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Abstract

Implicit hate speech involves subtle and indi-
rect expressions of prejudice or hostility to-
ward a group. Detecting it is challenging be-
cause it relies on nuanced context and impli-
cation rather than explicit offensive language.
Current approaches rely on contrastive learn-
ing, which is shown to be effective on distin-
guishing hate and non-hate sentences. Humans,
however, detect implicit hate speech by first
identifying specific fargets within the text and
subsequently interpreting how these targets re-
late to their surrounding context. Motivated
by this reasoning process, we propose Ample-
Hate, a novel approach designed to mirror hu-
man inference for implicit hate detection. Am-
pleHate identifies explicit targets using a pre-
trained Named Entity Recognition model and
captures implicit target information via [CLS]
tokens. It computes attention-based relation-
ships between explicit, implicit targets and sen-
tence context and then, directly injects these
relational vectors into the final sentence rep-
resentation. This amplifies the critical signals
of target-context relations for determining im-
plicit hate. Experiments demonstrate that Am-
pleHate achieves state-of-the-art performance,
outperforming contrastive learning baselines
by an average of 82.14% and achieves faster
convergence. Qualitative analyses further re-
veal that attention patterns produced by Am-
pleHate closely align with human judgement,
underscoring its interpretability and robust-
ness. Our code is publicly available at: https:
//github.com/leeyejin1231/AmpleHate

1 Introduction

Warning: this paper contains content that may be
offensive or upsetting.

Internet and social media platforms have pro-
foundly reshaped contemporary communication,
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Figure 1: AmpleHate effectively detects implicit hate
sentences by amplifying the target signals of hate-
related tokens in the context of implicit hateness.

enabling rapid information dissemination and in-
terpersonal interactions. Yet, alongside the ben-
efits, these platforms also enable the spread of
hate speech, becoming a serious social issue. Re-
cent studies indicate that approximately 30% of
young individuals have experienced cyberbully-
ing (Kansok-Dusche et al., 2023). This highlights
the urgent need to detect and control hate speech.

For explicit hate speech detection, traditional
text classification approaches such that learn global
sentence representations or keyword features are
frequently used to distinguish hate from non-
hate (Gao et al., 2017; Saleem et al., 2017). These
approaches have been successful as explicit hate
speech, with its direct and unambiguous character-
istics, contains clear expressions such as offensive
words or insults. Yet, implicit hate speech hides its
hostility in latent context rather than explicit forms.
Specifically, it conveys hate through context, sar-
casm, indirect expressions, or culturally specific
references (Wiegand et al., 2021; ElSherief et al.,
2021). Consequently, standard keyword-based or
holistic embedding methods often struggle to accu-
rately detect implicit forms of hate.
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Recent studies have advanced implicit hate
speech detection by employing contrastive learn-
ing frameworks, such as InfoNCE-based objec-
tives (Oord et al., 2018; Kim et al., 2024). These
methods lead semantically hateful sentences to
have similar representations and push non-hateful
sentences apart (Kim et al., 2022; Ahn et al., 2024).
Although these techniques are effective in implicit
hate speech detection, they operate on holistic
sentence-level embeddings and overlooks the inter-
nal interactions within the sentences.

In contrast, humans identify implicit hate
through a different and inherently more structured
reasoning process: first identifying specific far-
gets (e.g., sensitive entities, which are demographic
groups such as immigrants or Muslims, LGBTQ+
individuals, or cultural referents) within a sen-
tence and subsequently interpreting how the con-
text frames or characterizes these targets to infer
hateful intent. Motivated by this insight, we pro-
pose AmpleHate, a novel method explicitly de-
signed to mirror the human inferential process of
identifying implicit hate speech detection.

AmpleHate first identifies target entities (ex-
plicit targets) within sentences using a pre-trained
Named Entity Recognition (NER) model. We then
leverage the sentence-level embedding through the
Transformer (Vaswani et al., 2017) encoder’s [CLS]
token as an implicit representation of global con-
textual information (implicit targets). AmpleHate
computes attention-based relational interactions be-
tween explicit, implicit targets and sentence con-
texts. quantifying the influence each target has on
the sentence’s hateful meaning. These relational
vectors are then directly injected into the final sen-
tence embedding, amplifying target-context signals
and steering the classifier to base its decisions on
explicit target-context relationships, similar to hu-
man reasoning.

One might question the effectiveness of direct
injection due to its susceptibility to potential noises.
However, by limiting the injection specifically to
the relationships between explicit, implicit targets
and context, our method effectively enhances the
learning of implicit hate speech. As a result, Am-
pleHate achieves optimal performance earlier com-
pared to existing contrastive learning approaches.

Through extensive experiments on implicit hate
speech benchmarks, AmpleHate achieves state-of-
the-art performance, outperforming conventional
contrastive learning baselines by 6.87%p in aver-
age. Additionally, Figure 1 and our qualitative anal-

yses confirm that AmpleHate produces attention
patterns closely aligned with human judgement
behaviors, highlighting its interpretaiblity and ro-
bustness.

2 Related Work

2.1 Implicit Hate Speech

Implicit hate speech targets protected groups and
is conveyed through subtle or indirect language
rather than explicit slurs (GNET, 2024). Unlike ex-
plicit hate, which can often be caught via keyword
matching (Warner and Hirschberg, 2012; David-
son et al., 2017) or simple toxicity filters (Waseem
and Hovy, 2016; Nobata et al., 2016), implicit
hate relies on metaphor or context-dependent cues
that evade straightforward lexical methods. This
poses a significant challenge for automated implicit
hate speech detection. Recent works have primarily
focused on two trajectories to address this chal-
lenge: (1) contrastive representation learning (Kim
et al., 2023; Ahn et al., 2024; Kim et al., 2024);
and (2) data sampling/selection strategies (Ocampo
et al., 2023; Kim et al., 2025; Kim and Lee, 2025).
Meanwhile, these approaches depend on the avail-
ability of corpora specifically annotated for implicit
hate speech, such as Sap et al. (2020); Mathew et al.
(2021) and ElSherief et al. (2021).

However, most traditional studies treat the pro-
tected target merely as a class label and thus fail
to capture group-specific cues or coded language.
This oversight motivates the next subsection, which
surveys target-aware modeling techniques that ex-
plicitly integrate target information.

2.2 Target-Aware Modeling and Embeddings

Recent methods not only identify the target (Jafari
et al., 2024) but also explicitly model target identity
by using multi-task approach (Chiril et al., 2022).
They jointly learn to detect hatefulness and to pre-
dict the specific target category or identity group,
leveraging shared representations and affective lexi-
cal to transfer knowledge across topics and improve
generalization. Adversarial training methods such
as Xia et al. (2020) removed spurious group cues
to strip dialectal markers from embeddings and
reduce false positives. Chen et al. (2024) used a
hypernetwork conditioned on target embeddings to
generate filters that eliminate biased features. These
approaches achieved significant gains in both accu-
racy and fairness. In addition to those target-aware
methods, we draw inspiration from recent advances
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in embedding-space control and attention dynam-
ics. Han et al. (2024) applied a low-rank linear
transform to embeddings to steer model behavior
with minimal overhead and Barbero et al. (2025)
showed that attention sinks prevent over-mixing in
deep transformers. Motivated by their findings, we
inject a lightweight, target-aware attention module
that both steers the model toward group-specific
signals and dedicates an extra attention head to
capture subtle, implicit target cues.

3 AmpleHate: Amplify the Attention

We use the standard Transformer (Vaswani et al.,
2017) self-attention mechanism in AmpleHate. The
multi-head attention calculation enables the model
to represent sentence-level context more effectively.
AmpleHate consists of three core steps: 1) Target
Identification, 2) Relation Computation, and 3) Di-
rection Injection. Figure 2 illustrates the overall
procedure of AmpleHate.

3.1 Target Identification

Let the input sentence X be tokenized as

X = [1’0,1‘1,. . .,$n], o = [CLS],

and let a Transformer encoder produce contextual
embeddings

H = [ho, hi,..., hy] € ROFDXd

where h; € R%, d is the size of hidden dimension,
and hyg is the [CLS] embedding. We begin by se-
lecting the tokens that will serve as our explicit
targets.

In the implicit hate speech dataset, the crit-
ical entities are mainly groups, organizations
and local (Khurana et al.,, 2025). Thus, we
apply a pre-trained NER tagger to each to-
ken and retain only those with labels in
{ORG,NORP, GPE,LOC, EVENT}, yielding
a binary mask m; € 0,1 where 1 < i < n. ORG
represents organizations, NORP represents nation-
alities, religious, and political groups, GPE repre-
sents countries, cities, and states, LOC represents
non-GPE locations such as mountain ranges or bod-
ies of water, and EVENT represents named events
such as wars, sports events, or disasters. Let

Iexp = {i | m; = 1}.
The explicit target embeddings is then,

Hexp — [hi]iEIexp c RIIEEP|Xd_

These embeddings H.,), serve as our explicit tar-
gets. On the other hand, we use the embedding hg
of the [CLS] token as our implicit token H rp,. This
is supported by Barbero et al. (2025) showing that
initial tokens such as [C' LS| or < bos > naturally
attract significant attention and serve as stable an-
chors in transformer models, helping to regulate
information.

3.2 Relation Computation

Rather than simply boosting attention weights dur-
ing training—which can fail to reflect the weights
directly to the final decision—AmpleHate aims to
capture the fine-grained influence of explicit tar-
gets Hc,p and implicit targets H;;,, on the context
of the whole sentence X. We achieve this by apply-
ing a standard attention mechanism over the [CLS]
embedding and the target embeddings, producing
a relational vector ~ € R? that highlights the most
relevant target-context interactions.

First, we form our attention inputs by letting the
[CLS] embedding hg act as both the query and the
value, and the target embeddings serve as keys:

Q:hﬂa K:Htgh VZhO»

where Hy g is either Hyy, or Hiyp,p. We then com-
pute a score for each target h; € Hyy using scaled
dot-product attention:

QK"
Tigt = Z Softmax(ﬁ)v.

kGHtgt

This dynamically assigns higher weights to tar-
gets whose embeddings align more closely with
the sentence-level context. As we compute when
Htgt = He:pp and Htgt = Himp,

T = Texp + Timp-

Note that when we compute the attention for an im-
plicit target, the equation is the same as computing
the self-attention of the [CLS] embedding.

The relational vector r thus encodes how each
explicit and implicit target interacts with the sen-
tence as a whole by incorporating a learned self-
adjustment of the global context of the sentence.

3.3 Direct Injection

In order to explicitly amplify and reflect the target-
context relation we have computed in Section 3.2,
we inject the relation vector r directly into the out-
put, [CLS] embedding. This direct injection makes
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Figure 2: Overall procedure of AmpleHate.

sure that the output contains the signals of target
relations. The updated output z is then passed to
the classification head, ensuring that z guides the
right prediction g:
z=ho+ A-r, 7= Softmax(z),

where A controls the degree of amplification for the
injected signal.

This direct injection appropriately amplifies the

signals of target-context relations for implicit hate
speech detection, yielding two key benefits:

Stronger decision ques. By injecting  into hg
right before classification, AmpleHate amplifies
target-context interactions directly in the final
logits. This ensures that the AmpleHate’s pre-
dictions rely on these amplified cues rather than
only on diffuse, indirect attention patterns.

Selective noise reduction. Since 7 is built only
from identified targets, injection amplifies mean-
ingful relations while filtering out irrelevant sig-
nals. This effectively reduces potential noises
and guarantees the faster convergence.

3.4 Implementation Details

We identify the explicit targets by tagging named
entities. Specifically, we apply the pre-trained NER
taggers ‘dbmdz/bert-large-cased-finetuned-conll03-
english’ and ‘dbmdz/bert-base-cased-finetuned-
conll03-english’. Also, the degree A of amplifica-
tion in Section 3.3 is in {0.5,0.75,1.0, 1.25,1.5}.

4 Experiments and Analysis

4.1 Datasets

IHC (ElSherief et al., 2021) is designed to sup-
port implicit hate speech classification, featuring
about 22k tweets annotated not only with hate la-
bels but also with textual descriptions that reveal
underlying hateful implications.

SBIC (Sap et al., 2020) offers a large-scale re-
source for studying social bias in language, pair-
ing social media posts with structured frames that
annotate offensiveness, speaker intent, and group
targets.

Dynahate (Vidgen etal., 2021) introduced a chal-
lenging hate speech dataset built via a human-and-
model-in-the-loop process, incorporating perturbed
and implicitly hateful examples to enhance model
generalization and robustness.

Hateval (Basile et al., 2019) contains about 19k
Twitter posts annotated for binary hate speech
specifically targeting immigrants or women, with
additional tags for aggressiveness and target scope.

Toxigen (Hartvigsen et al., 2022) comprises ap-
proximately 274k machine-generated statements,
evenly split between toxic and non-toxic language
concerning 13 minority groups.

White (de Gibert et al., 2018) is a hate speech
dataset collected from a White Supremacy Forum.
Each sentence is manually annotated for the pres-
ence or absence of hate speech according to specific
annotation guidelines.
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Datasets

Models IHC SBIC DYNA Hateval Toxigen White Ethos Average
BERT 77.70 83.80 7880  8l.11 90.06 4478 70.67 | 75.27
SharedCon 78.50 84.30 79.10 80.24 91.21 46.15 69.05 | 75.50
LAHN 78.40 83.98 79.64 8042 90.42 4785 7526 | 76.56

AmpleHate (bert-base-ner) | 81.46 83.79  81.39 80.56 90.74 7196 178.61 | 81.21
AmpleHate (bert-large-ner) | 81.94 84.03 81.51 82.07 93.21 7517 77.06 | 82.14

Table 1: Experimental results of baselines and ours for each dataset. bert-base-ner means using a fine-tuned bert-
base model, while bert-large-ner means using a fine-tuned bert-large model for NER tagging. The performance
score (macro-F1) is the average of three runs with different random seeds.

Test Datasets . . Average
Models IHC SBIC DYNA Hateval Toxigen White Ethos
BERT 78.53 80.78 81.06 85.73 92.61 58.13 67.92 | 77.82
SharedCon 7898 80.77 79.31 86.81 93.33 5591 69.23 | 77.76
LAHN 77.40 80.34 79.64 84.49 90.48  59.09 6834 | 77.11
- AmpleHate (ours) | 86.14 82.03 7992 8717 97.04 7141 7130 | 82.18

Table 2: Experimental results of baselines and ours for the whole dataset together as ‘combined’ in Table 5. We
combine all datasets and treat them as a single dataset to see the general performance. We use bert-large-ner model
for NER tagging. The performance score (macro-F1) is the average of three runs with different random seeds for the

combined dataset.

ETHOS (Mollas et al.,, 2022) offers 998
YouTube/Reddit comments labeled for hate speech
presence or absence. Table 5 in Appendix A reports
the data statistics.

4.2 Baselines

BERT (Devlin et al., 2019) is a transformer-
based language model pre-trained on large corpora
using masked language modeling and next sentence
prediction. Its bidirectional encoding enables ef-
fective contextual understanding for downstream
classification tasks.

SharedCon (Ahnetal., 2024) is a SOTA method
for the implicit hate speech detection task. The
approach clusters sentence embeddings by label,
uses each cluster centroid as an anchor, and then
fine-tunes the model with a supervised contrastive
loss.

LAHN (Kim et al., 2024) integrates momentum
contrastive learning with label-aware hard-negative
sampling, selecting the most similar opposite-label
sampling for each anchor and training with a joint
supervised-contrastive and cross-entropy loss.

4.3 Experimental Setup

We use the BERT-base model (Devlin et al., 2019)
with the 100M parameter size as our encoder and

train on an NVIDIA RTX 4090 GPU. The deci-
sion threshold ranges from 0.05 to 0.95 in steps
of 0.05. We evaluate model performance using the
macro-F1 and report averaged scores over three
independent runs with different random seeds. We
use the AdamW optimizer with a fixed learning rate
of 2e-5, a batch size of 16, and 6 training epochs.

4.4 Experimental Results

We begin with experiments on individual datasets,
where each model is trained and evaluated on the
same dataset. We then train a single model on the
combined dataset and evaluate it across individ-
ual test sets, demonstrating the versatility of our
method.

Individual Dataset. Table 1 shows that Ample-
Hate consistently outperforms nearly all baseline
models, with particularly strong gains on datasets
with implicit hate (e.g., +27.32%p on White). On
average, it improves over BERT by 6.87%p and
over the strongest baseline (LAHN) by 5.58%p.

These results confirm that identifying explicit
and implicit targets, coupled with amplification of
target-context relation signals by direct injection,
yields clear and consistent improvements over con-
trastive learning approaches.

Combined Dataset. In this setup, the model is
trained on the combined set of all seven datasets
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Figure 3: Confusion matrices for the White (left) and
SBIC (right) datasets, showing counts and percentages
of true vs. predicted labels for ‘non-hate/not-offensive’
and ‘hate/offensive’ classes.

and then evaluated independently on each test set.

Table 2 shows that AmpleHate achieves the high-
est macro-F1 on six out of seven datasets, gaining
approximately 5%p gains on average for all base-
lines.

These findings indicate that AmpleHate main-
tains its effectiveness even without dataset-specific
fine-tuning, making it suitable for practical deploy-
ment. By incorporating target-focused attention
during training, the model retains robustness across
varying expressions of implicit hate speech.

4.5 Case Analysis

Analysis on White Dataset Characteristics In
the individual dataset experiments, AmpleHate
achieves the highest relative improvement on the
White dataset, which motivates a detailed exami-
nation of its linguistic and structural characteris-
tics. Figure 3 shows the confusion matrix on White
(left), where AmpleHate demonstrates strong dis-
crimination between hate and non-hate instances,
despite the skewed label distribution. The model
maintains high precision on non-hate samples
while successfully identifying a portion of subtle
hate cases.

Several factors likely contribute to this result.
First, White contains a high proportion of implicit
hate speech, where hateful intent emerges through
context rather than direct slurs. Many examples
are structured in a way that requires identifying
the target entity before the hatefulness becomes
clear. This aligns well with the intended role of
AmpleHate—to highlight target mentions and cap-
ture context-dependent signals.

Second, explicit references to target groups fre-
quently appear in the data. While standard mod-
els may treat these as ordinary nouns, AmpleHate

interprets them as meaningful cues and allocates
attention accordingly.

These properties make the White dataset particu-
larly well-matched to the goal behind AmpleHate,
which focuses on detecting subtle and indirect hate
speech through target-aware contextual understand-
ing.

Error Analysis on SBIC In Table 1, AmpleHate
shows only a marginal improvement over the base-
line on the SBIC dataset. We analyze the SBIC
dataset to understand this experimental result.

Hate speech datasets usually involve explicit at-
tacks against specific identity groups. In contrast,
offensive language datasets label content as offen-
sive regardless of whether the language targets a
group. SBIC adopts this broader definition, which
creates a fundamental distinction from the other
datasets in the study.

Figure 3 shows the confusion matrix for SBIC
(right). We extract 740 misclassified examples and
analyze their content. Most errors fall into the false
positive category. Many of these cases contain
highly offensive expressions, but the original la-
bel marks them as non-offensive. For example, the
sentence "in fucking mexico bitches" includes pro-
fanity and a strong negative tone, but it carries a
non-offensive label.

We randomly sample 100 of the misclassified
examples and review them manually. Among them,
51% appear to contain labeling inconsistencies.
This high noise ratio suggests that SBIC includes
annotation artifacts that differ from hate speech cor-
pora. These inconsistencies likely contribute to the
limited performance gains of AmpleHate on SBIC.

5 Analysis

5.1 Impact of Targets

AmpleHate distinguishes between random targets,
explicit targets, identified via NER tagging, and
implicit targets represented by the [CLS] token,
which captures global context. We conduct an ab-
lation study to understand the contribution of each
target type. The experiment includes fine-tuning the
vanilla BERT baseline without any target signals,
with randomly assigned 20% targets, with only the
implicit targets, with only explicit targets, and with
both implicit and explicit targets combined. Since
explicit targets were tagged for approximately 20%
of the data on average, we introduced the Random
20% condition to serve as a comparable baseline.
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Datasets
Target IHC SBIC DYNA Hateval Toxigen White Ethos Avg. (F1)
F1 (step) F1 (step) F1 (step) F1 (step) F1 (step) F1 (step) F1 (step)
No Target 77.70 (1146) | 83.80 (2016) | 78.80 (2316) | 81.11 (1953) | 90.06 (1147) | 44.78 (360) | 70.67 (160) 75.27
Random Target 77.00 450) | 83.95 (750) | 79.99 (1950) | 79.44 (400) | 89.59 (300) | 59.46 (500) | 67.54 (50) 76.71
Implicit Target 78.76 (1200) | 83.63 (2167) 80.54 (647) 81.70 (2120) 90.52 (647) 59.00 (413) | 75.57 (160) 78.53
Explicit Target 77.92 910) | 83.93 (2150) | 80.98 (907) | 81.33 (1827) | 90.55 (907) | 59.69 (387) | 72.33 (120) 78.10
Implicit + Explicit | 81.93 (1246) | 84.03 (2166) | 81.51 (2350) | 82.07 (1647) | 93.21 (933) | 75.16 (380) | 77.06 (127) | 82.13

Table 3: Ablation study results showing macro-F1 scores and stopping steps for five target configurations (No Target,
Random Target, Implicit Target, Explicit Target, Implicit + Explicit) across seven datasets. We use bert-large-ner
tagger to explicit tagging. Stopping epochs are averaged over three runs and then rounded to the nearest integer.

Dataset Highlighted Implicit Hate Speech Sentence

IHC even the white nationalist movement is ran by jews.

SBIC Yo hoe is like a tick so she hunting for a blood

DYNA  tell chicks to stop dressing like street walkers

Hateval Arrest them and DEPORT THEM ALL!!!! # BuildThatWall
Toxigen all 'black people are suspected of trying to pull something
White The German men sound so sexy.

Ethos Too bad women don’t know how to kill themselves

Table 4: Visualization of token-level attention weights derived from the [CLS] token for each dataset example.
Highlighted tokens are those that the AmpleHate model considers more important than a standard BERT baseline,
in the implicit-target scenario where no explicit target token is provided.

Table 3 presents both the macro F1-scores and the
number of convergence steps across these settings.

Interestingly, our results reveal that incorporat-
ing only the implicit target yields greater improve-
ments than relying solely on explicit targets. In par-
ticular, using the implicit targets shows 3.26%p im-
provements while using the explicit targets shows
2.83%p on average, compared to fine-tuning BERT
with no signals. This finding suggests that, in the
case of implicit hate speech—where the intent is
often in latent form and not tied to named entities—
contextual representation via the [CLS] token is
particularly powerful for target-context relation
computation. Nevertheless, models leveraging ex-
plicit targets also outperform the baseline without
any target signals, confirming that entity-specific
cues add valuable information for detecting implicit
hate. Crucially, when both implicit and explicit tar-
gets are integrated, AmpleHate achieves the highest
performance across all settings.

In addition to the macro-F1 performance, we
observe the training efficiency. Including target sig-
nals generally achieves faster convergence steps
than fine-tuning vanilla BERT with no signals. On
average, using only implicit or only explicit targets

reduces the number of steps for the convergence
by approximately 20%. However, when both target
types are used together, the reduction in conver-
gence steps is more modest with approximately 3%
compared to the vanilla BERT. This small tradeoff
is caused by a substantial gain in detection perfor-
mance, achieving 6.86%p improvement.

These results suggest that while incorporating
implicit or explicit targets individually leads to
faster convergence but slight performance gains,
combining both enables AmpleHate to achieve the
best performance along with the competitive con-
vergence speed.

5.2 Comparison of Convergence Step

We compare the convergence steps of AmpleHate
with the state-of-the-art model LAHN to assess
the training efficiency and optimization stability
of our approach. Figure 4 presents the compari-
son on the Ethos dataset. Figure 4 (a) shows the
validation F1-score each training step, where the
star markers indicate the step at which each model
achieves its highest validation performance. Am-
pleHate reaches its peak F1-score at an earlier step
than LAHN, achieving comparable or better perfor-
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Figure 4: Comparison of AmpleHate and LAHN on
the Ethos datasets. (a) Validation F1-score over training
steps, with start indicating the stopping step. (b) Train-
ing loss over steps. AmpleHate converges faster and
maintains lower loss than LAHN. Appendix B provides
further details.

mance with significantly fewer training steps. Fig-
ure 4 (b) represents the loss curves over the same
training steps, where AmpleHate consistently main-
tains a lower loss throughout training. It demon-
strates that AmpleHate is more stable and effective
for optimization.

This early convergence and stable training be-
havior indicate that AmpleHate is more computa-
tionally efficient and less prone to overfitting com-
pared to LAHN. Similar patterns appear across
other datasets, with detailed results provided in Ap-
pendix B. These findings highlight the strength of
AmpleHate in delivering high performance with
rapid and stable convergence, making it a highly
efficient solution for implicit hate speech detection.

5.3 Token-level Attention with Implicit
Tokens

AmpleHate assigns the [CLS] token as a target to-
ken when no explicit target entity appears in a sen-
tence. This strategy raises a question: does [CLS]
effectively serve as an implicit focus point in such
cases? To answer this question, we examine how
strongly the [CLS] representation attends to each
token in sentences labeled as implicit hate speech.

Figure 5 visualizes token-level target signals
with [CLS] for three cases: (a) BERT, (b) Ample-
Hate, (c) the difference between them. We use Am-
pleHate trained on the combined_datasets setting
described in Section 4.4. BERT represents atten-
tion broadly, without clear focus. In contrast, Am-
pleHate places greater emphasis on the token "ger-
men". This token plays a central role in interpreting
the hateful intent of the sentence. Even without tar-
get supervision, AmpleHate identifies "germen" as

(a) BERT
0.092 0.056 - 15
[CLS] the german m n sound sexy
(b) AmpleHate
- - - -
[CLS] the german  men sound sexy

(c) Difference between BERT and AmpleHate

.

[CLS] the german men sound sexy
signals

Figure 5: Token-level target signals between the [CLS]
representation and each token in an implicit hate speech
sentence from the White dataset. (a) shows BERT’s
signals, (b) shows signals from AmpleHate trained on
combined datasets and (c) highlights the token-level
difference.

a core indicator of implicit hate, suggesting that
its target-aware attention mechanism successfully
captures subtle targets. This observation implies
that computing token-level relation with [CLS] pro-
vides sufficient signal for detecting implicit hate,
even in the absence of explicit target tokens.

Table 4 extends the analysis across all seven
datasets. In each example, we highlight tokens
where AmpleHate assigns significantly higher at-
tention than BERT. These implicit targets often in-
clude stereotype triggers. The results demonstrate
that AmpleHate consistently prioritizes tokens hu-
mans are also likely to attend to when interpreting
implicit hate.

This analysis confirms that using [CLS] as the
target token does not disrupt the model’s ability.
Instead, it enables AmpleHate to maintain robust
attention over hate-relevant context, even without
explicit target supervision.

6 Conclusion

We introduced AmpleHate, an approach that mir-
rors human reasoning for implicit hate detection by
focusing on target-context interaction, in contrast
to conventional contrastive learning approaches.
AmpleHate first identifies explicit and implicit tar-
gets, then computes attention-based relation vec-
tors, and finally injects the signals into the out-
put embeddings. This targeted injection amplifies
target-context relations, which specifically contain
relevant signals for implicit hate, suppressing noise.
AmpleHate achieves the state-of-the-art F1 scores
on seven implicit hate speech datasets both in in-
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dividual and combined dataset train settings. This
empirically shows the generalizability of Ample-
Hate. Furthermore, AmpleHate presents faster con-
vergence than the contrastive-learning baselines.
While AmpleHate depends on an external NER
tagger to locate explicit targets, we aim to explore
richer target detection and relation injection strate-
gies as well as applications to other tasks that
hinge on subtle target-context reasoning. Overall,
AmpleHate demonstrates that encoding and inject-
ing target-context relations can outperform con-
ventional contrastive learning methods, offering a
more robust and efficient approach for implicit hate
speech detection.

Limitations

AmpleHate relies on the accuracy of the external
NER tagger for explicit target identification; er-
rors or insufficient entity recognition may limit per-
formance, especially for context-specific or newly
emerging hate expressions with latent implications.
In addition, the approach of AmpleHate on mod-
eling implicit target centers on the [CLS] token,
which may not always capture the full range of im-
plicit cues, particularly in longer or more complex
sentences.

Moreover, while AmpleHate demonstrates
strong performance in both macro-F1 scores and
the convergence rate, there remains the possibility
that AmpleHate may not perform the best on forms
of implicit hate which are not well represented in
current benchmarks or in new domains.

We plan to address these limitations in future
work by developing more adaptive and context-
aware target strategies and extending our approach
to tasks that involve more complex or subtle forms
of latent hate.

Ethical Consideration

Minimizing Annotator Harm Conventional
hate speech detection approaches rely on manual
annotations, which can expose annotators to dis-
tressing or harmful sentences. AmpleHate reduces
this exposure by leveraging implicit contextual sig-
nals, thus lowering the dependence on explicit and
manual labels. This contributes to a more ethical
data collection and annotation pipeline by minimiz-
ing the mental burden on human annotators (Vid-
gen et al., 2019).

Contextual Awareness AmpleHate models ex-
plicit and implicit target information, enabling it

to recognize diverse and nuanced forms of hate
speech. By capturing latent patterns through its de-
sign, AmpleHate supports more context-sensitivity
and fair detection, reducing the risk of overfitting to
majority groups or missing contextually-dependent
harms.

Risks of Potential Misuse AmpleHate could be
misused—such as by adversarial users attempting to
bypass detection or abuse the method to generate
more sophisticated hate speech. The deployment of
AmpleHate should be accompanied by careful mon-
itoring and critical assessment of model outputs to
address these risks.
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A Data Statistic

We evaluate AmpleHate on seven publicly avail-
able hate speech datasets covering both explicit and
implicit targets. Table 5 summarizes the number
of examples in each train, validation, and test split.
Note that the combined corpus’s test set (marked
with 1) is held out from our main evaluations.

Dataset  Train set Valid set Test set
IHC 14,932 1,867 1,867
SBIC 35,504 4,673 4,698

DYNA 33,004 4,125 4,126

Hateval 10,384 1,298 1,298

Toxigen 5,420 678 678
White 10,668 1,334 1,334
Ethos 798 100 100

Combined 110,710 14,075 14,1011

Table 5: The statistical information of datasets in our
experiments. The test split of the combined dataset (de-
noted with 1) is excluded from AmpleHate evaluations.

B Convergence Efficiency

We compare the convergence behavior of Am-
pleHate and LAHN, a state-of-the-art contrastive
learning baseline across all datasets, presented in
Table 6. Here, convergence step refers to the vali-
dation step at which early stopping selects the best
model. Lower convergence steps indicate faster
model training and more efficient progression to-
ward optimal performance.

Acrross six out of seven benchmarks, Ample-
Hate consistently reaches peak performance with
substantially lower training steps than LAHN. For
instance, AmpleHate converges more than three
times faster on the White dataset, and achieves ap-
proximately x 1.5 speedup for the other datasets.
Notably, AmpleHate not only converges faster
but also achieves higher macro-F1 scores than
LAHN reported in Table 1, demonstrating that its
efficiency does not degrade its performance. The
only exception is Hateval, where LAHN converges
marginally faster. However, as shown in Table 1
AmpleHate outperforms LAHN by approximately
2%p in macro-F1, confirming that this tradeoff is
reasonable.

The primary factor of AmpleHate’s rapid con-
vergence is its direct injection of target-context
relational signals. By amplifying the most relevant
cues of implicit hate by using targets, AmpleHate

enables the model to focus on the critical features
earlier in training, reducing unnecessary parameter
updated and accelerating optimization.

Overall, these findings highlight that Ample-
Hate is both accurate as well as highly efficient,
requiring fewer training steps and converging more
rapidly than contrastive learning methods. This
strengthens AmpleHate’s suitability for implicit
hate speech detection.

C Statistical Significance Analysis

We evaluate the performance of AmpleHate across
three random seeds on eight implicit hate speech
detection datasets. Table 7 reports the results in-
cluding the average and standard deviation for each
dataset. We compute a 95% confidence interval (CI)
using the ¢-distribution which is widely used to an-
alyze statistical significance (Keith and O’Connor,
2018; Bestgen, 2022; Gladkoff et al., 2023; Bail-
largeon and Lamontagne, 2024; Li et al., 2024).
Since we conducted 3 runs in total, our degrees of
freedom (df) is 2 and the interval is calculated as
follows:

S S
R L
Jn T (0.025,2) S

where 7 is the average score, s is the standard devi-
ation, n is the number of runs, and tg g25 2 ~ 4.303
is the t-statistics for 95% confidence with two de-
grees of freedom.

The results demonstrate that AmpleHate
achieves highly consistent performance across mul-
tiple runs. For instance, the CI for SBIC and IHC
is [83.71, 84.35] and [81.10, 82.78], respectively.
These findings underscore the reliability and ro-
bustness of AmpleHate.

Cl=z4+ t(%,df) .
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Datasets
Models IHC SBIC DYNA Hateval Toxigen White
LAHN 1683 3969 2962 1358 1592 1286
AmpleHate ours 980 2250 2100 1646 933 380
Speedup = gt | x1.72 x1.76  x141 x0.83 x1.71 x3.38

Table 6: Convergence results of AmpleHate and LAHN. For each dataset, we report the early stopping step at which
the best validation performance is achieved, as well as the relative speedup (x) of AmpleHate over LAHN. A higher

speedup indicates that AmpleHate converges in fewer steps, improving the training efficiency.

Dataset | Runl Run2 Run3 | AVG. & STD. CI

IHC 82.31 81.63 81.87 | 81.94 +0.34 | [81.10, 82.78]
SBIC 84.05 84.15 8390 | 84.03 £0.13 | [83.71, 84.35]
DYNA 81.44 81.77 8132 | 81.51 £0.23 | [80.94, 82.08]
Hateval | 82.14 82.02 82.04 | 82.07 £0.06 | [81.92, 82.22]
Toxigen | 93.83 92.60 93.21 | 93.21 £ 0.62 | [91.67, 94.75]
White 74.62 75.88 75.00 | 75.17 £ 0.65 | [73.56, 76.78]
Ethos 79.14 7729 74776 | 77.06 =220 | [71.59, 82.53]
AVG. 82.50 82.19 81.73 | 82.14 +£0.39 | [81.17, 83.11]

Table 7: Experimental results of AmpleHate for each dataset. Each row reports the results for a given dataset,
including all three runs, the average (AVG.), standard deviation (STD.), and the 95% confidence interval (CI) using

the t-distribution.
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