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Abstract

The rapid spread of information via social me-
dia has made text-based fake news detection
critically important due to its societal impact.
This paper presents a novel detection method
called Dynamic Representation and Ensemble
Selection (DRES) for identifying fake news
based solely on text. DRES leverages instance
hardness measures to estimate the classification
difficulty for each news article across multiple
textual feature representations. By dynamically
selecting the textual representation and the
most competent ensemble of classifiers for each
instance, DRES significantly enhances predic-
tion accuracy. Extensive experiments show
that DRES achieves notable improvements over
state-of-the-art methods, confirming the effec-
tiveness of representation selection based on
instance hardness and dynamic ensemble se-
lection in boosting performance. Codes and
data are available at: https://github.com/
FFarhangian/FakeNewsDetection_DRES.

1 Introduction

Detecting fake news is an increasingly important
task in today’s world as false news spreads signifi-
cantly faster and deeper than true news (Vosoughi
et al., 2018). This problem is further exacerbated
by generative Al, which amplifies misinformation
by creating highly persuasive but fabricated con-
tent (Loth et al., 2024). Traditional text-based mod-
els frequently struggle with context sensitivity and
generalization, especially when processing ambigu-
ous text or domain-shifted inputs (Wang, 2017;
Reddy et al., 2020). Addressing these issues is es-
sential to support the credibility of information in
online platforms and public communication.
While large language models (LLMs) such as
Mistral (Jiang et al., 2023) have improved perfor-
mance in many text classification tasks, relying on
a single feature representation may be insufficient
for fake news detection. Different representations
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Figure 1: Instance hardness heat map for a few instances
taken from the Liar dataset.

capture complementary aspects of the input, such
as surface-level statistics or contextual semantics.
Recent work (Farhangian et al., 2024) shows that
using multiple representations, even with the same
classifier, can reduce misclassification errors by ex-
ploiting this diversity. However, attempts to naively
combine all representations (e.g., (Pereira et al.,
2025)) often yield suboptimal results due to in-
creased noise failing to account for input-specific
representation effectiveness.

z1 1 and z, are fake oy

hardness(z1, BERT) = 0.12
hardness(z, Mistral) = 0.88

hardness(zy, BERT) = 0.74
hardness(zg, Mistral) = 0.08
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Figure 2: Overview of DRES that dynamically selects
the most suitable text representation based on the test-
time instance hardness.

In this paper, we argue that robust detection re-
quires dynamic selection of both representations
and classifiers based on input characteristics. We
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formalize this via instance hardness (Smith et al.,
2014), which measures how likely a sample is to
be misclassified by any learning algorithm under a
given representation. Figure 1 illustrates this, show-
ing hardness scores for Liar dataset (Wang, 2017)
instances across three representations. A news item
may have low hardness in ELMO’s space but high
hardness in Mistral’s, with the reverse holding for
other inputs. Thus, naively combining all represen-
tations or classifiers may hurt performance.

To bridge this gap, we propose a two-stage
framework called DRES (Dynamic Representa-
tion and Ensemble Selection). An overview is
shown in Figure 2. First, given an input, DRES
estimates instance hardness across multiple text
representations using a test-time variant of the k-
Disagreeing Neighbors (kDN) metric (Smith et al.,
2014). Based on this estimate, the representation
with the lowest hardness is selected.

However, even within the chosen representation,
classifiers trained on that space can still exhibit
distinct local error patterns, especially for harder
instances. To address this, DRES applies dynamic
ensemble selection (Cruz et al., 2018) as a second
stage, selecting only the most competent classi-
fiers in the neighborhood of the query rather than
averaging over the entire pool. This ensures that
predictions are adapted to the local region of the
input, improving robustness on difficult cases. The
final prediction is obtained by majority voting over
this selected subset. While prior work (Cook et al.,
2025) used hardness metrics to guide training or
data sampling, we extend their use to test time,
showing that instance hardness can also support
inference-time adaptation.

Our approach introduces a novel synergy be-
tween representation selection and classifier spe-
cialization. By first selecting the representation
with the lowest estimated instance hardness, the
framework maps the problem to a space where clas-
sifiers are more likely to agree. A second stage then
refines this by dynamically selecting the most lo-
cally competent classifiers in that space per test in-
stance. To the best of our knowledge, this is the first
work to apply dynamic representation and ensem-
ble selection jointly, and to repurpose complexity-
based metrics to guide inference-time decisions.

The contributions of this paper are as follows:
1) We propose a dynamic multi-view ensemble
framework for fake news detection that adaptively
selects both the most effective text representation
and the most competent classifiers for each in-

stance. 2) We introduce a novel test-time estima-
tion approach for instance hardness using a super-
vised metric (kDN) to guide representation selec-
tion decisions during inference. 3) We empirically
demonstrate that combining diverse text represen-
tations with dynamic classifier selection leads to
consistent performance improvements across mul-
tiple fake news datasets while having plenty of
potential for future improvements.

2 Related work

Fake news detection has been approached from
diverse perspectives, including image-based analy-
sis (Qi et al., 2019) and social-context methods (i.e.,
modeling network structure and propagation pat-
terns) with geometric deep learning (Monti et al.,
2019). As this work is dedicated to textual content,
our review focuses on text-only models and hybrid
text-augmented methods.
Text-Only Fake News Detection. The earliest
text-only methods relied on shallow lexical and
stylometric features such as TF-IDF representa-
tions (Patwa et al., 2021), n-grams, punctuation pat-
terns, and readability metrics (Agudelo et al., 2018)
fed into classifiers like Logistic Regression, SVM,
or Random Forest (Shu et al., 2017). Pérez-Rosas
et al. (2018) expanded on these by adding psy-
cholinguistic and rhetorical cues to capture decep-
tive language, while Potthast et al. (2018) showed
that pure stylometric features alone can separate
hyperpartisan and fake news from genuine articles.
Later work moved to dense representations.
Word-embedding—based models include BiLSTM
over GloVe (Sastrawan et al., 2022), and CNNs
on Word2Vec (Girgis et al., 2018). These were
followed by transformer models like FakeBERT,
which pairs BERT embeddings with 1D-CNN fil-
ters (Kaliyar et al., 2021), ScrutNet’s Bi-LSTM +
CNN fusion (Verma et al., 2025), and by attention-
driven architectures such as 3HAN, a three-level hi-
erarchical network that attends separately to words,
sentences, and headlines for interpretable classi-
fication (Singhania et al., 2017). Finally, end-to-
end transformer classifiers (e.g., BERT, LLaMA)
now serve as strong baselines (Liu and Chen, 2023;
Farhangian et al., 2024). These unimodal ap-
proaches all use fixed representations or model
combinations and cannot adjust to per-instance vari-
ations in text complexity, making them vulnerable
to domain shifts and adversarial inputs.
Multiple Text Representation Techniques. Some
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approaches combine different textual representa-
tions of the same input to enrich the feature space.
Essa et al. (2023) merge several layers of BERT
embeddings and use the result in a LightGBM clas-
sifier, while Gautam et al. (2021) integrate XL.Net
embeddings with LDA topics to capture both con-
textual and thematic cues. MisRoBARTa (Truica
and Apostol, 2022) fuses BART and RoBERTa
encodings into an ensemble architecture. MVAE
(Pereira et al., 2025) aligns heterogeneous features
into a shared latent space with Multi-View Auto
Encoder.

Nevertheless, these methods fuse all represen-
tations uniformly, without accounting for input-
specific suitability. This can lead to inefficiencies
and misclassification, as shown in (Pereira et al.,
2025), where joint representations from MVAE re-
duce performance on certain instances. Moreover,
Peng et al. (2024) further highlight that news sam-
ples vary widely in structure, supporting the need
for context-aware embedding selection. In contrast,
the proposed DRES works by first estimating the
hardness of each instance and dynamically select-
ing the most suitable representation before apply-
ing ensemble selection within that space. Thus,
the representation and classifiers are adapted to the
specific characteristics of each input.

Hybrid text-augmented methods. To harness
richer signals, some methods integrate metadata
(e.g., publication source, timestamps, user profiles)
or fuse multiple data modalities. Social-context
models encode user engagement and propaga-
tion patterns via graph neural networks (Shu
et al., 2019). Multimodal frameworks process text
alongside images using attention or contrastive
learning—SpotFake aligns text and image embed-
dings (Singhal et al., 2019), while MCOT applies
optimal transport for cross-modal fusion (Shen
et al., 2024). Hybrid systems further incorporate
temporal or social features into neural classifiers
(Ruchansky et al., 2017) to improve classification.

Multimodal approaches that integrate textual and
social context features show consistent improve-
ments in fake news detection accuracy (Huang
et al., 2019), with late fusion methods combining
text, image, and social signals providing further
gains (Nguyen et al., 2020). DANES (Truicd et al.,
2024) combines RNN-based text encoding with
RNN-CNN social context encoding, concatenating
both into a unified embedding for final classifica-
tion via a dense layer. Metadata and multimodal
inputs are often dataset-specific and may be miss-

ing or noisy in real-world settings, risking biased
predictions and limiting generalization beyond cu-
rated benchmarks.

Dynamic Ensemble Selection. Ensemble meth-
ods improve performance by combining multiple
base learners to reduce bias and variance com-
pared to any single model (Dietterich, 2000). Static
ensembles use fixed strategies such as majority
voting (Kittler et al., 1998) or stacked generaliza-
tion (Wolpert, 1992). Dynamic ensemble selection
(DES) instead adapts to each query by (1) defin-
ing a Region of Competence (RoC) around the
sample (e.g., via clustering or similarity search),
(2) measuring each classifier’s competence within
that RoC, and (3) combining the outputs of the
most competent models. DES techniques mainly
differ in the heuristics used to estimate classi-
fier competence within the Region of Compe-
tence. KNORA-U/E use local accuracy oracles (Ko
et al., 2008), META-DES predicts competence via
a meta-learner trained on multiple meta-features
(Cruz et al., 2015), DES-P selects classifiers that
perform locally better than a random classifier
(Woloszynski et al., 2012), and recent methods
leverage graph neural networks (Souza et al., 2024)
or fuzzy neural networks (Davtalab et al., 2024) to
model more flexible competence patterns.

The key assumption in DES is that a classifier
that succeeds on samples similar to the query will
also succeed on the query itself (Woods et al.,
1997). By focusing on these local competence es-
timates, DES handles hard cases, such as samples
near decision boundaries, more effectively than
static models (Cruz et al., 2018). However, to the
best of our knowledge, DES work assumes a sin-
gle feature space. DRES addresses this gap with a
two-stage framework that first picks the best repre-
sentation per sample based on hardness measures,
then applies competence estimation heuristics and
classifier selection from DES techniques within the
selected representation space.

3 Dynamic Representation and Ensemble
Selection (DRES)

DRES tackles the limitations of fixed fusion and
static ensembles by adapting both representation
and classifier selection to each input. During train-
ing, we compute an instance hardness profile for
each sample under every text representation. At
inference, we introduce a novel test-time instance
hardness estimation by relating a new article to
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Figure 3: Dynamic Representation and Ensemble Selection (DRES) generalization phase. x4 is an unknown sample,
r; =¢; (x4) is the text representation for x,, H is the instance hardness matrix, r, is the best text representation
associated with the lowest hardness score, C. is a pool of classifiers trained using the representation R.,., and
C’ C C., is the most competent subset of classifiers to predict the class of x,.

its neighbors’ training-time hardness to choose the
easiest representation, then dynamically select the
most competent classifiers in that space to make
the final decision.

3.1 Training Phase

In the training phase, we embed the training set
T = {x1,X2, ..., X7} into n representation ma-
trices R = {R1,Ro, ..., R, } using text represen-
tation algorithms ¢ = {¢1, ¢2,..., ¢, }. That is,
R; = ¢;(T), and each R; € RI71*% has its own
dimensionality d; (e.g., 768 for BERT and 4096 for
Mistral). Afterward, two processes occur: instance
hardness calculation and classifier training.
Instance Hardness Calculation. The instance
hardness (IH) of each sample in T is calculated
to compose H € RI71x7  Each element hi; € H
denotes the hardness of instance x; when encoded
using the R; representation. Among the instance
hardness metrics, we selected the kDN metric
due to its high correlation with classification er-
rors (Smith et al., 2014; Paiva et al., 2022). Equa-
tion 1 shows how h;; is calculated.

hz’j = kDN(Xi, Rj, ]C)

_ NG, y1) € Ni(xis Ry) = yi # yi}| (1)
k

where, NV (x;; R;) denotes the set of the k-nearest
neighbors of x; in the feature space defined by the
representation R;. In other words, kDN counts the
number of neighboring instances whose labels dif-
fer from that of x;. Thus, a higher h value indicates
that the instance resides in a region of class overlap
and is, therefore, difficult to classify correctly.

Classifier Training. For each representation R; €
R, we generate a set C; = {c¢j1,¢j2,...,Cjm} of
m classifiers, each trained with a different learning
algorithm. This results in n pool of classifiers C =

{C1,Cs,...,C,}, where each C; corresponds to
models trained on the same representation R ;. In
total, the framework produces n x m classifiers
spanning all combinations of representation and
learning algorithms.

3.2 Generalization Phase

Given a new news article as input (x,), the gener-
alization phase consists of three main steps (Fig-
ure 3):

Text Representation. x,, is transformed into n dif-
ferent representations, denoted as {ry,rs,...,r,},
where r; = ¢;(x,). Our proposed DRES frame-
work is agnostic regarding the number and type of
text representations used.

Representation Selection. We estimate the diffi-
culty of predicting the sample query x, across dif-
ferent feature spaces ({ry,rsa,...,r,}, as shown
in Figure 3). The goal is to determine how hard it
is to predict x, based on each representation and
use this information to guide the selection of the
optimal feature space. The central hypothesis is
that focusing on the classifiers trained using the
easiest representation will lead to better prediction
outcomes for x,.

Since kDN is a supervised metric and we lack ac-
cess to labels during generalization, we propose an
unsupervised estimation of the instance hardness
score for the new query sample, called fest-time in-
stance hardness. It works as follows: for each rep-
resentation r;, we identify its k-nearest neighbors
in its corresponding training data embeddings ma-
trix R; using the k-Nearest Neighbors algorithm.
We then estimate its test-time instance hardness
score ﬁj by averaging the precomputed instance
hardness scores h;; € H of these neighbors:

k

A 1

hj = % E hyj )
=1
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where hy; is the precomputed hardness score of
the [-th nearest neighbor in the representation
R; (Eq. 1). This process is shown in the upper
part of Figure 4. As an example, for the represen-
tation 1, we first select the seven neighbors of x,
in 7 (as shown in the leftmost figure), and their
instance values are retrieved from the matrix H
(these values are shown close to each instance). Af-
ter, the hardness of x, is calculated using Eq. 2; so,
hi = 0.26. The same procedure is performed for
all representations.

_ Test-time instance hardness to select the easiest representation

\
|
|
|
|
|
|

\ 7/
E U Ensemble selection —

o

Figure 4: Test-time instance hardness calculation and
Ensemble selection. The input text x, and its neighbors
in three different representation spaces. Instances from
two classes (blue and red) are shown associated with

their instance hardness values extracted from H. h;
represents the instance hardness of x,; under represen-
tation R ;. Cj is the pool of classifiers trained with the
same representation and C’ C (' is the most competent
subset of classifiers to classify x,.

Collecting these estimated hardness scores pro-
duces a vector h = {ill, ho, . .. ,iln}, where each
element corresponds to the test-time instance hard-
ness for a specific text representation. Then, the
text representation with the lowest estimated in-
stance hardness score (Eq. 3) is selected. When
multiple representations share the same minimal
hardness score ﬁj, we select the one with the lowest
average instance hardness across the entire training
set.

r, = argmin izj. 3)
r;

In the example (Figure 4), representation 1 is
claimed as the best feature space to classify x,
since it lies in a region where its neighbors are
more prone to be correctly classified given their
kDN. So, r, is defined as representation 1 (ry).

Ensemble Selection. After the easiest representa-
tion r is chosen for query x,, the method proceeds
to select classifiers from the pool C, trained on
r.. A dynamic selection mechanism identifies the
subset of C'y most competent for x,, and the final
prediction is produced via majority vote.

Thus, as shown in the lower part of Figure 4,
C1 C Cis selected since its classifiers were trained
on the text representation previously chosen (rep-
resentation 1). Given that not all classifiers ¢ € C4
are competent to classify x,, only a subset of clas-
sifiers C' C (] is selected. This subset selection
is performed by dynamic ensemble selection meth-
ods (Cruz et al., 2018), which have the advantage
of addressing the classification task in a customized
way since the subset C’ depends on the query in-
stance under evaluation. The proposed framework
is flexible and can incorporate any dynamic selec-
tion algorithms, such as META-DES (Cruz et al.,
2015) or KNORA-E (Ko et al., 2008). The predic-
tions of the selected ensemble (C”) are then com-
bined using the Majority Vote rule to produce the
final classification.

4 Experimental Setting

Datasets. We evaluate DRES on three standard
fake news detection benchmarks: (1) Liar (Wang,
2017) (12.8K statement collected from PolitiFact,
6 truthfulness categories), (2) COVID (Patwa et al.,
2021) (10.7K fact-checked tweets about the pan-
demic), and (3) GM (MclIntire, 2017) (14.1K news
articles from reputable sources like the New York
Times and Wall Street Journal). These datasets rep-
resent diverse fake news scenarios, from political
claims to health misinformation. Detailed informa-
tion on these datasets can be found in Table 1.

Models. We employ a comprehensive set of m =
10 classification algorithms spanning traditional
machine learning (Support Vector Machines, Logis-
tic Regression, K-Nearest Neighbors, Naive Bayes,
Multi-layer Perceptron, Random Forest, AdaBoost,
XGBoost) and deep learning approaches (Convo-
lutional Neural Networks, Bidirectional LSTMs).
These are combined with n = 14 feature repre-
sentations, including context-independent models
(Word2Vec (Mikolov et al., 2013), GloVe (Penning-
ton et al., 2014), FastText (Bojanowski et al., 2017))
and context-dependent transformers (BERT (De-
vlin et al., 2018), DistilBERT (Sanh et al., 2019),
ALBERT (Lan et al., 2019), RoBERTa (Liu et al.,
2019), BART (Lewis et al., 2019), ELECTRA
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Table 1: Main characteristics of the dataset used in this study.

Dataset Domain Media Fact-checking Size No.Class Class distribution

Liar (Wang, 2017) Politics Mainstream media  Editors & journalists 12836 6 (1050, 2511, 2108, 2638, 2466, 2063)
George MclIntire (Mclntire, 2017)  Business,Technology, etc. Mainstream media  journalists 11000 2 (3151, 3159)

Covid (Patwa et al., 2021) Covid-19 & Health Twitter Fact-checking websites 10700 2 (5100, 5600)

(Clark et al., 2020), XLNet (Yang et al., 2019),
Falcon (Almazrouei et al., 2023), ELMo (Peters
et al., 2018), LLaMA3 (Grattafiori et al., 2024),
and Mistral (Jiang et al., 2023)). Detailed infor-
mation on these representations can be found in
Appendix A.

We use 5-fold cross-validation with hyperparam-
eter tuning (see Appendices B and C), considering
F1 scores to account for class imbalance.
Baselines. We evaluate DRES against three static
ensemble baselines representing distinct static se-
lection approaches in order to test our hypothesis
that dynamic selection of both representations and
classifiers outperforms static ensemble strategies:

* Group A: 10 pools of the same classifier type
across all feature representations (10 single
classifiers x 14 representations).

* Group B: 14 pools of diverse classifiers per
text representation (10 classifiers x 14 single
representation)

* Group C: Full combination of all 140 classi-
fiers (10 classifiers x 14 representations).

The classifiers in each group are combined using
stacked generalization (Wolpert, 1992) with logis-
tic regression as the meta-classifier, as in (Cruz
et al., 2022).

In the DRES method, instance hardness scores
were calculated using kNN (k = 5) to define the re-
gion of competence (RoC), i.e., the local neighbor-
hood of the test instance in the validation dataset. A
detailed analysis of different k-values is provided
in Appendix D. We adopted three dynamic ensem-
ble selection techniques, KNORA-E, DES-P, and
META-DES, which were adapted from the DESIib
library (Cruz et al., 2020) to support multiple text
representations. These methods were chosen be-
cause they rely on neighborhood-based competence
estimation, aligning with our test-time instance
hardness approach.

5 Results

5.1 Comparison with static ensemble

Table 2 reports DRES’s performance against the
baseline Groups A, B, and C using macro F1. In
this table, only the best results for Groups A and

B are reported; the complete results and additional
metrics are in Appendices E and F.

Table 2: Fl-score per dataset for DRES and baseline
models. The absolute best results per dataset are in bold,
and the top methods that are statistically equivalent are
marked with an asterisk.

Dataset

Method Liar COVID GM
MLP (Best Group A) 0.250 (0.002)  0.950 (0.002)  0.950 (0.003)
Mistral (Best Group B) ~ 0.260 (0.002)  0.943 (0.003)  0.951 (0.002)
Group C 0.243 (0.003)  0.941 (0.003)  0.950 (0.002)
DRES (KNORA-E) 0.371 (0.003)  0.973 (0.002)* 0.986 (0.002)*
DRES (META-DES) 0.367 (0.002)  0.972 (0.002)*  0.980 (0.005)
DRES (DES-P) 0.385 (0.003)*  0.972 (0.003)*  0.984 (0.002)*

DRES outperforms static strategies by a clear
margin for all datasets, independent of the dy-
namic selection classifier used, as statistically cor-
roborated by the repeated measures ANOVA with
Tukey’s post-hoc test with a 95% confidence inter-
val. The tests for all datasets revealed statistically
significant differences (p-value < 0.0001), demon-
strating the superiority of our method. In Table 2,
the methods with the absolute best results are high-
lighted in bold, and the top methods that are statis-
tically equivalent are marked with an asterisk for
easier identification. For the Liar dataset, DRES
with DES-P presented the best performance, while
for the COVID dataset, the performance differences
among DRES methods (KNORA-E, META-DES,
and DES-P) were not statistically significant. In
turn, DRES with KNORA-E and DES-P presented
better results for the GM dataset, with no signifi-
cant difference between them.

Group B, a homogeneous ensemble that uses
only one text representation for all classifiers, fails
when the representation is unsuitable for specific
instances. Group A, limited to a single classifier
learning algorithm, cannot adapt across heteroge-
neous views. Even combining all models and rep-
resentations (Group C) does not overcome these
fundamental shortcomings, yielding consistently
lower scores. DRES addresses these issues via a
dynamic two-stage selection. First, it selects the
most appropriate feature representation (i.e., the
one deemed easiest for classification for the given
instance), and then it dynamically identifies locally
competent classifiers trained over the selected text
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representation. This adaptive mechanism is essen-
tial for robust performance in complex fake news
detection tasks.

5.2 Comparison with state-of-the-art models

Table 3: Liar dataset: DRES versus state-of-the-art
methods. The best results are in bold.

Method F1-Score
LSTM (GloVe) (Rashkin et al., 2017) 0.210
Hybrid CNN (Word2vec) (Wang, 2017) 0.274
Logistic Regression (GloVe) (Alhindi et al., 2018) 0.250
CNN (Word2Vec) (Girgis et al., 2018) 0.270
MMEFD (LSTM + Word2vec) (Karimi et al., 2018) 0.290
Multi-view autoencoder (Pereira et al., 2025) 0.253
DRES (KNORA-E) 0.371
DRES (META-DES) 0.367
DRES (DES-P) 0.385

Table 4: COVID dataset: DRES versus state-of-the-art
methods. The best results are in bold.

Method F1-Score
BiGRU-Attention (BERT) (Karnyoto et al., 2022) 0.919
SVM (TFIDF) (Patwa et al., 2021) 0.933
BERT (End-to-End) (Liu and Chen, 2023) 0.944
DRES (KNORA-E) 0.973
DRES (META-DES) 0.972
DRES (DES-P) 0.972

Table 5: GM dataset: DRES versus state-of-the-art meth-
ods. The best results are in bold.

Method F1-Score
HDSF (Word2vec) (Karimi and Tang, 2019) 0.822
XGBoost (Word2vec) (Reddy et al., 2020) 0.860
XGBoost (GloVe) (Bali et al., 2019) 0.873
Naive Bayes (TFIDF) (Agudelo et al., 2018) 0.881
Ensemble Learning (Elsaeed et al., 2021) 0.946
BiLSTM (GloVe) (Sastrawan et al., 2022) 0.948
DRES (KNORA-E) 0.986
DRES (META-DES) 0.980
DRES (DES-P) 0.984

Tables 3, 4, and 5 compare DRES with state-
of-the-art models for the Liar, COVID, and GM
datasets, respectively, focusing on text-based fake
news detection. DRES achieves the highest macro
F1 score on the LIAR dataset (Table 3) using only
textual features. It is important to note that the
Liar dataset contains additional metadata about the
speaker’s profile and justification in addition to the
news statements that were not used in this analysis,
as these auxiliary features are often unavailable or
inconsistent across datasets.

For the COVID (Table 4) and GM (Table 5)
datasets, the proposed DRES model achieved the
top-ranking with an F1-score of 0.971 (with DES-
P) and 0.982 (with KNORA-E), respectively. These

results highlight our model’s capability in another
domain (medical information), where reliability is
of the highest importance. In all three scenarios,
DRES obtained better results than SOTA, regard-
less of the selected DES algorithm used. Addi-
tional experiments with fine-tuned large LLMs are
reported in Appendix G, confirming that DRES re-
mains competitive even against stronger contextual
baselines.

5.3 Ablation Study

In this section, we evaluate the contribution of
view selection and classifier selection phases within
the DRES framework by comparing three variants:
(i) only view selection and majority voting over
classifiers, (ii) only classifier selection on a fixed
view (Mistral), and (iii) the DRES system (Table 6).

The proposed dynamic view selection scheme
alone significantly improves the baseline Group
C, with gains of +10.2, +1.4, and +2.1 percent-
age points on the Liar, Covid, and GM datasets,
respectively. These improvements show that dy-
namically selecting representations helps address
textual ambiguity, particularly for the liar dataset (6
classes). Moreover, when combined with KNORA-
E’s dynamic classifier selection, DRES consistently
achieves further improvements across all datasets.
This improvement is more evident for the Liar
dataset (+5.6 percentage points), which can be ex-
plained by the fact that this is a harder dataset (full
hardness heatmap for all datasets are presented in
Appendix J). These results highlight the effective-
ness of a two-stage selection approach, where dy-
namic view and classifier selection work together
to improve overall performance, particularly in the
presence of residual ambiguity (i.e., classification
uncertainty that persists after representation selec-
tion due to overlap).

The last two lines of Table 6 show the Oracle
results for i) the selection of the best representa-
tion and ii) the selection of both best representation
and best classifier per new instance. The Oracle
represents a theoretical upper bound since it al-
ways selects the best representation and classifier
per query instance. First, perfect representation
selection could lead to a +58.9 percentage points
improvement over the baseline on Liar, pointing to
significant room for improvement in representation
selection. Second, achieving nearly perfect accu-
racy with complete Oracle settings (99.5-100%)
validates DRES’s architecture when both phases
work optimally. Hence, the gap with the Oracle
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Table 6: Impact of DRES components. Blue values show improvements (in percentage points, pp) over the baseline
(Group C). Oracle configurations (bottom) represent the theoretical upper bounds.

Method Liar COVID GM

Group C (no selection) 0.243 0.941 0.950

Dynamic Ensemble selection only 0299 (+5.6 pp)  0.948(+0.7pp) 0.963 (+1.3 pp)
Representation selection only 0.345(+102pp) 0.955(+1.4pp) 0.971(+2.1 pp)
DRES (KNORA-E) 0.371(+12.8 pp)  0.961(+2.0pp) 0.982(+3.2 pp)
DRES + Oracle (representation) 0.832 0.996 0.999

DRES + Oracle (representation + classifier) 0.995 0.999 1.000

ELMO KNN
ELECTRA Falcon

ALBERT

BERT RoBERTa

— Uar
covio

GM

Glove

NB BiLSTM

AdaBoost,

LR XGBoost

— Liar
covip RF
— GM

Figure 5: Frequency of selected views (left) and classifiers (right) for each dataset using the KNORA-E dynamic

ensemble selection method.

suggests that better instance hardness estimators
should be investigated in order to improve the rep-
resentation selection stage.

5.4 Selection Analysis

DRES framework’s instance-specific selection of
classifier-view pairs is analyzed in Figure 5 through
complementary radar plots showing i) representa-
tion selection (left) and 11) classifier selection fre-
quencies (right) across datasets, using KNORA-E
for dynamic ensemble selection. The results reveal
significant diversity among the chosen views and
classifiers. While significant diversity in selected
combinations confirms the value of the multi-stage
dynamic selection approach, the underutilization
of specific components may suggest they could be
pruned without affecting overall performance.

5.5 Instance hardness analysis

We investigate how classification difficulty varies
across representations by analyzing instance-level
hardness scores on the GM dataset. Figure 6 shows
the range of hardness scores across views for each
instance, computed as the difference between the
maximum and minimum values. Over 50% of in-

Frequency

LH

00 01 02 03 04 05 06 07 08
Range (Max - Min Hardness)

Figure 6: Distribution of the range (max-min) instance
hardness computed for the GM dataset.

stances show a range above 0.5 and 25% exceed
0.7, indicating substantial disagreement between
representations. Figure 7 further confirms that this
variation is widespread and not limited to a few
outliers. These findings highlight the limitations
of relying on a single representation or a fixed set,
as they may perform inconsistently across different
inputs. Our results reinforce the motivation for a
dynamic selection strategy based on test-time hard-
ness estimation. Full results, including standard
deviation and coefficient of variation analyses, as
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Figure 7: Cumulative distribution of the difference be-
tween maximum and minimum instance hardness values
for the GM dataset.

well as figures for the Liar and COVID datasets,
are provided in Appendix I.

6 Conclusion

In this paper, we introduced DRES, a fake news
detection model that dynamically selects the most
suitable feature representations and classifier en-
sembles for each input text by leveraging instance
hardness analysis and dynamic classifier selec-
tion. We evaluated our approach on three diverse
datasets. We found that it outperformed state-of-
the-art methods and baseline models, especially
when only textual information was considered,
which is the most prevalent and accessible form
of information in fake news detection. In addition,
several ablation studies demonstrate that one must
consider a dynamic system in both view and clas-
sifier selection in order to obtain higher accuracy.
Future work will involve adapting DRES to inte-
grate multiple information sources, such as network
propagation and user behavior data, as well as in-
vestigating new mechanisms for test-time hardness
calculation.

7 Limitations

While DRES advances text-based fake news detec-
tion through dynamic representation and classifier
selection, three key limitations merit discussion.
First, our evaluation focuses on English datasets
(Liar, COVID, GM), which limits insights into low-
resource languages like Urdu or Arabic, which pose
unique challenges (Harris et al., 2025; Albtoush
et al., 2025). Furthermore, we did not test DRES
on synthetic datasets containing LL.M-generated
misinformation, despite evidence that detectors of-

ten misclassify such content due to linguistic bi-
ases (Su et al., 2023). Future work should validate
DRES against adversarial LLM outputs to assess
its robustness in diverse scenarios.

Second, DRES currently selects only one rep-
resentation per instance, potentially overlooking
complementary signals from views with similar
hardness levels. Additionally, our hardness estima-
tion relies solely on the kDN metric, while alterna-
tive measures (Ethayarajh et al., 2022) might cap-
ture different aspects of instance difficulty. Future
work should explore multi-representation fusion
strategies and hardness metric ensembles to better
handle borderline cases where multiple representa-
tions appear equally viable.

Third, while DRES dynamically selects repre-
sentations and classifiers, its training phase in-
curs upfront costs from computing instance hard-
ness across multiple representations. As shown in
Figure 5, certain representations like BART are
selected in <10% of cases across datasets, sug-
gesting potential redundancy. Pruning such infre-
quently used representations guided by data com-
plexity (Cook et al., 2025) or embedding diversity
could simplify the system without compromising
performance.

Lastly, it is important to acknowledge the pos-
sibility of training data contamination for recently
released language models such as LLaMA3 and
Mistral. These models were made available after
the release of the datasets used in this study (LIAR,
COVID, GM), suggesting that portions of these
datasets may have been included in their pretrain-
ing corpora. This raises concerns about potential
memorization effects, particularly in fine-tuning
scenario. However, this issue does not compromise
the core findings of our work that is: instance-level
hardness varies across representation, and dynamic
selection of both representation and classifier im-
proves performance.
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A Supplementary details on
representations

Table 7 provides a comprehensive list of the models,
their implementation sources (e.g., HuggingFace,
Zeugma, AllenNLP), and embedding dimensions
used in our experiments. This includes both clas-
sical word embedding methods (e.g., Word2Vec,
GloVe) and modern pretrained language models
(e.g., BERT, LLaMA, Mistral).

Table 7: Text representation techniques used in this
study.

Model Version/Name Source Di

Word2Vec  word2vec Zeugma 300
GloVe glove Zeugma 300
FastText fasttext Zeugma 300
ELMO allenai/elmo AllenNLP 1024
BERT bert-base-uncased HuggingFace 768
DistilBERT  distilbert-base-uncased HuggingFace 768
ALBERT albert-base-v2 HuggingFace 768
RoBERTa  roberta-base HuggingFace 768
BART facebook/bart-base HuggingFace 768
ELECTRA  google/electra-base-discriminator HuggingFace 768
XLNet xInet-base-cased HuggingFace 768
LLaMA CodeLlama-7b HuggingFace 4096
Falcon falcon HuggingFace 2048
LLaMA3 Llama3.2-1B HuggingFace 2048
Mistral mistral-7B-v0.1 HuggingFace 4096

B Hyperparameters for classical and
ensemble models

Table 8: Hyperparameters considered for machine learn-
ing and ensemble models.

Method Hyperparameters
Kernel:[’rbf’]
SVM Gamma: [1, 0.1, 0.01, 0.001, 0.0001]

C: [0.1, 1, 10, 100, 1000]

solver: [’liblinear’]

LR penalty: ['none’, ’11°, ’12°, "elasticnet’]
C: [0.01, 0.1, 1, 10, 100]

alpha: [0.1, 0.5, 1]

fit_prior: [False, True]

n_neighbors: [1 - 20]

bootstrap: [True, False]

max_depth: [5,10, 20, 30, 40, 50]
max_features: ["auto’, ’sqrt’, "log2’]

RF min_samples_leaf: [1, 2, 4]
min_samples_split: [2, 5, 10]
n_estimators: [200, 400, 600, 800, 1000]
criterion: [’gini’, "entropy’]
n_estimators: [10, 50, 100, 200, 300, 400, 500, 1000]
learning_rate: [0.001, 0.01, 0.1, 0.2, 0.5]
n_estimators: [200,300,400,500]
max_features: [’sqrt’, "log2’]
max_depth: [4,5,6,7,8]

criterion: [’gini’, "entropy’]
random_state: [18]

Activation function: [ReLU, logistic]
solver: [Adam, 1bfgs]

NB
KNN

AdaBoost

XGBoost

MLP

Table 8 outlines the grid search ranges used to tune
classical and ensemble models. For SVM, we tuned

the kernel coefficient (gamma) and regularization
strength (C), which are known to have the most
significant impact on model performance. Logis-
tic regression was configured across solvers and
regularization types. Naive Bayes used different
smoothing values and prior settings. For KNN, we
adjusted the number of neighbors. Random Forest,
AdaBoost, and XGBoost were tuned by varying
tree depths, number of estimators, and split criteria.
MLP models were tested with different activation
functions and solvers.

C Hyperparameters for deep learning
models

Table 9 shows the tuning setup for CNN and BiL-
STM models. Both were trained using the Adam
optimizer with a fixed learning rate and dropout.
We varied activation functions, batch sizes, and the
number of epochs. For BiLSTM, we also included
hidden size as a tuning parameter.

Table 9: Hyperparameters considered for all deep learn-
ing models.

Method | Setup

Activation function: [sigmoid, ReLU]
Batch size: [64, 128, 512]

Number of epochs: [5,20,100]
Optimizer: [Adam]

Learning rate: 0.001

Dropout: 0.2

Activation function: [sigmoid, ReLU]
Batch size: [64, 128, 512]

Number of epochs: [5,20,100]
Optimizer: [Adam]

Learning rate: 0.001

Hidden size: 128

Dropout: 0.2

CNN

BiLSTM

D The impact of the k-hardness
hyperparameter

We conducted additional experiments to assess the
impact of the number of neighbors (k) used in test-
time instance hardness estimation. We evaluated
DRES with k € {3,5,7,9,11, 13}. The results are
presented in Table 10.

The results indicate that DRES is robust to the
choice of k, with only marginal differences in F1-
scores across values. While k£ = 5 slightly outper-
forms other settings, the variation remains within a
narrow range, suggesting that the method does not
rely heavily on fine-tuning this parameter.

20047



Table 10: Impact of k£ on DRES performance across
datasets.

Table 13: Results of F1-Score per dataset for DRES and
baseline models (Groups A, B, and C).

Method k COVID GM Liar Dataset
DRES (KNORA-E) 3 0.964 (0.002) 0.981 (0.002) 0.366 (0.003) Method Liar COVID GM
DRES (KNORA-E) 5 0.973(0.002) 0.986 (0.002) 0.371 (0.003
DRES EKNOR:-E) 7 0968 20.007; 0.984 Eo‘oos; 0.366 Eo‘oosi LR (Group A) 0.260 0.940  0.950
DRES (KNORA-E) 9 0.97 (0.001) 0.982 (0.004) 0.365 (0.004) SVM (Group A) 0.260 0.940 0.940
DRES (KNORA-E) 11 0.965(0.002) 0.981 (0.006) 0.367 (0.003)
DRES EKNORA-E; 13 0.97120.002; 0.979 Eo.oolg 0.366 50.002) KNN (Group A) 0.230 0.930 0.890
DRES (META-DES) 3 0.969 (0.001) 0.971(0.001) 0.362 (0.007) NB (Group A) 0.220 0.920 0.860
DRES (META-DES) 5 0.972(0.002) 0.98 (0.005) 0.367 (0.002)
DRES (META-DES; 7097 ((0.009>) 0.975((0.002) 0363 504002) XGBoost (Group A) 0.250 0.940 0.950
DRES (META-DES) 9  0.964 (0.002) 0.974 (0.003) 0.361 (0.001) RF (Group A) 0.260 0.920 0.920
DRES (META-DES) 11  0.97 (0.001) 0.977 (0.001) 0.362 (0.002)
DRES (META-DES) 13 0.966 (0.001)) 0.979 (0.006)  0.363 (0.001) AdaBoost (Group A) 0.190 0.910 0.920
DRES (DES-P) 37 0.968(0.001) 0.976(0.003) 0.381 (0.004) BiLSTM (Group A) 0.250 0.930 0.920
DRES (DES-P) 5 0.972(0.003) 0.984 (0.002) 0.385 (0.003)
DRES (DES-P) 70969 (0.001) 0981 (0.001) 0.381 (0.003) CNN (Group A) 0.250 0.940 0.920
DRES (DES-P) 9 0971 (0.004) 0977 (0.002) 0.383(0.002) MLP (Group A) 0.250 0.950 0.950
DRES (DES-P) 11 0.968 (0.001) 0.976 (0.007)  0.38 (0.008)
DRES (DES-P) 13 0.966(0.001) 0.976(0.003) 0377 (0.009) TF (Group B) 0.250 0.930 0.940
TFIDF (Group B) 0.230 0.940 0.950
W2V (Group B) 0.230 0.910 0.920
E Performance for other metrics GloVe (Group B) 0.220 0.860 0.840
FastText (Group B) 0.240 0.910 0.900
Table 11 reports DRES’s performance for the pre- ELMO (Group B) 0.240 0.910 0.920
cision results, while Table 12 reports the recall BERT (Group B) 0.230 0.910 0.820
results. DistilBERT (Group B) 0.220 0.920 0.830
RoBERTa (Group B) 0.230 0.910 0.850
Table 11: Precision performance of DRES models ALBERT (Group B) 0.240 0.900 0.840
across datasets. BART (Group B) 0.220 0.880 0.850
ELECTRA (Group B) 0.230 0.910 0.850
Dataset
Vethod Liar COVID oM XLNET (Group B) 0.220 0.900 0.860
DRES (KNORA-E)  0.380 (0.003) 0.970 (0.002) 0.985 (0.002) Falcon (Group B) 0.250 0.940 0.950
DRES (META-DES) 0.377 (0.002) 0.968 (0.002) 0.978 (0.004) LLaMA3 (Group B) 0.261 0.940 0.950
DRES (DES-P) 0.390 (0.003)  0.970 (0.003) 0.983 (0.002) Mistral (Group B) 0.260 0.943 0.951
Group C 0.243 0.941 0.950
DRES + KNORA-E 0.371 0.973 0.986
Table 12: Recall performance of DRES models across DRES + META-DES 0.367 0972 0.980
datasets. DRES + DES-P 0.385 0972 0.984

Dataset
COVID GM

Method Liar
DRES (KNORA-E)  0.365 (0.003) 0.975 (0.002) 0.988 (0.002)
DRES (META-DES) 0.358 (0.002) 0.975 (0.002) 0.982 (0.006)
DRES (DES-P) 0.380 (0.003) 0.974 (0.003) 0.985 (0.002)

F Static ensemble results

Table 13 expands upon the main manuscript’s find-
ings by detailing the performance of individual
models within Groups A, B, and C across the Liar,
COVID, and GM datasets. The results reveal that
within each group, ensemble models exhibit similar
performance levels, indicating that static combina-
tion methods, even when combined with a meta-
classifier with stacked generalization (i.e., a learned
combination scheme).

In contrast, the DRES framework, when inte-
grated with dynamic ensemble selection methods
such as KNORA-E, META-DES, and DES-P, con-
sistently outperforms the baseline groups across

all datasets. Notably, the choice among these dy-
namic selection techniques results in marginal per-
formance differences, suggesting that the primary
advantage arises from the dynamic selection mech-
anism itself rather than the specific competence
estimation heuristics and classifier selection ap-
proaches they employ (Cruz et al., 2018).

G End-to-end LLM fine-tuned results

As shown in Table 14, DRES consistently outper-
forms both end-to-end fine-tuned LL.Ms and static
ensemble strategies across all datasets. While re-
cent models such as LLaMA3 and Mistral achieve
strong F1 scores, particularly on the GM and
COVID datasets, the DRES variants surpass them
by a clear margin, with gains of up to 11 F1 points
on the LIAR dataset and around 2 to 4 points on
the others. In contrast, static ensemble baselines
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Table 14: End-to-end fine-tuned model results (F1-score
(std)) across the LIAR, COVID, and GM datasets. The
absolute best results per dataset are in bold, and the
top DRES methods that are statistically equivalent are
marked with an asterisk.
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Hardness Score

Dataset
Model Liar COVID GM
ELMO 0.210 (0.001)  0.935(0.001)  0.928 (0.005)
BERT 0.210 (0.003)  0.880 (0.002)  0.880 (0.006)
DistilBERT 0.220 (0.008)  0.940 (0.006)  0.890 (0.003)
ALBERT 0.180 (0.000)  0.840 (0.001)  0.870 (0.001)
BART 0.200 (0.001)  0.890 (0.002)  0.940 (0.001)
RoBERTa 0.190 (0.010)  0.850 (0.009)  0.850 (0.009)
ELECTRA 0.190 (0.002)  0.860 (0.004)  0.890 (0.001)
XLNET 0.210 (0.003)  0.860 (0.003)  0.890 (0.011)
LLaMA 0.261 (0.003)  0.941 (0.002)  0.992 (0.003)
Falcon 0.258 (0.001)  0.948 (0.001)  0.993 (0.000)
Mistral 0.268 (0.002)  0.950 (0.002)  0.994 (0.001)
LLaMA3 0.270 (0.003)  0.953 (0.002)  0.995 (0.001)
MLP (Group A) 0.250 (0.002)  0.950 (0.002)  0.950 (0.003)
Mistral (Group B) 0.260 (0.002)  0.943 (0.003)  0.951 (0.002)
Group C 0.243 (0.003)  0.941 (0.003)  0.950 (0.002)
DRES + KNORA-E 0.371 (0.003)  0.973 (0.002)* 0.986 (0.002)*
DRES + META-DES  0.367 (0.002) 0.972 (0.002)*  0.980 (0.005)
DRES + DES-P 0.385 (0.003)* 0.972 (0.003)* 0.984 (0.002)*
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(Groups A, B, and C) do not outperform the best
fine-tuned LLMSs, indicating that simple model
aggregation provides limited benefits in this set-
ting. These results emphasize the effectiveness of
DRES’s dynamic selection strategy in addressing
instance-specific challenges.

It is important to acknowledge the possibility of
training data contamination for recently released
language models such as LLaMA3 and Mistral.
These models were made available after the release
of the datasets used in this study (LIAR, COVID,
GM), suggesting that portions of these datasets may
have been included in their pretraining corpora.
This raises concerns about potential memorization
effects, particularly in fine-tuned or zero-shot sce-
narios.

H Instance Hardness Distribution
Analysis

This section presents the distribution of instance
hardness (IH) across various text representations
and datasets. As shown in Figure 8, IH scores vary
not only between datasets but also across represen-
tations within the same dataset. These distributions
reflect differences in data complexity. For instance,
GM exhibits overall lower hardness values than
LIAR, while COVID displays greater variability
depending on the chosen feature space. Such varia-
tion helps explain why static combination strategies
often fall short—some representations may work
well globally, but others introduce noise or redun-
dancy when applied uniformly.
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Figure 8: Boxplot showing the hardness distribution for
the Liar, COVID and GM datasets.

These plots offer a global view of how separable
or difficult samples are under each representation,
supporting the idea that representation quality is
highly data- and model-dependent. However, while
useful for assessing overall trends, these distribu-
tions do not capture per-instance variation. That
is, a representation with good average performance
might still perform poorly on specific inputs. These
analyses are conducted in the following section.

I Analysis of Hardness Variation Across
Representations

We analyze how instance hardness varies across dif-
ferent text representations using two complemen-
tary perspectives. First, we compute range, vari-
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Figure 9: Descriptive statistics showing (left) range, (center) standard deviation, and (right) coefficient of variation

for each dataset.

ance, and coefficient of variation (CV) as summary
statistics to capture the dispersion of hardness val-
ues across representations for each instance. Then,
we present a sorted hardness gap profile to visu-
alize the differences in maximum and minimum
hardness values across views.

As shown in Figure 9, the range is defined as the
difference between the maximum and minimum
hardness scores per instance. The LIAR dataset
exhibits a broader spread, with most values under
0.5 but a long tail approaching 0.9. The GM and
COVID datasets show tighter distributions, with
most instances higher than 0.4, indicating that there
is a significant hardness difference across represen-
tations for the majority of cases.

In addition to summary statistics, Figure 10
shows instance-wise hardness profiles sorted in as-

cending order of the gap between the maximum and
minimum hardness scores. These plots reveal sub-
stantial disagreement across views. For instance, in
the GM dataset, over 50% of instances show a gap
of at least 0.5, and 25% exceed 0.7. The COVID
and LIAR datasets follow similar patterns, with sig-
nificant fractions of instances showing gaps larger
than 0.4.

These findings further support the motivation be-
hind our dynamic instance hardness representation
selection approach. Instead of relying on a fixed or
fused representation, DRES uses test-time hardness
estimation to adaptively select the most appropriate
view. The observed variation in hardness supports
this strategy, as many instances would be subopti-
mally handled by any single representation or by
combining all representations.
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J Instance Hardness Heatmaps

Figure 11 shows heatmaps of instance hardness
scores across all representations for the LIAR,
COVID, and GM datasets. Each row corresponds
to a representation, and each column to a sample.
The LIAR dataset displays consistently higher hard-
ness values across representations, with many sam-
ples appearing difficult to classify regardless of the
embedding space. In contrast, COVID and GM
show larger regions of low hardness, indicating
more apparent class separation and more consistent
behavior across representations. These patterns
help explain the results in Table 6, where LIAR
shows the most significant performance gain (+5.6
percentage points) when using dynamic ensemble
selection (DES) alone. This improvement can be
explained by the DES’s ability to deal with high
disagreement between classifiers and better handle
harder instances (Cruz et al., 2017).

K Usage of Al Assistants

The authors used Al tools (ChatGPT and Gram-
marly) to help the manuscript writing process,
specifically for revising grammar, improving clar-
ity, and checking mathematical notation consis-
tency. Al was also used to assist with coding tasks
for data analysis and visualizations (e.g., heatmaps,
radar plots, and cumulative distributions). All con-
tent and code were reviewed, verified, and finalized
by the authors.
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Figure 10: Cumulative distribution of the difference
between maximum and minimum IH values across
datasets.
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Instance Hardness Across Representations
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Figure 11: Instance hardness heatmaps across datasets (a)—(b).
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Figure 11: (Continued) Instance hardness heatmaps across datasets (c).
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