age. Full results of models including age are provided in Appendix C.

4.2 Analyses excluding age

Starting with BERTje-derived scores, the results of our analysis showed that the average diameter distance scores, path length, and notably also the word count did not significantly affect the MMSE scores (all p-values > .071; MAE = 0.86). Figure 1 shows the predicted partial effects of the traditional number of words metric, which is not statistically significant. As a result, our second-level analysis only includes the centroid diameter distance.

The second-level analysis model reveals that the centroid diameter distance derived from BERTje is as a highly significant positive predictor of the MMSE scores (p-value < .001; edf = 1.001; MAE = 0.88). These results are illustrated in Figure 2. With the estimated degrees of freedom close to 1, this relationship is linear. Additionally, it tells us the centroid diameter term is not overly smoothed. To assess the model fit, we utilized the gam.check() function from the mgcv package in R. This function confirmed full convergence of the model and indicated that the Hessian matrix is positive definite, suggesting good stability (kt = 9; k-index = 0.94; p-value = .2). It also verifies that the number of basis functions (k) for the centroid diameter term is appropriate for this model. The k-index being close to 1 suggests that the model is effectively using the degrees of freedom available, indicating a good balance between fit and complexity. Addition-

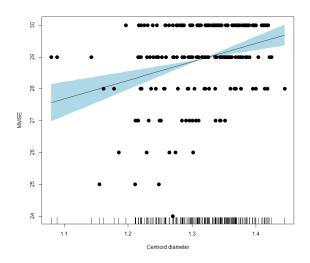


Figure 2: Effects of centroid diameter distance on the MMSE-scores in the second-level analysis of BERTje. GAMs with 95% confidence interval (blue color) illustrates a significant effect.

ally, a p-value greater than 0.05 indicates that the residuals align well with the model assumptions.

For FastText, the first-level analysis indicates a significant effect of path length and average diameter distance on the MMSE scores (both p-values <.005; MAE =0.87). Both of these came out significant in the second-level analysis as well (p-values <.01; edf =1.00; MAE =0.88). See Figure 5 in the appendix for a visualization.

Lastly, for XLMRoBERTa, our first-level analysis showed that both path length and centroid diameter distance affect the MMSE scores significantly (both p-values <.05; MAE =0.86). The second-level analysis, where the model included these two predictors (MAE =0.86), showed a highly significant correlation between MMSE-score and path length highly significant (p <.001; edf =1.00), while centroid diameter did not (p=.099; edf =2.58). Figures 7 and 6 illustrate this result and can be found in the appendix.

4.3 Case studies

To gain some qualitative insights, we highlight three participants (full details in Appendix D). Participant 337 scored lowest on average pairwise distance but highest on centroid diameter in BERTje; FastText shows similar extremes. Their fluency output shows tightly connected clusters of animals (e.g., insects, fish, mammals), with small withincluster distances but large between-cluster separation, illustrating how metrics can diverge depending on whether they emphasize local or global struc-

ture. Participant 341 produced 50 words, below the maximum of 62, yet displayed higher path length (across all models) than participants with a higher word count. This suggests that path length is not simply a function of verbosity, but also reflects semantic spread across categories. By contrast, participant 365 produced only 24 words and scored lower (on all models) than participants with a lower word count. Here, shorter output and frequent switches between categories resulted in lower similarity scores and thus lower path length. These examples demonstrate both (i) that the metrics capture distinct aspects of semantic structure and (ii) that the embedding geometry differs across models.

5 Discussion

The (semantic) verbal fluency task is a popular diagnostic tool to determine cognitive decline. In the present study, we contrasted the canonically used scoring system based on the number of responses with automated scoring metrics derived from contextual word embeddings by means of semantic network analysis. This incorporates the notion of semantic similarity into the metrics. Our second goal was to test whether these semantic networks computed from Dutch verbal fluency data can be effectively applied to assess cognitive state.

Our first analyses showed that age is strongly correlated to MMSE-score in all three models and explains 9.4% of the variance by itself. Because age accounts for a substantial portion of MMSE variance, we conducted a second round of analyses excluding age. In these analyses, we observed similar predictive power among the three models for their derived metrics: for the second-level model, the mean absolute error (MAE) was 0.88 for BERTje and FastText and 0.86 for XLMRoBERTa. It appears that the choice of model is not too important, with a slight preference for the monolingual models that also perform better at semantic similarity scoring in general. But interestingly, these fits were achieved with different metrics: centroid diameter distance, average diameter distance, and path length. The number of words metric, the traditional approach, was not a significant predictor in any configuration.

To explain these differences between model results, we note that centroid diameter distance and average diameter distance are often highly correlated. With BERTje embeddings, this correlation is 0.96. This indicates that they capture similar under-

laying aspects of the semantic relations in the data. Therefore, it is likely that the GAMs cannot decide between the two metrics due to multicollinearity, and either one would work. This would explain why all our second-level models include either metric, but none include both. Path length comes out significant in both FastText and XLMRoberta, but not in BERTje. We believe this to be due to differences in scaling and density of the different vector spaces. This is also illustrated by the case studies we discussed, as there can be large differences between models within the same metric.

Overall, we have found that the highly correlated metrics of centroid diameter distance and average diameter distance, and path length are the most effective predictors of MMSE scores, which index cognitive health. Intuitively, these first two metrics describe the average broadness of the cluster, while path length takes the semantic content of the generated words into account. Our proposed metrics are automated, consistently determined scores of the semantic verbal fluency task that are significantly more accurate in predicting MMSE scores than the traditional scoring, which did not reach significance in any of our models. This suggests that semantic networks offer a more accurate way of scoring the verbal fluency task than mere tallying of correct responses. Second, it confirms a relationship between semantic networks and the cognitive state for the Dutch language.

The fact that we did not find evidence for an effect of the traditional scoring method is of course an interesting observation, as this method is widely used. However, it is worth mentioning that the verbal fluency task is a small part of the MMSE battery, and thus any metric based on this task cannot be expected to fully account for MMSE scores. A previous study by Linz et al. (2017b) found that the semantic verbal fluency task (with the traditional word count metric) can predict MMSE scores. They incorporated multiple computed features in their regression models, among others word count, statistical clustering and switching, word frequency, and the vocal feature pause length. An interesting follow-up to the present research would be to examine the combination of metrics in the present study in an expanded multifactorial regression model incorporating these factors as controls.

Our findings point towards a reevaluation of how we assess the verbal fluency task. Especially since it is such a widely used test, improving its accuracy will be beneficial. As a screening for Alzheimer's disease, the semantic verbal fluency task is already an attractive alternative to the MMSE (Chi et al., 2014). Adding automated and more accurate scoring to the mix makes it an even more appealing screening method. Furthermore, analyzing verbal fluency data through semantic networks could broaden the understanding of our semantic memory system and enhance our knowledge of handling tasks like categorical listing. This could be a good opportunity since there are many existing verbal fluency datasets to be reanalyzed.

Given the promising results of this approach, it would be interesting to further explore language model-derived metrics for the verbal fluency task. While we worked with Dutch data, for English there is a wider range of state-of-the-art models available to explore. The fact that we observed these findings for Dutch also opens up possibility of making a cross-linguistic comparison of semantic networks. Lastly, our semantic network-based metrics could also be applied to other use cases, such as quantifying language acquisition rather than cognitive decline.

6 Conclusion

We explored the possible utility of semantic networks in evaluating cognitive health by examining this relationship in the Dutch language and reported the following findings: (a) Measurements of semantic networks, constructed from distributional semantic models, outperform the conventional method of counting words alone. This approach can circumvent human error and judgment in the semantic verbal fluency task. Therefore, this study lays a foundation for improving diagnostic tools using computational methods; (b) There is a confirmed relationship between semantic networks and cognitive health for the Dutch language. To the best of our knowledge, this is the first study to test the relationship between semantic networks and cognitive state for Dutch. With evidence that semantic networks indeed relate to cognition for the Dutch language, this research paves the way for investigating Dutch semantic networks in other linguistic contexts. Moreover, this is the first study to use distributional semantic models to create semantic networks in this manner, thus providing an original contribution to research on linking the two. This suggests that distributional semantic models provide a new method for exploring the properties and structures of semantic networks.

7 Limitations

The presented results should be considered in the context of this study's limitations. As we have made use of language models to determine the semantic similarity of word pairs, our results are only as good as these models' semantic representations. In other words: if the word embedding representations are of poor quality, our metrics will also be less accurate, as we take the language model as an accurate model of word similarity (in healthy patients, standard language). We made use of static embeddings and layer 0 input embeddings since these hold no contextual information, just like our input data is generated without any context. However, the verbal fluency task is mildly contextual, as participants are asked to stick to a prompt. As BERTje and XLMRoBERTa can include such contextual information in layers later on, some relevant associations might be lacking in layer 0. These layer 0 static embeddings may be too abstract – especially for words that tend to differ in meaning depending on the context. Contextual information could thus be helpful even in word-level tasks.

Chronis and Erk (2020) addressed this by tuning models to identify the meaning of words. Their results confirm that static embeddings are unable to simultaneously surface every component of lexical semantic meaning and their embeddings preserve contextual information that is essential for some word-level tasks. They show that similarity estimation benefits from this contextual knowledge. Their research concerns English language models, but since the present study is centered around a word-level task and uses static embeddings, our results might improve with this same type of tuning for Dutch language models, or by providing the context of the verbal fluency task prompt and extracting contextual embeddings. Including the order of word generation might be another way to provide context.

Another limitation of the approach is that extracting embeddings from a large-ish model is far more resource-intensive than the previous metric of counting responses, and not available for very low-resourced languages. Lastly, our dataset has an average MMSE-score of 28.9. This is relatively high and indicates limited cognitive impairment in this study – indeed, the participants were considered healthy patients by Konijnenberg et al. (2018). Data on a more impaired population would enable a more granular test of our metrics.

Acknowledgements

We gratefully acknowledge support from ELLIS unit Amsterdam and Qualcomm. Additionally, we thank Anouk den Braber and Senne Lageman from the Alzheimer Centre Amsterdam for their role in curating and providing the dataset used in this study.

References

Hyejin Ahn, Dahyun Yi, Kyungjin Chu, Haejung Joung, Younghwa Lee, Gijung Jung, Kiyoung Sung, Dongkyun Han, Jun Ho Lee, Min Soo Byun, et al. 2022. Functional neural correlates of semantic fluency task performance in mild cognitive impairment and alzheimer's disease: An FDG-PET study. *Journal of Alzheimer's Disease*, 85(4):1689–1700.

Özge Alacam, Simeon Junker, Martin Wegrzyn, Johanna Kißler, and Sina Zarrieß. 2022. Exploring semantic spaces for detecting clustering and switching in verbal fluency. In *Proceedings of the 29th International Conference on Computational Linguistics*, pages 178–191.

Roger E Beaty and Dan R Johnson. 2021. Automating creativity assessment with SemDis: An open platform for computing semantic distance. *Behav. Res. Methods*, 53(2):757–780.

Mathias Benedek, Caterina Mühlmann, Emanuel Jauk, and Aljoscha C Neubauer. 2013. Assessment of divergent thinking by means of the subjective top-scoring method: Effects of the number of top-ideas and time-on-task on reliability and validity. *Psychol. Aesthet. Creat. Arts*, 7(4):341–349.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. Enriching word vectors with subword information. *Transactions of the Association for Computational Linguistics*, 5:135–146.

N Bolshakova and F Azuaje. 2003. Cluster validation techniques for genome expression data. *Signal Processing*, 83(4):825–833.

Rishi Bommasani, Kelly Davis, and Claire Cardie. 2020. Interpreting pretrained contextualized representations via reductions to static embeddings. In *Proceedings of the 58th annual meeting of the Association for Computational Linguistics*, pages 4758–4781.

Javier Borge-Holthoefer and Alex Arenas. 2010. Semantic networks: Structure and dynamics. *Entropy* (*Basel*), 12(5):1264–1302.

W A Bousfield and C H W Sedgewick. 1944. An analysis of sequences of restricted associative responses. *J. Gen. Psychol.*, 30(2):149–165.

- Lizzy Brans and Jelke Bloem. 2024. SimLex-999 for Dutch. In *Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)*, pages 14832–14845, Torino, Italia. ELRA and ICCL.
- A S Chan, N Butters, J S Paulsen, D P Salmon, M R Swenson, and L T Maloney. 1993. An assessment of the semantic network in patients with Alzheimer's disease. *J. Cogn. Neurosci.*, 5(2):254–261.
- Yeon Kyung Chi, Ji Won Han, Hyeon Jeong, Jae Young Park, Tae Hui Kim, Jung Jae Lee, Seok Bum Lee, Joon Hyuk Park, Jong Chul Yoon, Jeong Lan Kim, Seung-Ho Ryu, Jin Hyeong Jhoo, Dong Young Lee, and Ki Woong Kim. 2014. Development of a screening algorithm for Alzheimer's disease using categorical verbal fluency. *PLoS One*, 9(1):e84111.
- Alexander P Christensen and Yoed N Kenett. 2023. Semantic network analysis (SemNA): A tutorial on preprocessing, estimating, and analyzing semantic networks. *Psychol. Methods*, 28(4):860–879.
- Gabriella Chronis and Katrin Erk. 2020. When is a bishop not like a rook? When it's like a rabbi! Multiprototype BERT embeddings for estimating semantic relationships. In *Proceedings of the 24th Conference on Computational Natural Language Learning*, Stroudsburg, PA, USA. Association for Computational Linguistics.
- David Glenn Clark, Paula M McLaughlin, Ellen Woo, Kristy Hwang, Sona Hurtz, Leslie Ramirez, Jennifer Eastman, Reshil-Marie Dukes, Puneet Kapur, Thomas P DeRamus, and Liana G Apostolova. 2016. Novel verbal fluency scores and structural brain imaging for prediction of cognitive outcome in mild cognitive impairment. *Alzheimers Dement. (Amst.)*, 2(1):113–122.
- Linda J Clark, Margaret Gatz, Ling Zheng, Yu-Ling Chen, Carol McCleary, and Wendy J Mack. 2009. Longitudinal verbal fluency in normal aging, preclinical, and prevalent Alzheimer's disease. *Am. J. Alzheimers. Dis. Other Demen.*, 24(6):461–468.
- Jin Cong and Haitao Liu. 2014. Approaching human language with complex networks. *Phys. Life Rev.*, 11(4):598–618.
- Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Édouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. 2020. Unsupervised cross-lingual representation learning at scale. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pages 8440–8451.
- Abigail L Cosgrove, Yoed N Kenett, Roger E Beaty, and Michele T Diaz. 2021. Quantifying flexibility in thought: The resiliency of semantic networks differs across the lifespan. *Cognition*, 211(104631):104631.

- Wietse de Vries, Andreas van Cranenburgh, Arianna Bisazza, Tommaso Caselli, Gertjan van Noord, and Malvina Nissim. 2019. BERTje: A Dutch BERT model.
- Pieter Delobelle, Thomas Winters, and Bettina Berendt. 2020. Robbert: a dutch roberta-based language model. In *Findings of the Association for Computational Linguistics: EMNLP 2020*, pages 3255–3265.
- Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. pages 4171–4186.
- Katrin Erk. 2012. Vector space models of word meaning and phrase meaning: A survey. *Lang. Linguist. Compass*, 6(10):635–653.
- Kawin Ethayarajh. 2019. How contextual are contextualized word representations? Comparing the geometry of BERT, ELMo, and GPT-2 embeddings.
- Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach Solan, Gadi Wolfman, and Eytan Ruppin. 2001. Placing search in context. In *Proceedings of the 10th international conference on World Wide Web*, New York, NY, USA. ACM.
- Marshal F Folstein, Susan E Folstein, and Paul R McHugh. 1975. "mini-mental state". *J. Psychiatr. Res.*, 12(3):189–198.
- C D Frith, K J Friston, S Herold, D Silbersweig, P Fletcher, C Cahill, R J Dolan, R S J Frackowiak, and P F Liddle. 1995. Regional brain activity in chronic schizophrenic patients during the performance of a verbal fluency task. *Br. J. Psychiatry*, 167(3):343–349.
- Joaquín Goñi, Gonzalo Arrondo, Jorge Sepulcre, Iñigo Martincorena, Nieves Vélez de Mendizábal, Bernat Corominas-Murtra, Bartolomé Bejarano, Sergio Ardanza-Trevijano, Herminia Peraita, Dennis P Wall, and Pablo Villoslada. 2011. The semantic organization of the animal category: evidence from semantic verbal fluency and network theory. *Cogn. Process.*, 12(2):183–196.
- Kurt Gray, Stephen Anderson, Eric Evan Chen, John Michael Kelly, Michael S Christian, John Patrick, Laura Huang, Yoed N Kenett, and Kevin Lewis. 2019. "forward flow": A new measure to quantify free thought and predict creativity. *Am. Psychol.*, 74(5):539–554.
- Li He, Yoed N Kenett, Kaixiang Zhuang, Cheng Liu, Rongcan Zeng, Tingrui Yan, Tengbin Huo, and Jiang Qiu. 2021. The relation between semantic memory structure, associative abilities, and verbal and figural creativity. *Think. Reason.*, 27(2):268–293.
- Julie D Henry, John R Crawford, and Louise H Phillips. 2004. Verbal fluency performance in dementia of the Alzheimer's type: a meta-analysis. *Neuropsychologia*, 42(9):1212–1222.

- Felix Hill, Roi Reichart, and Anna Korhonen. 2015. SimLex-999: Evaluating semantic models with (genuine) similarity estimation. *Comput. Linguist. Assoc. Comput. Linguist.*, 41(4):665–695.
- Dan R Johnson, James C Kaufman, Brendan S Baker,
 John D Patterson, Baptiste Barbot, Adam E Green,
 Janet van Hell, Evan Kennedy, Grace F Sullivan,
 Christa L Taylor, Thomas Ward, and Roger E Beaty.
 2023. Divergent semantic integration (DSI): Extracting creativity from narratives with distributional semantic modeling. *Behav. Res. Methods*, 55(7):3726–3759.
- Jinyun Ke and Yao Yao. 2008. Analysing language development from a network approach. *J. Quant. Linguist.*, 15(1):70–99.
- Yoed N Kenett and Miriam Faust. 2019. A semantic network cartography of the creative mind. *Trends in cognitive sciences*, 23(4):271–274.
- Yoed N Kenett, Effi Levi, David Anaki, and Miriam Faust. 2017. The semantic distance task: Quantifying semantic distance with semantic network path length. J. Exp. Psychol. Learn. Mem. Cogn., 43(9):1470–1489
- Najoung Kim, Jung-Ho Kim, Maria K Wolters, Sarah E MacPherson, and Jong C Park. 2019. Automatic scoring of semantic fluency. *Front. Psychol.*, 10:1020.
- Alexandra König, Nicklas Linz, Johannes Tröger, Maria Wolters, Jan Alexandersson, and Phillipe Robert. 2018. Fully automatic speech-based analysis of the semantic verbal fluency task. *Dement. Geriatr. Cogn. Disord.*, 45(3-4):198–209.
- Elles Konijnenberg, Stephen F Carter, Mara ten Kate, Anouk den Braber, Jori Tomassen, Chinenye Amadi, Linda Wesselman, Hoang-Ton Nguyen, Jacoba A van de Kreeke, Maqsood Yaqub, Matteo Demuru, Sandra D Mulder, Arjan Hillebrand, Femke H Bouwman, Charlotte E Teunissen, Erik H Serné, Annette C Moll, Frank D Verbraak, Rainer Hinz, Neil Pendleton, Adriaan A Lammertsma, Bart N M van Berckel, Frederik Barkhof, Dorret I Boomsma, Philip Scheltens, Karl Herholz, and Pieter Jelle Visser. 2018. The EMIF-AD PreclinAD study: study design and baseline cohort overview. *Alzheimers. Res. Ther.*, 10(1).
- Abhilasha A Kumar, Mark Steyvers, and David A Balota. 2022. A critical review of network-based and distributional approaches to semantic memory structure and processes. *Top. Cogn. Sci.*, 14(1):54–77.
- Thomas K Landauer and Susan T Dumais. 1997. A solution to Plato's problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. *Psychol. Rev.*, 104(2):211–240.
- Alan J Lerner, Paula K Ogrocki, and Peter J Thomas. 2009. Network graph analysis of category fluency testing. *Cogn. Behav. Neurol.*, 22(1):45–52.

- Nicklas Linz, Johannes Tröger, Jan Alexandersson, and Alexandra Konig. 2017a. Using Neural Word Embeddings in the Analysis of the Clinical Semantic Verbal Fluency Task. In *IWCS 2017 12th International Conference on Computational Semantics*, pages 1–7, Montpellier, France.
- Nicklas Linz, Johannes Troger, Jan Alexandersson, Maria Wolters, Alexandra Konig, and Philippe Robert. 2017b. Predicting dementia screening and staging scores from semantic verbal fluency performance. In 2017 IEEE International Conference on Data Mining Workshops (ICDMW). IEEE.
- Nicklas Linz, Johannes Tröger, Hali Lindsay, Alexandra Konig, Philippe Robert, Jessica Peter, and Jan Alexandersson. 2018. Language Modelling for the Clinical Semantic Verbal Fluency Task. In LREC 2018 Workshop RaPID-2: Resources and ProcessIng of Linguistic, Para-Linguistic and Extra-Linguistic Data from People with Various Forms of Cognitive/Psychiatric Impairments, Miyazaki, Japan.
- Nancy B Lundin, Joshua W Brown, Brendan T Johns, Michael N Jones, John R Purcell, William P Hetrick, Brian F O'Donnell, and Peter M Todd. 2023. Neural evidence of switch processes during semantic and phonetic foraging in human memory. *Proceedings of the National Academy of Sciences*, 120(42):e2312462120.
- Evrim Gocer March and Philippa Pattison. 2006. Semantic verbal fluency in Alzheimer's disease: approaches beyond the traditional scoring system. *J. Clin. Exp. Neuropsychol.*, 28(4):549–566.
- Giampiero Marra and Simon N Wood. 2011. Practical variable selection for generalized additive models. *Comput. Stat. Data Anal.*, 55(7):2372–2387.
- Israel Martínez-Nicolás, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain, Juan Carro, Thide E Llorente, Juan José García Meilán, Departamento de psicología básica, psicobiología y metodología de las ciencias del comportamiento, Facultad de Psicología, Universidad de Salamanca, Salamanca, Spain, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain, Departamento de psicología básica, psicobiología y metodología de las ciencias del comportamiento, Facultad de Psicología, Universidad de Salamanca, Salamanca, Spain, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain, Departamento de psicología básica, psicobiología y metodología de las ciencias del comportamiento, Facultad de Psicología, Universidad de Salamanca, Salamanca, Spain, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain, and Departamento de psicología básica, psicobiología y metodología de las ciencias del comportamiento, Facultad de Psicología, Universidad de Salamanca, Salamanca, Spain. 2019. The deterioration of semantic networks in Alzheimer's disease. In Alzheimer's Disease, pages 179-191. Codon Publications.

- Ana Maseda, Leire Lodeiro-Fernández, Laura Lorenzo-López, Laura Núñez-Naveira, Aránzazu Balo, and Jose C Millán-Calenti. 2014. Verbal fluency, naming and verbal comprehension: three aspects of language as predictors of cognitive impairment. *Aging Ment. Health*, 18(8):1037–1045.
- Michelle McDonnell, Lauren Dill, Stella Panos, Stacy Amano, Warren Brown, Shadee Giurgius, Gary Small, and Karen Miller. 2020. Verbal fluency as a screening tool for mild cognitive impairment. *Int. Psychogeriatr.*, 32(9):1055–1062.
- Ken McRae, Saman Khalkhali, and Mary Hare. 2012. Semantic and associative relations in adolescents and young adults: Examining a tenuous dichotomy. In *The adolescent brain: Learning, reasoning, and decision making*, pages 39–66. American Psychological Association, Washington.
- Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of word representations in vector space.
- A U Monsch, M W Bondi, N Butters, D P Salmon, R Katzman, and L J Thal. 1992. Comparisons of verbal fluency tasks in the detection of dementia of the Alzheimer type. *Arch. Neurol.*, 49(12):1253–1258.
- L Muhammad, E Garba, N Oye, and G Wajiga. 2019. Modeling techniques for knowledge representation of expert system: A survey. *J. Appl. Comput. Sci. Math.*, 13(2):39–44.
- Animesh Nighojkar, Anna Khlyzova, and John Licato. 2022. Cognitive modeling of semantic fluency using transformers. In *Proceedings of the 2022 Workshop on Cognitive Aspects of Knowledge Representation*.
- Yvette Oortwijn, Jelke Bloem, Pia Sommerauer, Francois Meyer, Wei Zhou, and Antske Fokkens. 2021. Challenging distributional models with a conceptual network of philosophical terms. In *Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, Stroudsburg, PA, USA. Association for Computational Linguistics.
- A L Piatt, J A Fields, A M Paolo, W C Koller, and A I Tröster. 1999. Lexical, semantic, and action verbal fluency in Parkinson's disease with and without dementia. *J. Clin. Exp. Neuropsychol.*, 21(4):435–443.
- Davide Quaranta, Chiara Piccininni, Alessia Caprara, Alessia Malandrino, Guido Gainotti, and Camillo Marra. 2019. Semantic relations in a categorical verbal fluency test: an exploratory investigation in mild cognitive impairment. *Frontiers in psychology*, 10:2797.
- R Core Team. 2021. *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing, Vienna, Austria.

- Zeshu Shao, Esther Janse, Karina Visser, and Antje S Meyer. 2014. What do verbal fluency tasks measure? Predictors of verbal fluency performance in older adults. *Frontiers in psychology*, 5:772.
- Aradhana Soni, Benjamin Amrhein, Matthew Baucum, Eun Jin Paek, and Anahita Khojandi. 2021. Using verb fluency, natural language processing, and machine learning to detect Alzheimer's disease. In 2021 43rd annual international conference of the IEEE engineering in medicine & biology society (EMBC), pages 2282–2285. IEEE.
- Mark Steyvers and Joshua B Tenenbaum. 2005. The large-scale structure of semantic networks: Statistical analyses and a model of semantic growth. *Cognitive science*, 29(1):41–78.
- Angela K Troyer, Morris Moscovitch, and Gordon Winocur. 1997. Clustering and switching as two components of verbal fluency: evidence from younger and older healthy adults. *Neuropsychology*, 11(1):138.
- Angela K Troyer, Morris Moscovitch, Gordon Winocur, Larry Leach, and Morris Freedman. 1998. Clustering and switching on verbal fluency tests in Alzheimer's and Parkinson's disease. *Journal of the International Neuropsychological Society*, 4(2):137–143.
- Akira Utsumi. 2015. A complex network approach to distributional semantic models. *PloS one*, 10(8):e0136277.
- Daniel Vlantis and Jelke Bloem. 2025. Intrinsic evaluation of mono-and multilingual Dutch language models. *Computational Linguistics in the Netherlands Journal*, 14:525–553.
- Ivan Vulić, Simon Baker, Edoardo Maria Ponti, Ulla Petti, Ira Leviant, Kelly Wing, Olga Majewska, Eden Bar, Matt Malone, Thierry Poibeau, Roi Reichart, and Anna Korhonen. 2020. Multi-SimLex: A Large-Scale Evaluation of Multilingual and Crosslingual Lexical Semantic Similarity. *Computational Linguistics*, 46(4):847–897.
- Ye Wang, Yaling Deng, Ge Wang, Tong Li, Hongjiang Xiao, and Yuan Zhang. 2025. The fluency-based semantic network of LLMs differs from humans. *Computers in Human Behavior: Artificial Humans*, 3:100103.
- Simon N Wood. 2011. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 73(1):3–36.
- Simon N Wood. 2020. Inference and computation with generalized additive models and their extensions. *Test*, 29(2):307–339.
- Dirk U Wulff, Simon De Deyne, Samuel Aeschbach, and Rui Mata. 2022. Using network science to understand the aging lexicon: Linking individuals' experience, semantic networks, and cognitive performance. *Topics in Cognitive Science*, 14(1):93–110.

- Jeffrey C Zemla and Joseph L Austerweil. 2017. Modeling semantic fluency data as search on a semantic network. In *Proceedings of the Annual Meeting of the Cognitive Science Society*, volume 39, page 3646.
- Jeffrey C Zemla and Joseph L Austerweil. 2018. Estimating semantic networks of groups and individuals from fluency data. *Computational brain & behavior*, 1:36–58.
- Jeffrey C Zemla, Kesong Cao, Kimberly D Mueller, and Joseph L Austerweil. 2020. Snafu: The semantic network and fluency utility. *Behavior research methods*, 52:1681–1699.
- Jeffrey C Zemla, Yoed N Kenett, Kwang-Sung Jun, and Joseph L Austerweil. 2016. U-invite: Estimating individual semantic networks from fluency data. In *CogSci*, volume 1, pages 36–58.

A Inclusion requirements

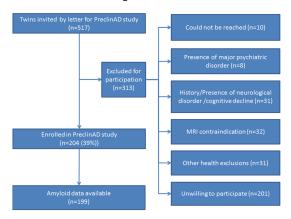


Figure 3: Inclusion flow chart for Amsterdam participants of the EMIF-AD PreclinAD study (Konijnenberg et al., 2018).

B Detailed result graphs

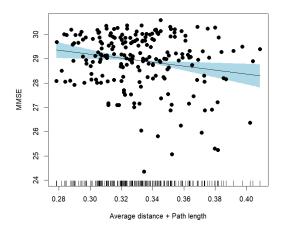


Figure 4: Effects of average diameter distance and path length on the MMSE-scores in the second-level analysis of FastText.

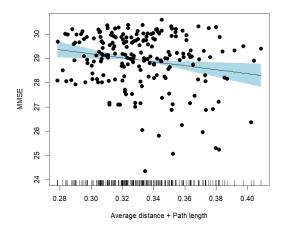


Figure 5: Effects of average diameter distance and path length on the MMSE-scores in the second-level analysis of FastText.

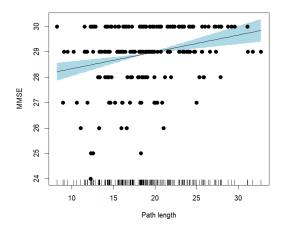


Figure 6: Effects of path length on the MMSE-scores in the second-level analysis of XLMRoBERTa.

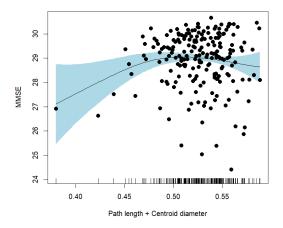


Figure 7: Effects of path length and centroid diameter distance on the MMSE-scores in the second-level analysis of XLMRoBERTa.

C Details analyses including age

First- and second-level GAMs results for BERTje, FastText, and XLMRoberta. 1st-level models include all predictors; 2nd-level models include only predictors significant at the 1st level. Estimated degrees of freedom (edf) are only included for the final model (2nd-level).

Table 2: First- and second-level GAMs results for BERTje. MAE (mean absolute error) for 1st-level model = 0.85, for 2nd-level model = 0.81.

Predictor	Analysis	p-value	edf	
Age Nr words	1st 1st	< 0.005 = 0.1		
Avg dist Path length Centroid dist	1st 1st 1st	< 0.005 = 0.5 < 0.05		
Age Avg dist Centroid dist	2nd 2nd 2nd	< 0.005 = 0.09 = 0.4	3.96 5.09 1.00	

Variance explained: Age-only = 9.4%, Full 2nd-level model = 20.9%

Table 3: First- and second-level GAMs results for Fast-Text. MAE (mean absolute error) for 1st-level model = 0.87, for 2nd-level model = 0.82.

Predictor	Analysis	p-value	edf	
Age	1st	< 0.005		
Nr words	1st	= 0.7		
Avg dist	1st	< 0.005		
Path length	1st	< 0.05		
Centroid dist	1st	= 0.5		
Age	2nd	< 0.005	5.40	
Avg dist	2nd	< 0.005	1.00	
Path length	2nd	= 0.09	2.79	

Variance explained: Age-only = 9.4%, Full 2nd-level model = 19.6%

Table 4: First- and second-level GAMs results for XLM-Roberta. MAE (mean absolute error) for 1st-level model = 0.86, for 2nd-level model = 0.85.

Predictor	Analysis	p-value	edf
Age	1st	< 0.01	
Nr words	1st	< 0.01	
Avg dist	1st	= 0.07	
Path length	1st	= 0.1	
Centroid dist	1st	= 0.06	
Age	2nd	< 0.05	3.64
Nr words	2nd	< 0.005	1.00

Variance explained: Age-only = 9.4%, Full 2nd-level model = 12.9%

D Details case studies

Table 5: Normalized metrics for each model and word lists for selected participants.

ID	MMSE	Nr words	Model	Avg dist	Path length	Centroid dist
337	28	40	BERTje FastText XLM-R		0.34 0.39 0.56	1 0.80 0.58

Words: aap (monkey), beer (bear), koala (koala), gorilla (gorilla), ijsbeer (polar bear), giraffe (giraffe), stinkdier (skunk), mier (ant), vlieg (fly), tor (beetle), duizendpoot (millipede), zeerob (seal), dolfijn (dolphin), tong (sole [fish]), schar (plaice), ooievaar (stork), oorwurm (earwig), tijger (tiger), slang (snake), panter (panther), boa (boa constrictor), eekhoorn (squirrel), hert (deer), eland (elk/moose), zebra (zebra), paard (horse), gnoe (gnu/wildebeest), emoe (emu), hinde (doe/female deer), bij (bee), wesp (wasp), haring (herring), makreel (mackerel), orka (orca/killer whale), walvis (whale), snoek (pike), baars (perch), krab (crab), garnaal (shrimp), zeeaal (sea eel)

			BERTje	0.50	0.72	0.56
341	30	50	FastText	0.40	0.81	0.51
			XLM-R	0.48	0.80	0.55

Words: leeuw (lion), tijger (tiger), paard (horse), kat (cat), civetkat (civet cat), poolvos (arctic fox), olifant (elephant), giraffe (giraffe), neushoorn (rhinoceros), krokodil (crocodile), neushoorn (rhinoceros), panda (panda), ijsbeer (polar bear), grizzlybeer (grizzly bear), bruine beer (brown bear), hond (dog), kat (cat), cavia (guinea pig), haan (rooster), kip (chicken), pony (pony), paard (horse), koe (cow), lama (llama), kameel (camel), kanarie (canary), grasparkiet (budgerigar), kolibrie (hummingbird), kabeljauw (cod), haring (herring), zalm (salmon), sprot (sprat), tonijn (tuna), koolvis (coalfish), inktvis (squid), garnaal (shrimp), haring (herring), makreel (mackerel), vos (fox), slang (snake), goudvis (goldfish), rat (rat), rog (ray), haai (shark), dolfijn (dolphin), walvis (whale), hamerhaai (hammerhead shark), witte haai (great white shark), forel (trout), parkiet (parakeet)

			BERTje	0.27	0.22	0.60
365	29	24	FastText	0.65	0.21	0.27
			XLM-R	0.17	0.14	0.81

Words: vis (fish), aap (monkey), egel (hedgehog), konijn (rabbit), olifant (elephant), hond (dog), kat (cat), mug (mosquito), insect (insect), olifant (elephant), giraffe (giraffe), eend (duck), vogel (bird), mus (sparrow), parkiet (parakeet), lijster (thrush), nijlgans (Egyptian goose), mier (ant), hert (deer), leeuw (lion), tijger (tiger), panter (panther), konijn (rabbit), hermelijn (stoat/ermine)