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Abstract

An objective, face-valid method for scoring
idea originality is to measure each idea’s statis-
tical infrequency within a population—an ap-
proach long used in creativity research. Yet,
computing these frequencies requires manu-
ally bucketing idea rephrasings, a process that
is subjective, labor-intensive, error-prone, and
brittle at scale. We introduce MUSESCORER,
a fully automated, psychometrically validated
system for frequency-based originality scor-
ing. MUSESCORER integrates a Large Lan-
guage Model (LLM) with externally orches-
trated retrieval: given a new idea, it retrieves
semantically similar prior idea-buckets and
zero-shot prompts the LLM to judge whether
the idea fits an existing bucket or forms a
new one. These buckets enable frequency-
based originality scoring without human anno-
tation. Across five datasets (Nparicipants=1143,
Nideas=16,294), MUSESCORER matches hu-
man annotators in idea clustering structure
(AMI = 0.59) and participant-level scoring
(r = 0.89), while demonstrating strong conver-
gent and external validity. The system enables
scalable, intent-sensitive, and human-aligned
originality assessment for creativity research.

1 Introduction

Assessing creativity at scale remains a central chal-
lenge in cognitive science and computational lin-
guistics. Creativity scoring broadly considers two
complementary dimensions: the intrinsic qualities
of ideas (e.g., creative ideas are semantically flex-
ible or diverse) and their extrinsic statistical in-
frequency within a population (i.e., original ideas
do not appear very often) (Beketayev and Runco,
2016; Runco and Jaeger, 2012). Recent meth-
ods have scaled intrinsic assessments using un-
supervised, semi-supervised, and supervised ap-
proaches (Organisciak et al., 2023; Beaty and John-
son, 2021; Organisciak and Dumas, 2020). In
contrast, frequency-based originality scoring still
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depends on manual tabulation of response occur-
rences (Reiter-Palmon et al., 2019). This requires
grouping rephrasings of the same idea into buckets
(e.g., ‘hold papers down’ and ‘use as a paperweight’
for a brick), a process that is subjective, fatigue-
intensive, and error-prone as annotators track an
ever-expanding set of buckets (Acar and Runco,
2014; Baten et al., 2020, 2021, 2022; Buczak et al.,
2023). Moreover, the field lacks consensus on what
counts as an ‘infrequent’ idea, leaving frequency-
based scoring with limited psychometric validation.

We introduce MUSESCORER, a fully automated,
psychometrically validated system for frequency-
based originality scoring—bringing us closer to
comprehensive automated creativity assessment.
Bucketing different phrasings of the same idea to-
gether is computationally non-trivial: (i) seman-
tic similarity alone is insufficient to distinguish
rephrasings from distinct intents, (ii) traditional
clustering algorithms struggle with singleton and
low-frequency ideas that are critical for infrequency
scoring, (iii) real-world idea datasets follow fat-
tailed bucket size distributions, defying uniform
or Gaussian assumptions, and (iv) bucket count
grows as new ideas arrive, rendering ineffective
text labeling tools that require label sets apriori.
MUSESCORER addresses these challenges via an
LLM-as-a-judge framework with externally orches-
trated retrieval: for each new idea, it retrieves from
its database semantically similar prior buckets as
candidates and zero-shot prompts the LL.M to de-
cide whether the idea fits an existing bucket or
forms a new one. Unlike conventional clustering,
this approach replicates the granularity of human
bucketing in both structure and resolution.

Our work also contributes to the creativity lit-
erature in two ways. First, we establish rigorous
psychometric validity for frequency-based original-
ity scoring, showing high agreement with human
annotations and strong correlations with relevant
cognitive traits. In doing so, we elucidate how
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‘infrequency’ can be reliably operationalized. Sec-
ond, we release an automated, interpretable scor-
ing pipeline deployable across diverse open-ended
ideation tasks, enabling creativity research at scale!.
More broadly, MUSESCORER demonstrates how
advanced NLP methods can address long-standing
annotation challenges, providing validated tools
that adjacent disciplines can adopt with confidence.

2 Related Work

2.1 Computational Assessment of Creativity

Creativity assessment has long relied on diver-
gent thinking tasks like the Alternate Uses Test
(AUT), where participants list novel uses for ev-
eryday objects (Guilford, 1967). Response sets
are then scored for fluency (idea count), flexibility
(distinct semantic category count), originality (sta-
tistical infrequency relative to a population), nov-
elty (Likert-scale ratings by human judges), and
other metrics (Dumas and Dunbar, 2014; Runco
and Mraz, 1992).

Several computational methods have been pro-
posed to automate these scores. Unsupervised ap-
proaches estimate (i) flexibility by measuring the
semantic diversity of an idea set (Snyder et al.,
2004; Bossomaier et al., 2009), and (ii) human
judges’ novelty ratings by computing an idea’s
semantic distance from the task prompt (Beaty
and Johnson, 2021; Dumas et al., 2021; Acar and
Runco, 2014). Hybrid and supervised methods di-
rectly predict novelty ratings using regression and
clustering-based pipelines (Organisciak et al., 2023;
Stevenson et al., 2020). However, these methods
face generalizability issues, with models trained on
one task or dataset often performing poorly on an-
other (Buczak et al., 2023). More recently, studies
have explored LLMs for zero-shot creativity scor-
ing, but results show little to no correlation with
human labels (Chakrabarty et al., 2024).

Unfortunately, computational approaches for
scoring ideas by statistical rarity remain under-
explored. Recent work has addressed related
challenges—for example, Lu et al. (2024) con-
trast Al model outputs against an extrinsic human-
generated text corpora using n-gram overlap and
Word Mover’s Distance (WMD) to probe the ori-
gin of Al creativity. However, using purely lexi-
cal (n-gram) or embedding-based matching meth-
ods (WMD) for operationalizing social comparison

"https://github.com/cssai-research/MuseScorer

holds the risk of conflating distinct intents or over-
separating true rephrasings, as they privilege sur-
face similarity over conceptual intent (Olson et al.,
2021). Our approach addresses these limitations by
incorporating a zero-shot LLM in the annotation
loop to make the subjective, intent-sensitive buck-
eting judgments, which, in turn, enables frequency-
based originality scoring at scale.

2.2 Text Clustering and Annotation

LLMs have recently been explored for zero- and
few-shot text clustering and annotation (Xiao et al.,
2023b). Deductive clustering methods prompt
LLMs to partition a given set of texts, generat-
ing categories or groupings directly (Viswanathan
et al., 2024; Chew et al., 2023). However, most
LLM-based deductive clustering methods assume
all clusters are discoverable upfront and perform
poorly when the concept space evolves. Inductive
annotation methods, on the other hand, present
labeled exemplars to classify new instances in-
crementally (Dai et al., 2023). While current ap-
proaches show promise on well-bounded tasks like
topic labeling or thematic analysis, it remains un-
clear how best to navigate fat-tailed distributed
datasets, where cluster (i.e., idea bucket) counts
grow without bound as data scale increases.

2.3 LLM-as-a-Judge

The LLM-as-a-judge paradigm has emerged as a
powerful approach for evaluating, ranking, and fil-
tering outputs across tasks such as summarization,
translation, alignment, and reasoning in NLP (Li
et al., 2024a; Liang et al., 2023; Zhao et al., 2024).
Unlike earlier evaluation approaches (Papineni
et al., 2002; Zhang et al., 2019), judge LLMs can as-
sess contextual fit, intent, and subtle distinctions be-
tween candidates, using pointwise, pairwise, or list-
wise formats (Gao et al., 2023; Shen et al., 2024).

Our task combines listwise judgment with
decision-making: the LLM determines whether a
new idea matches any retrieved exemplar or forms
a new semantic bucket, akin to selection-based
judgment (Li et al., 2024b; Yao et al., 2023). We
adopt a modular retrieval-based framework (Lewis
et al., 2020; Izacard and Grave, 2020), where re-
trieval and codebook management are handled ex-
ternally (Khandelwal et al., 2020), leaving the
stateless LLM to focus on subjective bucketing
decisions. This separation improves stability and
preserves the interpretability and psychometric au-
ditability critical for creativity research.
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Dataset # Participants # Tasks # Ideas # Judges
socialmuse24 (Baten et al., 2024) 109 5) 5703 2
beaty18 (Beaty et al., 2018) 171 2 2917 4
silvial7 (Silvia et al., 2017) 141 2 2355 3
beaty12 (Beaty and Silvia, 2012) 133 1 1807 3
mohr16 (Hofelich Mohr et al., 2016) 305 + 284 14+1 1930 + 1582 4

Table 1: Dataset summary. Each participant did one task in mohr16. In other datasets, all participants did all tasks.

3 Dataset Acquisition

We use five Alternative Uses Test datasets (Table 1).
Each dataset includes one or more tasks where par-
ticipants generate alternative uses for an everyday
object. Responses range from short phrases to full
sentences (e.g., for a shoe: “We can use a shoe as a
hamster bed” or “As a doorstop™).

3.1 Primary Dataset: socialmuse24

We use the socialmuse24 dataset to establish
criterion validity (Baten et al., 2024). Two
trained research assistants (H1 and H2) indepen-
dently bucketed rephrased ideas within each task.
The annotators saw the ideas in a random order.
They followed the coding rules of Bouchard and
Hare (Bouchard Jr and Hare, 1970) and Guil-
ford’s scoring key (Guilford et al., 1978). Each
idea thus has two categorical bucket IDs—one per
annotator—serving as ground truth for evaluating
our method. In the original study, these human-
assigned buckets were used to estimate originality
without automation; our goal is to replicate this
process computationally. The dataset also includes
flexibility-based Creativity Quotient scores (Sny-
der et al., 2004; Bossomaier et al., 2009), which
we use to assess convergent validity.

3.2 Secondary Datasets

We draw on four publicly available AUT datasets
to assess convergent and external validity (Organis-
ciak et al., 2023; Beaty and Johnson, 2021). Unlike
socialmuse24, these datasets lack human bucket-
ing annotations and thus cannot be used for our
primary originality-scoring goal.

The beaty18 dataset (Beaty et al., 2018) in-
cludes four judges’ Creative Quality ratings on
a 1-5 scale, along with measures of: (i) Creative
Metaphor Generation, where participants produced
novel metaphors for two open-ended prompts, each
rated 1-5 by four judges (Beaty and Silvia, 2013);
(ii) Big Five Personality, assessing the participants’
neuroticism, extraversion, openness to experience,

agreeableness, and conscientiousness via standard
questionnaires (McCrae et al., 2005); (iii) Fluid
Intelligence, through sequence-completion tasks
with images (Cattell and Cattell, 1960), letters (Ek-
strom et al., 1976), and numbers (Thurstone, 1938);
and (iv) Creative Self-concept, via self-efficacy and
self-identity questionnaires (Karwowski, 2014).

The silvial7 dataset (Silvia et al., 2017) pro-
vides three judges’ Creative Quality ratings, as well
as openness-to-experience Personality scores (Lee
and Ashton, 2004). The beaty12 dataset (Beaty
and Silvia, 2012) includes three judges’ Creative
Quality ratings, plus Big Five Personality, Creative
Metaphor Generation, and Fluid Intelligence mea-
sures, paralleling beaty18.

Finally, mohr16 (Hofelich Mohr et al., 2016) con-
tains four judges’ ratings of idea Originality and
Flexibility. Here, originality captured the uncom-
monness, remoteness, and cleverness of responses
(1-5 scale) (Silvia et al., 2008), while flexibility
was defined as the number of categories in each
participant’s responses, averaged across judges.

4 Task Description

4.1 Problem Formulation

Let P = {p1,p2,...,pn} denote a corpus of N
participants, each completing 7" ideation tasks. For
each task t € {1,..., T}, participant p; produces

a variable-length set of n;; free-form textual re-
sponses, denoted Z; ; = {ml(v,lt), o ,mz(-zi’t)}.

Let X} = U,fil Z; s denote the full idea set for
task ¢. The goal is to induce a task-specific parti-
tion B; = {B41,..., Bt Kk, } over X;, where each
‘bucket’ B; C A&} contains semantically equiva-
lent ideas expressing the same underlying concept.

Let k() denote the index of the bucket to which
idea x € Aj is assigned. We define m; ;. as the
number of distinct participants contributing at least
one idea to bucket B; .. Importantly, the bucketing
is performed within each task and across partici-
pants, and no bucket identity is shared across tasks.

19950



4.2 Originality Metrics

We explore 4 frequency-based originality metrics:

(i) rarity: Each idea bucket B is scored
as (1 — %), reflecting the bucket’s relative in-
frequency in the sample (Forthmann et al., 2020,
2017). A participant’s unnormalized rarity

. .. it
score is the sum across their ideas: R, ~ =
b

Mt k()
Z.’EGIZ",: (1 - tN )
(ii) shapley: Each bucket B; is scored as
, making a bucket’s marginal value inversely

1
mi k
proportional to the number of participants shar-
ing it (Page, 2018). A participant’s unnormal-
ized shapley score is the sum across their ideas:
Rshapley _ Z 1

it - T€L;+ My k(z)

(iii) uniqueness: Ideas in singleton buckets
(my = 1) receive a score of 1, and all oth-
ers receive 0 (Forthmann et al., 2020; Baten
et al., 2021, 2024). A participant’s unnormal-
ized uniqueness score is the count of their unique
ideas: Ry "% =37 o7 H{my gy = 11

(iv) threshold: Ideas are scored by a tiered
function S(z) based on bucket prevalence (Olson
etal., 2021; DeYoung et al., 2008; Forthmann et al.,
2020):

if e < 0,01,
if 0.01 < “4E= < 0.03,
if 0.03 < "= < .10,

otherwise.

S(z) =

O = N W

A participant’s unnormalized threshold score is
. pthresh _
the sum of these scores: R;3™*" = 3° .7 S(x).
To compute a participant’s overall unnormal-
ized score across all tasks, we take RI'¢ —
Zle R™tric To account for fluency (i.e., the
number of ideas, n; ¢, contributed by participant
p; in task t), we define normalized originality as,
) Rmetric . T )
metric _ "7t metric __ metric
o = and O] =>, orge.

4.3 Evaluation Strategy

We assess construct validity along two dimensions:
(i) alignment between computational and human
idea-to-bucket clustering, and (ii) agreement in
participant-level originality scoring.

Bucket-level construct validity. The bucket la-
bels are categorical and arbitrary. Moreover, the
bucket sizes follow a fat-tailed distribution with a
few highly frequent buckets and many rare ones
(see §5.1). Thus, traditional clustering metrics (e.g.,
Adjusted Rand Index) can be misleading due to be-
ing inflated by rare buckets. We therefore adopt

Adjusted Mutual Information (AMI) (Vinh et al.,
2010) as our primary metric to evaluate idea-to-
bucket clustering alignment between our proposed
method and human annotations. This metric adjusts
for chance agreement, is robust to label permuta-
tion and skewed distributions, and is well-suited for
comparing clusterings with different numbers of
clusters. For insight development, we also use Nor-
malized Mutual Information (NMI) (Vinh et al.,
2010), which quantifies mutual dependence be-
tween clusterings without chance correction, and V-
measure (Rosenberg and Hirschberg, 2007), which
is the harmonic mean of homogeneity and com-
pleteness, reflecting both internal purity and cross-
cluster coverage.

Participant-level construct validity. For origi-
nality scoring agreement, we use (i) Zero-order
Correlations (Pearson’s r for linear agreement
and Spearman’s p for monotonic consistency),
(ii) Intraclass Correlation Coefficient for consis-
tency across judges (Shrout and Fleiss, 1979), and
(>iii) Bland-Altman Plots to identify systematic,
scale-level biases (Bland and Altman, 1986).

Convergent and external validity. Convergent
validity is assessed by correlating model originality
scores with theoretically aligned creativity metrics
(e.g., Creativity Quotient and Creative Quality Rat-
ings). External validity is evaluated by correlat-
ing model scores with established psychological
and cognitive variables: personality traits, creative
metaphor generation ability, fluid intelligence, and
creative self-concept (Beaty and Johnson, 2021).

5 Understanding Human-Annotated
Ground Truth Characteristics

5.1 Distributional Properties of Idea Buckets

We assess the structure of idea diversity in
socialmuse24 using H1 and H2’s buckets. Hl1
created more buckets per task (399.6, 95% CI:
[354.1,445.1]) than H2 (230.8 [192.8, 268.8]), in-
dicating finer-grained distinctions.

To examine bucket size (idea frequency) dis-
tributions, we fit a discrete power-law model to
the bucket sizes for each task and compare it
to a lognormal distribution via a likelihood ratio
test (Clauset et al., 2009). Both annotators pro-
duced fat-tailed distributions, with scaling expo-
nents oy = 2.01 [1.73,2.28] and ayyp = 1.74
[1.60, 1.88], consistent with power-law like behav-
ior in linguistic and social systems (o ~ 2 to
3) (Newman, 2018). This confirms that a few
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Figure 1: Idea bucket size distribution based on annota-
tor H1’s bucketing. See Figure A1 for H2’s case.

buckets are highly frequent while many are rare
(Figure 1). However, the power-law model is not
statistically favored over lognormal (P > 0.05),
suggesting that despite being fat-tailed, bucket size
distributions are not strictly power-law and may be
better described by lognormal or other alternatives.

5.2 Inter Human Annotator Agreement on
Idea-level Bucketing

H1 and H2 show a mean AMI of 0.66 [0.64, 0.68],
indicating strong alignment beyond what would be
expected by random bucketing. NMI elucidates
how informative one annotator’s bucketing is about
the other’s without adjusting for chance (i.e., NMI
is less conservative). As expected, the mean NMI is
higher at 0.85 [0.84, 0.87], reflecting strong under-
lying structure shared across annotators (Table A1).
V-measure also yields a high mean of 0.85
[0.84,0.87]. Its homogeneity component (0.80)
shows that H1’s buckets are reasonably pure with
respect to H2, and its high completeness compo-
nent (0.92) shows that H2’s buckets almost per-
fectly recover H1’s buckets. This pattern corrobo-
rates that H1 split buckets more finely than H2, but
both annotators identified similar idea groupings.
Overall, the annotators strongly agreed on their
idea bucketing, despite granularity differences.

5.3 Inter Human Annotator Agreement on
Participant-level Originality Scoring

We compute participant-level {O™*1¢} using H1
and H2’s bucket assignments and assess agreement.

The threshold and shapley metrics show the
strongest correlations (threshold: » = 0.77
[0.69, 0.84]; shapley: » = 0.79 [0.70, 0.85]; both
P < 0.001). uniqueness and rarity show lower
but still good correlations (uniqueness: r = 0.73
[0.63,0.81]; rarity: » = 0.72 [0.61,0.81]; both

P < 0.001; see Table A2 for p estimates).

The threshold and shapley metrics also show
the strongest average consistency across judges:
I1CC(3,k) = 0.85[0.78,0.90], P < 0.001 for
both. uniqueness yields the lowest but good agree-
ment: ICC(3,k) = 0.8 [0.71,0.86], P < 0.001
(Table A3). Together, we note strong agreements
in originality scoring across the human annotators.

5.4 Insights for MUSESCORER Development

These analyses help establish expectations for
machine-based originality scoring. First, human-
annotated bucket sizes exhibit a fat-tailed structure.
Any automated scoring system must account for
this characteristic for its bucketing performance to
approach the strong AMI baseline of humans.

Second, based on the above evidence, we take the
threshold-based normalized scores, {Of""esh},
as our person-level gold standard against which
we evaluate machine-based originality scoring. We
test for robustness against the other metrics.

6 The MUSESCORER System

6.1 Insights from Early Prototypes

Our first prototype mimicked a human annotator’s
workflow by comparing each new idea against an
expanding codebook of all prior buckets. How-
ever, LLM prompts became intractable when K,
exceeded roughly 150. Given the scale-free bucket
size distributions, massive corpora can have very
large K, making exhaustive prompting infeasible.
We therefore shifted to a retrieval-based approach,
selecting a small candidate set for LLM judgment.

A second prototype let the LLM handle retrieval,
decision-making, and codebook updates end-to-
end, but this proved brittle—especially with smaller
models (e.g., phi4). To improve stability, we of-
floaded retrieval and codebook management to ex-
ternal modules, leaving the LLM to focus solely on
subjective bucketing.

6.2 MUSESCORER System Architecture

Algorithm 1 summarizes MUSESCORER’s work-
flow. The LLM processes one idea at a time and
assigns it to a semantically equivalent bucket or cre-
ates a new one. A dynamic codebook is initialized
for each ideation task and updated as new ideas
arrive. For each idea z € X, a dictionary of can-
didate buckets D, is constructed via K -NN-based
semantic search over the current codebook (Khan-
delwal et al., 2020). D, has a maximum size of K.
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Algorithm 1 MUSESCORER: LLM-Based Incre-
mental Bucketing for a Single Creativity Task

Require: Ideaset X = {z1,72,...,7 x|}, LLM,
candidate dictionary size K,
Ensure: Partition B = {Bj,...,Bg}, assign-

ment map k(x)
Initialize empty codebook C < ()
Initialize bucket index K < 0
for all ideas x € X do
if |C| < K, then
D, +C
else
Use K-NN search to find top-K . clos-
est entries in C to x
D, + {(hy. d)} i,
: end if
10: Query LLM: “Is z arephrasing of any d; €
D,? Return k; or —1.” (In CoT prompting,
also return a justification sentence)
11: if LLM returns £* # —1 then

AN A R o A

o ®

12: Assign k(x) + k*

13: By+ < By~ U {z}

14: else

15: K+ K+1

16: Create new bucket By < {x}

17: Update codebook C <— C U {(K, z)}
18: Assign k(z) «+ K

19: end if

20: end for

21: return B ={By,...,Bg}, k(z)Vx € X

When the number of existing buckets is smaller
than K, all of those buckets are taken in D,.. Each
candidate in the dictionary D, = {(k;,d;) ]K:Cl
maps bucket IDs to representative descriptions.
We employ two kinds of prompting strategies:
(1) In vanilla prompting, the LLM determines
whether x is a rephrasing of any d;. If so, it returns
the corresponding key k;; otherwise, it returns —1,
signaling the creation of a new bucket with z as its
description. (ii) In Chain-of-Thought (CoT) prompt-
ing, the LLM additionally provides a one-sentence
reasoning (Wei et al., 2022). The codebook and
bucket assignment are updated accordingly.

It is important to distinguish this design
from semantic-similarity-based clustering methods,
which can be used to bucket ideas directly (we
employ such methods as our computational base-
lines; see §7.1). Such methods typically attempt
to assign ideas to clusters based on embedding dis-

tances, which risks conflating distinct intents or
over-separating true rephrasings. In contrast, our
use of K-NN-based retrieval only serves to keep
the comparison space (and thereby prompt length)
tractable; the final decision about bucket member-
ship is made by the LLM. This separation ensures
that semantic similarity supports efficiency, while
the subjective, intent-sensitive aspect of bucketing
remains with the judge LLM.

We fix K. = 10 to allow a manageable prompt
length while leaving sufficient margin for re-
trieval noise, and test robustness against other
K. choices. We experiment with a factorial
combination (‘MUSESCORER configurations’) of
LLM model variants (11ama3. 3, qwen3, and phi4),
prompting strategies (vanilla and CoT), and sen-
tence embeddings (Appendix Section A.1).

7 Results and Discussion

7.1 Computational Baselines

We use unsupervised clustering to establish a com-
putational baseline for MUSESCORER. We require
algorithms that (i) allow clusters of vastly differ-
ent sizes, including fat-tail distributed ones, and
(ii) preserve singleton and rare buckets without
dropping them as noise or outliers (§5.4).

These constraints discourage us from using algo-
rithms like DBScan (singleton and rare buckets are
likely to be marked as noise) (Ester et al., 1996) and
HDBScan (minimum cluster size is 2) (Campello
et al., 2013), and our experiments also corrobo-
rate their poor performance. K -means clustering is
poor at handling imbalanced cluster sizes or shapes,
and requires the number of clusters to be close to
the number of datapoints to allow many singleton
or rare buckets (MacQueen, 1967). Agglomerative
hierarchical clustering is a reasonable choice for
our constraints (Ward Jr, 1963).

We report results with K-means and agglomera-
tive algorithms. For each algorithm, we automati-
cally search for the optimal number of buckets K
over the full range of K; = 1 to |X}|. To facilitate
this search, we evaluate structural and semantic cri-
teria using two metrics: (i) Silhouette Score, which
assesses cluster quality based on geometric com-
pactness and separation, with higher values indi-
cating better-defined clusters (Rousseeuw, 1987);
and (ii) Semantic Score, which is the geometric
mean of coherence (intra-cluster similarity) and
exclusivity (inter-cluster distinctiveness), encour-
aging clusters that are both internally consistent
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Model AMI NMI Pearson’s r Spearman’s p ICC(3,1)
& 1lama3.3,CoT 0.59 £0.05 0.88+0.02 0.88+0.04 0.87 £0.05 0.88 = 0.04
% gwen3, CoT 0.56+0.05 0.87+0.02 0.79+0.07 0.78 =0.07 0.77 £ 0.08
2 phi4, CoT 0.54+0.01 0.83+0.01 0.78+0.08 0.76 £ 0.08 0.72 £ 0.09
g llama3.3,vanilla 0.59+0.03 0.86+0.02 0.83+0.06 0.79 £ 0.07 0.81 +£0.06
S phi4, vanilla 0.53+0.02 0.83+0.01 0.80%0.07 0.78 £ 0.08 0.75 £0.08
2 K-means, Silhouette 0.32+0.09 086+0.02 0.65+0.11 0.67+£0.11 0.62+£0.12
= K-means, Semantic  0.35+0.06 0.87+0.02 0.71+0.10 0.70+0.10 0.67 +0.10
é’ Aggl., Silhouette 0.39+0.02 0.85+0.02 0.73+0.09 0.68+0.10 0.69+0.10

Aggl., Semantic 0.31+0.05 0.86+0.02 0.65+0.11 0.65+0.11 0.61 £0.12

Table 2: Agreement metrics comparing computational models to H1’s ground truths. Values are means + half-width
of the 95% C.I. (N = 109). See Table AS for results based on H2’s annotations, which replicate identical takeaways.

and mutually distinct (Mimno et al., 2011).

7.2 Distributional Properties of
Computationally-labeled Idea Buckets

We find that K-means and agglomerative algo-
rithms produce an exorbitantly high K;, with 831
and 797 buckets produced by the K-means algo-
rithm (respectively based on Silhouette and Seman-
tic scores), and 588 and 838 buckets by the ag-
glomerative algorithm. For reference, |X;| ~ 1141
per task in socialmuse24. These bucket counts
are significantly higher than H1 and H2’s annota-
tions (P < 0.001; see §5.1). In contrast, the MUS-
ESCORER configurations produce K; in the range
of 255 to 465, overlapping those of the humans.
The scaling exponents of K -means and agglom-
erative are systematically higher than the human
baseline (P < 0.001), but the MUSESCORER con-
figurations align with humans (Table A4).

7.3 Construct Validity of Idea-level Bucketing

Table 2 and Figure A2 show the AMI and NMI
agreements between H1 and machine bucketing.
Taking H2 as the reference replicates identical in-
sights (see Table AS). Interestingly, all methods
score highly in the less conservative NMI metric
and match the H1-H2 agreement, showing reason-
able preservation of semantic grouping.

However, when we correct for random chance
and penalize mismatch in structure and granular-
ity using the AMI metric, the MUSESCORER con-
figurations sustain human-like performance while
the K-means and agglomerative algorithms suf-
fer dramatically and systematically. Specifically,
against a human-human AMI of 0.66 [0.64, 0.68],
the 11ama3.3 LLM with CoT prompting achieves
the best AMI among the MUSESCORER config-
urations at 0.59 [0.55, 0.64], while the silhouette-

tuned agglomerative algorithm manages the best
AMI among the baseline models at a poor 0.39
[0.36,0.41]. This is unsurprising, since a drop
in AMI implies deviation from the structure and
resolution of the human bucketing, which is cor-
roborated by the systematically larger number of
buckets K-means and agglomerative algorithms
produce. In contrast, the MUSESCORER config-
urations preserve more of the mutual structures,
semantic coherence, and resolution, capturing up
to 89% of the fine-grained patterns humans see.
Overall, MUSESCORER shows strong idea-
bucketing alignment with the humans, surpassing
the performances of clustering-based baselines.

7.4 Construct Validity of Participant-level
Originality Scoring

Table 2 and Figure A3 show the participant-level
{Ofhresh} score agreements based on H1 and ma-
chine bucketing. The results are robust to taking
H2 as the reference (Table A5). MUSESCORER
with 1lama3.3 and CoT prompting once again
shows the best correlation (r = 0.89 [0.83,0.92],
P < 0.001). The baselines perform significantly
worse, with the silhouette-tuned agglomerative al-
gorithm achieving the best baseline correlation
(r =0.73[0.63,0.81], P < 0.001).
MUSESCORER with 11ama3. 3 and CoT prompt-
ing also shows the best ICC(3,1) = 0.88
[0.83,0.92], P < 0.001. The clustering base-
lines reach a maximum of ICC(3,1) = 0.69
[0.57,0.77], P < 0.001, with the silhouette-
tuned agglomerative model, performing signifi-
cantly worse than 11ama3.3 (P < 0.001). Based
on the above evidence, we pick 11ama3. 3 with CoT
prompting as the default configuration for MUS-
ESCORER and use it for the remaining analysis.
We next visualize a Bland-Altman plot to iden-

19954



wv

N ° o e

3 0.0 1 . ° ] .o

6\ ° °

E .. ¢ o0 °

(] L ° o o ° °® °

< -1.0] . o P .

& A I A S .

1 L S ae St Y ®

E ® ..: L4 .. : Y °

g o ®° a°. °

9 -2.0 <. : . ’: o o

S “ % e o . --- Mean diff (bias) = -1.42

g . . ° ~-- +1.96 SD = 0.09

8 -3.0{ s L -~ -1.96 SD =-2.94
4 6 8 10

Mean of originality scores based on H1 and MuseScorer’s bucketings

Figure 2: Bland-Altman visualization for bias detection.

tify systematic biases between H1 and MUS-
ESCORER-derived originality scores (Figure 2).
94.5% of the points fall within the limits of agree-
ment (LoA) of +1.96 SDs, and so does the mean
difference (bias). This shows that MUSESCORER-
derived scores stay strongly in line with human
scores across the originality spectrum. Although
the proportional bias regression slope is slightly
positive (0.09), the effect is not statistically signif-
icant (P > 0.05), suggesting no systematic trend
where the machine over- or under-scores ideas as
originality increases. This supports the conclu-
sion that MUSESCORER provides stable, human-
comparable originality assessments.

Taken together, MUSESCORER shows strong
construct validity in originality scoring against hu-
man ground truth.

7.5 Convergent and External Validity

We evaluate MUSESCORER for convergent and ex-
ternal validity against established creativity mea-
sures. Table 3 summarizes the correlations.

For convergent validity, MUSESCORER’s nor-
malized originality scores {Of"®s"} correlate
strongly with Creativity Quotient (CQ) scores in
socialmuse24. CQ is a flexibility measure that
captures the diversity of semantic categories. How-
ever, CQ is unnormalized and confounded by idea
fluency. Unsurprisingly, unnormalized { Rf""es"}
scores show a stronger correlation with CQ. In
rating-based datasets, MUSESCORER’s {Ofresh}
scores correlate highly with human creative qual-
ity judgments (beaty18, silvial7, beaty12) and
with rating-based originality in mohr16. The latter
dataset also contains manually annotated flexibility
scores, which do not account for fluency. Unsur-

prisingly, these flexibility scores correlate strongly
with unnormalized { R¥""®s"}. Together, these find-
ings confirm that MUSESCORER captures core con-
structs of creativity with high fidelity.

For external wvalidity, @~ MUSESCORER’S
{Ofhresh) scores correlate systematically with
metaphor generation quality, openness to expe-
rience, and self-reported creative identity and
self-efficacy. We did not observe systematic
associations with fluid intelligence or other Big
Five traits. Our results largely corroborate previous
insights (Beaty and Johnson, 2021), underscoring
the system’s broader external validity.

7.6 Robustness

The results depend on LLM, sentence embedding,
and prompting strategy choices. We obtain the best
MUSESCORER results with a configuration com-
prising the 11ama3.3:70b LLM (Meta Al, 2024),
e5-large-v2 sentence embedding (Wang et al.,
2022), and Chain-of-Thought prompting (Wei et al.,
2022) (§A.1). We further probe this configuration’s
robustness across K. € {5,15}, and find results
statistically similar to the default K, = 10. To
assess ordering effects, we run the configuration
with randomly ordered A} across 3 seeds. We find
the results stable within the bounds reported in Ta-
ble 2. The main results with the threshold metric
are largely reproduced by the other three metrics.
But we find that rarity shows proportional bias
in the Bland-Altman plot (slope = 0.2, P < 0.01),
while shapley and uniqueness show no correla-
tion with openness in the silvia17 dataset, losing
some external validity. The threshold metric thus
emerges as the most robust choice for operational-
izing statistical infrequency for originality scoring.
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Dataset Comparison Variable Correlation
Convergent Validity
socialmuse24 Creativity Quotient (CQ) r = 0.40[0.23,0.55], P < 0.001
socialmuse24 CQ vs. unnormalized R esh r = 0.48[0.32,0.62], P < 0.001
beaty18 Creative Quality (mean ratings) r=0.77[0.71,0.83], P < 0.001
silvial7 Creative Quality (mean ratings) r = 0.54[0.41,0.65], P < 0.001
beaty12 Creative Quality (mean ratings) r = 0.42[0.27,0.55], P < 0.001
mohr16 Rating-based Originality r = 0.42[0.35,0.49], P < 0.001
mohr16 Flexibility vs. unnormalized R{"®s"  r = 0.76 [0.73,0.80], P < 0.001
External Validity

beaty18 Metaphor Generation r =0.17[0.02,0.32], P < 0.05
beaty12 Metaphor Generation r =0.25[0.08,0.40], P < 0.01
beaty18 Openness p =0.16[0.01,0.30], P < 0.05
beaty12 Openness r = 0.30[0.14,0.45], P < 0.001
silvial7 Openness p =0.14[-0.02,0.30], P = 0.09
beaty18 Creative Self-Identity r =0.34[0.19,0.48], P < 0.001
beaty18 Creative Self-Efficacy r = 0.29[0.14,0.44], P < 0.001

Table 3: Convergent and external validity of MUSESCORER’s originality scores, {O""®"}. Values are Pearson (r)
or Spearman (p) correlations with 95% C.I. and significance levels.

8 Conclusion

This work introduces MUSESCORER, a scalable,
zero-shot system for scoring the originality of cre-
ative ideas. By combining the LLM-as-a-judge
paradigm with externally orchestrated retrieval, our
method produces psychometrically aligned, intent-
sensitive judgments without requiring task-specific
fine-tuning or training data.

Across five distinct AUT datasets, MUS-
ESCORER demonstrates robust and consistent per-
formance despite variation in task structures and
idea distributions. Unlike opaque embedding-only
approaches, our use of chain-of-thought (CoT)
prompting yields interpretable outputs, allowing
the system to provide justifications for bucketing
decisions transparently.

Our approach is well-suited to support the grow-
ing body of research on human and Al creativity,
particularly as large-scale, high-throughput studies
become increasingly common (Doshi and Hauser,
2024; Chakrabarty et al., 2025; Tanveer et al., 2018;
Kelty et al., 2025). By combining reliability, in-
terpretability, and scale, this system expands the
practical and methodological toolkit for researchers
and opens new avenues for measuring and under-
standing creative potential in human and Al agents.

Limitations

Several limitations should be considered in fu-
ture work when extending frequency-based orig-

inality scoring. First, demographic fairness and
accessibility remain important concerns. Vari-
ations in language use across cultural or edu-
cational backgrounds—especially in non-English
contexts—may influence bucketing judgments and
introduce bias if not carefully monitored.

Second, our validation is confined to AUT-style,
text-based divergent thinking tasks. How well the
approach generalizes to other creative domains
(e.g., design, visual arts) remains an open question.

Third, while externally orchestrated retrieval mit-
igates some variability, the system remains sen-
sitive to prompt length and phrasing (Liu et al.,
2023). Subtle formatting changes can affect judg-
ment quality, suggesting that prompt engineering
and robustness testing deserve further study.

Fourth, efficiency may have room for improve-
ment. We process ideas one at a time, which stabi-
lizes performance—particularly for smaller mod-
els—but limits throughput. Future work could ex-
plore batching or multi-step reasoning to increase
efficiency, though at potential cost to stability and
computation.

Fifth, we kept the candidate retrieval size small
(K. = {5,10,15}). Larger candidate sets may
improve coverage but increase token usage and
cost. Similarly, our most effective threshold met-
ric uses a heuristic tiering scheme adopted from
prior literature; the robustness of these cutoffs re-
mains to be validated.
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Finally, as with all LLM-based systems, halluci-
nation is a risk. In our case, hallucination manifests
as misassigning an idea to the wrong bucket. How-
ever, MUSESCORER achieves strong alignment
with human annotations and passes psychometric
validation despite this risk, suggesting the system
is reasonably reliable within scope.

Ethical Considerations

We reanalyzed public datasets from prior works
(consistent with their intended use) and did not
collect any new human data for this research. Given
the nature of the research in creative assessment,
we do not readily foresee potential harm or risk.

References

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien
Bubeck, Ronen Eldan, Suriya Gunasekar, Michael
Harrison, Russell J. Hewett, Mojan Javaheripi, Piero
Kauffmann, James R. Lee, Yin Tat Lee, Yuanzhi Li,
Weishung Liu, Caio C. T. Mendes, Anh Nguyen,
Eric Price, Gustavo de Rosa, Olli Saarikivi, and
8 others. 2024. Phi-4 technical report. Preprint,
arXiv:2412.08905.

Selcuk Acar and Mark A Runco. 2014. Assessing
associative distance among ideas elicited by tests
of divergent thinking. Creativity Research Journal,
26(2):229-238.

Raiyan Abdul Baten, Richard N Aslin, Gourab Ghoshal,
and Ehsan Hoque. 2021. Cues to gender and racial
identity reduce creativity in diverse social networks.
Scientific Reports, 11(1):10261.

Raiyan Abdul Baten, Richard N Aslin, Gourab Ghoshal,
and Ehsan Hoque. 2022. Novel idea generation
in social networks is optimized by exposure to a
“Goldilocks™ level of idea-variability. PNAS Nexus,
1(5):pgac255.

Raiyan Abdul Baten, Daryl Bagley, Ashely Tenesaca,
Famous Clark, James P Bagrow, Gourab Ghoshal,
and Ehsan Hoque. 2020. Creativity in temporal social
networks: How divergent thinking is impacted by
one’s choice of peers. Journal of the Royal Society
Interface, 17(171):20200667.

Raiyan Abdul Baten, Ali Sarosh Bangash, Krish Veera,
Gourab Ghoshal, and Ehsan Hoque. 2024. Al can
enhance creativity in social networks. arXiv preprint
arXiv:2410.15264.

Roger E Beaty and Dan R Johnson. 2021. Automating
creativity assessment with SemDis: An open plat-
form for computing semantic distance. Behavior
Research Methods, 53(2):757-780.

Roger E Beaty, Yoed N Kenett, Alexander P Chris-
tensen, Monica D Rosenberg, Mathias Benedek, Qun-
lin Chen, Andreas Fink, Jiang Qiu, Thomas R Kwapil,
Michael J Kane, and 1 others. 2018. Robust predic-
tion of individual creative ability from brain func-
tional connectivity. Proceedings of the National
Academy of Sciences, 115(5):1087-1092.

Roger E Beaty and Paul J Silvia. 2012. Why do ideas
get more creative across time? An executive interpre-
tation of the serial order effect in divergent thinking
tasks. Psychology of Aesthetics, Creativity, and the
Arts, 6(4):3009.

Roger E Beaty and Paul J Silvia. 2013. Metaphorically
speaking: Cognitive abilities and the production of
figurative language. Memory & cognition, 41:255—
267.

Kenes Beketayev and Mark A Runco. 2016. Scoring di-
vergent thinking tests by computer with a semantics-
based algorithm. FEurope’s Journal of Psychology,
12(2):210.

J. Martin Bland and Douglas G. Altman. 1986. Sta-
tistical methods for assessing agreement between
two methods of clinical measurement. The Lancet,
327(8476):307-310.

Terry Bossomaier, Mike Harré, Anthony Knittel, and
Allan Snyder. 2009. A semantic network approach
to the Creativity Quotient (CQ). Creativity Research
Journal, 21(1):64-71.

Thomas J Bouchard Jr and Melana Hare. 1970. Size,
performance, and potential in brainstorming groups.
Journal of Applied Psychology, 54(1p1):51.

Philip Buczak, He Huang, Boris Forthmann, and Philipp
Doebler. 2023. The machines take over: A compar-
ison of various supervised learning approaches for
automated scoring of divergent thinking tasks. The
Journal of Creative Behavior, 57(1):17-36.

Ricardo J. G. B. Campello, Davoud Moulavi, and Jorg
Sander. 2013. Density-based clustering based on
hierarchical density estimates. In Pacific-Asia Con-
ference on Knowledge Discovery and Data Mining
(PAKDD), pages 160-172. Springer.

Raymond Bernard Cattell and Alberta KS Cattell. 1960.
Measuring intelligence with the culture fair tests. In-
stitute for Personality and Ability Testing.

Tuhin Chakrabarty, Philippe Laban, Divyansh Agarwal,
Smaranda Muresan, and Chien-Sheng Wu. 2024. Art
or artifice? Large language models and the false
promise of creativity. In Proceedings of the 2024
CHI Conference on Human Factors in Computing
Systems, pages 1-34.

Tuhin Chakrabarty, Philippe Laban, and Chien-Sheng
Wu. 2025. Can Al writing be salvaged? Mitigating
idiosyncrasies and improving human-Al alignment
in the writing process through edits. In Proceedings
of the 2025 CHI Conference on Human Factors in
Computing Systems, pages 1-33.

19957


https://arxiv.org/abs/2412.08905
https://doi.org/10.1016/S0140-6736(86)90837-8
https://doi.org/10.1016/S0140-6736(86)90837-8
https://doi.org/10.1016/S0140-6736(86)90837-8

Robert Chew, John Bollenbacher, Michael Wenger,
Jessica Speer, and Annice Kim. 2023. LLM-
assisted content analysis: Using large language mod-
els to support deductive coding. arXiv preprint
arXiv:2306.14924.

Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ
Newman. 2009. Power-law distributions in empirical
data. SIAM Review, 51(4):661-703.

Shih-Chieh Dai, Aiping Xiong, and Lun-Wei Ku.
2023. LLM-in-the-loop: Leveraging large lan-
guage model for thematic analysis. arXiv preprint
arXiv:2310.15100.

Colin G DeYoung, Joseph L Flanders, and Jordan B Pe-
terson. 2008. Cognitive abilities involved in insight
problem solving: An individual differences model.
Creativity Research Journal, 20(3):278-290.

Anil R Doshi and Oliver P Hauser. 2024. Generative
Al enhances individual creativity but reduces the col-
lective diversity of novel content. Science Advances,
10(28):eadn5290.

Denis Dumas and Kevin N Dunbar. 2014. Understand-
ing fluency and originality: A latent variable perspec-
tive. Thinking Skills and Creativity, 14:56-67.

Denis Dumas, Peter Organisciak, and Michael Doherty.
2021. Measuring divergent thinking originality with
human raters and text-mining models: A psychomet-
ric comparison of methods. Psychology of Aesthetics,
Creativity, and the Arts, 15(4):645.

Ruth B Ekstrom, John W French, Harry H Harman, and
D Dermen. 1976. Manual for kit of factor-referenced

tests. Princeton, NJ: Educational Testing Service,
586:1989-1995.

Martin Ester, Hans-Peter Kriegel, Jorg Sander, and
Xiaowei Xu. 1996. A density-based algorithm for
discovering clusters in large spatial databases with
noise. In Proceedings of the Second International
Conference on Knowledge Discovery and Data Min-
ing (KDD-96), pages 226-231.

Boris Forthmann, Heinz Holling, Pinar Celik, Martin
Storme, and Todd Lubart. 2017. Typing speed as a
confounding variable and the measurement of quality
in divergent thinking. Creativity Research Journal,
29(3):257-269.

Boris Forthmann, Sue Hyeon Paek, Denis Dumas, Bap-
tiste Barbot, and Heinz Holling. 2020. Scrutinizing
the basis of originality in divergent thinking tests: On
the measurement precision of response propensity es-
timates. British Journal of Educational Psychology,
90(3):683-699.

Mingqi Gao, Jie Ruan, Renliang Sun, Xunjian Yin, Ship-
ing Yang, and Xiaojun Wan. 2023. Human-like sum-
marization evaluation with ChatGPT. arXiv preprint
arXiv:2304.02554.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, and 542 others. 2024. The llama 3 herd of
models. Preprint, arXiv:2407.21783.

Joy Paul Guilford. 1967. The Nature of Human Intelli-
gence. McGraw-Hill.

JP Guilford, PR Christensen, PR Merrifield, and RC Wil-
son. 1978. Alternate Uses: Manual of Instructions
and Interpretation. Orange, CA: Sheridan Psycho-
logical Services.

Alicia Hofelich Mohr, Andrew Sell, and Thomas Lind-
say. 2016. Thinking inside the box: Visual design of
the response box affects creative divergent thinking
in an online survey. Social Science Computer Review,

34(3):347-359.

Gautier Izacard and Edouard Grave. 2020. Distilling
knowledge from reader to retriever for question an-
swering. arXiv preprint arXiv:2012.04584.

Maciej Karwowski. 2014. Creative mindsets: Mea-
surement, correlates, consequences. Psychology of
Aesthetics, Creativity, and the Arts, 8(1):62.

Sean Kelty, Raiyan Abdul Baten, Adiba Mahbub Proma,
Ehsan Hoque, Johan Bollen, and Gourab Ghoshal.
2025. The innovation trade-off: how following su-
perstars shapes academic novelty. Humanities and
Social Sciences Communications, 12(1):926.

Urvashi Khandelwal, Angela Fan, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2020. Generalization
through memorization: Nearest neighbor language
models. In Proceedings of the International Confer-
ence on Learning Representations (ICLR).

Kibeom Lee and Michael C Ashton. 2004. Psychomet-
ric properties of the HEXACO personality inventory.
Multivariate Behavioral Research, 39(2):329-358.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen tau Yih, Tim Rock-
taschel, Sebastian Riedel, and Douwe Kiela. 2020.
Retrieval-augmented generation for knowledge-
intensive NLP task. Advances in Neural Information
Processing Systems, 33:9459-9474.

Dawei Li, Bohan Jiang, Liangjie Huang, Alimoham-
mad Beigi, Chengshuai Zhao, Zhen Tan, Amrita
Bhattacharjee, Yuxuan Jiang, Canyu Chen, Tianhao
Wu, and 1 others. 2024a. From generation to judg-
ment: Opportunities and challenges of LL.M-as-a-
judge. arXiv preprint arXiv:2411.16594.

Dawei Li, Shu Yang, Zhen Tan, Jae Young Baik, Suk-
won Yun, Joseph Lee, Aaron Chacko, Bojian Hou,
Duy Duong-Tran, Ying Ding, and 1 others. 2024b.
DALK: Dynamic co-augmentation of LLMs and KG

19958


https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.1057/s41599-025-05124-z
https://doi.org/10.1057/s41599-025-05124-z

to answer Alzheimer’s disease questions with scien-
tific literature. arXiv preprint arXiv:2405.04819.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang,
Yan Wang, Rui Wang, Yujiu Yang, Shuming Shi, and
Zhaopeng Tu. 2023. Encouraging divergent thinking
in large language models through multi-agent debate.
arXiv preprint arXiv:2305.19118.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2023. Lost in the middle: How language mod-
els use long contexts. Preprint, arXiv:2307.03172.

Ximing Lu, Melanie Sclar, Skyler Hallinan, Niloofar
Mireshghallah, Jiacheng Liu, Seungju Han, Allyson
Ettinger, Liwei Jiang, Khyathi Chandu, Nouha Dziri,
and 1 others. 2024. AI as humanity’s Salieri: Quan-
tifying linguistic creativity of language models via
systematic attribution of machine text against web
text. arXiv preprint arXiv:2410.04265.

J. MacQueen. 1967. Some methods for classification
and analysis of multivariate observations. In Pro-
ceedings of the Fifth Berkeley Symposium on Mathe-
matical Statistics and Probability, volume 1, pages
281-297. University of California Press.

Robert R McCrae, Paul T Costa, Jr, and Thomas A Mar-
tin. 2005. The NEO-PI-3: A more readable revised
NEO personality inventory. Journal of Personality
Assessment, 84(3):261-270.

Meta Al 2024. LLaMA 3.3-70B-Instruct.
https://huggingface.co/meta-11lama/Llama-3.
3-70B-Instruct. Accessed: 2025-05-18.

David Mimno, Hanna Wallach, Edmund Talley, Miriam
Leenders, and Andrew McCallum. 2011. Optimizing
semantic coherence in topic models. In Proceedings
of the 2011 Conference on Empirical Methods in
Natural Language Processing, pages 262-272.

Mark Newman. 2018. Networks. Oxford University
Press.

Jay A Olson, Johnny Nahas, Denis Chmoulevitch,
Simon J Cropper, and Margaret E Webb. 2021.
Naming unrelated words predicts creativity. Pro-
ceedings of the National Academy of Sciences,
118(25):¢2022340118.

Peter Organisciak, Selcuk Acar, Denis Dumas, and
Kelly Berthiaume. 2023. Beyond semantic distance:
Automated scoring of divergent thinking greatly im-
proves with large language models. Thinking Skills
and Creativity, 49:101356.

Peter Organisciak and Denis Dumas. 2020. Open
creativity scoring. https://openscoring.du.edu.
[Computer software].

Scott E. Page. 2018. The Model Thinker: What You
Need to Know to Make Data Work for You. Basic
Books, New York.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311-318.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing.
Association for Computational Linguistics.

Roni Reiter-Palmon, Boris Forthmann, and Baptiste
Barbot. 2019. Scoring divergent thinking tests: A
review and systematic framework. Psychology of
Aesthetics, Creativity, and the Arts, 13(2):144.

Andrew Rosenberg and Julia Hirschberg. 2007. V-
measure: A conditional entropy-based external clus-
ter evaluation measure. In Proceedings of the 2007
Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL), pages 410—
420, Prague, Czech Republic. Association for Com-
putational Linguistics.

Peter J Rousseeuw. 1987. Silhouettes: A graphical aid
to the interpretation and validation of cluster analysis.
Journal of Computational and Applied Mathematics,
20:53-65.

Mark A Runco and Garrett J Jaeger. 2012. The standard
definition of creativity. Creativity Research Journal,
24(1):92-96.

Mark A Runco and Wayne Mraz. 1992. Scoring diver-
gent thinking tests using total ideational output and
a creativity index. Educational and Psychological
Measurement, 52(1):213-221.

Yanxin Shen, Lun Wang, Chuangqi Shi, Shaoshuai Du,
Yiyi Tao, Yixian Shen, and Hang Zhang. 2024. Com-
parative analysis of listwise reranking with large lan-
guage models in limited-resource language contexts.
arXiv preprint arXiv:2412.20061.

Patrick E Shrout and Joseph L Fleiss. 1979. Intraclass
correlations: Uses in assessing rater reliability. Psy-
chological Bulletin, 86(2):420.

Paul J Silvia, Emily C Nusbaum, and Roger E Beaty.
2017. Old or new? Evaluating the old/new scoring
method for divergent thinking tasks. The Journal of
Creative Behavior, 51(3):216-224.

Paul J Silvia, Beate P Winterstein, John T Willse,
Christopher M Barona, Joshua T Cram, Karl I Hess,
Jenna L Martinez, and Crystal A Richard. 2008. As-
sessing creativity with divergent thinking tasks: Ex-
ploring the reliability and validity of new subjective
scoring methods. Psychology of Aesthetics, Creativ-
ity, and the Arts, 2(2):68.

Allan Snyder, John Mitchell, Terry Bossomaier, and
Gerry Pallier. 2004. The Creativity Quotient: An
objective scoring of ideational fluency. Creativity
Research Journal, 16(4):415-419.

19959


https://arxiv.org/abs/2307.03172
https://arxiv.org/abs/2307.03172
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://openscoring.du.edu
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://aclanthology.org/D07-1043/
https://aclanthology.org/D07-1043/
https://aclanthology.org/D07-1043/

C. Stevenson, I. Smal, M. Baas, M. Dahrendorf, R. Gras-
man, C. Tanis, E. Scheurs, D. Sleiffer, and H. van der
Maas. 2020. Automated AUT scoring using a big
data variant of the consensual assessment technique.
Report Final Technical Report, Modeling Creativ-
ity Project, Universiteit van Amsterdam, Amsterdam.
Faculty of Social and Behavioural Sciences (FMG),
Psychology Research Institute (PsyRes).

M Iftekhar Tanveer, Samiha Samrose, Raiyan Abdul
Baten, and M Ehsan Hoque. 2018. Awe the audience:
How the narrative trajectories affect audience percep-
tion in public speaking. In Proceedings of the 2018
CHI Conference on Human Factors in Computing
Systems, pages 1-12.

L. L. Thurstone. 1938. Primary mental abilities. The
Mathematical Gazette, 22(251):411-412.

Nguyen Xuan Vinh, Julien Epps, and James Bailey.
2010. Information theoretic measures for clusterings
comparison: Variants, properties, normalization and
correction for chance. Journal of Machine Learning
Research, 11(95):2837-2854.

Vijay Viswanathan, Kiril Gashteovski, Kiril Gash-
teovski, Carolin Lawrence, Tongshuang Wu, and Gra-
ham Neubig. 2024. Large language models enable
few-shot clustering. Transactions of the Association
for Computational Linguistics, 12:321-333.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing
Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,
and Furu Wei. 2022. Text embeddings by weakly-
supervised contrastive pre-training. arXiv preprint
arXiv:2212.03533.

Joe H. Ward Jr. 1963. Hierarchical grouping to opti-
mize an objective function. Journal of the American
Statistical Association, 58(301):236-244.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2022. Chain of thought prompting
elicits reasoning in large language models. Advances
in Neural Information Processing Systems (NeurIPS).

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas
Muennighoff. 2023a. C-pack: Packaged resources
to advance general chinese embedding. Preprint,
arXiv:2309.07597.

Ziang Xiao, Xingdi Yuan, Q Vera Liao, Rania Abdel-
ghani, and Pierre-Yves Oudeyer. 2023b. Support-
ing qualitative analysis with large language models:
Combining codebook with GPT-3 for deductive cod-
ing. In Companion Proceedings of the 28th Inter-
national Conference on Intelligent User Interfaces,
pages 75-78.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao,
Chengen Huang, Chenxu Lv, Chujie Zheng, Day-
iheng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao
Ge, Haoran Wei, Huan Lin, Jialong Tang, and 41
others. 2025. Qwen3 technical report. Preprint,
arXiv:2505.09388.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2023. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems, 36:11809—11822.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Wein-
berger, and Yoav Artzi. 2019. BERTscore: Evalu-
ating text generation with BERT. arXiv preprint
arXiv:1904.09675.

Lirui Zhao, Yue Yang, Kaipeng Zhang, Wenqi Shao,
Yuxin Zhang, Yu Qiao, Ping Luo, and Rongrong Ji.
2024. Diffagent: Fast and accurate text-to-image API
selection with large language model. In Proceedings
of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 6390-6399.

19960


https://hdl.handle.net/11245.1/13ad004a-1b61-45a0-8a9a-56d7a165d7ef
https://hdl.handle.net/11245.1/13ad004a-1b61-45a0-8a9a-56d7a165d7ef
https://doi.org/10.2307/3607923
http://jmlr.org/papers/v11/vinh10a.html
http://jmlr.org/papers/v11/vinh10a.html
http://jmlr.org/papers/v11/vinh10a.html
https://doi.org/10.1162/tacl_a_00648
https://doi.org/10.1162/tacl_a_00648
https://arxiv.org/abs/2309.07597
https://arxiv.org/abs/2309.07597
https://arxiv.org/abs/2505.09388

A Supplementary Materials

A.1 System Component Choices

We experiment with the following system compo-
nent alternatives:

(i) Large language models: M =
{1lama3.3:70b-Instruct (Meta Al, 2024;
Grattafiori et al., 2024), qwen3:32b (Yang et al.,
2025), phi4:14b (Abdin et al., 2024)}. We pick
these mid-sized, open-source models for their cost
and computation efficiencies.

(i) Sentence embedding models: & =
{all-mpnet-base-v2 (Reimers and Gurevych,
2019), bge-large-en-v1.5 (Xiao et al., 2023a),
e5-large-v2 (Wang et al., 2022)}. These models
are freely available on Huggingface and have been
widely used in recent technological developments.

(iii)) Prompting strategies: P = {vanilla,
CoT (Wei et al., 2022)}.

In our experiments, we found the combination
of 11ama3.3:70b-Instruct, e5-large-v2, and
CoT to give the best performance.

A.2 Experimentation Setup and GPU Usage

We conducted all experiments using (i) an Intel
Core i7-based computer with 64GB RAM and an
RTX 3070 Ti graphics card, and (ii) three MacBook
Pro laptops. All our code and data are available on
GitHub. The R&D and final result generation took
roughly 100 GPU days.

A.3 LLM Prompts
System Prompt (Vanilla Prompting)

e N
You are an idea bucket annotator for ideas

generated for the object {object_name} in
Guilford’s Alternative Uses Test. You
will be given an input_idea to annotate
against up to {comparison_k} comparison_ideas,
given to you in a dictionary format
with key-value pairs of comparison_idea_ID:
comparison_idea_description. The keys are
integers, and the values are strings. Your
goal is to determine if the input_idea is a
very obviously rephrased version of one of

those comparison_idea_description, or if it
is slightly different.

if input_idea is a very obviously
rephrased version of a certain

comparison_idea_description:
your_annotation_ID = comparison_idea_ID

key of that comparison_idea_description value

elif input_idea is a slightly different one:
your_annotation_ID = -1

Your response must be a text string containing

exactly: <your_annotation_ID>.

For example: if your_annotation_ID is 6

since the input idea is a very obviously

N

rephrased version of comparison_idea_ID 6,
your response string should be "6". Another
example: if your_annotation_ID is -1 because
the input idea is not an obvious rephrasing of
any comparison_idea_ID, your response string
should be "-1".

Absolutely do not provide any extra text.

System Prompt (CoT Prompting)

You are an idea bucket annotator for ideas
generated for the object {object_name} in
Guilford’s Alternative Uses Test. You
will be given an input_idea to annotate
against up to {comparison_k} comparison_ideas,
given to you in a dictionary format
with key-value pairs of comparison_idea_ID:
comparison_idea_description. The keys are
integers, and the values are strings. Your
goal is to determine if the input_idea is a
very obviously rephrased version of one of

those comparison_idea_description, or if it
is slightly different.

if input_idea is a very obviously
rephrased version of a certain

comparison_idea_description:
your_annotation_ID = comparison_idea_ID

key of that comparison_idea_description value

elif input_idea is a slightly different one:

your_annotation_ID = -1
You will also provide a reason string
containing a single sentence explaining

why you gave the
your_annotation_ID.
Your response must be a
string containing

<your_annotation_ID><SPACE><reason>.

input_idea that specific

text
exactly:

For example: if your_annotation_ID is 6
and the reason is "The input idea is
a very obviously rephrased version of

comparison_idea_ID 6", your response string
should be "6 The input idea is a very obviously
rephrased version of comparison_idea_ID 6".
Another example: if your_annotation_ID is -1
and the reason is "The input idea is not an
obvious rephrasing of any comparison_idea_ID",
your response string should be "-1 The input
idea is not an obvious rephrasing of any
comparison_idea_ID".

Absolutely do not provide any extra text.

User Prompt Per Idea (Both Conditions)

p
input_idea: {idea_text}

comparison_ideas: {repr(comparison_ideas)}

A.4 Al Usage

We used Grammarly Al to improve the grammat-
ical accuracy of the manuscript, and ChatGPT to
speed up the implementation of standard statistical
analysis code.
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A.5 Supplementary Tables and Figures

Table Al: Inter-human annotator agreement on idea
bucketing in socialmuse24.

Metric Mean [95% C.1.]
AMI 0.66 [0.64, 0.68]
NMI 0.85 [0.84, 0.88]
V-measure 0.85 [0.84, 0.87]
Homogeneity  0.80 [0.77,0.82]
Completeness  0.92 [0.89, 0.95]

Table A2: Pearson and Spearman correlations between
participant-level normalized O™*"i¢ scores based on H1
and H2’s bucketing. N = 109 in all cases.

Scoring Metric Correlation Type Estimate 95% C.I. P-value
threshold Pearson’s r 0.77 [0.69,0.84] P < 0.001
Spearman’s p 0.75 [0.65,0.82] P < 0.001
shapley Pearson’s r 0.79 [0.70,0.85] P < 0.001
Spearman’s p 0.74 [0.64,0.82] P < 0.001
rarity Pearson’s r 0.72 [0.61,0.80] P < 0.001
Spearman’s p 0.64 [0.51,0.74] P < 0.001
uniqueness Pearson’s r 0.73 [0.63,0.81] P < 0.001
Spearman’s p 0.66 [0.54,0.76] P < 0.001
Table A3: ICC reliability of the participants’ normal-
ized originality O™*'"i¢ scores based on H1 and H2’s
bucketing.
Scoring Metric ICC(3,k) F  dfl df2  P-value 95% C.L
threshold 0.85 6.79 108 108 P <0.001 [0.78,0.90]
shapley 0.85 6.67 108 108 P < 0.001 [0.78,0.90]
rarity 0.83 5.73 108 108 P < 0.001 [0.75,0.88]
uniqueness 0.80 497 108 108 P <0.001 [0.71,0.86]
Table A4: Cluster count K and power-law exponent o
for various computational scoring methods.
Model K [95% C.L] a [95% C.L]
1lama3.3, CoT 465.4 [426.8, 504.0] 2.28 [2.14, 2.42]
gwen3, CoT 462.4 [432.7,492.1] 2.43[2.20, 2.67]
phi4, CoT 255.0 [207.3, 302.7]  2.39 [1.72, 3.05]
1lama3.3, vanilla 367.8 [333.3,402.3] 2.29[1.97, 2.61]
phi4, vanilla 275.6 [229.5, 321.7]  2.51 [2.23, 2.78]
K -means, Silhouette 830.6 [729.2, 932.0] 3.12[2.82, 3.43]
K -means, Semantic 797.4 [757.8,837.0] 3.12[2.67, 3.57]
Agglomerative, Silhouette  588.0 [524.9, 651.1] 5.68 [1.26, 10.09]
Agglomerative, Semantic ~ 838.0 [815.9, 860.1]  3.80 [2.63, 4.97]
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Table AS: Agreement metrics comparing computational
models to H2’s ground truths. Values denote mean +
half-width of the 95% C.I. (N = 109).

Model AMI NMI Pearsonr Spearmanp ICC(3,1)
% 1lama3.3, CoT 0.57+0.04 084+0.02 0.76+0.08 0.74+0.09 0.74+0.09
% gwen3, CoT 0.54+0.04 0.83+0.02 0.74+£0.09 0.73£0.09 0.74+0.09
& phi4, CoT 0.56+0.03 0.79+£0.01 0.67+£0.10 0.68+0.10 0.67+0.10
E llama3.3,vanilla 0.59+0.03 0.83+0.01 0.76£0.08 0.74+0.09 0.75 = 0.08
S phi4, vanilla 0.55+£0.04 0.80+0.01 0.73+£0.09 0.71+£0.10 0.73+£0.09
2 K-means, Silhouette 0.28 £0.07 0.80+0.02 0.59+0.12 0.62+0.12 0.59+0.12
= K-means, Semantic  0.30+£0.05 0.80+0.02 0.66+0.11 0.68+0.10 0.66+0.11
ch Aggl., Silhouette 0.36+£0.03 0.80+£0.02 0.65+0.11 0.60+0.12 0.64+0.11

Aggl., Semantic 026+0.05 0.80x0.02 060+0.12 064+0.11 0.60+0.12
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Figure A2: AMI and NMI performance comparison against annotator H1
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Figure A3: Pearson’s r and IC'C performance comparison against annotator H1
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