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Introduction

Welcome to CoNLL, the annual conference organized by the ACL Special Interest Group on Natural
Language Learning (SIGNLL). As in previous years, CoNLL is a single-track conference with a focus
on theoretically, cognitively and scientifically motivated approaches to computational linguistics, parti-
cularly exploring interactions between theoretical issues and computational modeling. This year, CoNLL
is held alongside ACL 2025.
For our conference program, we received a total of 217 archival and 20 non-archival paper submissions,
out of which we accepted 40 archival submissions (18%) and 6 non-archival submissions (30%). In
addition to direct submissions, our program includes one presentation of a Findings paper accepted to
the ACL main conference. Accepted papers are presented in two poster sessions and four oral sessions.
In addition, the program includes a discussion session as well as two invited talks, by Raquel Fernández
and Jean-Rémi King.
Our program committee consisted of 22 area chairs and 189 reviewers, whom we’d like to thank very
much for providing constructive reviews and thoughtful recommendations. Special thanks go to our
publication chairs, Emily Cheng and Selina Meyer, and publicity chairs, Snigdha Chaturvedi and Anvesh
Rao Vijjini, for their crucial support. The SIGNLL board and last year’s organizers provided numerous
useful tips and important information. We are grateful for Google DeepMind’s sponsoring of the Best
Paper Award.
And, last but very much not least, a big thank you to the authors and the community, without whom this
conference would not exist.

Gemma and Michael
CoNLL 2025 conference co-chairs
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Abstract

The ability of language models to compre-
hend and interact in diverse linguistic and
cultural landscapes is crucial. The Can-
tonese language used in Hong Kong presents
unique challenges for natural language pro-
cessing due to its rich cultural nuances and
lack of dedicated evaluation datasets. The
HKCanto-Eval benchmark addresses this gap
by evaluating the performance of large lan-
guage models (LLMs) on Cantonese language
understanding tasks, extending to English and
Written Chinese for cross-lingual evaluation.
HKCanto-Eval integrates cultural and linguis-
tic nuances intrinsic to Hong Kong, provid-
ing a robust framework for assessing language
models in realistic scenarios. Additionally,
the benchmark includes questions designed to
tap into the underlying linguistic metaknowl-
edge of the models. Our findings indicate that
while proprietary models generally outperform
open-weight models, significant limitations re-
main in handling Cantonese-specific linguis-
tic and cultural knowledge, highlighting the
need for more targeted training data and eval-
uation methods. The code can be accessed at
https://github.com/hon9kon9ize/hkeval2025

1 Introduction

Recent advancements in large language models
(LLMs) such as GPT-4, Gemini, and various open-
weight models have demonstrated remarkable ca-
pabilities in natural language understanding across
multiple languages (Xu et al., 2024). However,
the performance of most models significantly de-
clines when applied to languages other than En-
glish, yielding particularly poor outcomes for low-
resource languages (LRLs). These languages are
under-represented lingua francas that play a cru-
cial role in certain communities, and it is imper-
ative to improve multilingual support for LRLs
by creating benchmarks to guide the future de-
velopment of multilingual LLMs. Since they are

poorly supported due to the lack of training data,
if there is a close language with more resources,
this problem can potentially be mitigated through
few-shot learning. A notable example of this strat-
egy is the use of Bahasa Indonesian to handle re-
gional languages in Indonesia (Aji et al., 2022;
Winata et al., 2022). This strategy aligns with the
spirit of language sustainability and AI support for
marginalised communities (Du et al., 2020), which
is also applicable to Cantonese.
This paper investigates the status of LLM sup-

port for Cantonese (ISO 639-3: yue), a member of
the Sinitic (“Chinese”) branch of the Sino-Tibetan
language family, and a distinct variety unintelli-
gible to users of Mandarin, the standard variety
of Chinese used in Mainland China (Pǔtōnghuà)
and Taiwan (Guóyǔ). Cantonese, spoken by over
85 million people according to Ethnologue (Eber-
hard et al., 2024), serves as the most common
and de facto official language of Hong Kong and
Macau, and is also widely used in parts of Guang-
dong, Guangxi, Malaysia, and Singapore. Addi-
tionally, it is used as a diasporic language in coun-
tries such as Canada (Sachdevl et al., 1987), the
United States (Leung and Uchikoshi, 2012), Aus-
tralia (Zhang et al., 2023), and the United King-
dom (Bauer, 2016; Tsapali and Wong, 2023). De-
spite its widespread use, Cantonese is still consid-
ered a low-resource language (Xiang et al., 2024)
due to the lack of quality written resources. This
scarcity results from a “diglossia” that requires
Written Chinese (which resembles Mandarin) to
be used in formal settings1, and a longstanding,
ideologically-driven stigmatisation of Cantonese
as an informal/vulgar language (Lau, 2024), fur-
ther confines written Cantonese to informal con-

1Even in Mandarin-like Written Chinese, there are persis-
tent lexical differences with other regions due to vastly differ-
ent governmental, legal and education systems. For instance,
the word “taxi” is rendered as “出租車” in mainland China,
“計程車” in Taiwan, and “的士” in Hong Kong and Macau.

1
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texts like social media and texting.
Cantonese is partially supported by certain

LLMs, with models like GPT-4 and Gemini ca-
pable of comprehending and responding in Can-
tonese (Fu et al., 2024; Hong et al., 2024; Jiang
et al., 2024). There are models dedicated to better
supporting Chinese languages and dialects: The
Hong Kong government is developing an inter-
nal tool based on locally developed LLMs for ad-
ministrative use (Yiu, 2024); SenseTime released
SenseChat (Cantonese), a model trained on 6 bil-
lion tokens of Hong Kong-specific data (Sense-
Time, 2024). However, the current support level
is mostly contributed to by small pockets of Can-
tonese presented in the sheer volume of Written
Chinese training data. There have been compar-
isons between Chinese and Western models on
how well languages spoken in China are handled
(Wen-Yi et al., 2025), showing that Chinese mod-
els outperformed Western ones on Mandarin, but
the same cannot be said for Cantonese or other
languages in China. The following section out-
lines how current benchmarking studies have yet to
provide a comprehensive evaluation for Cantonese
and Hong Kong-related tasks that tap into the in-
depth representation of underlying aspects of the
language, which we believe is the prerequisite for
accurate comprehension in uncommon scenarios.

2 Related Benchmarks

The development of LLMs has spurred significant
research into evaluating their performance and
comparing their capabilities to human reasoning
across general and domain-specific tasks. A promi-
nent benchmark in this area is the MMLU dataset
(Hendrycks et al., 2020), which comprises 57
tasks ranging from elementary to university-level
multiple-choice questions. Despite its widespread
use, MMLU has been criticised for containing
flawed questions and answers (Gema et al., 2024;
Gupta et al., 2024). To address these shortcom-
ings, alternative benchmarks such as BIG-Bench
(Srivastava et al., 2022), MMLU-Pro (Taghanaki
et al., 2024), and MMLU-Pro+ (Wang et al., 2024)
have been introduced, aiming to improve accu-
racy while presenting more diverse and challeng-
ing questions.
In addition to comprehensive benchmarks, re-

searchers have developed domain-specific, expert-
curated datasets to evaluate the reasoning capabili-
ties of LLMs in specialised fields such as program-

ming (HumanEval (Chen et al., 2021); NL2Code
(Zan et al., 2022)) and mathematical reasoning
(GSM8K (Cobbe et al., 2021); MATH (Hendrycks
et al., 2021); MATH 401 (Yuan et al., 2023); Omni-
MATH (Gao et al., 2024)).
Although most existing LLM benchmarks fo-

cus on English-language tasks, culturally-aware
datasets integrating machine-translated questions,
native datasets, and exam questions have been
developed in other languages, including Ara-
bic (Koto et al., 2024), Basque (Etxaniz et al.,
2024a,b), Spanish (Plaza et al., 2024), Indic lan-
guages (Verma et al., 2024), andKorean (Son et al.,
2024). Similar benchmarks have been published
for Chinese, such as CMMLU (Li et al., 2023) and
C-Eval (Huang et al., 2024) that gathered ques-
tions from various academic and professional ex-
ams in mainland China, and TMLU (Chen et al.,
2024) and TMMLU+ (Tam et al., 2024) that eval-
uate knowledge in Traditional Chinese in the con-
text of Taiwan.
These benchmarks are not applicable to the

Hong Kong context due to the aforementioned
diglossia and regional lexical differences. Re-
cently, Jiang et al. (2024) introduced a Can-
tonese evaluation benchmark that combines four
datasets translated from other languages (ARC,
GSM8K, CMMLU, and Truthful-QA)2, resulting
in a dataset that is heavily biased towards Amer-
ican culture (16.9% entries in the Truthful-QA
dataset reference the United States) or mainland
Chinese exams (CMMLU) (see Appendix A).

3 Methodology

HKCanto-Eval introduces a specialised bench-
mark to address the lack of systematic tests for
evaluating the Cantonese capabilities and Hong
Kong knowledge of an LLM in these aspects: (1)
Language Proficiency, the capability in an accu-
rate and nuanced understanding of Cantonese and
local-flavoured Written Chinese, as well as gen-
erating fluent, idiomatic, genre-appropriate Can-
tonese text in question and answering, translation,
and summarisation tasks; (2) Cultural Knowl-
edge, in-depth knowledge about not only general
historical and geographical facts related to Hong
Kong, but also everyday practices, local customs,
beliefs and values, and cultural references from

2It also contains a translation evaluation component
for English-Cantonese and Simplified-to-Traditional Chinese
translations, but its data sources and evaluation methods are
not fully transparent.

2



Figure 1: Diagram showing the tasks of the HKCanto-Eval Benchmark

movies, music, literature, and internet culture; (3)
Reasoning and Problem-Solving, reasoning and
problem-solving skills within a Cantonese and/or
Hong Kong-based context, including reasoning
about the sound and written forms of the language.
These aspects are incorporated into the five

datasets outlined below.

3.1 Translated MMLU Dataset
The first dataset comprises 14,042 questions from
the original MMLU dataset in English (Hendrycks
et al., 2020) and their Cantonese translation3. This
allows us to compare how LLMs perform when
handling knowledge in a wide range of subjects
in Cantonese rather than in English (See Appendix
B).

3.2 Academic and Professional Dataset
The Academic and Professional Dataset is a set
of multiple-choice questions curated to measure
LLMs’ reasoning and problem-solving abilities in
domain-specific knowledge. The dataset contains
multiple-choice questions from 3 sub-categories:
(1) Academic: Questions sourced from Hong
Kong Diploma of Secondary Education (HKDSE),
a territory-wide high-school graduate-level exam;
extracted and manually corrected from scanned

3The translation was done by the Google Gemini 1.5 Flash
API, which offers a balance between top performance and cost
as one would find in the later section. To address concerns
regarding the accuracy of LLM translation, we have selected
4 questions from each category for human checking. 202 out
of 228 sentences were judged to be good by the raters.

PDFs and are believed to have never appeared on-
line in a plain-text form; (2) Professional: Ques-
tions from seven professional qualification exams,
extracted from text PDF files found on the cor-
responding official sites (in which the model an-
swers were not on the same page as the questions,
avoiding data contamination concerns), and an ad-
ditional set of Taxi Licensing Exam Styled Route
Planning questions on Hong Kong roads and geo-
graphical features; (3) Law: Questions about law
in Hong Kong across 15 categories sourced from
the Internet, and an additional subset of the Basic
Law edited by the authors.
All questions are in Written Chinese (in the Tra-

ditional script). We also included an English ver-
sion if it is available. The details of this dataset can
be found in Appendix C.

3.3 Hong Kong Cultural Questions Dataset

This dataset contains 277 manually crafted ques-
tions divided into five categories that capture cul-
tural knowledge common to people who have lived
or grown up in Hong Kong, that are often not
learned in schools. The categories are Food Cul-
ture, History and Landmarks, Language and
Expressions, Life in Hong Kong and Local Area
Knowledge. The questions were collected in a
way to capture knowledge from all walks of life.
244 questions were developed by the authors and
volunteers for the first four categories, and the last
category comes from an online quiz. Questions
were created so that they were non-trivial and at
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the same time not too obscure, and have been ver-
ified by all the authors. Details can be found in
Appendix D.

3.4 Linguistic Knowledge Dataset
This is an assessment of the linguistic knowledge
represented in the models, inspired by the ap-
proach of PhonologyBench (Suvarna et al., 2024)
for English. To our knowledge, this innovative ap-
proach has never been incorporated into existing
Cantonese or Chinese benchmarks in general.

3.4.1 Phonological Knowledge
The dataset contains 100 questions that evalu-
ate phonological knowledge about characters and
words of an LLM, including the judgment of homo-
phones and rhyming and other non-trivial reason-
ing tasks based on word pronunciation. These are
particularly important in the Cantonese context, as
the writing system does not provide reliable cues
about the pronunciation of words, and Cantonese
materials are not accompanied by sound transcrip-
tion. This knowledge needs to be present in the
training data for tasks that require sound-related
operations or reasoning (See Appendix E.1).

3.4.2 Orthographic Knowledge
The Orthographic Knowledge Dataset evaluates
the character meta-knowledge of an LLM. Can-
tonese users fromHongKong need to know around
4,000 characters by the age of 12 and will have
built sound knowledge about the representation of
the characters. This subset contains 100 questions
about the strokes, structure, arrangement, and radi-
cal and constituent components of common charac-
ters. Cantonese uses the Traditional Chinese script
(ISO 15924: Hant) in Hong Kong and Macau, and
the script is also used in Taiwan. There could be
influence fromMandarin data or Taiwan usage not
shared by Cantonese. It is also expected that cer-
tain models may produce incorrect answers due to
the over-reliance on simplified Chinese data (See
Appendix E.2).

3.4.3 Grapheme-to-Phoneme (G2P)
Conversion

This dataset addresses the task of converting a
string of written text represented in Traditional
Chinese characters into Jyutping, a widely adopted
romanisation standard of Cantonese4. This is sim-
ilar to typical G2P tasks except that Jyutping is

4https://lshk.org/jyutping-scheme

used instead of the International Phonetic Alphabet
(IPA) as the output. G2P functionalities have been
implemented by PyCantonese (Lee et al., 2022),
a Cantonese NLP package, Hambaanglaang Con-
verter5 and Visual Fonts6. As the task is non-
deterministic, rule-based conversions are bound to
be unreliable (althoughVisual Fonts have achieved
very high accuracy now). There is also no reli-
able non-rule-based G2P system to our best knowl-
edge. This part of the dataset contains 150 pairs
of Character-Jyutping sentences from both Stan-
dardWritten Chinese and Cantonese and in a range
of formality levels, manually checked by profes-
sional linguists from the Linguistic Society of
Hong Kong, the organisation that established and
maintains the Jyutping system. The score calcula-
tion method is discussed in Appendix E.3.

3.5 NLP Tasks Dataset
Multiple-choice questions offer a structured ap-
proach to assess LLM factual knowledge and rea-
soning, but they are insufficient for evaluating
real-world language understanding and generation.
Open-ended tasks, including translation and sum-
marisation, were incorporated.
A translation dataset comprising 20 Cantonese

sentences with complex linguistic nuances was
created, with each sentence manually translated
into English and written Chinese (resulting in 4
translation pairs per sentence) (See Appendix F).
For summarisation, 10 Cantonese articles and 10
TED talk subtitles were used. The importance of
transcription-based summarisation, reflecting Can-
tonese’s prevalence in oral communication, is em-
phasised by the inclusion of TED talks (See Ap-
pendix G).
Performance on traditional NLP tasks like senti-

ment analysis was also evaluated. Leveraging the
OpenRice dataset (toastynews, 2020) (restaurant
reviews categorised as positive, neutral, or neg-
ative), 1200 reviews (avg. 309 characters) with
a balanced sentiment distribution were included.
Additionally, a new dataset of 399 Facebook com-
ments (avg. 24 characters), labelled by paid in-
terns, was created (See Appendix H).

3.6 Evaluation Method
The evaluation process of multiple-choice ques-
tions follows the standard 5-shot evaluation pro-
cedures in MMLU formulation. However, for the

5https://test.hambaanglaang.hk
6https://visual-fonts.com

4

https://lshk.org/jyutping-scheme
https://test.hambaanglaang.hk/
https://visual-fonts.com


Hong Kong Cultural Questions Dataset, a zero-
shot evaluation was also conducted to emulate ac-
tual usage. The translated MMLU dataset used
the same system prompt as the original MMLU
dataset. For other multiple-choice questions, a
short sentence with the name of the exam or ques-
tion subcategory is added.
For the G2P dataset, character error rates (CER)

and Levenshtein distance were both used to calcu-
late the discrepancy between the model output and
the gold standard in a five-shot evaluation. The
summarisation tasks were evaluated without any
example to avoid exceeding the context length of
any model, while zero and three-shot evaluations
were carried out for the translation task.
The outputs of both translation and summari-

sation evaluation were evaluated and graded by
paid undergraduate students and teaching assis-
tants. The rubric can be found in Appendix F and
G. As technology improves, future LLMs can per-
form the task to offer scalability. Nonetheless, the
results from this human evaluation will be useful
for verifying the validity and consistency of LLM-
as-a-judge in the future.

3.7 Model Selection
13 model families were selected for evaluation.
Proprietary models including OpenAI GPT4o
(Hurst et al., 2024) and GPT4-mini (OpenAI,
2024), Google Gemini 1.5 Flash and Gemini 1.5
Pro (Gemini Team et al., 2024) and Anthropic
Claude 3.5 Sonnet (Anthropic, 2024)were selected
for their reported superior performance across dif-
ferent languages.
Three proprietary models from Chinese com-

panies, including Doubao Pro from ByteDance
(Doubao, 2024), Erne 4.0 from Baidu (Baidu Inc.,
2023) and SenseChat (Cantonese) from Sense-
Time (SenseTime, 2024), were also incorporated.
All proprietarymodels were accessed through their
API, except SenseChat, which was accessed via
the web interface due to a failure to get verified
to use their API.
Popular multilingual open-weight models in-

cluding Aya 23 8B (Aryabumi et al., 2024),
Gemma 2 2B, 9B and 27B (Gemma Team et al.,
2024), Llama 3.1 8B, 70B and 405B (Dubey
et al., 2024), and Mistral Nemo Instruct 2407
12B (Mistral, 2024) were included to assess their
cross-lingual ability. The collection also included
two open-weight multilingual models from Chi-
nese companies, Yi 1.5 6B, 9B and 34B (Young

et al., 2024) and Qwen2 7B and 72B (Yang et al.,
2024). In addition, CantoneseLLM (CLLM) v0.5
6B and 34B7 are two of the few open-weight mod-
els trained specifically on Cantonese data. They
were trained by fine-tuning Yi 1.5 6B and 34B
models with around 400 million tokens of Hong
Kong-related content. Open-weight instructions
fine-tuned models smaller than 70B parameters
were evaluated using Nvidia H100 GPUs. The
70B and 405B models were evaluated using the
API of SiliconFlow8.

4 Results

4.1 MMLU

Table 1 shows the results of the multiple-choice
questions. Proprietary models and open-weight
models like Llama 3.1 70B, 405B, and Qwen 2
72B performedwell inMMLU, but experienced an
average of 7.46 percentage point drop when ques-
tions were in Cantonese. Considering potential er-
rors from machine translations, this is evidence of
Cantonese reasoning and problem-solving ability.

4.2 Academic and Professional Questions

The results of this dataset showed expected
problem-solving abilities across models in differ-
ent subject areas, in particular, general weaknesses
in handling secondary school-level mathematics
and strong performance in legal questions. Pro-
prietary models generally performed better than
open-weight models. The sub-scores in the indi-
vidual tasks show that most models struggled with
academic questions that were never posted online.
It is worth noting that some open-weight models
(e.g. CLLM v0.5 34B and Qwen2 72B) outper-
formed most models, and we can conduct further
investigation on what additional training data was
used to achieve this performance. Written Chi-
nese yielded better overall results, and this is at-
tributed to the Law dataset, which only came in
Chinese. Discounting this set, Written Chinese
caused a slight drop in performance. This indi-
cates thatmulti-lingual open-weight LLMs showed
cross-lingual capabilities, maintaining similar per-
formance across both languages.

7https://huggingface.co/hon9kon9ize/CantoneseLLMChat-
v0.5

8https://siliconflow.cn
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MMLU Academic &
Professional Cultural Average

Model EN YUE EN ZH 0-shot 5-shot EN ZH/YUE
Claude 3.5 Sonnet 85.0% 81.5% 75.1% 75.2% 71.7% 75.0% 80.1% 75.8%
Doubao Pro 79.8% 74.2% 60.8% 70.5% 70.7% 75.0% 70.3% 72.6%
Ernie 4.0 81.0% 75.2% 70.4% 72.4% 68.2% 75.2% 75.7% 72.8%
Gemini 1.5 Flash 79.0% 73.1% 67.4% 68.3% 61.0% 64.0% 73.2% 66.6%
Gemini 1.5 Pro 83.2% 77.6% 71.0% 71.7% 74.0% 73.8% 77.1% 74.3%
GPT4o 84.8% 80.3% 77.6% 75.3% 77.5% 77.2% 81.2% 77.6%
GPT4o-mini 76.7% 69.4% 62.0% 65.6% 55.6% 60.6% 69.4% 62.8%
SenseChat 78.7% 70.1% 73.6% 75.6% 67.4% 77.4% 76.1% 68.8%
Aya 23 8B 56.6% 47.1% 44.8% 49.0% 39.5% 37.7% 50.7% 43.3%
CLLM v0.5 6B 58.6% 51.7% 50.9% 53.5% 52.0% 56.1% 54.7% 53.3%
CLLM v0.5 34B 75.9% 69.9% 66.8% 69.9% 72.5% 76.7% 71.3% 72.3%
Yi 1.5 6B 64.1% 54.0% 53.7% 58.3% 47.7% 50.7% 58.9% 52.7%
Yi 1.5 9B 70.9% 60.8% 59.2% 63.3% 48.7% 57.3% 65.0% 57.5%
Yi 1.5 34B 76.1% 68.5% 63.7% 68.7% 67.7% 72.9% 69.9% 69.5%
Gemma 2 2B 58.5% 46.5% 45.3% 48.5% 33.3% 35.2% 51.9% 40.9%
Gemma 2 9B 73.4% 64.3% 63.6% 64.0% 49.1% 51.6% 68.5% 57.3%
Gemma 2 27B 76.4% 68.4% 65.1% 68.1% 57.1% 60.9% 70.7% 63.6%
Llama 3.1 8B 69.0% 56.4% 51.4% 57.1% 45.6% 52.7% 60.2% 52.9%
Llama 3.1 70B 80.3% 74.9% 68.2% 70.0% 63.0% 64.4% 74.2% 68.1%
Llama 3.1 405B 84.5% 78.4% 70.9% 74.2% 67.9% 69.9% 77.7% 72.6%
Mistral Nemo 12B 68.8% 58.4% 54.6% 58.0% 40.1% 42.7% 61.7% 49.8%
Qwen2 7B 71.2% 64.8% 60.7% 65.4% 53.6% 54.8% 66.0% 59.6%
Qwen2 72B 82.9% 78.3% 74.7% 76.3% 72.9% 77.7% 78.8% 76.3%
Random 25.0% 25.5% 22.9% 24.6% 29.8% 28.1% 23.9% 27.0%

Table 1: Model performance on MMLU, Academic and Professional, and Cultural questions. Note that SenseChat
refused to answer one subset of questions in Cultural Question 5-shot evaluation.

4.3 Hong Kong Cultural Questions

Proprietary models and Qwen 2 72B showed a
good understanding of Hong Kong cultural knowl-
edge, yet none of themodels performedwell across
the subcategories. Looking into the sub-scores,
models occasionally matched humans in most sub-
tests (e.g. Food Culture and Life in HK ). However,
when inspecting the results, good performance by
percentage only reflects the size of existing Hong
Kong knowledge represented in Wikipedia entries.
For example, only two models (Yi 1.5 6B and
Qwen2 72B) correctly answered the origin of De-
mae Itcho noodles sold in Hong Kong, while 94%
of humans did. The results for Language & Ex-
pressions also show that most models did not have
a nuanced understanding of Cantonese. Com-
pared to human performance at 85.8%, SenseChat
scored the highest point out of all models in 5-
shot (79.6%), but its performance dropped signif-
icantly in zero-shot (61.4%). In zero-shot evalu-

ation, CLLM v0.5 34B delivered the best perfor-
mance at 77.3%. Furthermore, model size affects
the performance of geospatial tasks, with open-
source models in the 6-9B parameter range achiev-
ing only about 50% of larger models’ performance
on Local Area Knowledge (e.g. Yi 1.5 34B 67.9%,
9B 35.7%). The overall results of this dataset sug-
gest that Hong Kong cultural knowledge is under-
represented in LLM training. See Appendix C for
details.

4.4 Linguistic and NLP Tasks
These two groups of tasks reveal the representa-
tion of Cantonese phonological, orthographic, lex-
ical and grammatical knowledge in existing mod-
els. The overall results (Table 2) show a consis-
tent trend where proprietary models outperformed
open-weight models (but more pronounced in lin-
guistic tasks). GPT-4o led with 76.7% and 89.6%
in both linguistic and NLP tasks. Lower scores
are often due to chance-level performance when
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Phonological Knowledge Orthographic Knowledge NLP

Model Homo-
phone Rhyme Misc. Visual

Sim.
Canton.
Char. Misc. Avg.

Claude 3.5 Sonnet 28.0% 64.0% 16.0% 50.0% 76.9% 59.3% 89.2%
Doubao Pro 16.0% 44.0% 16.0% 70.0% 80.8% 48.1% 87.0%
Ernie 4.0 28.0% 60.0% 18.0% 70.0% 80.8% 53.7% 82.7%
Gemini 1.5 Flash 12.0% 20.0% 24.0% 40.0% 73.1% 31.5% 83.2%
Gemini 1.5 Pro 16.0% 40.0% 24.0% 50.0% 88.5% 46.3% 87.9%
GPT4o 56.0% 96.0% 28.0% 50.0% 65.4% 63.0% 89.6%
GPT4o-mini 20.0% 60.0% 20.0% 30.0% 57.7% 40.7% 86.1%
SenseChat 16.0% 36.0% 22.0% 75.0% 76.9% 42.6% 78.8%
Aya 23 8B 12.0% 40.0% 14.0% 15.0% 19.2% 31.5% 70.1%
CLLM v0.5 6B 24.0% 8.0% 18.0% 20.0% 50.0% 27.8% 71.9%
CLLM v0.5 34B 28.0% 28.0% 14.0% 35.0% 76.9% 37.0% 73.3%
Yi 1.5 6B 28.0% 12.0% 12.0% 10.0% 50.0% 20.4% 56.6%
Yi 1.5 9B 36.0% 40.0% 24.0% 30.0% 57.7% 18.5% 72.2%
Yi 1.5 34B 16.0% 32.0% 26.0% 30.0% 61.5% 33.3% 82.9%
Gemma 2 2B 8.0% 24.0% 18.0% 25.0% 53.8% 22.2% 73.4%
Gemma 2 9B 20.0% 28.0% 24.0% 25.0% 50.0% 33.3% 85.0%
Gemma 2 27B 20.0% 12.0% 16.0% 25.0% 65.4% 24.1% 83.2%
Llama 3.1 8B 12.0% 16.0% 18.0% 25.0% 42.3% 38.9% 60.3%
Llama 3.1 70B 28.0% 40.0% 12.0% 30.0% 61.5% 35.2% 84.5%
Llama 3.1 405B 20.0% 44.0% 18.0% 35.0% 65.4% 50.0% 64.4%
Mistral Nemo 12B 12.0% 28.0% 10.0% 25.0% 23.1% 37.0% 68.8%
Qwen2 7B 8.0% 40.0% 12.0% 35.0% 46.2% 33.3% 66.8%
Qwen2 72B 12.0% 28.0% 16.0% 50.0% 76.9% 48.1% 83.5%
Random/Control 16.0% 28.0% 24.0% 30.0% 11.5% 27.8% 76.8%

Table 2: Model performance on Linguistic Knowledge Dataset multiple-choice questions and NLP tasks. The bot-
tom row indicates the expected correctness from random selection for the Phonological and Orthographic Knowl-
edge tasks. For NLP, the reported figure is the average evaluation of professionally prepared translations for trans-
lation tasks serving as a control.

knowledge is absent, or below chance-level due to
influence from Mandarin. Here are the key find-
ings and observations:
Most LLMs understand Cantonese fine. Most

models performed well in Sentiment Analysis
(GPT4o 79.7%, Llama 3.1 405B 78.8%), Transla-
tion (3-shot: GPT4o 98.3%, Qwen2 72B 96.6%),
and Summarisation (Claude 3.5 Sonnet 92.7%,
Gemma 2 9B 91.3%). Models that obtained lower
scores are often due to task completion problems,
e.g. failure to handle long input and problems with
low-frequency/mixed-language tokens.
Proprietary and large open-weight models have

good Cantonese lexical knowledge. The perfor-
mance in translation and sentiment analysis is
closely tied to the ability to determine the mean-
ing of Cantonese-specific words that are not found
or used differently in Mandarin. Most models
also performed well in the Cantoense Character

Selection sub-task (Canton. Char. in Table 2)
under Orthographic Knowledge. It is notewor-
thy that despite good performance with proprietary
models (73.1% - 88.5%) and some open-weight
models (CLLM v0.5 34B and Qwen2 72B, both
76.9%), GPT4o struggled with Cantonese orthog-
raphy (65.4%).
LLMs in general lack knowledge about Can-

tonese pronunciation. In the Grapheme-to-
Phoneme (G2P) conversion task, all models per-
formed far worse than the rule-based control (Vi-
sual Fonts v3.3, CER 0.8%), with the closest be-
ing GPT-4o (5.4%) and Claude 3.5 Sonnet (7.9%)
as shown in Table 3. The appalling results from
all tested language models reveal how linguistic
knowledge is seriously under-represented. While
it is expected that the G2P tasks will be signifi-
cantly improved in newer/future models, actual lin-
guistic tasks that involve sounds require more ad-
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Model CER Levenshtein
Claude 3.5 Sonnet 7.9% 0.018
Doubao Pro 20.9% 0.044
Ernie 4.0 34.4% 0.094
Gemini 1.5 Flash 34.7% 0.083
Gemini 1.5 Pro 15.3% 0.030
GPT4o 5.4% 0.009
GPT4o-mini 12.0% 0.023
SenseChat 54.4% 0.163
Aya 23 8B 96.6% 0.724
CLLM v0.5 6B 94.1% 0.859
CLLM v0.5 34B 23.4% 0.058
Yi 1.5 6B 99.0% 0.577
Yi 1.5 9B 97.2% 0.528
Yi 1.5 34B 79.6% 0.837
Gemma 2 2B 97.5% 0.524
Gemma 2 9B 73.0% 0.259
Gemma 2 27B 62.5% 0.201
Llama 3.1 8B 69.9% 0.270
Llama 3.1 70B 31.3% 0.086
Llama 3.1 405B 26.3% 0.074
Mistral Nemo 12B 59.8% 0.201
Qwen2 7B 97.3% 0.466
Qwen2 72B 74.0% 0.268
Rule Based 0.8% 0.001

Table 3: Model performance in the Grapheme-to-
Phoneme (G2P) dataset. Scores calculated based on
character error rates (CER) and Levenshtein distance.
(Lower is better)

vanced knowledge about the language’s sound sys-
tem. Most models struggled with tasks like judg-
ing homophone or rhyme pairs in Table 2, with
GPT-4o being a notable exception (Homophone:
56.0%; Rhyming: 96.0%). Poor (close to chance
level) performance in other models is not only due
to the lack of G2P ability, a prerequisite for phono-
logical reasoning, but also due to how Mandarin
homophones partially influence this task. This will
continue to be challenging for Cantonese due to
limited specialised data.
LLMs in general do not have meta-linguistic

knowledge represented in Cantonese. Although
certain models, especially the Chinese proprietary
models, performed well in the visual similarity
task (SenseChat 70%, Doubao 70%, Ernie 75%)
or orthographic reasoning (GPT4o 63.0%), the
knowledge seems to have come from Simplified
Chinese, thus their good performance is not trans-
ferred to Cantonese-specific items. This seems to
be caused by insufficient descriptive knowledge

about the structure and properties associated with
the individual glyphs.

5 Conclusion

This paper presents HKCanto-Eval, the first com-
prehensive evaluation benchmark focusing on
Hong Kong Cantonese, by comparing the Can-
tonese language support of 6 proprietary and 7
open-weight model families. Our findings indi-
cate that while these models can understand Can-
tonese in various contexts, retrieve knowledge
about Hong Kong, and address problems written
in or about Cantonese to some extent, there are no-
table limitations. Most models, especially open-
weight models in the 6–9B range, lack sufficient
linguistic, cultural and professional knowledge in
Cantonese and Hong Kong. Performance was par-
ticularly poor for questions requiring knowledge
not commonly found in major online sources.
One area that we paid close attention to is

the presence of metalinguistic knowledge in these
models. There is concern that models showed Can-
tonese proficiency in linguistic and NLP tasks pri-
marily through Mandarin. If their linguistic under-
standing is based solely on Mandarin, they may
perform well on simpler tasks but struggle signifi-
cantly with “false friends” between languages, as
Mandarin knowledge becomes a hindrance. This
benchmark introduces a novel perspective, focus-
ing on Cantonese processing abilities beyond su-
perficial slang and expressions. By requiring rea-
soning about sounds and characters specific to Can-
tonese, our benchmark provides a fairer judgement
that credits models accurately capturing Cantonese
phonology and orthography, while exposing those
that appear competent in Cantonese but are heavily
reliant on Mandarin.
This challenge in processing Cantonese is

shared by other low-resource languages. As train-
ing data increases, models tend to favour high-
resource languages like Mandarin Chinese. The
apparent similarity between Cantonese and Writ-
ten Chinese further affects the ability of even pro-
prietary models to distinguish between these lin-
guistic contexts accurately. Addressing the seg-
regation of regional and linguistic knowledge is
crucial for developing culturally and linguistically
adaptive LLMs. This issue extends beyond Can-
tonese to other under-represented language com-
munities.
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6 Limitations & Future Directions

The current benchmark exhibits several limita-
tions.
Inaccuracies in machine-translated materi-

als: First, the use of machine translation intro-
duces potential inaccuracies. While Gemini 1.5
Flash balances cost and quality, human-translated
questions could provide a more reliable bench-
mark, albeit at a higher resource cost. The reliance
on multiple-choice and text-based questions does
not fully capture the capabilities required for practi-
cal LLM applications such as code generation and
mathematical problem-solving, which demand co-
herent and contextual text generation. The dataset
also lacks multi-modal data like image and audio,
which is now supported by proprietary models and
should be evaluated.
Biases in topic selection: The newly and man-

ually created questions might contain biases and
a lack of scalability and comprehensiveness. The
cultural questions, predominantly created by col-
leagues and relatives of the authors, may intro-
duce bias in cultural references and wordings, lead-
ing to an over-representation of certain perspec-
tives while under-representing others, such as tra-
ditional practices. Political topics were also specif-
ically excluded, due to political complications, lim-
iting cultural representation. This can also be con-
sidered a reasonable compromise since many mod-
els (e.g. those from Chinese companies) are con-
figured to censor these topics, and there is a risk
that our accounts or IP addresses will be banned
before we complete all the benchmarking tasks for
this paper.
Lack of Crosslingual Evaluation: English

translations for cross-lingual ability evaluation
were also not included due to resource limitations.
An additional comparison should be added to com-
pare whether the same set of questions will be an-
swered less satisfactorily when presented in En-
glish or Standard Written Chinese instead of Can-
tonese, in line with the evaluation done for Basque
(Etxaniz et al., 2024a) and Mongolian and Tibetan
(Zhang et al., 2025). We will leave this for future
research.
Reliance on human evaluation: Human evalu-

ation, while insightful, is not scalable. Automated
and objective evaluation methods, such as LLM-
as-a-judge or rule-based approaches, are necessary
for efficient evaluation, but this is challenging due
to the low-resource nature of Cantonese.

Future directions include developing bench-
marks incorporating audio, images, and tables, and
addressing the aforementioned limitations to cre-
ate more comprehensive and representative evalu-
ations.
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Abstract

Formal/symbolic semantics can provide canon-
ical, rigid controllability and interpretability
to sentence representations due to their local-
isation or composition property. How can we
deliver such property to the current distribu-
tional sentence representations to better control
and interpret the generation of language models
(LMs)? In this work, we theoretically frame the
sentence semantics as the composition of se-
mantic role - word content features and propose
the formal semantic geometrical framework. To
inject such geometry into Transformer-based
LMs (i.e. GPT2), we deploy a supervised
Transformer-based Variational AutoEncoder,
where the sentence generation can be manipu-
lated and explained over low-dimensional la-
tent Gaussian space. In addition, we propose a
new probing algorithm to guide the movement
of sentence vectors over such geometry. Exper-
imental results reveal that the formal semantic
geometry can potentially deliver better control
and interpretation to sentence generation.

1 Introduction

Language Models (LMs) have provided a flexible
scaling-up foundation for addressing a diverse spec-
trum of tasks (Touvron et al., 2023). Nonetheless,
the question remains: can we develop language rep-
resentations/models that offer more granular levels
of control and interpretation from the perspective
of “formal/structural” semantics? Addressing this
question will enable us to enhance the controllabil-
ity, interpretability, and safety of LMs.

Formal semantics, which provides a canonical,
granular, and rigid representation, have been inves-
tigated for thousands of years with well established
theoretical frameworks, such as Montague Seman-
tics (Dowty et al., 2012), Davidsonian Semantics
(Davidson, 1967), Semantic Role Labelling (SRL,
Palmer et al. (2010)), and Argument Structure The-
ory (AST, Jackendoff (1992)). One typical char-
acteristic of such formal semantics is the locali-
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V-require

Animals require water for survival
ARG0 VERB ARG1 PRP

Animals require water for survival
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Interpolation Arithmetic
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Formal semantic Geometry Framework

Geometrical Probing Approaches

              BERT               GPT2

Figure 1: Overview: latent sentence semantics can be
decomposed into semantic role- word content features.

sation or composition property. For example, in
the sentence: animals require oxygen for survival,
the words are functionally combined into sentence
semantics: λx(animals(x)→ require(x, oxygen))
where x is the variable of any entity within a log-
ical structure. In this case, we can localise the
sentence semantics by replacing x with birds, etc.
This localised process indicates the interpretation in
Cognitive Science (Lees, 1957; Smolensky, 2006).
However, such localisation is precisely what cur-
rent distributional semantics lack, thereby limiting
their controllability and interpretability.

Disentanglement (Bengio, 2013), which refers
to the feature-dimension alignment, can potentially
provide such localisation, which has been widely
investigated to localise image features, such as nose
in facial images (Esser et al., 2020; Jeon et al.,
2019; Liu et al., 2021). In Transformers (Vaswani
et al., 2017), however, token embeddings, residual
stream, and attention have the polysemanticity phe-
nomenon (Elhage et al., 2022), meaning that mul-
tiple dimensions contribute to a feature. Although
some prior studies explored the possibility of lan-
guage disentanglement, most are focused on coarse-
grained/task-specific semantic features, such as sen-
timent, within the context of style-transfer tasks
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(John et al., 2019; Bao et al., 2019; Hu and Li,
2021; Vasilakes et al., 2022; Gu et al., 2022; Liu
et al., 2023a; Gu et al., 2023).

In this work, we focus on the localisation of
general semantic features of sentences over dis-
tributional space to shorten the gap between deep
latent semantics and formal linguistic representa-
tions (Gildea and Jurafsky, 2000; Banarescu et al.,
2013; Mitchell, 2023), integrating the flexibility of
distributional-neural models with the properties of
linguistically grounded representations, facilitating
both interpretability and generative control from
the perspective of formal semantics. We specifi-
cally choose the conceptual dense explanatory sen-
tences from WorldTree (Jansen et al., 2018) due to
their clear formal semantic representation designed
in the explanatory, cognitive reasoning task.

In the NLP domain, Variational AutoEncoders
(VAEs, Kingma and Welling (2013)) have been rec-
ognized as a prominent foundation for investigating
generation control and interpretation through the
observable low-dimensional smooth and regular la-
tent spaces (e.g., std Gaussian space) (John et al.,
2019; Li et al., 2022b; Bao et al., 2019; Mercatali
and Freitas, 2021; Felhi et al., 2022; Vasilakes et al.,
2022). Therefore, we probe the localisation prop-
erty of formal semantics over latent sentence spaces
under VAE architecture. Specifically:

(1) We first propose a geometrical framework to
present the formal semantic features of sentences
as semantic role - word content pairs (denoted as
role-content) from the perspective of AST (Jack-
endoff, 1992) within the compositional distribu-
tional model (Clark et al., 2008). Subsequently, (2)
we introduce a supervised approach for learning
the role-content features of explanatory sentences
in latent spaces. (3) Additionally, we contribute
to a method to control sentence generation by nav-
igating the sentence vectors across different role-
content features within our geometric framework.
(4) Our findings reveal that the role-content fea-
tures are encoded as a convex cone in the latent
sentence space (Figure 1). This semantic geometry
facilitates the localisation of sentence generation
by enabling the manipulation of sentence vectors
through traversal and arithmetic operations within
the latent space.

2 Related work

Formal-distributional semantics. Integrating
distributional semantics with formal / symbolic se-

mantics is challenging due to the difficulty of opti-
misation over discrete space (van Krieken et al.,
2023). In the Reasoning domain, existing ap-
proaches usually perform symbolic behaviour via
explicitly symbolic representation injection, includ-
ing graph (Khashabi et al., 2018; Khot et al., 2017;
Jansen et al., 2017; Thayaparan et al., 2021), linear
programming (Valentino et al., 2022b; Thayaparan
et al., 2024), adopting iterative methods, using
sparse or dense encoding mechanisms (Valentino
et al., 2020; Lin et al., 2020; Valentino et al., 2022a;
Bostrom et al., 2021), or synthetic natural language
expression (Clark et al., 2020; Yanaka et al., 2021;
Fu and Frank, 2024), among others. Comparatively,
we explore the formal semantic property over dis-
tributional semantics via latent sentence geometry,
which can potentially deliver better interpretation
and control to current LMs.

Language geometry. There is a line of work that
studies the geometry of word and sentence repre-
sentations (Arora et al., 2016; Mimno and Thomp-
son, 2017; Ethayarajh, 2019; Reif et al., 2019;
Li et al., 2020a; Chang et al., 2022; Jiang et al.,
2024a). E.g., king − man + woman = queen,
which the word vectors can be manipulated with
geometric algebra. This phenomenon indicates
the linear subspaces in language representations,
similar features are encoded as a close direction
in latent space, which has been widely explored
ranging from word (Mikolov et al., 2013a) to sen-
tences (Ushio et al., 2021), Transformer-based LMs
(Merullo et al., 2023; Hernandez et al., 2023), and
multi-modal models (Trager et al., 2023; Huh et al.,
2024). Under the linear subspace hypotheses, a
significant work explored the interpretability (Li
et al., 2022a; Geva et al., 2022; Nanda et al., 2023)
and controllability (Trager et al., 2023; Merullo
et al., 2023; Turner et al., 2023) of neural networks.
In this work, we emphasise the formal semantic
geometry for bridging the distributional and formal
semantics, which is currently under-explored.

Language disentanglement. Disentanglement,
refers to separating features along dimensions (Ben-
gio, 2013), leading to clear geometric and linear
representations. In the NLP domain, prior stud-
ies explored the disentanglement between specific
linguistic perspectives, such as sentiment-content
(John et al., 2019), semantic-syntax (Bao et al.,
2019), and negation-uncertainty (Vasilakes et al.,
2022), or syntactic-level disentanglement (Mer-
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catali and Freitas, 2021; Felhi et al., 2022). How-
ever, those approaches focused on disentangling
coarse-grained/task-specific semantic features. In
this work, we contribute to a new lens on the dis-
entanglement (separation) of “general” sentence
features from the perspective of formal semantics.

3 Formal Semantic Geometry

In this section, we first define the sentence semantic
features as semantic role - word content from the
perspective of formal semantics. Then, we link the
semantic features with distributional vector spaces
in which each semantic role - word content is en-
coded as a convex cone, as shown in Figure 1.

Formal semantic features. For formal / struc-
tural semantics, Argument Structure Theory (AST)
(Jackendoff, 1992; Levin, 1993; Rappaport Hovav
and Levin, 2008) provides a model for represent-
ing sentence structure and meaning of sentences in
terms of the interface between the their syntactic
structure and the associated semantic roles of the ar-
guments within those sentences. It delineates how
verbs define the organisation of their associated ar-
guments and the reflection of this organisation in a
sentence’s syntactic realisation. AST abstracts sen-
tences as predicate-argument structures, where the
predicate p (associated with the verb) has a set of
associated arguments argi, where each argument
has an associated positional component i and a the-
matic/semantic roles ri, the latter categorising the
semantic functions of arguments in relation to the
verb (e.g. agent, patient, theme, instrument). In the
context of this work, the AST predicate-argument
representation is associated with a lexical-semantic
representation of the content ci of the term ti.

In this work, we simplify and particularise the
relationship between the argument structure and
the distributional lexical semantic representation as
a role-content relation, where the structural syntac-
tic/semantic relationship is defined by its shallow
semantics, i.e. as the composition of the content of
the terms, their position in the predicate-argument
(PArg) structure (argi) and their semantic roles
(SRs) (ri: pred, arg), as described below:

animals︸ ︷︷ ︸
ARG0

require︸ ︷︷ ︸
PRED

oxygen︸ ︷︷ ︸
ARG1

for survival︸ ︷︷ ︸
ARGM−PRP

Therefore, we define the semantics of sen-
tences, sem(s), as the compositions between
role-content, which can be described as follows:

sem(s) = t1(c1, r1)︸ ︷︷ ︸
i.e.,ARG0−animals

⊕ · · · ⊕ ti(ci, ri)︸ ︷︷ ︸
PRP−survival

Where ti(ci, ri) = ci ⊗ ri represents the seman-
tics of term ti with content ci (i.e., animals) and
SRL ri (i.e., ARG0) in context s. ⊗: connects
the meanings of words with their roles, using the
compositional-distributional semantics notation of
(Smolensky and Legendre, 2006; Clark and Pul-
man, 2007; Clark et al., 2008). ⊕: connects the
lexical semantics (word content + structural role)
to form the sentence semantics. To deliver the lo-
calisation or composition property, the sentence
semantics should be able to present separation or
disentanglement under connector ⊕. E.g., replac-
ing ARG0-animals with ARG0-fishes.

Formal semantic features in vector space. Af-
ter defining the semantic features of sentences, we
propose the concept of a convex cone of seman-
tic feature. In linear algebra, a cone refers to
a subset of a vector space that is convex if any
α−→vi + β−→vj if any −→vi and −→vj belong to it. α and
β are positive scalars. Formally, the definition of
convex cone, C, is described as a set of vectors:
C = {x ∈ V |x =

∑n
i=1 αivi, αi ≥ 0, vi ∈ R}

where x is an element vector in vector space R, vi
are the basis vectors. αi are non-negative scalars.
In this context, we consider each role-content fea-
ture as a convex cone, C, corresponding to a hyper-
solid in high-dimensional vector space: Cci,ri =
{t(ci, ri)|t(ci, ri) ∈ sem(s), s ∈ corpus} where
t(ci, ri) represents the basis vector in Cci,ri (Fig-
ure 2). According to set theory, we can define the
formal semantic space as follows:

Assumption1: The sentence semantic space is
the union of all unique Cci,ri convex cones:

Cc1,r1 ∪ Cc2,r2 ∪ · · · ∪ Cc
V (c) ,rV (r)

V is the vocabulary of a corpus. Based on Assump-
tion1, we can establish:

Proposition1: The geometrical location of sen-
tence semantic vectors, sem(s), can be determined
by the intersection of different Cci,ri:

sem(s) = t1(c1, r1)⊕ · · · ⊕ ti(ci, ri)

= {t1(c1, r1)} ⊕ · · · ⊕ {ti(ci, ri)}
= Cc1,r1 ∩ Cc2,r2 ∩ · · · ∩ Cci,ri

4 Geometrical Formal Semantic Control

In this section, we first show that our formal se-
mantic geometry can interpret sentence generation,
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such as arithmetic (Shen et al., 2020), and extend
the “Linear Representation Hypothesis”. Then, we
propose a new semantic control approach, which
recursively traverses the latent dimensions to probe
the semantic geometry over latent spaces.

Geometrical algebra interpretability. Arith-
metic has been considered a common way to con-
trol word or sentence semantics over latent spaces
(Mikolov et al., 2013b). E.g., the addition operation
can steer the sentence semantics (Shen et al., 2020;
Mercatali and Freitas, 2021; Liu et al., 2023b), or
linear interpolation can generate smooth intermedi-
ate sentences (Hu et al., 2022). However, they lack
an explanation for these phenomena. We show that
our geometrical framework can provide an intuitive
explanation for these phenomena.

For linear interpolation, for example, it takes two
sentences x1 and x2 and obtains latent vectors z1
and z2, respectively. It interpolates a path zk =
z1 · (1 − k) + z2 · k with k increased from 0 to 1
by a step size of 0.1. Given two sentences with one
role-content set overlap, Ccj ,rj . We can describe:

sem(s1) ∩ sem(s2)

= {Cs1
c1,r1 ∩ · · · ∩ Cs1

ci,ri} ∩ {Cs2
c1,r1 ∩ · · · ∩ Cs2

ci,ri}
= {Cs1

c1,r1 ∩ · · · ∩ Cs2
ci,ri} ∩ C

s1(2)
cj ,rj

According to the definition of convex cone, if z1
and z2 are left in C

s1(2)
cj ,rj , the weighted sum vector,

zt, is also in C
s1(2)
cj ,rj . Therefore, the intermediate

sentence semantics can be described as:

sem(st1→2)

= (1− k)× sem(s1) + k × sem(s2)

= {{z1 · (1− k) + z2 · k}, . . . {. . . }} ∩ C
s1(2)
cj ,rj

That is, the intermediate sentences will hold the
{cj , rj} information during interpolation.

Linear representation hypothesis. “Linear rep-
resentation hypothesis” refers to high-level con-
cepts being represented linearly as directions in
representation space, which has been widely eval-
uated to interpret Large LMs’ mechanism (Marks
and Tegmark, 2023; Xie et al., 2021; Wang et al.,
2024; Jiang et al., 2024b; Park et al., 2023, 2024).
However, a main challenge for this hypothesis is
that it’s not clear what constitutes a high-level con-
cept.

Our geometrical framework can further support
and extend this hypothesis by answering the ques-
tions: What and how are they “linearly” encoded?

ARG0-animals

dimension

basis vector

hypersolid

animals require ...
animals eat food ...
animals use soil ...

traversal path

Figure 2: Algorithm 1: by modifying the latent dimen-
sions, we can control the movement of latent vectors
over latent space.

For example, given a set of N atomic sentences: si:
bird is a kind of living thing varying the content of
arg1. Their semantics can be described below:

sem(s) = {Csi
ci,arg1

, . . . } ∩ · · · ∩ Cliving thing,arg2

,where ci ∈ {tiger, bird, . . . }

In this case, the concept living thing is encoded as a
convex cone where all different Csi

ci,arg1
contribute

to its boundary, leading to a direction. The hierar-
chical relations between living thing and bird, etc.
are determined by the convex cones is a kind of.

Guided traversal. Since we describe different
sentence semantic features, {ci, ri}, as distinct con-
vex cones, Cci,ri , within a N -dimensional vector
space, V ∈ RN , we can linearly divide each basis
dimension, i ∈ {1, . . . , N}, into different value
regions, [a, b](i), based on minimal information en-
tropy. Consequently, there is a sequence of dimen-
sional subspaces for each semantic feature. Thus,
movement between different Cci,ri regions can be
achieved by moving out the dimensional regions
within this sequence. This process can be imple-
mented via a decision tree. In figure 3, for exam-
ple, we can move the sentence from Cpred,causes to
Cpred,means by modifying the values started from
dim 21 ≤ −0.035, ..., ending at dim 10 ≤ −1.11.
By traversing the tree path, we can control the sen-
tence generation by moving between convex cones,
detailed in Algorithm 1.

Based on our algorithm, we can use classification
metrics as proxy metrics to evaluate latent space
geometry. E.g., accuracy and recall for measuring
feature separability and density.
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Algorithm 1 Guided latent space traversal

1: Datasets: D = {s1, . . . , sn}
2: Labels: Y = {y1, . . . , yn}, yi ∈ {0, 1}
3: # 0:pred-causes, 1:pred-means
4: Seed: s = fire causes chemical change
5: for si ∈ D do
6: zi ← Encoder(si)
7: end for
8: X ← {z1, . . . , zn}
9: tree← DecisionTreeClassifier(X,Y )

10: path← filter(tree) # choose the shortest path
between C0 and C1

11: z ← Encoder(s)
12: for node ∈ path do
13: (dim, range, yes/no)← node
14: if in current branch do
15: z[dim]← v /∈ range if yes else v ∈ range
16: else do
17: z[dim]← v ∈ range if yes else v /∈ range
18: end for
19: s← Decoder(z) # fire means chemical change

Dim 17 ≤ −0.117

Dim 0 ≤ −0.089

Dim 21 ≤ −0.035

Cpred,causes

...

Dim 0 ≤ 1.07

... Dim 10 ≤ −1.11

Cpred,means

yes

yes

no

no

no

yes

Figure 3: Traversal between different role-content sets
by moving along the tree path.

5 SRL-Conditional VAE

In this section, we investigate the architecture of
VAE to integrate the latent sentence space with
LMs and propose a supervision approach to learn
formal semantic geometry (i.e., role-content).

Model architecture. We consider Optimus (Li
et al., 2020b) as the foundation which used BERT
and GPT2 as Encoder and Decoder, respectively.
In detail, the sentence representation, Embed(x),
encoded from BERT[cls] will first transform into a
Gaussian space by learning the parameters µ and
σ through multilayer perceptions Wµ, Wσ. The
final latent sentence representations can be ob-
tained via: z = Wµ × Embed(x) + Wσ, which,
as an additional Key and Value, is concatenated
into the original Key and Value weights of GPT2,
which can be described as: Attention(Q,K, V ) =

softmax(Q[z;K]T√
d

)[z;V ] where Q has the shape

Rseq×64, K,V has the shape R(seq+1)×64 (64 is di-
mension of GPT2 attention, seq is sequence length).
Since Q represents the target, K and V represent
the latent representations. By intervening the KV
with z, we can learn the transformation between
latent space and observation distribution.

Optimisation. It can be trained via the evidence
lower bound (ELBO) on the log-likelihood of the
data x (Kingma and Welling, 2014). To bind the
word content and semantic role information in la-
tent space, we conditionally inject the semantic
role sequence into latent spaces where the latent
space z and semantic role r are dependent. The
joint distribution can be described as:

Pθ(x, r, z) = Pθ(x|z, r)︸ ︷︷ ︸
likelihood

×Pθ(z|r)︸ ︷︷ ︸
prior

×P (r)

Specifically, we first model the categorical struc-

pregrouptokens

language

com
pose ty

pe
lo

gi
c

(a) CDM (Clark et al., 2008)

rz

x

pθ(z|r)p
θ (x|z, r)

(b) SRL-Conditional VAE

Figure 4: Comparison between Compositional Distribu-
tional Model (CDM) (left) and SRL-Conditional VAE
(right).

tures by encoding the semantic roles sequence to
learn the prior distribution with parameters µ(srl)

and σ(srl). Then, we jointly encode semantic roles
and lexical tokens to learn the approximate poste-
rior parameterised by µ and σ. By minimising the
Kullback-Leibler (KL) divergence between prior
and approximate posterior, the semantic features
can be encoded in the latent sentence space. More-
over, to avoid the KL vanishing problem, which
refers to the KL term in the ELBO becomes very
small or approaching zero, we select the cyclical
schedule to increase weights of KL β from 0 to 1
(Fu et al., 2019) and a KL thresholding scheme (Li
et al., 2019) that chooses the maximum between
KL and threshold λ. The final objective function
can be described as follows:

LCVAE =− Eqϕ(z|r,x)
[
log pθ(x|z, r)

]

+ β
∑

i

max [λ,KLqϕ(zi|x, r)||p(zi|r)]

16



where qϕ represents the approximated posterior
(i.e., encoder). i is the i-th latent dimension.

6 Empirical analysis

In the experiment, we quantitatively and qualita-
tively evaluate the latent space geometry via ge-
ometrical probing approaches: (1) traversal, (2)
arithmetic, and (3) guided traversal. All experimen-
tal details are provided in Appendix A.

6.1 Latent Traversal

Qualitative evaluation. Traversal refers to the
random walk over latent space. It can be done by
decoding the latent vector in which each dimension
is resampled and other dimensions are fixed (Hig-
gins et al., 2017; Kim and Mnih, 2018; Carvalho
et al., 2023). Given a latent vector from a “seed”
sentence, we can traverse its neighbours to evaluate
the geometry. As illustrated in Table 1, those tra-
versed sentences can hold the same content under
different semantic roles as the input, such as au-
tomobile in ARG1, indicating role-content feature
separation in latent spaces.

an automobile is a kind of vehicle

an automobile is a kind of moving object
an automobile is a kind of object

an airplane is a kind of vehicle
a car is a kind of vehicle

Table 1: Traversal showing held semantic factors in
explanations corpus.

Quantitative evaluation. Next, we employ t-
SNE (Van der Maaten and Hinton, 2008) to ex-
amine role-content features cluster and separation
over latent space (i.e., natural clustering prop-
erty (Bengio, 2013)). In the corpus, however, due
to the small number of data points within each
role-content cluster, t-SNE cannot capture the dif-
ferences between clusters well, resulting in the
visualized latent space not displaying good role-
content separability (top in figure 5). Therefore,
we increase the number of data points in differ-
ent role-content clusters by traversing each and
keeping those resulting data points with the same
role-content. Then, we visualise the role-content
cluster at the bottom of figure 5. We can find that
the features are clustered and separated over the la-
tent space. If this was not the case, after traversing

the resulting vectors from the same role-content
cluster, the visualization should show the same en-
tanglement as the original datapoints distribution.

Figure 5: t-SNE plot of role-content distribution before
and after traversal. From left to right are ARG0-(animal,
human, plant, and something), ARG1-(food, oxygen,
sun, and water), and predicate-(are, cause, is, require)
(top: original role-cluster distribution, bottom: distribu-
tion after traversal). PCA plots are in Figure 9.

6.2 Latent Arithmetic
Qualitative evaluation. In addition, we demon-
strate the geometric properties via interpolation in
Table 2. For the top-most one, we can observe

a beach ball is a kind of container
1. a pool table is a kind of object
2. a balloon is a kind of object
3. a magnet is a kind of object
4. a neutron is a kind of particle
5. a proton is a kind of particle
an atom is a kind of particle

protons are found in the nucleus of an atom
1. protons are found in the nucleus of an atom
2. 1 atom is positive 1 in electric charge
3. 1 in 6000 is equal to 27 in 10 years
4. if protons and neutrons have the same number
of neutrons then those two particles are physically
closer than one another
5. if a neutron has a negative -10 electric charge then
the atom will not be able to move
6. if a neutron has a negative -10 electric charge then
the neutron will not have a positive electric charge
if a neutral atom loses an electron then an atom with
a positive charge will be formed

Table 2: Interpolation examples (top: interpolation be-
tween sentences with similar semantic information, bot-
tom: interpolation between sentences with different se-
mantic information). Only unique sentences shown.

that sentences are smoothly moved from source
to target (e.g., from beach ball to atom connected
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by ballon, magnet, neutron, and proton) where the
same role-content (i.e., pred-is) unchanged. In con-
trast, the second case doesn’t display the smooth
interpolation path. E.g., the third sentence con-
necting different semantic structures is unrelated
to both source and target due to a discontinuous
space gap between different clusters. Both indicate
that the explanatory sentences might be clustered
according to different semantic role structures.

s1: animals require food for survival
s2: animals require warmth for survival
animals eat plants
animals produce milk
animals usually eat plants
animals eat berries ; plants
animals require food to survive
animals require shelter to survive

s1: water vapor is invisible
s2: the water is warm
igneous rocks are found under the soil
quartz is usually very small in size
quartz is formed by magma cooling
quartz is made of iron and zinc
silica is made of argon and argon
sedimentary is formed by lithosphere collapsing

Table 3: s1 ± s2 (top: addition, bottom: subtraction).

Following the definition of convex cone, we next
traverse the resulting sentence after adding or sub-
tracting two sentences with the same role-content
feature. As illustrated in Table 3, the adding op-
eration tends to hold the same role-content (e.g.,
ARG0-Animals) as inputs. In contrast, the subtrac-
tion loses such control, e.g., from ARG1-water to
ARG1-quartz. More similar observations are in
Table 11. These results corroborate our geometry.

Quantitative evaluation. Next, we quantita-
tively assess our geometry framework by calculat-
ing the ratio of the same role-content results from
the vector addition and subtraction for all sentence
pairs with a matching role. As illustrated in Fig-
ure 6, the ADDed results (dark blue) can greatly
hold the same token-level semantics (role-content)
as inputs, indicating our geometrical framework.
In contrast, the SUBed results (shallow blue) suf-
fer from semantic shift. Similar observations for
VERB and ARG1 can be found in Figure 11 and
12. Besides, we can quantify each role-content
cluster’s geometrical area by calculating the co-
sine similarity between randomly selected sentence
pairs in this cluster. We report the maximal and

Figure 6: Arithmetic, s1 ± s2, for ARG0 with contents
(dark blue: addition, shallow blue: subtraction, orange:
element-wise production).

minimal distance in Figure 7. Similar observations
for VERB and ARG1 can be found in Figure 13
and 14.

Figure 7: Evaluating the geometrical size of role-content
clusters (blue: max, orange: min).

6.3 Guided Latent Traversal

Finally, we examine the semantic geometry via
algorithm1. The categories selected below are cho-
sen based on their frequencies, ensuring a balanced
distribution during the classifier’s training process.

Qualitative evaluation. Firstly, we evaluate the
traversal between different semantic role struc-
tures, e.g, conditional and atomic sentences. Ta-
ble 4 shows that the cluster of the generated sen-
tence changes as the values of different dimen-
sions change sequentially (e.g., the first three sen-
tences hold the same characteristic if ... then ...
as the input. The remaining sentences gradually
move closer to the target characteristics, such as
is). Meanwhile, the sentences can hold the subject,
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something, during the movement, corroborating
our geometry framework. Next, we evaluate the

if something receives sunlight it will absorb the sun-
light
Dim27: if a thing absorbs sunlight then that thing is
warmer
Dim12: if something is eaten then that something
produces heat
Dim08: if something gets too hot in sunlight then
that something is less able to survive
Dim03: something contains physical and chemical
energy
Dim21: something contains sunlight
Dim10: some things are made of matter
Dim00: something is made of atoms
Dim17: a forest contains life
Dim00: something that is cold has a lower tempera-
ture
Dim21: something rises in temperature
Dim00: something is formed from things dissolved
in water
Dim30: something that is cold has fewer nutrients
Dim21: something that is not moved is dead

Table 4: Movement from conditional to atomic sen-
tences.

traversal between predicates. Table 5 shows the
movement between verbs (cause and mean). We
can observe that the predicate is modified from
causes to mean. In the traversal process, some sen-
tences fall into the V-is region. The reason is that
the V-is cluster is widely scattered in latent space
(shown in Figure 5), which leads to a big overlap
between V-is and V-mean. Moreover, we calculate
the ratio of the generated sentences that hold the
expected predicate, mean, from 100 sentences with
predicate cause. The ratio is 0.71, which indicates
that the decision tree is a reliable way to navigate
the movement of sentences. Finally, we evaluate
the traversal between arguments. Table 6 shows
the movement from argument water to something.
Similarly, the ARG1 can be modified from water
to something following its path. Besides, the final
generated explanation still holds a similar semantic
structure, is a kind of, compared with input.

Quantitative evaluation. Finally, we use classi-
fication metrics, including accuracy (separability)
and recall (density), as proxy metrics to assess la-
tent space geometry. As shown in Table 7, all
features show higher separation where argument1
leads to the highest separation, indicating latent
space geometry.

fire causes chemical change
Dim06: fire causes chemical changes
Dim22: fire causes chemical reactions
Dim02: fire can cause harm to plants
Dim27: smoke can cause harm to organisms
Dim14: fire causes physical harm to objects
Dim24: fire can cause chemical changes
Dim08: fire destroys material
Dim01: fire means chemical change
Dim14: waste means igneous metal
Dim06: combustion means burning
Dim00: combustion means chemical changes
Dim21: combustion means burning
Dim00: fire is formed by thermal expansion
Dim18: fire chemical means chemical energy
Dim03: fire is corrosive

winter means cold environmental temperature
Dim03: winter means cold - weather
Dim18: winter means cold weather
Dim00: winter means weathering
Dim21: drought means high temperatures / low pre-
cipitation
Dim00: winter means high amounts of precipitation
Dim06: drought causes natural disasters
Dim14: drought has a negative impact on crops
Dim01: drought has a negative impact on animals
Dim08: drought causes animal populations to de-
crease
Dim24: drought causes ecosystem loss
Dim14: drought causes animals to have lower natural
temperature
Dim27: cold climates causes wildfires
Dim02: climate change can cause low rainfall
Dim22: global warming causes droughts
Dim06: winter causes weather patterns

Table 5: Movement between cause and mean.

water is a kind of substance
Dim12: water is a kind of substance
Dim00: water is a kind of liquid
Dim23: liquid is a kind of material
Dim29: water has a positive impact on a process
Dim17: absorbing water is similar to settling
Dim06: absorbing is similar to reducing
Dim21: absorbing something is similar to absorbing
something
Dim04: storing something means being protected
Dim06: producing something is a kind of process
Dim04: storing something is similar to recycling
Dim21: absorbing something is a kind of process
Dim01: absorbing something can mean having that
something
Dim22: folding something is similar to combining
something
Dim07: improving something is a kind of transfor-
mation
Dim11: absorbing something is a kind of method
Dim07: absorbing something is a kind of process

Table 6: Movement from water to something.
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Formal semantic features separation↑ density↑
predicate (causes, means) 0.87 0.92
argument1 (water, something) 0.95 0.48
structure (condition, atomic) 0.58 0.55

Table 7: Proxy metrics for latent space geometry.

7 Conclusion and Future Work

In this study, we investigate the localisation of gen-
eral semantic features to enhance the controllability
and explainability of distributional space from the
perspective of formal semantics, which is currently
under-explored in the NLP domain. We first pro-
pose the formal semantic features as role-content
and define the corresponding geometrical frame-
work. Then, we propose a supervision approach
to bind the semantic role and word content. In
addition, we propose a novel traversal probing ap-
proach to assess the latent space geometry based on
information set and entropy. We extensively evalu-
ate the latent space geometry through geometrical
operations, such as traversal, arithmetic, and our
guided traversal. Experimental results indicate the
existence of formal semantic geometry.

Since recent theoretical works reveal that the
LLMs can encode linear symbolic concepts (Jiang
et al., 2024b), in the future, we will explore their in-
context learning of compositional semantics based
on our formal semantic geometry framework.

8 Limitations

1. Limitation of data source: this work only fo-
cused on explanatory sentences. Whether the se-
mantic separability of other corpora emerges over
latent space is not explored. 2. Role-content clus-
ters overlapping: the geometric analysis indicates
that the role-content regions still have significant
overlapping over distributional spaces. Therefore,
a new potential task can be how we can better
separate/disentangle the semantic features (role-
content) to provide better localisation or composi-
tion behaviour over distributional semantic spaces
in the Computational Linguistics domain, further
assisting downstream tasks, such as Natural Lan-
guage Reasoning, Compositional Generalisation,
etc. 3. Large Language Models: this paper only
investigates the BERT-GPT2 architecture based on
the current state-of-the-art language VAE (Opti-
mus). The larger decoder is out of the scope of this
work and needs to be investigated in the future.
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A Experiment Setting

Dataset. Table 8 displays the statistical informa-
tion of the datasets used in the experiment. The
data of the two datasets partially overlap, so only
the unique explanations are selected as the exper-
imental data. The rationale for choosing explana-
tory sentences is that they are designed for for-
mal/localised/symbolic semantic inference task in
natural language form, which provides a semanti-
cally complex and yet controlled experimental set-
ting, containing a both well-scoped and diverse set
of target “concepts” and sentence structures, pro-
viding a semantically challenging yet sufficiently
well-scoped scenario to evaluate the syntactic and
semantic organisation of the space. Besides, those
concepts mentioned in the corpus, such as animal
is a kind of living thing, are fundamental to human
semantic understanding.

Corpus Num data. Avg. length
WorldTree (Jansen et al., 2018) 11430 8.65

EntailmentBank (Dalvi et al., 2021) 5134 10.35

Table 8: Statistics from explanations datasets.

Table 9 illustrates the semantic, structure, and
topic information of explanatory sentences over
the latent space. The explanatory sentences are
automatically annotated using the semantic role la-
belling (SRL) tool, which can be implemented via
AllenNLP library (Gardner et al., 2017). We report
in Table 10 the semantic roles from the explana-
tions corpus.

Architecture. Figure 8 provides a visual repre-
sentation of the connection between BERT and
GPT2 within the AutoEncoder architecture.

Figure 8: Latent sentence injection.

To train the CVAE, we use a new embedding

layer for semantic roles and separate MLP layers
W srl

µ and W srl
σ to learn prior distribution.

Hyperparameters. The training process of the
decision tree binary classifier can be implemented
via scikit-learn packages with default hyperparam-
eters. As for Optimus, the latent space size is 32 in
the experiment. The training details are following
the original experiment from Optimus (Li et al.,
2020b).

B Further Experimental Results

Traversal visualisation. PCA plots for ARG0,
ARG1, and PRED are provided in Figure 9.

Figure 9: PCA visualisation.

In addition, we also provide the visualisation of
word content animal with different semantic roles:
ARG0, ARG1, ARG2, in Figure 10. From it, we
can observe that the same content with different
semantic roles can also be clustered and separated
in latent space.

Figure 10: Visualisation for animal-ARG0,1,2.

Qualitative evaluation for arithmetic. Table 11
lists the traversed explanations after addition (blue)
and subtraction (red) on different semantic role
information. We can observe that the resulting
sentences after addition can hold the same role-
content as inputs, revealing latent space geometry.

Quantitative evaluation for arithmetic. Quanti-
tative evaluation for our hypotheses via latent arith-
metic. Both VERB and Object can perform high
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Cluster Theme and Pattern
0 Theme: physics and chemistry. Pattern: if then and as. E.g., if a substance is mixed with another substance then

those substances will undergo physical change.
1 Theme: country, astronomy, and weather. E.g., new york state is on earth
2 Theme: physics and chemistry. Pattern: is a kind of. E.g., light is a kind of wave.
3 Theme: biology. E.g., a mother births offspring.
4 Theme: synonym for verb. Pattern: means and is similar to. E.g., to report means to show.
5 Theme: astronomy. E.g., the solar system contains asteroids.
6 Theme: animal/plant. Pattern: is a kind of. E.g., a seed is a part of a plant.
7 Theme: item. E.g., a telephone is a kind of electrical device for communication.
8 Theme: synonym for life. Pattern: means and is similar to. E.g., shape is a kind of characteristic.
9 Theme: geography. Pattern: is a kind of. E.g., a mountain is a kind of environment.
10 Theme: animal and plant. Pattern: if then and as. E.g., if a habitat is removed then that habitat is destroyed.
11 Theme: scientific knowledge. Pattern: (;), number and /. E.g., freezing point is a property of a ( substance ;

material ).
12 Theme: item. Pattern: is a kind of object. E.g., a paper is a kind of object.
13 Theme: chemistry and astronomy. E.g., oxygen gas is made of only oxygen element.
14 Theme: general about science. Pattern: (;). E.g., seed dispersal has a positive impact on ( a plant ; a plant ’s

reproduction).
15 Theme: item. Pattern: is a kind of. E.g., fertilizer is a kind of substance.
16 Theme: physics and chemistry. Pattern: (;). E.g., the melting point of oxygen is -3618f ; -2188c ; 544k.
17 Theme: animal. E.g., squirrels live in forests.
18 Theme: nature. E.g., warm ocean currents move to cooler ocean regions by convection.
19 Theme: life. E.g., pond water contains microscopic living organisms.

Table 9: Cluster Information for explanatory sentences, we use a k-means classifier to classify the sentence
representations and manually evaluate each class.

Semantic Tags Prop. % Description and Example
ARGM-DIR 0.80 Directionals. E.g. all waves transmit energy from one place to another
ARGM-PNC 0.08 Purpose. E.g. many animals blend in with their environment to not be seen by predators
ARGM-CAU 0.05 Cause. E.g. cold environments sometimes are white in color from being covered in

snow
ARGM-PRP 1.30 Purpose. E.g. a pot is made of metal for cooking
ARGM-EXT 0.04 Extent. E.g. as the amount of oxygen exposed to a fire increases the fire will burn longer
ARGM-LOC 4.50 Location. E.g. a solute can be dissolved in a solvent when they are combined
ARGM-MNR 2.00 Manner. E.g. fast means quickly
ARGM-MOD 9.80 Modal verbs. E.g. atom can not be divided into smaller substances
ARGM-DIS 0.07 Discourse. E.g. if something required by an organism is depleted then that organism

must replenish that something
ARGM-GOL 0.20 Goal. E.g. We flew to Chicago
ARGM-NEG 1.20 Negation. E.g. cactus wrens building nests in cholla cacti does not harm the cholla cacti
ARGM-ADV 6.70 Adverbials
ARGM-PRD 0.20 Markers of secondary predication. E.g.
ARGM-TMP 7.00 Temporals. E.g. a predator usually kills its prey to eat it
O - Empty tag.
V 100 Verb.
ARG0 32.0 Agent or Causer. E.g. rabbits eat plants
ARG1 98.5 Patient or Theme. E.g. rabbits eat plants
ARG2 60.9 indirect object / beneficiary / instrument / attribute / end state. E.g. animals are organisms
ARG3 0.60 start point / beneficiary / instrument / attribute. E.g. sleeping bags are designed to keep

people warm
ARG4 0.10 end point. E.g. when water falls from the sky that water usually returns to the soil

Table 10: Semantic Role Labels that appears in explanations corpus.

ratio after addition, indicating role-content separa-
bility.
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ADD and SUB arithmetic

ARGUMENT1:
a needle is a kind of object
a tire is a kind of object

a wire is a kind of object
a stick is a kind of object
a ball is a kind of object

a serotype is similar to intersex egg
a zygote contains many cell types
an xylem is made of two clumps

VERB:
chromosomes are located in the cells
Australia is located in the southern hemisphere

stars are located in the solar system
Jupiter is located in the milky way galaxy
aurora is located in the constellation of Leo

a crystal is made of metal
an alloy is made of iron and zinc
an aluminum plug is nonmagnetic

LOCATION:
volcanoes are often found under oceans
mosquitos can sense carbon dioxide in the air

polar ice sheets are located along rivers
hurricanes occur frequently along the coast in Africa
tide waves cause flooding in coastal waters

valley is a kind of location
shape is a property of rocks
desert is a kind of place

TEMPORAL:
as the population of prey decreases competition between predators will increase
as competition for resources decreases the ability to compete for resources will increase

as the population of an environment decreases ecosystem function will decrease
as the spread of available air mass increases the population will increase
as the number of heavy traffic required increases the traffic cycle will decrease

some types of lizards live in water
a rose is rich in potassium
a fern grass roots foot trait means a fern grass

NEGATION:
pluto has not cleared its orbit
sound can not travel through a vacuum

radio waves don’t have electric charge
electromagnetic radiation does not have a neutral electric charge
electromagnetic radiation contains no electric charge

Mars is a kind of moon / planet
Anothermic rock is a kind of metamorphic rock
Anal Cetus’s skeleton is a kind of fossil

Table 11: Latent sapce arithmetic for five semantic tags (blue: addition, red: subtraction).
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Figure 11: Predicate (VERB). The content is shows the high ratio after subtraction, indicating that the V-is is widely
distributed over the latent space.

Figure 12: Object (ARG1).
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Figure 13: Cosine distance of sentence pairs in VERB-content clusters.

Figure 14: Cosine distance of sentence pairs in ARG1-content clusters.
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Abstract

Legal citations require correctly recalling the
law references of complex law article names
and article numbering, which large language
models typically treat as multi-token sequences.
Motivated by the form-meaning pair of con-
structionist approaches, we explore treating
these multi-token law references as a single
holistic law token and examining the implica-
tions for legal citation accuracy and differences
in model interpretability. We train and com-
pare two types of models: LawToken models,
which encode the legal citations as a single law
token, and LawBase models, which treat them
as multi-token compounds. The results show
that LawToken models outperform LawBase
models on legal citation tasks, primarily due
to fewer errors in the article numbering com-
ponents. Further model representation analysis
reveals that, while both models achieve compa-
rable semantic representation quality, the multi-
token-based LawBase suffers from degraded
representations in multistep decoding, leading
to more errors. Taken together, these findings
suggest that form-meaning pairing can operate
in a larger context, and this larger unit may
offer advantages in future modeling of legal
reasoning. In practice, this approach can signif-
icantly reduce the likelihood of hallucinations
by anchoring legal citations as discrete, holistic
tokens, thereby minimizing the risk of generat-
ing nonexistent or incorrect legal references.

1 Introduction

Recalling the correct legal citations, e.g., the law
articles, regulations, or precedents, poses a great
challenge to the large language models and raises
an interesting question to computational linguis-
tics (Guha et al., 2024; Dahl et al., 2024). While
the autoregressive models are so adept at work-
ing with legal texts in certain, but not all, scenar-
ios and tasks (Katz et al., 2024; Rodgers et al.,
2023), generating the correct without producing
non-existent articles or hallucinating remains a

challenge to the modern models (Weiser, 2023;
Henderson et al., 2023). While finding efficient
ways to train LLMs adept at legal citations may
potentially be addressed in future models, the lin-
guistic intrigues nevertheless persist regarding how
models encode the explicit textual forms and their
impacts on the model’s representations.

In current large language models (Dubey et al.,
2024; Yang et al., 2024; Achiam et al., 2023), these
legal citations are treated as normal texts: pro-
cessed by the tokenizer, they are chunked into a
sequence of tokens. For example, the legal citation
form in Taiwan generally is the article name fol-
lowed by the article and paragraph numbers, such
as “Road traffic safety regulations, Article 94, Para-
graph 3.” The model needs to learn how the multi-
token sequence is related to the intended meanings
in context.

The intended meaning of a cited law reference
may entail the following three layers, in the or-
der of their context-dependence: (1) the compo-
sitional meaning from the tokenized components,
which, for instance, are the composite meanings of
road traffic, safety, and others (Bell and Schäfer,
2016; Cordeiro et al., 2019; Alipoor and Schulte im
Walde, 2020); (2) the semantic extensions of the
legal text content, specifying the legal obligation
of the driver (Tseng et al., 2023; Noraset et al.,
2017; Mickus et al., 2019); and (3) the pragmat-
ical usage of the law in the court verdict when
determining the liability (Ruis et al., 2023; Louis
et al., 2020; Parrish et al., 2021). In practice, the
large language models might be good at deriving
pragmatics and resolving the intended sense of the
ambiguous words (tokens) from the constituting
lexical semantics; but, in contrast, the hallucination
(Guha et al., 2024; Bommasani et al., 2023; Dahl
et al., 2024) suggests the model may struggle with
decoding back from the context-specific pragmatic
to the underlying constituent tokens.

An alternative approach is to map between the
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layers as direct as possible; that is, treating law
references as a single holistic form-meaning pair,
where the entire law citation – including the law
names and article or paragraph numbering – is
recognized as one law token. These additional
law tokens are motivated by the constructionist
approach (Goldberg, 2024; Lakoff, 1987; Bybee,
2010). As linguistic units, from single words to
multi-word idioms, function as form-meaning pairs,
there is no theoretical limit on their scope except for
cognitive constraints. However, computationally,
large language models may already have enough ca-
pacity to capture the complex form-meaning map-
ping, provided they have clear cue-meaning map-
pings from tokenization.

This paper aims to empirically study the effect
of tokenization on legal citations, focusing on both
task performance and how tokenization affects the
model’s prediction probabilities and representation.
Using the court verdicts of Taiwan, we compile a
LawToken dataset containing 675M tokens. The
dataset is used to fine-tune two types of models:
LawBase models, which use the unmodified tok-
enizer, and LawToken models, which use an aug-
mented tokenizer that includes frequently-used law
references as new law tokens. When referring
generically to using law tokens or references in
the texts, we use the term legal citation. We first
establish that LawToken models outperform Law-
Base models in legal citation tasks, and we next
further analyze model representations, revealing
that the performance difference may stem from the
degraded contextualized representation during the
multistep decoding in LawBase models.

This paper is organized as follows. After briefly
summarizing the related works in Section 2, Sec-
tion 3 describes the preprocessing steps, dataset,
training, and evaluation of LawToken and LawBase
models. Section 4 examines the model represen-
tations and explores how they differ in the two
models. Section 5 concludes the paper.

2 Related Works

A legal reference, consisting of law or act names
and article numbers, is composed of multiple to-
kens, which the language model has to learn to
determine the intended meaning of the multi-token
compound. However, past literature suggests that
the compound meaning is not always transparent
in terms of its constituents. Some are semanti-
cally transparent, such as “swimming pool,” where

the compound meaning is directly composite of
the constituents; some are opaque, such as “hot
dog.” However, even a seemingly transparent com-
pound may be challenging to pinpoint the rela-
tionships between its constituents; for instance,
“airport” and “airplane” (compounds written with-
out spaces), the role of “air” may be unexpectedly
complicated (Bell and Schäfer, 2016; Reddy et al.,
2011; Zwitserlood, 2014). Modeling the seman-
tic transparency of compounds remains difficult,
even when using static or contextualized semantic
vectors (Shwartz and Dagan, 2019; Miletić and
im Walde, 2023).

Some multi-token(word) expressions are not usu-
ally considered compounds but nevertheless con-
vey meanings more than their parts. For example,
“hazard a guess,” or more idiom-like expression, “I
hope this mail finds you well.” These expressions,
gaining their meaning through repeated uses by the
language community and, therefore, form a static
form-meaning pair, are constructions (Goldberg,
2013).

Along this line of reasoning, the law references
can act as a construction. However, if the law ref-
erence is an opaque multi-token expression, the
LLMs should already handle them to some ex-
tent (Goldberg, 2024). Yet, a previous study ar-
gued that the LLM’s task performances are form-
dependent (Ohmer et al., 2024), indicating that
the models rely more on the surface form rather
than the underlying meaning to complete the task.
Consequently, even though the law reference is a
construction, the way they are tokenized can signif-
icantly influence the model’s task behavior.

Tokenizing law reference as a single law token
has implications beyond linguistic theory. Using
law tokens implies the model operates with a fixed
set of “law vocabulary,” which prevents the model
from producing nonexistent law articles (Guha
et al., 2024; Dahl et al., 2024). Although spe-
cialized legal-domain LLMs have become more
prevalent, they are fine-tuned or continuously pre-
trained on legal texts or using retrieval-augmented
generation without changing tokenization specif-
ically for legal references (Colombo et al., 2024;
Wiratunga et al., 2024; Lee, 2023; Cui et al., 2023).
Furthermore, from an information-theoretic per-
spective, tokenization is the pre-compression in the
LLM (Deletang et al., 2024). It is therefore interest-
ing to observe how using a law token will change
the compression behavior.
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Figure 1: Evaluation results using full law mentions (upper panel) and partial law mentions (lower panel). The
performances are evaluated using recall and precision, where recall is the proportion of correctly predicted law
tokens among all true tokens, and precision is the proportion of correctly predicted tokens among all predicted ones.

3 LawToken & LawBase models

3.1 Dataset

The LawToken Datasets1 consist of legal docu-
ments publicly available in Taiwan, encompassing
both law articles and court verdicts. The dataset
has three parts. The first and second parts, com-
posed of court verdicts and law articles, respec-
tively, standardize law references in natural lan-
guage by representing them in the following for-
mat: <LAW_NAME|ARTICLE_NUMBER>. For in-
stance, a reference to道路交通安全規則第94條
第3項“road traffic safety regulations, Article 94,
Paragraph 3.” is transformed into the format <道路
交通安全規則|94|3>. Conversely, the third group,
derived solely from the court verdicts, employs a
different transformation: legal references are re-
moved from their original positions in the main
text and then appended at the end of each court
verdict, enclosed between a start-of-citation marker
“<cite>” and an end-of-citation marker “</cite>.”
Examples of each group are provided in the Ap-
pendix. The three groups are combined and ran-
domly shuffled. Subsequently, a train and test split
is generated at a ratio of 9:1, resulting in a train-
ing set with 545.4k instances and a testing set with
60.6k instances.

1https://huggingface.co/datasets/amy011872/LawToken.

3.2 Model Training

The three base models employed in this paper are
Qwen2 of sizes 0.5B, 1.5B, and 7B 2. We select
the frequently occurred law references, namely, the
total frequencies of the law references in the court
verdicts need to be higher than 100 times, resulting
in 13,083 law tokens. Subsequently, we train Law-
Token models with the high-frequency law tokens
added into the tokenizer. The integration of the
law tokens into the tokenizer enables the models
to recognize the law references as single tokens
and learn the contexts in which they are referenced.
On the other hand, the LawBase uses the unmodi-
fied tokenizer. In other words, the mentions of law
references in natural languages are represented as
single tokens in LawToken models, whereas in the
baseline LawBase models, they are interpreted as
multi-token sequences.

Overall, six models are trained 3. The fine-tuning
uses 4 nVIDIA H100s and takes around 30 hours
for all models. The evaluation cross-entropy losses
of the LawToken models are .86, .79, and .69 for
0.5B, 1.5B, and 7.0B model sizes, respectively,
and they are .82, .76, and .65 for the LawBase
models. The evaluation loss decreases as the model

2Models obtained from https://huggingface.co/Qwen
3All six models are available on HuggingFace, for

instance, the 7B finetuned model could be found at
https://huggingface.co/amy011872/LawToken-7B-a2.
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size increases, whereas LawBase model losses are
consistently lower than those of LawToken models.

3.3 Evaluation
The evaluation tasks include a long-context law ci-
tation task, a short-context law citation task, and
a law naming task. These tasks, derived from the
testing set, involve the same objective: predicting
relevant LawTokens based on the provided con-
text, with “<cite>” serving as the special token for
prediction.

In the long-context law citation task, the model
is provided with the full context of court verdicts,
with law references removed, and is asked to pre-
dict the relevant legal citations. Conversely, the
short-context law citation focuses on a more lo-
calized context, where sentences containing legal
citations are identified, and the model is provided
with only the preceding sentence as context to pre-
dict the relevant citations. The law naming task, on
the other hand, is derived from law articles. Here,
the model is presented solely with the content from
a certain law article and is required to predict the
correct law name and article number in the stan-
dardized format. Examples of each evaluation task
are included in Appendix.

Figure 1 presents the recall and precision of the
six models across three different tasks. The up-
per panel indicates the measures evaluated using
full law mentions, where a prediction is counted as
correct only if both the law name and article num-
ber match the ground truth. The results show that
the LawToken models consistently outperform the
LawBase ones, regardless of the tasks and model
sizes. These patterns may suggest that LawToken
encodes better representations of law mentions, or
simply sidesteps the challenge of predicting article
number, which the LawBase model often struggles
with. To investigate, we re-evaluate using partial
law mentions, where the predictions are considered
correct when the law name alone matches with the
true ones. The results are shown in the lower panel
of Figure 1. Again, LawToken still outperforms
LawBase in most cases, although the performance
gap narrows, especially with LawToken 1.5B, and
in the law naming task. In addition, out of all the
unique law reference predictions produced by the
LawBase models, 6.6% of them do not exist in
those generated by the 0.5B model, 8.2% by the
1.5B model, and 7.6% by the 7B models. That
is, the LawBase models still experience hallucina-
tions after being fine-tuned explicitly in the current

dataset.
The patterns in Figure 1 further reveal three no-

table observations: (1) Task difficulties vary with
the richness of pragmatic context: the more context
a task provides, the better the model performs. This
effect is particularly evident in precision scores,
where both models achieve the highest precisions
in the long context task and the worst in the law
naming task, where only the legal text content is
available, with no additional pragmatic context.
(2) Pragmatic context helps the LawBase model
predict law names but not article numbers. This
is shown in the partial law mention evaluations,
where the LawBase’s performance closes in on that
of LawToken. This pattern is consistent with the
fact that both LawBase and LawToken are trained
on the same data, and the law names are lexical
tokens that LawBase can learn their contextual us-
ages during fine-tuning. By contrast, article num-
bers are highly ambiguous tokens reused across
different law mentions and LawBase, having no
specialized tokenization, struggles to disambiguate
them. This is where LawToken has an advantage.
(3) We also observed that 1.5B model size in the
LawBase family is the best-performing one in both
full and partial law mentions across the board. This
suggests that, given the moderate size of our fine-
tuning data (675M tokens), 1.5B may represent the
optimal model size under data constraints, assum-
ing no changes to the tokenization.

Finally, to further compare the task performance
of LawToken to other models, we randomly sam-
pled 1,000 instances from each evaluation task to
assess the performance of one of the commercial
models (Achiam et al., 2023) (GPT-4o-mini). The
generation method employs the batch API, with
greedy decoding (temperature set to 0) and model
specified to “GPT-4o-mini-2024-07-18”. We use
one-shot prompt design for GPT-4o-mini to under-
stand the task better and produce the answer in the
same format of LawTokens. The prompt example
is provided in the Appendix.

The results are presented in Table 1. Overall,
GPT-4o-mini does not perform at a level compa-
rable to LawToken models. While we find that
GPT-4o-mini is quite competitive when provided
with ample contextual information, for example, in
the long-context law citation task, nearly matching
the performance of the fine-tuned LawBase models,
its effectiveness diminishes significantly in tasks
with limited context, such as the short-context law
citation task and the law naming task. The compar-
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Model Long Short Naming
R P R P R P

LawTok-0.5B 0.54 0.65 0.46 0.25 0.08 0.02
LawTok-1.5B 0.55 0.67 0.44 0.22 0.08 0.02
LawTok-7.0B 0.53 0.65 0.46 0.22 0.09 0.02
LawBas-0.5B 0.23 0.33 0.06 0.03 0.02 0.01
LawBas-1.5B 0.31 0.42 0.20 0.11 0.05 0.01
LawBas-7.0B 0.21 0.30 0.18 0.09 0.05 0.01
GPT-4o-mini 0.28 0.41 0.03 0.02 0.01 0.01

Table 1: Comparison of recalls and precisions in differ-
ent models in the 1000-dataset.

ison crucially demonstrates that the tasks cannot be
solved solely by superficial textual cues included
in the context, which the GPT-4o models will take
advantage of.

Taken together, these results show LawToken
models consistently outperform LawBase models.
Moreover, the comparison between full and partial
law mention evaluations suggests the crucial differ-
ences stem from how the model handles law names
versus article numbers. To better understand the
model representations of the law tokens and their
law names and article number constituents, we next
examine the representational differences between
LawToken and LawBase models.

4 Examining model representations

While both model types show competitive results
across the three legal tasks, LawToken consistently
outperforms the LawBase models, with the only dif-
ference between the two being tokenization. This
raises the question of what underlies this difference.
On the one hand, the better performance of LawTo-
ken seems counterintuitive, as it uses fewer tokens
to represent the legal mentions, thus fewer “buffer-
ing tokens” when decoding (Goyal et al., 2024;
Herel and Mikolov, 2024). On the other hand, re-
trieving a legal mention is arguably distinct from
reasoning; thus, LawToken may benefit from using
an explicit, holistic token, allowing it to escape the
complex structure within the legal mention com-
prising long compounds of act names and highly
ambiguous article numbers.

In what follows, we investigate why the Law-
Token and LawBase models behave differently in
the task. First, we demonstrate that the input em-
beddings learned by LawToken models reflect a
general structure. Next, we examine the type-level
representation similarities by comparing the model
(hidden) states at different layer depths to the em-
beddings of the law’s textual content. Finally, we

analyze the token-level prediction probability as
an index of how difficult the model finds certain
tokens. These analyses provide further insight into
the underpinnings of the models’ performance dif-
ferences.

4.1 Input embeddings

Figure 2 shows the visualization of the law tokens’
input embeddings of the top 3 common laws ex-
tracted from the LawToken model. Each point in
the panel represents a law token; for example, arti-
cles number 330 and 107 in the Code of Criminal
Procedure are coded as two green dots. We use
linear discriminant analysis to show how law to-
kens of different laws can be separable by a linear
hyperplane. The underlying rationale is that law
tokens coming from different laws should already
reflect different usage patterns. Indeed, all classi-
fication accuracies are above the random chance
level, while the 7B model is the worst of the three.

However, while classifying for law names is a
simple and intuitive method to explore the embed-
ding structure, it is not ideal. Law tokens of the
same law may not necessarily be more similar than
those of different ones. To better gauge the seman-
tic representation of the law tokens and the law
references, we next examine the text embeddings
of the legal text content.

4.2 Type-level representation similarity

To better independently assess the quality of seman-
tic representation encoded by the LawToken and
LawBase models, we obtain the text embeddings
of legal text content 4 with the commercial embed-
ding models 5. These embeddings are compared to
the model’s hidden states in various layer depths
when encoding the selected sentences in the test
split. A total of 13,215 sentences were selected,
which included 2,211 unique legal citations. These
sentences were selected to better evaluate the ef-
fect on the surrounding contexts, where there is
only one law token or reference occurring before
or after the 100-character window. We compute the
centered kernel alignment scores (CKA; Kornblith
et al., 2019) to measure the similarity between the
model-encoded representation and the embedding
of legal text content, where a higher score indicates

4For example, the text embedding for law token <Labor
Standards Act|43> is the vector representation of the legal
text content: “Workers may request leave for reasons such as
marriage, [...]” (texts were in Taiwanese Mandarin.)

5Open AI’s text-embedding-3-large
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Figure 2: The input embeddings of the LawToken models, color-coded with the law article names: Code of Criminal
Procedure (刑事訴訟法), Criminal Law (中華民國刑法), and Company Act (公司法). Only three laws are included
for better visualization. The random Gaussian embeddings (Random) are shown as a baseline.

a better correspondence between two representa-
tions.

However, caveats remain when using such text
embeddings. The legal text content is the semantic
extension of a legal citation – what it normatively
refers to – whereas the model encodes how a le-
gal token or reference is functionally used in the
legal texts. They are inevitably different. In ad-
dition, LawToken and LawBase both encode the
usage in the context, meaning that each law token
occurrence induces a different model state, while
the legal text embedding stays the same. Therefore,
although we use legal text embeddings as a refer-
ence for semantic representation, they are only an
operationalization of the law token’s meaning.

Figure 3a shows in each panel the results of
representational similarities from the input layer
(Layer 0) to the last layer of 0.5B model (Layer 24)
or of 1.5B and 7B model (Layer 28). Each panel
also shows three sites of interest. The Rand site
denotes a random location before the target law
token or reference, the Pre site is one token just
before the target law token or the law reference,
and the Post site is the token at the end of the
target, which is the law token itself in the LawTo-
ken model and the last token of the law reference.
Put in a more functional perspective, the Rand site
provides a baseline estimate of the similarity possi-
ble to achieve only with the preceding context; the
Pre site sheds light on the model states at which the
model is about to predict the target law token or the
first token in the law reference; and the Post site is
when the models take into account of the law token
or the law reference itself.

As shown in Figure 3a, the representation simi-

larities increase throughout the layers and deeper
into the sentence context. At the early layers of 0,
8, and 16, the Rand site scores are close to zero,
reflecting that there is only very local informa-
tion at this stage, and they do not correlate well
with the law semantics. In contrast, the Pre sites
are more indicative of the law content, potentially
because the immediate pre-context of the target
law token and reference is already informative
enough about the legal mentions. Interestingly,
the Post sites start to show diverging patterns be-
tween the representation of LawToken and Law-
Base, where the scores from LawToken are con-
sistently higher than those from LawBase. The
pattern effectively demonstrates the effects of tok-
enizing legal mentions as a whole in the LawToken
model, showing that the embeddings of the law
tokens carry rich lexical information.

However, this advantage is not irreplaceable. As
we move into the deeper layers of 24 and 28, the
contextual effect is more pronounced. The diverg-
ing trends observed in the earlier layers are clos-
ing in on Layer 24, especially for the 0.5B model,
which is the last layer, and on Layer 28, where all
models’ scores are similar. Nevertheless, in the
last layers, the Pre sites have higher scores than
the Post sites, which hints at three potential expla-
nations: (1) the model’s hidden states at Pre site
should be the most indicative for the legal refer-
ences, as they are ones used to generate final token
logits. (2) The scores may inevitably decrease af-
ter the Pre site, as the models shift from focusing
on the legal reference to predicting the subsequent
context. (3) Alternatively, the drop may potentially
be a consequence of the internal structure of the
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(a) Representation similarity scores across different sites. Rand: random location before the target law token or law reference;
Pre: the token before the target; Post: the last token of the target, which is the law token itself and the last token of the law
reference. Higher CKA scores indicate better alignment of the vectors with the law’s semantics extensions.

(b) The representation similarities of the two constituents. Act refers to the name of the law article, and Num refers to the article
number. As a visual reference, the dashed lines indicate the values of the Pre site of 1.5B LawBase model.

Figure 3: Representation similarities in different layers and different sites across model type and sizes.

legal references.

To instantiate the impact of the internal structure
of the legal reference, we compute their represen-
tation similarity scores on Act and Num sites. The
Act and Num sites, applying only to the LawBase
models, are two constituents in the law references:
the former being the last token of the act name and
the latter the last token of article numbering. Each
panel clearly shows that while act name representa-
tions contribute more as we move from Pre site to
Act site, especially in the early layers, the Num sites
consistently reduce the scores. This suggests the
numbering constituents of the law references are
less informative than the article numbering or even
the preceding context. In fact, incorporating the
article numbering seems to negatively impact the
representation of the law references.

Representation similarities show the (mis-
)alignments with law content semantics across dif-
ferent model layers and different sites, but they
nevertheless only offer a coarse-grained view of
the individual context each law token or reference
is embedded. Being a context-independent mea-
sure of semantic extension, law content semantics
is only based on the law content and has no access
to the context information encoded by the LawBase
or LawToken model. It is very well possible that

the misalignment we observed, for example, the
reduced similarity scores of the Article numbering
site, is because the model has captured the context
information that is not encoded in the static law con-
tent semantics. Therefore, we move to token-level
probabilities to investigate the model’s behavior
further.

4.3 Token-level probability

The token-level probability provides complemen-
tary information for evaluating model behaviors.
Distinct from the representation similarities where
the token-based model states are compared to a
type-based law content semantics, the prediction
probabilities (of the true targets) are computed and
evaluated in their context. There are two advan-
tages of such a measure. (1) The prediction proba-
bilities come directly from the model states of the
hidden layer after accounting for all the other pos-
sible candidates. It effectively measures how good
or close the last hidden states are to the true em-
beddings in that context. (2) The prediction prob-
abilities also have explicit interpretations, which
are surprisals as used in psycholinguistics stud-
ies (Goodkind and Bicknell, 2018; Wilcox et al.,
2020), and information content or the compressed
message length in bits if the law token or reference
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Figure 4: Negative log2(prob) of next-token predictions of different sites across models. (a) Full LawToken refers
to the true law token and the multi-token sequences of the law reference. (b) The Random sites are the random
locations before the target. (c) Constituent sites are the Act and Num sites. The dashed line is added as a visual
reference, which are the values of 1.5B LawBase in the Random sites.

were to be compressed with an optimal compressor
(Deletang et al., 2024; Tseng et al., 2024). That
is to say, the prediction probabilities, particularly
when transformed with a 2-based logarithm, signify
the degree of difficulty the model has in predicting
the law tokens or the law references based on the
context it has encountered so far.

Figure 4 presents the results of prediction prob-
abilities. Interestingly, despite the drastically dif-
ferent tokenization – where the law reference in
LawBase has 11.90 tokens and only one in Law-
Token – their information contents (the log2(prob),
summed over all tokens in law references) are
largely the same across model sizes. However,
this does not suggest intrinsic differences in de-
coding capacities between model types. As shown
in Figure 4(b), LawBase models are not generally
more efficient than the LawToken ones as the infor-
mation contents remain comparable in the random
sites where the predicted tokens occur before the
law token. The findings are consistent with the
previous representation similarities results, where
the model states of the last hidden layers are al-
most the same in the Pre sites (except for the 1.5B
model size, Figure 3a). Furthermore, this makes
sense when considering the law token or reference
conceptually: they are only two realizations of the
same concept in input tokens, so both model types
are expected to encode the law token or reference
with similar information contents.

However, the similar information contents of the
law tokens and references do not fully account for
the observed differences in law citation tasks. As

suggested by the previous model states findings,
both LawBase and LawToken models achieve sim-
ilar qualities of model states, as indicated by the
CKA scores. It is only when LawBase models
begin decoding token by token that the representa-
tion similarities decrease, especially at the article
numbering sites. This pattern is consistently re-
flected in Figure 4(c). When comparing the Act
name (Act ) and article numbering sites (Num ), the
Act sites show very low information contents, sig-
nificantly lower than the Random sites. In con-
trast, the Num site has higher values comparable to
the Random ones. These token-level prediction
probability results align with the type-level repre-
sentation similarity findings: although LawToken
models exhibit better lexical representation in the
early layers, both models ultimately encode a sim-
ilar amount of information through context. The
key difference is that the LawBase models decode
the law reference in multiple steps, and the best
decoding representations are already achieved be-
fore the first token of law reference. Afterward,
the LawBase models struggle with the highly am-
biguous tokens from article numbers (Num sites), as
evidenced by the reduced type-level representation
similarities and the lower token-level information
content.

Finally, Figure 5 presents the prediction prob-
abilities following the law tokens and references.
Neither the LawToken nor LawBase models show
significant effects after the legal mentions, except
that the 0.5B and 1.5B models do show small but
significant differences in the immediate token fol-
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Figure 5: The negative log2(prob) of the sites after the
target law token (LawToken) or reference (LawBase).
The horizontal axis shows how many tokens are after the
target. The inset highlights the first token after the target,
where the LawToken models show higher predictability
than the LawBase ones, except for the 7B model.

lowing position. This result is not surprising; as
shown earlier, both model types encode compara-
ble information content of legal mentions and can
eventually compensate for the lexical information
carried by the law token using context. Therefore,
the holistic tokenization of law tokens only has a
very limited effect on the following tokens.

5 Conclusion

Motivated by the form-meaning pairs of cogni-
tive linguistics, we propose that the legal cita-
tions involving multi-word constituents can be pro-
cessed not only as multi-token compounds but
as holistic tokens. This paper empirically tests
and investigates how different tokenizations affect
model behaviors and representations. We train two
model types: LawToken models, which consider
the whole legal citation as one law token, and Law-
Base models, where the same citation is treated
as multiple tokens. Our results show that LawTo-
ken models outperform LawBase models in legal
citation tasks, particularly due to the article num-
bering component. We further analyze the model
representations and find that both LawToken and
LawBase models achieve comparable semantic rep-
resentation quality. However, the LawBase model
suffers from degraded representation in the multi-
step decoding process, potentially increasing errors
and hallucinations.

It may seem counterintuitive that treating an en-
tire legal mention as a holistic law token improves
task performance instead of leading to overfitting.
However, this becomes understandable when we

consider the compositionality problem inherent in
the legal mention. In the mention, the article num-
ber component is the least informative constituent
in a compound: it is constantly reused, lacks intrin-
sic connection to the intended meaning, and can
only be resolved by context. The fact that LawBase
models can achieve higher performance through
fine-tuning, yet still fall short of LawToken models,
suggests an upper bound to what contextualiza-
tion alone can achieve. Beyond that, the model
may need a more efficient or more discriminative
cue, i.e., a law token in this case, to link with the
intended semantics. In this sense, the model ei-
ther considers the legal mention as a single “word”
or compress a compound as a token, depending
on one’s definition of “word.” Regardless, this
line of reasoning align with linguistic models that
do not assume the compositionality processing of
compounds or a fixed and static notion of words
(Baayen et al., 2019; Libben, 2022). Moreover,
while this study shows that a manually defined law
token is beneficial, whether such tokens can be
learned dynamically (Pagnoni et al., 2025) remains
an open question.

The implications of the present findings extend
beyond linguistic theory. Indeed, the ability of
LawToken models to encode what requires mul-
tiple tokens in LawBase ones already highlights
that the form-meaning mappings can operate in a
larger scope. Furthermore, treating legal citations
as law tokens has significant implications for future
legal reasoning studies, particularly when examin-
ing potential circuits (Tigges et al., 2024; Prakash
et al., 2024). Linguistic theories may not directly
inform the development of LLMs. Instead, the
growing use of LLMs now makes it possible for
linguists to empirically test theoretical claims that
were previously out of reach. When combined with
such implementations, linguistic theories can begin
to move toward “an integrated model that gener-
ates precise quantitative predictions for vast arrays
of empirical findings” (Baayen, 2024), opening
new pathways that connect LLMs with our existing
knowledge of language.
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Appendix

A Limitation

This paper examines how tokenization impacts
model performance in predicting legal citations and
shaping semantic representations, using Taiwan’s
legal citation system as our dataset. However, we
acknowledge that the citation formats vary across
different countries, especially considering that Tai-
wan follows the civil law system, in contrast to
the common law system, as in the British or the
United States. Although we believe the findings are
relevant to other surface forms, this work remains
constrained by the dataset upon which it is trained
and tested. On the theoretic side, our results indi-
cate that the multi-token models (i.e., LawBase)
suffer from degraded representations during multi-
step decoding. Yet, it remains unclear whether the
degradation stems from the nature of legal cita-
tion or can be generalized to a more general form-
meaning mapping problem, such as those found in
compounds or multi-word expressions. Address-
ing these questions requires more experiments and
analyses in future studies.

B Examples of training data

The dataset comprises laws and verdicts in Taiwan.
The examples of training data shown below, other
than the “Question”, “Answer” and the law citation
tokens, are all in traditional Chinese. Personal
names are anonymized, although they appear in the
original verdicts. English translations are provided
for clarity but are never seen by the model.

B.1 Example 1

理 由 一、本件原裁定以抗告人陳○○因
不服臺灣新北地方檢察署 101年度執更丑
字第4313號執行指揮書而聲明異議，經原審
以10 7年度聲字第544號裁定駁回，並囑託法
務部矯正署宜蘭監獄長官於民國107 年4月2日
向抗告人合法送達，此有送達證書附卷可查。
其抗告期間之末日為同年月7 日星期六，翌
日為星期日，均為休息日。其提起抗告，僅
可於休息日次日即同年月9 日星期一為之。
乃竟遲至同年月11日始向法務部矯正署宜蘭
監獄長官提起抗告，有抗告人所提刑事抗告
狀在卷可證。已逾5日抗告期間，因依<刑事
訴訟法|411>前段規定駁回其抗告。經核尚無
不合。 二、抗告意旨徒以107年4月4日至同
年月8日為休假期日，依社會通念休假期日
不計算期日，同年月12日才是抗告終止日等

語，係憑己見指摘原裁定不當。其抗告為無
理由，應予駁回。 據上論結，應依<刑事訴訟
法|412>，裁定如主文。

English Translation
Reasoning

1. The original ruling was based on the fact that
the appellant, Chen xx-xxx, objected to the exe-
cution order No. 4313 (Year 101, Re-Execution
Chou Character) issued by the Taiwan New Taipei
District Prosecutors Office, and filed an objection
accordingly. The original court dismissed the ob-
jection in Ruling No. 544 (Year 107, Objection
Character), and entrusted the Yilan Prison Warden
of the Agency of Corrections, Ministry of Justice to
serve the ruling lawfully to the appellant on April
2, 2018 (Year 107 of the Republic of China calen-
dar). This is confirmed by the certificate of service
included in the case file.

The last day of the appeal period was Saturday,
April 7 of the same year, and the next day, Sunday,
was also a rest day. Therefore, an appeal could
only be filed on the next business day, which was
Monday, April 9 of the same year. However, the
appellant did not file the appeal until April 11 of the
same year, submitting it to the Yilan Prison Warden.
This is proven by the criminal appeal document
submitted by the appellant on record. Since this
was beyond the 5-day appeal period, the appeal is
dismissed according to the first part of Article 411
of the Code of Criminal Procedure. Upon review,
this decision is deemed proper.

2. The grounds for appeal merely argue that the
period from April 4 to April 8, 2018, was a holiday,
and that under common social understanding, holi-
days are not counted toward deadlines, hence April
12 should be considered the last day to appeal. This
is a subjective interpretation and an unfounded crit-
icism of the original ruling. The appeal lacks merit
and should be dismissed.

In conclusion, pursuant to Article 412 of the
Code of Criminal Procedure, the ruling is made as
stated in the main text.

B.2 Example 2

<土地法|46-2>重新實施地籍測量時，土地所
有權人應於地政機關通知之限期內，自行設立
界標，並到場指界。逾期不設立界標或到場指
界者，得依左列順序逕行施測： 一、鄰地界
址。 二、現使用人之指界。 三、參照舊地籍
圖。 四、地方習慣。 土地所有權人因設立界
標或到場指界發生界址爭議時，準用第五十九
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條第二項規定處理之。

English Translation
<Land Act|46-2> When a cadastral resurvey is be-
ing conducted, the landowner shall, within the dead-
line specified in the notice issued by the land ad-
ministration authority, install boundary markers
and appear on-site to indicate the boundaries. If the
landowner fails to install boundary markers or ap-
pear on-site within the prescribed period, the survey
may proceed directly according to the following
order of priority: (1) The boundaries of adjacent
parcels. (2) The boundary indications provided by
the current user of the land. (3) Reference to the old
cadastral maps. (4) Local customs. If a boundary
dispute arises due to the installation of boundary
markers or the on-site boundary indication by the
landowner, the provisions of Paragraph 2, Article
59 shall apply mutatis mutandis.

B.3 Example 3

原審以：被上訴人主張上訴人為系爭支票發
票人，伊為執票人等情，為上訴人所不爭執，
且有系爭支票影本可稽，堪信為真實。 上訴
人抗辯：鄭○○詐稱呂○○對其負有債務，
且將來會負責支付系爭支票票款，要求開立
系爭支票與被上訴人，但實際上呂○○未積
欠鄭○○錢，呂○○被鄭○○及被上訴人詐
欺，陷於錯誤交付系爭支票等語，可知上訴
人因認呂○○對鄭○○負有債務始簽發系爭
支票，嗣因呂○○與鄭○○間發生債務糾葛，
呂○○始否認對鄭○○負有債務，此由鄭○
○於上訴人簽發系爭支票後，嗣後另案起訴
請求呂○○返還投資款即明，復有民事起訴狀
影本可參，況上訴人自始未提出任何證據佐證
其被詐欺或脅迫而簽發系爭支票，上訴人此部
分抗辯，不足為採。上訴人另抗辯系爭支票之
原因關係不存在，惟票據係文義證券及無因證
券，屬不要因行為，故執票人祇須就該票據作
成之真實負證明之責，關於票據給付之原因，
並不負證明之責任，票據債務人仍應就其抗辯
之原因事由，先負舉證責任。然上訴人未就其
抗辯事由負舉證責任，則被上訴人請求上訴人
給付系爭支票款1100萬元，及自105年8月1日
起至清償日，按週年利率6％計算之利息，為
有理由，應予准許等詞，因而維持第一審所
為上訴人敗訴之判決，駁回其上訴，經核於法
並無不合。 按票據乃文義證券及無因證券，
票據上之權利義務悉依票上所載文義定之，與
其基礎之原因關係各自獨立，票據上權利之行
使不以其原因關係存在為前提。是執票人行使
票據上權利時，就其基礎之原因關係確係有效

存在不負舉證責任。僅於票據債務人以自己與
執票人間所存抗辯事由對抗執票人，而該票據
基礎之原因關係經確立者，法院就此項原因關
係進行實體審理時，當事人於該原因關係是否
有效成立或已否消滅等事項有所爭執，始應適
用各該法律關係之舉證責任分配原則。查上訴
人為系爭支票發票人，被上訴人為執票人，為
原審所確定。被上訴人主張上訴人係為返還伊
投資款而簽發系爭支票，上訴人則抗辯係鄭○
○詐稱呂○○對其負有債務，且將來會負責支
付系爭支票票款，而簽發交付系爭支票予被上
訴人，就被上訴人取得系爭支票之原因關係，
各執一詞，並未確立，依上說明，仍應由上訴
人就其抗辯之原因關係，負舉證之責。原審因
上訴人未舉證證明系爭支票之原因關係，而為
其不利之認定，自不違背舉證責任分配原則。
至上訴人援引之本院判決，或係就該票據基礎
之原因關係經確立情形所為之闡述，或與本件
事實有所差異，均無從比附援引。上訴論旨，
指摘原判決不當，聲明廢棄，非有理由。 據
上論結，本件上訴為無理由。依、、、，判決
如主文。<cite><民事訴訟法|436-2|2>,<民事
訴訟法|78>,<民事訴訟法|449|1>,<民事訴訟
法|481></cite>

English Translation

The court of first instance found that: the ap-
pellee asserted that the appellant was the issuer of
the check in dispute, and that the appellee was the
holder of said check—facts not contested by the
appellant and supported by a copy of the disputed
check, which is deemed credible and authentic.

The appellant contended that Cheng xxx-xxx
falsely claimed that Lu xxx-xxx was indebted to
him and would be responsible for the payment of
the disputed check, and thus requested the issuance
of the check jointly with the appellee. However, in
fact, Lu xxx-xxx owed no debt to Cheng xxx-xxx,
and the check was delivered under a mistake caused
by the fraud committed by Cheng xxx-xxx and the
appellee. From this, it is clear that the appellant
issued the check under the belief that Lu xxx-xxx
owed Cheng xxx-xxx a debt. After a dispute arose
between Lu xxx-xxx and Cheng xxx-xxx regard-
ing said debt, Lu xxx-xxx denied owing any such
debt. This is evident from the fact that, after the
appellant issued the check, Cheng xxx-xxx filed a
separate lawsuit seeking return of his investment
from Lu xxx-xxx; a copy of that civil complaint is
also on record. Moreover, the appellant never sub-
mitted any evidence to support the claim of having

43



been defrauded or coerced into issuing the check.
Therefore, this part of the appellant’s defense lacks
merit.

The appellant further argued that there was no
underlying transaction or cause for the issuance
of the check in dispute. However, as a negotiable
instrument, a check is a documentary and abstract
security—its legal force derives from the wording
on the instrument itself and is independent of the
underlying cause. Accordingly, the holder of the
check only bears the burden of proof with respect
to the authenticity of the check itself, and not re-
garding the underlying cause of payment. On the
contrary, it is the debtor on the check who must
bear the burden of proof for any defenses raised
against payment. Since the appellant failed to pro-
vide proof supporting the grounds for their defense,
the appellee’s claim for payment of NT$11 mil-
lion, along with interest calculated at an annual
rate of 6% from August 1, 2016 until the date of
repayment, is well-founded and should be granted.
Therefore, the judgment of the court of first in-
stance, which ruled against the appellant, is upheld,
and the appeal is dismissed. Upon review, this
judgment is in accordance with the law.

According to law, negotiable instruments are
documentary and abstract in nature. The rights
and obligations indicated on the face of the in-
strument govern, independently of any underlying
transaction. The exercise of rights under a nego-
tiable instrument does not require proof of the exis-
tence of the underlying relationship. Thus, when
a holder of an instrument seeks to exercise such
rights, they bear no burden of proof regarding the
validity of the underlying relationship. Only when
the debtor on the instrument raises a defense based
on their own relationship with the holder—and the
underlying cause of the instrument is thereby es-
tablished—does the court proceed to substantively
examine that cause. In such cases, the burden of
proof is allocated according to the relevant substan-
tive legal relationships.

The appellant is confirmed to be the issuer of
the check in dispute, and the appellee its holder,
as determined by the lower court. The appellee
claims the check was issued by the appellant to
repay an investment, while the appellant claims the
check was issued under the false impression—due
to misrepresentation by Cheng xxx-xxx—that Lu
xxx-xxx owed Cheng a debt and would pay the
amount. Each party presents a different version
of the reason behind the check’s issuance, and no

cause has been established. According to the prin-
ciples stated above, it remains the appellant’s re-
sponsibility to prove their asserted cause. Since
the appellant failed to meet that burden, the lower
court’s unfavorable ruling does not violate the prin-
ciple of burden of proof allocation.

As for the judgments cited by the appellant,
those either concern cases where the underlying
cause of the negotiable instrument was established,
or differ in facts from the present case, and are
therefore inapplicable. The grounds of appeal,
which challenge the lower judgment as improper
and request its reversal, are without merit.

In conclusion, the appeal in this case is ground-
less. Pursuant to„, judgment is rendered as stated
in the main text. <cite><Civil Procedure Code|436-
2|2>,<Civil Procedure Code|78>,<Civil Procedure
Code|449|1>,<Civil Procedure Code|481></cite>

C Examples of evaluation tasks

C.1 Example of long-context citation task
Question: ``四、原審已依吳○○就醫之相關
病歷資料、診斷證明書、臺中榮民總醫院函
文、勞動部勞工保險局函文等資料，載敘吳
○○傷勢及結果甚詳，上訴人及其辯護人於審
理中並未爭執有何記載錯誤、不實之處，則原
審綜合全案證據資料，依其所採取之證據及得
心證理由之說明，已足以認定吳○○受有右眼
創傷性黃斑部裂孔造成僅能辨識眼前指數10公
分，且右眼視野缺損、最佳矯正視力為0.01，
達一目視能嚴重減損之重傷害，而未再為其
他無益之調查，自無上訴意旨所指適用法則
不當、調查未盡之違法情形可言。又本院為法
律審，不為事實之調查，上訴人上訴於本院，
始提出其蒐得吳○○工作之照片作為新證據資
料，執以指摘原判決違誤，亦非上訴第三審之
合法理由。 五、綜合前旨及其他上訴意旨，
無非係置原判決所為明白論斷於不顧，仍持
已為原判決指駁之陳詞再事爭辯，或對於事實
審法院取捨證據與自由判斷證據證明力之職權
行使，徒以自己之說詞，為相異評價，任意指
為違法，或單純為事實上枝節性之爭辯，要與
法律規定得為第三審上訴理由之違法情形，不
相適合。本件上訴違背法律上之程式，應予駁
回。 據上論結，應依刑事訴訟法前段，判決
如主文。<cite>''

Answer: ``<刑事訴訟法|395>,<刑事訴訟
法|377>''

English translation
Question: 4. The original trial court had already
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reviewed relevant medical records, diagnostic cer-
tificates, correspondence from Taichung Veterans
General Hospital, and documents from the Bureau
of Labor Insurance of the Ministry of Labor. These
materials provided a detailed description of Wu
xxx-xxx’s injuries and medical outcomes. Dur-
ing the proceedings, neither the appellant nor their
defense counsel disputed any inaccuracies or false-
hoods in those records. Therefore, the trial court,
based on the totality of the evidence and its reason-
ing for the credibility of the accepted proof, was
fully justified in concluding that Wu xxx-xxx sus-
tained a traumatic macular hole in his right eye,
rendering him able to perceive only hand motion
at 10 cm in front of the eye. He also suffers from
a loss of visual field and a best-corrected visual
acuity of 0.01 in that eye—constituting a serious
injury causing severe impairment to monocular vi-
sion. As such, the court did not engage in further
unnecessary investigation, and there is no indica-
tion of improper application of the law or failure to
investigate, as alleged in the appeal.

Furthermore, this Court serves as a court of
law, not of fact. The appellant’s submission of
photographs allegedly showing Wu xxx-xxx at
work—presented for the first time on appeal to
this Court as new evidence and cited as grounds
to challenge the lower court’s decision—does not
constitute a legitimate reason for a third-instance
appeal.

In sum, the foregoing and the rest of the appeal
merely disregard the clear reasoning of the original
judgment, reasserting arguments already addressed
and rejected by the lower court, or challenge the
trial court’s discretion in evaluating and weigh-
ing evidence by offering alternative interpretations
based on the appellant’s own narrative. Such argu-
ments are factual disputes over minor points and
do not qualify as legal grounds for a third-instance
appeal under the law. This appeal thus violates
procedural requirements and shall be dismissed.

Based on the above reasoning, and pursuant to
the first part of the Code of Criminal Procedure,
judgment is rendered as stated in the main text.
<cite>

Answer: <Code of Criminal Procedure|395>,
<Code of Criminal Procedure|377>

C.2 Example of short-context citation task
Question: ``按當事人因無資力支出訴訟費用
而聲請訴訟救助者，關於無資力支出訴訟費
用之事由，應提出可使法院信其主張為真實並

能即時調查之證據，以釋明之。此觀之規定自
明。<cite>''

Answer: ``<民事訴訟法|109|2>''

English translation According to the law, when
a party applies for litigation aid on the grounds
of inability to afford litigation costs, they must
provide evidence that is sufficient to convince the
court of the truthfulness of their claim and that
can be promptly verified by the court, in order to
clarify the grounds for their financial inability. This
is clearly stipulated by law. <cite>

Answer: <Civil Procedure Code|109|2>

C.3 Example of law-naming task
Question: ``物之發明之實施，指製造、為販
賣之要約、販賣、使用或為上述目的而進口該
物之行為。<cite>''

Answer: ``<專利法|58|2>''

English translation
Question: The implementation of an invention of a
product refers to the acts of manufacturing, offering
for sale, selling, using, or importing the product for
the above purposes. <cite>

Answer: “<Patent Act|58|2>”

D Prompt design for GPT-4o-mini

D.1 System prompt
"你是一名熟悉中華民國法條的法律專業人
士，在任何情境下，你都能援引最適切的法條
予以回應。"

English translation
You are a legal professional well-versed in the laws
of the Republic of China (Taiwan), and in any sit-
uation, you are able to cite the most appropriate
legal provisions in your response.

D.2 Prompt template
---

<判決書>
[....]
<cite>
<法條>
<刑 事 訴 訟 法|449|1>,<刑 事 訴 訟
法|449|3>,<毒品危害防制條例|20>,<毒品危
害防制條例|23|2>,<刑事訴訟法|454|1>,<毒
品危害防制條例|23>,<毒品危害防制條
例|10|2>
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---
<判決書>
{Question}
<cite>
<法條>
"

English translation

Your task is to identify the most relevant legal
provisions. First, refer to the judgments and their
associated legal articles in the examples below.
Then, a second judgment will be presented—this
is your task. Based on the content and subject of
that judgment, please provide the applicable legal
provisions in the specified format and return them
as a JSON file.

---

<verdict>
[....]
<cite>
<laws>
<Code of Criminal Procedure|449|1>,<Code of
Criminal Procedure|449|3>,<Narcotics Hazard
Prevention Act|20>,<Narcotics Hazard Prevention
Act|23|2>,<Code of Criminal Procedure|454|1>,
<Narcotics Hazard Prevention Act|23>,<Narcotics
Hazard Prevention Act|10|2>

---

<verdict>

{Question}
<cite>
<laws>
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Abstract

Proactive dialogue systems aim to empower
chatbots with the capability of leading con-
versations towards specific targets, thereby en-
hancing user engagement and service auton-
omy. Existing systems typically target pre-
defined keywords or entities, neglecting user
attributes and preferences implicit in dialogue
history, hindering the development of long-
term user intimacy. To address these chal-
lenges, we take a radical step towards build-
ing a more human-like conversational agent
by integrating proactive dialogue systems with
long-term memory into a unified framework.
Specifically, we define a novel task named
Memory-aware Proactive Dialogue (MapDia).
By decomposing the task, we then propose an
automatic data construction method and cre-
ate the first Chinese Memory-aware Proactive
Dataset (ChMapData). Furthermore, we in-
troduce a joint framework based on Retrieval
Augmented Generation (RAG), featuring three
modules: Topic Summarization, Topic Re-
trieval, and Proactive Topic-shifting Detection
and Generation, designed to steer dialogues
towards relevant historical topics at the right
time. The effectiveness of our dataset and mod-
els is validated through both automatic and hu-
man evaluations. We release the open-source
framework and dataset at https://github.
com/FrontierLabs/MapDia.

1 Introduction

Recent years have witnessed significant advance-
ments in the design of conversational agents, with
various methods proposed to generate engaging re-
sponses, e.g., external knowledge (Xu et al., 2023;
Yang et al., 2024), personality traits (Madaan et al.,
2020; Ju et al., 2022), and the utilization of large-
scale models (Fan et al., 2023; Liu et al., 2024).
Among these, proactive behavior in agents—where
the agent takes control of the conversation instead
of merely responding passively to users—has been
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Dialog History:

I enjoy swimming

Target: I like to travel to new places.

I like to swim at beaches when I go on 
vacation. I like to travel to new places.

enjoy
swim

go to
beach

go on
vacation

travel

Bridging Path

Target-guided Response

Dialog 
Context

Topic History

𝑫𝒊𝒂𝒍𝒐𝒈𝟏, 𝑫𝒊𝒂𝒍𝒐𝒈" , ……

I have an
exam soon

……

Dialog 
Context

Cool! That’s why you chose the beach over 
hiking last weak, right? You must have 

had a great time swimming on your trip!

Memory-aware Response

I enjoy swimming

Topic-
Context 

Relevance

Right Time!

𝑹 =0.87

Summarization

𝑹 =0.73

Vacationing 
on beach 
last weak

Figure 1: Comparison of previous proactive dialogue
systems (Left) that extracted from Gupta et al. (2022)
and our system (Right) on the same sample: The left
system transitions the context to a pre-designed target
through a bridging path, whereas our system involving
summarization, retrieval, and timing detection to gener-
ate the memory-aware response.

identified as a crucial advancement for the next gen-
eration of conversational AI (Deng et al., 2023).

Nevertheless, a more lifelike dialogue system
must go beyond generating contextually appropri-
ate responses; it should also employ more intel-
ligent mechanisms to maintain a coherent social
relationship over time (Campos et al., 2018). Mem-
ory, in particular, has already been acknowledged
as essential for driving conversations, developing
rapport, and maintaining long-term connections
(Zhong et al., 2024; Maharana et al., 2024). How-
ever, existing proactive dialogue systems insuffi-
ciently exploit memory mechanisms, whose tar-
gets are pre-defined ones, such as topical keywords
(Tang et al., 2019), knowledge entities (Wu et al.,
2019a), conversational goals (Liu et al., 2020),
while overlooking the contextual richness of di-
alogue history. Even advanced ChatGPT (Achiam
et al., 2023) faces constraints, yielding responses to
inquiries regarding the context, reflecting a passive
engagement with historical data. On the one hand,
predefined topics may not align with user interests,
which is further discussed in the Appendix A based
on previous research. On the other hand, as users’
personal information accumulates over time, ig-
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noring historically interpersonal interactions with
agents (i.e., the memory mentioned in this paper)
causes a failure to capture their attributes and pref-
erences. All of these contradict the proactive dia-
logue motivation to improve user engagement.

To bridge this gap, we integrate proactive dia-
logue systems with memory mechanisms, moving
closer to creating more intelligent and human-like
conversational agents. Specifically, we propose the
Memory-aware Proactive Dialogue task, depicted
in Figure 1. Contrary to traditional proactive sys-
tems that respond based solely on a pre-designed
target, our approach extracts topics from past dia-
logues, identifies the most relevant topic as target,
assesses the appropriateness of topic transitions,
and finally integrates memory into the response.

To minimize extensive human annotation, we
introduce an automated four-step data construc-
tion method, proven effective in validation. This
method uses GPT-4 (Achiam et al., 2023) to de-
velop ChMapData, the first Chinese Memory-
aware Proactive Dataset encompassing all the infor-
mation to perform MapDia including dialogue his-
tories, corresponding topics, current contexts, topic
transition timings, and history-informed responses.
Specifically, we guide the generation of certain his-
torical dialogues using memorable subjects, such
as events in which the user has participated. These
dialogues serve as references for the subsequent
generation of proactive chats and shape the current
context, ensuring continuity and facilitating mem-
ory recall. The final segment of the data determines
the appropriateness of topic transitions during con-
versations and formulates responses accordingly,
concentrating on either shifting to a historical topic
or maintaining the ongoing context.

With ChMapData, we propose a new proactive
dialogue framework containing three components:
1) Topic Summarization, condensing historical dia-
logues into topics for simplified retrieval; 2) Topic
Retrieval, identifying the most relevant historical
topic with a RAG mechanism; and 3) Proactive
Topic-shifting Detection and Generation, timing
and executing topic transitions at optimal moments.

The main contributions are as follows: 1) We
are the first to integrate memory technique into
proactive dialogue systems and introduce a novel
task of MapDia, where the system navigates cur-
rent dialogue towards relevant historical topics at
an appropriate opportunity; 2) We propose an ef-
fective automated data construction methodology
and, based on this, construct ChMapData, the first

memory-aware proactive dialogue dataset in Chi-
nese; 3) We present a RAG-based proactive di-
alogue framework that combines summarization,
retrieval, timing detection, and response generation
mechanisms. Both automatic and human evalua-
tions demonstrate the effectiveness of our method.

2 ChMapData Dataset

Despite the existence of Chinese datasets for proac-
tive dialogue systems (Wu et al., 2019b; Zhou et al.,
2020), they lack the ability to engage with the dia-
logue history while either steering the conversation
towards a new topic or continuing with the current
one. To fill this gap, we automatically generate
the first multi-turn dataset designed for proactive
conversations that leverage historical memory uti-
lizing GPT-4 with a range of prompts (detailed in
Appendix B). This process is further validated by
annotators, thereby eliminating the high costs and
lengthy procedures associated with human anno-
tation. Note that we construct the dataset through
GPT-4 because LLMs have been proven as pow-
erful tools for synthetic data generation (Agrawal
et al., 2022; Liu et al., 2022; Bitton et al., 2023).

2.1 Data Construction

Figure 2 gives an overview of the ChMapData con-
struction pipeline, involving a four-step process.
1) Subject Selection. The initial phase involves
GPT-4 brainstorming to generate a pool of potential
subjects. Out of these, 11 subjects are manually se-
lected and categorized into two groups: Memorable
Subjects, intended to evoke recollections related
to the user’s own experiences , including personal
interests, feelings, skills, traits, participating events,
and events’ progression; as well as General Sub-
jects, which have no direct connection to the user’s
life and are not typically brought up again, encom-
passing social events, opinion debates, humorous
jokes, audience stories, and knowledge sharing.
2) Topic and Dialogue Generation. On the basis
of 6 Memorable and 5 General Subjects selected
above, a fine-grained topic along with correspond-
ing dialogues are generated serving as a bank of
dialogue histories. To emulate the flow of real-life
conversations, we crafted more dialogues for Gen-
eral Subjects than Memorable ones, at a ratio of
2:1, yielding 500 and 250 dialogues for each respec-
tively, culminating in 4,000 topic-dialogue pairs.
Each dialogue is limited to 5-8 turns to maintain
brevity and focus. Among these, 1500 dialogues
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Humorous Jokes

Participated Events

Personal Interests

Social Events

(a) Subject Selection  

Topic: Marathon Race 

User: Hey, I ran a marathon 
last week.
Chatbot: That's quite the 
workout! Were you super tired?
User: Yeah, I was totally 
exhausted, and experienced 
muscle pain for several days!

User: Get obsessed with exercise 
lately, and I've started trying some 
new exercises.
Chatbot: Oh, what kind of workouts 
are you planning to do?

User: Totally, I really regret not discovering this amazing workout 
sooner! 
Thoughts: The user is highly enthusiastic about her new exercise 
routine. It's fitting to acknowledge the benefits of yoga and focus on 
encouraging her to keep going, without switching the topic.
No
Chatbot: It's never too late to start. Just keep at it!

User: Definitely, every time I finish yoga, I feel more flexible. I 
believe I will stick with it！
Thoughts: The user has noted feeling more flexible, which is quite 
different from the muscle soreness after running the marathon. This 
is a good opportunity to shift the topic back to the marathon and ask 
about her current state.
Yes
Chatbot: That's great! Did yoga help with your recovery after that 
marathon you ran?

(b) Topic & Dialogue Generation (c) Dialogue Continuation (d) Topic-shift Detection & Response Generation

User: I've started getting into yoga.
Chatbot: Cool! Yoga is great for both 
physical fitness and mental well-being.

Memorable Subject

General Subject

Figure 2: The pipeline of dataset construction. Not derived from the actual dataset.

originate from Memorable Subjects, designed to
potentially trigger memory in subsequent conver-
sations. For every one of these 1500 dialogues, 1
to 10 additional dialogues are selected from candi-
date pools and manually sequenced to construct a
coherent, conflict-free multi-segment chat history.
3) Dialogue Continuation. Subsequently, we initi-
ate a current dialogue session by generating two be-
ginning turns, which is a continuation of each prior
dialogue generated in the second step after a lapse
of several days. Specifically, since step 2 ensures
that each conversation history has a Memorable
Subject-driven dialogue, we extend the dialogue
to facilitate memory recollection in the following
step. The two turns are generated separately: The
first turn is derived from the topic and dialogue con-
tent (generated in Step 2), maintaining consistency
with the prior dialogue, as indicated by the blue
sentence in Figure 2. The second turn is then devel-
oped with a focus solely on the content of the first
one (generated in Step 3) to prevent shifting the
current conversation directly back to the dialogue
history, as highlighted in orange. In total, 1,500
beginnings for current dialogues have been created,
corresponding to the number of dialogue histories
produced under Memorable Subject.
4) Topic-shift Detection and Response Genera-
tion. Ultimately, we continued the conversation
based on the beginning of each current dialogue
(generated in Step 3), and tried to naturally intro-
duce new topics related to the preset memorable
conversation history at appropriate moments. In-
spired by the Chain of Thought (CoT) (Wang et al.,
2022) technique, each turn additionally incorpo-
rates a "Thoughts" feature, aiming to enhance the
accuracy and interpretability of the detection pro-
cess, together with a decision-making mechanism

Hist. Dlg. Curr. Dlg.
# Dialogues 3,9891 1,464
# Utterances 40,619 16,373
# Unique Tokens 21,822 12,503
# Thoughts - 5,081
# Topic-shift Sess. - 1,254
Avg. # Utts. Length 33.23 38.97
Avg. # Utts. per Sess. 10.14 11.18

Table 1: Statistics of both historical (Hist. Dlg.) and
current dialogue (Curr. Dlg.) dataset. # Thoughts
represents the chatbot’s considerations on whether to
switch the topic at each turn. # Topic-shift Sess. refers
to conversations that successfully revert to the historical
topic. The calculation of # Utterances excludes the #
Thoughts, considering only the dialogue segments.

to identify whether it’s an appropriate opportunity
to switch topics, as highlighted in red in Figure 2.
It should be noted that ending the dialogue without
switching to the historical topic is also permissible.

2.2 Overall Statistics
After data construction, we enhanced the dataset’s
quality by checking and manually removing 36 di-
alogues from the current dialogues due to format
inconsistencies or illogical "Thoughts," resulting
in a total of 1,464 entries. Statistics of the ChMap-
Data are presented in Table 1, which is reported
from two aspects: historical dialogue, generated
in Step 2, and current dialogue, initiated with two
turns in Step 3 and extended to the end in Step 4.
Out of these, 1,254 dialogues successfully recalled
the historical topic, as indicated by a "Yes" output
during the detection process. The remaining 210
dialogues, which consistently output "No" through-
out the session, are also retained for training.

1Dialogue irrelevant to the subject has been filtered out.
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Candidate Topics
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Figure 3: An overview of our system. Left showcases an example of proactive dialogue with memory awareness.
Middle outlines the pipeline, featuring a summarization model for topic extraction, a ranking model to identify
relevant historical topics, and a proactive dialogue model for topic shifts and reintroducing past information at the
appropriate moments. Right is a breakdown detailing how these models operate.

3 Approach

Task Definition. Given Given a set of dialogue
history H = {d1, d2, . . . , dn} consisting of n di-
alogues, where di denotes the i-th dialogue and
ti represents its topic, and the current dialogue
context c, the system is tasked with generating a
topic-shift response R that proactively guide the
conversation c to a related historical topic tr at an
appropriate opportunity — specifically at turn τ .

Up until now, we have obtained the ChMapData,
containing historical dialogues with the correspond-
ing topics, current context, thoughts on topic shift-
ing, and response content. With these supports,
we propose partitioning MapDia into three distinct
modules as follows and integrating them through a
RAG framework as shown in Figure 3.
Topic Summarization. Xu et al. (2022a) noted
that dense retrieval of past conversations has two
drawbacks: it requires storing large amounts of
context and places a heavy workload on the model
to extract and retrieve information. To address
this, we start by condensing dialogue history into
topics using a summary model. The training data
for this step is derived from historical dialogues
along with their corresponding topics (referred to

as ChMapData-Sum), and the model is trained to
summarize a topic ti for each dialogue history di.
Topic Retrieval. We then developed a ranking
model to identify the most pertinent summarized
topic tr for the current context c, facilitating contin-
uous memory updates and the integration of histor-
ical information within the dialogue system. This
model utilizes context c, along with its dependent
historical topic t, as outlined in ChMapData con-
struction’s Step 3 (denoted c-t pairs as ChMapData-
Ret) 2. Given that the ranking model trains a clas-
sifier to predict preference probabilities between
pairs of responses, as modeled by the Bradley-Terry
model (Bradley and Terry, 1952). To prepare the
dataset, we use GPT-4 to evaluate the relevance of
the target topic t and 29 other randomly chosen top-
ics from the pool to c, generating positive T+ and
negative T− samples. The highest-ranked topic
and t form T+; if they coincide, only one positive
example is constructed. Topics ranked lower than t
become T−, enhancing the dataset while ensuring
the top-ranked topic is never a negative example.

For each dialogue context c, a training sample is

2Please note that c comprises two beginning turns of dia-
logue generated in Section 2.1 Step 3 and the first utterance
user-generated in Step 4, making a total of 5 utterances.
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formed by pairing a topic t+ from T+ with a cor-
responding negative topic t−, which is randomly
selected from T−. The ranking model is imple-
mented by appending a randomly initialized linear
head to predict a scalar value. We then estimate the
parameters of the ranking model by optimizing the
maximum likelihood loss, defined as follows:

L(θ,D) = E(c,t+,t−)∼D[log(1+ erθ(c,t
−)−rθ(c,t

+)]

where rθ(c, t) is the scalar output of the ranking
model with parameters θ, andD is the preprocessed
dataset of pairwise judgments. During inference,
the ranking model outputs a scalar value, such that
P (t+ ≻ t− | c) ∝ erθ(c,t

+), which is learned
through pairwise loss that topic t+ is preferred over
t− given context c. Thus, topic t+ is considered
superior to t− when rθ(c, t

+) > rθ(c, t
−).

Proactive Topic-shifting Detection and Gener-
ation. Ultimately, we trained a memory-aware
proactive response generation model to proactively
lead the current conversation c towards the identi-
fied topic tr through multiple turns of responses
R = {r1, r2, . . . , rm} at an appropriate moment τ .
The training data for this step is called ChMapData-
Mem, which comprises historical dialogues with
their corresponding topics and the current dialogue
as inputs, along with Thoughts and detection for
topic shifting, and response content as learning
objectives. As previously mentioned, the bot ini-
tially assesses whether it is an appropriate time to
transition to a historical topic based on the current
context c, and provides the reasoning behind this
decision as a form of CoT. Subsequently, it gen-
erates the response content, with "Yes" or "No"
indicating whether the response incorporates mem-
ory or is based solely on the current context.

4 Experiments

We design comparative experiments from two per-
spectives (both individual modules and the entire
framework), assess two approaches (RAG-based
alongside end-to-end) and utilize different test sets
(our new ChMapData-test and an existing dataset).

4.1 Dataset
Our evaluation involved creating a new test set
ChMapData-test, following the method outlined
in Section 2.1. Please refer to Appendix C for the
detailed construction process. Additionally, we
incorporated the existing Chinese dataset Natural-
Conv (Wang et al., 2021) as conversation history to

construct test data, so as to evaluate the method’s
generalization to unseen topics.

4.2 Compared approaches

In our exploration of the overall framework,
we conduct a series of experiments from both
RAG-based and end-to-end perspectives. Given
that RAG-based methods comprise three compo-
nents—namely, a module for processing dialogue
history, the retriever, and the generator—we have
designed four progressive permutations.
• BGE w/ Qwen: Widely-used BGE-M3 retrieval
model (Chen et al., 2024) retrieves relevant memo-
ries from raw dialogue history, with Qwen2.5 gen-
erating proactive dialogue responses as a baseline.
• QSum w/ BGE w/ Qwen: Compared to BGE w/
Qwen, BGE-M3 retrieves memories from histori-
cal topics condensed by our fine-tuned Qwen on
the ChMapData-Ret dataset, named QSum.
• QSum w/ QRet w/ Qwen: Compared to QSum
w/ BGE w/ Qwen, the retrieval model is replaced
with our fine-tuned QRet.
• QSum w/ QRet w/ QMem (Ours): Fine-tuned
QMem that has topic-shifting capability represents
the dialogue model while using Qsum and QRet.
• Qwen-E2E: Fine-tuned Qwen on ChMapData in
an end-to-end (E2E) manner, utilizing all original
dialogues as references without any intermediate
steps such as summarization or retrieved results.
•GPT4-E2E: GPT-4, via prompt engineering, gen-
erates memory-aware responses.

To compare methods for proactively introducing
topics using dialogue history, we use Qwen2.5-7B3

as the base LLM unless otherwise specified. Im-
plementation details are in AppendixE, and full
prompts are in AppendixF. Observations from our
ChMapData dataset show that user responses sig-
nificantly influence the model’s ability to transi-
tion topics. To prevent subconscious topic steering
by human annotators and ensure objectivity while
reducing costs, we trained a User-role Dialogue
Model. For more information, see Appendix G.

4.3 Evaluation Metrics

Following previous works (Yuan et al., 2019; Han
et al., 2021), we utilized Recall (R10@k) to evalu-
ate topic retrieval module, where the correct topic
is among the top k out of ten candidates, specif-
ically using R10@1, R10@2, and R10@3. We
also used MRR and NDCG as additional retrieval

3https://huggingface.co/Qwen/Qwen2.5-7B
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Models Arch. Retrieval Achievement Overall
Quality

Engagement Avg. #TurnUtts.-level Sess.-level

ChMapData-test

BGE w/ Qwen RAG per Sess. 0.02 0.89 0.02 0.02 0.34 4.70
per Utt. 0.01 0.88 0.04 0.02 0.30 5.30

QSum w/ BGE w/ Qwen RAG per Sess. 0.04 0.92 0.05 0.05 0.38 4.52
per Utt. 0.00 0.88 0.05 0.02 0.34 6.02

QSum w/ QRet w/ Qwen RAG per Sess. 0.14 0.99 0.04 0.02 0.44 3.34
per Utt. 0.06 1.00 0.05 0.05 0.44 4.34

Ours RAG per Sess. 0.82 1.23 0.34 0.57 1.18 3.23
per Utt. 0.89 1.36 0.34 0.60 1.18 3.51

Qwen-E2E E2E - 0.39 0.97 0.20 0.37 0.74 2.70

GPT4-E2E E2E - 0.80 1.04 0.50 0.55 1.11 2.23

NaturalConv-test

BGE w/ Qwen RAG per Utt. 0.01 0.98 0.02 0.01 0.32 4.32

QSum w/ BGE w/ Qwen RAG per Utt. 0.05 1.04 0.05 0.01 0.36 4.03

QSum w/ QRet w/ Qwen RAG per Utt. 0.08 1.07 0.07 0.05 0.38 3.98

Ours RAG per Utt. 0.78 1.29 0.28 0.31 1.16 3.83

Qwen-E2E E2E - 0.34 0.94 0.18 0.22 0.71 4.23

GPT4-E2E E2E - 0.50 1.11 0.22 0.17 0.83 4.47
Kappa 0.76 0.69 0.63 - 0.70 0.70

Table 2: Human evaluation of the proactive dialogue systems on both test sets. We further explored the effectiveness
of retrieval once per session and once per utterance in the ChMapData-test. Achievement is calculated as the
proportion of sessions that successfully shift topics (Score 2). Overall Quality is calculated as the average of the
total scores for each utterance. Engagement at the utterance-level is calculated as the average of all scores, while
the session-level is measured by the proportion of the score of "2" within the session. Avg. represents the average of
the scores for the first three evaluation metrics. Bold indicate the best performance, while underlined rank second.
Annotator agreement is measured by Cohen’s kappa (Cohen, 1960), with κ >0.6 denoting high agreement.

metrics referring Zhao et al. (2024).

Since existing automatic metrics like BLEU and
METEOR can’t authentically reflect the quality of
responses (Cai et al., 2019; Yang et al., 2022), we
evaluate overall performance by human annotators.
Specifically, we assess the quality of generated
responses from each system using a total of 200 en-
tries, with each of the two test sets containing 100.
To avoid infinite conversations that never reach the
target, we set a maximum of 10 turns per session.
Three annotators score the generated dialogues on
a scale of {0, 1, 2} with higher scores indicating
better quality, based on three evaluation criteria at
both the utterance and session levels. Annotation
details are given in Appendix H.
• Engagingness: An utterance-level metric mea-
suring chatbots’ ability to capture and respond to
user attributes and preferences, thereby fostering
ongoing engagement and long-term connections.
• Overall Quality: An utterance-level metric as-
sessing the effectiveness of the response, focusing

on smooth topic transitions, coherence, and consis-
tency with the given context.
• Achievement: A session-level metric determin-
ing whether the chatbot has successfully transi-
tioned the conversation to a relevant history. “1”
indicates the topic is merely mentioned, and “2”
signifies a successful transition. #Turn4 is the turn
number when mention or transition occurred.

5 Result and Analysis

5.1 Quantitative Analysis

RAG-based surpass end-to-end methods. As
demonstrated in Table 2, our RAG-based frame-
work significantly outperforms the end-to-end
trained Qwen and even exceeds the powerful GPT-4
across almost all metrics on both test sets, which ef-
fectively highlights the necessity of our framework.
Although GPT4-E2E excels in utterance-level en-
gagement, our review of its responses reveals that

4Value 0 if non-achievement, otherwise 1 to 10.
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Current Context Models Response

User: I’ve been reading a lot about computer pro-
gramming and game design these past few days. I’m
really interested in both, but I can’t decide which
one to focus on.
Chatbot: You could start by doing some short-term
projects or taking a few courses in both areas. You
can get a feel for what working in each field is like.
User: Can you recommend some beginner-friendly
projects or courses for computer programming and
game design?
Chatbot: Sure! For programming, you might want
to try Codecademy’s Python course or Coursera’s
"Computer Science 101." As for game design, you
could check out Coursera’s "Introduction to Game
Design" or Udemy’s "Complete C# Unity Developer
2D" course. These are all great for beginners.

Historical Topic
1. User’s bicycle was stolen.
2. User supports environmental protection.
3. Chatbot shares anecdotes and jokes with User.
4. User is interested in the recent rocket launch.
5. User is learning piano.
6. User is job hunting.
7. User supports environmental protection.
8. Chatbot shares anecdotes and jokes with User.
9. User is interested in the recent Olympics.

QSum
w/ BGE
w/ Qwen

User: You’re right, I’ll keep your advice in mind.
Chatbot: I’m glad I could help. Having clear career interests
is a very important factor. Choosing a field you’re passionate
about will make you more dedicated to learning and exploring,
leading to better results. Before making a decision, it might
be helpful to gather more information and learn some related
knowledge to make a more informed choice.

QSum
w/ QRet
w/ Qwen

User: Thank you. Your advice is very useful, and I’ve decided
to find my true interest through practical experience.
Chatbot: You’re welcome. Keep going, and don’t let difficul-
ties stop you from pursuing your interests and dreams. If you
encounter any problems during your practice, feel free to reach
out to me anytime. I wish you the best in finding your ideal job
and achieving your goals.

Ours

User: These courses sound really interesting, I’ll give them a
try.
Chatbot: Great, this will also be very helpful for your job
search, as many companies in programming and game design
require these skills. When you’re job hunting, you can apply
to companies in both fields and see which one suits you better.
You can also specify in your resume which area you are more
interested in, making your application more targeted.

GPT4-
E2E

User: Okay, I’ll start learning tomorrow. I’ll first get to know
the specifics of computer programming and game design, and
then decide which direction to pursue.
Chatbot: That sounds like a solid plan. Remember, learning
is a lifelong journey, not just for finding a job but also for
enriching yourself and pursuing your interests. Just like the
job search process, it’s important to try to build new connec-
tions. They might offer valuable advice on skill development
or deepen your understanding of these fields.

Table 3: Case study on the test set translated into English. The most relevant historical topic is highlighted in
Orange. The response shows content after several turns of conversation, where Red indicates a successful topic
shift, Blue signifies a mere mention of the relevant topic, and Green refers to semantic logic issues.

it achieves this by repeatedly referencing historical
topics, which can appear unnatural across a 10-turn
session and degrade overall quality. Additionally,
GPT4-E2E’s topic shifts occur in fewer turns, but
fewer turns do not inherently imply superior perfor-
mance, particularly in transition smoothness. Anal-
ysis in Appendix J shows no direct correlation be-
tween the number of turns and model performance.
Each component is essential. Table 2 illustrates
steady improvements among the first four RAG-
based systems, highlighting the effectiveness of
each component in our framework. By introducing
QSum and replacing widely-used BGE with QRet,
Qwen can utilize a more effective dialogue history
for proactive conversation, thereby avoiding abrupt
topic shifts and enhancing overall dialogue quality.
This results in a gradual improvement across vari-
ous metrics. Furthermore, QMem, which controls
the final generation, shows significant performance
enhancement when combined with the first two
modules, achieving optimal performance. Ta-
ble 4 further compares the performance of QSum

5The tool we employ to extract keywords from the raw
dialogue is https://github.com/jeekim/fasttextrank.

Retrieval Combination R@1 R@2 R@3 MRR NDCG

Raw dialogue w/ BGE 0.76 0.86 0.92 0.84 0.88
Keywords5 w/ BGE 0.70 0.82 0.88 0.81 0.86
Keywords w/ QRet 0.77 0.86 0.91 0.87 0.92
QSum w/ BGE 0.78 0.86 0.95 0.85 0.88
QSum w/ QRet 0.82 0.95 0.97 0.90 0.93

Table 4: Retrieval performance of various combinations.

and QRet in retrieving relevant dialogue history.
QSum significantly outperforms raw dialogue and
keyword summaries when cooperating with BGE.
Furthermore, QRet enhances this effect, even when
ranking keywords instead of the summaries used
during training. The independent evaluation of the
abstract is presented in Appendix D.

Moreover, we integrated our model into a real
dialogue system, achieving a 5.1-turn improvement
in user interactions, shown in Appendix I.

5.2 Qualitative Analysis

Table 3 presents a case study of four models from
the ChMapData-test. After successfully retrieving
highly relevant historical topics, the original Qwen
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Models
Achie-
vement

Overall
Quality

Engagement
Avg. #Turn

Utts. Sess.

BGE w/ QMem 0.57 0.83 0.14 0.39 0.72 3.71
QSum w/ BGE w/ QMem 0.60 0.95 0.25 0.41 0.81 3.49
QSum w/ QRet w/ Qwen(7B) 0.06 1.00 0.05 0.05 0.44 4.34
QSum w/ QRet w/ Qwen(72B) 0.43 1.21 0.11 0.35 0.77 2.91
Ours 0.89 1.36 0.34 0.60 1.18 3.51

Table 5: Ablation study of different components.

models merely mentioned historical topics with-
out achieving topic transitions, which reflects its
lack of proactive conversation capabilities. In con-
trast, our model makes smooth transitions from the
current context to the historical topic, i.e., moving
from "how it helps with job hunting" to "specific
job hunting tips". For GPT4-E2E, although it men-
tioned historical topics, the link between "learn-
ing computer programming and game design" and
"building new connections" was tenuous, leading to
incoherence and logical issues. GPT4-E2E tends to
mention historical topics compared to other models
but deviates from proactive topic shifts, which is
also shown statistically in Appendix J Table 9. This
contributes to its inferior performance compared to
our model, as shown in Table 2.

5.3 Ablation Study

In this section, we systematically replace each com-
ponent of our model to examine their impacts. The
results, presented in Table 5, confirm the effective-
ness of all three modules through pairwise com-
parisons. Notably, the dialogue model exerts the
most significant influence on system performance.
Compared to models 3 and 4, as well as our own,
even with advanced prompt engineering using the
superior Qwen2.5, achieving effective topic transi-
tions remains challenging. This limitation persists
despite substantially larger parameter sizes, result-
ing in less achievement and engagement. The per-
formance boost observed with our QMem further
validates the robustness of our constructed dataset.

6 Related Work

Proactive Dialogue System. Deng et al. (2023) cat-
egorize proactive dialogue systems into three types:
open-domain dialogue (Xu et al., 2021; Kishinami
et al., 2022), task-oriented dialogue (Chen et al.,
2022; Zhao et al., 2022), and information-seeking
dialogue (Aliannejadi et al., 2019; Deng et al.,
2022). Unlike the latter two, which focus on ac-
complishing specific tasks within certain domains,
proactive open-domain dialogue systems strive to

engage users by proactively introducing topics or
posing questions, thereby creating a more dynamic
and interactive conversational experience. Our
work is centered on proactive open-domain con-
versation. Nevertheless,we observe that existing
works primarily emphasize coherence (Xu et al.,
2021), smoothness (Zhong et al., 2021; Kishinami
et al., 2022), and achievement (Kishinami et al.,
2022) within several turns of a session, yet none
have been designed to craft systems capable of
recalling and effectively leveraging historical dia-
logue context, a key aspect in sustaining continuity
and intelligence in extended conversations.
Long-Term Memory. Memory architectures have
typically been a core component of conversational
agents (Elvir et al., 2017). Previous long-term
dialogue systems (Kim et al., 2015; Bang et al.,
2015; Elvir et al., 2017) mainly relied on rule-based
frameworks, utilizing episodic memory structures
to extract, store, and manage relevant facts from
prior interactions, thereby enhancing the coherence
of ongoing dialogues (Campos et al., 2018). Sub-
sequent studies focus on large-scale pre-trained
models. Xu et al. (2022a) identify their limitations
in long-term conversations and introduce a dataset
for multi-session engagement. Xu et al. (2022b)
present a Chinese dialogue dataset and a frame-
work that integrates long-term memory to enhance
persona-based dialogue without multi-session train-
ing data. Building upon prior research, we create
novelty in terms of incorporating the long-term
memory mechanism into proactive dialogue sys-
tems, serving as an initial step towards history-
aware proactive dialogue systems.

7 Conclusion and Future Work

In this paper, we incorporate memory mechanisms
into proactive dialogue systems and propose the
novel MapDia task. We break it down into three
subtasks and develop an automated methodology
for data construction, resulting in the first Chinese
dataset for memory-aware proactive dialogue. We
further introduce a RAG-based framework to ad-
dress these subtasks: topic extraction from dialogue
history, relevant topic retrieval, and context transi-
tion to historical conversations. Our experiments
validate the effectiveness of our methodology and
models, showing that our framework, combined
with a 7B LLM, outperforms the GPT-4 model. In
future work, we will explore automatic evaluation
methods for MapDia to simplify research costs.
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8 Limitations

Despite extensive experimental validation of the
framework’s effectiveness, the inclusion of multi-
ple components may lead to increased response
times for the Chatbot. Further research is ex-
pacted to explore a lightweight framework that bal-
ances efficiency and effectiveness. Furthermore,
the ChMapDia dataset we developed is restricted to
Chinese contexts and focuses solely on the scope
of casual conversations. A general conversational
agent should ideally be multilingual, cover mul-
tiple domains, and integrate various personalized
styles. Additionally, the dataset contains fewer
than 2,000 entries, which could restrict the model’s
performance. Due to computational limitations,
we only used a 7B model; however, employing
a larger-scale dialogue model could improve re-
sponse quality, as indicated in Table 5.

9 Ethics Statement

We first discuss the ethical implications related to
generative dialogue agents, particularly in interac-
tive systems with memory awareness.
• Our work aims to enhance the proactivity of di-
alogue systems within the bounds of user autho-
rization, in line with other LLM-based dialogue
applications like ChatGPT and Character.ai, with-
out increasing ethical risks such as user privacy.
•While repeatedly bringing up negative historical
events may adversely impact users with psycho-
logical disorders and increase anxiety, appropri-
ately addressing these negative memories can have
therapeutic benefits as well. Cognitive Behavioral
Therapy (CBT) and Exposure Therapy (ET) both
emphasize the benefits of structured revisitation
of past experiences to mitigate their negative im-
pact and develop healthier coping strategies (Beck,
2020; Foa and Kozak, 1986). Similarly, studies
on the Emohaa Chatbot demonstrate the potential
of dialogue systems to alleviate mental distress
with proper emotional support (Sabour et al., 2023).
Thus, it is essential to balance the exploration of
past memories, necessitating collaboration between
technologists and psychologists to use memory-
related technologies effectively and safely.
• Conversational agents that can convincingly
mimic human interactions risk users forming
parasocial relationships, and potentially affecting
their lives adversely. Additionally, the processes
of memory summarization and dialogue generation
may propagate misinformation or social biases. We

recommend that any practical deployment of our
frameworks should be prefaced with a disclaimer
about the source of the dialogues.
• Our research focuses solely on the memory recall
capabilities of models in proactive dialogues and
does not involve actual policy recommendations.
The proposed framework cannot substitute for gen-
uine real-world interactions, and we do not make
any recommendations for users to make real-world
decisions that could affect human lives based on
our framework.

We also considered the ethical issues related
to annotation and datasets. We recruit annotators
from a Chinese university, allowing them complete
freedom to choose whether or not to participate
in our annotation project. The payment is 9 dol-
lars per hour, higher than the local minimum wage.
We have reviewed the data prior to annotation and
found no biased samples or toxic information gener-
ated by the model. Any data that could potentially
identify participants has been deleted after the an-
notation process. Additionally, we have verified
the licenses of the artifacts used in this study and
found no conflicts. The license of the dataset we
will release is CC BY-NC 4.0.
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A A Sample of Proactive Dialogue

Here, we showcase a real example in Figure 4 taken
from a prior proactive dialogue system (Deng et al.,
2023). Despite the user clearly showing disinterest
in Korean lyrics, the chatbot still pushed the con-
versation towards BlackPink. Although it reached
the target, it failed to engage the user for long-term
interaction. This pattern is counterproductive to
developing an intelligent dialogue agent.

B Prompt for Data Construction

The complete prompt templates used for construct-
ing the dataset are shown in Figure 5, and the corre-
sponding English versions are listed subsequently
in Figure 6. Specifically, Prompt A is used to gen-
erate ChMapData-Ret, encompassing dialogue his-
tory and corresponding topics, whereas Prompts
B and C are each connected to creating the ini-
tial two turns of the current dialogue. Prompt D
corresponds to the subtask of proactive topic-shift
detection and response generation. To stimulate the
generative capabilities of LLMs, we experimented
with various prompting techniques. Inspired by the
sensitivity of language models to the framing of
their instructional prompts (Mishra et al., 2022),
we organized the instructions with bullet points to
improve the model’s understanding of the tasks.
Additionally, we employed the one-shot strategy
in Prompt A to guide the model in generating dia-
logue more effectively. The desired output format
is also specified for each type of prompt.

Just finished my homework. So tired.

How about listening to some refreshing music?

Chatbot User

Hi there, how are you doing?

I’m getting bored about my playlist.

Wanna try some new music types, like K-pop?

But I don’t understand Korean lyrics.

You may try Blackpink’s songs, which have 

English version, and are quite refreshing.

Music K-pop Blackpink

Figure 4: A sample of previous proactive dialogue sys-
tem extracted from Deng et al. (2023).

ROUGE-1 ROUGE-2 ROUGE-L BLEU1−4 METEOR
Qwen2.5 0.522 0.333 0.467 0.197 0.414
Qwen2.5-Sum 0.773 0.646 0.746 0.536 0.755

Table 6: Comparison results of the Qwen model
with and without fine-tuning on our ChMapData-Sum
dataset.

C ChMapData-test Construction

The test set construction process is consistent with
Section 2.1. Initially, we generated 400 dialogues
from 11 topics, ensuring the same ratio of Memo-
rable and General data in the training set. Subse-
quently, 150 dialogues under the Memorable Sub-
ject were extended by two turns, serving as the be-
ginning of the current context. Consistent with the
trainset construction, we utilized the corresponding
topics generated in the first step and chose other
29 historical topics at random as candidates to rank
against the current context. Both the correspond-
ing topic and the top-ranked topic were utilized as
ground truth, as they each acted as positive exam-
ples in the training set. Additionally, 2 to 11 dia-
logues were randomly chosen from topics ranked
below the corresponding topic (i.e., negative ex-
amples) to serve as dialogue history. This process
resulted in 112 entries6, out of which 100 were
finalized for the test set, each comprising dialogue
history, current dialogue, and a ground truth topic.

6Excluding 22 entries with fewer than two topics ranked
below the corresponding and 16 items modified after ranking.
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[系统指令]

你的任务是按照以下示例构建一段五到八轮对话，对话的人物是用户和聊天机器人，对话的主角是用户。

[对话示例]

主题：自身的兴趣

细化话题：用户对编程的兴趣

用户：你好，我最近对编程产生了很大的兴趣。

聊天机器人：嗨，对编程感兴趣是一件很棒的事情，编程可以帮助你解决许多问题，增强逻辑思维，还可以开发出有趣的应用或者游戏。你对哪种编程语言比较感兴趣呢？

用户：我听说Python比较容易学习，适合我这种初学者，所以我想试试Python。

聊天机器人：你的选择非常好，Python的确是一种易于上手的编程语言，而且非常强大，被广泛应用于各种领域，包括数据分析、机器学习、网站开发等等。你打算如何开始

学习呢？

用户：我正在网上找一些教程和实战项目，但是感觉有点乱，不知道该如何系统地学习。

聊天机器人：针对这个问题，我建议你可以参考一些学习路径，比如先学习Python的基础语法，然后再学习一些常用的库，如Numpy、Pandas等，然后可以找一些实战项目来

练习。同时，你还可以参加一些编程社区，如GitHub、Stack Overflow等，这些社区里有很多优秀的编程项目和问题讨论，对你的学习会有很大帮助。

用户：谢谢你的建议，我会按照你的建议来学习的。

聊天机器人：不客气，相信你一定可以学好Python的。如果在学习过程中遇到任何问题，都可以来找我讨论，我会尽力帮你解答的。

[对话主题]

{候选主题} 

[对话格式]

主题：{候选主题}

细化话题：{细化话题}

用户：{用户发言}

聊天机器人：{聊天机器人发言} 

[生成结果]

{}

Prompt A

Prompt B

[系统指令]

你的任务是依据历史对话，续写用户和聊天机器人在多天以后的对话。

要求如下：

1. 对话由用户先发起，减少用户对话中提问的概率；用户更多的是聊天，由聊天机器人来提问进行话题引导

2. 本段对话与历史对话的内容有潜在相关性，但是不要直接相关；

3. 注意用户和聊天机器人不能主动提到历史对话的主题以及内容；

4. 续写1轮对话, 不需要对话完整结束；

[历史对话]

{Prompt A生成的历史对话}

[续写格式]

用户：{用户发言}

聊天机器人：{聊天机器人发言}

[续写结果]

{}

[系统指令]

你的任务是依据对话开头，续写一轮用户和聊天机器人的对话。

[对话开头]

{Prompt B生成的对话开头}

[续写格式]

用户：{用户发言}

聊天机器人：{聊天机器人发言}

[续写结果]

{}

Prompt C
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[系统指令]

你的任务是依据细化话题、历史对话以及当前对话，续写对话至结束。

要求如下：

1. 对话由用户先发起，继续当前对话，用户不能主动提及历史对话与细化话题；减少用户对话中提问的概

率，用户更多的是聊天，由聊天机器人来提问进行话题引导；

2. 每轮对话均为一问一答的形式，由用户开始，聊天机器人结束；

3.聊天机器人需要依据用户的回复，判断是否将对话主题转移至历史对话上，如果当前主题不适合切换，则继续聊下去，最后整个对话无法进行主题切换也是符合要求的，

不要强行切换；

4. 在聊天机器人回答前，把聊天机器人对主题切换时机的判断以Thoughts的形式打出来，并在最后标记是否进行话题切换，用Yes和No来表示，Yes表示可以切换， No表示

不适合切换；

5. 保证对话完整结束，续写5轮对话以上。

[历史对话]

{Prompt A生成的历史对话}

[当前对话]

{Prompt B和Prompt C生成的当前对话}

[续写格式]

用户：{用户发言}

Thoughts：{聊天机器人思考当前是否切换回历史话题}

{Yes or No ，根据Thoughts判定切换的结果}

聊天机器人：{聊天机器人发言}

[续写结果]

{}

Prompt D

Figure 5: The full prompt template utilized for data construction in Section 2.1 with step 2 corresponding to prompt
A, steps 3 corresponding to prompts B and C, and step 4 corresponding to prompt D.

[Instructions]

Your task is to construct a dialogue consisting of five to eight turns, following the example provided below. The characters in the dialogue are User and Chatbot, with the user being the 

main character.

[Example]

Subject: Personal Interests

Topic: User's interest in programming

User: Hello, I've recently developed a great interest in programming.

Chatbot: Hi, having an interest in programming is fantastic. It can help you solve many problems, enhance logical thinking, and even develop interesting applications or games. Which 

programming language are you particularly interested in?

User: I've heard that Python is relatively easy to learn and suitable for beginners like me, so I want to give Python a try.

Chatbot: That's a great choice. Python is indeed an accessible programming language and very powerful. It's widely used in various fields, including data analysis, machine learning, web 

development, and more. How do you plan to start learning?

User: I'm looking for some tutorials and hands-on projects online, but it feels a bit chaotic, and I'm not sure how to learn systematically.

Chatbot: For this issue, I suggest you could follow some learning paths, such as starting with the basics of Python syntax, then moving on to some commonly used libraries like Numpy and 

Pandas, and then practicing with some hands-on projects. Also, you can join some programming communities, like GitHub or Stack Overflow, where there are many excellent programming 

projects and discussions that can greatly help your learning.

User: Thank you for the advice, I will follow your suggestions.

Chatbot: You're welcome. I'm confident that you'll master Python. If you encounter any problems during your learning process, feel free to discuss them with me, and I'll do my best to help 

you find the answers.

[Subject]

{Candidate subject}

[Format]

Subject: {Candidate subject}

Topic: {Topic}

User: {User’s utterance}

Chatbot: {Chatbot's utterance}

[Generated Result]

{}

Prompt A

Prompt B
[Instructions]

Your task is to continue a conversation between the User and Chatbot that takes place several days after the given  historical dialogue. The requirements are as follows:

1. The dialogue should be initiated by the User, with a reduced probability of the User asking questions; the User should engage more in chatting, with the Chatbot asking questions to 

guide the topic.

2. The content of this dialogue should be potentially related to the historical dialogue but not directly related.

3. Be mindful that neither the User nor the Chatbot should actively mention the topics or content of the historical dialogue.

4. Continue the dialogue for one turn; the conversation does not need to be fully concluded.

[Dialogue History]

{Dialogue history generated by Prompt A}

[Format]

User: {User's utterance}

Chatbot: {Chatbot's utterance}

[Continuation Result]

{}

[Instructions]

Your task is to continue a turn of dialogue between the User and Chatbot based on the beginning of the conversation.

[Dialogue Beginning]

{Dialogue beginning generated by Prompt B}

[Format]

User: {User's utterance}

Chatbot: {Chatbot's utterance}

[Continuation Result]

{}

Prompt C
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[Instructions]

Your task is to continue the conversation based on the refined topic, dialogue history, and current conversation until the end.

The requirements are as follows:

1. The conversation should be initiated by the User, continuing the current dialogue. The User should not actively mention historical dialogue or refined topics; reduce the likelihood of 

questions in the User's dialogue, as the User is more engaged in chatting, with the chatbot asking questions to guide the topic;

2. Each turn of dialogue should be in a question-and-answer format, starting with the User and ending with the Chatbot;

3. The Chatbot needs to determine whether to shift the conversation topic to the historical dialogue based on the User's reply. If the current topic is not suitable for switching, then continue 

the conversation. It is also acceptable if the entire dialogue does not undergo a topic switch; do not force a switch; 

4. Before the Chatbot responds, express the chatbot's judgment on the timing of the topic switch in the form of Thoughts, and mark at the end whether to switch topics, using Yes and No to 

indicate. Yes means a switch is possible and No means it is not suitable to switch;

5. Ensure the conversation is fully concluded, continuing for more than 5 turns of dialogue.

[Dialogue History]

{Dialogue history generated by Prompt A}

[Current Conversation]

{Dialogue beginning generated by Prompt B and C}

[Continuation Format]

User: {User's utterance}

Thoughts: {Chatbot's thoughts on whether to switch back to the historical topic}

{Yes or No, based on the Thoughts' determination of the switch}

Chatbot: {Chatbot's utterance}

[Continuation Result]

{}

Prompt D 

Prompt B
[Instructions]

Your task is to continue a conversation between the User and Chatbot that takes place several days after the given  historical dialogue. The requirements are as follows:

1. The dialogue should be initiated by the User, with a reduced probability of the User asking questions; the User should engage more in chatting, with the Chatbot asking questions to guide 

the topic.

2. The content of this dialogue should be potentially related to the historical dialogue but not directly related.

3. Be mindful that neither the User nor the Chatbot should actively mention the topics or content of the historical dialogue.

4. Continue the dialogue for one turn; the conversation does not need to be fully concluded.

[Dialogue History]

{Dialogue history generated by Prompt A}

[Format]

User: {User's utterance}

Chatbot: {Chatbot's utterance}

[Continuation Result]

{}

[Instructions]

Your task is to continue a turn of dialogue between the User and Chatbot based on the beginning of the conversation.

[Dialogue Beginning]

{Dialogue beginning generated by Prompt B}

[Format]

User: {User's utterance}

Chatbot: {Chatbot's utterance}

[Continuation Result]

{}

Prompt C

Figure 6: English version of prompt for data construction in Figure 5.
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D Comparison Result for Summarization
Model

We compared the performance of our Qwen2.5-
Sum, a fine-tuned version of Qwen2.5 on our
ChMapData-Sum, against the original Qwen2.5
model. We reported standard automated metrics
including BLEU (Papineni et al., 2002), ROUGE
(Lin, 2004), and METEOR (Banerjee and Lavie,
2005). Specifically, we provided the full BLEU
score, which accounts for overlap across 1-4 grams,
rather than just BLEU-4. The results, as shown in
Table 6, indicate that Qwen2.5-Sum significantly
outperforms the original Qwen2.5 model, demon-
strating the effectiveness of our summarization
module.

E Implementation Details

For experiments on Topic Summarization, Topic
Retrieval, and Proactive Topic-shifting Detection
and Generation, we utilized the AdamW optimizer
(Loshchilov and Hutter, 2019). The training setup
included a cosine learning rate schedule starting at
2e-5, a weight decay of 0.1, a batch size of 64, a
5% warm-up period, and a maximum input length
of 2048 tokens. We fine-tuned all the models for 2
epochs.

F Prompt for Proactive Dialogue Models

In Figure 7, we present the full prompt templates
for the two models, Qwen2.5 and GPT-4, which
function as memory-aware proactive dialogue sys-
tems in Section 4.2. Additionally, Figure 8 illus-
trates the prompt used within the BGE w/ Qwen
framework for the original Qwen2.5 model, guid-
ing it to generate proactive dialogue responses.

G Details of User-role dialogue model

We additionally trained a dialogue model to sim-
ulate user interactions during model testing. This
approach helps to avoid the subjective factors that
annotators might introduce during conversations,
which could affect the guidance of active topics.

The parameters of the user-role dialogue model
are consistent with those in Appendix E. We uti-
lize Qwen2.5-7B as the base model and the data
used to train the user model consists of 4,000 di-
alogue histories generated in Section 2.1 Step 1.
We performed additional processing on the data by
converting the training target to the query rather
than the response. Moreover, to ensure that the

user model does not prematurely end the conversa-
tion, we removed the last round from the training
data, as this turn typically signifies the end of the
conversation.

H Human Annotation Details

Table 10 presents our full annotation guidelines
used for the human annotation process in this work.

We recruited six college students who are native
Chinese speakers, including four females and two
males, with an average age of around 24. Initially,
they were provided with an annotation guideline.
Each evaluator underwent a training process to en-
hance their understanding of the annotation proce-
dure. Before starting the annotation, we designed a
qualification test consisting of 10 dialogues; only
those who passed the test were deemed qualified
and allowed to proceed with the annotation To en-
sure the quality of the annotations, we divided the
dataset into batches and assigned a specific number
of daily tasks to each annotator. Upon receiving
the daily annotations, we reviewed the results and
required annotators to reannotate the batch of data
assigned for that day if there was low agreement
(less than 0.6).

In the annotation interface, the dialogue history,
summarized topic, and current context were pre-
sented on the left side, while the dialogues gener-
ated by each model were randomly displayed on
the right to prevent bias. Annotators first read each
chatbot’s utterance and then assigned scores for
"Engagingness" and "Overall quality." After com-
pleting the entire session, they assessed "Achieve-
ment" and "#Turn." The score range for the first
three evaluation criteria was {0,1,2}, while the
range for "#Turn" was 0-10.

Each sample was annotated by two distinct an-
notators, and a third annotator made the final deci-
sion in case of disagreement. We utilized Cohen’s
kappa (Cohen, 1960) to measure inter-annotator
agreement. The annotation process lasted approx-
imately two weeks, culminating in a substantial
inter-annotator agreement with Cohen’s kappa of
κ=0.70, as shown in Table 2.

I Integration Testing

Given the novel method proposed in this paper,
which can detect conversation trajectories and initi-
ate proactive topics based on dialogue history, it is
highly adaptable for integration with any existing
dialogue system. To assess its effectiveness, we
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[系统指令]
假如你是智能聊天机器人，正在与用户对话，你的任务是依据给定的对话历史与当前对话，对用户进行回复。回复
分为两部分：
1.Thoughts：首先判断当前对话与哪一天历史对话可能有潜在联系，接着判断是否可以将对话主题转移到历史对话
主题上，如果话题联系度较高，则可以主动进行历史话题转换，并输出Yes。如果话题联系度不高，则无法进行话
题转换，并输出No。
2.聊天机器人回复：输出聊天机器人的回复内容，根据判断的Yes或No生成对应的是否进行历史话题转换的回复。

[对话示例]
Thoughts：当前对话提及了跑步，可能和历史对话中用户参加马拉松比赛有关，可以将对话转移到历史对话中。Yes
聊天机器人：说起跑步，上次你参加马拉松比赛怎么样呀？

[对话历史]
{过去若干天用户与聊天机器人的对话历史}

[当前对话]
{当前用户与聊天机器人的对话内容}

[生成结果]
{}

[系统指令]
假如你是智能聊天机器人，正在与用户对话，你的任务是依据细化话题、历史对话以及当前对话，续写聊天机器人
的回答。在进行对话的时候，要判断当前对话与哪一天历史对话可能有潜在联系，接着判断是否可以将对话主题转
移到历史对话主题上，如果话题联系度较高，则可以主动进行历史话题转换。

[对话历史]
{过去若干天用户与聊天机器人的对话历史}

[当前对话]
{当前用户与聊天机器人的对话内容}

[生成结果]
{}

[Instructions]
You are an intelligent Chatbot engaging in a conversation with a user. Your task is to reply to the user based on the given         
dialogue history and the current context. The reply should consist of two parts:
1. Thoughts: First, determine if the current conversation has any potential connection with a past conversation from a specific 
day. Then, decide whether the conversation topic can be shifted to the topic of the historical dialogue. If the topic relevance is 
high, you can proactively transition to the historical topic and output "Yes." Otherwise, you cannot transition the topic and
output "No."
2. Chatbot Response: Output the content of the Chatbot's response. Generate a response based on the decision of "Yes" or "No
" indicating whether to transition the topic to the historical conversation.

[Example]
Thoughts: The current conversation mentions running, which might be related to the past conversation about the user’s        
participation in a marathon. The topic can be shifted to the historical conversation. Yes
Chatbot Response: Speaking of running, how was the marathon you participated in last time?

[Dialogue History]
{Dialogue history between the user and the Chatbot over the past few days}

[Current Context]
{Current context between the user and the Chatbot}

[Output]
{}

[Instruction]
You are an intelligent Chatbot engaged in a conversation with a user. Your task is to reply to the user based on the  given  
historical conversations, corresponding topics, and the current context. During the conversation, assess whether there might 
be potential links to previous days' conversations. If the topic relevance is high, you can proactively switch to the historical
topic.

[Dialogue History]
{User and chatbot conversation history with corresponding topics over the past few days}

[Current Context]
{Current context between the user and the chatbot}

[Output]
{}

Figure 7: The prompt template instructs Qwen-2.5 and GPT-4 to act as the en-to-end memory-aware proactive
dialogue system. Upper is the original content input into the model, followed by its corresponding English version.
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[系统指令]
假如你是智能聊天机器人，正在与用户对话，你的任务是依据给定的对话历史与当前对话，对用户进行回复。回复
分为两部分：
1.Thoughts：首先判断当前对话与哪一天历史对话可能有潜在联系，接着判断是否可以将对话主题转移到历史对话
主题上，如果话题联系度较高，则可以主动进行历史话题转换，并输出Yes。如果话题联系度不高，则无法进行话
题转换，并输出No。
2.聊天机器人回复：输出聊天机器人的回复内容，根据判断的Yes或No生成对应的是否进行历史话题转换的回复。

[对话示例]
Thoughts：当前对话提及了跑步，可能和历史对话中用户参加马拉松比赛有关，可以将对话转移到历史对话中。Yes
聊天机器人：说起跑步，上次你参加马拉松比赛怎么样呀？

[对话历史]
{过去若干天用户与聊天机器人的对话历史}

[当前对话]
{当前用户与聊天机器人的对话内容}

[生成结果]
{}

[系统指令]
假如你是智能聊天机器人，正在与用户对话，你的任务是依据细化话题、历史对话以及当前对话，续写聊天机器人
的回答。在进行对话的时候，要判断当前对话与哪一天历史对话可能有潜在联系，接着判断是否可以将对话主题转
移到历史对话主题上，如果话题联系度较高，则可以主动进行历史话题转换。

[对话历史]
{过去若干天用户与聊天机器人的对话历史}

[当前对话]
{当前用户与聊天机器人的对话内容}

[生成结果]
{}

[Instructions]
You are an intelligent Chatbot engaging in a conversation with a user. Your task is to reply to the user based on the given         
dialogue history and the current context. The reply should consist of two parts:
1. Thoughts: First, determine if the current conversation has any potential connection with a past conversation from a specific 
day. Then, decide whether the conversation topic can be shifted to the topic of the historical dialogue. If the topic relevance is 
high, you can proactively transition to the historical topic and output "Yes." Otherwise, you cannot transition the topic and
output "No."
2. Chatbot Response: Output the content of the Chatbot's response. Generate a response based on the decision of "Yes" or "No
" indicating whether to transition the topic to the historical conversation.

[Example]
Thoughts: The current conversation mentions running, which might be related to the past conversation about the user’s        
participation in a marathon. The topic can be shifted to the historical conversation. Yes
Chatbot Response: Speaking of running, how was the marathon you participated in last time?

[Dialogue History]
{Dialogue history between the user and the Chatbot over the past few days}

[Current Context]
{Current context between the user and the Chatbot}

[Output]
{}

[Instruction]
You are an intelligent Chatbot engaged in a conversation with a user. Your task is to reply to the user based on the  given  
historical conversations, corresponding topics, and the current context. During the conversation, assess whether there might 
be potential links to previous days' conversations. If the topic relevance is high, you can proactively switch to the historical
topic.

[Dialogue History]
{User and chatbot conversation history with corresponding topics over the past few days}

[Current Context]
{Current context between the user and the chatbot}

[Output]
{}

Figure 8: The prompt template for the original Qwen2.5 is used to generate a proactive dialogue response along
with its English version.
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Model CPS Shift-Ratio
Original 22.8 -
Original w/ PDia 25.0 20.8%
Original w/ MapDia 27.9 12.2%

Table 7: Results of integrated testing, showing the
conversation-turns-per-session (CPS) and the triggered
ratio of topic shifts per session in a real-world dialogue
system. The p-value for the CPS statistic is 0.0074.

conducted an online A/B test by incorporating it
into our role-playing dialogue system. The proac-
tive model is trained with combined data of role-
playing conversational dataset and ChMapData-
Mem to keep the role-playing ability. The model
determines when to shift the topic and generates re-
sponses for those turns, while the original dialogue
system handles other responses.

Additionally, we conducted another integration
with trained a proactive responding model only re-
ferring to the dialogue context, noted as Proactive
Dialogue (PDia). PDia shares the pre-trained base
and parameter scale as our proposed model. This
model also employs targeted data construction fol-
lowed by fine-tuning to learn proactive dialogue
capabilities. Besides, different from traditional
proactive dialogue methods by performing topic
planning in advance, we utilize the LLM to dynam-
ically make decisions during the dialogue process.

Given that, users were randomly assigned to one
of three groups: one interacting with the original
dialogue system, one with the system enhanced by
our proposed method, and one with the context-
based proactive model. All users were blinded to
the system details. Due to commercial constraints,
we utilized a closed-source 7B pre-trained model
for retraining the proactive dialogue models.

Engagement AchievementModels
Utts.-level Sess.-level

Overall
Quality Mentioning Shifting

Avg.

#Turn = 1
Ours per Sess. 0.38 0.71 1.11 0.11 0.89 1.19
Ours per Utts. 0.31 0.58 1.05 0.16 0.84 1.07
GPT-4 0.43 0.46 0.89 0.09 0.91 1.02

#Turn = 2
Ours per Sess. 0.31 0.50 1.10 0.21 0.79 1.07
Ours per Utts. 0.42 0.55 1.07 0.18 0.82 1.10
GPT-4 0.55 0.53 1.12 0.21 0.79 1.13

#Turn = 3
Ours per Sess. 0.32 0.58 1.18 0.33 0.67 1.05
Ours per Utts. 0.35 0.64 1.13 0.21 0.79 1.09
GPT-4 0.43 0.64 0.89 0.21 0.79 1.08

#Turn = 4
Ours per Sess. 0.31 0.33 1.28 0.22 0.78 1.04
Ours per Utts. 0.38 0.80 1.40 0.00 1.00 1.21
GPT-4 0.35 0.43 0.91 0.29 0.71 0.98

Table 8: Evaluation results for each turn number at
which the model shifts topics.

Model
Retrieval
Method

Mentioning

QSum w/ BGE w/ Qwen
per Sess. 0.07
per Utt. 0.08

QSum w/ QRet w/ Qwen
per Sess. 0.08
per Utt. 0.15

Ours
per Sess. 0.18
per Utt. 0.14

GPT-4 - 0.19

Table 9: Probability of each model mentioning historical
topics, calculated as the proportion of label 1 in the
Achievement criteria.

The test spanned a duration of two weeks and in-
volved real conversations from over 100,000 users.
Table 7 presents the conversation-turns-per-session
(CPS), defined as the average number of conversa-
tion turns between the dialogue system and the user
within a session. The introduction of both proac-
tive topic capabilities significantly enhanced CPS.
Specifically, the MapDia model increased the aver-
age CPS from 22.8 to 31.3, which is notably higher
than that of PDia, indicating that users are more en-
gaged with previously discussed topics when they
are properly introduced.

Additionally, it should be noted that the propor-
tion of topic transitions is significantly lower than
reported in Table 2. This discrepancy is primarily
attributed to the fact that only a small portion of
real user dialogues can effectively integrate previ-
ously discussed content, and not all conversations
require the initiation of proactive topics. Even the
PDia model, which incorporates dialogue context,
successfully transitions topics in only 20.8% of
sessions.

J Analysis of #Turn and Mentioning
Metrics

Here, we present the evaluation metrics for #Turns
set at 1, 2, 3, and 4 in Table 8. Our model demon-
strated the best performance in turn-level retrieval
when transitioning topics in the fourth turn. It is
observed that fewer #Turns may result in lower
overall quality and lower average scores. There
is no distinct proportional or inverse correlation
between the number of #Turns and the model’s
overall performance.

Table 9 additionally shows the probability of the
model mentioning historical topics without tran-
sitioning, which indicates that GPT-4 is more in-
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clined to mention historical topics, which deviates
from our task definition.
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Human Evaluation Guideline
Task Overview
Thank you for participating in this task! Open-domain dialogue systems are expected to possess the capability to
proactively shift conversational topics when necessary. When a chat agent exhausts its conversational material or the
current discussion becomes monotonous, topic shifting is a common strategy to maintain the flow of conversation.
Furthermore, when the new topic is derived from historical conversations rather than arbitrary subjects, it enhances user
engagement and fosters long-term relationships between the chatbot and the user. To achieve this objective, we have
developed a Memory-aware Proactive Dialogue system. Below, we provide several days’ worth of historical dialogues,
along with responses generated by our model and some baseline models. Your task is to evaluate these responses based
on the four defined aspects.

Evaluation Aspects
Utterance-level
• Engagingness: An utterance-level metric measuring how well the chatbot captures and responds to the

user’s personal attributes, preferences, and interests, encouraging ongoing participation and long-term
connections.

• Overall Quality:An utterance-level metric assessing the effectiveness of the response, focusing on smooth topic
transitions, coherence, and consistency with the given context.

Session-level
• Achievement: A session-level metric determining whether the chatbot has successfully transitioned the conversation

to a relevant historical topic. “1” indicates the topic is merely mentioned, and “2” signifies a successful transition.

• Turn: A session-level metric represents the turn number when mention or transition occurred.

Annotation Procedure
1. Dialogue History Familiarization: Begin by thoroughly reading and familiarizing yourself with the provided
historical dialogues, typically spanning 8-10 days.

2. Current Context Review: Carefully read the initial context of the current dialogue, which includes two
beginning turns and a user utterance.

3. Utterance Scoring: Score each response utterance generated by the model on a scale of [0, 1, 2] based on the
aspects of Engagingness and Overall Quality. A higher score indicates better performance.

4. Session Scoring: Once the model completes the dialogue continuation, determine whether the entire session
achieved a topic shift. Here, 0 indicates no topic shift or mentioning, 1 indicates a mention of a historical topic
without shifting, and 2 indicates a complete topic shift. Additionally, note the turn number at which the shift was
accomplished.

Emphasis and Caution

• The order of the model-generated responses is randomized to avoid bias.

• It is possible for the model to perform multiple topic shifts within a single session. This strength can be reflected by
assigning a score of 2 for Engagingness or Overall Quality at each turn where a topic shift occurs.

• When the topic shift is not natural or smooth, the Overall Quality score should be appropriately reduced, even if the
shift was achieved.

• A number of words and phrases are often used as indicators for topic shifts, including but not limited to: "but,"
"speaking of," "talking about," "anyway," "by the way," "that reminds me," "before I forget," "I want to mention,"
"let’s talk about," "we need to discuss," "funny you should mention that", etc.

Table 10: The full annotation guideline for human evaluation.
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Abstract

In this study, we take a closer look at how Wino-
grad schema challenges can be used to evaluate
common sense reasoning in LLMs. Specifi-
cally, we evaluate generative models of differ-
ent sizes on the popular WinoGrande bench-
mark. We release WinoWhat, a new corpus, in
which each instance of the WinoGrande valida-
tion set is paraphrased. Additionally, we eval-
uate the performance on the challenge across
five common sense knowledge categories, giv-
ing more fine-grained insights on what types
of knowledge are more challenging for LLMs.
Surprisingly, all models perform significantly
worse on WinoWhat, implying that LLM rea-
soning capabilities are overestimated on Wino-
Grande. To verify whether this is an effect
of benchmark memorization, we match bench-
mark instances to LLM training data and create
two test-suites. We observe that memorization
has a minimal effect on model performance on
WinoGrande.

1 Introduction

While including common sense knowledge in NLP-
systems has been a longstanding goal, evaluat-
ing this proves to be a non-trivial task. From
early on, research used coreference resolution tasks
to measure world knowledge and reasoning abil-
ities in machine learning systems. In 2011, the
Winograd Schema Challenge was developed, a
small test set of 273 instances in which a pronoun
has to be disambiguated given two possible an-
tecedents in a short text (Levesque et al., 2012).
Where early models failed, transformer-based mod-
els quickly achieved remarkable performance on
this test. However, researchers objected that this
does not prove that models have or use common
sense; rather, they could rely on superficial patterns
and dataset artifacts (Kocijan et al., 2023). There-
fore, a large adversarial benchmark was created:
WinoGrande (Sakaguchi et al., 2021). Here, the

Figure 1: Illustration of the workflow in this study. We
evaluate LLMs on WinoGrande, and on its paraphrased
variant. We further compare performance per common
sense knowledge category, and check for benchmark
memorization.

challenge is to decide which of two options is the
correct one in a fill-in-the-blank token ‘_’. This
benchmark is frequently used in combination with
other benchmarks to evaluate the performance of
new LLMs on common sense reasoning.

In this study, we evaluate various open-source
model families – Gemma 2 (Team et al., 2024),
LlaMA 2 (Touvron et al., 2023b), and OPT (Zhang
et al., 2022) – on WinoGrande. An overview of
the workflow in this study can be found in Figure
1. We present a new parallel corpus of the Wino-
Grande validation set: WinoWhat, in which we
paraphrase each sentence so the ‘_’ token is at the
end of the sentence. This transformation makes the
task more natural for decoder-only methods and
at the same time allows to test whether the perfor-
mance of LLMs on WinoGrande is robust against
paraphrasing (RQ1).
While existing works mainly evaluate models on
the benchmark as a whole, we define common
sense knowledge categories that are crucial to dis-
ambiguate the sentence, and evaluate models on
each category separately. This allows us to inves-
tigate our second research question (RQ2): What
types of common sense knowledge are more chal-
lenging for LLMs? Such an analysis provides
insights into the more fine-grained strengths and
weaknesses of ML systems on common sense rea-
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soning tasks. Instead of creating new benchmarks
to focus on one category of common sense knowl-
edge, we suggest using one task setup, which al-
lows us to compare results on different categories
without added noise (e.g., different answer formats,
different dataset artifacts, etc.).
To verify to what extent data leakage plays a role
in LLMs’ performance on WinoGrande, we check
how many instances of the validation set are in-
cluded in the pre-training data of LLMs. Further,
we create two test-suites; one from which we know
that it has been included in LLM pre-training data
(i.e., the Winograd Schema Challenge), and one
from which we can assume that it has not been
seen (i.e., the WinoGrande test set). Comparably
to RQ1, we paraphrase each. This answers RQ3:
What is the role of data memorization in the perfor-
mance of LLMs on coreference resolution tasks?
The rest of the paper is structured as follows: in
Section 2, we summarize relevant literature about
disambiguation tasks, common sense categoriza-
tion, and benchmark memorization. In Section 3,
we present in more detail the data, models, evalu-
ation metrics, and the creation of WinoWhat. Fur-
ther, in Section 4, we present the results of our
experiments, and the final Section 5 concludes our
research, giving an overview of the findings and
suggestions for further research.

2 Related Work

2.1 Coreference resolution and common sense
reasoning

Incorporating common sense knowledge into ma-
chine learning methods has been a goal since its
very beginning (e.g., McCarthy, 1959). However,
given the increasing black-box nature of LLMs,
it is hard to evaluate whether models have/use
common sense knowledge. From early on, sen-
tence disambiguation tasks have been suggested
to measure the ability of models to employ com-
mon sense knowledge: the assumption being that
syntax alone is not enough for the model, and com-
mon sense knowledge is needed to determine for
instance which noun a pronoun refers to (Brown-
ing and LeCun, 2023). An important concept here
is bridging, for which the model needs to make
inferences about relationships between entities in
the world that are not explicitly mentioned in the
text (Kobayashi and Ng, 2020; Hou et al., 2018).
Since sentence disambiguation and coreference res-
olution tasks are presented as a proxy to evaluate

common sense knowledge, over the years different
approaches have been suggested to teach models
common sense in order to improve performance
on these tasks. In the early 2000s, most corefer-
ence resolvers did not include external knowledge
sources, relying instead on morpho-syntactic fea-
tures. The development of large-scale knowledge
bases, which were used as features in a baseline
resolver, improved results (Rahman and Ng, 2011).
Then, with the advent of larger models and more
training data, transformer models also relied on ex-
ternal knowledge bases which are generally stored
in triplets (Liu et al., 2023).

2.2 The Winograd Schema Challenge
A popular coreference task is the Winograd Schema
Challenge (WSC) (Levesque et al., 2012). Based
on the work of Winograd (1972), the challenge uses
‘schemas’ – pairs of twin sentences whose intended
meaning can be flipped by changing one word (the
‘special word’) – to probe ML-methods’ ability to
reason over natural language1. The schemas have
three criteria: (1) simple to solve for humans; (2)
not solvable by selectional restrictions (i.e., no sta-
tistical advantage for one option); (3) google-proof.
Over time, newer versions of the challenge were
released, which were made in the same format.
These datasets are either created by human annota-
tions, or generated by LLMs. For instance, Zahraei
and Emami (2024) use Tree-of-Experts to gener-
ate new WSC instances, presenting 3,026 LLM-
generated sentences. Similarly, Sun and Emami
(2024) present EvoGrad, a hybrid method to gen-
erate new adversarial WSC instances that feature
minor alterations and rewordings using human an-
notations, ChatGPT, and WordNet. Since WSC
and related benchmarks are in English, the chal-
lenge was also translated in other languages such
as German, Russian, French, Portuguese, and Man-
darin Chinese (Emelin and Sennrich, 2021; Amsili
and Seminck, 2017; Melo et al., 2019; Bernard and
Han, 2020). The task has also been reformulated
to evaluate implicit biases in LLMs, with resulting
benchmarks such as WinoGender and WinoBias
(Rudinger et al., 2018; Zhao et al., 2018).
By 2019, large pre-trained transformer models
were reported to achieve over 90% accuracy on
WSC (Kocijan et al., 2023). Whereas the initial
hypothesis was that systems would need common
sense to solve the WSC, there is no proof that this

1A classic example is ‘The trophy didn’t fit in the brown
suitcase because it’s too [small/big].’
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is the case. Indeed, LLMs can rely on superficial
pattern recognition and data memorization to solve
the task, leading to the conclusion that these results
are not indicative of common sense acquisition
(Sakaguchi et al., 2021). Furthermore, questions
are raised about the quality and implicit biases of
WSC, such as lax evaluation, annotation artifacts,
and knowledge leakage from training data (Kocijan
et al., 2023; Elazar et al., 2021). Trichelair et al.
(2018a) also show that the ‘google-proof’ condi-
tion, that stipulates that it should not be solvable
via statistics learned from large corpora associating
one option to other components in the sentence, is
not true for all instances in WSC. In an effort to ad-
dress these limitations, adversarial variants of the
WSC are presented. For instance, Han et al. (2024)
adapt the options so that they are more associated
with the wrong answer, and Trichelair et al. (2018b)
switch the position of the options in the texts where
possible. Both report a decrease in model perfor-
mance. Abdou et al. (2020) show that models are
not robust against linguistic perturbations such as
changes in tense, gender, or synonym substitution
in WSC sentences. Additionally, the WinoGrande
benchmark is introduced (Sakaguchi et al., 2021).
This benchmark is of a much larger scale (44K in-
stances compared to the 273 in WSC), and employs
an algorithm to reduce biases that machines can
exploit to solve the task.

2.3 Common sense knowledge categorization

To the best of our knowledge, research on Wino-
Grande discusses model results holistically (on the
entire test or validation set), but we suggest con-
necting this to common sense knowledge catego-
rization as an effective error analysis of the task.
By measuring the performance per category, we
can isolate reasoning deficiencies that are obscured
by aggregated metrics. There has been much ef-
fort on defining semantic categories to structure
knowledge for NLP. Schank (1972) describes four
main categories in their conceptual dependency
theory: objects, actions, location, and time. Jack-
endoff (1992) suggests common primitives such
as entity, property, number, location, state, event,
and activity. Other work only uses two high-level
categories, such as social and physical (Sap et al.,
2020). Yet others define semantic categories within
one common sense category; for instance, Wang
et al. (2021) include feelings and characteristics,
interaction, and norms as sub-categories of social
common sense. Additionally, different common

sense categories are sometimes evaluated by spe-
cific independent benchmarks (e.g., spatial (Xu
et al., 2017; Liu et al., 2022), temporal (Zhou et al.,
2019; Aroca-Ouellette et al., 2021; Hosokawa et al.,
2024; Qin et al., 2021), numerical (Lin et al., 2020),
physical (Bisk et al., 2020; Storks et al., 2021), so-
cial (Sap et al., 2019), etc.). This can be problem-
atic when comparing one model’s ability to reason
over various common sense categories, since each
benchmark can have a different answer format (i.e.,
multiple choice, binary choice, open-ended) and
structure. Other benchmarks that are more gen-
eral, do not provide common sense categorizations.
Therefore, we annotate the WinoGrande bench-
mark (a general-purpose benchmark) with which
common sense knowledge is relevant when making
the decision (i.e., what knowledge is needed when
making the bridging inference). In a similar ef-
fort, Zhang et al. (2020) proposed 6 common sense
categories to evaluate performance on the WSC:
property, object, eventuality, spatial, quantity, and
others.

2.4 Benchmark memorization and
contamination

Xu et al. (2024) define benchmark data contamina-
tion (BDC) as LLM exposure to benchmark data
during training, leading to inflated evaluation re-
sults. They outline contamination severities rang-
ing from exposure to meta information about the
benchmark or the task, to the benchmark data itself
with labels. One main detection technique is n-
gram overlap counting, as used by GPT-3 (Brown
et al., 2020) (13-gram) and GPT-4 (Achiam et al.,
2023) (40-gram). However, it requires full pre-
training data access and can miss rephrasing (Yang
et al., 2023). Additionally, Wang et al. (2025)
find that factual or lexical tasks are particularly
susceptible to memorization, while Carlini et al.
(2023) demonstrate that memorization increases
with model size, data frequency, and sufficient con-
text.
Since 2012, many WSC sentences have appeared
in web text used to train LLMs (Elazar et al., 2021).
RedPajama (Weber et al., 2024) contains 58.2% of
WSC instances, while other datasets like The Pile
(Gao et al., 2020a) contain around 30% (Elazar
et al., 2024). Such contamination inflates accuracy
scores: Emami et al. (2020) show significant accu-
racy drops when contamination is minimized.
In contrast, WinoGrande’s creators mitigated con-
tamination by keeping the test labels private. Re-
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garding the validation set, only 1.1% of this set
appears online or in CommonCrawl between De-
cember 2020 and October 2023 (Li et al., 2024),
and the authors of GPT-4 self-report approximately
0.9% contamination in a sample of 1,000 instances
(Achiam et al., 2023). Elazar et al. (2024) demon-
strate that large pretraining corpora for LLMs did
likely not encounter the WinoGrande test set, but
they do not examine contamination of the valida-
tion set in these pretraining corpora. Thus, the
precise effect of the contamination of the Wino-
Grande validation set is unknown, but for other
benchmark data, it was previously shown that the
effect of even minimal contamination can be under-
estimated (Singh et al., 2024).

3 Methodology

3.1 Data

In this study, we apply models on the WinoGrande
benchmark, which was originally presented in 2019
as an adversarial dataset to the Winograd Schema
Challenge (WSC) (Sakaguchi et al., 2021). Con-
trary to WSC, in which the sentence includes a
pronoun that must be disambiguated given two can-
didate antecedents, the WinoGrande benchmark
evolved to a fill-in-the-blank token (‘_’) problem
(see Figure 2). Additionally, every instance does
not necessarily have a twin sentence. The original
paper reports human accuracy of 94%, and model
accuracy of 79.1%, which is considerably lower
than on WSC (over 90%). The labels of the test
set are not publicly available, which has led to re-
search reporting on the validation set (see e.g., Li
et al. (2021); Sun and Emami (2024); Elazar et al.
(2021)). For that reason, we will also report on
the validation set. This split consists of 1,267 in-
stances, with a balanced label distribution. The
WinoGrande benchmark is also frequently used to
evaluate new LLMs2. Recent evaluations include
Gemma 2 27B at 83.7% (Team et al., 2024), LlaMA
2 (zero-shot) models ranging from 69.2% (7B) to
80.2% (70B) (Touvron et al., 2023b), GPT-4 (few-
shot) achieving 87.5% (Achiam et al., 2023), and
Pythia 12B (five-shot) scoring 66.6% (Biderman
et al., 2023).

2It is unclear whether they report on the validation or test
set. We assume these models use prompting techniques instead
of partial evaluation (infra), but the reports are unclear on that
aspect.

3.2 Models
We focus on recent open-source Large Language
Models. Since model size is a known factor in
model performance, we select model families that
have different sizes available. Specifically, we se-
lect Gemma 2 (2B, 9B, and 27B) (Team et al.,
2024); LlaMA 2 (7B, 13B, and 70B) (Touvron
et al., 2023b), and OPT (1.3B, 6.7B, 13B, and 66B)
(Zhang et al., 2022) to evaluate the effect of para-
phrasing WinoGrande, and for the evaluation per
common sense category. Further, to evaluate bench-
mark memorization, we include two other models
because their pre-training data is publicly avail-
able, contrary to the previously mentioned models:
Pythia (1B, 1.8B, 6.9B, and 12B) (Biderman et al.,
2023) and LlaMA 1 (7B, 13B, 30B, and 65B) (Tou-
vron et al., 2023a).
To evaluate model performance, we use partial eval-
uation, which calculates the summed log-likelihood
for the tokens after each option in the text, selecting
the one with the highest score (Trinh and Le, 2018).
We choose this metric for three reasons:
1. It is the evaluation metric used in the Lan-
guage Model Evaluation Harness (Gao et al., 2024),
which is the base of the Huggingface Open-LLM
Leaderboard3;
2. Preliminary experiments show that it works bet-
ter than prompting, and Trinh and Le (2018) show
that it works better than full evaluation;
3. It is easily generalizable to different open-source
models.

3.3 Paraphrased corpus
To test the robustness of model performance on
WinoGrande, we create WinoWhat: a parallel cor-
pus in which we paraphrase the sentences. We
follow the fill-in-the-blank convention of Wino-
Grande because of the naturalness of generation
in autoregressive models and known LLM biases
for multiple-choice answering (such as in WSC)
(Balepur et al., 2024; Cho et al., 2025). Our corpus
solves the main limitation of the partial evaluation
metric: it relies on the plausibility of the subse-
quent sequence, rather than directly measuring a
model’s intrinsic token preference. This can con-
flate the model’s understanding of the antecedent
with grammatical or natural continuations. In con-
trast, in our paraphrased corpus, we position the
target token at the end of the sequence, ensuring

3WinoGrande was included in the V1 of the leader-
board: https://huggingface.co/docs/leaderboards/
en/open_llm_leaderboard/archive
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that the decision is based solely on the provided
context. This allows for a more transparent evalu-
ation of the model’s ability to capture coreference
and fill-in-the-blank cues. Contrary to the original
partial evaluation that measures the summed log-
likelihood on the tokens following the ‘_’ token,
our method calculates it on the tokens of the op-
tions. An example is given in Figure 2.
We prompt 5 SOTA LLMs (i.e., GPT-4o (Hurst

et al., 2024), OpenAI o1-preview (Jaech et al.,
2024), Gemini 2.0 Flash Thinking Experimental
(DeepMind, 2024), Deepseek R1 (Guo et al., 2025),
and LlaMA 3.2 90B Vision (Meta, 2024)) to gen-
erate a paraphrased sentence given an input sen-
tence, in which the ‘_’ token is at the end of the
sentence. The generated options were manually
checked, and the best option was selected for each
sentence. However, in many cases (n = 433), man-
ual adjustments were still needed. The prompt for
this task, and the distribution of which model’s out-
put is used, can be found in Appendix A. In this
stage, we also evaluate the validity of the sentences
in the WinoGrande validation set. We notice that
not all instances meet the requirements of WSC
(e.g., not ‘google-proof’, grammatical errors, etc.),
which we remove in our paraphrased dataset. In
total, we find 82 such cases.4

Further, three of the authors annotate a sample
of 100 paraphrased instances based on the follow-
ing criteria: (1) Is the new sentence grammatical?;
(2) Is the fill-in-the-blank token at the end of the
sentence?
85% of the texts are rated by all annotators as ac-
ceptable, 97% by at least two annotators. Given
that the annotations are highly skewed (the ma-
jority of the ratings is ‘acceptable’), we calculated
Gwet’s AC1 for the inter-annotator agreement: 0.88
indicates a high agreement (Gwet, 2001).

3.4 Common sense knowledge categorization

We categorized the coreference resolution instances
according to the common sense knowledge type
that is necessary to make the bridging inference.
This categorization can function as data for an error
analysis to detect what knowledge types are easier
or harder for LLMs to solve. Similarly to Zhang
et al. (2020), we select categories that have a broad
coverage and are clearly distinguished from each

4There are an additional 22 instances for which one anno-
tator was not convinced of the quality. These instances were
left out in the experiments, but for completeness are added in
the released dataset.

other. We examine which categories are identified
in existing benchmarks that evaluate common sense
reasoning in NLP5, which leads to five categories:
physical, social, numerical, temporal, and spatial6.
We use LLMs to categorize the validation set.
To identify the relevant common sense type, we
prompt GPT-4o-mini to generate reasoning steps to
solve the task. We then provide the input text and
the generated reasoning steps to GPT-4o, which
assigns one or more common sense categories to
each instance. The prompts for these tasks are
available in Appendix B. Annotation reliability is
assessed by one author manually labeling 100 in-
stances and comparing them with GPT-4o’s labels,
yielding a Kappa score of 0.64, which is a substan-
tial agreement7 (Cohen, 1960). Across all samples
and labels, the annotator and GPT-4o agree in 83%
of the cases. When applying our method on the
entire validation set, we note a class imbalance;
the physical and social categories are considerably
larger than the other three, see Figure 3.

4 Results

4.1 Paraphrased corpus

We report on the models’ performance on
WinoWhat. This allows us to compare the per-
formance on the original texts to the paraphrased
texts. If models truly generalize on the Winograd
schemas, the performance should remain consis-
tent; after all, the same information is conveyed, in
the same task setup, only paraphrased. Addition-
ally, we report on the performance per common
sense category presented in Section 2.3. In Table 1
and Table 2, subcolumn ‘orig’ refers to the original
texts in WinoGrande, ‘transf’ to the paraphrased
texts.
Considering the result on the WinoGrande vali-
dation set, we see that larger models generally
perform better than their smaller variants, with
LLaMA 2 70B performing the best. The error anal-
ysis comparing the performance of the same model
across common sense categories shows that there
is no one category that is impossible to be learned
by a model, but there are fluctuations. Interestingly,
we see that the category with the best results varies

5e.g., see https://cs.nyu.edu/~davise/Benchmarks/
Text.html

6Originally, we included causal as label, but removed this
category: all instances in WinoGrande had this label, which
was also noted by Zhang et al. (2020).

7The kappa scores per category: physical 0.63; social 0.68;
numerical 0.58; temporal 0.72; spatial 0.59.
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Figure 2: An illustration of the paraphrasing and evaluation method. The option that is filled in the ‘_’-token is
in red. In the original example, the summed log-likelihood is calculated on the tokens after the option. In the
paraphrased example, the option is at the end of the sentence, and the summed log-likelihood is calculated on the
tokens inside the option.

LlaMA 2 Gemma 2
7B 13B 70B 2B 9B 27B

orig transf orig transf orig transf orig transf orig transf orig transf
TOTAL 0.69 0.58 0.72 0.62 0.78 0.70 0.68 0.59 0.74 0.68 0.66 0.56
Physical 0.71 0.61 0.73 0.63 0.77 0.73 0.71 0.60 0.74 0.68 0.74 0.59
Social 0.68 0.56 0.72 0.61 0.79 0.68 0.68 0.57 0.73 0.67 0.60 0.54
Numerical 0.69 0.53 0.70 0.61 0.79 0.69 0.63 0.62 0.75 0.62 0.69 0.51
Spatial 0.71 0.61 0.76 0.65 0.75 0.70 0.70 0.61 0.78 0.69 0.78 0.62
Temporal 0.76 0.67 0.70 0.69 0.79 0.74 0.65 0.62 0.74 0.71 0.67 0.54

Table 1: LlaMA 2 and Gemma 2 results on WinoGrande validation. The ‘orig’ columns report the results on the
original instances, the ‘transf’ columns on the paraphrased instances.

OPT 1.3B OPT 6.7B OPT 13B OPT 66B
orig transf orig transf orig transf orig transf

TOTAL 0.60 0.53 0.66 0.54 0.65 0.56 0.69 0.58
Physical 0.62 0.57 0.72 0.57 0.67 0.60 0.73 0.61
Social 0.59 0.50 0.63 0.50 0.65 0.52 0.66 0.55
Numerical 0.57 0.49 0.62 0.58 0.63 0.54 0.68 0.57
Spatial 0.56 0.61 0.65 0.61 0.63 0.61 0.67 0.61
Temporal 0.50 0.55 0.57 0.58 0.61 0.53 0.66 0.57

Table 2: OPT results on WinoGrande validation. The ‘orig’ columns report the results on the original instances, the
‘transf’ columns on the paraphrased instances.

across model families: for LlaMA 2, there is no cat-
egory that is consistently easier, while for Gemma
2 spatial is best, and for OPT physical. Temporal
is consistently the worst category for OPT.
However, when comparing the original to the para-
phrased task, we conclude that all models perform
worse on the paraphrased corpus, and there is no
common sense category that is robust against this
transformation.
Our results challenge the assumption that LLMs

apply reasoning when solving the WinoGrande
task, suggesting they instead rely on dataset ar-
tifacts and/or memorization. While Sakaguchi et al.
(2021) implemented an algorithm to automatically
reduce machine-exploitable bias in their corpus,
our results demonstrate that this might not be effec-
tive anymore in the LLM era.
We publicly release WinoWhat, consisting of the
original WinoGrande validation set with the para-
phrased counterparts and common sense catego-
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Figure 3: Data distribution across common sense cate-
gories on the WinoGrande validation set.

rizations8.

4.2 Memorization

Model WG val WG test WSC
orig transf orig transf orig transf

LlaMA 2 7B 0.69 0.58 0.74 0.54 0.86 0.54
LlaMA 2 13B 0.72 0.62 0.73 0.65 0.83 0.63
LlaMA 2 70B 0.78 0.70 0.79 0.70 0.88 0.66
Gemma 2 2B 0.68 0.59 0.73 0.61 0.83 0.64
Gemma 2 9B 0.74 0.68 0.73 0.64 0.86 0.58
Gemma 2 27B 0.66 0.56 0.58 0.57 0.76 0.51
OPT 1.3B 0.60 0.53 0.58 0.50 0.72 0.54
OPT 6.7B 0.66 0.54 0.52 0.56 0.82 0.56
OPT 13B 0.65 0.56 0.68 0.56 0.81 0.56
OPT 66B 0.69 0.58 0.71 0.52 0.82 0.58

Table 3: Accuracy on WinoGrande (WG) validation,
WG test, and WSC for LLaMA 2, Gemma 2, and OPT.

Model WG val WG test WSC
orig transf orig transf orig transf

LlaMA 1 7B 0.70 0.58 0.74 0.59 0.85 0.61
LlaMA 1 13B 0.72 0.60 0.75 0.64 0.88 0.66
LlaMA 1 30B 0.76 0.64 0.74 0.62 0.92 0.62
LlaMA 1 65B 0.77 0.67 0.79 0.69 0.91 0.68
Pythia 1B 0.54 0.53 0.57 0.54 0.71 0.50
Pythia 2.8B 0.60 0.52 0.59 0.53 0.76 0.55
Pythia 6.9B 0.61 0.52 0.58 0.56 0.77 0.52
Pythia 12B 0.63 0.52 0.61 0.60 0.79 0.49

Table 4: Accuracy on WinoGrande (WG) validation,
WG test, and WSC for LLaMA 1 and Pythia.

Given the surprising drop in performance com-
paring WinoGrande to WinoWhat, we investigate
further what could cause this. While Elazar et al.
(2024) show that the test set of WinoGrande has

8The full dataset is available on Zenodo (Gevers and
De Marez, 2025).

probably not been seen by LLMs, this is not tested
for the validation set. This is problematic, because
research often reports on this split because of the
absence of the test labels. Therefore, it is crucial to
verify how many instances of the WinoGrande val-
idation set have been included in datasets used to
pre-train LLMs. Specifically, we count how many
instances appear entirely in the pre-training cor-
pora.
Since the pre-training data for Gemma 2, LlaMA
2, and OPT models remains either undisclosed or
inaccessible, we examine two LLMs with publicly
available pre-training data: LlaMA 1 and Pythia,
whose results are presented in Table 4. These
models were trained on RedPajama v1 (Computer,
2023) and The Pile’s training set (Gao et al., 2020b)
respectively.9

While we found that The Pile contains no contami-
nated instances, an interesting pattern emerges: as
model size of Pythia increases, the performance
gap between WinoGrande and WinoWhat widens,
with WinoWhat accuracy remaining stable while
WinoGrande scores improve (see column ‘WG val’
in Table 4).
An analysis of RedPajama v1 reveals 22 contami-
nated instances (1.7% of the dataset), each appear-
ing once and sourced from academic papers. To
investigate potential memorization effects, we con-
duct a one-sided Mann-Whitney U test between per-
formance on contaminated and non-contaminated
instances across LlaMA 1 models (7B, 13B, 30B,
and 65B). The results (see Table 6 in Appendix
C), with p-values ranging from 0.054 to 0.267,
show no significant evidence that LLaMA 1 models
give preferential treatment to previously seen Wino-
Grande instances. However, similarly to Pythia,
LlaMA 1 displays a consistent accuracy gap be-
tween WinoGrande and WinoWhat. Since this pat-
tern is observed in all other models as well (Table 1
and Table 2), it suggests that factors beyond simple
memorization may be driving these performance
differences.
To verify the role of contamination in later and
more modern models with unknown pre-training
data, we create two test-suites. Specifically, we
take a sample (n = 100) from the WSC dataset
(of which we can assume that a substantial part has
been memorized by LLMs (Elazar et al., 2024)),
and paraphrase those; and we take a sample (n =

9Details about our method to check memorization can be
found in Appendix C.
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100) from the test set of WinoGrande (of which
we can assume that it has not been memorized by
LLMs due to its private labels), which we label
manually and paraphrase as well.10 We hypothe-
size that LLMs perform well on datasets that are
polluted, but less so on unseen datasets. Therefore,
we expect models to perform well on WSC, but
below par on WSC paraphrased and WinoGrande
test (both original and paraphrased). We summa-
rize the results in Table 3. As expected, all mod-
els perform best on the original WSC benchmark.
Paraphrasing almost always causes a drop in perfor-
mance, regardless of the original source. The dif-
ference is biggest for the WSC benchmark, which
is in line with our hypothesis given the pollution
by this benchmark in LLMs’ training data. We
still see a drop in performance for the WinoGrande
test set, which is not included in the LLM training
data, when comparing the original sentences to the
paraphrased ones. Together with our findings on
Pythia and LLaMA 1, this indicates that there are
other factors causing models to struggle with the
paraphrased benchmark. We hypothesize that our
evaluation metric better captures the model’s per-
formance on coreference resolution compared to
the original partial evaluation (see Figure 2), which
could explain the drop in performance. Addition-
ally, for larger and recent models, even though
benchmark instances might not appear directly in
the pre-training data, this does not exclude the pos-
sibility that it has been used during RLHF or in-
struction tuning, thereby compromising the validity
of their performance on WinoGrande.

5 Conclusion

In this study, we take a closer look at how
Winograd schema challenges can be used to
evaluate common sense reasoning in LLMs. For
this purpose, we focus on WinoGrande, a large
adversarial benchmark created in 2019, frequently
used to evaluate common sense in new LLMs.
We select different generative model families,
comparing models of the same family of different
sizes. Specifically, we focus on Gemma 2, LlaMA
2, and OPT. To evaluate the models, we employ the
partial evaluation metric. To address the limitations
of the partial evaluation metric as outlined in
Section 3.3, we create a parallel corpus to the
WinoGrande validation set in which we paraphrase

10To respect the private nature of the WinoGrande test set,
we do not release our annotations of this subset.

each text so the fill-in-the-blank token is at the end
of the sentence (RQ1). In addition, we propose
a new method to inspect performance on various
common sense knowledge categories within the
same task (RQ2). We select five categories:
physical, social, numerical, spatial, and temporal.
This approach can offer an in-depth error analysis,
that sheds light on what types of knowledge are
more challenging for LLMs. We publicly release
WinoWhat, the parallel corpus to the WinoGrande
validation set including the paraphrased sentences
and the common sense categorization. Our results
show that while models perform well on the
original WinoGrande validation set, they all
perform worse on the paraphrased corpus, and all
common sense categories are affected negatively.
This questions the assumption that models apply
reasoning, leaving the possibility for dataset
artifacts or benchmark memorization.
To verify how much data memorization has
an effect on the models’ performance on the
WinoGrande validation set (RQ3), we test whether
instances that occur in pre-training data score
significantly higher than instances that don’t. We
observe that the memorization of the validation
set is minimal. Interestingly, we see that most
contaminated instances come from academic
publications citing examples from the benchmark.
This again calls attention to the scraping methods
to create large-scale pre-training data. Because
the pre-training data of later models is unknown,
we create two small (n = 100) test-suites: one
of which has been shown to be included in LLM
training sets (i.e., the WSC benchmark) and one
that is not seen by LLMs (i.e., the WinoGrande
test set). We find that all models perform best
on the WSC dataset, and paraphrasing causes a
drop in performance. Since this is also the case for
the WinoGrande test set, we conclude that there
are other factors beside memorization that cause
models to fail on the paraphrased task. Similarly
to conclusions about the original Winograd
Schema Challenge, this implies that we are again
overestimating LLMs reasoning capabilities when
using WinoGrande. Our new paraphrased corpus
can be used to verify model generalization on the
WinoGrande validation set.
In further research, we plan to inspect the infor-
mation that is used by models to solve the task
per common sense category using mechanistic
interpretability: do models use similar information
for each category? Do they rely on spurious
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correlations, and if so, which ones? Mechanistic
interpretability could help us identify a causal
connection between the direct and the indirect
object, giving insights on why models fail. Since
data memorization does not seem to cause the
drop in performance comparing the original to
the paraphrased instances, we suggest to identify
dataset artifacts that could be at the root of this.
For instance, as previously done on WSC, do
linguistic perturbations affect model performance?
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Limitations

While, to the best of our knowledge, this is the first
time the WinoGrande validation set has been an-
notated for common sense knowledge categories,
this approach has possible shortcomings. First,
the agreement between a human annotator and
the labeling by GPT-4o shows a substantial agree-
ment, but there will be cases with incorrect labeling.
Therefore, we talk about aggregated results across
categories in this study, since we’re interested in
trends, but for even more fine-grained interpreta-
tions this categorization should possibly be cor-
rected manually.
Further, as is unfortunately still a trend in NLP-
research, this dataset is in English, excluding lower-
resource languages. Further research could trans-
late our benchmark to other languages.
During the process of paraphrasing the original in-
stances, we applied a strict quality check, which
excluded 82 instances from the original dataset.
While we believe this improves the quality of the
resulted paraphrased dataset, this means we cannot
make a perfectly aligned comparison to the original
dataset.
Since we wanted to mitigate shortcomings of the
partial evaluation metric, we paraphrased Wino-
Grande so the fill-in-the-blank token appears at
the end of the sentence. However, the constraint
of putting this token at the end of the sentence
caused a higher number of cleft-constructions in the
corpus. A high inter-annotator agreement shows

that the created paraphrases are grammatically cor-
rect and qualitative, but in some cases the para-
phrased output is less natural than the original.
However, even though there might be an ‘unnatural-
ness’ about some of the paraphrased instances, this
does not change the task (i.e., finding the correct
antecedent), and a robust model should be able to
overcome these superficial variations.
We argue that this setup is more natural for decoder-
only models, and allows the partial evaluation met-
ric to better capture model performance on coref-
erence resolution tasks rather than measuring nat-
ural continuations of the sentence. However, by
adapting the evaluation method so it calculates the
summed log-likelihoods on the tokens in the op-
tion rather than on the tokens after the option, this
obscures whether the difference in performance
is a result of the paraphrasing, or of the evalua-
tion method. To verify this, we aim to construct
a third level, in which we paraphrase without the
constraint of putting the ‘_’-token at the end of
the sentence, allowing us to use the original partial
evaluation method. This would indicate whether
the drop in performance is caused by the paraphras-
ing itself, or by the evaluation metric. This would
also alleviate the problem that some paraphrased
sentences in WinoWhat are slightly less natural-
sounding than the original ones.
Finally, our method of finding data contamination
in pre-training data was on the data level only, not
taking into account the semantic or information
level (Xu et al., 2024). Methods such as ours rely-
ing on string matching methods might miss certain
instances, such as rephrasings (Xu et al., 2024).
Furthermore, such methods are only possible when
access to pre-training corpora is public (Yang et al.,
2023).
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Abstract

Table understanding is key to addressing chal-
lenging downstream tasks such as table-based
question answering and fact verification. Re-
cent works have focused on leveraging Chain-
of-Thought and question decomposition to
solve complex questions requiring multiple op-
erations on tables. However, these methods
often suffer from a lack of explicit long-term
planning and weak inter-step connections, lead-
ing to miss constraints within questions. In
this paper, we propose leveraging the long-
term planning capabilities of large language
models (LLMs) to enhance table understand-
ing. Our approach enables the execution of a
long-term plan, where the steps are tightly in-
terconnected and serve the ultimate goal, an as-
pect that methods based on Chain-of-Thought
and question decomposition lack. In addition,
our method effectively minimizes the inclusion
of unnecessary details in the process of solv-
ing the next short-term goals, a limitation of
methods based on Chain-of-Thought. Exten-
sive experiments demonstrate that our method
outperforms strong baselines and achieves state-
of-the-art performance on WikiTableQuestions
and TabFact datasets.

1 Introduction

Table understanding is key to addressing challeng-
ing downstream tasks involving tables, one of the
most prevalent forms of semi-structured data in
real-world scenarios, such as table question an-
swering (Wang et al., 2023a; Lin et al., 2023) and
fact verification (Chen et al., 2020). The primary
goal is to accurately extract relevant information
from tables to provide precise answers to user ques-
tions. To better understand the problem consider
the example in Table 1.

Early works focus on fine-tuning BERT to en-
code tables (Herzig et al., 2020; Chen et al., 2020).
The key idea is to leverage specialized embedding

*Qualcomm Vietnam Company Limited.

Calculate the total revenue of products sold in both
Region A and Region B in 2023, where the quantity
sold is greater than 500 in each region.

2008

700

Product Region Sales Year Quantity Sold Revenue

A1 A 2023 600 1000
A1 B 2023 400 800

A2 A 2023 700 1500
A2 B 2023 600 1300
A3 A 2022 800 2000
A3 B 2023 300 500

Figure 1: A question-answering example over a table.

layers or attention mechanisms to encode table cells
or segments effectively, enabling models to under-
stand the structure of tables. Another direction re-
volves around the synthesis of SQL query-response
pairs to pre-train an encoder-decoder model as a
neural SQL executor (Eisenschlos et al., 2020; Liu
et al., 2022b; Jiang et al., 2022). With the advent of
large language models (LLMs), recent works have
explored instruction fine-tuning of LLMs with tab-
ular data to create generalist models capable of han-
dling a variety of table-based tasks (Zhang et al.,
2024), showing improved performance over flag-
ship closed-source LLMs such as GPT-3.5-turbo
and GPT-4 (OpenAI et al., 2024).

Leveraging the strong in-context learning perfor-
mance of LLMs, recent works have increasingly
focused on addressing table understanding through
prompting. One common approach is to convert
the question into executable languages, allowing
the use of tools such as SQL or Python to access
the information inside the table (Lin et al., 2023;
Gemmell and Dalton, 2023; Wang et al., 2024;
Nahid and Rafiei, 2024; Liu et al., 2024; Kong
et al., 2024). However, due to the constraints of
the single-pass generation process, these methods
often struggle with complex questions requiring
multiple steps of table operations. To address this
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challenge, some state-of-the-art methods employ
Chain-of-Thought (CoT) reasoning, which enables
multi-step reasoning (Yao et al., 2023; Chen et al.,
2023; Wei et al., 2022; Wang et al., 2024). Others
rely on question decomposition, breaking down the
question into sub-questions, solving them individu-
ally, and finally synthesizing a final answer (Kong
et al., 2024; Patnaik et al., 2024; Ye et al., 2023).
However, both CoT-based methods and question
decomposition-based methods suffer from a lack
of explicit long-term planning and weak inter-step
connections. This results in missing constraints
within the question, leading to incorrect final an-
swers. An illustration of this issue is shown in Fig-
ure 2, where step 3 is not conditionally linked to
the previous steps. In addition, in the case of CoT-
based methods, the entire current chain is often
utilized to generate the output for the subsequent
step. This approach can result in LLMs forgetting
critical details or generating hallucinations, as they
process a substantial amount of information, in-
cluding extraneous details, which may introduce
unnecessary complexity and lead to errors (Jiang
et al., 2022; Chen, 2023).

In this paper, we propose leveraging the long-
term planning capabilities of LLMs to address these
challenges. Unlike methods based on CoT and
question decomposition, which lack explicit long-
term planning, our method begins with the formula-
tion of a long-term plan upon receiving a question.
This plan outlines the necessary steps, called short-
term goals, to progress systematically from the ini-
tial table to the final answer. The short-term goals
can be either independent or interconnected, de-
pending on the requirements of the question, ensur-
ing that each serves the long-term goal. To handle
each short-term goal effectively, we leverage a set
of specialized experts, each dedicated to a specific
task. These experts take responsibility for handling
short-term goals relevant to their specialization, op-
erating independently to resolve the goals within
their localized scope. At this local level, each ex-
pert focuses solely on their assigned goal without
being influenced by other parts of the long-term
plan. The intermediate steps executed by the exe-
cution experts are single-pass. Once the short-term
goal is completed, only the final results are updated
within the long-term plan, minimizing the inclu-
sion of unnecessary information in the process of
solving the next short-term goals—a common issue
in CoT-based methods.

Our contributions are summarized as follows:

Incorrect result: 1000 + 1500 + 1300 = 3800

Step 1: Filter rows for year = 2023.

700

Product Region Sales Year Quantity Sold Revenue
A1 A 2023 600 1000
A1 B 2023 400 800
A2 A 2023 700 1500
A2 B 2023 600 1300
A3 B 2023 300 500

Step 2: Filter rows for Units Sold > 500.

700
Product Region Sales Year Quantity Sold Revenue

A1 A 2023 600 1000
A2 A 2023 700 1500
A2 B 2023 600 1300

Step 3: Calculate total revenue.

Incorrect result: 1000 + 1500 + 1300 = 3800

Chain-Of Thought
Subquestion 1: What is the total revenue of
products sold in Region A in 2023, where the
quantity sold is greater than 500?

Subquestion 2: What is the total revenue of
products sold in Region B in 2023, where the
quantity sold is greater than 500?

700
Product Region Sales Year Quantity Sold Revenue

A1 A 2023 600 1000
A2 A 2023 700 1500

700Product Region Sales Year Quantity Sold Revenue
A2 B 2023 600 1300

Calculate total revenue

Question Decomposition

Figure 2: An illustration showing how CoT-based meth-
ods and question decomposition-based methods miss the
important inter-region condition in revenue calculation
(corresponding to the table and question in Figure 1).

(I) We propose leveraging the long-term planning
capabilities of LLMs to enhance table understand-
ing. (II) Our approach enables the execution of
a long-term plan where the steps are tightly inter-
connected, all serving the ultimate goal—an as-
pect that methods based on Chain-of-Thought and
question decomposition lack. (III) Our approach
effectively minimizes the inclusion of unnecessary
details in the process of solving the next short-term
goals—a limitation of methods based on Chain-of-
Thought. (IV) Comprehensive experiments demon-
strate that our approach achieves state-of-the-art
performance, outperforming existing strong base-
lines on standard benchmarks WikiTableQuestions
and TabFact.

2 Related Works

Fine-tuning pre-trained BERT models (Devlin
et al., 2019) were one the dominant approach for
Table Understanding (Herzig et al., 2020; Chen
et al., 2020; Liu et al., 2022a; Deng et al., 2022;
Wang et al., 2021; Iida et al., 2021). TaPas (Herzig
et al., 2020) leverage the mask language modeling
approach proposed in BERT to reconstruct certain
cells in the table during training process. Wang
et al. (2021) further enhance the performance by
masking the entire columns in tables. A different
approach is to train an encoder-decoder model to
transform questions into SQL queries and then an-
swer these questions by executing the respective
generated SQL queries (Eisenschlos et al., 2020;
Liu et al., 2022b; Jiang et al., 2022). Recently,
large language models (LLMs) have demonstrated
excellent performance on a variety of tasks. Recent
works have been shifting their focus to fine-tuning
open-source LLMs to create models capable of
handling a variety of table-based tasks. However,
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python
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python

Planning
Expert

Step1: From the original table,
filter rows for 2023

Step 5: from step 4, calculate
total revenue.

Step 2: from step 1, filter products
in Region A with Units > 500

Step 3: from step 1, filter products
in Region B with Units > 500

Step 4: From step 2 & 3, identify
products in both regions

E
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er

ts

Assessment
Expert

Calculate the total revenue of
products sold in both Region A and

Region B in 2023, where the quantity
sold is greater than 500 in each

region.

ANSWER

Update/Replan

Figure 3: Overview of our proposed framework PLANTA.

these methods require expensive labeled data and
high training costs. This has led to the emergence
of prompt-based approaches, which leverage the
in-context learning capabilities of LLMs.

For prompt-based methods, some works propose
concatenating task descriptions with the serialized
table as a string and inputting them into an LLM to
generate a text-based response (Marvin et al., 2023;
Cheng et al., 2023; Sui et al., 2024). Other works
enhance the performance further by adding few-
shot and curated examples to the prompt (Cheng
et al., 2023; Narayan et al., 2022; Chen, 2023).
However, with reasoning only, LLMs often strug-
gle to accurately retrieve all relevant data required
within tables. Therefore, recent works increasingly
incorporate external tools (e.g., Python and SQL)
instead of relying solely on general text process-
ing to effectively extract relevant data within ta-
bles (Chen et al., 2023; Gao et al., 2023; Rajkumar
et al., 2022; Cheng et al., 2023; Ni et al., 2023).
Despite this, due to the constraint of a single pass,
this approach still struggles with complex ques-
tions where multiple operations need to be exe-
cuted to produce an accurate answer. Recent state-
of-the-art methods mitigate this limitation by em-
ploying chain-of-thought (CoT) reasoning or ques-
tion decomposition (Chen et al., 2023; Zhao et al.,
2024; Yang et al., 2024; Zhou et al., 2023; Khot
et al., 2023). Some works (Ye et al., 2023; Cheng
et al., 2023; Liu et al., 2024) further enhance the
performance by self-consistency technique (Wang
et al., 2023b), where a diverse set of reasoning
paths is sampled from LLMs and the most consis-
tent answer is selected to obtain the final answer.
However, both CoT-based methods and question
decomposition-based methods suffer from a lack
of explicit long-term planning and weak inter-step
connections. This results in constraints within the

question being missed, leading to incorrect final
answers. Furthermore, CoT-based methods often
utilize the entire current chain to generate the out-
put for the subsequent step. This approach can
result in LLMs forgetting critical details or gener-
ating hallucinations, as they process a substantial
amount of information, including extraneous de-
tails, which may introduce unnecessary complexity
and lead to errors (Jiang et al., 2022; Chen, 2023).

3 Our Approach

We introduce a novel method, named PLANTA,
which leverages the long-term Planning capabili-
ties of Large Language Models to improve Table
Understanding. PLANTA is designed to tackle the
challenge of generating accurate answers to table-
based questions by extracting and reasoning over
relevant information from the given tables.

Figure 3 illustrates the architectural overview
of PLANTA. First, upon receiving a table and
a question, a Planning expert comes up with a
long-term plan outlining the necessary steps, called
short-term goals, to transform the initial table into
the desired answer to the user’s question. Next,
each short-term goal is routed to an appropriate
Execution expert by a Router, which assigns short-
term goals to experts based on their specialization
via LLM prompting. These goals are then resolved
locally, with only the final results passed to the
following components of PLANTA, potentially up-
dating the long-term plan. Meanwhile, interme-
diate steps executed by the Execution experts are
processed in a single pass. After each step, the up-
dated long-term plan is evaluated by an Assessment
expert, who determines whether sufficient evidence
has been gathered to answer the question or if mod-
ifications to the plan are necessary. If no adjust-
ments are needed, the process continues. Below,
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def execute_sql_query(query, table):
"""
Executes an SQL query 
on a table and returns the result.
 Args:
   query: SQL query to execute.
   table: Table to execute the query on.  
"""

Search Calculation Comparison
def multiply(a, b):
  "Returns the product of two numbers."
def minus(a, b):
  "Returns the difference of two numbers"
def sum(a, b):
  "Returns the sum of two numbers"
def divide(a, b):
  "Returns the division of two numbers."    

def compare(a, b):
"Return: 'a is greater' if a > b
         'b is greater' if a < b
         'a is equal to b' if a == b"
def max_in_list(a_list):
  "Returns the highest number in the list"
def min_in_list(a_list):
  "Returns the smallest number in the list"  

Figure 4: Predefined Python functions ("hands") assigned to the Search expert, Calculation expert, and Comparison
expert in PLANTA, respectively.

we provide a detailed description of the architec-
ture and roles of the experts within PLANTA. We
first outline the common architecture shared by all
experts in Subsection 3.1, followed by an in-depth
discussion of the differences in their architecture
and their specific contributions in Subsection 3.2.

3.1 Common Architecture
In PLANTA, each expert consists of two main com-
ponents: the "brain" and the "hands". Each brain is
specialized in a specific task and can independently
reason to complete an assigned task. It is powered
by an LLM, whose knowledge scope is encoded
through prompting. The hands are predefined tools,
such as Python or SQL execution functions, tai-
lored to the expert’s specializations. These tools
enable access to detailed data within tables and
execute operations that LLMs may struggle with,
such as calculations. They provide the brain with
the necessary inputs for reasoning and determining
the subsequent steps required to complete the task.

3.2 Task-Specific Architecture
Planning expert: Its role is to outline the nec-
essary steps of short-term goals, structured as a
task list, to transform the initial table into an ac-
curate answer. Since this role focuses solely on
planning without execution, the Planning expert’s
architecture comprises only the "brain". This brain
is powered by an LLM specifically designed for
the planning task, with a knowledge scope that
includes the given table, the question, and the spe-
cializations of Execution experts (see our prompt
for Planing in Appendix). For each step in the plan,
dependencies on previous steps must be explicitly
defined to enable the flexible reuse of variables
from earlier steps. This approach minimizes the
transfer of unnecessary information to subsequent
steps while ensuring that all dependencies are cor-
rectly managed. For example, in Figure 3, step 3
depends only on the output of step 1. Therefore,
step 3 can access only the output of step 1 that it
depends on, without accessing the output of step 2.

My goal is to find row containing products
sold in region B where quantity sold > 500.
First, I need to check the table structure.

The columns are: Product, Region, Sales
Year, Quantity Sold, Revenue.

Call:
RUN execute_sql_query (sql_query)
params:
sql_query = """

SELECT column_name 
FROM information_schema.columns

"""

Next, I need to filter the data with two
conditions:

Region = 'B'
Quantity Sold > 500

Call:
RUN execute_sql_query (sql_query)
params:
sql_query = """

SELECT * 
WHERE Region = 'B' 
AND Quantity_Sold > 500;

"""

Everything is correct, I'll return the list of
rows that meet the requirements.

700Product Region Sales Year Quantity Sold Revenue
A2 B 2023 600 1300

Figure 5: An example of how the Search expert ad-
dresses the 3rd short-term goal from Figure 3. Once
the short-term goal is received, the Search expert per-
forms reasoning step by step. The process includes un-
derstanding the question, analyzing the table structure,
identifying the data that meets the goal’s conditions, and
providing the answer. When the expert needs to access
data in the table, it automatically calls the predefined
SQL execution function (see Figure 4) to retrieve the
necessary information. This is done by generating SQL
queries as parameters for the function.

Execution experts: The task of the Execution ex-
perts is to resolve the short-term goals required by
the Planning expert. These goals are assigned to ap-
propriate Execution experts based on their special-
ization by the Router, which we perform using an
LLM via prompting (see our prompt for the Router
in Appendix). Motivated by operations on tables,
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our PLANTA system is designed with three Exe-
cution experts: (1) Search expert, (2) Comparison
expert, and (3) Calculation expert. In terms of their
knowledge scope, they can only access the data and
short-term goals provided by the Planning expert
and reason with the support of predefined functions,
which we call "hands". The predefined functions
include SQL query execution for the Search expert;
comparative and superlative comparison for the
Comparison expert; and basic calculations such as
addition, subtraction, multiplication, and division
for the Calculation expert. See Figure 4 for more
details.

Unlike the initial question on tables, which must
be addressed according to a pre-defined long-term
plan, short-term goals are often simpler and more
manageable. Therefore, we allow the experts to
independently determine how to resolve assigned
goals, such as utilizing the Chain-of-Thought or
question decomposition approach, as long as the
assigned goal is solved (see our prompts for three
Execution experts in Appendix). We expect that
this flexibility will enable the experts to reason and
use their "hands" in ways that align with their exe-
cution capabilities. Figure 5 illustrates an example
of how an Execution Expert addresses an assigned
short-term goal.

Assessment expert: The task of the Assessment
expert is to evaluate the quality of the plan after
receiving the result of the current short-term goal
from the Execution Expert. Similar to the Planning
expert, it does not execute tasks but focuses solely
on reasoning, using an LLM specialized in assess-
ment tasks. Its knowledge scope includes access to
the table, the question, and the long-term plan (see
our prompt for the Assessment in Appendix). After
every k short-term goals, the Assessment expert
determines whether to generate an early answer
if sufficient relevant information is available, or
revise the plan if the results from the Execution
experts fail to meet requirements or if the initial
plan appears infeasible. Otherwise, the results from
the Execution experts are automatically incorpo-
rated into the long-term plan. In essence, it takes
a plan as input and outputs either a revised or an
unchanged plan, or an answer.

Recommendation: Our preliminary experiments
show that frequent assessments, such as after each
short-term goal, can facilitate early answers, con-
serve resources, and quickly address errors as they
arise. However, frequent evaluations may also lead

Statistics WikiTQ TabFact
# Questions 4343 2024
# Number of Tables 421 298
# Min/Max Rows 6/518 5/49
# Min/Max Columns 5/20 3/21

Table 1: Statistics of the WikiTableQuestions (WikiTQ)
and TabFact test sets.

to challenges, such as overemphasizing short-term
results at the expense of long-term objectives, un-
necessary plan revisions (e.g., repeated short-term
result validations), inaccurate premature answers,
and increased resource costs. To mitigate these
issues, k should be tuned based on the data and the
complexity of the question, balancing stability and
efficiency.

4 Experiment Setup

Dataset and Metric: Following previous works
(Wang et al., 2024), we conduct experiments on the
benchmark datasets WikiTableQuestions—a ques-
tion answering dataset over semi-structured tables
(Pasupat and Liang, 2015) and TabFact—a dataset
for table-based fact verification (Chen et al., 2020).
Table 1 describes the statistics of their test sets. See
a description of both datasets in the Appendix.

We employ the official denotation accuracy (Pa-
supat and Liang, 2015) for WikiTableQuestions
and the binary classification accuracy for TabFact.

Baselines: We compare our method to recent
strong table understanding methods, including
TEXT2SQL (Rajkumar et al., 2022), CHAIN-OF-
THOUGHT (Wei et al., 2022), Dater (Khot et al.,
2023), StructGPT (Jiang et al., 2023), BINDER
(Cheng et al., 2023), TabSQLify (Nahid and Rafiei,
2024), CHAIN-OF-TABLE (Wang et al., 2024)
and DP&PYAGENT (Liu et al., 2024). CHAIN-
OF-TABLE and DP&PYAGENT are the state-of-
the-art methods on TabFact and WikiTableQues-
tions, respectively.

Implementation Details: We utilize LangGraph
to construct our proposed model, PLANTA, which
is conceptualized as a graph.1 In this graph, the
long-term plan represents the graph’s state and each
expert presents a node. Each expert is powered
by an LLM with a distinct prompt, as detailed in
Appendix . We mainly use "GPT-3.5-turbo" and
"GPT-4o-mini" from OpenAI as the LLMs. The
temperature for LLMs is set to 0. The maximum

1https://langchain-ai.github.io/langgraph/
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number of iterations for a full turn of reasoning and
execution of predefined functions per expert is set
to 2. The maximum number of short-term goals
is set to 12. The Assessment expert evaluates the
long-term plan after completing n− 1 steps of the
plan where n is the number of short-term goals in
the plan.

5 Evaluation

5.1 Main Results

Table 2 reports the accuracy of our PLANTA and
strong baselines on WikiTableQuestions (WikiTQ)
and TabFact test sets.

Recent state-of-the-art methods, including
CHAIN-OF-TABLE and DP&PYAGENT, rely on
chain-of-thought reasoning and self-consistency,
demonstrating the effectiveness of these methods
for table understanding. Both CHAIN-OF-TABLE
and DP&PYAGENT show notable improvements
when upgrading their backbone LLM from GPT-
3.5-turbo to GPT-4o-mini. For example, CHAIN-
OF-TABLE improves from 59.9 to 70.4 on WikiTQ
and 80.2 to 85.8 on TabFact. DP&PYAGENT in-
creases from 65.5 to 74.7 on WikiTQ and 80.0 to
89.9 on TabFact, highlighting the benefits of using
a more powerful language model.

Our PLANTA outperforms all baselines on both
test sets. With GPT-3.5-turbo, PLANTA scores
70.0 on WikiTQ and 82.0 on TabFact, outperform-
ing DP&PYAGENT (65.5 on WikiTQ, 80.0 on
TabFact) and CHAIN-OF-TABLE (59.9 on Wik-
iTQ, 80.2 on TabFact). When using GPT-4o-mini,
PLANTA further improves to 75.7 on WikiTQ and
90.4 on TabFact, surpassing DP&PYAGENT (74.7
on WikiTQ, 89.9 on TabFact) and CHAIN-OF-
TABLE (70.4 on WikiTQ, 85.8 on TabFact).

Overall, PLANTA demonstrates state-of-the-art
performance across different LLMs and datasets,
providing clear evidence of the effectiveness of the
proposed method for table understanding.

5.2 Ablation Study

To investigate the impact of each proposed compo-
nent of PLANTA, we evaluate our ablated variants
on WikiTQ and TabFact. Due to budget constraints,
we evaluate the ablated variants on 1,000 randomly
selected questions from each of the WikiTQ and
TabFact test sets. Table 3 presents the contribution
of each proposed component to PLANTA’s overall
performance with GPT-4o-mini.

Method WikiTQ TabFact
GPT-3.5-turbo

TEXT2SQL (2022) 52.9 64.7
CHAIN-OF-THOUGHT 53.5 65.4
BINDER (2023) 56.7 79.2
Dater (2023) 52.8 78.0
StructGPT (2023) 48.4 _
TabSQLify (2024) 64.7 79.5
CHAIN-OF-TABLE (2024) 59.9 80.2
DP&PYAGENT (2024) 65.5 80.0
Our PLANTA 70.0 82.0

GPT-4o-mini
CHAIN-OF-TABLE 70.4 85.8
DP&PYAGENT 74.7 89.9
Our PLANTA 75.7 90.4

Table 2: Performance results on the WikiTableQues-
tions (WikiTQ) and TabFact test sets. Rows 3 to
11 evaluate the table understanding capabilities of
baseline methods and our PLANTA using GPT-3.5-
turbo as the LLM. Results for previous methods are
taken from their respective works, except for Dater,
BINDER, and DP&PYAGENT. Since original Dater
and BINDER relied on the now-decommissioned
OpenAI Codex LLM, we extract their results based
on GPT-3.5-turbo, reported in the CHAIN-OF-
TABLE paper (Wang et al., 2024). Furthermore,
DP&PYAGENT is tested only on a variant version of
the original WikiTQ test set (i.e. not the same test
set). Therefore, we run their official implementation
(https://github.com/Leolty/tablellm) to report
results on the original WikiTQ and the TabFact test sets
with GPT-3.5-turbo. In rows 12-15, we run the official
implementations of CHAIN-OF-TABLE (https:
//github.com/google-research/chain-of-table)
and DP&PYAGENT using GPT-4o-mini to provide
results with a faster and more cost-efficient LLM.
Note that Wang et al. (2024) also report results of
CHAIN-OF-TABLE using "PaLM-2" with 340B
parameters (Anil et al., 2023). Since the PaLM-2
API has been decommissioned, we are unable to run
PLANTA with "PaLM-2".

W/o planning: In this variant, long-term plan-
ning is excluded from PLANTA. Instead, the Plan-
ning expert relies solely on chain-of-thought (CoT)
reasoning. In detail, the Planning expert is required
to think step by step and generate a single request
for Execution experts to handle. This process is
repeated iteratively until a final answer is produced
by the Assessment expert. As shown in Table 3,
the exclusion of long-term planning significantly
hurts PLANTA’s performance, with accuracy drop-
ping from 76.5 to 69.0 on WikiTQ and from 90.0
to 74.0 on TabFact. Our internal analysis indicates
that the sharper decline on TabFact is due to the
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Method WikiTQ TabFact
PLANTAGPT-4o-mini 76.5 90.0

w/o planning 69.0 74.0
w/o search 56.0 62.5
w/o calculation 71.5 81.5
w/o comparison 75.5 88.0
w/o group experts 74.4 88.0
w/o assessment 75.0 85.3

Table 3: The performance of the full-component
PLANTA with GPT-4o-mini, along with the results of
the ablation study.

nature of fact verification tasks, which typically
require only a true/false response. This simplicity
may cause the Assessment expert to prematurely
decide on an answer without verifying supporting
evidence. Meanwhile, WikiTQ questions, which
involve more searching tasks, encourage the model
to continue processing until the result is found, re-
ducing premature mistakes.

W/o search: In this variant, the Search expert
is excluded from PLANTA, and search tasks are
instead handled by the Comparison and Calcula-
tion experts. This leads to a significant drop in
accuracy, from 76.5 to 56.0 on WikiTQ and from
90.0 to 62.5 on TabFact, even though the brains of
the Comparison and Calculation experts can still
reason to perform searches. These results high-
light that search is a critical task, and our design of
the Search expert enables the brains to effectively
utilize predefined functions, resulting in more ac-
curate search performance compared to relying on
reasoning alone.

W/o calculation & W/o comparison: In these
variants, the Comparison and Calculation experts
are removed from PLANTA separately. Similar
to the "W/o search" variant, these exclusions hurt
PLANTA’s accuracy. Specifically, removing the
Calculation expert causes a sharper decline, with
a 5% drop on WikiTQ and 8.5% on TabFact, com-
pared to removing the Comparison expert, which
results in a 1% drop on WikiTQ and 2% on TabFact,
while the Search expert’s brain still attempts reason-
ing to perform these tasks. These results highlight
that LLMs’ reasoning often struggles with compar-
ison and even basic calculation.

W/o group experts: In this variant, all Execu-
tion experts are merged into a single unified ex-
pert responsible for handling search, calculation,
and comparison tasks. Instead of using specialized
prompts and predefined functions tailored to each
expert’s specific task, the unified expert uses a gen-
eral prompt and has access to all predefined func-

tions. This consolidation results in a 2.1% drop in
accuracy on WikiTQ and a 2.0% drop on TabFact.
These results demonstrate that Execution experts
benefit significantly from prompts and predefined
functions designed specifically for their special-
ized tasks, highlighting the value of maintaining
task-specific experts within PLANTA.

W/o assessment: In this variant, the Assessment
expert is excluded from PLANTA. In details, all
outputs from the Execution experts are automati-
cally updated into the long-term plan, and the final
answer is generated once all short-term goals are
completed. Table 3 shows that removing the As-
sessment expert reduces PLANTA’s accuracy by
1.5% on WikiTQ and 4.7% on TabFact. This dis-
crepancy mainly arises from the need to revise the
plan to handle code execution errors or situations in
which one or more steps in the plan are infeasible,
leading to repetitive iterations without returning
valid results.

6 Analysis

6.1 Error analysis

Table 4 presents the types of errors observed in
PLANTA. The most frequent errors are related to
planning and common sense, stemming from the
LLMs’ lack of "real expert knowledge". As a result,
they struggle to handle unpredictable data, such as
"TBA" for time or "note" columns containing addi-
tional, contrasting information that alters the main
context. This is consistent with the analysis in Sub-
section 6.2, where we demonstrate that improving
the planning capabilities of the LLM leads to a sub-
stantial increase in accuracy. The Missing "hands"
error, where no predefined function is available
to assist reasoning, accounts for only 1.9% of the
cases, emphasizing the robustness of our design
for predefined functions. However, 11.7% of er-
rors occur when the LLM mistakenly relies solely
on reasoning instead of utilizing the available pre-
defined functions to execute tasks accurately. In
addition, 11.3% of errors are caused by generating
invalid parameters for predefined functions. Hallu-
cinations remain an unavoidable issue with LLMs,
accounting for 11.3% of errors. LLMs can generate
inaccurate final answers, even when accurate ones
are explicitly provided in the final step. Despite
its smaller percentage, acceptable answers reflect a
need to handle vague questions.
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Error Type Description %
Planning/Replanning Errors related to incorrect relationships between steps, failure to handle exceptions within

plan, and inability to detect execution errors when revising plan.
37.7%

Common sense LLMs lack reasoning based on real-world knowledge. Example: When asked how many
consecutive years 1990-1991 represent, LLMs answer "2", while the correct answer is 1.

20.8%

Lazy executor Errors where experts rely solely on LLM reasoning, even when predefined functions could
assist, leading to incorrect results. Example: LLMs miscalculate 3 + 3 + 1 = 6, but a tool
could compute it correctly.

11.7%

Parameter errors Errors caused by generating invalid parameters for predefined functions, such as wrong
data types or conditions.

11.3%

Hallucination The plan is executed correctly, but the conclusion is wrong. 11.3%
Acceptable answers Unclear questions lead to answers that are technically correct but not aligned with the

expected response. For example, when asked row listed before row 4?, PLANTA lists rows
1 to 3, while the golden answer is row 3.

5.7%.

Missing "hands" No predefined function is available to support the reasoning process 1.9%

Table 4: Error types in PLANTAGPT-4o-mini on the WikiTableQuestions test set. The total percentage does not add up
to 100% because some samples contain more than one error.

LLMs

70

75

80

85

90

GPT-3.5 Turbo GPT-4o-mini GPT-4o GPT4
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Figure 6: The impact of different LLMs on table un-
derstanding performance on the subset of 1000 Wik-
iTableQuestions test questions used for the Ablation
study. For "fixed planning", the LLM used for planning
is set to GPT-4o-mini, while the LLM for execution
tasks varies from GPT-3.5-turbo to GPT-4-mini to GPT-
4o to GPT-4, increasing in reasoning capability. For
"fixed execution", the LLM for execution tasks remains
GPT-4o-mini, with the LLM for planning adjusted from
GPT-3.5-turbo to GPT-4-mini to GPT-4o to GPT-4.

6.2 Improved LLMs Are Always the Key to
Table Understanding?

As shown in Table 2, using LLMs with better
reasoning capabilities notably improves table un-
derstanding performance. Here, we investigate
whether improvements in LLMs always lead to sig-
nificant performance gains. Our analysis focuses
on two main aspects: [1] Planning, which deter-
mines how PLANTA chooses the best approach
to answer a question, including the task of plan-
ning by the Planning expert and the task of re-
vised planning by the Assessment expert; and [2]
Execution, which involves performing the neces-
sary tasks (such as search, comparison, and calcu-

lation) to find the relevant data within tables.
Figure 6 illustrates the impact of different LLMs

on table understanding along these two aspects
on the subset of 1000 WikiTableQuestions test
questions used for the Ablation study. The results
demonstrate that under the "fixed execution" set-
ting, planning with better LLMs leads to a sub-
stantial improvement in accuracy for table under-
standing, with GPT-3.5-turbo achieving 72% and
GPT-4 increasing this to 88.5%. In contrast, under
the "fixed planning" setting, the improvement in
execution tasks with better LLMs is far more lim-
ited, with accuracy rising from 74% to 79%. This
contrast highlights the disproportionate influence
of LLM reasoning on planning tasks compared to
execution tasks. In other words, execution tasks
appear to be less influenced by the model’s rea-
soning power than planning tasks are, emphasizing
the need for task-specific optimizations. Thus, by
using powerful models for planning and more cost-
effective models for execution, we can optimize
both performance and resource efficiency.

7 Conclusion

We propose a novel method PLANTA to enhance
table understanding by leveraging the long-term
planning capabilities of LLMs. Our method fo-
cuses on two main goals: (1) enabling the ex-
ecution of a long-term plan with tightly inter-
connected steps; (2) minimizing the inclusion
of unnecessary details when solving short-term
goals, thereby improving efficiency compared
to CoT-based approaches. Experimental results
show that PLANTA achieves new state-of-the-art
performances on two benchmark datasets. Our
PLANTA implementation is publicly available at:
https://github.com/nhungnt7/PLANTA.
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Limitations

Although our experiments have proven the effec-
tiveness of our proposed method, there are still
some limitations that can be improved in future
work. While our approach encourages LLMs to
engage in reasoning and solve tasks in a general-
ist manner, LLMs could benefit significantly from
additional task-specific knowledge. For example,
providing more targeted few-shot examples and ex-
plicitly including common exceptions could help
the system handle rare or unpredictable scenarios
better, as discussed in Subsection 6.1. Furthermore,
future works can impose stricter constraints to en-
courage LLMs to use the "hands" of predefined
functions effectively. This would minimize errors
caused by LLMs attempting to rely solely on rea-
soning when predefined functions are better suited
for the task, referred to as lazy executors in Subsec-
tion 6.1.
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A Prompt

Table 5 provides details of the custom-designed
prompt for each component in the PLANTA system.

B Dataset description

WikiTableQuestions (WikiTQ): A question an-
swering dataset based on HTML tables, each with a
minimum of 6 rows and 5 columns. The questions
were not generated using predefined templates but
were hand-crafted by users, resulting in signifi-
cant linguistic diversity. These questions span vari-
ous domains and require operations such as table
lookup, aggregation, superlatives, arithmetic opera-
tions, joins, and unions.

TabFact: A table-based binary fact verification
dataset designed to determine whether a textual hy-
pothesis is supported or refuted based on evidence
provided in tables. The dataset presents a challeng-
ing task that requires both soft linguistic reasoning
and hard symbolic reasoning. TabFact spans a wide
range of operations, including aggregation, nega-
tion, superlatives, counting, comparative reasoning,
and ordinal analysis.
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Planning Router Search
You are a Planning expert. Your
goal is to generate a plan to ex-
clude a sequence of steps includ-
ing SQL search (more detailed
conditions in the requirements
are better), calculation, and com-
parison based on the given table
to get the answer to the question.
For each step in the plan, depen-
dencies on previous steps must
be explicitly defined. Table: {ta-
ble}. Question: {question}.

You are a task classification,
your task is to classify the re-
quirement type for the given task
and route it to the appropriate
expert. Please return the ex-
pert specialization based on the
following guidance: 1. return
’search’ if you need to search,
conditional count the table for
specific information. 2. return
’compare’ if you need to com-
pare two or more pieces of infor-
mation. 3. return ’calculation’
if you need to perform a calcu-
lation between numbers. Your
task: {short-term goal}.

You are a Search expert. You
have been tasked to reason and
generate an SQL query to extract
and conditional count specific in-
formation (rows) from the table.
We allow you to independently
determine how to resolve the as-
signed goal, such as utilizing
the Chain-of-Thought or ques-
tion decomposition approach, as
long as the goal is solved. You
can use the tool to execute an
SQL query generated based on
the question and given table and
return the result. You might
know the answer without run-
ning any code, but you should
still run the code to get the an-
swer. Given table: {table}. Your
task: {shot-term goal}

Comparision Calculation Assessment
You are a Comparison expert.
You must use the tools provided
to complete the assigned task.
We allow you to independently
determine how to resolve the as-
signed goal, such as utilizing
the Chain-of-Thought or ques-
tion decomposition approach, as
long as the goal is solved. You
can use one tool multiple times
and use many tools at one time
in any order. You might know
the answer without running any
code, but you should still run the
code to get the answer. Your
tools include: {list of predefined
functions}. Your task: {shot-
term goal}.

You are a Calculation expert.
You must use the tools provided
to complete the assigned task.
We allow you to independently
determine how to resolve the as-
signed goal, such as utilizing
the Chain-of-Thought or ques-
tion decomposition approach, as
long as the goal is solved. You
can use one tool multiple times
and use many tools at one time
in any order. You might know
the answer without running any
code, but you should still run the
code to get the answer. Your
tools include: {list of predefined
functions}. Your task: {shot-
term goal} .

You are an Assessment expert.
Your goal is to answer the ques-
tion if sufficient relevant infor-
mation is available or revise the
plan if the results from the Ex-
ecution experts fail to meet re-
quirements or if the initial plan
appears infeasible. Your original
plan was this: {plan}. You have
currently done the follow steps
with the following results at tem-
plate (step, result): {past_steps}

Table 5: Custom-designed prompts for each component in the PLANTA.
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Abstract

Recent work has demonstrated that neural lan-
guage models encode syntactic structures in
their internal representations, yet the deriva-
tions by which these structures are constructed
across layers remain poorly understood. In this
paper, we propose Derivational Probing to in-
vestigate how micro-syntactic structures (e.g.,
subject noun phrases) and macro-syntactic
structures (e.g., the relationship between the
root verbs and their direct dependents) are con-
structed as word embeddings propagate upward
across layers. Our experiments on BERT reveal
a clear bottom-up derivation: micro-syntactic
structures emerge in lower layers and are gradu-
ally integrated into a coherent macro-syntactic
structure in higher layers. Furthermore, a tar-
geted evaluation on subject-verb number agree-
ment shows that the timing of constructing
macro-syntactic structures is critical for down-
stream performance, suggesting an optimal tim-
ing for integrating global syntactic information.

� https://github.com/osekilab/
derivational-probing

1 Introduction

Neural language models have achieved remarkable
success across a wide range of natural language
processing tasks. However, significant uncertainty
remains regarding what these models truly learn
and how they represent linguistic knowledge. This
has spurred extensive research aimed at probing
the linguistic capabilities of neural language mod-
els (Zhao et al., 2024; Chang and Bergen, 2024).

A prominent line of inquiry is structural probing,
which directly analyzes word embeddings to un-
cover latent syntactic structures. For example, He-
witt and Manning (2019) demonstrated that the ge-
ometric organization of the word embedding space
in BERT (Devlin et al., 2019) encodes syntactic
distances defined over dependency parse trees, pro-
viding evidence that the model captures syntactic

information. Yet, such work typically focuses on
the static representations of the whole syntactic
structures rather than the dynamic derivations by
which these syntactic structures are built across
layers. Understanding not just the resulting repre-
sentations but also how they are built across layers
is essential for a more comprehensive understand-
ing and could also lead to better insights into how
these representations are used.

Meanwhile, Tenney et al. (2019) introduced the
expected layer metric and investigated how dif-
ferent layers in BERT encode different types of
linguistic information (e.g., part-of-speech tagging,
syntactic parsing, semantic role labeling, and coref-
erence resolution), revealing that the model en-
codes linguistic abstractions in a manner reflect-
ing a traditional NLP pipeline. However, their
approach primarily relied on coarse-grained task
accuracy measures, capturing only the overall ef-
fectiveness of each layer rather than examining the
detailed, layer-wise construction of specific syn-
tactic structures. Consequently, how the syntactic
structures are built across layers remains under-
explored.

In this paper, we fill this gap by proposing
Derivational Probing—a method that integrates
structural probing with the expected layer metric
to probe derivation processes of syntactic struc-
tures in neural language models (Figure 1). Our
proposed method allows us to investigate how mi-
cro-syntactic structures (e.g., subject and object
noun phrases, prepositional phrases) and macro-
syntactic structures (e.g., the relationship between
the root verbs and their direct dependents) are con-
structed across layers.

Applying Derivational Probing to BERT (Devlin
et al., 2019), our experiments reveal a clear bottom-
up derivation, in which micro-syntactic structures
emerge in lower layers and are gradually integrated
into a coherent macro-syntactic structure in higher
layers. Furthermore, our targeted analysis on a
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Figure 1: Derivational Probing investigates how syntactic structures are constructed across layers in neural language
models. We illustrate three hypotheses for syntactic derivation. Bottom-up: Micro-syntactic structures, such as
subject noun phrases or prepositional phrases, emerge in lower layers, and the macro-syntactic structure is formed in
higher layers. Top-down: The macro-syntactic structure is formed in lower layers, with micro-syntactic structures
refined in higher layers. Parallel: Micro- and macro-syntactic structures emerge in parallel.

subject-verb number agreement task shows that
even when the final syntactic structure is correct,
the specific layers at which the macro-syntactic
structure is constructed significantly affect down-
stream performance. This suggests the existence of
an optimal timing for integrating global syntactic
information.

Overall, our findings offer new insights
into the internal mechanisms by which neural
language models construct syntactic structures
and underscore the importance of examining
derivation processes across layers to improve the
interpretability of neural language models.

2 Related Work

Attention-based analyses (e.g., Clark et al., 2019;
Vig and Belinkov, 2019) have demonstrated
that certain transformer heads tend to align with
dependency relations, providing evidence that
Transformer language models capture linguistic
dependency relations in their attention weights.

In contrast, Hewitt and Manning (2019)
introduced a structural probe with a linear trans-
formation from hidden representations into a space
where Euclidean distances reflect dependency
tree distances. This approach revealed that full

syntactic trees are implicitly encoded in models
such as BERT. Building on this, later work refined
the approach by incorporating non-linear mappings
(e.g., White et al., 2021), enforcing constraints
such as orthogonality (Limisiewicz and Mareček,
2021), and using a controlled corpus to isolate the
effect of syntax (Maudslay and Cotterell, 2021).

Other studies have refined structural probing by
quantifying context-dependent syntactic signals in
deeper layers—for example, conditional probing
(Hewitt et al., 2021) and information gain metrics
(Kunz and Kuhlmann, 2022)—but these methods
focus on the performance of specific probing tasks
(e.g., POS-tagging) rather than where the syntactic
structures are constructed.

In contrast, our proposed method specifically
tracks how each subgraph in the syntactic tree de-
velops as information propagates through the net-
work layers. By analyzing the evolution of individ-
ual syntactic components—from micro-syntactic
structures to the assembly of the macro-syntactic
structure—we offer a more granular perspective
on the incremental construction of syntax, comple-
menting and extending previous layer-wise analy-
ses.
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3 Technical Preliminaries

In this section, we review foundational methods
from prior research: structural probing to assess the
presence and quality of syntactic representations
and the expected layer metric for quantifying how
linguistic information gradually builds up across
successive layers within language models.

3.1 Structural Probing

Hewitt and Manning (2019) introduced the struc-
tural probe as a method to evaluate whether con-
textual word representations encode syntactic in-
formation. Given a sentence s = w1 · · ·wt, each
token is represented by a d-dimentional contextual
embedding hi ∈ Rd (e.g., the output embedding
of a model like BERT). The goal of the structural
probe is to find a linear transformation that maps
these embeddings to a space where the Euclidean
distances approximate the true syntactic distances
between words.

Specifically, for any two words wi and wj in a
sentence, we define the transformed distance as:

dB(hi,hj) = ∥Bhi −Bhj∥2, (1)

where B ∈ Rd′×d is a learnable projection matrix.
The true syntactic distance, ∆ij , is typically de-
fined as the number of edges on the shortest path
between wi and wj in the dependency parse tree of
the sentence. The probe is trained by minimizing
an objective that penalizes the discrepancy between
the predicted distances and ∆ij :

L =
1

|s|2
|s|∑

i=1

|s|∑

j=i+1

|∆ij − dB(hi,hj)| . (2)

This formulation encourages the linear transfor-
mation B to capture the syntactic structure encoded
in the contextual representations, enabling the re-
covery of parse trees via Prim’s (1957) algorithm,
a greedy algorithm that constructs minimum span-
ning trees by iteratively adding the lowest-weight
edge connecting a new node to the growing tree.

3.2 Expected Layer

The expected layer metric introduced by Tenney
et al. (2019) was initially developed to identify the
layers within BERT responsible for solving various
linguistic tasks. Specifically, the metric was used
to capture at which layers broad linguistic abili-
ties (e.g., part-of-speech tagging, syntactic parsing,

semantic role labeling) emerge. Tenney et al. de-
fined scaler-mixed embeddings mℓ

i ∈ Rd as the
weighted average of embeddings from the bottom
layer up to layer ℓ:

mℓ
i = γ

ℓ∑

k=0

wk h
k
i , (3)

where w = softmax(a) (a ∈ Rℓ+1) is learnable
scalar mixing weights and γ is a learnable scaling
factor, following Peters et al. (2018).

By measuring performance at layer index ℓ,
denoted by S(ℓ), and tracking its improvements
across layers, Tenney et al. defined the expected
layer to reflect the layer at which the relevant lin-
guistic task information is predominantly captured:

E[ℓ] =
L∑

ℓ=1

S(ℓ)− S(ℓ− 1)
∑L

ℓ=1(S(ℓ)− S(ℓ− 1))
ℓ. (4)

This is the weighted average of layer indices, where
each layer’s weight corresponds to its relative con-
tribution to the overall performance improvement.
It was initially proposed to broadly characterize
the hierarchical progression of different linguistic
capabilities within transformer models, rather than
pinpointing the exact layers at which specific syn-
tactic structures are built.

4 Derivational Probing

Building upon these prior techniques, we propose
Derivational Probing, a novel method explicitly
designed to investigate the dynamic construction
of syntactic structures across the layers of neural
language models.

Our approach effectively combines expected
layer metric (Tenney et al., 2019) with the structural
probing (Hewitt and Manning, 2019), enabling a
detailed analysis of how syntactic information ac-
cumulates across model layers. Specifically, for
each layer ℓ, we use scalar-mixed embeddings as
defined in Eq. (3) and compute pairwise distances:

dBℓ
(mℓ

i ,m
ℓ
j) = ∥Bℓm

ℓ
i −Bℓm

ℓ
j∥2. (5)

We then train the transformation matrix Bk to min-
imize discrepancies with true dependency parse
distances, analogous to structural probing.

This integration allows us to calculate the ex-
pected layer for each syntactic subgraph (micro-
and macro-syntactic structures defined in detail
later) and perform a fine-grained, quantitative anal-
ysis of their construction across model layers. We

95



use the Unlabeled Undirected Attachment Score
(UUAS) for each layer ℓ as S(ℓ), defined as the
proportion of correctly predicted edges to the total
number of edges in the reference dependency parse,
without considering edge labels or direction.

To better understand the derivation strategy that
models employ when constructing a syntactic tree,
we introduce a distinction between macro-syntactic
structures (the root verb with its direct dependents)
and micro-syntactic structures (local components,
such as subordinate phrases like nsubj) (Figure 2).
This distinction is motivated by our interest in
whether models construct syntactic trees top-down,
bottom-up, or in a parallel fashion. To empirically
evaluate which of these hypotheses is most plau-
sible, we adopt the following methodological ap-
proach: For both micro-syntactic structures and
macro-syntactic structures, we (1) construct the
full parse tree using a minimum spanning tree algo-
rithm, (2) extract the relevant edges (as highlighted
in Figure 2), and (3) compute the UUAS by compar-
ing these edges to the reference parse. By tracking
UUAS improvements across layers, we calculate
the expected layer E[l] for each structure, revealing
the layers at which different syntactic subgraphs
are effectively constructed.

We next provide detailed descriptions of each
hypothesis.

Bottom-up derivation. A bottom-up derivation
first constructs micro-syntactic structures and sub-
sequently integrates these into macro-syntactic
structures, ultimately forming a complete depen-
dency tree. We refer to this as a “bottom-up deriva-
tion” because it resembles the construction order
of the arc-standard transition-based dependency
parser (Nivre, 2004). Arc-standard parsing utilizes
a stack-based transition system and constructs a de-
pendency tree in a bottom-up manner: dependents
must be fully processed and attached to their heads
before those heads themselves are incorporated
into macro-syntactic structures. Under this hy-
pothesis, models initially identify micro-syntactic
structures—such as the internal phrase structures
of subjects and objects—in lower layers, which
are then progressively combined into a coherent
macro-syntactic hierarchy at higher layers.

Top-down derivation. A top-down derivation, in
contrast, begins by establishing macro-syntactic
structures and subsequently refines these by in-
corporating detailed micro-syntactic dependencies.
We term this approach a “top-down derivation” be-

cause its construction order aligns closely with the
head-driven transition-based parser proposed by
Hayashi et al. (2012). Their algorithm explicitly
predicts dependent nodes from head nodes, progres-
sively building syntactic structures from head to de-
pendent, thus genuinely following a top-down, pre-
dictive parsing order. Under this hypothesis, mod-
els prioritize the recognition of macro-syntactic
structures before refining micro-syntactic struv-
tures.

Parallel derivation. Finally, an alternative hy-
pothesis is that models construct micro- and macro-
syntactic structures concurrently, with local depen-
dencies and the global structure forming at roughly
the same rate across layers. This hypothesis is less
clearly aligned with traditional dependency parsing
algorithms, as most classical approaches tend to
favor either bottom-up or top-down derivations.

Notes on the term “derivation”. Here, we ex-
plicitly use the term derivation (strategy) through-
out this paper rather than “parsing strategy” to
clearly distinguish two related but distinct con-
cepts. While “parsing strategy” generally refers
to methodological choices for incrementally con-
structing a parse tree (such as bottom-up or top-
down), our use of “derivation” specifically cap-
tures an atemporal process describing how syn-
tactic structures progressively emerge across the
internal layers of a language model given the full
sentence context, emphasizing layer-wise structural
development rather than sequential, left-to-right in-
cremental processing.

Figure 2: Macro-syntactic structure (Marco) and micro-
syntactic structures (nsubj and dobj).

5 Experimental Setup

5.1 Data
We utilize the Wikitext-103 dataset (Merity et al.,
2016) as our primary source of natural language,
parsing each sentence with spaCy’s dependency
parser (EN_CORE_WEB_LG) (Honnibal et al.,
2020). To focus on the language model’s ability to
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Structure Set Example Sentence

Marco, nsubj, dobj The concert caused a major stir.
Marco, nsubj, prep The match ended in a goalless draw.
Marco, nsubj, attr Her parents were music professors.
Marco, nsubj, prep, dobj The film received positive reviews from critics.

Table 1: Example sentences for each primary structure set described in §5.1

construct syntactic structures in a clear-cut setting,
we restrict our analysis to single-clause sentences
by excluding those with relative clauses or clausal
subjects. Additionally, we filter out sentences con-
taining dependency relations such as “dep” (un-
classified dependents) and punctuation marks other
than sentence-final punctuation to minimize noise.

Following the definitions introduced in the pre-
vious section (§4), we group sentences based on
dependency relations emanating from the root verb,
thereby distinguishing between the overall (macro-
syntactic; Marco) structure and subordinate (micro-
syntactic) structures. We retain only those groups
that represent more than 10% of the data, focus-
ing our analysis on the predominant structure sets.
This filtering results in four primary structure sets
(See Table 1 for examples): (1) Marco with micro
relations nsubj and dobj; (2) Marco with micro
relations nsubj and prep; (3) Marco with micro re-
lations nsubj and attr; and (4) Marco with micro
relations nsubj, prep, and dobj.

From the resulting dataset, we randomly sample
50,000 sentences, partitioning them into 40,000 for
training, 5,000 for validation, and 5,000 for testing.

5.2 Models

We employ two pre-trained language models:
BERT-base1 and BERT-large2 (cased) (Devlin et al.,
2019). BERT-base uses 12 layers, 12 heads, and a
768-dimensional hidden state, while BERT-large
uses 24 layers, 16 heads, and a 1024-dimensional
hidden state. These models provide a range of
capacities, allowing us to investigate differences
in how syntactic structures are constructed across
models.

We focus specifically on BERT because our
method is designed to examine the atemporal,
layer-wise derivation of syntactic structures given
entire sentences. In contrast, autoregressive lan-

1https://huggingface.co/google-bert/
bert-base-cased

2https://huggingface.co/google-bert/
bert-large-cased

Figure 3: Global UUAS by each layer for each model.
Error bars represent standard deviations across 5 random
seeds.

guage models such as GPT-2 process information
incrementally in a left-to-right manner, and the tem-
poral, token-wise derivation of syntactic structures
cannot be probed via our method (cf. Eisape et al.,
2022). Nevertheless, our method is still applicable
to the word embeddings of autoregressive language
models such as GPT-2, and we report GPT-2 results
in App. A.

For each model, we probe all layers to determine
the progression of syntactic information and com-
pute the expected layer at which specific structures
emerge. We conduct training with five different
random seeds and report the average performance
along with the standard deviation. Additional hy-
perparameters and training details are provided in
App. B.

6 Results

6.1 Overall UUAS Performance

As a sanity check to verify whether our models
exhibit overall trends similar to those reported
in previous studies, we conducted an experiment
measuring the test set UUAS for overall sentence
structures across layers for each model (Figure 3).
BERT-base and BERT-large display similar trends,
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Figure 4: Expected layer for each model across different structure sets. Error bars represent standard deviation
across 5 random seeds.

with the UUAS score saturating around the middle
layers. BERT-large shows slightly slower improve-
ment, likely reflecting its deeper architecture and
larger capacity. These trends mostly align with
previous findings (Hewitt and Manning, 2019) that
neural language models tend to exhibit peak UUAS
performance in their middle layers. However, un-
like previous studies, we do not observe a decrease
in average UUAS in later layers, which we attribute
to our method of computing word embeddings as a
weighted average from layer 0 to layer ℓ (Eq. (3)).

6.2 Expected Layer Across Structure Sets
Figure 4 summarizes the expected layers for each
syntactic structure within the four primary structure
sets (§5.1), for both BERT-base and BERT-large.

In both BERT-base and BERT-large, the macro-
syntactic structure consistently exhibits the high-
est expected layer across all sets, whereas micro-
syntactic structures such as nsubj, dobj, and
prep tend to appear in lower layers. This sug-
gests a bottom-up derivation process in which
micro-syntactic structures (e.g., subject or object
phrases) are constructed earlier, and these com-
ponents are gradually integrated into a coherent
macro-syntactic structure in later layers. This ob-
servation is consistent with prior work on BERT,
which shows that local information (e.g., POS tags)
is captured early, while more abstract global struc-
tures emerge later (cf. Tenney et al., 2019). No-

tably, this pattern holds for both BERT-base and
BERT-large, although the overall expected layers
are slightly higher in BERT-large—likely reflecting
its deeper architecture and larger capacity.

7 Detailed Analysis: Subject-Verb
Agreement Task

7.1 Experimental Setup
To investigate how the process and layers involved
in syntactic structure construction relate to model
performance, we conduct a detailed analysis on
subject-verb agreement using sentences with inter-
vening nouns (“attractors”), following the approach
of Marvin and Linzen (2018) with some modifica-
tion. We sampled 1,000 positive (grammatical) and
1,000 negative (ungrammatical) sentences. All of
the sampled sentences have a subject followed by
a prepositional phrase, a verb, and a direct object
noun phrase. They thus are categorized into Marco,
nsubj, dobj structure sets. In our modification
of their templates, each of Marco, nsubj, dobj is
required to contain more than one word.

a. The senators behind the brilliant architect
avoid spicy dishes.

b. *The senators behind the brilliant architect
avoids spicy dishes.

This ensures that we can extract meaningful sub-
graphs within each syntactic substructure.

98



Figure 5: Expected layers for syntactic structures in successful and failed subject-verb agreement cases. Error bars
show standard deviations across 5 random seeds.Bertbaseの内部状態可視化

Successful Case
Layer0 Layer1

Failure Case

Layer5

Figure 6: Derivation process visualizations for BERT-base on subject-verb agreement for a successful case (“The
authors beside the chef avoid spicy dishes.”) and a failure case (“The consultants behind the architects avoid spicy
dishes.”). Red highlights indicate the correct subject.

We first evaluate model performance on
this task by computing pseudo-whole-sentence
probabilities (Salazar et al., 2020). Specifically,
we calculate the probability of each token by
masking it one by one and then aggregate these
token-level probabilities to derive an overall
sentence probability. We expect the model to
assign higher pseudo-probabilities to grammatical
sentences compared to ungrammatical ones. We
then analyze how the syntactic construction
process differs between cases where the model
performs well and those where it fails.

Furthermore, to visualize the evolution of syntac-
tic structures across model layers, we employ Mul-
tidimensional Scaling (MDS). Specifically, we ap-
ply scikit-learn’s MDS implementation (Pedregosa
et al., 2011) with default parameters to word embed-

dings projected by our structural probe, allowing us
to illustrate clearly how syntactic representations
develop across different model layers.

7.2 Results

Overall, BERT-base correctly assigned higher
pseudo-whole-sentence probabilities to gram-
matical sentences in 984 out of 1,000 examples,
whereas BERT-large achieved correctness in 983
out of 1,000 cases. Despite their similar overall
accuracies, we observe distinct patterns between
BERT-base and BERT-large (Figure 5).

BERT-base. BERT-base frequently failed when
macro-syntactic structures were established prema-
turely, potentially restricting the incorporation of
essential micro-syntactic details. As illustrated in
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bertlargeの内部状態可視化

Layer0 Layer5

Failure Case

Layer12
Successful Case

Figure 7: MDS visualizations of syntactic structure evolution in BERT-large for subject-verb agreement for a
successful case (“The customers near the guard prefer quiet evenings.”) and a failure case (“The senators behind the
architects avoid spicy dishes.”). Red highlights indicate the correct subject.

Figure 6, successful cases show a sequential pattern
where BERT-base first constructs micro-syntactic
structures within the subject phrase in early layers,
subsequently aligning the subject (authors) with
the verb (avoid) around layer 5 after stabilizing
the internal subject dependencies. In contrast,
failure cases reveal premature alignment of macro-
syntactic structures, with the subject (consultants)
prematurely linked to the verb (avoid) before fully
establishing necessary micro-syntactic details.
This premature commitment might have negatively
impacted the overall syntactic representation,
disrupting correct subject-verb agreement.

BERT-large. BERT-large exhibited higher
expected layers for macro-syntactic structures in
failure cases, suggesting delayed integration of
macro-syntactic information. Figure 7 illustrates
representative successful and unsuccessful cases
for BERT-large. Successful predictions demon-
strate early alignment of the subject (customers;
highlighted in red) with the verb (prefer) around
layer 5, facilitating accurate subject-verb agree-
ment. Conversely, in unsuccessful cases, this align-
ment emerged considerably later (around layer 12),
highlighting delayed macro-syntactic integration.

These analyses suggest an optimal intermediate
range of layers for integrating macro-syntactic in-
formation. Forming macro-syntactic structures ei-
ther prematurely or excessively late can negatively
affect syntactic processing, highlighting the impor-

tance of appropriately timed integration for accu-
rate predictions. These visualizations underscore
how deviations from this optimal timing contribute
to subject-verb agreement errors.

8 Discussion and Conclusion

In this paper, we introduced Derivational Probing—
a method that integrates structural probing with
an expected layer metric to trace the construction
process of syntactic structures in neural language
models. Our experiments revealed that BERT mod-
els tend to build micro-syntactic dependencies first
and gradually assemble them into a coherent macro-
structure.

BERT’s bidirectional context supports a step-
wise, bottom-up construction—starting with the
formation of local, micro-syntactic structures and
culminating in a fully integrated macro representa-
tion. These findings offer valuable insights into the
internal mechanisms by which deep neural models
construct syntactic trees and highlight the impor-
tance of examining layer-wise structural formation
for improved model interpretability.

One promising direction for future research is to
incorporate multilingual probes, which will help
determine whether these syntactic structures gen-
eralize beyond English or are not mere artifacts
of the particular training corpus. Another exciting
direction would be to explore incremental parsing
strategies in autoregressive language models as an

100



alternative to non-incremental derivation processes
across layers (cf. Eisape et al., 2022), which could
yield further insights into the syntactic knowledge
of neural language models.

Limitations

First, our experiments were conducted on only two
neural language models (BERT-base and BERT-
large). It remains unclear whether similar results
would be obtained for larger models or other archi-
tectural variants. However, our method is applica-
ble to any open neural model, making it feasible to
extend this analysis to a broader range of models
in future research.

Second, this study focused solely on English
data. It is uncertain whether similar layer-wise
syntactic structure construction patterns would be
observed when applying our method to other lan-
guages. Nevertheless, our approach is language-
agnostic, making cross-linguistic analysis an im-
portant direction for future work.

Furthermore, semantic cues may influence the
results of syntactic probes. Our study does not fully
account for these potential semantic confounds. Fu-
ture research should consider methods to more rig-
orously isolate syntactic information, such as using
Jabberwocky sentences as demonstrated by Maud-
slay and Cotterell (2021).

Lastly, our method relies on dependency pars-
ing, primarily due to the use of the structural probe
from Hewitt and Manning (2019), which analyzes
distances between tokens in the embedding space.
This approach is inherently tied to formalisms like
dependency grammar that focus on relationships
between terminal symbols (tokens). As a result,
our method may not be directly applicable to other
grammatical theories or parsing approaches that in-
volve non-terminal symbols, such as constituency
grammar. This limitation arises because analyzing
distances between tokens does not capture the hi-
erarchical structures represented by non-terminals.
Future work could explore adapting our method or
developing new probing techniques that can handle
non-terminal representations to verify the general-
izability of our findings.

Ethical considerations

The training corpus is extracted from public web
pages and thus could be socially biased, despite its
popular use in the NLP community.
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A The Experimental Results for GPT-2
Models

Figures 8 and 9 show the experimental results
with the same experimental setup as §5, but con-
ducted with GPT-2 small3/medium4 (Radford et al.,
2019). In contrast to BERT, GPT-2 (both small and
medium) displays a more parallel derivation: the
expected layer values for both micro-syntactic and
macro-syntactic structures are closely aligned, sug-
gesting parallel derivation rather than a bottom-up
or top-down derivation.

B Hyperparameters

Hyperparameters for our experiments are shown
in Table 2. All models were trained and evaluated
on 4× NVIDIA RTX A5000 (24GB). The total
computational cost for all experiments in this paper
is about 120 GPU hours.

Optimizer Adam
Learning rate 1e-3
Number of epochs 40
Learning rate scheduler ReduceLROnPlateau
Batch size 32

Table 2: Hyperparameters for our experiments

C License of the Data and Tools

The licenses of the data and tools used in this paper
are summarized in Table 3. We confirmed that
all the data and the tools were used under their
respective license terms.

Data/tool License

spacy (Honnibal et al., 2020) MIT
transformers (Wolf et al., 2020) Apache 2.0
Wikitext-103 (Merity et al., 2016) CC-BY-SA 3.0

Table 3: License of the data and tools

3https://huggingface.co/openai-community/gpt2
4https://huggingface.co/openai-community/

gpt2-medium
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Figure 8: Expected layer for each GPT-2 model across different structure sets. Error bars represent standard
deviation across 5 random seeds.

Figure 9: Global UUAS by each layer for each GPT-2
model. Error bars represent standard deviations across
5 random seeds.
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Abstract

Reliance on spurious correlations (shortcuts)
has been shown to underlie many of the suc-
cesses of language models. Previous work fo-
cused on identifying the input elements that
impact prediction. We investigate how short-
cuts are actually processed within the model’s
decision-making mechanism. We use actor
names in movie reviews as controllable short-
cuts with known impact on the outcome. We
use mechanistic interpretability methods and
identify specific attention heads that focus on
shortcuts. These heads gear the model towards
a label before processing the complete input,
effectively making premature decisions that
bypass contextual analysis. Based on these
findings, we introduce Head-based Token Attri-
bution (HTA), which traces intermediate deci-
sions back to input tokens. We show that HTA
is effective in detecting shortcuts in LLMs and
enables targeted mitigation by selectively deac-
tivating shortcut-related attention heads.1

1 Introduction

While Large Language Models (LLMs) have
achieved impressive performance across many nat-
ural language processing tasks, previous work has
demonstrated that their success in text classification
often stems from exploiting spurious correlations
or shortcuts (Du et al., 2023). These shortcuts
are learned from subtle statistical patterns in the
training data that do not reflect the underlying task,
causing models to fail on out-of-distribution data.

Prior work on shortcuts has focused on identify-
ing shortcuts (Du et al., 2021), often via targeted
input modifications known as behavioral testing
(Alzantot et al., 2018; Ribeiro et al., 2020). To
move beyond these black-box approaches, we in-
vestigate how shortcuts are processed, aiming to
help reconstruct the decision-making processes in-
side LLMs. In particular, we examine the mech-

1Code available at https://github.com/watermeleon/
shortcut_mechanisms

Freeman but dozedI label:

B

Decomposed Att. Head

MLP Att. Head

×

Classify the review: "Excitedly I begin watching the movie
starring Morgan Freeman but I dozed off immediately" label:

Negative
(A)

Positive
(B)

Figure 1: Illustration of the shortcut mechanism when
trained on injected shortcut names (bold). Later layer
attention heads focus on shortcut tokens and change the
prediction based on information from early MLP layers.
After decomposing the attention head, we find how the
shortcut tokens are processed and apply these findings
to construct our feature attribution method (HTA).

anisms within LLMs responsible for processing
shortcuts. Figure 1 provides an overview of our
approach. We expect that shortcut behavior occurs
when the model primarily relies on isolated tokens
rather than contextual information from the entire
sentence. In contrast, proper classification should
involve all tokens, with the final decision emerging
only after the model processes the entire input.

We use mechanistic interpretability (Olah et al.,
2020; Elhage et al., 2021), which has demonstrated
impressive progress in locating target mechanisms
for various tasks. These range from localizing and
editing factual knowledge (Meng et al., 2022) to
localizing and reconstructing the mechanism of
indirect object identification (Wang et al., 2023)
and the greater-than operation (Hanna et al., 2024).

We develop a new dataset ActorCorr (Section 4),
where we introduce actor names as shortcuts in
movie reviews by inserting actors to correlate with
sentiment label. We confirm experimentally that
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the model uses these shortcuts for prediction. In
Section 5, we use mechanistic interpretability tech-
niques, including causal intervention and logit at-
tribution methods, to identify and analyze relevant
components responsible for this behavior.

Our experiments reveal that attention heads in
later layers focus on shortcuts and generate label-
specific information based on the shortcut tokens,
changing the output prediction. This demonstrates
that the model effectively makes intermediate la-
bel predictions before processing the complete in-
put. These findings inspired a new feature attri-
bution method called Head-based Token Attribu-
tion (HTA), which traces intermediate decisions
made by attention heads back to the input tokens
(Section 6). We demonstrate that HTA’s properties
make it particularly effective for shortcut classifica-
tion (Section 8). Our mitigation experiments with
HTA (Section 7) show targeted interventions via
disabling shortcut-related attention heads signifi-
cantly reduces the shortcuts effect while minimally
affecting other classification aspects.

2 Related work

Evaluating shortcuts Shortcut detection meth-
ods in NLP tend to use previously reported short-
cuts in existing datasets (Pezeshkpour et al., 2021;
Friedman et al., 2022), such as the appearance of
numerical ratings present in reviews (Ross et al.,
2021), or the presence of lexical overlap between
the hypothesis and the premise (Naik et al., 2018).
Other work injects their own shortcuts into datasets.
Bastings et al. (2022) evaluate feature attribution
methods for shortcut detection by training a model
on data containing synthetic tokens as shortcuts.
Similar to our work, Pezeshkpour et al. (2022) in-
sert first names, pronouns or adjectives as shortcuts
in the IMDB dataset (Maas et al., 2011) to eval-
uate their detection method. These studies only
address extreme cases of shortcuts (i.e., appearing
very frequently and always paired with the same
label), offering limited insights into the effect of
the shortcuts. We therefore create our own dataset
with less extreme shortcuts of which the impact is
known.

Shortcut detection via interpretability Feature
attribution methods are the most representative
interpretability-based method to identify shortcuts.
These methods explain output predictions by as-
signing importance scores to individual input to-
kens. However, different methods often provide

diverging explanations for the same input (Madsen
et al., 2022; Kamp et al., 2024). Moreover, for
shortcut detection, Bastings et al. (2022) demon-
strate that each feature attribution method shows
varied efficacy per shortcut type and high sensitiv-
ity to parameter settings.

Wang et al. (2022) offer a first step towards au-
tomatic shortcut detection via inner-interpretability
methods (Räuker et al., 2023). Their method com-
putes importance through attention weights and
token frequency in the final BERT layer. Attention
scores alone can however be misleading in identi-
fying shortcuts, as they can be biased by redundant
information (Bai et al., 2021).

Mechanistic Interpretability Mechanistic Inter-
pretability aims to reverse engineer the computa-
tion of neural networks into human understand-
able algorithms (Olah et al., 2020; Elhage et al.,
2021). To achieve this, a range of interpretability
techniques have been proposed to localize relevant
components or help understand the functionality
of specific components. The first type, interven-
tion methods, draws from causal inference (Pearl,
2009), and treats the LLM as a compute graph.
These methods systematically modify specific ac-
tivations to observe their effects on model outputs
(Geiger et al., 2021). Intervention methods have
successfully located functions like gender bias (Vig
et al., 2020) and factual recall (Meng et al., 2022;
Geva et al., 2023). Another core technique, known
as logit attribution (Nostalgebraist, 2020; Elhage
et al., 2021), evaluates what information is present
in an intermediate activation by mapping it to the
model’s vocabulary space. For example, Yu et al.
(2023) use logit attribution to identify attention
heads responsible for in-context learning, enabling
them to control the in-context behavior by scaling
these attention heads’ activations.

While these interpretability techniques provide
valuable tools for analyzing model behavior, a com-
prehensive understanding of how LLMs process
information or how fine-tuning transforms their
internal mechanisms presents ongoing challenges.

3 Background and Notation

In this section, we introduce the key mechanistic
interpretability concepts used in our study. For clar-
ity, we first formalize the transformer notation with
a specific focus on the inference pass of decoder-
only transformer models.
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3.1 The Transformer

Figure 2 provides a schematic representation of a
transformer. For the transformer (Vaswani et al.,
2017), the input text is first converted into a se-
quence of N tokens t1, ..., tN . Each token ti is
then transformed into an embedding xi using the
embedding matrix We, resulting in the embedding
sequence x0 ∈ RN×dresid , where 0 indicates the
model’s input layer.

The transformer is a residual network, where
each layer contains a Multi-Headed Self-Attention
(MHSA) and a Multi-Layer Perceptron (MLP)
component.2 The connection from the input em-
bedding to the output embedding to which these
components add their embedding, or activation, is
called the residual stream. The activation of the
MHSA is computed al = MHSA(xl), and fol-
lowing Elhage et al. (2021), can be decomposed
as the sum of each attention head’s contribution,
al,h, so that the final activation is reconstructed as
al =

∑
h a

l,h. Then MLP activation is computed
as ml = MLP (xl+al), resulting in the new resid-
ual embeddings: xl+1 = xl+ml+al. After the last
layer the final embeddings are projected to a vector
the size of the vocabulary, using the unembedding
matrix Wu to obtain the logits for each embedding.
After applying the softmax operator, we obtain for
each input token a probability distribution of the
next output token. For our classification task, we
only use the embedding xLT of the last token stream
T of the last layer L for predicting the class.

3.2 Mechanistic Interpretability

Following Wang et al. (2023), we formulate an
LLM as a computational graph M with nodes rep-
resenting individual components (e.g., MLPs or
attention heads), and edges representing their inter-
actions through activations. Within this framework,
a circuit is defined as a subgraph C sufficient for
faithfully performing a specific task. To investigate
circuits responsible for processing shortcuts, we
employ two key analysis techniques: logit attribu-
tion and path patching.

Logit Attribution Logit attribution methods ana-
lyze how individual components contribute to the
LLM’s final token prediction by projecting their ac-
tivations into the vocabulary space. This is possible

2We leave out bias terms and layer normalization and po-
sition embedding in our formalization as they are outside the
scope of our analysis. See Appendix A.1.

Tokens

Embed

+

+

MLP

Unembed

Logits

Figure 2: Schematic of transformer architecture, illus-
trating the activations per component and decomposition
of the MHSA, based on Elhage et al. (2021).

because the final output embedding is a linear com-
bination of all previous activations (Elhage et al.,
2021). Normally, Wu is used to obtain the logits
over the vocabulary for the final residual stream
vector, and after applying the softmax, it provides
us with the probability distribution over tokens. Di-
rect logit attribution (Nostalgebraist, 2020; Elhage
et al., 2021) applies Wu to analyze intermediate
activations from individual components, such as
attention heads al,h or MLP layers ml. Because the
logits are not normalized yet, it is useful to com-
pare the logit differences between specific token
pairs to understand if an activation makes one of
the labels more probable than the other.

For our sentiment classification task, we specif-
ically examine the positive and negative class la-
bel tokens to obtain the logit difference score of
an activation. Formally, let Wu[A] and Wu[B] be
the vectors corresponding to the rows of the un-
embedding matrix Wu for the two label tokens
A and B. For any activation z ∈ Rdresid (e.g.
z ∈ {xli,ml

i, a
l,h
i }), the logit difference LD is de-

fined as: LD(z) = z(Wu[A]−Wu[B]).

Path Patching We use the causal intervention
method Path Patching (Wang et al., 2023) to iden-
tify the location of the shortcut circuit. Based on
activation patching (Vig et al., 2020; Meng et al.,
2022), these methods systematically modify spe-
cific activations to observe their effect on the output
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prediction. Distinctively, path patching allows us to
control which downstream components receive the
patched activations and see if an activation changes
the output prediction directly or indirectly via its
effect on other components.

Overall path patching creates a corrupted ver-
sion, X̃ , of the input X , where the specific task
behavior does not hold, while differing minimally
to the original. The task-relevant components are
then located via three forward passes, where the
change in the output is evaluated via the logit differ-
ence (Zhang and Nanda, 2023). The first pass runs
over the clean input text X , producing output em-
bedding xLT . The second pass processes a corrupted
version X̃ and stores the resulting activations (e.g.,
ml

i or al,hi ). The third pass again uses the clean
input X , but patches in the stored activations to
observe their effect on x̃LT . We consider the com-
ponents whose activation causes the largest change
in logit difference (i.e. LD(xLT )− LD(x̃LT )) to be-
long to the circuit. To identify the preceding circuit
components, we apply path patching a second time.
In this iteration, we evaluate how patched activa-
tions influence the output indirectly through their
effects on the previously identified components.

4 Classification under Shortcuts

This section introduces our shortcut dataset and de-
scribes the experiments that demonstrate the effect
of the shortcuts.

4.1 The Actor Dataset: ActorCorr

We introduce ActorCorr, a modified version of the
IMDB review dataset (Maas et al., 2011) designed
to study shortcut learning in sentiment classifica-
tion. Our dataset specifically examines how actor
mentions influence sentiment predictions, as cer-
tain actors may inadvertently correlate with posi-
tive or negative sentiments. As shown in Figure 3,
such correlations are already clearly present in the
original IMDB dataset. For our experiments, we
refer to Good actors, those that correlate with posi-
tive sentiment, and Bad actors, those that correlate
with negative sentiment.3 We then inspect the ef-
fect of a shortcut on its anti-correlated class (e.g. a
Good actor in a negative review).

The dataset creation process involves identifying
actor names in reviews - through a named entity
recognition tagger - and using these to obtain a

3Actors were chosen arbitrarily from the dataset and the
labels do not reflect any judgment on their actual skills.
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Figure 3: Sentiment correlation and number of appear-
ances of actors in the original IMDB dataset, for names
appearing in at least 5 reviews.

templated version of the review where actor names
can be systematically replaced (see Appendix A.2).
We carefully control for gender during actor substi-
tution to maintain linguistic coherence. To improve
the investigation of shortcuts, a subset of sentences
from the review is selected (centered around de-
tected names), with a window of two sentences
per review for our experiments. Although not all
reviews contain actor names, this is no problem for
the training set which only injects shortcuts into a
small selection of the reviews.

The dataset is divided into three splits: training,
validation and test. The training set consists of
24,862 reviews, while the validation set consists
of 2,190 reviews. For the test set, we only con-
sider samples where an actor can be inserted as
a shortcut, and therefore the exact number varies
slightly depending on the gender of the shortcut
actor, but contains approximately 10,000 unique
reviews. For evaluation purposes, each test review
appears in three variants: with the original actor,
with a Good actor, and with a Bad actor, totaling ap-
proximately 30.000 test instances. Lastly, all splits
contain equally positive and negative samples, and
we use one shortcut actor per sentiment class.

4.2 Experimental Setup

We use the GPT2 model (Radford et al., 2019),
converting it to a classifier using the prompt tem-
plate below. We make two modifications to the
way we use the model output. Firstly, we only con-
sider the output embedding of the last token stream.
Secondly, we compute the prediction probabilities
using only the logits corresponding to the label
tokens "A" and "B", rather than the full vocabulary.

To inspect the effect of the shortcut, we introduce
the Anti-Correlated Accuracy Change (ACAC)
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Actor class

Sentiment Good Original Bad

Positive 96.78 84.09 54.30
Negative 33.43 69.91 87.41

(a) Test accuracy per category
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Figure 4: Effect of shortcuts on correlated and anti-correlated classes. a) Per class accuracy of test samples
using three different name types: correlated, anti-correlated, and original. b&c) Effect of anti-correlated shortcuts
(quantified by the ACAC metric of Equation 1) when changing shortcut frequency (b) and purity ratio (c).

"Classify the sentiment of the movie review:
Review: """{review}"""

LABEL OPTIONS: A: negative B: positive
LABEL:"

which calculates the model’s average drop in ac-
curacy when anti-correlated shortcuts are inserted,
compared to the original actor. The ACAC is com-
puted using the accuracy per subset as:

ACAC =
1

2

∑

c∈Pos,Neg

[Acc(Xc
og)−Acc(Xc

ac)] (1)

Where Xc
j is the subset of the test data which has

class c and actor name type j ∈ {og, ac}, which
can be the original name (og), or the anti-correlated
shortcut name (ac). And Acc(Xc

j ) is the accuracy
of this subset data.

4.3 Results

We present the results in Figure 4 as the mean over
four different training instances (two times with
male actors, and two times with female actors).

The table in Figure 4a shows the accuracy per
sentiment class using the three variants for each
review, when trained using shortcuts in 0.3% of
the training set. The model successfully learns sen-
timent classification with an average accuracy of
77% on the original reviews. The shortcuts signifi-
cantly reduce this, causing an ACAC of 33%.4

In Figure 4b, we vary the shortcut percentage
in the training data. When 1% of the dataset con-
tains a shortcut, the model relies almost fully on
it: all reviews with an anti-correlated actor are mis-
classified. Moreover, a shortcut frequency of 0.1%
already has a significant impact.

4The ACAC of the table in Figure 4a is computed as
1
2
[(84.09− 54.30) + (69.91− 33.43)] = 33.14%.

Shortcuts will not always be absolute. We thus
evaluate the impact of the purity of the shortcut.
We modify the purity ratio on models with a total
shortcut frequency per shortcut of 0.1%. A purity
ratio of 0.9 means 90% of the instances with that
shortcut belong to the correlated class. Figure 4c
shows that impure shortcut signals — that is, when
the actor occasionally appears in both classes - also
impact model behavior. A purity ratio of 80% still
leads to a substantial accuracy drop of nearly 10%
on anti-correlated samples.

Unless stated otherwise, we use a shortcut fre-
quency of 0.03% (i.e. 72 reviews), with a purity
ratio of 1.0 in the remainder of this paper.

5 How shortcuts are processed

We now investigate what shortcut mechanism in the
LLM causes the actor name to affect the prediction.

5.1 Experimental Setup

Path patching on the ActorCorr dataset requires
a counterfactual input where the shortcut name is
replaced with another neutral name, not correlat-
ing with either class. The reference sentence X
and counterfactual sentence X̃ should contain the
same number of tokens for efficient patching, there-
fore, we cannot simply use the original name for
our counterfactual. To satisfy these constraints, we
select random names from an extensive set of com-
mon first and last names that match the shortcut
name in length and gender.

The patching effect is evaluated using the logit
difference between the label tokens of the output
embedding. Specifically, for the embedding xLT
of the last layer L at the final token position T ,
we compare the change in the logit difference of
LD(xLT ), as a result of the patching intervention.

We evaluate the effect of the Bad actor short-
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Direct Effect on 
Label Heads' Values

Label Heads
Direct Effect on Label Prediction

(a) (b)

Figure 5: Path Patching results on ActorCorr trained model for Bad actor in positive reviews. (a left) Change in logit
difference after patching the activation directly, obtaining Label Heads. (a right) Change in logit difference after
patching via Label Heads. (b) Evaluation of Label Head 11.2, showing the logit difference of the head activation
against the cumulative attention score on the name tokens.

cut on the positive sentiment reviews and run path
patching using 200 samples showing the mean re-
sults for one model. Appendix B.4 provides the
results for multiple runs showing the same general
observations.

5.2 Patching Results

Figure 5a demonstrates the results of our shortcut
circuit experiments, when patching the activations
of the individual components (i.e. attention heads
and MLPs). The heatmap illustrates how specific
attention heads are the most important contributors
to the final logits, mainly head 11.2 (i.e. layer 11,
head 2), and to a lesser degree 10.10 and 10.6.
Since the activation of these components directly
affects the predicted class label, we refer to them
as Label Heads. Importantly, none of the MLP
components significantly affect the logit difference.

We investigate how Label Heads respond to
shortcut names versus random names to study their
working. Figure 5b shows that Label Head 11.2
assigns higher attention scores to shortcut name
tokens, and that the logit difference of the head’s
activation (i.e. LD(a11,2T )) is also greater for short-
cuts compared to random names.

Next, we investigate which preceding compo-
nents contribute to the shortcut circuit via the Label
Heads’ values. Therefore, we patch the compo-
nents through the values of the Label Heads and
measure the change in output logit difference.5 Fig-
ure 5a (right) reveals that mainly MLP layers are
responsible. The first layer especially seems impor-

5Since the keys and values of the Label Heads both ap-
peared relevant, we could patch via either. Appendix B.3
shows that patching via the keys obtains similar components.

tant, but many of the later MLP layers are doing
something similar.

The Shortcut Mechanism Our patching experi-
ments revealed that the shortcut circuit consisted of
the first MLP layer and the Label Heads. This con-
nects to previous work, which demonstrated how
attention heads are mainly responsible for moving
information between token streams (Elhage et al.,
2021), while MLP layers function as dictionaries
for knowledge retrieval (Geva et al., 2021; Meng
et al., 2022). Recent work has also found that
early-layer MLPs can enrich entity, e.g. by finding
related semantic attributes (Yu et al., 2024, 2023).
Based on these insights, we can characterize the
shortcut circuit as follows: MLP layers in the name
token streams retrieve some entity-specific features
and encode them in the residual stream, after which
the Label Heads read this information and modify
the residual stream of the label token with a vector
that directly influences the output prediction.

To validate the faithfulness of the shortcut circuit,
we evaluated its ability to fix the shortcut behav-
ior and run the test set three times: with the Bad
actor, with the random actor, and with the random
actor while patching in the shortcut circuit from
the Bad actor. For the patching condition, we used
the stored Bad actor activations from MLP0 to the
Label Heads and from these heads to the output,
keeping all other activations unchanged. Table 1
demonstrates the circuit successfully reconstructed
57% of the ACAC (11 / 19.5) for the anti-correlated
class and 69% (11.4 / 16.6) for the correlated class.
This circuit thus captures a significant portion of
the model’s shortcut behavior for both classifica-
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tion scenarios.

Random Bad Randompatch

Positive 83.1 63.5 (-19.5) 72.1 (-11.0)
Negative 72.2 88.8 (+16.6) 83.6 (+11.4)

Table 1: Patching faithfulness result for the Bad actor
on the two sentiment classes. Within brackets, accuracy
changes with respect to random.

6 Classification via Feature Attribution

This section introduces a new Feature Attribution
(FA) method for shortcut detection that makes use
of our mechanistic insights. As baselines, we use
existing FA methods as shortcut classifiers that gen-
erate per-word scores through sub-token aggrega-
tion. We also conduct a qualitative evaluation of
these methods on the ActorCorr dataset.

6.1 Feature Attribution Methods

Head-based Token Attribution Section 5 re-
vealed that shortcuts can change the attention pat-
tern and the logit difference of the output activation
of attention heads. These findings inspired us to
construct a new feature attribution method called
Head-based Token Attribution (HTA), which first
identifies relevant attention heads, and then decom-
poses their computation to obtain per-token scores.

For the label token stream (indexed T ), for each
layer l and head h, we compute the logit differ-
ence produced by that head’s output activation al,hT ,
which we denote as LD(al,hT ) (see Section 3.2).
Heads exceeding an absolute logit difference with
a threshold τ are selected for the final computation,
whereH contains these head indices (l,h).6

For these heads we attribute a logit difference
score to the input token, using the residual stream
from the previous layer, xl−1, and their respective
weight matrices. From these values we compute
Al,h

T,i which represents the attention pattern over
the input tokens for destination token T , while the
VO matrix (W l,h

V O) tells us how the embeddings are
transformed by this head during attention.

HTA thus decomposes the head’s computation.
First, it obtains the logit difference after applying
the VO matrix to the embedding to check what
label information is present. Then it multiplies it
by the attention score, to gather how much of it

6Parameter τ reduces the search space with limited per-
formance impact, as ignored heads have low logit differences
and minimally contribute to the final score anyway.

would be moved by the attention head. The final
HTA score per input token is the result of summing
the results for the earlier found top headsH.

HTA(x0i ) =
∑

(l,h)∈H
Al,h

T,i · LD(xl−1
i W l,h

V O) (2)

Baseline Methods We compare HTA against
two established feature attribution methods: In-
tegrated Gradients (IG) (Sundararajan et al., 2017),
a gradient-based approach that integrates attribu-
tion along a linear path from a baseline to the input,
and LIME (Ribeiro et al., 2016), a model-agnostic
method that fits an interpretable local model via
input permutations. See Appendix A.3 for details.

6.2 Experimental Setup

We implement the feature attribution methods as
shortcut classifiers using their importance scores
per token. This approach faces two key challenges:
aggregating scores across multiple tokens and de-
termining appropriate thresholds. Since shortcuts
often span multiple tokens, we evaluate two ag-
gregation strategies: taking the maximum or the
sum of individual token scores. Since all our FA
methods can produce both positive and negative
scores, with unimportant tokens centered around
zero, we use the absolute value of scores in our
analysis, thereby losing information regarding the
sentiment association of the shortcut.

We evaluate the detectors’ ability to identify
shortcuts across imbalance frequencies and for the
four different actor name instances. We again fo-
cus on the effect of the Bad actor on the positive
reviews. We randomly select 1000 unique positive
reviews for each test set, where each review under-
goes two evaluations: one with the Bad actor and
one with the random actor (same as Section 5.1).
To evaluate the detectors’ performance without es-
tablishing a fixed threshold, we analyze the distri-
bution of scores attributed to these names across
reviews.

Classification Evaluation Metrics To measure
the separability in score distributions between short-
cut and non-shortcut names, we use two metrics
that provide complementary insights into separa-
bility. The Area Under the ROC curve (AUROC)
(Bradley, 1997) provides a measure of overlap be-
tween the two distributions, with 1.0 indicating per-
fect separability. Since practical applications may
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Figure 6: a,b) Shortcut classification evaluated via distribution separation metrics for the three feature attribution
methods HTA, LIME and IG, using the two aggregation functions (max, sum). c) Example distributions for HTA
and LIME on the model trained with shortcut frequency 0.003.

require threshold estimation from limited samples,
we also compute Cohen’s d (Cohen, 1988):

Cohen’s d =
µ1 − µ2

σpool
(3)

Here σpool is the pooled standard deviation between
the two distributions, and is formally defined as
σpool =

√
(σ2

1 + σ2
2)/2. Intuitively, this metric

quantifies the distance between distributions, pro-
viding insight into threshold robustness. Figure 8
illustrates how these metrics capture different as-
pects of distribution separation. Appendix A.3 il-
lustrates the difference between these two metrics.

6.3 Shortcut Classification results

Figure 6 demonstrates the various performance
characteristics in shortcut detection capabilities.
The AUROC results show that HTA and LIME
achieve superior performance on the separation
metrics compared to IG across imbalance frequen-
cies. Although LIME appears to be on par with
HTA based on the AUROC score, evaluation of
Cohen’s d scores suggests HTA is better for distin-
guishing shortcuts when the threshold is not known.
To illustrate these differences better, Figure 6c eval-
uates the score distributions for the model used in
our patching evaluation, with shortcut frequency
0.3% and max-aggregation. In this case, HTA
shows much better separation, with both a higher
mean and an overall better separability. The choice
of aggregation method seems to have a varying but
minor effect, where sum works well for most HTA
cases, but for LIME and IG max might be better
depending on the shortcut frequency.

Computationally, HTA is much more efficient
than the other two methods, requiring only one for-
ward pass and no gradients, compared to 3000 per-

turbed forward passes of LIME and the compute-
intensive path-integrated gradient technique of IG.

7 Shortcut Mitigation

HTA can thus identify shortcuts and find how they
are processed. This offers a potential mitigation
strategy: Since attention headsH producing high
logit-differences focus mostly on name tokens, se-
lective head ablation may be an effective remedy.

Actor class

Class Good Original Bad

Pos 89.4 (-8.3) 82.2 (-0.3) 81.4 (+18.5)
Neg 61.8 (+30.2) 73.1 (+0.6) 74.8 (-13.9)

Table 2: Test accuracy after Label Heads ablation.
Brackets show difference from non-ablated model.

Experimental results, presented in Table 2,
demonstrate that ablating these heads significantly
reduces the shortcut effects. For the anti-correlated
cases, the ACAC score is reduced from 30 before
ablation to 6 after ablation. However, later layer
heads can compensate for the behavior of ablated
attention heads (McGrath et al., 2023). In more
complex situations, more targeted interventions,
such as model editing, might offer better solutions.

8 Qualitative Analysis

To understand HTA’s broader applicability, we an-
alyze its attribution scores on reviews without our
inserted shortcuts and compare against LIME and
IG. Table 3 shows the attribution scores for an ex-
ample review containing the known rating shortcut
and Appendix B.2 contains the full analysis and re-
sults. Our analysis reveals three key characteristics
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HTA

LIME

IG

Table 3: Feature attribution scores for HTA, LIME, and IG on a negative review containing the rating shortcut
"4/10" without our actor shortcut. The coloring is based on scores normalized per attribution type.

of HTA. Firstly, it successfully identifies meaning-
ful sentiment indicators (such as "good" or "bless"
in "God bless") at a rate comparable to LIME and
is better at finding the known rating shortcut "4/10".
Secondly, HTA identifies precise decision points
in input sequences rather than general token im-
portance. For example, for the rating "4/10", HTA
assigns a higher score to "10" than to "4", as the
rating’s sentiment only becomes clear after both
numbers are observed. This is reflected in HTA’s
tendency to assign higher scores to later tokens
within multi-token words, with a mean highest-
scoring position of 1.69 versus 1.60 and 1.51 for
LIME and IG. Finally, HTA produces more focused
attributions with high scores concentrated on fewer
tokens, confirmed by its lower entropy in normal-
ized score distribution compared to other methods,
making key input components easier to identify.

9 Conclusion

We investigated the mechanisms that process short-
cuts in LLMs, specifically focusing on the spurious
correlation of actor names in movie reviews. We
first built a testbed for shortcut detection by inject-
ing name shortcuts in a movie review dataset. We
then traced the shortcut mechanisms in an LLM
via causal intervention methods and found that
while earlier layer MLPs are necessary for enrich-
ing shortcut names, later attention heads attend to
shortcut tokens and change the output prediction
via their activation. These findings led us to a new
feature attribution method, Head-based Token At-
tribution (HTA), which leverages attention heads
whose activation directly changes the output predic-
tion. Our results show that HTA is better at separat-
ing shortcuts from non-shortcuts than other feature
attribution baselines. Our findings using HTA con-
firm that the model begins generating predictions
at intermediate input stages, effectively reaching

conclusions before processing the full context.

Limitations

Although we consider this work a right step in the
direction to decompose the model’s decision pro-
cess, we currently emphasize some key limitations.

Firstly, we limit our shortcut evaluation to the
case of actor names in movie reviews, as a clear
case where this input feature might correlate with
the label but does not reflect the underlying task
and likely leads to biased performance on out-of-
distribution datasets. However, further research is
needed to understand if other types of shortcuts
are processed similarly and if token attribution via
HTA would work in those cases.

Secondly, we limit our experiments to Trans-
former decoder models. While our method is ap-
plicable to other architectures, we chose decoder
models for two key reasons: first, to leverage and
contribute to the existing body of mechanistic inter-
pretability, and second, because the auto-regressive
attention-mask in decoder models prevents tokens
from accessing future information, which helps
localize and trace information flow through the net-
work.

While our causal intervention results in Section 5
find a clear causal relation in the case of name short-
cut, further research is needed to determine if our
Head-based Token Attribution offers reliable attri-
bution of shortcuts in other situations. Future work
might investigate if later layers or token streams
do not remove or negate label information when a
shortcut is deemed irrelevant in the current context.

Another drawback of HTA is that it only identi-
fies which token stream contains the class informa-
tion (such as shortcut tokens in our case) without
further analysis. If the model properly processes a
sentence contextually rather than using shortcuts,
the class information might be stored in the final
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token stream (e.g., a period "."). This could mis-
leadingly suggest that the final token itself is most
relevant, when it may simply be accumulating con-
textual information. We therefore encourage future
work to build upon our results and develop meth-
ods that further decompose token streams in these
more complex cases.

Ethics Statement

Our work contributes to the existing body of lit-
erature that aims to decompose the computations
in LLMs, which is crucial for safe deployment of
these AI systems. Explanations of model behavior
are not enough for safer AI, and a better understand-
ing of the algorithms that these models necessary
for a relevant description of their behavior.
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Alexis Ross, Ana Marasović, and Matthew Peters. 2021.
Explaining NLP models via minimal contrastive edit-
ing (MiCE). In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
3840–3852, Online. Association for Computational
Linguistics.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks. In Interna-
tional conference on machine learning, pages 3319–
3328. PMLR.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov,
Sharon Qian, Daniel Nevo, Yaron Singer, and Stuart
Shieber. 2020. Investigating gender bias in language
models using causal mediation analysis. Advances
in neural information processing systems, 33:12388–
12401.

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy,
Buck Shlegeris, and Jacob Steinhardt. 2023. Inter-
pretability in the wild: a circuit for indirect object
identification in gpt-2 small. In The Eleventh Inter-
national Conference on Learning Representations.

Tianlu Wang, Rohit Sridhar, Diyi Yang, and Xuezhi
Wang. 2022. Identifying and mitigating spurious
correlations for improving robustness in nlp models.
In Findings of the Association for Computational
Linguistics: NAACL 2022, pages 1719–1729.

Lei Yu, Meng Cao, Jackie Chi Kit Cheung, and Yue
Dong. 2024. Mechanistic understanding and miti-
gation of language model non-factual hallucinations.
In Findings of the Association for Computational
Linguistics: EMNLP 2024, pages 7943–7956.

Qinan Yu, Jack Merullo, and Ellie Pavlick. 2023. Char-
acterizing mechanisms for factual recall in language
models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 9924–9959.

Fred Zhang and Neel Nanda. 2023. Towards best prac-
tices of activation patching in language models: Met-
rics and methods. In The Twelfth International Con-
ference on Learning Representations.

115

https://aclanthology.org/C18-1198
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://doi.org/10.18653/v1/2022.findings-acl.153
https://doi.org/10.18653/v1/2022.findings-acl.153
https://doi.org/10.18653/v1/2021.naacl-main.75
https://doi.org/10.18653/v1/2021.naacl-main.75
https://doi.org/10.18653/v1/2021.findings-acl.336
https://doi.org/10.18653/v1/2021.findings-acl.336


A Appendix - Formalization

A.1 Transformer Formalization
This section provides a more detailed overview
of the transformer, for convenience we provide
a new schematic image of a transformer in Fig-
ure 7. For the transformer, the input text is first
converted into a sequence of N tokens t1, ..., tN .
Each token ti is then transformed into an embed-
ding xi of size dresid using the embedding matrix
We ∈ R|V |×dresid , where |V | is the size of the vo-
cabulary. Leading to the sequence of embeddings,
X0 ∈ RN×d, where 0 refers to the 0th layer or
input layer.

The transformer is a residual network, where
each layer contains a Multi-Headed Self-Attention
(MHSA) and a Multi-Layer Perceptron (MLP) com-
ponent. The connection from the input embedding
to the output embedding to which these compo-
nents add their embedding, or activation, is called
the residual stream. Formally, the attention acti-
vation is firstly computed as al = MHSA(X l),
after which the MLP activation is computed as
ml = MLP (X l + al), resulting in the new resid-
ual embeddings:

X l+1 = X l +ml + al (4)

After the last layer the final embeddings are pro-
jected to a vector of size |V |, using the unembed
matrix Wu ∈ Rdresid×|V | to obtain the logits for
each embedding. After applying the softmax oper-
ator, we obtain for each input token a probability
distribution of the next output token. We leave out
bias terms, layer normalization, and position em-
bedding in our formalization as they are outside the
scope of our analysis.

Attention Heads Following Elhage et al. (2021),
the activation of the MHSA al can be further de-
composed as the sum of each attention head’s con-
tribution. Each attention head contains the weight
matrices WK ,WQ,WV ∈ Rdresid×dk , to compute
the key, query, and value vectors. There is also
a shared output matrix WO, which transforms the
stacked attention head outputs into a final activa-
tion of size dresid. Following Elhage et al. (2021),
the output matrix can be decomposed by selecting
the columns that would match the specific atten-
tion head, resulting in W l,h

O ∈ Rdk×dresid . Ad-
ditionally, the output and value matrices can be
reduced to a single matrix W l,h

V O = W l,h
V W l,h

O , so
that W l,h

V O ∈ Rdresid×dresid .

Tokens

Embed

+

+

MLP

Unembed

Logits

Figure 7: Transformer Schematic. Option to use, so that
Background of transformer is put in Appendix. Similar
to Elhage et al. (2021).

The keys and queries are used to compute the
attention score from the source token to each des-
tination token, Al,h

s,d, so that Al,h ∈ RN×N , but for
the decoder a lower triangle mask is applied so that
each token cannot attend to tokens after it.

al,h = (Al,h ·X lW l,h
v )W l,h

o (5)

al,h = Al,h · (X lW l,h
V O) (6)

And the final activation of the MHSA layer
is computed as al =

∑
h a

l,h. Lastly,
the attention pattern is computed as Al,h =

softmax
(
Ql,h(Kl,h)T√

dk

)
, where Ql,h = X lW l,h

Q

and K l,h = X lW l,h
K

A.2 ActorCorr dataset generation
We developed ActorCorr as a controlled testbed for
investigating shortcut learning in sentiment classi-
fication, based on the IMDB review dataset (Maas
et al., 2011). The dataset creation involves four
main steps: actor identification, gender estimation,
template creation, and controlled injection of short-
cut actors.

Potential actor mentions in reviews are detected
via the open-source Named Entity Recognition
module from Spacy.7 The identification process

7https://spacy.io/models/en#en_core_web_trf
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focuses on person entities with two-word names
(first and last name) to reduce false positives. An
overview of the names we used can be found in
Table 4. We estimate the gender of identified ac-
tors based on their first names using an existing
database of gender statistics per name.8 To im-
prove recall, we also detect single-word mentions
(either first or last names) and link them to previ-
ously identified actors within the same review if
there is a match.

Original:
Although the movie starred Morgan Freeman it was

disappointing. Freeman was good though.

Templated:
Although the movie starred {actor_0_full}, it was

disappointing. {actor_0_last} was good though

Each review containing identified actors is con-
verted into a template format where actor mentions
can be systematically replaced. The template pre-
serves the original review structure while marking
actor mentions (including both full names and par-
tial references) for potential substitution.

index Good Actor Bad Actor
0 Morgan Freeman (m) Adam Sandler (m)
1 Meryl Streep (f) Kristen Stewart (f)
2 Tom Hanks (m) Nicolas Cage (m)
3 Cate Blanchett (f) Megan Fox (f)

Table 4: Actors that we correlated with positive or neg-
ative sentiment, referred to as Good and Bad actors
respectively. Gender is indicated by (m) for male and
(f) for female.

Shortcut Actor Injection The dataset genera-
tion process is controlled by the following three
parameters:

1. Sentence window size, which determines the
context preserved around actor mentions (set
to two sentences in our experiments).

2. Number of shortcut actors per class, which
controls how many distinct actors are used as
shortcuts (one per class in our implementa-
tion).

3. Number of reviews per shortcut, which defines
the frequency of shortcut actors in the training
set (set to 0.01, which are 24 reviews).

8https://pypi.org/project/gender-guesser/

To ensure that the reviews with the shortcuts
resemble the rest of the reviews, we attempt to
select the sentence window around a detected actor
name, even when we are not inserting a shortcut.
When no actor name is selected in a review, we
select the window at random.

Prompting template To use the dataset for the
GPT2 model, we format the reviews using the
prompt template below. Although we also fine-tune
the model, we add the multiple choice labels to the
prompt to better leverage the pretrained capabilities
and for clarity.

"Classify the sentiment of the movie review:
Review: """{review}"""

LABEL OPTIONS: A: negative B: positive
LABEL:"

A.3 Feature Attribution Method

For our LIME implementation we follow Ribeiro
et al. (2016). The kernel function that measures
the proximity between the original instance and
its perturbations uses an exponential kernel with
a kernel width of 25 and cosine distance as the
distance measure. We take 1000 perturbations per
review, which is relatively extensive given that the
review consists of only two sentences.

Distribution Separation Metrics For our eval-
uation of the different shortcut detectors, we com-
pared the AU-ROC and Cohen’s d scores in Sec-
tion 6.2. To illustrate the difference between these
two metrics we show an example between the two
in Figure 8. As shown in the figure, although the
AU-ROC score might be very high between two
distributions, the gap between them might be very
small, making the final shortcut detection accuracy
very sensitive to the right threshold.

B Appendix - Additional Results

B.1 Accuracy on ActorCorr per trained
model

Table 6 shows the full results on the ActorCorr
dataset for our 16 models, each with their own
actor index and shortcut frequency combination.

B.2 Qualitative Analysis

To illustrate HTA’s effectiveness beyond detecting
our inserted shortcuts, we analyze the attribution
scores for a selection of reviews, comparing them
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AU-ROC ( ): 0.921 
Cohen's d ( ): 2.00

AU-ROC ( ): 0.998 
Cohen's d ( ): 4.01

AU-ROC ( ): 1.000 
Cohen's d ( ): 8.03

Distribution Separation Metrics

Figure 8: Distribution separation metrics for shortcut
detectors. Arrows indicate relative high and low values

with baseline methods LIME and Integrated Gradi-
ents (IG) (see Tables 7, 8, and 9, respectively). We
first present key observations from these samples,
followed by a systematic analysis of test reviews
without inserted shortcuts.

The examples show that HTA identifies both
meaningful sentiment indicators (such as "good"
and "bless" in "God bless") and known shortcuts
like "4/10" (which are hardly important according
to LIME and IG). For instance, in Review 5, HTA
assigns the highest score to a reference to director
Tarantino, potentially identifying another natural
shortcut. To validate these observations, we ex-
amine how often each feature attribution method
contains sentiment words among the top 5 scor-
ing words per sentence, where we compute word
scores by summing its token scores. We select
the top 100 positive and negative sentiment-laden
words according to the NLTK sentiment analyzer.9

Table 5 shows that HTA matches LIME’s accuracy
in retrieving these sentiment words.

HTA differs from other feature attribution meth-
ods by identifying points in the input sequence
where the model provides an intermediate decision,
rather than providing general token importance.
This behavior is visible from how it assigns the
scores to the reviews. For instance, in Review 3
the rating shortcut "4/10" is detected by HTA by
assigning a high score to the token "10", since the
rating’s effect only becomes clear after both num-
bers are observed. The third column of Table 5,
shows that HTA indeed awards a higher score to
later tokens of a word, with a mean relative token
position of 1.69, compared to the mean relative
token position of 1.60 and 1.51 for LIME and IG.

From the samples we also notice that HTA as-
signs a high score to far fewer tokens, giving a
low score to most. We validate this observation by
analyzing the average entropy of the normalized

9https://www.nltk.org/_modules/nltk/sentiment/
vader.html

Method Sentiment
Words

MTW
top idx

Entropy

HTA 29 1.692 3.467
LIME 29 1.600 4.509
IG 16 1.514 5.260

Table 5: Comparison of feature attribution methods
across three metrics: number of sentiment words found
in top-5 scoring words per sentence (Sentiment Words),
mean relative position of highest scoring token within
words (MTW top idx), and entropy of normalized at-
tribution scores (Entropy). Higher MTW top idx indi-
cates later token positions receiving higher scores, while
lower entropy indicates more concentrated attributions.

score distribution across the dataset. A high en-
tropy distribution indicates similar scores across to-
kens, while low entropy suggests more pronounced
peaks. Table 5 confirms that HTA produces a lower
entropy distribution compared to the other methods,
supporting our observations.

Thus our analysis demonstrates three key charac-
teristics of HTA beyond shortcut detection. Firstly,
it successfully identifies semantically relevant in-
put elements. Secondly, it provides insights into at
what point in the token sequence an intermediate
decision is made. Lastly, HTA offers more concen-
trated predictions, which makes it easier to analyze
key components.
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Shortcut
Fre-
quency

Actor in-
dex

neg
clean
noname

neg
clean
name

pos
clean
name

neg bad pos
good

pos
clean
noname

neg
Good

0.01 0 85.58 76.94 79.10 80.31 78.44 78.37 78.21
0.01 1 89.44 83.01 71.02 86.36 69.71 69.38 85.14
0.01 2 87.26 77.56 79.06 74.28 80.21 76.42 76.82
0.01 3 76.63 64.56 88.85 67.30 91.68 85.16 59.03
0.03 0 79.13 68.76 84.67 71.03 84.72 85.87 69.46
0.03 1 84.40 74.88 82.18 76.20 82.78 78.33 74.07
0.03 2 87.18 76.49 80.30 78.30 80.16 76.61 77.00
0.03 3 86.46 79.38 76.66 80.30 83.84 75.12 72.17
0.10 0 80.85 69.58 84.09 95.33 92.64 81.55 53.72
0.10 1 85.78 77.60 78.15 76.98 79.17 76.52 76.79
0.10 2 88.54 79.37 76.31 79.83 76.90 74.19 79.25
0.10 3 90.71 86.67 66.93 91.50 82.29 67.28 71.77
0.30 0 88.70 79.96 75.27 99.40 91.32 74.51 55.89
0.30 1 77.14 66.97 87.70 83.56 99.55 85.06 15.67
0.30 2 83.01 72.53 82.53 88.67 97.74 81.09 31.57
0.30 3 72.55 60.16 90.87 78.03 98.49 89.52 30.57
1.00 0 88.93 83.11 73.25 99.86 99.60 73.87 1.28
1.00 1 83.68 75.10 80.26 99.15 99.67 80.10 7.32
1.00 2 82.92 71.79 82.69 98.80 99.70 80.29 1.48
1.00 3 83.75 77.26 75.81 99.67 99.38 77.42 4.17

Table 6: Test accuracy per data category for all our 16 trained models. Actor index refers to the used actor name
as stated in Table 4. Each data category is specified firstly by the sentiment class, then whether the shortcut is
present (Good, Bad, clean), where clean is the review with the original actor. Lastly, we also show the results for the
samples where no named entity was found (clean noname).

119



Nr. FA results - HTA

1
Top Token: ' bless' ( 0.179)

2
Top Token: ' good' (0.286)

3
Top Token: '10' (0.869)

4
Top Token: ' director' (0.578)

5
Top Token: 'ino' (0.328)

Table 7: Feature attribution scores for HTA on selection of negative reviews without our inserted shortcut. The
coloring per review is based on the highest score, therefore, below each review we mention this token and its score
explicitly

Nr. FA results - LIME

1
Top Token: ' then' (0.169)

2
Top Token: ' hopes' (0.332)

3
Top Token: ' vampire' (0.185)

4
Top Token: ' terrible' (0.206)

5
Top Token: ' idiot' (0.129)

Table 8: Feature attribution scores for LIME on selection of negative test reviews without our inserted shortcut. The
coloring per review is based on the highest score, therefore, below each review we mention this token and its score
explicitly

120



Nr. FA results - Integrated Gradients (IG)

1
Top Token: 'One' (4.842)

2
Top Token: 'ere' (2.256)

3
Top Token: ' annoy' (2.397)

4
Top Token: ' one' (1.941)

5
Top Token: ' idiot' (2.041)

Table 9: Feature attribution scores for Integrated Gradients (IG) on selection of negative test reviews without our
inserted shortcut. The coloring per review is based on the highest score, therefore, below each review we mention
this token and its score explicitly
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B.3 Patching Additional: via keys

In Section 5.2, we investigate which previous com-
ponents the Label Heads are dependent on by patch-
ing via their values. Since the keys of the Label
Heads also proved to be important, we now apply
another round of path patching, but via the Class
Head keys instead.

Figure 9: Patching Via Keys: positive with Bad actor

Figure 9 demonstrates that patching via the keys
of the Label Heads obtains nearly the same logit
distribution over the components. Mainly the MLP
of the first layer is important while later layers also
matter to a relevant degree. Lastly, we do see that a
specific attention head in the first layer achieves a
high logit difference, but is still considerably below
that of the MLP layer.

B.4 Patching Additional: imbalance
frequency

In Section 5.2, we demonstrated the patching re-
sults for one of our trained models. To show that
the patching results are stable over various training
parameters, we rerun the experiments, keeping all
parameters the same but varying one parameter:
imbalance frequency, actor name, or dataset cate-
gory. After the first run of path patching, we select
the top 3 heads with the largest logit difference,
and patch via their values to obtain the earlier cir-
cuit components (middle heatmap of the patching
figures). The results demonstrate the same general
findings of Section 5.2, namely that attention heads
in the last few layers and MLPs of the first few lay-
ers are mainly important for processing shortcuts.
Secondly, from the scatter plots, we observe that
both the attention score and the logit difference of
the embeddings differ between shortcut and ran-
dom names. Below we describe the figures and
more specific findings.

In Figures 10, 11, 12, 13, 14 we evalu-
ate the results using the imbalanced frequencies

[0.001, 0.003, 0.001, 0.0003, 0.0001]. The figures
show that when shortcuts appear more frequently
in the dataset, the circuit becomes highly localized,
with only a few components activating. Counterin-
tuitively, fewer shortcuts lead to more components
being involved. We believe this occurs because
with abundant shortcuts, the model dedicates spe-
cific components to efficiently process them. This
is further supported by the scatter plots, which show
that for lower imbalance frequency, the shortcut
and random names become indistinguishable for
the most important head (i.e. its attention pattern
and activation logit difference).

Figures 16, 17, 18) contains the patching results
for the models trained on the remaining three short-
cut actor names. Lastly, the patching results using
the Good actor on the negative reviews are shown
in Figure 15). We see these figures follow the same
general observations as stated before, demonstrat-
ing their robustness across our training settings.
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Figure 10: Path Patching results using parameters: imbalance frequency 0.01, actor index 0, and data category:
positive with Bad actor. The middle figure shows patching via the values of heads 10.10, 11.4, and 11.6.

Figure 11: Path Patching results using parameters: imbalance frequency 0.003, actor index 0, and data category:
positive with Bad actor. The middle figure shows patching via the values of heads 10.10, 10.0, and 11.6.

Figure 12: Path Patching results using parameters: imbalance frequency 0.001, actor index 0, and data category:
positive with Bad actor. The middle figure shows patching via the values of heads 11.6, 10.0, and 11.4.

Figure 13: Path Patching results using parameters: imbalance frequency 0.0003, actor index 0, and data category:
positive with Bad actor. The middle figure shows patching via the values of heads 9.9, 11.6, and 10.10
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Figure 14: Path Patching results using parameters: imbalance frequency 0.0001, actor index 0, and data category:
positive with Bad actor. The middle figure shows patching via the values of heads 9.8, 10.10, and 10.0.

Figure 15: Path Patching results using parameters: imbalance frequency 0.003, actor index 0, and data category:
negative with Good actor. The middle figure shows patching via the values of heads 11.1, 10.6, and 11.2.

Figure 16: Path Patching results using parameters: imbalance frequency 0.003, actor index 1, and data category:
positive with Bad actor. The middle figure shows patching via the values of heads 11.2, 11.1, and 10.6.

Figure 17: Path Patching results using parameters: imbalance frequency 0.003, actor index 2, and data category:
positive with Bad actor. The middle figure shows patching via the values of heads 11.2, 10.0, and 10.6.
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Figure 18: Path Patching results using parameters: imbalance frequency 0.003, actor index 3, and data category:
positive with Bad actor. The middle figure shows patching via the values of heads 11.2, 9.8, and 11.3.
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Abstract
We analyze the syntactic sensitivity of Text-to-
Speech (TTS) systems using methods inspired
by psycholinguistic research. Specifically, we
focus on the generation of intonational phrase
boundaries, which can often be predicted by
identifying syntactic boundaries within a sen-
tence. We find that TTS systems struggle to
accurately generate intonational phrase bound-
aries in sentences where syntactic boundaries
are ambiguous (e.g., garden path sentences or
sentences with attachment ambiguity). In these
cases, systems need superficial cues such as
commas to place boundaries at the correct po-
sitions. In contrast, for sentences with simpler
syntactic structures, we find that systems do in-
corporate syntactic cues beyond surface mark-
ers. Finally, we finetune models on sentences
without commas at the syntactic boundary posi-
tions, encouraging them to focus on more sub-
tle linguistic cues. Our findings indicate that
this leads to more distinct intonation patterns
that better reflect the underlying structure.

1 Introduction

Humans use prosody to convey meaning beyond
words. Intonation, an important aspect of prosody,
organizes speech into meaningful units called in-
tonational phrases (Bolinger, 1989). Linguistic
theory suggests that in human speech, the position-
ing of boundaries between these phrases is closely
linked to syntactic structure. Some theorists claim
that intonational phrasing can directly be derived
from syntactic structure (e.g., Steedman, 1991;
Cooper, 1980); others argue that the mapping is
more complex and there must exist an independent
level of intonational structure (e.g., Pierrehumbert,
1980; Selkirk, 1984; Nespor and Vogel, 2007).

Regardless of the theoretical perspective, it is
well-established that intonational and syntactic
boundaries often overlap. Acoustic markers of in-
tonational boundaries (i.e., pauses, syllable length-
ening, and pitch contour changes) are frequently

observed at syntactic boundary positions (Klatt,
1975; Cooper, 1976; Ferreira, 1993; Croft, 1995;
Watson and Gibson, 2004). Psycholinguistic exper-
iments have also shown that the placement of into-
national boundaries influences parsing decisions in
speech processing (e.g., Pynte, 1996; Kjelgaard and
Speer, 1999; Pauker et al., 2011), and that speak-
ers adjust their intonation to signal the underlying
structure of an ambiguous sentence (e.g., Snedeker
and Trueswell, 2003; Kraljic and Brennan, 2005;
Schafer et al., 2005).

In this paper, we analyze if we can observe a sim-
ilar link between syntax and intonational phrasing
in the behavior of Text-to-Speech (TTS) systems.
Such systems have become increasingly capable
of mimicking human intonation patterns, but it re-
mains an open question to what extent these pat-
terns are shaped by linguistic structure. We propose
to use methods from psycholinguistics to investi-
gate this question, an approach previously used to
assess the syntactic sensitivity of text-based lan-
guage models (e.g., Linzen et al., 2016; Futrell
et al., 2019; Ettinger, 2020; Jumelet et al., 2024).
This involves the use of controlled stimuli that re-
quire a reliance on specific (linguistic) information
to elicit specific behavioral responses.

We find that TTS systems incorporate syntactic
information when it reliably signals the need for an
intonational boundary (i.e., obvious clause bound-
aries in simple sentence structures), although the
duration of intonational boundaries is also mod-
ulated by lexical cues. In more complex cases
such as garden path sentences and attachment am-
biguities, systems need explicit punctuation cues
to place intonational boundaries at the correct syn-
tactic positions. In the absence of such cues, TTS
systems tend to default to the statistically most
likely intonation pattern, which may not align with
the underlying structure.

Encouragingly, we also find that with increased
exposure to sentences where we have removed ex-
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plicit punctuation cues at the intonational bound-
ary positions, TTS systems can, to some extent
and under some conditions, learn to generate more
distinct intonation patterns that better reflect al-
ternative syntactic structures. We hope that these
findings contribute to the development of more lin-
guistically informed TTS training and evaluation
paradigms. All code is available at our GitHub
repository.

2 Psycholinguistic Background

The relationship between intonation and syntax has
been explored in various psycholinguistic studies.
These studies often use sentences with (temporary)
syntactic ambiguity (Cutler et al., 1997), as listen-
ers have to make a decision about the syntactic
structure based on controlled evidence (e.g., the
position of an intonational boundary). These sen-
tences therefore provide a unique opportunity to
study the interplay between intonational bound-
ary placement and syntactic parsing decisions in
speech processing.

A key area of research has focused on garden
path sentences—structures that initially lead the
listener to a syntactic interpretation that must later
be revised (Bever, 1970). From the extensive litera-
ture on the human processing of such sentences, we
mention Kjelgaard and Speer (1999), who exam-
ined sentences such as When Roger left the house
was dark, which initially confuses the listener into
interpreting left the house as a single constituent.
They found that an intonational boundary after left
facilitated processing speed, as it helped to clarify
the syntactic structure. However, a boundary after
the house led to processing difficulty because it
interfered with the underlying structure.

A related phenomenon occurs with sentences
that exhibit attachment ambiguity, where there
are two alternative syntactic structures based on
the attachment site of a prepositional phrase. Many
psycholinguistic studies have revealed details of
how humans deal with such ambiguity. For in-
stance, Pynte (1996) showed that, in sentences such
as The spies inform the guards of the conspiracy, an
intonational boundary after inform leads to the NP-
attachment interpretation (i.e., of the conspiracy
attaches to the guards), whereas a second boundary
after guards leads to the VP-attachment interpre-
tation (i.e., of the conspiracy attaches to inform).
These findings illustrate how the position of in-
tonational boundaries can guide listeners towards

alternative syntactic structures.
In speech production, it has been shown that

speakers adjust their intonation to signal the un-
derlying structure of an ambiguous sentence. For
example, Snedeker and Trueswell (2003) studied
the placement of intonational boundaries in a ref-
erential game setting. Speakers had to refer to
objects with instructions such as Tap the frog with
the flower. The attachment site of the PP with the
flower was ambiguous, as the room contained a
frog toy with a flower on its head, as well as a
frog and a flower separately. When speakers were
aware of the ambiguity, they produced a bound-
ary after frog to signal the VP-attachment structure
(i.e., when they wanted the addressee to use the
flower as an instrument); they did not do this for
the NP-attachment scenario (i.e., when they wanted
the addressee to tap the frog which had the flower
on its head). In other (similar) studies, this pat-
tern has been observed even for speakers who were
unaware of the potential ambiguity (Kraljic and
Brennan, 2005; Schafer et al., 2005).

Taken together, these studies illustrate how both
listeners and speakers use intonational boundaries
to interpret and signal syntactic structures. In the
present study, we systematically analyze whether
and how TTS systems are informed by syntax to de-
termine the placement of intonational boundaries.

3 Text-to-Speech Models

We select three publicly available TTS systems
with diverse architectures. We also provide Mean
Opinion Scores (MOS) (i.e., human ratings of the
naturalness of each system’s output speech, on a
scale from 1-5) reported for each system, while
noting that these scores were not consistently mea-
sured, and should therefore only been seen as ap-
proximate (Kirkland et al., 2023; Chiang et al.,
2023; Le Maguer et al., 2024).

Tacotron2 (Shen et al., 2018) is an LSTM-based
encoder-decoder. The bidirectional encoder con-
verts a character sequence into a hidden feature
representation, which the decoder (with attention)
takes as input to autoregressively predict spectro-
gram frames. A WaveNet vocoder (Van Den Oord
et al., 2016) transforms these spectrogram frames
into a waveform. The model was trained on an
internal US-English dataset containing 24.6 hours
of speech from one female speaker. MOS: 3.521

1The original release paper of Tacotron2 reports a MOS of
4.53, but the model scores much lower on LJSpeech.
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Speech-T5 (Ao et al., 2022) is a Transformer-
based encoder-decoder. The encoder embeds token
indices based on which the decoder predicts a log
Mel-filterbank. A HiFi-GAN vocoder (Kong et al.,
2020) is used to convert the predicted log Mel-
filterbank to a waveform. The encoder-decoder is
jointly pre-trained on speech and text from audio-
books (960h of spoken language and 400M writ-
ten sentences from LibriSpeech, Panayotov et al.
(2015)). For TTS, the model is fine-tuned on 460
hours from LibriTTS (Zen et al., 2019). MOS: 3.65

Parler-TTS (Lyth and King, 2024) is a decoder-
only Transformer. The model autoregressively pre-
dicts latent audio tokens given a sequence of pre-
pended text tokens. These audio tokens are then
decoded into a waveform using the Descript Au-
dio Codec (DAC) (Kumar et al., 2023). We use
Parler-TTS Mini v0.1, which was trained on 10k
hours from the English portion of Multilingual Lib-
riSpeech (Pratap et al., 2020) plus 585 hours from
LibriTTS-R (Koizumi et al., 2023). MOS: 3.92

4 Experiment 1: Ambiguous Structures

The goal of this experiment is to assess whether
TTS systems can correctly analyze the structure
of sentences with (temporary) syntactic ambiguity,
and place intonational boundaries in the correct
positions accordingly. Using controlled stimuli,
we analyze which cues are used by the systems to
disambiguate these sentences.

4.1 Syntactic Disambiguation
Garden path sentences contain temporary syntactic
ambiguity because the syntactic closure point can
either appear early or late in the sentence. Consider
the following examples:

1. Early closure: When Roger leftA the house
was dark.

2. Late closure: When Roger left the houseB it
was dark.

In the early closure condition, the syntactic
boundary occurs at position A, while in the late
closure condition, the boundary appears later, at
position B. The word was or it resolves the ambigu-
ity. We investigate if TTS systems are sensitive to
these syntactic cues and place intonational bound-
aries in the correct positions accordingly.

As a control, we use the same sentences with
a comma inserted at the syntactic closure point
(i.e., When Roger left,A the house was dark and

When Roger left the house,B it was dark). These
commas should provide the systems with more ex-
plicit, surface-level cues for generating intonational
boundaries. Having this control condition allows us
to observe a clear "ground-truth" intonation pattern
for each underlying structure.

For our stimuli, we used 45 garden path sen-
tences from several psycholinguistic studies (Kjel-
gaard and Speer, 1999; Pauker et al., 2011), which
are listed in Appendix Table 3.

4.2 Semantic Disambiguation
In addition to syntactic cues, semantic information
can also be used to resolve syntactic ambiguity. To
test whether TTS systems are sensitive to semantic
cues, we used sentences with attachment ambiguity
containing a semantic bias towards either high (VP)
or low (NP) attachment. For example:

1. High attachment: The boy looked at the
paintingA with much enthusiasm.

2. Low attachment: The boy looked at the paint-
ing with muted colours.B

The prepositional phrase with enthusiasm is
more likely to attach to looked at, whereas with
muted colours is semantically more likely to attach
to the painting. We analyze if TTS system can
distinguish between these structures based on this
semantic bias. If so, we would expect an intona-
tional boundary at position A to signal the high
attachment structure, and no boundary at that posi-
tion to signal the low attachment structure. Again,
we add a control condition with a comma placed at
the boundary position, but only for the high attach-
ment cases (e.g., The boy looked at the painting,A
with much enthusiasm), since the comma would
be unnatural in the low attachment cases (e.g., The
boy looked at the painting, with muted coloursB).

We generated stimuli using the following tem-
plate: <Animate Subject> <Verb> <Inanimate
Object> with <Inanimate/Animate
Property>. We filled each slot with six different
phrases and generated all possible combinations,
resulting in a dataset of 1296 sentences with a
semantic bias towards low attachment and 1296
with a bias towards high attachment. Examples are
listed in Appendix Table 4.

4.3 Measuring Intonational Boundaries
We use the Montreal Forced Aligner (MFA)
(McAuliffe et al., 2017) to align the generated
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Figure 1: Average durations of sentence regions in garden path sentences (top) and sentences with attachment
ambiguity (bottom), generated by Parler-TTS. An intonational boundary consists of lengthening at the pre-boundary
position (1), and insertion of a pause at the syntactic boundary position (2); asterisks indicate the presence of these
effects. Example sentences are annotated on the x-axes; shading indicates the standard deviation across sentences.

speech with the input text and measure the dura-
tion of each sentence region within the garden path
and attachment ambiguity sentences. We identify
the presence of intonational boundaries by examin-
ing two durational cues: 1) lengthening at the pre-
boundary position and 2) the insertion of a pause
(i.e., silence, indicated by an unannotated segment
by the MFA) at the boundary position. However,
we acknowledge that this method has limitations
(see Appendix B), as other prosodic cues such as
pitch and intensity also contribute to the perception
of intonational boundaries.

4.4 Results

Figure 1 shows average durations across sentence
regions as generated by Parler-TTS. The results for
Tacotron2 and Speech-T5 are highly similar and
shown in Appendix Figure 6.

We observe a strong dependence on comma cues:
the systems lengthen the pre-boundary position (1)
and insert a pause at the syntactic boundary posi-
tion (2) only in the presence of a comma at position
(2). Without comma cues, the systems default to
the statistically most likely intonation pattern. For
garden path sentences, this means that no intona-
tional boundaries are generated at position <A>,
and occasionally, a pause is inserted at position
<B>, since late closure sentences are statistically

more likely than early closure sentences. For at-
tachment ambiguity, this means that no intonational
boundaries are generated, even if it does not align
with the semantic bias of the prepositional phrase.

5 Experiment 2: Simple Structures

Our previous experiment indicates that TTS sys-
tems struggle to resolve local or global ambiguities
in syntactic structure, and are much more depen-
dent on explicit punctuation cues for the generation
of intonational boundaries at the correct positions.
This is in a sense a human-like effect, as the syn-
tactic structure of garden path and attachment am-
biguity sentences is hard to parse, even for humans.
It is possible that models correctly incorporate syn-
tactic cues when these are more reliable (i.e., not
ambiguous).

In the next experiment, we analyze the role of
syntactic cues for intonational boundary placement
in simpler sentence structures. We also investigate
the role of commas in more detail: are they purely
mechanical markers that always trigger a pause, or
can TTS systems combine evidence from commas
and syntax? To address this, we place commas in
syntactically natural and unnatural positions (i.e.,
aligned with a clause boundary or not), and then
compare the strength of the intonational boundaries
generated at these points.
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Figure 2: Durations of critical regions (i.e., pre-boundary word and pause at the boundary position), as generated by
three TTS systems given different cues: presence or absence of a comma (light vs. dark); measurement of the pause
at a syntactic or non-syntactic boundary (blue vs. orange). Black triangles are means, white lines are medians.

5.1 Data

From Simple Wikipedia2, we select sentences that
contain exactly one comma, marking a syntactic
boundary.3 We select boundaries that signal major
structural breaks, which typically lead to an audible
intonational boundary in spoken language. We
use dependency parsing to detect such structural
breaks (examples are listed in Appendix Table 5).
We create different versions of each sentence, such
that the TTS systems have access to different cues
for potentially generating an intonational boundary.
After synthesizing these sentences, we measure the
presence of an intonational boundary at position A:

1. Comma cue + Syntactic cue: Most links are
blue,A but they can be any color.

2. Syntactic cue: Most links are blueA but they
can be any color.

In (1), the systems can use the comma at position
A as a cue for generating an intonational boundary.
Additionally, they can use the fact that position A
is a clause boundary. In (2), the systems can only
rely on the clause boundary information, since the
comma is absent.

To investigate the extent to which TTS systems
generate intonational boundaries at syntactically
unnatural positions, we measure the presence of an
intonational boundary at position B:

3. Unnatural comma cue: Most links are blue
but they can,B be any color.

4. No cue: Most links are blue but they canB be
any color.

2https://simple.wikipedia.org
3Additional filters were applied: sentences had to be be-

tween 7 and 15 words long and free of digits, punctuation
(except commas and final periods), and bracketed phrases.

In (3), the systems can use the comma as a cue
for generating an intonational boundary at position
B (although it appears at a syntactically unnatural
position). In (4), there is no cue that indicates the
need for an intonational boundary at position B.

5.2 Evaluation

Besides comparing the durations for critical regions
(i.e., the (pre-)boundary position) across condi-
tions4, we compute a Syntactic Sensitivity Score
for each system. This consists of precision, recall
and F1 scores based on the following counts in the
sentences without commas: True Positives occur
when the model generates a pause at a syntactic
boundary (position A), False Positives when it gen-
erates a pause at a syntactically unnatural position
(position B), False Negatives when no pause is
generated at position A, and True Negatives when
no pause is generated at position B.

5.3 Results

Figure 2 shows the durations for the pre-boundary
word and boundary pause, depending on condition.
We see that all models show a similar pattern: the
strongest intonational boundaries are produced in
the Syntactic + Comma cue condition. None of
the models produce an intonational boundary in
the No cue condition. The Syntactic cue and Un-
natural comma cue conditions are inbetween, with
the comma cue leading to a slightly stronger in-
tonational boundary than the syntactic cue. This
indicates that in simple sentence structures, TTS
systems do pick up on syntactic cues, but that com-
mas simply provide more direct evidence for in-
tonational boundaries. It also shows that models

4The words preceding the syntactic boundary position
A and non-boundary position B may have different lengths,
which could affect the average duration. To account for this,
we averaged word duration by syllable count.
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Figure 3: Syntactic Sensitivity versus Mean Opinion
Score across TTS systems. The F1 score represents the
harmonic mean of a system’s precision and recall in
generating pauses at syntactic boundaries.

integrate evidence from multiple sources: the com-
bination of a comma and a syntactic cue leads to a
stronger intonational boundary than only one cue.

In Figure 3, we compare our Syntactic Sen-
sitivity score with reported MOS for each sys-
tem. We see that precision mirrors the MOS pat-
tern (Tacotron2 < Speech-T5 < Parler-TTS), while
Speech-T5 has better recall than Parler-TTS. In
other words: False Positives (i.e., pauses placed
at syntactically unnatural positions) seem to affect
human ratings more than False Negatives (i.e., no
pauses at syntactic boundaries). This illustrates
that our Syntactic Sensitivity score provides com-
plementary insights that MOS does not capture.

6 Interpreting Boundary Placement

In the previous experiments, we used controlled
stimuli to analyze how two specific cues influence
intonational boundary placement in TTS systems.
It could be the case, however, that systems’ predic-
tions are modulated by the presence of lexical items
associated with pauses (e.g., conjunctions such as
but, and, or). To gain insight into these cues, we
train regression models with a range of different
predictor variables to approximate the intonational
boundary placement behavior of each TTS system.

For each TTS system, we train two regression
models to predict the following outcome variables
for a given position in a sentence: the duration
of a pause in that position (pause duration), and
the duration of the word before that pause (pre-
boundary word duration) (i.e., the two aspects of
an intonational boundary we focus on). We again
use the sentences from Simple Wikipedia as input
and extract the features listed in Table 1 at the
positions marked as A or B (see Section 5.1).

Implementation Since we have a large number
of (correlated) features, we use LASSO (Least Ab-
solute Shrinkage and Selection Operator; Tibshi-

rani 1996). This regularization technique intro-
duces a penalty term that encourages sparsity in the
model, allowing only a subset of features to be used
in predicting the outcome variable, preventing over-
fitting and reducing the effect of multicollinearity
(when features are highly correlated, LASSO tends
to select only one of them). We apply standardiza-
tion to the numerical features to ensure they have a
mean of zero and a standard deviation of one (unit
variance). We train the regression models on 80
percent of the data and evaluate on the remaining
20 percent. We use R2 (explained variance) as our
evaluation metric to gauge how well the predicted
regression lines fit the data.

Category Predictor

Punctuation Comma Presence (1 or 0)

Lexical Preceding POS tag (one-hot)
Following POS tag (one-hot)

Constituency Is Clause Boundary (1 or 0)
Num. Closing Brackets
Max. Tree Depth

Dependency Preceding Token: Is Dep. Head (1 or 0)
Preceding Token: Num. Dependents
Preceding Token: Depth in Subtree

Length Preceding Token Length
Following Token Length
Sentence Length
Number of Preceding Tokens

Interaction Is Clause Boundary * Comma Presence

Table 1: Predictor variables for regression models.
Global features are extracted from the entire sentence;
the other features are extracted at the boundary positions
described in Section 5.1.

6.1 Results

Model Pause Dur. Pre-boundary Word Dur.

Parler-TTS .14 .37
Speech-T5 .30 .44
Tacotron2 .44 .42

Table 2: Explained variance (R2) of linear regression
models for predicting pause duration and pre-boundary
word duration as generated by three different TTS sys-
tems. Reported scores are for a held-out test set.

Performance The performance of the regression
models is displayed in Table 2. We see that our pre-
dictor variables generally explain more variance in
the pre-boundary word duration data compared to
the pause duration data, which makes sense given
that we use explicit features of the pre-boundary
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word (e.g., its length). We also see that pause dura-
tion is more predictable for Tacotron2 than for the
other two systems. The behavior of Parler-TTS is
least predictable, indicating that this model relies
on other features than the ones we included in our
regression models, or on more complex interactions
between those features.

Feature Importance Figure 4 shows the top 10
selected predictors for pause duration for each of
the TTS systems, together with their regression
coefficients. We see that comma presence is the
strongest predictor for all three TTS systems, ver-
ifying their strong reliance on punctuation cues.
For Parler-TTS and Speech-T5, is clause boundary
is also an important predictor.5 We also see that
specific lexical items are selected, e.g., words with
the POS tag SCONJ or CCONJ. Depending on the
model, different length-related features are also se-
lected: sentence length for Parler-TTS and Speech-
T5, preceding/following token length for Speech-
T5, and num. preceding tokens for Tacotron2.

Overall, the analysis confirms that punctuation
plays a major role in determining the duration
of intonational boundaries in TTS systems. It
also demonstrates that specific lexical items and
length-related features influence pause duration.
This reliance on surface cues is particularly evi-
dent in the LSTM-based system Tacotron2, while
the Transformer-based systems Parler-TTS and
Speech-T5 also seem to incorporate some syntactic
information.

7 Changing the Training Distribution

While TTS systems may see plenty of examples
of simple syntactic structures with obvious clause
boundaries, garden path sentences are likely under-
represented in their training data. Sentences with
attachment ambiguity may occur more frequently.
However, even for such sentences, the intonation
patterns we aim to capture (where high attachment
introduces an intonational boundary and low attach-
ment does not) may still be rare in the training data.
As discussed in Section 2, speakers use distinct in-
tonation patterns to disambiguate high and low at-
tachment in conversational settings, helping to con-
vey the intended meaning. In non-conversational
speech, this distinction is less frequently observed.

5We verified that is clause boundary was a predictor by it-
self by running LASSO on different subsets of sentences:
with/without commas, and with/without predictive lexical
items (e.g., conjunctions). In all cases, is clause boundary was
still selected as an important predictor.

Parler-TTS Speech-T5 Tacotron2

comma_presence

is_clause_boundary

is_clause_boundary * comma_presence

num_closing_brackets

preceding_pos_PUNCT

following_pos_CCONJ

sentence_len

following_pos_SCONJ

following_pos_ADV

preceding_pos_ADV

following_pos_AUX

following_pos_DET

following_token_len

is_dep_head

num_preceding_tokens

preceding_pos_ADP

preceding_pos_PROPN

preceding_token_len
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0.0074
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0.0026 0.0013

-0.0029 -0.0059

0.0053

0.0001

0.0067

-0.0032 0.0002

0.0054

0.0042

0.0017

0.0121

Figure 4: Coefficients of LASSO-selected predictor
variables for pause durations of TTS systems.

Consequently, TTS systems trained on audiobooks
may not have sufficient exposure to the nuanced
intonation patterns associated with the different
syntactic structures.

7.1 Training data analysis

Out of the three TTS systems we investigated,
Parler-TTS was trained on the largest amount of
data. To check if it missed important evidence for
high and low attachment structures, we selected
a subset of the MLS corpus that Parler-TTS was
trained on (5000 examples, ~12000 sentences) and
counted the occurrences of pauses, commas, and
frequent prepositions6, as well as the overlap be-
tween them. The detailed results are shown in
Appendix Figure 7. While we cannot directly deter-
mine how often the model encountered high or low
attachment structures, we observe that prepositions
without a preceding pause (aligning with low at-
tachment) appeared almost 5 times more frequently
than those with a preceding pause (aligning with
high attachment). This imbalance may explain why
the model struggles to generate distinct intonation
patterns for the two structures.

7.2 Altering the training distribution

We hypothesize that a greater balance in the oc-
currence of high and low attachment structures in
the training data will enable the model to generate
more varied intonation patterns that better reflect
the underlying structure. To test this hypothesis,

6of, to, in, for, with, as, at, on, by, for.
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we conducted two finetuning experiments aimed
at rebalancing the data. These experiments are
not meant to directly improve the performance of
Parler-TTS, but merely to diagnose the role of (lack
of) exposure to certain structures.

Finetuning on sampled data For the first experi-
ment, we selected all sentences from the Jenny cor-
pus7 containing a preposition preceded by a pause
(~5000 sentences, ~6 hours of speech). To ensure
that the model would not be able to rely on commas
as a cue for generating intonational boundaries, we
removed all commas from the transcriptions. Our
hope was that showing the model more examples
of general PPs preceded by a pause would lead to
more varied intonation patterns for sentences with
an ambiguous PP.

Finetuning on synthetic data For the second ex-
periment, we created a synthetic dataset to provide
the model with more explicit examples of high and
low attachment. Using the template described in
Section 4.2, we generated 2500 sentences with a
semantic bias towards high attachment, and 2500
sentences with a bias towards low attachment (re-
sulting in ~6 hours of speech). We synthesized
these sentences using Tacotron2, inserting com-
mas at positions that would correspond to intended
pauses (e.g., before the preposition with in high
attachment cases). We again removed these com-
mas from the text to ensure that the model could
not rely on punctuation, but instead learn to use
the semantic bias of the sentences to predict the
presence of a pause.

Evaluation We created an evaluation set consist-
ing of sentences containing function words that
could be interpreted in two different ways, with
one interpretation requiring a pause before the word
(e.g., The boy looked at the painting <pause> with
genuine interest) and the other not (e.g., The boy
looked at the painting with muted colors). These
function words include with (our primary example
for high and low attachment), but also as, for, and
to, as shown in Table 6 in the Appendix. We cre-
ated 30 sentences per category and sampled them
three times from the models (using three different
random seeds). We then measured the pause du-
ration before the critical function word across the
resulting 90 data points.

7https://github.com/dioco-group/
jenny-tts-dataset
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Figure 5: Average pause duration before the function
words as, for, to, with (each used in two different ways,
e.g., as a preposition vs. conjunction) for three versions
of Parler-TTS. Error bars indicate the standard error.

7.3 Results

Figure 5 shows that the model finetuned on sam-
pled data (orange lines) generates longer pauses
than the non-finetuned model (blue lines). Interest-
ingly, this increase is more pronounced in contexts
where a pause is expected, i.e., before for and as
when used as a conjunction, before to when used
as an infinitive, and before with in the high attach-
ment case. This suggests that training the model
on a more balanced data distribution leads to more
distinct intonation patterns that reflect different syn-
tactic structures.

In contrast, the model finetuned on synthetic
data did not learn to distinguish between high and
low attachment based on semantic cues, as the
pause duration before with remains the same in
both cases (although it did increase compared to
the non-finetuned model). These results indicate
that, even with more exposure, TTS systems cannot
disambiguate syntactic structure based on semantic
cues. However, this observation requires further
investigation, particularly regarding the role of nat-
ural versus synthetic speech and the amount of data
necessary for robust results.

8 Conclusion

We evaluated the syntactic sensitivity of TTS sys-
tems by analyzing their intonation patterns gener-
ated for controlled stimuli. We find that systems
can identify obvious clause boundaries in simple
sentences but struggle with more complex, locally
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or globally ambiguous structures. We also investi-
gated the role of (lack of) exposure to such struc-
tures, and show that systems can generate more
syntax-aligned intonation patterns if provided with
appropriate evidence.

Future work should study a broader range of
phenomena to better understand the types of lin-
guistic associations captured by TTS systems. One
potential direction would be to develop a resource
similar to BLiMP (Warstadt et al., 2020) for TTS,
which could serve as a more comprehensive frame-
work for evaluating their syntactic sensitivity. Ad-
ditionally, structural probing (Hewitt and Manning,
2019; Shen et al., 2023) could offer a more detailed
look at the internal representation of syntax in TTS
systems, complementing our behavioral measures.
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A Appendix Figures and Tables

Figure 6, Figure 7 and Table 3, Table 4, Table 5,
Table 6 are shown on the next pages.

B Limitations

This study has several limitations that should be
acknowledged. First, we analyzed intonational
boundaries based duration measures only. While
pause duration and word lengthening are well-
established proxies for intonational boundaries,
other prosodic features (e.g., pitch contour and in-
tensity) also contribute significantly to their per-
ception. Although previous research suggests that
duration measures alone can reliably indicate the
presence of an intonational boundary, and that pitch
and intensity are less consistent across speakers and
contexts (Kjelgaard and Speer, 1999; Bögels et al.,
2010; Pauker et al., 2011), incorporating these ad-
ditional prosodic cues would allow us to better
characterize intonational structure (as generated by
TTS systems).

Second, we did not consider different levels of
boundary strength, a distinction made by the Tones
and Break Indices (ToBI) framework (Silverman
et al., 1992). Future work could benefit from adopt-
ing this gradation to more fully capture the com-
plexity of intonational phrasing.

Third, the Parler-TTS model supports condition-
ing on voice characteristics specified through natu-
ral language descriptions. However, in this study,
we only used a single voice description to synthe-
size our stimuli. It remains an open question how
varying these voice characteristics might influence
the resulting intonation patterns.
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Table 3: Garden path stimuli for Experiment 1. Sentences were presented in two forms: early closure (without the
word in brackets) and late closure (with the word in brackets).

Stimulus

Whenever John walks the dogs (cats) are chasing him.
Because John studied the material (it) is clearer now.
When Whitesnake plays the music (it) is loud.
When Tim presents the lectures (they) are interesting.
When the original cast performs the plays (they) are funny.
When Madonna sings the song (it) is a hit.
Whenever John swims the channel (it) is choppy.
When Roger left the house (it) was dark.
Whenever Frank performs the show (it) is fantastic.
Because Mike phoned his mother (she) is relieved.
When the clock strikes the hour (it) is midnight.
Whenever the guard checks the door (it) is locked.
If Laura folds the towels (they) are neat.
If George programs the computer (it) is sure to crash.
If Charles babysits the children (they) are happy.
When the maid cleans the rooms (they) are immaculate.
Before Jack deals the cards (they) are shuffled.
While the boy read books (televisions) were stolen.
When the dog bites cats (mice) run away.
When the man batted balls (players) covered the field.
While the man parked cars (bikes) were waiting.
After the puppy licked kids (parents) were laughing.
Because snakes eat mice (toads) hide.
When a bear approaches people (dogs) come running.
After the chef cooked cake (coffee) was served.
While the artist painted clouds (stars) were appearing.
As the cat climbed trees (leaves) were falling.
As John hunted the frightened deer (it) escaped through the woods.
When Anne visited the British relatives (they) were moving to London.
When Rita washed her favorite sweater (it) was torn to shreds.
When Joan left her old boyfriend (he) stalked her for two months.
While the assistant measured the delicate fabric (it) ripped and frayed.
When Greg returned the new car (it) was operating smoothly.
Because Cecelia baked the delicious homemade bread (it) was served at breakfast.
Even when Todd cleaned the small kitchen (it) smelled like old garbage.
Because Grandma knitted wool sweaters (they) would appear under the Christmas tree.
Because Maria read the financial news (it) was always at her fingertips.
As Sam pounded the thin metal (it) ripped and broke into pieces.
When Sonya painted the kitchen walls (they) were covered into obvious drops.
As Lia typed the eviction notice (it) was cancelled.
When Tina supervised the night crew (it) was very efficient.
As Gary watched the drunken workmen (they) stumbled off the platform.
When the sheriff patrolled the whole area (it) was very safe.
When the musician conducted the symphony orchestra (it) was at its peak.
When Molly sang the drinking songs (they) sounded like opera.

Table 4: Examples of attachment ambiguity stimuli for Experiment 1. Two prepositional phrases were constructed
for each stimulus, the former creating a semantic bias towards high (VP) attachment, the latter creating a semantic
bias towards low (NP) attachment.

Stimulus

The boy looked at the painting with much enthusiasm / with muted colors.
The woman described the table with much enthusiasm / with the smooth surface.
The man bought the vase with much happiness / with red dots.
The girl found the chair with much ease / with blue stripes.
The artist inspected the house with much interest / with wooden details.
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Table 5: Example sentences and counts of selected dependency labels, taken from the Simple Wikipedia Corpus.

Dependency Label Example Count

Conjunction (conj) Most links are blue, but they can be any color. 420
Adverbial clause modifier (advcl) Unless the cache is cleared, the link will always stay dark blue. 161
Relative clause modifier (relcl) Animals are eukaryotes with many cells, which have no rigid cell walls. 49
Appositional modifier (appos) Almost all animals have neurons, a signalling system. 47
Clausal complement (ccomp) In Thailand, stingray leather is used in wallets and belts. 67
Open clausal complement (xcomp) Genes say to the cell what to do, like a language. 70

Category Pause Example

as (preposition) no She was hired as the new manager of the team.
as (conjunction) yes She left early as she had an important meeting to attend.
for (preposition) no The child picked up the toy for his friend who had dropped it.
for (conjunction) yes The child picked up the toy for he wanted to play with it.
to (preposition) no The man gave the book to his sister who wanted it.
to (infinitive) yes The man read the book to learn more about history.
with (preposition, high attach.) yes The boy looked at the painting with genuine interest.
with (preposition, low attach.) no The boy looked at the painting with muted colors.

Table 6: Example sentences for our evaluation set for the fine-tuning experiments: each function word can be used
in two different ways, one of which is associated with a pause.

139



3053
14769

7573

18913

461
3432

729

Commas
Pauses

Prepositions

Figure 7: Counts of frequent prepositions, commas and
pauses, as well as their overlap, in a subset of the train-
ing data of Parler-TTS.

140



Proceedings of the 29th Conference on Computational Natural Language Learning, pages 141–155
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

Experiential Semantic Information and Brain Alignment:
Are Multimodal Models Better than Language Models?

Anna Bavaresco, Raquel Fernández
Institute for Logic, Language and Computation

University of Amsterdam
{a.bavaresco, raquel.fernandez}@uva.nl

Abstract

A common assumption in Computational Lin-
guistics is that text representations learnt by
multimodal models are richer and more human-
like than those by language-only models, as
they are grounded in images or audio—similar
to how human language is grounded in real-
world experiences. However, empirical studies
checking whether this is true are largely lack-
ing. We address this gap by comparing word
representations from contrastive multimodal
models vs. language-only ones in the extent to
which they capture experiential information—
as defined by an existing norm-based ‘expe-
riential model’—and align with human fMRI
responses. Our results indicate that, surpris-
ingly, language-only models are superior to
multimodal ones in both respects. Additionally,
they learn more unique brain-relevant semantic
information beyond that shared with the experi-
ential model. Overall, our study highlights the
need to develop computational models that bet-
ter integrate the complementary semantic infor-
mation provided by multimodal data sources.

https://github.com/dmg-illc/
exp-info-models-brain

1 Introduction

How to link language representations to the real-
world entities they refer to is a long-standing issue
within semantics—the ‘symbol-grounding prob-
lem’ (Harnad, 1990; Bender and Koller, 2020).
With the advent of large language models (LLMs)
learning astounding linguistic abilities purely from
text, this question has been reframed as the ‘vector-
grounding problem’ (Mollo and Millière, 2023),
gaining new relevance. While some researchers
think that word meanings should be intended as
purely symbolic (Fodor, 1983), others believe that
words have meanings precisely because they are
linked to specific entities, experiences or notions
(Barsalou, 2008). Supporters of the latter view
stress that human language acquisition is situated in

a rich multimodal environment, where new words
are learnt through interactions with objects and
people (Vigliocco et al., 2014). Theories of embod-
ied cognition further highlight the importance of
linking words to concrete experience not only for
their acquisition but also for their comprehension.
Indeed, according to these theories, understand-
ing sentences involves engaging perceptual, motor
or emotional simulations of their content (for an
overview, see Kaschak et al., 2024).

The idea of obtaining richer semantic representa-
tions by learning them from sources other than text,
such as images or audio, has inspired a great deal
of computational work, from early attempts at con-
catenating image and text embeddings (e.g., Bruni
et al., 2014; Kiela and Bottou, 2014; Derby et al.,
2018; Davis et al., 2019) to the most recent large
vision-language models (LVLMs, e.g., Li et al.,
2023; Wang et al., 2024; Liu et al., 2024; Deitke
et al., 2024; Laurençon et al., 2024). Some of these
works aimed to obtain language representations
aligning more closely with human responses, such
as similarity judgments, while others were more
oriented towards improving performance on bench-
marks or downstream applications. Regardless of
the end goal, all these works present multimodality
as a desideratum, assuming that images provide ad-
ditional semantic information that cannot be learnt
from text alone; however, there is little to no work
investigating which these semantic aspects are. In
this paper, we aim to fill this gap by addressing the
following question: Do multimodal models learn
some facets of meaning related to perceptual expe-
riences that language-only models cannot capture?

Operationalising the ‘extra-linguistic’ informa-
tion that multimodal models are allegedly learning
is a prerequisite for approaching this issue. We
did this by relying on a semantic model introduced
by Fernandino et al. (2022) to capture ‘experien-
tial information’. This cognitive model represents
words as n-dimensional arrays where each entry
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corresponds to aggregated human ratings on a pre-
defined experiential attribute (e.g., Vision, Motion,
Harm). We focused on a set of nouns and evalu-
ated the alignment between their representations
provided by the experiential model and those by
comparable unimodal (language-only) and multi-
modal (vision-language and audio-language) com-
putational models. This analysis allowed us to
uncover if multimodal models indeed reflect more
semantic information than language-only models.
Next, we checked whether capturing experiential
information translates into higher alignment with
brain responses recorded with functional magnetic
resonance imaging (fMRI) to the same set of nouns.

Our findings indicate several interesting trends.
First, both vision-language and language-only mod-
els exhibit significant alignment with the experien-
tial model and brain responses, while the audio-
language model displays weak or non-significant
correlations. Second, this alignment is more pro-
nounced for language-only models, which appear
to capture a great deal of brain-relevant information
beyond experiential. Lastly, language-only models
remain more brain-aligned than vision-language
models even when focusing on a set of more con-
crete words, although the gap is reduced. Overall,
our study shows that current multimodal models
learn less brain-relevant information—both expe-
riential and beyond—than comparable language-
only models, highlighting the need to explore dif-
ferent approaches to construct multimodal word
representations.

2 Background

2.1 Embodied cognition

Embodied cognition identifies a suite of theoretical
frameworks holding that language is understood
by perceptual, emotional, or motor simulations
of its content (e.g., Barsalou, 1999; Glenberg and
Gallese, 2012; Zwaan, 2014; Pulvermüller, 2018).
This general principle has received empirical sup-
port from multiple studies, both behavioural and
neuroscientific.

For example, a series of works on the Action-
sentence Compatibility Effect (ACE, Glenberg and
Kaschak, 2002) and its subsequent variants (Bor-
reggine and Kaschak, 2006; Zwaan and Taylor,
2006; Bub and Masson, 2012) revealed a significant
difference in reaction times—attributed to motor
simulations—when participants had to respond to
a sentence (e.g., You passed the note to Art) with a

movement matching (extending their arm) vs. non-
matching (retreating their arm) that mentioned in
the sentence. Similarly, the sentence-picture verifi-
cation task (Stanfield and Zwaan, 2001), where par-
ticipants have to respond to a picture that is either
compatible (an eagle with its wings outstretched)
or incompatible (an eagle with its wings folded)
with a sentence (The eagle is in the sky), and its
variations (Connell, 2007; Hoeben Mannaert et al.,
2017) have also been widely used to demonstrate
the occurrence of perceptual simulation during lan-
guage comprehension. In parallel, a line of neuro-
scientific studies have found evidence that seman-
tic processing may activate motor (among others,
Hauk et al., 2004; Tettamanti et al., 2005; Aziz-
Zadeh et al., 2006) and perceptual brain regions
(Kiefer et al., 2008; Van Dam et al., 2012).

2.2 Multimodal models of semantics
Embodied cognition and related ideas, such as vi-
sual grounding, have percolated from Cognitive
Science to Computational Linguistics, motivating
attempts to build semantic models that learn rep-
resentations from data sources beyond text. Early
efforts in this direction (e.g., Bruni et al., 2014;
Kiela and Bottou, 2014; Lazaridou et al., 2015; Sil-
berer and Lapata, 2012, 2014) were characterised
by 1) a focus on developing human-aligned com-
putational models of meaning and 2) limited com-
putational modelling resources (large datasets of
paired image-text inputs did not exist at the time,
nor did large transformer-based architectures).

Recently, multimodal models have become more
powerful and found application on a variety of
downstream tasks (e.g., image captioning, image
retrieval, or visual question answering). Some sem-
inal works used a contrastive objective to learn
aligned image and text representations (Radford
et al., 2021; Jia et al., 2021), while others—often
inspired by BERT’s (Devlin et al., 2019) successes
in language modelling—applied its underlying in-
tuitions to the vision-language domain (Tan and
Bansal, 2019; Li et al., 2019; Lu et al., 2019; Chen
et al., 2020). Finally, state-of-the-art large vision-
language models (LVLMs, e.g., Li et al., 2023;
Wang et al., 2024; Liu et al., 2024; Deitke et al.,
2024; Laurençon et al., 2024), usually combining
a large language model (LLM) with an image en-
coder, can engage in strikingly human-like conver-
sations about images. In contrast to the early at-
tempts at multimodal modelling, these works share
1) a focus on solving, or improving performance
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Figure 1: Overview of our experimental setup. Representations for the word stimuli are derived from three different
sources: 1) fMRI responses; 2) multimodal and language-only contrastive models; 3) human ratings along the
experiential dimensions of the EXP48 model. Next, pairwise distances between these word representations are used
to populate representational dissimilarity matrices (RDMs). Finally, alignment between representational spaces is
computed by correlating the off-diagonal elements of the RDMs.

on, downstream tasks, and 2) the availability of
massive datasets and large models with billions of
parameters.

For our experiments, we aimed to leverage
models that are powerful while, at the same
time, suitable for drawing cognitively-meaningful
comparisons. The need to satisfy both constraints
prevented us from evaluating state-of-the-art
LVLMs; we elaborate more on our model choices
in Section 3.2.

2.3 Experiential models of semantics

Recently, a few approaches motivated by embod-
ied cognition have introduced models of semantics
aimed at capturing ‘experiential information’, i.e.,
aspects of meaning related to how humans ground
language in experiences. These experiential mod-
els were constructed by asking human annotators to
rank words on a set of pre-defined dimensions. For
example, Fernandino et al. (2022) introduced an
experiential model based on 48 dimensions span-
ning perceptual, emotional, and action-related con-
structs. In two fMRI studies, they found that the
experiential model yields more brain-aligned word
representations than taxonomic and distributional
models; additionally, it contributes unique semantic
information not represented by the other models.

Similarly, Carota et al. (2024) experimented with
a different experiential model based on 11 dimen-
sions and compared its brain alignment against that
of a distributional model. Their study revealed sig-
nificant correlations with brain responses in more

ROIs (regions of interest) for the experiential model
than for the distributional model. However, an inte-
grative model combining both displayed significant
correlations in an even larger number of ROIs, sug-
gesting that experiential and distributional are com-
plementary aspects of human semantic processing.

Despite their merits, experiential models are
bounded in their accuracy by an a priori selection
of dimensions and, relying on human annotations,
remain expensive to construct. These limitations
open the intriguing question of whether experien-
tial information can be captured by computational
models learning semantic representations in a data-
driven fashion.

3 Methods

A schematic of our experimental pipeline is pro-
vided in Figure 1. In the following, we describe in
detail the word stimuli, brain responses, computa-
tional models and evaluation procedures.

3.1 Data and experiential model
For our experiments, we used word stimuli, fMRI
responses and experiential model from Study 2 by
Fernandino et al. (2022).1 We describe each below.

Word stimuli Word stimuli comprise 320 nouns,
half of which refer to objects and the other half

1These materials have been made publicly available by
Fernandino et al. The full list of words and the experiential
features can be found at https://www.pnas.org/doi/
10.1073/pnas.2108091119#supplementary-materials;
fMRI data are available at https://osf.io/87chb/.
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to events. The 160 object nouns include an equal
number of words (40) from four categories (food,
vehicles, animals, tools); likewise, the event nouns
span four semantic subcategories (social event, neg-
ative event, sound, communication).

fMRI responses fMRI responses were collected
from 36 participants. While viewing the above-
mentioned word stimuli one at a time, they were
instructed to rate the frequency with which they ex-
perienced their corresponding entities in daily life.
Voxel-wise activations (beta maps) for each noun
relative to the mean signal across other nouns were
estimated using linear regressions (for additional
details, see Fernandino et al., 2022). Here, we fo-
cus on the betas from voxels within a ‘semantic
network ROI’ defined by Binder et al. (2009) based
on a meta-analysis. Voxel-wise beta coefficients
can be arranged in vectors representing the brain
response elicited by each noun.

Experiential model The experiential model,
hereafter abbreviated as EXP48, represents each
word as a set of ratings on 48 pre-defined dimen-
sions capturing different aspects of people’s experi-
ence with objects/events, e.g., Vision, Hand action
or Unpleasant. The ratings were introduced by
Binder et al. (2016) as part of a wider set of experi-
ential salience norms; they range from 0 to 6 and
were provided by 1743 unique crowdworkers.

3.2 Computational models

Our model choices were motivated by the goal to
maximise comparability across architectures. More
concretely, we selected three models (language-
only, vision-language, and audio-language) com-
parable in terms of fine-tuning objective—the con-
trastive one—and architecture—they all have a pre-
trained BERT (Devlin et al., 2019) as language
encoder.2 One aspect in which these architectures
differ is the amount of training data; however, we
believe this issue does not invalidate our results and
further discuss it in Section 6.

SimCSE (Simple Contrastive Learning of
Sentence Embeddings, Gao et al., 2021) is
a language-only sentence encoder fine-tuned
contrastively on 1M sentences randomly sampled
from English Wikipedia. Matching pairs for the

2All three models were released with both BERT-based
(Devlin et al., 2019) and RoBERTa-based (Liu et al., 2019)
implementations. We used the former in all our experiments.

contrastive objective were created by applying
different dropout masks to the same sentence.

MCSE (Multimodal Contrastive Learning of
Sentence Embeddings, Zhang et al., 2022) is a
vision-language sentence encoder fine-tuned by
jointly optimising a SimCSE objective and a CLIP-
like (Radford et al., 2021) objective. The fine-
tuning data for the first objective is the same as
SimCSE’s; as for the CLIP-like objective, where a
matching pair was defined by an image and its cap-
tion, the fine-tuning data consists of 83K images
from MS-COCO (Lin et al., 2014) annotated with
multiple captions.

CLAP (Contrastive Language Audio Pretraining,
Wu et al., 2023) is an audio-language model whose
language encoder was initialised with pre-trained
BERT weights and fine-tuned on audio-caption
pairs with a CLIP-like objective. The fine-tuning
data includes 633, 526 audio-text pairs, with audio
clips representing human activities, natural sounds,
and audio effects.

For reference, we also tested BERT and Visual-
BERT (Li et al., 2019) as its visual counterpart.

BERT (Devlin et al., 2019) is a transformer-
based language-only model pretrained with two ob-
jectives: masked language modelling and next sen-
tence prediction. Its pretraining data includes the
BooksCorpus (800M words, Zhu et al., 2015) and
English Wikipedia (2500 words). As mentioned
above, SimCSE, MCSE and CLAP fine-tuned pre-
trained BERT architectures.

VisualBERT (Li et al., 2019) is a vision-
language model consisting of a BERT-based lan-
guage encoder (initialised with parameters from
pretrained BERT) and a pretrained visual feature
extractor based on Faster RCNN (Ren et al., 2015).
Its training objectives, which mirror BERT’s, were
masked language modelling with image input and
sentence-image prediction. The vision-language
pretraining data comprises MS-COCO and VQA
2.0 (Goyal et al., 2017). Note that this is not a
contrastive model; we included it for reference as
it can be considered as a vision-language extension
of BERT, but it is not directly comparable with
MCSE, SimCSE and CLAP.

3.3 Extracting representations
Given that all the models we considered were
trained to learn contextualised representations
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Figure 2: Results from representational similarity analysis. On the left, Spearman correlations quantifying the
alignment between word representations from EXP48 and by computational models. On the right, Spearman
correlations indicating the alignment between fMRI responses from human participants and word representations by
computational models.

from sentences, single words may be an out-of-
distribution input. Therefore, following an ap-
proach similar to May et al. (2019), we embedded
the noun stimuli in a set of generic template sen-
tences (e.g., Someone mentioned the <word>,
see Appendix A for the complete list) when pass-
ing them to the models.3 For all templates, we de-
rived word representations from the hidden states
of each layer; more specifically, we selected the
hidden states corresponding to the tokens of the
target word and averaged them across templates.

3.4 Alignment evaluation

RSA To compare model representations against
EXP48 and brain responses, we used representa-
tional similarity analysis (RSA, Kriegeskorte et al.,
2008), which quantifies the alignment between two
representational spaces (either by two models or
by a model and brain responses) as the correla-
tion between representational dissimilarity matri-
ces (RDMs). In our experiments, RDMs were
populated with pairwise cosine distances between
model representations or fMRI responses for all
the unique word-pairs. fMRI RDMs for individ-
ual participants were averaged into one aggregated
RDM. The alignment between this fMRI RDM and
morel-derived RDMs was calculated as a Spearman
correlation.

Partial correlations While RSA allows compar-
ing models’ alignment with EXP48 or brain re-
sponses, it does not reveal whether models explain

3We empirically verified that passing words within tem-
plates rather than in isolation yields higher alignment with
both the experiential model and brain responses (see Ap-
pendix B.1).

shared variance or provide independent contribu-
tions. Fernandino et al. (2022) computed partial
correlations to check how much brain-relevant in-
formation EXP48 shared with the other models
they considered, i.e., two distributional models
(Word2vec and GloVe; Mikolov et al., 2013; Pen-
nington et al., 2014) and two taxonomic models (a
WordNet-based model and a categorical one). We
used the same approach to determine how much
brain-relevant information our tested models share
with EXP48 and with each other. Formally, partial
correlations can be defined as follows: Consider
the RDM from Model A y, the RDM from Model
B x, and the RDM of the brain responses z. The
partial correlation of Model A without Model B is
ρ(ri, zi), where ri = yi − ŷi are the residuals from
the linear regression with equation ŷi = a+ bxi.

4 Results

4.1 EXP48 and brain alignment across models

We performed RSA to obtain a first measure of
model representations’ alignment with EXP48 and
fMRI responses. This analysis was conducted on
model representations averaged across the three
layers yielding the highest alignment individually;
note that these layers may differ when consider-
ing alignment to brain responses vs. EXP48 (see
Appendix B.2 for a visualisation of layer-wise
alignment). The results from RSA against brain
responses and EXP48 are displayed in Figure 2.
All Spearman correlations are statistically signif-
icant (p < 0.05), except for CLAP’s correlation
with brain responses (p = 0.70); we additionally
verified that all the pairwise differences between
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correlations are statistically significant.4

An inspection of correlations against EXP48 in-
dicates BERT as the most aligned model (ρ = 0.53);
SimCSE and MCSE also display moderate correla-
tions with EXP48 (ρ = 0.52 and ρ = 0.45, respec-
tively). In contrast, CLAP’s representations are
poorly aligned with EXP48, exhibiting a correla-
tion of just 0.03. A comparison between vision-
language models (MCSE and VisualBERT) and
their unimodal counterparts (SimCSE and BERT)
reveals that the former, surprisingly, reflect less
experiential information than the latter.

Regarding alignment with brain responses in the
semantic ROI, BERT is again the best model (ρ =
0.23), although it remains less brain-aligned than
EXP48 (ρ = 0.27). All the other models display
positive correlations, with the exception of CLAP,
whose correlation is not statistically significant (ρ =
0.00, p = 0.70). Similarly to the EXP48-alignment
results, here we found that the language-only mod-
els BERT and SimCSE are more brain-aligned than
their vision-language extensions VisualBERT and
MCSE. We delve deeper into the robustness of this
finding in Section 5.

An interesting trend common across results from
both RSAs (against EXP48 and fMRI responses)
is that representations by SimCSE and MCSE—
which have been shown to outperform BERT on
semantic text similarity tasks (Gao et al., 2021;
Zhang et al., 2022)—are less aligned than those by
BERT. A potential explanation for this may be that
we considered single-word representations. Since
contrastive fine-tuning, as applied to SimCSE and
MCSE, optimises sentence-level representations as
opposed to token-level ones, it could be that some
token-level semantic properties initially learnt by
BERT got somehow diluted through this process.

4.2 Experiential information vs. unique
contribution in models’ brain alignment

Results from the partial correlation analysis are dis-
played in Figure 3, whose left-hand panel shows
how much EXP48 representations align with brain
responses without the information they share with
each of the other models. An interesting observa-
tion is that the lowest correlations were obtained

4Statistical significance was determined by applying a
Fisher transformation to the correlation coefficients from each
pair of models and calculating the p-value associated with
the difference between the two z-scores. All p-values were
Bonferroni-corrected with α = 0.05. The same approach for
verifying statistical significance was applied to all correlation
comparisons throughout the paper.

when regressing out BERT and SimCSE. This pro-
vides an interesting complement to the findings
from RSA against EXP48 representations: RSA
shows that BERT and SimCSE share substantial
representational information with EXP48, and par-
tial correlations suggest that this information is also
brain-relevant. Regarding models’ brain alignment
without EXP48, displayed in Figure 3’s right-hand
panel, a noteworthy finding is that BERT’s and Sim-
CSE’s representations are the most brain-aligned
even after regressing out EXP48. This suggests that
these models learnt some semantic information that
is not captured by EXP48 but is still reflected in
brain responses.

Additionally, for each model we checked which
proportion of its initial brain alignment is at-
tributable to unique contribution as opposed to in-
formation shared with EXP48. This can be visu-
alised by comparing the dark-shade bars against
the light-shade ones in the right-hand panel of Fig-
ure 3. An interesting result revealed by this compar-
ison is that, although MCSE is more brain-aligned
than VisualBERT, their unique contribution without
EXP48 is the same in absolute value (ρ = 0.06); in
other terms, 50% of VisualBERT’s brain alignment
is due to unique information, while in MCSE it is
32%. Regarding BERT and SimCSE, the majority
of their initial brain alignment is eroded when re-
gressing out EXP48; however, the asymmetry is not
substantial, and the unique contribution accounts
for more than 40% of the initial brain alignment in
both models. As for CLAP, it exhibits a weak neg-
ative correlation that is not statistically significant,
confirming that the model does not contribute any
brain-relevant information.

Finally, we used partial correlations to com-
pare vision-language models (VLMs) against their
language-only counterparts (LMs). We found that
neither MCSE (ρ = 0.00; p = 0.60) nor VisualBERT
(ρ = 0.00; p = 0.66) exhibit statistically significant
correlations with brain responses once SimCSE
and BERT, respectively, are regressed out. Cru-
cially, this indicates that VLMs did not learn any
additional brain-relevant information besides that
already captured by their LM counterparts.

5 Assessing Results’ Robustness

RSA results revealed a consistent advantage of
language-only models over the multimodal ones.
This finding contrasts with the expectation—shared
across a great deal of work on multimodality and
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Figure 3: Results from partial correlation analyses. On the left, Spearman correlations between brain responses and
the residuals obtained regressing model RDMs out of the EXP48 RDM. The dotted line indicates EXP48’s initial
brain alignment without removing any information. On the right, Spearman correlations between brain responses
and the residuals obtained regressing the EXP48 RDM out of model RDMs. The bars in lighter shades indicate
models’ initial brain alignment.

language modelling—that training models on di-
verse data modalities, as opposed to text alone,
should yield more human-like language represen-
tations. In the following, we present two analyses
aimed at assessing the robustness of these findings.
Given that the audio-language model CLAP did not
achieve a statistically significant brain alignment,
we excluded it from further analyses and focused
on the remaining vision-language and language-
only architectures.

5.1 Do caption-like templates result in
improved brain alignment?

As pointed out by Tan and Bansal (2020), im-
age captions are examples of grounded language,
which differs from other types of natural language
along many dimensions. Since the VLMs we eval-
uated were trained on image-caption pairs, they
may have over-fitted to the language present in cap-
tions. Therefore, it is possible that the sentence
templates we used to obtain contextualised word
representations from the models are somehow out-
of-distribution for VLMs.

To control for this potential confound, we re-
extracted word representations employing different
templates, whose structure was modelled around
captions (e.g., There is an <object> in a
<place>, or A <person> is <verb in -ing>
in a <place>). These structures were iden-
tified based on a manual inspection of captions
from MS-COCO, which was part of both MCSE’s
and VisualBERT’s training. Given the challenges
of creating caption-like templates providing a fit-
ting context for all the word stimuli, we used dif-
ferent sets of templates for each sub-category of

words described in Section 3.1 (e.g., There is a
<food-word> on a table in a restaurant
or A few people gathered for a <social
event-word>). We provide the complete list of
templates in Appendix A.

The procedure for calculating brain alignment
was the same as that employed in the main ex-
periment. Spearman correlations between model-
derived RDMs and the fMRI-derived RDM are
displayed in Figure 4. All correlations are sta-
tistically significant, as well as correlation differ-
ences between models. A comparison across mod-
els confirms the trend from the main experiment:
Language-only models are more brain-aligned than
their vision-language counterparts. This suggests
that the finding is robust and not a by-product of
the templates where word stimuli were embedded.

The dotted lines in Figure 4 allow comparing
the brain alignment model representations achieve
when using caption-like templates vs. when using
the templates from the main experiment. This com-
parison reveals that all models—not only VLMs—
exhibit higher brain alignment when using caption-
like templates. We interpret this as indicating that
caption-like templates are not more in-distribution
for VLMs, but rather provide a better-specified con-
text that is beneficial to all models.

5.2 Do VLMs yield more brain-aligned
representations for objects vs. events?

Provided that VLMs learn additional semantic in-
formation, it could be that not all word representa-
tions benefit from multimodal training to the same
extent; instead, a potential advantage may be more
prominent for words referring to visual contents.
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Figure 4: Spearman correlations indicating alignment
between model representations extracted using caption-
like templates and fMRI responses. Dotted lines indi-
cate the initial correlations obtained with the templates
from the main experiment.

The words used in our main experiments include
nouns from multiple semantic categories (see Sec-
tion 3.1 for more details), which may largely vary
in their degree of ‘visual-ness’. Therefore, it is
possible that we did not detect additional brain-
relevant information learnt by VLMs because we
focused on the ‘wrong’ words.

To check whether this is the case, we further
analysed two word subsets with different levels of
concreteness. The subsets were identified by lever-
aging the semantic labels already present in our
word set, i.e., objects and events.5 We repeated
RSA separately for these two word subsets fol-
lowing the same procedure employed in the main
experiment.

The results of this analysis are displayed in Fig-
ure 5. A first observation is that—for all mod-
els except VisualBERT—correlations are statisti-
cally significantly stronger for events than objects.
This pattern was also reported by Fernandino et al.
(2022), who attributed it to “higher variability of
pairwise similarities for the neural representations
of event concepts”.

A second interesting result is that the model
ranking we observed analysing the entire word set
(BERT > SimCSE > MCSE > VisualBERT) is repli-
cated for events but not for objects, where none of
the differences between model correlations is statis-
tically significant. While there is a negative effect
overall, further training BERT on image-text pairs
(as in VisualBERT) or fine-tuning it with a con-
trastive objective (as in SimCSE and MCSE) does

5In their supplementary materials, Fernandino et al. (2022)
report that the average concreteness score for objects is 4.9,
while for events it is 3.6.

Figure 5: Spearman correlations indicating alignment
between model representations and fMRI responses.
Correlations are displayed separately for object-words
and event-related words.

not significantly alter the initial brain alignment
of its object-word representations. Interestingly,
EXP48, which we included for reference, is outper-
formed by BERT on events; however, it remains
statistically significantly more brain-aligned than
the other models on objects.

Finally, comparing vision-language models
against their language-only counterparts shows that
BERT and VisualBERT do not significantly dif-
fer regarding the brain alignment of their object-
word representations, while SimCSE and MCSE
do (with SimCSE remaining more aligned).6 As
for event-word representations, SimCSE and BERT
are, respectively, significantly more brain-aligned
than MCSE and VisualBERT. These results further
support the robustness of our initial finding, i.e.,
that LMs models are more aligned than their VL
counterparts. However, the reduced gap between
the two model types when considering object-word
representations vs. event-word ones suggests that
VLMs do, comparatively, learn more brain-aligned
representations for objects than events.

6 Discussion

While multimodal models are often expected
to incorporate additional semantic aspects that
language-only models cannot learn, our results re-
veal that their word representations are less aligned
with EXP48 and fMRI responses than those by
LMs. Moreover, within multimodal models, the
vision-language ones show moderate positive corre-
lations with EXP48 and fMRI responses, while the

6Note that, since we used Bonferroni corrections, this dif-
ference is statistically significant here—but not when compar-
ing all five models—due to a change in the number of relevant
comparisons (2 vs. 5).
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audio-language one correlates weakly with EXP48
and does not yield a significant correlation with
brain responses. Below, we discuss factors that
may have played a role in these partially unex-
pected results.

Amount of training data While being compara-
ble in terms of learning objectives and architec-
ture, SimCSE, MCSE and CLAP still differ in
the amount of fine-tuning data. For the SimCSE–
MCSE comparison, this does not appear to be a
confound: Despite being fine-tuned on less sen-
tences than MCSE, SimCSE still proves to be more
EXP48- and brain-aligned. A potential reason for
this may be that the grounded language employed
in image captions causes a shift of semantic rep-
resentations towards more concrete meanings. As
for CLAP, the smaller amount of fine-tuning audio-
caption pairs, together with its optimising only a
CLIP-like objective (without a SimCSE-like one),
may have played a role in its poor alignment.

Multimodal pretraining vs. fine-tuning A po-
tential explanation for the inferior performance of
multimodal models could be that training on mul-
timodal pairs is not as effective during fine-tuning
as it is during pre-training. However, we verified
that not even the language encoder from the power-
ful CLIP (Radford et al., 2021)7—pretrained con-
trastively on 400M image-text pairs—yields more
brain-aligned word representations than BERT and
SimCSE (see Appendix B.3).

Models from present vs. past studies An inter-
esting result was that the correlations with fMRI
responses we observed for SimCSE, MCSE and
BERT are higher than those achieved by the com-
putational models (GloVe and Word2vec) tested by
Fernandino et al. 2022 (see Appendix B.3). This
finding aligns with previous work showing that
transformer-based architectures are more predic-
tive of brain responses during language processing
than word-level embedding models and recurrent
neural networks (Schrimpf et al., 2021). In addi-
tion, we found that the LMs and, to a larger extent,
the VLMs we tested learn brain-relevant semantic
information beyond that captured by EXP48. This
partially echoes the results by Carota et al. (2024),
with the difference that the computational model
included in their study was strictly distributional.

7This model was excluded from the main experiment as it
is not directly comparable with the other architectures.

Information captured by EXP48 While the abil-
ity of EXP48 to model brain responses has been
validated by previous research, it may still be a
suboptimal model of perceptual experience for two
main reasons. First, all dimensions in EXP48, in-
cluding the more perceptual ones like Colour or
Sound, are somewhat abstract; in this sense, they
may fail to capture low-level perceptual informa-
tion relevant for modelling human word represen-
tations and, perhaps, learnt by multimodal models.
Second, EXP48 encodes experiential dimensions,
e.g., Pleasant or Time, which are not strictly per-
ceptual and may be hard, if not impossible, to learn
for vision-language and audio-language models.

Type of stimuli Our study focuses on single
words that are not included in longer text passages.
To some extent, our results suggest that this may
affect machine language processing; indeed, we
found that embedding words in sentences, as op-
posed to passing them to the models as is, yields
more brain-aligned representations (see also Ap-
pendix B.1). In a similar vein, the amount of con-
text may influence human language processing: As
observed by Zwaan (2014), context determines the
perceptual detail of the mental simulations people
engage during language comprehension. There-
fore, it may be that the nouns used in the fMRI
experiment did not prompt multimodal semantic
knowledge enough for it to be detected in our study.

7 Conclusions

Our study provides an in-depth comparison be-
tween multimodal and language-only architectures
in their ability to capture experiential semantic
information and alignment with brain responses.
Contrary to common assumptions, we found mul-
timodal models to produce word representations
less brain-aligned and experience-informed than
language-only models.

These results have several implications for fu-
ture work. First, they invite caution against assum-
ing that technical innovations allowing models to
solve additional downstream tasks should necessar-
ily make them more ‘human-like’. Second, they
indicate that there is significant room for improv-
ing current computational language models so that
they learn the brain-relevant experiential informa-
tion they currently lack—how to concretely achieve
this remains an open question.
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Limitations

Our experimental setup focuses exclusively on
contrastive models which are not state-of-the-
art for both linguistic and multimodal down-
stream tasks. More recent architectures pretrained
autoregressively—e.g., models from the LLaVA
family (Liu et al., 2024), Molmo (Deitke et al.,
2024), or Qwen2.5-VL(Bai et al., 2025)—may ex-
hibit different patterns. However, the complexity
of their pre-training and fine-tuning steps makes
it hard to set up a controlled comparison ruling
out factors such as the amount of training data or
training objectives. We therefore explicitly decided
to not include this type of model in our investiga-
tion. This decision was further informed by pre-
liminary evidence that generative vision-language
models achieving stronger performance on down-
stream tasks are less brain-aligned than previous
architectures (Bavaresco et al., 2024).
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Appendix

A Sentence Templates

The neutral sentence templates where the word
stimuli were embedded in order to obtain contex-
tualised representations from the computational
models were the following:

Someone mentioned the <word>.

The post was about the <word>.

Everyone was talking about the <word>.

They were all interested in the <word>.

People know about the <word>.

In one of our additional experiments (see
Section 5.1), we used caption-like sentences to
check whether they were more in-distribution for
vision-language models and, therefore, yielded
more EXP48- and brain-aligned representations.
Below, we report the caption-like templates used
for each word sub-category.

Templates used for the sub-category food:

There is a <word> on a table in a restaurant.

A <word> is on a kitchen table.

A woman is eating a <word>.

A <word> with a few glasses around.

A close-up of a <word>.

Templates used for the sub-category vehicle:

There is one man in a <word>.

A <word> is surrounded by a few people.

A woman is posing next to a <word>.

A <word> with a young man next to it.

A close-up of a <word>.

Templates used for the sub-category tool:

There is a man holding a <word>.

A <word> is lying on the ground.

A woman is using a <word>.

A <word> with some people in the background.

A close-up of a <word>.

Templates used for the sub-category animal:

There is a <word> eating voraciously.

A man is feeding a <word>.

A woman next to a <word>.

A <word> with a little girl staring at it.

A close-up of a <word>.

Templates used for the sub-category negative event:

There is a crowd looking scared because of a

<word>.

Many people are trying to shelter from a <word>.

A <word> happening in a big city.

A <word> with many people involved.

A picture of a <word>.

Templates used for the sub-category social event:

There is a small crowd attending a <word>.

A few people are gathered for a <word>.

A <word> attended by a large group of people.

A <word> with many people involved.

A picture of a <word>.

Templates used for the sub-category communica-
tion:

There is a small crowd at a <word>.

A few people are participating in a <word>.

A <word> in a crowded room.

A <word> with many people involved.

A picture of a <word>.

Templates used for the sub-category sound:
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There is a man hearing a <word>.

A few people seem to hear a <word>.

A <word> is heard by a few people.

A <word> with a few people listening to it.

A picture of a <word>.

B Additional RSA Results

B.1 Single-word vs. contextualised
representations

Our choice to derive word representations by in-
cluding them in sentences was guided by the intu-
ition that single words could have been an out-of-
distribution input for computational models trained
to output contextualised word representations. We
empirically verified that representations obtained
by embedding words within templates yield higher
alignment than those obtained by passing single
words to the models. We show the EXP48 and
brain alignment obtained with both embedding-
extraction procedures in Figure 6.

B.2 Layer-wise RSA results
In the main paper, we reported RSA results calcu-
lated from model representations averaged across
the three layers yielding the highest alignment in-
dividually. Here, we provide a layer-wise visualisa-
tion of RSA results, which allows observing how
EXP48 vs. brain alignment changes throughout
model layers. Specifically, layer-wise Spearman
correlations against EXP48 are displayed in Fig-
ure 7, while those against fMRI responses are in
Figure 8.

B.3 RSA with additional baselines
For completeness, in Table 1 we report RSA results
including three additional models: CLIP (Radford
et al., 2021), a vision-language model pretrained
contrastively on 400M image-caption pairs, and
the distributional models GloVE (Pennington et al.,
2014) and Word2vec (Mikolov et al., 2013). The
distributional models were originally included in
Fernandino et al. (2022); note that the brain cor-
relations we report differ from the ones from Fer-
nandino et al. (2022), as they computed an average
across participant-wise brain correlations, while
we averaged brain RDMs across participants be-
fore computing correlations.

Model ρ EXP48 ρ Brain

SimCSE 0.52 0.22
MCSE 0.45 0.19
CLAP 0.03 0.00
BERT 0.53 0.23
VisualBERT 0.27 0.12
CLIP 0.41 0.14
GloVe 0.45 0.14
Word2vec 0.42 0.125

Table 1: Spearman correlations quantifying the align-
ment of models’ representational spaces with EXP48
and brain responses.
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Figure 6: Spearman correlations observed from model representations obtained by passing single words vs. words
embedded in templates. The left-hand panel shows the alignment with EXP48 and the right-hand one with brain
responses.

Figure 7: Spearman correlations indicating how rep-
resentational similarity between model representations
and EXP48 representations changes along model layers.

Figure 8: Spearman correlations indicating how rep-
resentational similarity between model representations
and brain responses changes along model layers.
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Abstract

Recent work has argued that large language
models (LLMs) are not “abstract reasoners”,
citing their poor zero-shot performance on a
variety of challenging tasks as evidence. We
revisit these experiments in order to add nu-
ance to the claim. First, we show that while
LLMs indeed perform poorly in a zero-shot
setting, even tuning a small subset of parame-
ters for input encoding can enable near-perfect
performance. However, we also show that this
finetuning does not necessarily transfer across
datasets. We take this collection of empirical re-
sults as an invitation to (re-)open the discussion
of what it means to be an “abstract reasoner”,
and why it matters whether LLMs fit the bill.1

1 Introduction

The question of whether large language models
(LLMs) are “abstract reasoners” has been the fre-
quent subject of recent work, both directly (Hu
et al., 2023; Webb et al., 2023; Gendron et al.,
2024; Musker et al., 2024) and indirectly (Chol-
let, 2019; Mitchell et al., 2023; Moskvichev et al.,
2023). The answer to this question feels weighty.
LLMs currently dominate modern approaches to
AI, and abstract reasoning is arguably the linchpin
of general and flexible intelligence (Gentner et al.,
2001; Han et al., 2024; Mitchell, 2021). If LLMs
are not abstract reasoners, it follows that fundamen-
tal changes are needed in how AI is developed.

The challenge with this question is that there is
little consensus on what it means to be an “abstract
reasoner”, and what evidence would convincingly
demonstrate that an LLM, or any model, is or is
not one. Most recently, it has been argued that
LLMs are not abstract reasoners on the basis of
their poor performance when tested out-of-the-box
on adapted visual, analogical, and quantitative rea-
soning tasks (Figure B.1 for examples) that require

1Code and resources are available at: https://github.
com/tttyuntian/abstract_reasoner_llm

models to infer and generalize patterns from a lim-
ited number of observations (Gendron et al., 2024;
Mitchell et al., 2023; Stevenson et al., 2024). In
this work, we revisit this experimental setup. We
replicate the results of earlier studies, but add addi-
tional experiments which demonstrate the need for
more nuance before drawing strong conclusions.

Specifically, we follow the experimental design
from Gendron et al. (2024), and replicate their
finding that off-the-shelf pretrained LLMs perform
badly across a range of challenging reasoning tasks
(§4). However, we find that optimizing just the em-
bedding layer for the task (leaving the transformer
blocks frozen) all but eliminates the problem, allow-
ing the model to perform comparably to finetuning
the entire model, and sometimes even solve the task
perfectly (§5). This result extends beyond simple
embeddings and, in fact, a frozen pre-trained LLM
can perform well on visual reasoning tasks as long
as the visual encoder is fine-tuned on in-domain
task data (§6).

Together, these results paint a more subtle pic-
ture of LLMs: much of their representations and
inferential capabilities appear to be transferable
across very diverse tasks, but non-trivial effort is
required on the input side for each new task in or-
der to harness these capabilities. In light of this, we
(re-)open the larger discussion which is simultane-
ously empirical and philosophical (§7): What does
it mean to be an abstract reasoner, and why do we
care whether LLMs fit the bill?

2 Related Work

2.1 Analogical Reasoning

Prior work has studied the question of abstract rea-
soning of LLMs via analogical reasoning, such as
matrix reasoning (Webb et al., 2023), letter-string
analogies (Mitchell, 2021; Hofstadter et al., 1995)
and pointer-value retrieval (Zhang et al., 2021b).
These analogical reasoning benchmarks require a
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🧊
Token Embedding

(a) Experiment 1: Evaluation with Frozen LLM on Abstract 
Reasoning Tasks

(b) Experiment 2: Finetuning Only the Embedding of 
LLM on Abstract Reasoning Tasks

🧊
Transformer Blocks

🧊
Transformer Blocks

(c) Experiment 3: Finetuning Only the Visual Encoder + Projection 
of Multimodal LLM on Abstract Visual Reasoning Tasks

🧊 
Token Embedding

🔥 
Visual 
Encoder

🔥 
Token Embedding

🧊
Transformer Blocks

Frozen

Finetuned

Figure 1: Illustration of our experimental settings. In Setting (a), we freeze the whole LLM and run evaluations.
This is treated as language baseline when image captions are inputs on abstract visual reasoning tasks. In Settings
(b) and (c), we freeze the pretrained transformer blocks and finetune only the input layers (i.e., token embedding
layer and visual encoder). In Setting (c), we freeze the token embedding layer to study the impact of tuning the
visual encoder in a controlled setting. Note that the inputs are pure language in Settings (a) and (b), while the inputs
are language prompts with image representations in Setting (c).

model to infer the patterns from a limited number
of observations and apply the discovered patterns
to the new queries.

Despite the impressive performance of LLMs,
there is yet no consensus on whether LLMs are
strong analogical reasoners. Some studies show
evidence suggesting that LLMs can even surpass
the human baseline on analogical reasoning tasks
(Hu et al., 2023; Webb et al., 2023), while the oth-
ers show that LLMs achieve very limited perfor-
mance on a set of analogical reasoning benchmarks
(Gendron et al., 2024) or they are not robust to
counterfactual examples or irrelevant information
(Lewis and Mitchell, 2024; Musker et al., 2024).
We use similar tasks and models as the prior work,
but incorporate additional tasks and a wider range
of finetuning experiments in order to situate the
results within a larger discussion about abstract
reasoning.

2.2 Visual Analogical Reasoning

Analogical reasoning can go beyond symbols and
words and involve visual input, such as in ARC
(Chollet, 2019), ACRE (Zhang et al., 2021a),
RAVEN (Zhang et al., 2019; Hofstadter et al., 1995)
and MEWL (Jiang et al., 2023). Recent approaches
on visual analogical reasoning can be categorized
into neuro-symbolic methods (Mao et al., 2019;
Hudson and Manning, 2019), or neural networks
with implicit representations (Ding et al., 2021;
Sun et al., 2024; Bhattacharyya et al., 2023). Both
approaches roughly follow the same outline of the
perception stage and the reasoning stage. The per-
ception stage usually relies on task-specific visual
encoders, such as symbolic object encoders (Zhang
et al., 2021a), object detectors (Ding et al., 2021),
or on task-specific training strategies for these vi-

sual encoders (Sun et al., 2024; Bhattacharyya
et al., 2023). The reasoning stage introduces induc-
tive biases by developing task-specific reasoning
modules (Hu et al., 2021b; Benny et al., 2021). In
this work, we investigate if the transformer blocks
of a pretrained LLM can be used as a reasoner for
different visual analogical reasoning tasks.

2.3 Multimodal Large Language Models

Prior work shows that transformer blocks pre-
trained on natural language can be transferred to
non-language sequence modeling problems by op-
timizing new input and output layers (Lu et al.,
2022). With the rise of LLMs, recent work freezes
pretrained vision models and pretrained LLMs, and
only learns a mapping to project visual representa-
tions to language latent space in order to perform
on multimodal tasks (Merullo et al., 2023; Liu et al.,
2023; Li et al., 2023; Liu et al., 2024). Tong et al.
(2025) investigates the impact of vision-only mod-
els in multimodal LLMs and reaches impressive
performance on downstream tasks. Our work is
similar to these models, but connects it to a larger,
more philosophical debate about the meaning of
“abstract reasoning”.

3 Datasets

3.1 Reasoning Tasks from Gendron et al.

We follow the evaluation benchmark used by Gen-
dron et al. (2024) to quantitatively measure the so-
called “abstract reasoning” capabilities of language
models. This benchmark contains seven tasks, each
of which evaluates the ability of a model to infer
patterns from a limited number of examples. These
seven tasks can be divided into two categories:
open question answering (OPQA) and multiple-
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“on” “off” “on”

context query

(a) Textual reasoning task

You are a helpful assistant that determines whether the light will be activated by the objects. Some objects can activate 
the light. The other objects cannot activate the light. There are three possible light states: on, off, and unknown.
Input: there is a brown cube.  Light: on.
Input: there is a yellow sphere.  Light: off.
Input: there is a brown cube and a blue cylinder.  Light: on.
Input: there is a blue cylinder.  Light: unknown.

You are a helpful assistant that determines whether the light will be activated by the objects. Some objects can activate 
the light. The other objects cannot activate the light. There are three possible light states: on, off, and unknown.
Input: [context_image_1_representation]  Light: on.
Input: [context_image_2_representation]  Light: off.
Input: [context_image_3_representation]  Light: on.
Input: [query_image_1_representation]  Light: unknown.

(b) Visual reasoning task

“unknown”

Figure 2: Illustration of the use of language models for text-based and image-based versions of ACRE. Each data
example will be formulated into a prompt for an LLM to make a prediction for the query. In textual reasoning task,
each context frame is represented by a frame caption. In visual reasoning tasks, each context frame is represented
by an encoded frame representation.

choice question answering (MCQA). OPQA tasks
require a model to generate the correct answer,
while MPQA tasks require a model to select the cor-
rect answer from the given set of answer candidates.
OPQA tasks include Abstract Reasoning Chal-
lenge (ARC) (Chollet, 2019), BIG-Bench dataset
(BBF) (Rule, 2020; Srivastava et al., 2022), Evals-P
(Achiam et al., 2023), and Pointer-Value Retrieval
(PVR) (Zhang et al., 2021b). MCQA tasks include
ACRET (Zhang et al., 2021a), RAVENT 2(Zhang
et al., 2019), and Evals-P (Achiam et al., 2023). For
ACRET and RAVENT , we also consider ACRET -
Symb and RAVENT -Symb, where the panel de-
scriptions are converted into symbols (e.g., using
integers to represent different objects).

3.2 Additional (Visual) Reasoning Tasks

In addition to the models and tasks considered by
Gendron et al. (2024), we additionally consider

2ACRET and RAVENT are text-based version of the origi-
nal tasks.

how well LLM representations transfer fo the mul-
timodal language model framework (MLLM). To
support these experiments, we consider two visual
reasoning tasks: ACRE (Zhang et al., 2021a) and
MEWL (Jiang et al., 2023). In ACRE, given the 5
context frames and 1 query frame, a model needs
to predict the activation status of Blicket detector in
the query frame, which can be on, off, or unknown.
In MEWL, given 6 context frames and 1 query
frame, a model needs to understand the meaning
of the novel words and select the correct utterance
out of 5 options for the query frame.

4 Frozen Pretrained LLMs

We first seek to replicate Gendron et al. (2024)’s
finding that frozen pretrained LLMs achieve low
performance across a large suite of reasoning tasks.
We reproduce these evaluations on LLaMA2 with
7 billion parameters (Touvron et al., 2023). Table
1 shows the results on OPQA and MCQA tasks.
We observe that even though there are small gaps
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OPQA MCQA

ARC BBF Evals-S PVR RAVENT RAVENT -Symb ACRET -Text ACRET -Symb Evals-P RAVENT RAVENT -Symb

Random - - - - - - 33.3 33.3 50.0 12.5 12.5
LLaMA2-7b-chat (NZ) 0.5 10.8 0.0 0.0 0.0 0.1 1.4 0.3 50.0 2.6 14.9
LLaMA2-7b-chat (Ours) 1.0 26.4 0.0 21.8 0.0 1.0 26.4 38.1 52.0 12.9 11.4

Table 1: Performance of frozen pretrained LLMs on open question answering (OPQA) and multiple-choice question
answering (MCQA) benchmarks. We show the results LLaMA2-7b-chat(NZ) reported in Gendron et al. (2024) and
our reproduced results (Ours) following the evaluation from Gendron et al. (2024).
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Figure 3: Performance of finetuned LLMs on OPQA (ARC and PVR) and MCQA (ACRET and RAVENT )
benchmarks. LLMs with finetuned embedding layer perform significantly better than their pretrained counterparts,
and perform on par with or even surpass the fully finetuned LLMs with LORA. Note that ACRET and RAVENT are
text-based version of original datasets, which may make the tasks easier to solve.

between the original results and the reproduced
results, the performance of the pretrained LLMs
are still low. Even when the answer candidates
are provided in MCQA tasks, the models mostly
perform as poor as random baselines (e.g., 33.3%
on ACRE and 12.5% on RAVEN). We observe
significant gaps between original results and ours
on BBF and PVR, and attribute them to the choice
of parser used to process the model’s predictions.

Overall, our results are, if anything, stronger
than what has been previously reported in this eval-
uation setting. But even so, it is hard to argue that
these numbers represent “strong” performance. We
thus agree with Gendron et al. (2024) that these
results indicate poor transfer ability. What requires
additional investigation, however, is whether this
poor transfer is interpretable as a lack of abstract
reasoning ability.

5 Finetuned Embedding Layers

Given that pretrained LLMs perform poorly off-
the-shelf, it is natural to ask whether they can be
adapted to these task, and if so, just how much
adaptation is necessary. We explore two ways to
finetune the LLMs: (1) finetuning all layers with
low-rank adaptation (LoRA) (Hu et al., 2021a);

(2) finetunning only the embedding layer of the
LLMs. LoRA finetuning has become a standard
way of adapting a model to a task and represents
an upper bound on how well the model could be
made to perform the task under the most permissive
conditions. In contrast, finetuning just the embed-
ding layer represents a conceptually different type
of transfer with respect to the question of this pa-
per. Namely, finetuning just the embeddings is
analogous to changing just the input to the system–
e.g., ensuring the input is in the format the system
expects–but leaving the system itself unchanged
(see additional discussion and qualifications about
this analogy in §7).

We finetune the embedding layer for 50 epochs
using AdamW optimizer (Loshchilov and Hutter,
2019) with early stopping based on the validation
set. Following Gendron et al. (2024), we conduct
experiments on 2 OPQA tasks (ARC, PVR) and 2
MCQA tasks (ACRET , RAVENT -mcqa3.).

Figure 3 shows the results of finetuned LLaMA2.
We observe that LoRA-finetuned models perform
significantly better than their pretrained counter-

3We are aware of the defects of RAVEN, and we use the
original RAVEN since it was previously used by Gendron et al.
(2024)
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Figure 4: Data efficiency analyses on LLaMA2-7b with token embedding layer finetuned on center-single or
center-single-shuffled and further finetuned on 2x2 and in-center tasks in RAVEN with limited amount of
data. Y-axis (#Training Examples) represents the absolute number of examples used for finetuning. From-scratch
means the token embedding of a pretrained LLaMA2-7b is directly finetuned on 2x2 and in-center tasks. Given
that there are 8000 training examples in total, we observe that after finetuning on center-single, the model
becomes significantly more data efficient. By comparing center-single and center-single-shuffled lines, we
observe that data efficiency of the model mainly comes from the occurrences of task-relevant tokens, rather than the
reasoning logic of the tasks.

parts, and can even solve ACRET and RAVENT

perfectly. Moreover, LLaMA2 with a finetuned em-
bedding layer can perform on par with the LoRA-
finetuned LLaMA24.

Generalizability and Data Efficiency. We con-
duct experiments on RAVENT to further look into
two properties of the finetuned input layers: gen-
eralizability and data efficiency. An ideal abstract
reasoner is expected to generalize to novel tasks
with limited amount of observations.

We take LLaMA2-7b’s token embedding layer
finetuned on one task variant (namely, the
center-single task) and further finetune this
layer with varying amount of training examples
for 500 steps on two different task variants (2x2
and in-center), both of which require reason-
ing over more attributes (e.g., different object
alignments). Figure B.5 shows examples of
these tasks. We consider three settings: (1)
“center-single”, where the token embedding has
been finetuned on the original center-single
task; (2) “center-single-shuffled”, where
the token embedding has been finetuned on
center-single task with randomly shuffled la-
bels. This setting preserves the visual features,
but breaks the logical “reasoning” structure of
the task, and thus serves as a test of how much
of the positive transfer is due to low-level visual

4We attribute the low performance of ARC to its com-
plexity and the length of each data sequence (excluding the
expected answer), where 75% of data has >2000 tokens.

cues vs. higher-level more abstract features; (3)
“from-scratch”, where the token embedding of
a pretrained LLaMA2-7b is directly finetuned on
2x2 and in-center tasks. We use this to study the
impact of finetuning on center-single task.

Figure 4 shows the results. LLaMA2-7b with to-
ken embeddings finetuned just on 80 examples can
perform competitively aganist LLaMA2-7b directly
finetuned on full dataset (8k examples) of the tasks.
The fairly small gap between the center-single
and center-single-shuffled lines suggests that
the positive transfer is primarily explained by the
lower-level visual features rather than the reasoning
logic of the tasks.

6 Visual Encoder Trained from Scratch

Prior work has shown that transformer blocks pre-
trained on natural language can be tranferred to
non-language sequence modeling tasks, such as
image recognition and protein fold prediction (Lu
et al., 2022). Given the surprising effectiveness of
finetuning just the embedding layer of LLaMA2 on
text-only abstract reasoning tasks, we hypothesize
that the frozen transformer blocks of a pretrained
LLM will perform well on abstract visual reason-
ing tasks if the visual encoder is tuned for the task.
That is, we follow the multimodal LLM framework
(MLLM) which consists of a visual backbone, a
language backbone, and a linear projection layer
which maps visual representations to language la-
tent space. We keep the transformer blocks and
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Method I.I.D. Compositional Systematic

Language LLaMA2-7b 26.4 26.1 29.9
Baseline GPT-4 66.4 66.4 64.0

GPT-4-Turbo 69.7 69.9 67.4

NS-OPT 66.3 69.0 67.4
ALOE - 91.8 93.9

Existing IV-CL 93.0 93.2 92.6
Approaches LRR - 98.2 99.2

LLaVA-NeXT-Mistral-7B 38.4 36.9 36.9
GPT-4o 62.6 61.5 61.7

Ours LLaMA2-7b-Object 95.5 97.5 86.5

(a) ACRE

Method shape color material object composite relation bootstrap number pragmatic Avg.

Language LLaMA2-7b 49.7 61.2 52.5 73.8 35.2 19.2 29.5 21.8 22.2 40.6
baselines BERT∗ 94.8 98.8 97.5 19.5 97.8 22.2 62.2 21.8 99.8 68.3

GPT-3.5 96.8 82.3 87.0 98.2 88.3 20.0 45.8 22.7 26.7 63.1

Existing ALOE 34.2 33.2 31.0 19.5 30.5 21.5 27.5 23.3 20.8 26.8
Approaches Flamingo-1.1B 49.3 35.3 48.5 19.2 38.2 18.8 57.3 84.2 18.0 41.0

Ours LLaMA2-7b-Object 59.3 100.0 98.8 96.8 50.4 17.3 87.0 99.5 19.2 69.8

(b) MEWL

Table 2: Results of LLaMA2-7b with train-from-scratch visual encoders on sub-tasks in ACRE and MEWL. Bolded
results are the best results, and underlined ones are the second best. All language baselines are frozen, except BERT
which is finetuned on MEWL tasks. The results show that frozen LLaMA2 with learned visual encoder perform
significantly better than its language counterpart and even outperform the existing approaches.

the token embedding layer of language backbone
frozen, and only train the visual encoder and the
projection layer. If this MLLM with a trained vi-
sual encoder can perform better than its language
backbone with oracle visual perception, then it pro-
vides further evidence for the above interpretation
of the frozen LLM as a highly transferable system.

6.1 Variants of Image Inputs

In order to run these experiments, we consider three
variants of image inputs. Figure B.3 shows the
examples of each variant.

Symbol. A frame is represented by a set of multi-
hot object representations, where each object repre-
sentation is the concatenation of its one-hot vectors
for object attributes (i.e., color, material, and shape)
and a vector of object location information. This
mimics the experiments in §5 by assuming oracle
visual perception, and allows us to directly contrast
language and visual inputs.

Object. A frame is represented by object repre-
sentations, where each object is an object crop from
the frame. This variant assumes ground truth object
detection exists in order to control the factors of
reasoning performance.

Image. A frame is represented by its RGB im-
age. This variant simplifies the inputs the most,
but requires the visual encoder to encode object
properties and spatial relationships between objects
directly from the frames.

6.2 Language Baseline

For our language baseline, we provide a frozen
LLM directly with language descriptions of the
abstract visual reasoning problem. Frame cap-
tions can be considered as oracle visual perception,
where each frame is represented by its caption (e.g.,
“There is a blue cylinder and a brown cube.”).

6.3 Implementation Details

On ACRE, we use the training set with 6K samples,
where each sample contains 6 context frames and
4 query frames. Thus, the training set has 24K
sequences. On MEWL, we use the training sets
of the 9 sub-tasks, each of which involves 600
samples. Thus, the training set has 5400 sequences.

For the language backbone, we use LLaMA2
with 7 billion parameters (Touvron et al., 2023).
For the visual backbone, to encode image inputs,
we use a 2-layer ViT (Dosovitskiy, 2020) with 4
attention heads and 768-hidden dimensional space;
to encode symbolic representations of images, we
use a symbolic encoder which encodes object at-
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ACRE MEWL

I.I.D. Comp. Sys. Avg. shape color material object composite relation bootstrap number pragmatic Avg.

LLaMA2-7b-Image 75.8 77.7 71.7 75.1 35.0 99.8 57.7 26.2 32.7 19.8 31.8 45.2 21.3 41.1
LLaMA2-7b-Object 95.5 97.5 86.5 93.2 59.3 100.0 98.8 96.8 50.4 17.3 87.0 99.5 19.2 69.8
LLaMA2-7b-Symbol (Linear) 91.0 94.9 86.8 90.9 100.0 99.8 100.0 98.0 42.5 18.0 35.0 78.2 18.3 65.5
LLaMA2-7b-Symbol (MLP) 98.3 99.5 84.6 94.1 100.0 100.0 100.0 98.8 71.3 16.2 91.3 99.7 22.3 77.7

Table 3: Analysis on the presence of object-centric information. -Symbol rows can be considered as upper bound,
since the inputs are symbolic representations of images. The performance gap between -Image and -Object reflects
the importance of object-centric inductive bias in abstract visual reasoning tasks.

tributes with embedding layers and encodes objects’
location information5 with a linear layer.

During finetuning, we freeze the language back-
bone and finetune the visual encoder and the linear
projection. We use the AdamW optimizer with a
learning rate of 3× 10−5. We finetune the visual
backbone for 20 epochs on ACRE, and 40 epochs
on MEWL. The batch size is set to 64.

6.4 Results

Table 2 shows the results of LLaMA2-7b with
learned visual encoders on ACRE and MEWL. On
ACRE, we observe that LLaMA2 with train-from-
scratch visual encoders can perform significantly
better than their language-only counterpart. These
models can even outperform majority of the multi-
modal state-of-the-art, including IV-CL (Sun et al.,
2024) and LRR (Bhattacharyya et al., 2023), which
are pretrained with video data. On MEWL, we ob-
serve the same pattern that LLaMA2 with learned
visual encoders can outperform prior state-of-the-
art and also the language baselines which assume
perfect visual perception.

In Table 3, we further investigate different ways
to represent an image. The large performance gap
between LLaMA2-7b-Image and -Object (e.g., av-
erage of 41.1% versus 69.8% on MEWL), indicat-
ing that object-centric information is important for
the pretrained transformer blocks to better solve
abstract visual reasoning tasks. In all, these results
demonstrate that with a frozen language backbone,
learning just the visual encoder from scratch can
already improve the model’s performance on ab-
stract visual reasoning tasks significantly. However,
task-specific design choices, such as object-centric
representations, would be needed.

7 Discussion

The question of whether LLMs are “abstract rea-
soners” has consequences for how we understand

5Each object location is represented as
[x1, y1, x2, y2, w, h, w × h]

and thus how we develop increasingly advanced
artificial intelligence. The challenge is that there
is no consensus for what it means to be an “ab-
stract reasoner”. In their recent work, Gendron
et al. (2024) operationalize abstract reasoning as
the ability to transfer zero-shot to a range of com-
plex reasoning tasks. They find that LLMs perform
poorly on this evaluation, and thus conclude that
they are not abstract reasoners.

In this work, we reproduce Gendron et al.
(2024)’s findings, but push back against their in-
terpretation. In particular, we provide new experi-
ments which show that tuning just the embedding
layer is remarkably effective. Indeed, across a
variety of textual and multimodal tasks, frozen
pretrained LLMs can achieve high levels of per-
formance as long as the input representations are
adapted sufficiently for each task 6.

It seems too stringent a criteria to require that
that abstract reasoners perform arbitrary tasks on ar-
bitrary inputs without adaptation. By way of coun-
terargument, consider the good old fashioned AI
(GOFAI) systems of the 1990s, which typically in-
cluded symbolic systems internally, e.g., databases
implemented in SQL or rules for logical inference
implemented in PROLOG. By most intuitive defi-
nitions, these databases and rules would be consid-
ered “abstract” and the tasks the systems performed
over them would be “reasoning”. But we would
not expect these systems to operate well over a
database implemented in MongoDB, or to apply
rules defined by Python. Rather, the need to op-
erate on representations of a particular format is a
consequence of, not an exception to, the system’s
abstraction.

6While we argue that input-level finetuning can enable
pretrained models to perform well on a range of tasks, we
acknowledge that this does not necessarily imply the models
have acquired generalized abstract reasoning in a cognitive
sense. Rather, it may reflect the alignment of input representa-
tions with the pretrained model’s existing capabilities. A more
robust theoretical framework would be needed to precisely
distinguish between mere representational alignment and true
abstraction across domains and tasks.

162



Of course, we don’t claim that the internal pro-
cessing of an LLM is exactly analogous to that of a
GOFAI system. Of course, in an LLM, tuning the
input embedding layer might do more than simply
“rerepresent”, but rather might encode some task-
specific processing as well. But interpreted loosely,
the analogy is useful for highlighting how the ques-
tion of adaptability and transferability relates to the
question of abstraction and reasoning.

Indeed, this relationship has been considered in
depth by philosophers of AI, long before LLMs.
For example, Dennett (1997) appeals to transfer-
ability in his attempt to describe the difference
between human cognition7 and simpler computa-
tional systems:

Consider the lowly thermostat...we might
agree to grant it the capacity for about
half a dozen different beliefs...it can
believe the room is too cold or too
hot, that the boiler is on or off...and so
forth...suppose we de-interpret its beliefs
and desires, it can believe the A is too
F or G...and so forth....by attaching the
thermostatic control mechanism to dif-
ferent input and output devices, it could
be made to regulate the amount of wa-
ter in a tank, or the speed of a train for
instance...But as systems become percep-
tually richer and behaviorally more ver-
satile, it becomes harder and harder to
make substitutions in the actual links of
the system to the world without chang-
ing the organization of the system it-
self. ...There comes to be a two-way con-
straint of growing specificity between the
device and the environment. Fix the de-
vice in any one state and it demands a
very specific environment in which to op-
erate properly (you can no longer switch
it easily from regulating temperature to
regulating speed or anything else); but
at the same time, if you do not fix the
state it is in, but just plunk it down in a
changed environment, its sensory attach-
ments will be sensitive and discrimina-
tive enough to respond appropriately to
the change...

Although Dennett is not discussing the notion of
7Dennet’s essay is not about reasoning, but rather about

intentional systems, or systems that have true “beliefs” about
the world and act according to them.

“abstract reasoners” per se, he observes that intel-
ligent systems do not transfer well unless they are
allowed to adapt8. Indeed, Dennett argues that this
is a defining property, one that differentiates human-
like intelligence from simpler (albeit perhaps more
abstract) systems such as thermostats.

Dennett’s argument is relevant here not because
LLMs are human-like or even human-level in their
reasoning abilities (they are far from it!). Rather,
Dennett articulates a position that is implicit in
contemporary discussions about LLMs and “ab-
stract reasoning”. That is, that we care about how
well a system adapts to new environments because
adapting well to new environments is a hallmark
of intelligence. Indeed, this is often cited explicitly
as the motivation for studies of this nature (e.g.,
“the question of whether or not LLMs can perform
human-like reasoning remains open...” (Gendron
et al., 2024)). But if evaluating human-likeness or
human-levelness is the motivation for studying ab-
stract reasoning, then arguments such as Dennett’s
provide a compelling case against using zero-shot
transfer ability as a relevant metric.

Of course, there is another, more practical, argu-
ment for why we might care about whether LLMs
are abstract reasoners, which is simply that we want
LLMs to transfer well zero-shot to many tasks in or-
der to facilitate easier, cheaper, and more efficient
development of systems. Indeed, the thermostat’s
highly abstract design is a feature, not a bug. This
type of hardware abstraction is what allows similar
components and control mechanisms to be readily
repurposed to support many types of use cases. A
“human like” thermostat might be very undesirable.

Thus, before seeking to answer the question
of whether LLMs are “abstract reasoners”, we
must first determine, as a community, why we
care. Do we care because we want to understand
how human-like they are, or do we care because
we want to facilitate more efficient technological
progress? Almost certainly, we care about both, but
we should not expect the same experiments to bear
on both lines of inquiry. Finding clarity around
these questions–what is an abstract reasoner and
why do we care about building one?–is the essen-
tial next step if we are to make progress toward
either, or both, goals.

8While our experiments adapt the input layer (e.g., token
embedding) of a model, adaptation does not have to be lim-
ited to the input layers. Indeed, adaptation throughout the
model would be consistent with Dennett’s argument. A full
exploration of this is beyond the scope of this paper, but is an
interesting direction for future work.
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8 Conclusion

In this paper, we have (re-)opened the discussion of
what it means to be an “abstract reasoner”, and why
it matters whether LLMs are “abstract reasoners”.
We have offered empirical results showing that off-
the-shelf pretrained LLMs indeed perform poorly
on reasoning benchmarks in a zero-shot setting.
However, on a variety of textual and multimodal
reasoning tasks, frozen pretrained LLMs can reach
high levels of performance when the input embed-
dings are tuned. With this collection of empirical
results, we argue that there is a need to determine
why we care about whether LLMs are “abstract
reasoners” before answering this question.
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A Limitations

Since the experiments are compute-intensive, our
experiments mainly focus on LLaMA2-7b, but
there are many other LLMs trained with differ-
ent number of parameters, data, or inductive biases.
We also only consider one prompt template for each
reasoning task, and acknowledge that experiment-
ing with more prompts can provide a more com-
prehensive evaluation of pretrained LLMs. Last,
we use parsers to parse the predictions of models
in order to compare with the labels. One alterna-
tive approach is the use of other LLMs to com-
pare the predictions with the labels. Some of the
above concerns are common challenges for exist-
ing evaluation of LLMs. Future research could run
evaluations on more LLMs and explore whether
the tuning other layers (e.g., output layer, middle
layers of transformer blocks) can lead to perfor-
mance improvement, further proving that LLMs
need some amount of task adaptations.

B Additional Figures

We show additional figures to illustrate the rea-
soning tasks we considered and variants of image
inputs.
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Pattern Context Query

BIG-Bench (BBF)
Reverse of the first three elements and 
append a “4” at the end.

[1, 0, 9, 7, 4, 2, 5, 3, 6, 8] → [9, 0, 1, 4] 
[3, 8, 4, 6, 1, 5, 7, 0] → [4, 8, 3, 4] 
[5, 4, 7, 2, 9, 3, 8, 1] → [7, 4, 5, 4] 
[3, 9, 2, 0, 6, 8, 5, 1, 7] → [2, 9, 3, 4]

[9, 2, 1, 3, 4, 7, 6, 8, 
5, 0] → [1, 2, 9, 4]

Evals-P
If the first character of the input is in 
the list, then return “foo”; Otherwise, 
return “bar”.

f, [o, z, a, n, g, e, j, f, i, c, l, u, b] → foo 
l, [v, u, f, b, m, y, j, h, n, c, d, a, p] → bar 
p, [c, e, s, h, q, o, a, t, k, d, n, l, z] → bar 
p, [c, h, m, z, d, v, k, l, j, e, x, p, n] → foo

u, [d, a, x, i, h, v, e, 
z, r, c, n, y, o] → bar

Evals-S
Identify the correspondence between 
each digit and word.

13, 17, 1, 6 → Brown,White,Purple,Blue 
1, 9, 6, 11 → Purple,Brown,Blue,White 
13, 2, 17, 10 → Brown,Purple,White,Blue

5, 9, 2, 11 → 
Blue,Brown,Purple,White

Pointer-Value Retrieval (PVR)
The first element indicates the index of 
the expected output in the remaining 
list (i.e., ignore the first element).

[5, 7, 4, 1, 8, 9, 8, 1, 9, 8, 4] → 8 
[4, 0, 0, 7, 0, 1, 0, 5, 3, 0, 0] → 1 
[0, 2, 8, 2, 5, 9, 4, 3, 8, 5, 4] → 2 
[3, 3, 2, 6, 5, 7, 4, 6, 7, 4, 8] → 5

[3, 4, 9, 7, 1, 8, 7, 1, 
0, 3, 5] → 1

ACRE
Determine whether the query object 
will activate the light.

A cyan cylinder in rubber is visible. The light is on. 
A gray cube in rubber is visible. The light is off. 
A cyan cylinder in rubber is visible. A gray cube in rubber is visible. The light is on. 
A blue cube in metal is visible. The light is off. 
A gray cylinder in rubber is visible. A gray cube in metal is visible. The light is off. 
A red sphere in metal is visible. A yellow cube in rubber is visible. The light is on.

A red sphere in metal is 
visible. The light is 
undetermined.

RAVEN
Find and infer the last pattern from the 
given context.

1. On an image, a large lime square rotated at 180 degrees. 
2. On an image, a medium lime square rotated at 180 degrees. 
3. On an image, a huge lime square rotated at 180 degrees. 
4. On an image, a huge yellow circle rotated at 0 degrees. 
5. On an image, a large yellow circle rotated at 0 degrees. 
6. On an image, a medium yellow circle rotated at 0 degrees. 
7. On an image, a medium white hexagon rotated at-90 degrees. 
8. On an image, a huge white hexagon rotated at-90 degrees.

The pattern that 
logically follows is: 9. 
On an image, a large 
white hexagon rotated 
at-90 degrees.

Figure B.1: Data examples of abstract reasoning tasks.

“on” “off” “on”

“on” “off” “off”

context query

❌ on

❌ off

✅ unknown

(a) ACRE

(b) MEWL

“arset” “arset” “calper”

“triel” “calper”

context query

❌ calper

❌ arset

❌ nylight

❌ hapfa

✅ triel

Figure B.2: Data examples of abstract visual reasoning tasks.
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ViT

Linear

0 1 … 0 1

1 0 … 0 1

blue cylinder

brown cube
ViT

(a) Image (b) Object

(c) Symbol

Figure B.3: Examples of variants of image inputs. (a) An image is directly fed into a ViT and obtain an image
representation. (b) Each object crop is fed into a ViT and obtain an object representation. (c) Each object is parsed
into a multi-hot vector, and a linear layer will output a corresponding object representation.

context query

Figure B.4: Example of ARC dataset. There are 4 context examples and 1 query, where each example has an input
grid (top) and an output grid (bottom). Each grid is represented as an integer array, where each integer refers to a
color. In this example, the task is to generate the symmetry of the input grid and stack the symmetry on top of the
original input.

center-single 2x2 in-center

On an image, a large white hexagon 
rotated at 0 degrees.

On an image, a large pink circle 
rotated at 0 degrees in the top 
left, a large pink circle rotated 
at 0 degrees in the top right, a 
large pink circle rotated at 0 
degrees in the bottom left.

On an image, a second figure is 
displayed inside a first one. 
Outside: a huge white triangle 
rotated at -45 degrees. Inside: a 
small red circle rotated at 0 
degrees.

Figure B.5: Examples of RAVENT tasks used in generalizability and data efficiency analysis. Top shows the data
example, and bottom shows the language description of the first frame in each example. The task is to fill in the
ninth pattern (highlighted in orange) given the eight context frames. We focus on three tasks: center-single, 2x2
and in-center. center-single is the simplest task, since there is always only one object in each frame. 2x2 and
in-center consider more than one objects in the frames and also involve different object alignments.
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Abstract

We analyze the influence of utterance-level
construction distributions in German child-
directed/child-available speech on the resulting
word-level, syntactic and semantic competence
(and their underlying learning trajectories) in
small LMs, which we train on a novel collec-
tion of developmentally plausible language data
for German. We find that trajectories are sur-
prisingly robust for markedly different distri-
butions of constructions in the training data,
which have little effect on final accuracies and
almost no effect on global learning trajecto-
ries. While syntax learning benefits from more
complex utterances, word-level learning culmi-
nates in better scores with more fragmentary
utterances. We argue that LMs trained on de-
velopmentally plausible data can contribute to
debates on how conducive different kinds of
linguistic stimuli are to language learning.

1 Introduction

One of the most contentious issues in language ac-
quisition is the relationship between the input that
learners receive and the resulting linguistic system
(Pullum and Scholz, 2002; Clark and Lappin, 2011).
Child-directed speech (or CDS) is structurally sim-
ple: Especially in the first three years of life, it
abounds with questions, imperatives, and fragmen-
tary utterances, but features fewer SV(X) and very
few complex sentences, which instantiate “canon-
ical” word order (Cameron-Faulkner et al., 2003).
This distribution of utterance-level constructions is
conducive to the functional side of language acqui-
sition: caregivers talk in this way to elicit responses,
steer behavior, or establish joint attention. But how
do children acquire full-fledged, formal grammati-
cal knowledge from such supposedly skewed input?
While its advantages for aspects like speech seg-
mentation or word learning are somewhat accepted
(Yurovsky et al., 2012; Cristia et al., 2019), its in-
fluence on syntax remains debated: whereas some

Project Gutenberg: Complex sentences

Aber sie war in Angst, dass wir die Larven beschädi-
gen würden, die zu Arbeiterinnen heranwachsen soll-
ten. (But she was afraid that we would damage the
larvae which were supposed to grow into workers.)

MiniKlexikon: Transitive SP sentences

Der Grafiker entwirft das Bild vorne auf dem Buch.
(The graphic designer designs the picture on the
cover of the book.)
Der Friseur schneidet die Haare. (The hairdresser
cuts the hair.)

Child-directed speech: Fragmentary utterances

noch mehr! (even more!)
ja. (yes.)
mit dem Flugzeug. (with the airplane.)

Figure 1: Examples for most frequent construction types
from different portions of our German BabyLM corpus

generativist approaches see any kind of input as
too impoverished to learn a full-fledged syntactic
system (cf. Chomsky, 1965; Crain and Pietroski,
2001; Guasti, 2002; Thomas, 2002; Berwick et al.,
2011), constructionist and usage-based scholars ar-
gue that this supposedly skewed input actually aids
syntax learning (MacWhinney, 2004; Tomasello,
2005; Bunzeck and Diessel, 2024).

The connectionist “renaissance”, fueled by deep
learning and Transformer language models, has
opened up new avenues of investigating the rela-
tionship between an artificial learner’s acquired
linguistic system and the nature of its training
data, more recently also from a constructionist/non-
generativist viewpoint (Weissweiler et al., 2023;
Piantadosi, 2024). LLMs, pretrained on raw lan-
guage data only, and instruction-finetuned chatbots
based on them, generate text without grammati-
cal errors, and perform well in controlled syntactic
test suites. Unfortunately, though, their massive
parameter size does not preclude the possibility
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that their linguistic capabilities result from memo-
rization rather than generalization (Millière, 2024).
Furthermore, the sheer amount of their pretrain-
ing data exceeds human learner’s input by many
orders of magnitude, putting their relevance for lin-
guistic modeling into question. Work within the
BabyLM community (Warstadt et al., 2023; Hu
et al., 2024; Charpentier et al., 2025) has demon-
strated that Transformer LMs, trained on cogni-
tively plausible amounts of data, can often acquire
fairly complex syntactic structures, even without
instruction-finetuning. They can also learn accu-
rate word-level representations when trained with
character-level tokenization (Bunzeck and Zarrieß,
2025; Goriely and Buttery, 2025a). This makes
them ideal testbeds for the aforementioned issue:
does the construction distribution found in CDS,
which features a high proportion of questions and
syntactic fragments, affect the acquisition of for-
mal linguistic capabilities? In other words, does
robust linguistic knowledge at the word and syntax
level emerge when the training data is closer to the
fragmented, “messy” input of human learners?

The goals of this paper, then, are twofold: (1) we
compile a novel German BabyLM training set, for
which we conduct the first utterance-level construc-
tion analysis for German. We find that distributions
align with findings for English and other languages.
We then (2) create three 5M-token subsets with dis-
tinct constructional profiles, varying, e.g., the pro-
portion of fragmentary and complex utterances, and
train small, character-based and subword Llama
models on them. We evaluate them with lexical,
syntactic, and semantic minimal pairs (Bunzeck
et al., 2025; Mueller et al., 2020; He et al., 2025) to
gauge the influence of different construction distri-
butions on these levels of linguistic knowledge, and
find that differences between grammatically com-
plex training data and a developmentally plausible
constructional distribution are fairly small. While
certain syntactic phenomena are learned somewhat
better from more complex sentences, lexical learn-
ing improves with more fragments and questions
in the input. Most interestingly, input complexity
only modulates the steepness of the resulting learn-
ing trajectories, but has no principal effect on the
amount of input needed to kickstart learning.

2 Constructions in children’s input

Child-directed speech can be seen as a separate
linguistic register and is the primary input that chil-

dren encounter in their first years. On the pho-
netic level, it features slower speech and exagger-
ated intonation patterns, which infants prefer lis-
tening to (Zangl and Mills, 2007), while its vo-
cabulary is mostly restricted to everyday topics
and children’s immediate surroundings (Snow and
Ferguson, 1977). Structurally, child-directed utter-
ances are usually shorter and simpler than adult-
directed ones (Genovese et al., 2020) and feature
high amounts of structural and lexical repetition
(Tal et al., 2024). Statistical properties of the input
directly influence the children’s order of acquisition
for syntactic patterns (Huttenlocher et al., 2002;
Ambridge et al., 2015), e.g., for relative clauses
(Diessel and Tomasello, 2000; Brandt et al., 2008;
Chen and Shirai, 2015).

Early studies were mostly concerned with map-
ping out how much CDS is ungrammatical or oth-
erwise “wrong” (in the sense of hesitations, false
starts, etc., cf. Pine, 1994), but the quantitative turn
in linguistics (Janda, 2013) has enabled more holis-
tic analyses. In a seminal study, Cameron-Faulkner
et al. (2003) analyze utterance-level constructions
in child-directed English via corpora of toyplay ses-
sions featuring children and caregivers. They show
that CDS features only few “canonical” SV(X)-
utterances but abounds with questions, lexical frag-
ments, or copula constructions. The reported con-
struction distributions also hold for typologically
different languages, e.g., Irish (Cameron-Faulkner
and Hickey, 2011). These constructions and their
real-world functions help children to quickly un-
derstand the functional side of language. However,
the most common and repetitive utterances that
English-speaking children hear represent a rather
skewed sample of the presumed, underlying formal
language system. Generativist approaches would
argue that certain formal processes, like question
formation from relative clauses, are not attainable
from this kind of language, as the input never con-
tains specific examples (Chomsky, 1980) (although
Pullum and Scholz, 2002 find that the input fre-
quently contains exactly such specific examples).
They also partly emphasize the importance of sta-
tistical learning, e.g. for providing hypotheses
about competing possible mental grammars con-
strained by innate, language-specific mechanisms
(cf. Yang, 2004, also Ambridge and Lieven, 2011,
121f.). Constructivist approaches do not view lan-
guage learning as such a re-construction of the tar-
get language’s abstract grammar, but rather as the
re-construction of the target language’s inventory
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of form-meaning pairings (Behrens, 2021). They
argue that this kind of input is actually conducive
to formal aspects of acquisition, by providing an-
chor points for first words and their semantic links
to real-world reference, which then serve as build-
ing blocks for a gradual development into larger
schemas (like questions with relative clauses).

Although CDS features such a skewed construc-
tion distribution, written language aimed at chil-
dren, e.g., in children’s books, is characterized by a
much higher rate of canonical SV(X)-constructions
than CDS (Cameron-Faulkner and Noble, 2013).
Questions rarely occur in books. CDS produced in
shared book reading presents a middle-ground —
it contains more complex and SV(X)-constructions
than regular CDS, but less than book text alone
(Noble et al., 2018). They argue that shared read-
ing therefore, plays an important role in moving
children from early, isolated traces of linguistic
knowledge to a rich mental language system. This
also aligns with the findings by Bunzeck and Dies-
sel (2024), who show that the distribution of con-
structions in CDS varies with situation type (toy-
play features most questions, meal sessions beget
more imperatives, shared book reading features
more complex constructions) and child age (ques-
tions and imperatives become less frequent with
age). They suggest that CDS is therefore adapted
to support children’s cognitive and linguistic de-
velopment. Yet, as corpus studies are necessarily
descriptive and cannot establish causal/mechanistic
connections on their own (e.g. what would happen
if a child never hears CDS), it remains questionable
if this is actually true. Here, the potential of LMs
trained on little data becomes apparent for construc-
tionist approaches: they allow controlled experi-
ments with different kinds of input data, which can
serve as additional evidence for effects hypothe-
sized from corpus data.

3 Input in developmentally plausible LMs

Authentic data Early approaches to modeling
language acquisition with neural networks used
hand-picked, manually ordered data points (Rumel-
hart and McClelland, 1986) or synthetic data gen-
erated with hand-crafted grammars (Elman, 1993;
Christiansen and Chater, 1999; Chang et al., 2006).
Both lack developmental plausibility. Since then,
data availability has improved with the establish-
ment of developmental corpora. Frequently, CDS
from CHILDES (MacWhinney, 2000) is used to

train developmentally plausible LMs (cf. Pannitto
and Herbelot, 2020; Huebner et al., 2021). While
CHILDES-based models have the advantage of
learning from authentic data only, they have the
disadvantage of not accessing the full breadth of
the linguistic input children receive. Children are
exposed to many more different registers of lan-
guage throughout their linguistic development, like
shared (or solitary) book reading, or television
shows (Montag, 2019; Gowenlock et al., 2024).
In response to this, the BabyLM corpora propose
a data mix of varied spoken and written sources,
from CDS over adult-adult conversations to Open-
Subtitles (Lison and Tiedemann, 2016), but also
children’s (Hill et al., 2015) and adults’ books (Ger-
lach and Font-Clos, 2020). All data included in
them could be plausibly encountered by children,
which provides opportunities to ablate the influence
of architecture/training on the learned linguistic
knowledge.

For languages other than English, data availabil-
ity is the greatest problem for the construction of
developmentally plausible datasets. Salhan et al.
(2024) and Padovani et al. (2025) use only data
available from CHILDES for models in different
languages, whereas Prévot et al. (2024) compare
models trained on spoken data (child-directed +
adult-adult conversations) with models trained on
the French Wikipedia. As such, these first forays
into more polyglot BabyLMs are still constrained
to the child-directed input found in CHILDES and
do not extend to the aforementioned variety of in-
puts (Soderstrom, 2007; Gowenlock et al., 2024).
Notably, Suozzi et al. (2025) introduce an Italian
BabyLM but do not elaborate on their data sources
beyond CHILDES.

Linguistic properties The linguistic make-up of
pre-training data and its influence on linguistic per-
formance have only recently begun to receive in-
creased scrutiny. Focusing on the lexical level,
Yam and Paek (2024) measure sentence-level tex-
tual complexity with readability metrics based on
text-wide word/syllable–sentence ratios for differ-
ent corpora (CHILDES, BabyLM corpus, synthetic
data, Project Gutenberg). They find that models
trained on more complex text perform better at syn-
tactic benchmarks, but simpler data (CHILDES)
is learned better in terms of perplexity and loss
convergence. Muckatira et al. (2024) filter English
pre-training corpora for text spans that only con-
tain vocabulary also found in English CHILDES
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Dataset Description # Words

CHILDES (MacWhinney, 2000) Child-directed speech 3,626,301
Child speech 1,511,144

OpenSubtitles (Lison and Tiedemann, 2016) Movie subtitles 1,543,094
CallHome (Karins et al., 1997) Phone conversations 176,313
Klexikon Children’s online encyclopedia 1,384,891
MiniKlexikon Simplified online encyclopedia 272,886
Wikibooks Wikijunior Educational books 226,773
Fluter German youth magazine 2,862,278
Project Gutenberg Literature (children’s and young adult) 2,476,133
Dreambank (Domhoff and Schneider, 2008) Dream reports 939,197
Leipzig corpus news texts (Goldhahn et al., 2012) Short news texts 1,541,803

Total 16,560,813

Table 1: Lexical token counts for all subcorpora of our corpus

data and find that simplified models generate more
coherent text than models trained on more com-
plex data, and also succeed in syntactic tests if the
test data is filtered accordingly. In contrast, Ed-
man et al. (2024) change the semantic content of
the pre-training data and use datasets that approxi-
mate the linguistic input second-language learners
get, e.g., dictionary entries, grammar books, and
paraphrases. While grammar books moderately
improve syntactic evaluation, there is no positive
effect for the addition of the other text types.

Filtered corpora While actual research on the
syntactic properties of the input is rather rare, train-
ing on filtered corpora has been used in pilot stud-
ies. Patil et al. (2024) and Misra and Mahowald
(2024) filter out specific grammatical constructions
from the BabyLM corpora and then probe the re-
sulting models for knowledge of these grammatical
constructions (which might also be analogically
learned from related constructions or constructed
from their parts). Patil et al. (2024) show that
their models succeed on the BLiMP benchmark
(Warstadt et al., 2020), even if sentences contain-
ing structures targeted in BLiMP’s minimal pair
sets are removed. Similarly, Misra and Mahowald
(2024) show that acceptability scores for the En-
glish AANN construction can be reliably estimated
from models that have never seen it. In sum, then,
models appear to be able to generalize from indi-
rect evidence and learn language in a somewhat
constructivist, bottom-up fashion.

The structural composition of child-directed data
has (so far) not been scrutinized. Most studies fo-
cus on lexical or semantic properties, emphasizing
content over structure; child-directed data is usu-
ally equated with a somewhat fitting vocabulary or
with just being authentic data. However, findings
from usage-based linguistics suggest that structural

properties, like utterance-level construction distri-
butions, play a crucial role in language acquisi-
tion. Whereas Patil et al. (2024) and Misra and
Mahowald (2024) remove specific constructions
from their data, we aim to explore whether differ-
ent global distributions of constructions influence
the resulting linguistic knowledge and learning tra-
jectories.

4 A German BabyLM dataset

To construct a German dataset, we use a variety
of developmentally plausible sources, similar to
the English BabyLM data (Warstadt et al., 2023;
Choshen et al., 2024). We use (1) all data from
German CHILDES corpora (MacWhinney, 2000),
including frog stories from TalkBank (Berman and
Slobin, 1994) and math lessons from ClassBank
(Stigler et al., 2000), (2) subtitles from OpenSub-
titles (Lison and Tiedemann, 2016), (3) adult con-
versations from the CallHome corpus (Karins et al.,
1997), and (4) written data from Project Gutenberg,
from which we downloaded a manually curated
sample of children’s books, young adult literature
and literature commonly read in German schools.
We supply this data with two corpora, the Dream-
Bank database of self-reported dreams (Domhoff
and Schneider, 2008) and short news texts from the
Leipzig corpus (Goldhahn et al., 2012); although
they are not child-directed per se, these sources are
child-available in everyday language.

To approximate child-available input even better,
we tap into freely available child/learner-directed
sources and compile four additional subcorpora for
our dataset. The Wikibooks Wikijunior shelve fea-
tures educational resources aimed at children, fo-
cusing on a diverse array of topics such as technol-
ogy or nature. The Klexikon is a children’s wiki in
German, featuring more than 3,000 articles aimed
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Figure 2: Proportions of utterance-level constructions for all subcorpora in our corpus

at children between 5–15. A simplified version of
it is the MiniKlexikon, which features over 1,500
articles aimed at beginning readers. Finally, we
also scrape the complete archives of Fluter, a mag-
azine aimed at young adults published by the Fed-
eral Agency for Civic Education, which contains
a large body of non-fiction. All resources are CC-
licensed. Table 1 shows the raw token numbers for
all corpora (16.5M overall). We extensively clean
and normalize our data (details in Appendix B) and
make our dataset available on Hugging Face.1

5 Construction distribution analysis

As there are no findings on the distribution of
utterance-level construction in German, we con-
duct our own analysis using spacy (Honnibal et al.,
2020). We first split larger paragraphs into indi-
vidual sentences with the included senter and then
annotate these with POS and dependency informa-
tion. This information serves as the base of our con-
struction annotation procedure. We devise standard
construction categories in line with comparable ef-
forts for English (Cameron-Faulkner et al., 2003;
Cameron-Faulkner and Noble, 2013; Bunzeck and
Diessel, 2024), and assign one of the following
categories to each utterance:

• FRA – utterances that do not contain a verb
• QWH – wh-question (introduced by interrog-

ative pronouns)

1https://huggingface.co/datasets/bbunzeck/
babylm-german

• QYN – yes/no-question (introduced by
verbs/auxiliaries)

• COP – subject-predicate utterance where the
predicate is a copula verb (a form of sein or
werden)

• IMP – utterances introduced by verbs in im-
perative mood

• SPI – standard subject-predicate utterance (in-
transitive verb with no direct/accusative ob-
ject)

• SPT – standard subject-predicate utterance
(transitive verb with direct/accusative object)

• COM – utterances with two or more lexical
verbs

This holistic taxonomy is applicable to every
utterance in our corpus. For a balanced, manually
annotated sample of 1,000 sentences our classifier
reaches an accuracy of approx. 95%.

Figure 2 visualizes the results of this annotation
process, exact proportions are reproduced in Ap-
pendix C. Generally, our results confirm earlier
findings (Cameron-Faulkner et al., 2003; Cameron-
Faulkner and Hickey, 2011; Cameron-Faulkner and
Noble, 2013; Bunzeck and Diessel, 2024): Just like
English CDS, German CDS features more ques-
tions than any other corpus, abounds with frag-
ments, and contains comparatively few complex
utterances. The Project Gutenberg data, on the
other hand, is characterized by over 60% complex
sentences. Interestingly, the construction distribu-
tion forms a continuum across our subcorpora. The
MiniKlexikon, for example, contains considerably
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less complex sentences than the other written gen-
res, but over half of its utterances are (in)transitive,
canonical SV-sentences. This shows that even these
particular sub-genres of child-directed linguistic in-
put feature highly varied and specific constructional
profiles that differ from each other.

6 Training data composition

We compose three different corpora of 5M words:
(1) one corpus maximally resembling the construc-
tion composition of child-directed speech (cds), (2)
one corpus containing a drastically higher amount
of complex sentences, mirroring the distribution
in the Project Gutenberg data (pjg), and (3) a cor-
pus that is averaged between these two (mix). The
relative distributions of construction types can be
found in Table 2.

Construction cds mix pjg

FRA 25% 16.5% 8%
QWH 9% 5.5% 2%
QYN 21% 12.5% 4%
COP 8% 6.5% 5%
IMP 5% 3.5% 2%
SPI 10% 9% 8%
SPT 12% 11% 10%
COM 10% 35.5% 61%

Table 2: Construction proportions of our training sets

Crucially, we sample the individual utterances
for our training sets from all subcorpora in our
German BabyLM dataset. By doing so, we approx-
imate a similar (if not completely equal) mixture
of sources and, therefore also a similar mixture of
registers, semantic content, etc. This enables us
to isolate the effect of construction distributions in
our model’s training data, without any interference
from the possible differences between the subcor-
pora.

7 Model training and evaluation

We train small Llama models (Touvron et al., 2023)
with transformers (Wolf et al., 2020). To ac-
count for the effect of subword tokenization, we
compare character-level (3.7M parameters) and
subword models (7.7M parameters) for the three
datasets. We train all models for one epoch (loss
curves and hyperparameters are in Appendix D)
and share them on Hugging Face.2 To test the
effect of different random initializations and our

2https://huggingface.co/collections/bbunzeck/
german-babylm-67b868e08ff8782a9814ceaf

sampling strategy, we reproduce pre-training for
the cds models (see Appendix E).

In line with current best practices to linguistic
probing, we use minimal pair datasets to evaluate
our LMs’ linguistic knowledge in German. The
datasets always consist of a correct/grammatical
and a matched incorrect/ungrammatical string. We
use minicons (Misra, 2022) to score the sentences
and evaluate 19 model checkpoints per model (10
for the first 10% of training, 9 for the remaining
90%). As an additional ablation, we also evalu-
ate the multilingual Llama 3.2 1B3 on all prob-
ing paradigms. Currently, no monolingual Ger-
man Llama models exist. Therefore, the medium-
sized 1B-parameter version of Llama 3.2, which
is trained on a considerable amount of German
language data, is a useful baseline for expected
benchmark scores enabled through a higher model
capacity and more training data.

Word-level probing Language acquisition first
involves learning what words are, i.e. which
(sound) sequences map to word-level items in the
mental lexicon, before learning how they combine.
To gauge this most basic learning step, we adapt
the experimental setup from Bunzeck et al. (2025):
We use wuggy (Keuleers and Brysbaert, 2010) to
generate 1,000 nonce words (e.g. promsen) from
existing words (e.g. bremsen) and then evaluate
how surprised the models are by (1) the words with
the context of a prepended white space (lexical
decision, Le Godais et al., 2017), (2) the words
in a plausible context sequence (surprisal, Hale,
2001), and (3) the words randomly inserted into
implausible contexts (antisurprisal, Shafiabadi and
Wisniewski, 2025). If the model is less surprised
by the existing word, we count this as a correct
choice in our paradigm. We calculate accuracies
over the whole dataset.

Syntactic probing For syntactic probing, we
use the CLAMS dataset (Mueller et al., 2020),
which contains syntactic minimal pairs (grammati-
cal/ungrammatical) for German (e.g. Die Autoren
lachen/*lacht.). The included seven phenomena
all revolve around subject-verb agreement in dif-
ferent contexts (across PPs, relative clauses, with
coordination, etc.), resulting in different degrees of
difficulty. We score the sentences for their likeli-
hood. We calculate accuracies for correctly rated

3https://huggingface.co/meta-llama/Llama-3.
2-1B
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Character Subword Llama 3.2 1B

cds mix pjg cds mix pjg –

Word-level
Lexical decision 97.4% 97.6% 97.4% 84.6% 81.9% 80.8% 69.6%
Surprisal 99.8% 99.8% 99.9% 91.5% 90.3% 90.1% 98%
AntiSurprisal 99.3% 98.9% 99.7% 76.5% 75.4% 75.4% 87.4%

Syntax

Simple Agreement 90% 90% 95.7% 80% 84.3% 92.1% 95.71%
Across a Prepositional Phrase 61.5% 65.5% 61.8% 74.8% 73.5% 75.5% 83%
Across a Subject Relative Clause 67.1% 66% 62.4% 78.4% 73.7% 97.9% 99.7%
Short Verb Phrase Coordination 69.8% 68.8% 67.9% 82.6% 93.5% 99.5% 99.9%
Long Verb Phrase Coordination 53.6% 60.6% 63% 60.6% 78.8% 78% 90.5%
Across Object Relative Clause 58.6% 54.2% 53% 64% 66.7% 81.6% 86.1%
Within Object Relative Clause 59.8% 56.4% 72.5% 55.8% 55.7% 49.9% 61.4%

Semantics XCOMPS 51.5% 49.1% 49.1% 51.4% 52% 52.3% 58.9%

Table 3: Final evaluation results (accuracies) for all benchmarks

pairs (grammatical sentence more likely) over the
whole dataset.

Semantic probing To evaluate our models’ se-
mantic knowledge, we use the XCOMPS dataset
(He et al., 2025). It contains conceptual minimal
pairs (e.g. Garnele hat einen Kopf./*Ein Bikini
hat einen Kopf.)4 that test whether LMs have
acquired knowledge about conceptual properties
of real-world entities. Again, we score the sen-
tences for likelihood and calculate accuracy over
the whole dataset.

8 Results

8.1 MP probing

Table 3 shows model-wise accuracies for all mini-
mal pair sets after training for one epoch. For the
word-level evaluations, accuracy scores are gener-
ally high. Across all tasks, the character models
perform with almost perfect accuracy. No effect of
the constructional composition of the training data
is identifiable here. For the subword models, this
is not true. Here, the model trained on more ques-
tions/fragments and less complex utterances (cds)
outperforms the model that approximates written
language on the construction level (pjg). The im-
provements range from 1% for anti-surprisal to
2-3% on lexical decision. Interestingly, the very
large ablation model (Llama 3.2 1B) performs the
worst on isolated lexical decision, but reaches high
scores in the surprisal setting.

For the syntactic tests, the picture is more nu-
anced. Generally speaking, all our models learn
to distinguish most types of grammatical and un-

4We sample 1,000 MPs with randomized replacement, as
the other conditions contain implausible/wrong minimal pairs.
Furthermore, the quality of translation is not optimal, as ex-
emplified by the missing determiner in front of Garnele.

grammatical sentences involving agreement phe-
nomena. The best scores are achieved on more
simplistic phenomena like simple agreement or co-
ordination with short verb phrases. Agreement
phenomena that involve longer dependencies and
distracting nouns, e.g. within and across relative
clauses, are the hardest to learn. For the charac-
ter models, the cds model outperforms the others
on three out of seven tests, including both “across
subj./obj. relative clause” conditions. For three
other tests, the pjg model wins out, whereas the
mix model achieves the highest scores on only one
test (agreement across prepositional phrases). It
should be noted, that for most phenomena, the
character models do perform well above chance
(by a margin of 10–20%), but still frequently make
errors. The subword models show a somewhat dif-
ferent picture, with scores being generally higher
and approximating perfect performance on 3/7 phe-
nomena. Regarding construction distributions, the
pjg model wins in five categories, whereas cds
and mix only achieve best scores in one each. Here,
the 1B-parameter Llama model outperforms our
BabyLMs on 5/7 phenomena.

The scores on XCOMPS reveal that our small
models do not reliably learn the conceptual knowl-
edge underlying the included minimal pairs. Scores
revolve around the chance baseline, with subword
models performing slightly better than character
models for 2/3 data mixtures. Nonetheless, these
scores are also not considerably worse than the
performance of our ablation model (58.9%).

8.2 Learning trajectories

Figure 3 shows the learning trajectories of our mod-
els across one training epoch. As there are no inter-
mediate checkpoints available for the 1B-parameter
ablation model, we only report trajectories for our
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Figure 3: Learning trajectories for all minimal pair benchmarks

self-trained models. In line with best practices in
ML (Viering and Loog, 2023), we log-scale the x-
axis in our plots. This allows us to also trace early
learning in more detail.

For our character models, word-level learning
happens rapidly in an S-shaped curve. No dif-
ferences are visible between the datasets, perfor-
mance improvements align almost perfectly. For
the subword models, the learning processes are
not as nicely monotonically improving. Rather,
the learning trajectories show a dip early in train-
ing, which then later on recovers to fairly good
accuracy scores. Interestingly, despite differences
in final scores, the improvements across models
trained on quite different datasets still align with
regard to turning and takeoff points.

This pattern is also confirmed by the learning
trajectories for the syntactic phenomena. While the
pjg models trained on more complex utterances fre-
quently reach the highest final scores, it is remark-
able to see how the improvements for all models
seem to happen in parallel. The global shape of the

trajectory is the same for all syntactic tests, regard-
less of the construction distribution. For example,
the learning curve for simple agreement is steeper
for the pjg models once learning has started, but
take-off points are neatly aligned. These take-off
points are pushed back by the individual paradigms’
complexities — simple agreement and short VP co-
ordination begin to improve earlier than MPs con-
taining RCs. Finally, it is interesting to note that for
the character models, word-level learning consis-
tently stabilizes before syntactic learning, whereas
both processes seem to happen concurrently in sub-
word models (mirroring findings for English, cf.
Bunzeck and Zarrieß, 2025). As our models do
not learn to distinguish the semantic minimal pairs,
the corresponding learning curves remain flat and
performance differences are likely due to chance.

9 Discussion

This paper set out to investigate whether the con-
structional profile of CDS, which is shaped in a way
to support the acquisition of functional language
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competence, actually influences LMs’ formal lan-
guage learning, and whether its relative lack of
complex sentences and canonical SV(X) utterances
makes it less useful training data, or too “impover-
ished” for meaningful formal learning to happen.
The results of our utterance-level corpus analysis
for German align with earlier findings on CDS
and book language for English (Cameron-Faulkner
et al., 2003; Cameron-Faulkner and Noble, 2013;
Bunzeck and Diessel, 2024) and Irish (Cameron-
Faulkner and Hickey, 2011), adding to the growing
evidence that this linguistic distribution is fairly
universal, at least in WEIRD societies (Henrich,
2024).

From a language modeling perspective, the con-
structional profile of training data is not overly
important for the resulting performance on linguis-
tic benchmarks. Rather, starting/turning points of
the resulting learning trajectories are mostly deter-
mined by the respective amount of training steps.
Despite models trained with more complex input
resulting in slightly better performance, they do not
begin to learn earlier. Global learning trajectories
are extremely similar, only the local magnitude dif-
fers between different constructional setups. This
provides further evidence that LMs based on the
Transformer architecture (Vaswani et al., 2017) not
only memorize language from their training data,
but generalize to the underlying patterns. The same
holds true or word-level learning processes such
as lexical decision or (anti)surprisal tests, where
data with more fragments and questions even seems
to be rather beneficial. Furthermore, the compar-
ison of our results to the Llama 3.2 1B model
shows that rather high scores are already attain-
able with small models and little data (only on long
VP-coordination do our models underperform).

What does this now mean for theories of lan-
guage acquisition? This study was inspired by
findings of construction-based corpus analyses
(Cameron-Faulkner et al., 2003; Cameron-Faulkner
and Hickey, 2011; Bunzeck and Diessel, 2024),
which argue that the specific constructional profile
of CDS is beneficial to acquisition. Of course, LMs
and minimal pair evaluations do not directly cor-
respond to the learning processes in humans and
we cannot make causal claims about them. Yet,
our methodology can provide evidence as to what
kinds of input data is beneficial to a purely statis-
tical learner (that does not even tap into the func-
tional side of language, cf. Mahowald et al., 2024),
an abstraction that is highly relevant to usage-based

theories (Ambridge et al., 2015). On a formal level,
there seem to be comparatively little disadvantages
for models trained on less “complex” or somewhat
impoverished data. Despite more complex data
leading to slightly better benchmark scores, the
learning trajectories remain largely unaffected (al-
though somewhat erratic, cf. Bunzeck and Zarrieß,
2024). What really shapes the learning process
in our LMs is the amount of input, not its formal
complexity (similar to findings for children by Hut-
tenlocher et al., 1991; Rowe, 2012). An increase
in appropriate construction types for child-rearing
(like questions, imperatives, or fragments) does not
hinder formal learning (if only reduce its magni-
tude slightly). As CLAMS only focuses on subject-
verb agreement in canonical SV(X)-sentences, it
is rather surprising that the much higher amount
of questions in the cds dataset does not negatively
affect performance, although the subjects’ and pred-
icates’ positions are switched in German yes/no-
questions. Conversely, the cds dataset even enables
word-level learning to converge to a better end state.
This also aligns with a broader trend found in lan-
guage acquisition studies — the complexity and
quality of input can indeed predict later language
skills (Noble et al., 2020; Alroqi et al., 2023), but
the ground level is always extremely high already:
being a competent user of the language itself. Fur-
thermore, quality varies with many more extralin-
guistic factors like the number of siblings (Laing
and Bergelson, 2024) or cultural factors (Bergelson
et al., 2023; Bunce et al., 2024).

10 Conclusion

Our findings add to the growing body of research
on BabyLMs (Warstadt et al., 2023; Hu et al.,
2024). Similarly to English models, our German
BabyLMs only need little data — the cds dataset
contains approx. 820,000 sentences, and given the
estimation by Cameron-Faulkner et al. (2003) that
children hear around 7,000 utterances per day, our
data approximates the number of utterances heard
over only 120 days — to learn a fair amount of
syntax and almost impeccable lexical knowledge,
with trajectories mirroring those of English models
(Bunzeck and Zarrieß, 2025). We hope that our
dataset enables other scholars to carry out experi-
ments with developmentally plausible LMs beyond
the dominating English LMs, and that our data
provides inspiration to those compiling BabyLM
corpora for other languages.
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Limitations

Our study is limited by data availability. Creating
a full-fledged 100M-token BabyLM dataset with
only child-directed speech or other explicitly child-
directed materials is currently out of question, as
neither CHILDES nor other sources contain even
remotely enough data for languages other than En-
glish. To reach higher token counts, padding with
larger data sets, e.g. more tokens from the Open-
Subtitles dataset, would be necessary. Principally,
synthetic corpora like the TinyStories dataset (El-
dan and Li, 2023), which contains children’s stories
generated by GPT-3 or TinyDialogues by Feng et al.
(2024) would provide an unlimited source of train-
ing data. However, our inspection of their gener-
ated dialogues yielded that they drastically underes-
timate the high numbers of grammatical fragments,
questions and short SV(X)-utterances in real-world
data. Similarly, there are little to no evaluation sets
specifically aimed at German, beyond those that we
included/creates ourselves, especially on the syn-
tactic level. Only very recently, evaluation datasets
like the massively multilingual MultiBLiMP have
begun to fill this gap (Jumelet et al., 2025). Also,
such minimal pair datasets are principally at odds
with the usage-based, constructionist view on lan-
guage development, because they are grounded in
the Generativist notion of defining rules that can de-
termine whether an utterance belongs to a language
or not, whereas usage-based linguistics has adopted
a network-based, associative model of linguistic
knowledge (Diessel, 2019, 2023). As of late, these
developments have begun to make their way into
the broader LM evaluation landscape (Weissweiler
et al., 2025), and novel evaluation methods like
measuring affinities between lexical items and test-
ing if different constructions manifest from them
(Rozner et al., 2025a,b) provide promising future
research avenues.

Moreover, actual developmental plausibility also
hinges on the inclusion of other modalities. For au-
dio data, there are few CHILDES subcorpora and
other corpora that contain phonetic information
(Lavechin et al., 2023), but larger models need to
be trained on more data, e.g. audiobooks (Lavechin
et al., 2025). A middle ground is training on textual
phonetic transcriptions generated from raw text, e.g.
for the BabyLM data (Goriely et al., 2024; Bunzeck
et al., 2025; Goriely and Buttery, 2025b). More re-
cently, also video recordings from infant-mounted
cameras have been used to train on combined vi-

sual and auditory input modalities (Wang et al.,
2023; Vong et al., 2024; Long et al., 2024). The
inclusion of such data could help to disentangle
learning processes further.

Ethical considerations

Given the nature of this work, there are no spe-
cific ethical concerns to address. However, we
would like to stress that, of course, BabyLMs are
not supposed to simulate real babies, but rather to
instantiate abstractions, or models in the original
scientific sense, of the distributional, frequency-
driven aspects of their learning capacity. All claims
regarding their implications for language develop-
ment in the real world should be understood in
this context, which we also attempted to explicate
by distinguishing functional and formal aspects of
learning.
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A Excluded corpora

Several corpora that are — in principal — available
for German were excluded from our analysis. The
Folk corpus (Reineke et al., 2023) and the Sim-
ple German corpus (Jach and Dietz, 2024) are not
available under any open licenses, while the data
in other German reference corpora (Kupietz et al.,
2010) are not available in their entirety but can
only be queried through web interfaces. Finally,
Homebank features day-long audio recordings of
children and their surroundings/inputs (VanDam
et al., 2016), but without any written transcriptions.

B Data cleaning

In line with best practices in language modeling,
we extensively clean and normalize our data.

All subcorpora We replaced all local variants
of single/double quotation marks with either ' '
or " ". We further reduced multiple superfluous
whitespace and newlines to singular whitespaces.

Talkbank data For the data sourced from talk-
bank (i.e. the CHILDES corpora and CallHome),
we remove all mark-up and additional info on false
starts, hesitations, implicit completions or other
explanations. Furthermore, we also remove all
empty utterances and those containing xxx or yyy,
placeholder symbols for personally identifiable in-
formation.

Project Gutenberg For the Project Gutenberg
data, we excluded all lines with more than 6 con-
secutive whitespaces, as these always turned out
to be title pages, index pages, etc., which contain
no useful language data. Additionally, we removed
all textual data in square brackets, which almost
always corresponded to pointers to pictures which
are not found in text-only version, or additional
explanations by the volunteers who digitized the
respective books.

OpenSubtitles For the OpenSubtitles data, we re-
moved all text in parentheses, which corresponds to
speaker information. Also, we removed sentence-
initial dashes (-) which were sometimes added. We
also amended OCR errors (like mangled uppercase
I and lowercase l) as far as possible.

Fluter For the data sourced from the Fluter mag-
azine, we removed all lines containing additional
metatextual data, like author info and image credits,
before pre-training.
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C Exact construction proportions

Table 4 shows the exact construction proportions for all of our subcorpora. This data underlies the
visualization in Figure 2.

Construction Proj. Gut. Dreamb. Fluter News Wikib. Klex. Mini-Klex. OpenSub. CallHome Child speech CDS

FRA 7.8% 6.3% 6.2% 4.0% 11.6% 6.3% 2.5% 24.1% 37.0% 55.1% 24.5%
QWH 1.9% 0.3% 2.6% 1.4% 0.5% 2.9% <0.1% 7.3% 2.1% 3.5% 8.8%
QYN 3.7% 0.7% 2.8% 1.6% 0.5% 0.4% <0.1% 10.9% 6.9% 4.7% 20.7%
COP 4.6% 7.1% 7.7% 7.4% 10.9% 13.2% 21.4% 9.7% 10.7% 5.7% 8.1%
IMP 1.5% 0.1% 0.2% 0.1% 0.3% <0.1% <0.1% 4.6% 0.4% 2.0% 4.5%
SPI 7.5% 9.2% 9.7% 13.7% 9.5% 13.9% 19.9% 9.9% 8.8% 11.5% 10.1%
SPT 10.5% 14.5% 18.7% 25.7% 24.1% 28.1% 37.2% 18.0% 14.1% 11.9% 12.3%
COM 62.5% 61.8% 52.2% 46.1% 42.7% 35.2% 18.9% 15.4% 20.0% 5.7% 11.0%

Table 4: Exact proportions of constructions for all subcorpora

D Model hyperparameters and training details

Our models share a hidden/intermediate/embedding size of 256, 8 hidden layers and attentions heads,
and a context length of 128. For the character models, the vocabulary consists of all printable ASCII
characters and characters used in written German (üäöß and their uppercase variants), amounting to a
vocab. size of 110 and 3,730,688 parameters. For the subword models, we train a BPE tokenizer (Gage,
1994) with a vocab. size of 8,000 and add two special tokens (BOS, EOS/PAD), resulting in 8,002 vocab.
tokens and 7,771,392 parameters. Model training takes approx. 2h on a MacBook Pro with an Apple M2
Pro CPU/GPU.

We reproduce the training and test loss curves for our models in Figure 4. For the test loss, we evaluated
perplexity on a held-out, randomly sampled portion of each individual training corpus. We find no
principal differences in loss development, although the character models and models trained on the cds
data seem to converge the fastest. As the similar curves for train and test loss indicate, all models succeed
in optimizing for their next-token prediction goal. It should be noted that due to longer/shorter sequences
in the different data mixtures and our choice of padding to the maximum sequence length, some models
are trained for more steps, although the number of lexical tokens remains the same.
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Figure 4: Loss curves for our self-trained character and subword models
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E Repeated training runs

A common criticism towards the BabyLM paradigm is the purported effect of training noise on model
performance, which is hard to disentangle from real training data effects. While training and evaluating
multiple random seeds for all our models would be too costly, we repeated two additional training runs
for the character-level cds model with different random initializations (learning trajectories in Figure 5a)
and two additional training runs where we re-sampled the cds dataset from our whole corpus with the
exact same construction composition, but different content (learning curves in Figure 5b). In both cases,
the learning trajectories do not differ tremendously. For the word-level phenomena (LexDec, Surprisal,
AntiSurprisal), the curves overlap almost perfectly. For the syntax phenomena, we can see some variation
and oscillation in the curves, but the trajectories still remain extremely similar (and do not differ in
their steepness, the main effect that we see in Figure 3 between the datasets with different construction
compositions).

0

20

40

60

80

100

A
cc

ur
ac

y

LexDec Surprisal AntiSurprisal

0

20

40

60

80

100

A
cc

ur
ac

y

Simple Agreement Across Prep. Phrase Across Subj. RC

0

20

40

60

80

100

A
cc

ur
ac

y

Short VP Coord. Long VP Coord.

10
2

10
3

Training steps

Across Obj. RC

10
2

10
3

Training steps

0

20

40

60

80

100

A
cc

ur
ac

y

Across Subj. RC

10
2

10
3

Training steps

XCOMPS

Random seed
42
84
85

(a) Trajectories for different random initializations

0

20

40

60

80

100

A
cc

ur
ac

y

LexDec Surprisal AntiSurprisal

0

20

40

60

80

100

A
cc

ur
ac

y

Simple Agreement Across Prep. Phrase Across Subj. RC

0

20

40

60

80

100

A
cc

ur
ac

y

Short VP Coord. Long VP Coord.

10
2

10
3

Training steps

Across Obj. RC

10
2

10
3

Training steps

0

20

40

60

80

100

A
cc

ur
ac

y

Across Subj. RC

10
2

10
3

Training steps

XCOMPS

CDS data
Sample 1
Sample 2
Sample 3

(b) Trajectories for different samples of cds data

Figure 5: Learning trajectories for our comparison models

186



Proceedings of the 29th Conference on Computational Natural Language Learning, pages 187–200
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

Adapting Large Language Models for Movie Domain with Narrative
Understanding Tasks

Siqi Shen
University of Michigan
shensq@umich.edu

Amanmeet Garg
Amazon Inc.

amanmega@amazon.com

Abstract

Large language models (LLMs) have been de-
ployed in a wide spectrum of domains and ap-
plications due to their strong language under-
standing capabilities obtained through pretrain-
ing. However, their performance on specific
domain is usually suboptimal due to limited
exposure to domain-specific tasks. Adapting
LLMs to the movie domain poses unique chal-
lenges due to complex narratives that cannot
be fully captured through subtitles or scripts
alone. In this paper, we decompose movie un-
derstanding capability into a suite of narrative
understanding tasks based on narrative theory.
We construct a dataset for these tasks based on
resources in the movie domain, and use it to
examine the effect of different domain adapta-
tion strategies. Our experiment results show
the effectiveness of our approach in improving
the narrative understanding of LLMs and high-
light the trade-offs between domain-specific
and general instruction capabilities.

1 Introduction

Large language models have revolutionized natural
language processing with their ability to understand
and generate text across diverse domains (Radford
and Narasimhan, 2018). However, these models of-
ten struggle with specialized tasks in domains that
are underrepresented in their training data, such as
cinematic content. While domain adaptation has
shown success in fields such as medicine (Yang
et al., 2023), finance(Wu et al., 2023), and law(Cui
et al., 2024), adapting LLMs to understand movie
narratives remains an underexplored challenge de-
spite cinema’s widespread cultural impact.

Adapting an LLM to the movie domain, on the
other hand, remains underexplored despite movies
and TV shows having such a large audience. An
adapted LLM could potentially enable and benefit
many movie-related tasks, be it a better summa-
rization of movie content or more accurate content
moderation.

Figure 1: Different stages of adapting a generic LLM to
the movie domain.

Understanding text in the movie domain, how-
ever, pose its unique set of challenges. Movie sub-
titles lack visual context and contain fragmented
dialogues with interruptions, incomplete sentences,
and repetitions. In addition, understanding a line
sometimes requires knowledge of the story setups
or the background of the characters. Existing work
on domain adaptation of general-use LLMs gener-
ally falls into the following three categories. The
first uses a domain-specific corpus C directly for
pretraining without specifying domain tasks (Wu
et al., 2023, 2024) referred to as Domain Adap-
tative Pretraining (DPT), which is only effective
when substantial domain knowledge is unseen dur-
ing the model’s pretraining stage. The second cate-
gory focuses on a single domain task t, for example,
question answering, while generalization to unseen
tasks U is not a main consideration(Wu et al., 2024;
Singhal et al., 2025). The last category compiles a
set of domain-related tasks T and uses all of them
during training, aiming to broaden the coverage
of domain use cases (Cui et al., 2024; Liu et al.,
2023).

A narrative consists of two key components: the
story elements (characters, events, and settings)
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and how these elements are presented (discourse).
In movies, for example, a story includes both what
happens (a detective solving a crime) and how it is
told (revealing clues gradually to build suspense).
This framework, established by Chatman (Chat-
man, 1980), provides a systematic way to analyze
movie narratives by breaking them down into these
fundamental components. Understanding these ele-
ments is crucial for teaching LLMs to comprehend
movie content effectively.

We build the instruction dataset with movie text
that focuses on narrative understanding capabili-
ties. Our narrative understanding tasks T include
predicting the main action or place of a movie clip,
inferring the characters along with their interac-
tions and relations, summarizing the subtitle, and
segmenting the story according to plots. We control
the quality of the dataset by sourcing from various
datasets and databases in the domain, and curate
instruction samples with both a suite of designed
rules and LLM-based judges.

Using this dataset, we conduct domain adapta-
tion with instruction finetuning on both narrative
understanding and general instructions. We exam-
ine the effect of the training schema as well as data
mixture, and illustrate that LLM can be effectively
adapted to the movie domain with a trade-off be-
tween general instruction following. We also show-
case the interplay of domain instruction finetun-
ing with pretraining on movie text and in-domain
downstream tasks.

Overall, our work offers insight on how to adapt
an LLM to the movie domain and a better under-
standing of the effect of the adaptation procedure,
with the following main contributions: (1) We pro-
pose a suite of tasks for adapting LLM to the movie
domain based on narrative theory. (2) We collected
an instruction dataset consisting of narrative un-
derstanding tasks with various quality control mea-
sures. (3) We conduct systematic experiments that
analyze the effect of adapting LLMs on narrative
understanding tasks, showing that adaptation also
helps in the movie domain.

2 Related works

Instruction finetuning Instruction fine-tuning en-
ables large language models (LLMs) to follow user
instructions across various tasks by exposing them
to diverse task instructions. Early works on instruc-
tion datasets, such as T0-SF (Sanh et al., 2021)
and NaturalInstructions (Wang et al., 2022b) were

mostly compiled by humans. It shows the potential
of instruction finetuning in zero-shot and few-shot
scenarios, particularly in generalization across un-
seen tasks (Wei et al., 2021; Chung et al., 2024).
Methods like Self-Instruct (Wang et al., 2022a)
that automatically generate new tasks have become
popular alternatives to human annotation. It in-
creases the diversity of tasks based on seed tasks
in a bootstrapping way that drives the success of
many open-source models (Taori et al., 2023; Xu
et al., 2023; Peng et al., 2023).

Domain Adaptation Deploying an off-the-shelf
LLM on domain tasks usually leads to suboptimal
performances, thus there are attempts on adapting
them to various domains. BloombergGPT (Wu
et al., 2023) mixes the proprietorial finance text
corpus with the general text corpus and is trained
with the regular LLM pre-training task. Finetuning
on domain-specific tasks is a more common and
efficient solution for most application scenarios.
FinGPT (Yang et al., 2023) adapts to the finance
domain with a new task to predict the change in
stock price, and sees improvement in in-domain
tasks such as portfolio management. ChatLaw (Cui
et al., 2024) construct a legal dataset comprising
10 major categories including case classification,
statute prediction, and test its performance with
Unified Qualification Exam for Legal Professionals.
ChipNeMo (Liu et al., 2023) adopts LLM for chip
design by training it in chip design documents and
code. These existing works suggest that training
general LLM on a selection set of domain-specific
tasks can increase the model’s general capability
tasks in that domain.

3 Narrative Understandings in Movie
Domain

3.1 Definition of Narrative

Narratives can be defined as stories in which a
series of events or experiences unfold over time.
Novel, fable, opera, and film are all good exam-
ples of narratives in different formats. Narratives
are built upon different constituents, such as agent,
scene, with the events organized in a particular or-
der, and that structure is called the narrative struc-
ture. Despite the fact that narratology scholars have
no consensus on what a narrative structure is, they
offer different ways to comprehensively understand
a narrative. In our work, we adopt the version of
the narrative structures of Seymour Chatman (Chat-
man, 1980) as shown in Figure 5, with Story and
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Task Input Output
subtitle_action Look, see that? It’s on. It worked.

What do you mean it worked? Everything’s off.
Shutdown tripped the circuit breakers.
Turn them back on, reboot a few systems

smoke, watch screen,
press button

subtitle_place The defendant, please. court (inside)
synopsis_event "Ron tries to sell medicine to the gay men from the support group

he attended before. Nobody buys, and Ron leaves."
selling

synopsis_place same as above meeting room
subtitle_character PersonA: Here is a support group that meets daily in Draddy

Auditorium. I suggest you try it out and maybe go talk about your
feelings, your concerns.
PersonB: I’m dying. You telling me to go get a hug from a bunch
of fag*ots?

PersonA: Eve;
PersonB: Ron Woodroof

subtitle_interaction same as above suggests, rebukes
subtitle_relation How you doing, Miss Clark?

All right, Henry. Thank you. How you doing?
If God is willing, Miss Clark.
That’s good.

acquaintance

short_subtitle_synopsis subtitle of a clip synopsis of the clip
long_subtitle_synopsis subtitle of a story part synopsis of the story part
synopsis_turning_point (37) Later, Zira gets close to Taylor’s cage and he grabs her note

book and pencil.(38) Julius, (Buck Kartalian), the gorilla guard,
enters the cage to beat up Taylor and retrieves the stolen items...

(41)

Table 1: Examples of narrative understanding tasks

Discourse as its two main constituents.

Story The Story of a narrative is the content oc-
curring in the narrative, including events and exis-
tents. Events is also traditionally referred as plot,
capturing key information about what is going on
in a movie clip or a paragraph of text. That in-
cludes actions originating from characters such as
“fell on to the ground” or things happening with
other objects such as “It is raining here.” Existents,
on the other hand, instantiate events with concrete
characters and settings. For example, the character
who fell can be “Indiana Jones” and the setting can
be “in a rainforest", and that immediately brings
up the image of muddy ground and the thrill of
treasure hunting to our mind.

Discourse Segments of content scattered around
on their own do not give us anything interesting
or thought-provoking, as they need to be delivered
with some arrangements to make sense. That is
done by the Discourse of a narrative, which is about
the way to express the content. The discourse is in
charge of both temporal and spatial arrangements.
The temporal arrangement is more straightforward,
for example, how does that events chronologically
revolve and if there is non-linear storytelling etc.
The spatial arrangement is more about the focus of

spatial attention, maneuvering what the audience
sees through the camera eye, and figuratively in
verbal narratives.

3.2 Movie Narrative Understanding Tasks
Movie as a form of narrative consists of informa-
tion in different modalities, including text, audio,
and visual information. However, a lot of informa-
tion can be inferred from the text alone. Taking
a simple one-word line “Order!” One can guess
that the setting of the story is probably in court or
parliament. Also, if a host is announcing “Shari
and Prakash are so happy that so many of you are
here today joining in holy matrimony,” then it is
likely that Shari and Prakash are new spouses. It is
expected that LLMs’ capabilities on different nar-
rative elements can help them adapt to the movie
domain with better language understanding. We
restrain our scope to the text modality, nonetheless,
our general framework can be extended to a multi-
modal setting with Vision-Language models and
visual narrative understanding tasks.

To better facilitate LLMs’ narrative understand-
ing on the movie domain, we propose a comprehen-
sive array of tasks shown in Table 1, which cover
each key element of a narrative at both the story
level or discourse level.

For the Story element, we include several pre-
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diction tasks on the events including actions and
happenings, as well as the existents of characters
and settings. The tasks of event and place predic-
tion from the synopsis take the summarized text de-
scription of the movie clip and answer the question
based on that. It improves the model on extracting
information about essential narrative components
from the summarization. These prediction tasks are
also conducted with subtitles as the input. Since
subtitle is not as concise and well-formatted as the
synopsis, this set of tasks is considered more diffi-
cult and often involves making inferences between
the conversation lines. As character is another cen-
terpiece making the content, we include a character
disambiguation task that predicts the correspond-
ing speaker given the subtitle and the story back-
ground. Story background is needed in this case
to match the speaker to names, as there is usually
no direct mention of it unless some speaker calls
others’ names. The character interaction prediction
and character relation prediction go a step further
and require the model to understand the dynamics
between multiple characters.

At the Discourse level, we include a turning
point prediction task as well as two summariza-
tion tasks. The turning points are crucial narrative
moments that segment a movie into thematic story
parts (Papalampidi et al., 2019). The story part is a
larger unit than the scene, where a movie usually
consists of several parts for setting up, complica-
tions of the plot, etc., and predicting the turning
points requires an overall understanding of long
and complex narratives. Summarization based on
subtitles of a movie clip or a whole story part is
also introduced, which requires correctly capturing
the plot progression.

4 Movie Domain Adaptation

We discuss the sample collection procedures for
each narrative understanding task in § 4.1 and the
quality control measures in § 4.2. We discuss the
method to perform domain adaptation in § 4.3.

4.1 Data Collection

We construct our samples around the subtitle and
synopsis since they are the most available textual
sources for movies. Among all our proposed narra-
tive understanding tasks, most of them do not have
a straightforward way to get labels directly from
the subtitle only. Therefore, we look at existing
human-annotated datasets on the movie domain

for our need, as they may offer better fidelity than
relying on synthesized data alone.

More specifically, we collect the place and ac-
tion tags for movie scenes from MovieNet (Huang
et al., 2020) for action prediction and place predic-
tion based on subtitles. Each movie scene is further
divided into movie shots in MovieNet, we aggre-
gate the subtitles of movie shots that belong to the
same scene, and match the place or action tag as its
label. We collect the same information from (Vicol
et al., 2018) with the difference that the event and
place now match the synopsis of the clip instead of
the subtitle, which is a short descriptive sentence in
natural language. For tasks centered on characters,
we collect characters occurring within a movie clip
from MovieGraphs, and obtain their relations and
interactions as well. We also keep a record of the
corresponding subtitles and timestamps for all sam-
ples. The turning point prediction task is based on
the segmentation of the story parts in MovieNet
by tracking the sentence index where the synopsis
turns into a new story part. The clip summarization
and story summarization tasks are constructed by
matching the subtitle with its synopsis at a clip and
story part level correspondingly.

Instruct prompt construction We manually con-
struct a prompt template for each narrative under-
standing task and use the collected labels to instan-
tiate training samples. We specify the requirement
for each individual task in the user prompt and
use a format aligned with the Alpaca (Taori et al.,
2023). The specific prompts that we used can be
found in Table 8.

4.2 Sample Refinement

The multimodal nature of the MovieNet and
MovieGraphs datasets presents challenges for text-
only analysis. For instance, when aggregating sub-
titles from consecutive shots, redundant dialogues
may appear, particularly in scenes with minimal
conversation. For example, a subtitle can some-
times occur in multiple consecutive movie shots in
MovieNet, which can introduce repeated utterances
when aggregated into a movie clip. That usually
happens when the main characters are not having a
lot of conversation and the subtitle lingers for more
than intended.

There are also many noises in the annotated sam-
ples. For example, a lot of subtitles contain very
few verbal exchanges in MovieGraphs, since the
annotation is at the clip level, which is usually less
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than one minute in length. Also, the subtitles are
split by timestamps with no information of speak-
ers available, which makes it more difficult to make
sense of whether it is the same speaker talking.

Besides, a common issue with most tasks is that
textual data alone does not contain sufficient in-
formation to infer the desired answer, especially
for clips with multiple labels. For example, infer-
ring multiple locations like [desert, doorway, living
room, yard (outside)] for a single scene would be
very hard, and it is a problem rooted in scene pars-
ing of the datasets we use. It is the same case for
character labels, there are labels such as brides-
maid #4, which sometimes just appear in the clip
without saying anything. All these issues require
more careful preprocessing and sample selection
as follows to curate a useful dataset.

Rule-based filtering To avoid samples with too
much ambiguity, we enforce some restrictions on
the labels. For character-related tasks, we keep
samples with exactly two named characters and
remove samples with more than one interaction and
relationship. The order of the character is tracked
as there are relationships such as “parent”, which
are not mutual. We also keep only samples with
one place and event label, as that corresponds to
correctly segmented scenes. For actions, we keep
the actions that are salient in the clip with a duration
of more than 4 seconds.

Introducing script information Since subtitles
are noisy and lack information of the speakers at
an utterance level, we decide to use the dialogue in
the script to replace the subtitle. Using a clip from
the movie Indiana Jones and the Last Crusade as
an example (Table 10), it is apparent that the script
provides richer information, including the descrip-
tion of each scene and the speaker information for
all the dialogues. We use all scripts on The Inter-
net Movie Script Database (IMSDb)1 , and use the
TMDB API 2 to get the meta-information for each
title. The labels from MovieNet and MovieGraphs
are based on the IMDB ID, so we get the map-
ping from IMDB to TMDB ID, and then map the
samples to the corresponding script files.

Note that subtitle does not strictly follow the di-
alogue provided in the script, and is more like an
improvisation from the actors. Therefore, finding
the corresponding segment of script for a subtitle

1https://imsdb.com/
2https://www.themoviedb.org/

itself is a long-text retrieval task. We use fuzzy
string match for each utterance in the subtitle to
an utterance in the script based on editing distance.
An utterance in the script may be split into multi-
ple utterances in the subtitle, so we use a partial
ratio match, which matches the shorter utterance
with substrings of the same length in the script
utterance. We add dummy tokens to the script ut-
terance to make sure it is the longer one, and cut
off with a match score of 90. We then collect the
matched utterance from the script to replace the
original subtitles for our tasks. Our method expects
high precision with lower recall compared with
the embedding-based retrieval method for ignoring
sentences with the same semantics, which meets
our requirement for data filtering.

Modified character prediction task It usually
does not make much sense to predict a named char-
acter from the subtitle alone unless there is a name
called out in the clip, while providing a synopsis
makes it a named entity recognition task without
making an inference. Therefore, we modify the
character prediction task and let the model match
the character to the speakers. This task requires an
understanding of the synopsis and dialogue, and
can have samples constructed without any human
labeling.

4.2.1 LLM-based sample selection
We take the common assumption that verifying
an answer is easier than generating one, and we
do another round of filtering using LLM for all
tasks other than summarization tasks and turning
point prediction. We provide the LLM with data
samples and ask whether the expected output can
be inferred from the subtitle as well as the synopsis
for some tasks. We also ask the model to give an
explanation for the decision. The prompts that we
use for sample filtering can be found in Table 7. We
only keep samples that are deemed to be inferable
from the input and use them in both training and
testing. We also provide the explanation at the
training time so that the model generates the label
corresponding to the task and gives an explanation.

4.3 Domain Adaptation with Instruction
Finetuning

We adapt LLM to the movie domain following the
instruction finetuning paradigm (Shi et al., 2024;
Zhang et al., 2023a). Instruction finetuning is an
approach that finetune pretrained LLMs on a va-
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riety of prompts and tasks in the form of natural
language, such that the model learns the desired
capability while being able to follow different in-
structions for practical use. To maintain models’
instruction-following capability, we mix the movie
domain-specific tasks with samples from general
instruction dataset. We train the model in a regular
supervised finetuning setup using causal language
model loss, with the difference that we mask out
the loss on the instruction. That encourages the
model to learn the narrative understanding tasks
itself given the input rather than completing the in-
put, which sometimes consists of movie text much
longer than the expected output.

5 Experiments & Results

5.1 Experimental Setup

Dataset We split the samples for each task by
movie titles using the train-test split from the
MovieNet and MovieGraphs datasets. This pre-
vents any information leakage from the model see-
ing the same movie content from different samples
during the training run. We train models with a
mixture of narrative understanding tasks and gen-
eral instructions from LIMA (Zhou et al., 2024)
and GPT-4-LLM (Peng et al., 2023). General in-
structions are sampled from these two datasets to
the specified amount, with the order of the sam-
ples shuffled randomly. The number of samples for
each individual task group can be found in Table 6.

Models We conducted the experiments on the
instruction-finetuned version of the LLama3 and
LLama3.1 family (Dubey et al., 2024), as it gen-
erally leads to better performance for continued
instruction fine-tuning (Zhang et al., 2023b). We
use a standard setting for fine-tuning and train each
model for 3 epochs with a learning rate of 1e-5 and
a weight decay of 1e-2 following AlpaGasus (Chen
et al., 2023). We used a total batch size of 64 on
8 A100 GPUs with DeepSpeed Stage3 3. We keep
multiple checkpoints for each setting for evalua-
tion, as loss in the evaluation set is a poor indicator
of the quality of text generation (Zhou et al., 2024).

Evaluation Metrics Story elements tasks that
predict events (interaction, action) and existent
(character, place) expect output that is usually a
word or a phrase for the corresponding element.
We use exact match to check if the ground-truth

3https://github.com/microsoft/DeepSpeed

label is correctly generated by the model while ig-
noring the generated explanation. For interaction
prediction, we extract the lemma of the root verb
in the output and ground truth before matching.

For discourse tasks, we report traditional genera-
tion metrics including BLEU (Papineni et al., 2002)
and ROUGE (Lin, 2004) for clip and story summa-
rization. We report the average distance from the
predicted index to the ground truth for the turning
point prediction.

5.2 Domain Instruction Finetuning (DIT)
Training Method for DIT We first investigate
what LLMs’ zero-shot capability is on different nar-
rative understanding tasks T . We also examine how
different training methods affect the domain adap-
tation procedure, including the parameter-efficient
training (PEFT) method LoRA (Hu et al., 2021)
and instruction embedding noise NEFTune (Jain
et al., 2023). We show the average metrics for the
story tasks and the discourse tasks in Table 2. The
metrics for the individual tasks are available in the
Appendix.

Model
Story Discourse
Acc. BLEU-2 RougeL

LLAMA3.1-8B 0.151 0.092 0.169
LLAMA3.1-70B 0.214 0.124 0.194

Finetune 0.321 0.150 0.194
LoRA-8-16 0.273 0.146 0.193

w/o NEFTune 0.304 0.147 0.191
LLAMA3-8B-Finetune 0.310 0.147 0.191

Table 2: Narrative tasks metrics for different ablations

Our results show that fine-tuning on narrative
understanding tasks greatly improves models’ per-
formance on all training tasks. For LoRA finetun-
ing, we test different LoRA rank and alpha with
a dropout equal to 0.01 and a learning rate of 3e-
4 following Alpaca-LoRA4. The LoRA finetuned
model shows lower average accuracy on story tasks
and generation metrics for the summarization tasks.
Increasing the rank and alpha does not increase the
results correspondingly either. Removing the em-
bedding noise NEFTune from the instruction hurts
the performance, so we keep it in all our following
experiments.

We also compare the Llama3.1-8B model with
the 70B version and its earlier variant Llama3. Al-
though the 70B variant has a stronger zero-shot
performance than the 8B model, it has a much

4https://github.com/tloen/alpaca-lora
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Model
Story Discourse
Acc. BLEU-2 Rouge-L Distance

Zero-shot 0.151 0.092 0.169 3.08
+Discourse 0.036 0.148 0.193 3.02
+Story 0.312 0.053 0.128 4.68
+Domain 0.317 0.149 0.193 2.79
+Domain +General 0.322 0.150 0.194 2.52

Table 3: Effect of data composition for Domain Instruc-
tion Finetuning

lower performance than the finetuned model. The
Llama3 model appears to be a little worse than the
more recent Llama3.1 after the same finetuning.

Effect of Data Composition for DIT We then
look into what is the best data composition for the
instruction finetuning. We finetune the model with
all narrative understanding tasks from our dataset
combined with general instructions and examine
whether a different mix ratio affects the outcomes.
To examine whether learning some narrative under-
standing tasks helps the others, we also trained the
model with either the tasks for the story element or
discourse.

Figure 2: Story narrative understanding tasks perfor-
mance trained with different data mixtures

Table 3 shows the model’s average metrics on
story element tasks and discourse tasks respectively,
and the accuracies on individual prediction tasks
are shown in Figure 2. While the general LLM
fails to predict actions or places from the subtitle
out-of-the-box, training only on discourse worsens
the accuracy to close to zero. This suggests that
training on story tasks or discourse tasks does not
generalize to the other category of tasks since the
model overfits to the specific input format and tasks.
Finetuning on all movie domain tasks increases the
performance across all tasks in both categories of
tasks, while adding generation instructions bene-
fits the model’s performance as well. However, as
shown in Figure 4, oversampling general instruc-

tions does not improve the model’s training task
performance any further.
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Figure 3: Effect of General/Domain instructions Ratio
on narrative understanding tasks performance

Generalization on unseen tasks with DIT We
check the performance on three out-of-distribution
benchmarks to see how the finetuned model gener-
alizes to unseen tasks U or maintains its original
capability.
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Figure 4: Models performance on out-of-domain tasks
with different General/Domain instruction Ratio. The
most left value are the base model without domain in-
struction finetuning.

Hellaswag (Zellers et al., 2019) and the English
part of xStoryCloze (Lin et al., 2022) both test the
model’s commonsense natural language inference
capability by letting it choose a sentence to fin-
ish a passage or story. Meanwhile, IFEval (Zhou
et al., 2023) focuses mainly on the ability to follow
various instructions. We obtain benchmarking re-
sults with the lm-evaluation-harness library from
EleutherAI 5. Figure 4 shows that the performance
of xStoryCloze remains intact as a text comple-
tion task without complex formatting, while the
performance on Hellaswag and IFEval drops dras-

5https://github.com/EleutherAI/lm-evaluation-harness
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Model Story Acc. BLEU-2 Rouge-L HellaSwag xStoryCloze IFEval
Baseline 0.151 0.092 0.169 0.755 0.807 0.723

DIT 0.322 0.150 0.194 0.397 0.803 0.360
DPT+DIT 0.331 0.144 0.187 0.277 0.772 0.349

Table 4: Effects of Domain Pretraining on Domain Instruction Finetuning. The metrics for narrative understanding
tasks are the averaged results.

Model NarrativeQA Hate Speech Political LGBTQ Religious
Zero-shot 0.190 0.771 0.450 0.692 0.839

SFT 0.373 0.931 0.922 0.923 0.934
DIT-SFT 0.375 0.928 0.915 0.922 0.934

DPT-DIT-SFT 0.369 0.934 0.925 0.920 0.933

Table 5: Results on downstream task supervised finetuning. BLEU-2 for narrativeQA. Accuracy for harmful content
detection datasets.

tically after the instruction finetuning. The model
regains some of the instruction-following capabil-
ity with an increased amount of general instruc-
tions, but is not able to recover to the original level.
This suggests the necessity of a high-quality and
large enough general instruction dataset, for do-
main adaptation while maintaining the instruction-
following capability. The reinforcement learning
from human feedback stage could also potentially
help.

5.3 Interplay of Domain Adaptation Stages

Impact of DPT on domain and unseen tasks
We also examine whether DPT influences the ef-
fectiveness of subsequent domain instruction fine-
tuning as in Wu et al. (2023). We train the LLM on
all the movie scripts as a text completion task for
one epoch, before conducting the same instruction
finetuning as in previous setups.

The results in Table 4 show that although pre-
training increases the accuracy of story element
prediction, it decreases the performance on the dis-
course tasks, and it is detrimental to model’s gen-
eral instruction-following capability. This aligns
with the results of studies in other domains (Wu
et al., 2024).

Impact of domain adaptation on downstream
tasks We further investigate whether the domain
adaptation uniformly improves the model’s perfor-
mance on downstream tasks in the movie domain.

We compare the supervised finetuning results on
several tasks in the movie domain with the same
training setups, based on the baseline models (SFT)
or the domain-adapted models respectively. We
train the model using an internal dataset to clas-
sify harmful content from subtitles, including hate

speech, references to political, LGBTQ, or reli-
gious content. We also train the model on Narra-
tiveQA (Kočiský et al., 2018), which is a long-form
generative QA based on the full text of a book or
movie script. Example prompts for downstream
tasks can be found in Table 9.

As suggested in Table 5, the performances on
all tasks are effectively improved by supervised
finetuning compared to the zero-shot setting, that
includes the accuracy for story tasks and BLEU
or Rouge for discourse tasks. However, the addi-
tional stages of domain instruction finetuning and
pretraining do not bring a consistent improvement
across all tasks. And it is still an open research
question on how to effectively measure the correla-
tion between different domain tasks and provide a
wider coverage through the domain adaptation.

6 Conclusion

In this paper, we construct a movie-domain instruc-
tion dataset consisting of a suite of narrative under-
standing tasks inspired by Narrative Theory, and
use it to analyze the effect of different domain adap-
tation stages.

We demonstrate that instruction finetuning on
the movie domain effectively increases the model’s
performance on all narrative understanding tasks,
but comes with trade-offs between general instruc-
tion finetuning capability. Additionally, we exam-
ine the interaction of instruction finetuning with
domain pretraining and domain downstream tasks,
revealing the benefits and limitations of adaptation
approaches. Our findings provide insights into how
LLMs can be effectively adapted to domains with
complex storytelling structures, paving the way for
future advancements in cinematic AI applications.
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7 Limitations

We rely on existing annotated datasets as our source
data. Despite quality control measures, there can be
noise in the sample that we constructed, including
mislabeling, etc. We run our experiments mainly
on the Llama family of models, and the results can
be further validated on other models. The train-
ing data may contain offensive content and is not
examined by the authors.
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Task samples
LIMA 1000
GPT-4-LLM 52002
subtitle place 328
subtitle action 214
subtitle character 367
synopsis place 795
synopsis event 928
subtitle relationship 233
subtitle interaction 165
Total Story 3030
clip subtitle synopsis 1017
story subtitle synopsis 1218
synopsis turning point 2217
Total Discourse 4452

Table 6: Statistics of instruction datasets used. The
general instructions are sampled from LIMA and GPT-
4-LLM

Figure 6: Discourse narrative understanding tasks per-
formance trained with different data mixtures
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Prompt
You are an expert in film theory and film criticism, with a deep understanding of cinema from
various genres, eras, and cultures. You are good at analyzing films by examining narrative structure,
cinematography, sound design, and thematic content. You can draw inferences from subtitles,
should demonstrate a deep understanding of film as an art form. Focus on character development,
plot progression, subtext, and cultural context. Provide objective and impartial analysis, avoiding
personal biases.
You will be provided with {task-specific label name} and {task-specific input format}. Please
determine if {task-specific label name} is implied or can be inferred from the {task-specific input
format} and explain why.
Label: {label}
Input: {input}

Table 7: Prompt for LLM sample filtering. The task-specific input format includes the subscript, synopsis,and
subtitle. The task-specific label name can be place, event, etc.
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Task Prompt
story_subtitle_synopsis Your input will consist of subtitles from a scene in a movie. Please provide

a concise synopsis that summarizes the content of the whole clip in a few
sentences.
### Input:
Subtitle:
{subtitle}
### Response:
{synopsis}

subtitle_action You will be provided with subtitles of a shot from a movie and a background
description of the story as the input. Try your best to imagine the plot of
the movie shot, and predict the actions involved by the characters. Respond
with the actions as a list of verb phrases.
### Input:
Subtitle:
{script}
### Response:
{actions}

subtitle_character You will be provided with subtitles and a list of characters of a movie clip,
and a synopsis describing the background. Try your best to identify how
the speakers correspond to the characters provided. Response with a json
format with character as the key and corresponding speaker as the value.
### Input:
Synopsis:
{synopsis}
Characters:
{character}
Subtitle:
{masked_script}
### Response:
{label}

synopsis_turning_point You will be provided with a synopsis of a part of a movie with each sentence
indexed. Predict the turning point between two story parts provided based
on the plot. Answer with the sentence index only.
### Input:
Synopsis:
{synopsis}
### Response:
{turning_point}

Table 8: Prompts used for different narrative understanding tasks. The content in brackets is replaced with the
content from each sample. The rest of tasks use prompt similar to the provided ones with some adjusts on the
wording.
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Task Prompt
narrativeQA You will be given the synopsis of a movie and a question whose answer can

be found in the movie. Answer the question concisely with a phrase or a short
sentence.
### Input: Question: {question}
Synopsis: {synopsis}
### Response: {answer}

hate speech You will be given the caption of a movie clip. Determine if there it contains
hate speech, answer either positive or negative.
### Input: Caption: {caption}
### Response: {final_label}

Table 9: Example prompts used for downstream classification. The content in the brackets are replaced with the
content from each sample.

Subtitle Script
00:00:13.502 –>00:00:14.662
Well, yes, sir.
00:00:14.736 –>00:00:16.260
It’s right here.
00:00:16.338 –>00:00:17.999
I’m glad to see that...
00:00:18.073 –>00:00:21.008
because the rightful
owner of this cross
00:00:21.076 –>00:00:24.068
won’t press charges
if you give it back.
00:00:24.146 –>00:00:27.638
He’s got witnesses,
five or six of them.

INDY
Well, yes, sir. It’s right here!
SCENE
INDY shows the CROSS, more or less handing it to the SHERIFF
to make his point. The Sheriff takes it casually.
SHERIFF
I’m glad to see that... because the rightful owner of this Cross
won’t press charges, if you give it back.
FEDORA enters the house, followed by ROSCOE, ROUGH RIDER
and HALFBREED. He politely removes his hat and holds it in his
hand. He nods at INDY in a friendly manner.
SHERIFF
He’s got witnesses, five or six of them.

Table 10: Comparison of Subtitle and Script for the same movie clip

Task Dataset LLM kept ratio Samples
subtitle_action MovieNet 46.2% 1604
subtitle_place MovieNet 46.0% 2031
subtitle_character MovieGraphs 81.1% 3804
subtitle_interaction MovieGraphs 87.8% 836
subtitle_relation MovieGraphs 73.4% 712
synopsis_event MovieGraphs 85.0% 4276
synopsis_place MovieGraphs 78.3% 3937
short_subtitle_synopsis MovieGraphs - 4705
long_subtitle_synopsis MovieNet - 2366
synopsis_turning_point MovieNet - 2226

Table 11: Statistics on train tasks
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Abstract

Large Language Models (LLMs) have made
significant contributions to cognitive science
research. One area of application is narrative
understanding. Sap et al. (2022) introduced
sequentiality, an LLM-derived measure that as-
sesses the coherence of a story based on word
probability distributions. They reported that
recalled stories flowed less sequentially than
imagined stories. However, the robustness and
generalizability of this narrative flow measure
remain unverified. To assess generalizability,
we apply sequentiality derived from three dif-
ferent LLMs to a new dataset of matched auto-
biographical and biographical paragraphs. Con-
trary to previous results, we fail to find a signif-
icant difference in narrative flow between auto-
biographies and biographies. Further investiga-
tion reveals biases in the original data collection
process, where topic selection systematically
influences sequentiality scores. Adjusting for
these biases substantially reduces the originally
reported effect size. A validation exercise using
LLM-generated stories with “good” and “poor”
flow further highlights the flaws in the origi-
nal formulation of sequentiality. Our findings
suggest that LLM-based narrative flow quantifi-
cation is susceptible to methodological artifacts.
Finally, we provide some suggestions for mod-
ifying the sequentiality formula to accurately
capture narrative flow.

1 Introduction

The advent of Large Language Models (LLMs)
over the last few years has fundamentally changed
the landscape of language and cognitive research as
we know it (Zhao et al., 2023). These models have
gotten sophisticated to the point where the debate
now is whether they display emergent properties
(Wei et al., 2022). LLMs can solve real-world prob-
lems ranging from code synthesis (Nijkamp et al.,
2022) to lie detection (Loconte et al., 2023). Such
advances have further motivated research using

these models to gain insight into human behav-
ior and cognition (Demszky et al., 2023; Mihalcea
et al., 2024). While LLMs are impressive, rigorous
use of statistics and better metrics have previously
demonstrated that initial claims about their capa-
bilities were overblown (Schaeffer et al., 2023).
Narrative understanding is one important area of
human cognition that finds a natural application
for LLMs. In this study, we rigorously assess a re-
cently proposed LLM-derived measure of narrative
flow (Sap et al., 2022) and find that methodologi-
cal biases drive a large part of the original results.
We discuss conceptual issues with the original for-
mulation and propose some ways to address these
biases. We expect that our analytical approach
comprising both conceptual and direct replications,
with appropriate randomization procedures in the
evaluation pipeline, will serve as a template for
future assessments of LLM-derived measures of
human cognition.

Narrative understanding has historically been
hindered due to difficulty in quantifying narrative
elements in texts at scale (Toubia et al., 2021). Sap
et al. (2022) introduced sequentiality, a measure
of how well an LLM predicts sentences in a narra-
tive based on the preceding sentences and the topic
(i.e., context), compared to predictions based on the
topic alone. This relative measure, averaged over
all sentences in a story, characterizes the narrative
flow, that is, the organization of the sequence of
events and how well they progress from one to the
next. This formulation was a breakthrough as the
measure considered the entire story in its whole
context, whereas previous methods relied on either
detecting certain words from sentences (Sims et al.,
2019; Li et al., 2013) or tracking particular ele-
ments over time in stories (e.g., sentiment, emotion,
categories of words, or sentence embeddings (Rea-
gan et al., 2016; Boyd et al., 2020; Toubia et al.,
2021)). Specifically, Sap et al. (2022) captured
signatures of episodic memory retrieval in narra-
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tives by contrasting the sequentiality of a “recalled”
narrative (a story that happened to person A) ver-
sus an “imagined” narrative (a story that person
B made up given the topic of person A’s recalled
narrative). Recalled stories were less sequential
compared to imagined ones, suggesting that spon-
taneously recalled stories deviate more from the
schema of the event due to recalled events possi-
bly triggering memories of other events. Imagined
stories, on the other hand, stick to themes that are
predictable from the event schema. The work of
Sap et al. (2022) was seminal, inspiring multiple
studies that directly incorporated their sequentiality
metric (Cohen et al., 2025; Cornell et al., 2023) and
numerous others (Demszky et al., 2023; Mihalcea
et al., 2024; Piper et al., 2023) that built upon its
findings as a foundational result.

However, LLM-based research is prone to biases
(Gallegos et al., 2024; Zhou et al., 2024). A large
body of recent NLP research is dedicated to evalu-
ating biases already inherent in LLMs in different
domains (Yeh et al., 2023; Huang et al., 2024) and
to evaluating biases in methods and metrics that
utilize LLMs (Lin et al., 2025; Hu et al., 2024;
Zheng et al., 2023; Ni et al., 2024). Broadly, we
can classify the biases in the field as i) methodolog-
ical ones - where the bias exists in how the methods
were framed, overlooking some aspects of the prob-
lem or favoring certain assumptions, and ii) data-
driven biases, which arise from the dataset used
and manifest in ways specific to the task at hand,
influencing model predictions based on patterns,
imbalances, or artifacts present in the underlying
datasets (Yeh et al., 2023). We propose to evaluate
Sap et al. (2022) for methodological biases, by eval-
uating their sequentiality metric as is on an entirely
different curated dataset of matched autobiogra-
phies and biographies (analogous to “recalled” and
“imagined” stories from Sap et al. (2022)) to see if
we can capture the same difference across the two
groups demonstrating properties of episodic mem-
ory retrieval. A successful replication of the results
on a dataset from a conceptually similar domain
would ameliorate concerns of bias by demonstrat-
ing generalizability.

To further assess methodological biases in Sap
et al. (2022), we examine the generalizability of
their findings across different LLMs. Since these
prior experiments were conducted, the LLM land-
scape has evolved rapidly, with the development of
significantly more advanced models (Zhao et al.,
2023). These newer models have been trained on

larger and more diverse datasets spanning multi-
ple domains and incorporate key advancements
such as alignment techniques (Rafailov et al., 2023;
Ouyang et al., 2022). As a result, they may of-
fer a more human-representative estimation of se-
quentiality. We experiment with several open-
source and cutting-edge models such as LLaMa-
3.1 (Grattafiori et al., 2024), Qwen-2.5 (Yang et al.,
2024) and Falcon3 (Team, 2024) by first replicating
the analysis on the original Sap et al. (2022) data
to ensure parity.

Then, we consider the possibility that data-
driven biases drive the original sequentiality results.
Models applied to biased data will produce biased
outcomes. We need to ensure that there are no con-
founds in the data that can explain the results before
we make claims about complex measures such as
narrative flow being a useful metric for various
downstream applications. We discover a possible
data-driven bias in how topics are collected and
find that this bias directly influences the results. On
correcting this data-driven bias using randomiza-
tion techniques, we find a significantly decreased
effect size from the original finding.

Apart from data-driven biases, there are concerns
about the formulation itself that contains both a
topic-driven term and a contextual term (that incor-
porates the topic in it as well). Sap et al. (2022) did
not attempt to validate the formula on stories that
are known to have good/poor narrative flow. There-
fore, to further assess the sequentiality formulation,
we conduct a small-scale experiment of generating
stories that exhibit visibly good and poor narrative
flow and apply the sequentiality measure to these
stories. We do not find the expected sequentiality
difference between the two group of stories. This
further reinforces our concerns with the sequential-
ity formulation.

Our contributions in this study are fourfold - 1)
we curate a dataset of matched autobiographical
and biographical accounts and attempt to concep-
tually replicate Sap et al.’s (2022) sequentiality
measure; 2) we directly replicate their results on
the original dataset using more modern LLMs to en-
sure generalizability; 3) we demonstrate a method-
ological bias that when corrected leads to a much
smaller effect size than originally claimed; 4) we
demonstrate that even after removing the method-
ological bias emanating from the topic, the for-
mulation does not work for stories generated with
explicit good and poor narrative flow. We conclude
that sequentiality, as originally formulated, is not
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an appropriate measure to compute narrative flow
of a story.

2 Methods

2.1 Datasets

2.1.1 Hippocorpus
Hippocorpus1, used in Sap et al.’s (2022) original
study, consists of 6854 stories collected by crowd
sourcing from Amazon Mechanical Turk (MTurk)
human workers. The dataset consists of three dif-
ferent categories of stories (recalled, retold, and
imagined), but we only use two - the recalled and
imagined stories. The recalled group consists of
stories written by the workers ranging from 15-25
sentences about a memorable or salient event that
they experienced in the past 6 months. The same
workers also provided 2-3 sentence summaries that
served as the topics of these stories. The imagined
group consists of stories written by another set of
workers who are given the summaries from the re-
called group and told to write an imagined story
about the same topics.

Hippocorpus contained more than one imagined
story for some topics. We restrict our analysis
to topics that had exactly one recalled and one
imagined story. We obtained 2395 such matched
recalled-imagined story pairs. The recalled stories
had an average of 18.5 sentences and 277.5 words
and the imagined stories had an average of 17.7
sentences and 240.1 words.

2.1.2 Autobiography-Biography Dataset
We collected autobiography-biography book pairs
on the lives of 63 distinct individuals (126 books
in total). Paragraphs in the books were embed-
ded using gte-base-en-v1.5 (Zhang et al., 2024).
We used these embeddings to match paragraphs
for thematic content across the autobiography and
biography of any given personality to obtain au-
tobiographical and biographical narratives of the
same events. We retained auto-bio paragraph pairs
with cosine similarity > 0.7 ensuring alignment of
thematic content, while avoiding verbatim overlap
using a ROUGE-L threshold < 0.4 (Lin, 2004). An
auto-bio book pair was retained only if it contained
> 25 pairs of paragraphs meeting the above criteria
for semantic similarity. 4175 story pairs from 38
pairs (76 books) matched all the criteria and were
retained for further analysis. The autobiographical

1https://www.microsoft.com/en-us/download/
details.aspx?id=105291

paragraphs contained an average of 7.0 sentences
and 116.8 words and the biographical paragraphs
contained an average of 8.2 sentences and 136.0
words. Examples of matched auto-bio paragraph
pairs and information about the books retained in
the dataset can be found Appendix A.

2.1.3 Synthetic “Good” and “Poor” Flow
Stories for Validating Sequentiality

Given that the sequentiality formulation was pro-
posed but not validated using “ground-truth” stories
by Sap et al. (2022), we attempt to validate the mea-
sure by prompting an LLM to generate stories with
“good flow” and “poor flow”(see Appendix E for
examples of generated stories and Appendix B.3
for the prompt used). We used Mistral-7B-Instruct-
v0.2-AWQ (Jiang et al., 2023) (henceforth Mistral)
to generate these stories, given randomly sampled
topics from the Hippocorpus dataset. We manu-
ally verified and filtered the generated stories to
ensure agreement with their respective flow labels
(“good” or “poor”) before computing their sequen-
tiality scores.

As illustrated in Fig. 1, our analytical approach
begins by prompting a high-performing LLM to
generate a topic for each paragraph before com-
puting the sequentiality of each paragraph. The
details of topic generation and the sequentiality
formulation are provided below.

2.2 Topic Generation

Topics were generated using Mistral for a given
paragraph/story. The model was given a struc-
tured prompt containing a definition of topic as
the “main idea of a paragraph,” an example para-
graph and topic (see Appendix B.1 for the example
and prompt), and an instruction to return the topic
in one to two sentences. We refer to this strategy
as “one-shot prompting” and use this as the default
topic generation strategy throughout this study un-
less specified otherwise. A small minority of the
responses (< 5%) did not strictly adhere to the in-
structions to return just the topic. The additional
paragraphs generated, providing additional context
or justification for the choice of the topic, were
discarded, retaining only the generated topic.

As we will see in the next subsection, the sequen-
tiality formula has a topic-driven term and a contex-
tual term. In Sap et al.’s (2022) dataset, the topics
are written only by the recalled group and they re-
port that sentences in the recalled stories are better
predicted by the topic compared to the sentences in
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Figure 1: Overview of the methodology and analysis pipeline.

the imagined stories. Critically, they report no sig-
nificant differences in the contextual term between
recalled and imagined stories. To evaluate potential
topic-driven bias in these results, we select topics
in three different ways in our direct replication:
i) exclusively generated from the autobiographi-
cal/recalled stories, ii) exclusively generated from
the biographical/imagined story, and iii) generated
from a story that is randomly selected from the
autobiography/recalled or biographical/imagined
group. The third approach guards against potential
bias due to selecting topics from only one group.

To ensure that our results are not specific to the
topic generation strategy described above, we re-
peat the analysis using an alternative method. In
this approach, we generate topics using a zero-shot
strategy, where the model receives only a prompt
without examples, based on the instructions in Sap
et al. (2022) (see Appendix B.2 for the prompt). We
evaluate the effect of this strategy on sequential-
ity difference across groups in the most unbiased
condition (i.e., randomly selecting topics from ei-
ther group) and compare it against the results we
obtained with the default one-shot strategy.

2.3 Sequentiality

Following Sap et al. (2022), we use sequentiality
to quantify the extent to which the ideas/sentences
in a story proceed in a well-organized sequence.
Sequentiality of a sentence si compares the likeli-
hood of the sentence under two probabilistic mod-
els: i) a topic-driven model, which assumes that
the sentence is generated conditioned only on the
overarching theme (topic) of the story, denoted by
T , and ii) a context-driven model, which assumes
that the sentence depends on both the theme T and
the preceding sentences s0:i−1.

Sequentiality of si is computed as the differ-
ence in negative log-likelihoods between the topic
(NLLT ) and contextual (NLLC) models:

∆ℓ(si) = −
1

|si|
[
log pLM (si | T )︸ ︷︷ ︸

topic-driven

− log pLM (si | T, s0:i−1)︸ ︷︷ ︸
contextual

]
,

(1)

where the log-probability of a sentence s given
some context C (e.g., topic T and preceding
sentences s0:i−1) is the sum of log-probabilities
of its tokens wt given the same context:
log pLM (s|C) =

∑
t log pLM (wt|C,w0:t−1); and

the likelihoods are normalized by sentence length
|si|. Finally, the sequentiality of a paragraph is
computed by averaging the sequentiality of all
the sentences in the paragraph. Higher values of
sequentiality are taken to indicate that sentences
are highly predictable from the topic and context
of the unfolding story whereas lower values indi-
cate greater deviation from the ideas predicted by
the preceding sentences. However, we note here
that true sequentiality differences between stories
should be driven primarily by NLLC with NLLT
providing a “baseline” topic-based likelihood. If
results are primarily driven by significant differ-
ences in the topic-based likelihood with no differ-
ences in the contextual likelihood, as in Sap et al.
(2022), the measure would be incongruent with the
intuitive concept of “sequentiality” as a measure of
flow from the preceding context. Sap et al. (2022)’s
main argument seems to rest on the difference in
effect sizes between the overall sequentiality mea-
sure and the topic-term. Therefore, we compute
the effect sizes associated with overall sequentiality,
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NLLT , and NLLC to make our arguments.
We estimated the likelihoods using three differ-

ent models, (i) Meta-Llama-3.1-8B-Instruct-AWQ-
INT4 (henceforth Llama-3.1), (ii) Qwen2.5-7B-
Instruct-AWQ (henceforth Qwen-2.5), and (iii)
Falcon3-10B-Instruct-AWQ (henceforth Falcon3),
all of which are trained on extensive high-quality
text corpora featuring web, code, STEM, and cu-
rated high-quality and multilingual data. We used
these different models to test whether results are
model-dependent. We conduct our main analysis
with the model producing the closest direct replica-
tion of Sap et al.’s (2022) inferences on their own
dataset.

2.4 Statistical Analysis

For comparing sequentiality and its constituent
terms across the two groups, we use a paired t-
test and report the t-statistic, p-value, degrees of
freedom (df) and Cohen’s d (effect size). We em-
phasize Cohen’s d over p-values because given a
dataset of this size, statistical significance could
be trivial if not weighted properly with the corre-
sponding effect size (Sullivan and Feinn, 2012).

3 Conceptual Replication

We computed the sequentiality of matched pairs
of autobiographical and biographical paragraphs
in our curated dataset and compared them using
a paired t-test. We randomly pick one of the two
paragraphs from a given pair of paragraphs to pass
to an LLM to generate a topic for the sequentiality
computation. We find no significant sequentiality
differences between topic-matched biographical
and autobiographical paragraphs (t = 0.11, p =
0.90, d = 0.001, df = 4174) using LLaMa-3.1
(Fig. 2). Even after aggregating the scores for
each personality, we do not find a significant dif-
ference across biographies and autobiographies
(t = −1.22, p = 0.23, d = 0.19, df = 37).

To evaluate whether this result was specific to
the LLM we used, we experimented with two other
high-performing LLMs, Qwen-2.5 and Falcon3 and
report our results in Tab. 1. All the models dis-
play either no statistically significant differences
between the groups or a statistically significant dif-
ference but with a negligible effect size. Clearly,
none of the models replicate the large differences
reported in Sap et al. (2022). Our conceptual repli-
cation could have failed due to one or more of three
reasons - 1) the autobiographies in our dataset have

d = +0.001

Figure 2: Distribution of sequentiality scores for topic-
matched autobiographical and biographical paragraphs.
d represents Cohen’s d (effect size)

Model t-stat p-val Cohen’s d

LLaMa-3.1 0.11 0.90 0.001
Falcon3 3.05 0.001 0.047

Qwen-2.5 0.76 0.44 0.014

Table 1: Results of a paired t-test comparing sequential-
ity of biographical and autobiographical stories across
three different LLMs.

potentially undergone heavy editing (or ghost writ-
ing) and multiple passes by the author resulting
in a more narrativized version that doesn’t contain
any trace of autobiographical memory retrieval, 2)
our implementation of sequentiality calculation is
flawed, 3) the original analysis was biased in some
way. While it is difficult to evaluate the effect of
editing in the dataset, our implementation can be
verified by directly applying it to the Hippocorpus
dataset to replicate Sap et al.’s (2022) results. Fur-
thermore, as part of this direct replication, we can
also examine the impact of slightly different but
conceptually valid methodological choices on the
original results.

4 Direct Replication

4.1 Original Topics

To verify that the failure to replicate the origi-
nal result is not due to an implementation dif-
ference/error or due to specificity of the LLM
used for the task, we compute sequentiality of
the stories in the original Hippocorpus dataset.
Using the same story pairs and topics they col-
lected, we replicate their finding that imagined sto-
ries flow more sequentially than recalled stories
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d = +0.57

Figure 3: Distribution of sequentiality scores for re-
called and imagined stories, given human-generated top-
ics from the Hippocorpus dataset. d represents Cohen’s
d (effect size)

(t = 28.29, p < 0.001, d = 0.57, df = 2394) us-
ing LLaMa-3.1 (Fig. 3). We also examine the differ-
ence between the topic-driven (t = −19.48, p <
0.001, d = 0.39, df = 2394) and contextual terms
(t = −2.24, p = 0.02, d = 0.04, df = 2394) from
Eq. (1) and, similarly to the original study, find a
sizeable difference in the topic-driven term but not
in the context-driven term. We repeat the analysis
using different LLMs (Qwen-2.5 and Falcon3) and
report similar results in Tab. 2.

These results indicate that the sequentiality mea-
sure generalizes to different LLMs and verifies that
our implementation of sequentiality works. How-
ever, this “replication” does not fully alleviate con-
cerns about the formulation or the potential for bias
driving the original results. Sap et al. (2022) re-
ported that the difference between the two groups
was predominantly driven by the topic-driven term
in Eq (1) and not the contextual term. While we
replicated the same patterns, we also notice that the
contextual term shows a slight difference in the op-
posite direction, i.e., recalled sentences flow better
from the context of the unfolding story compared
to the sentences in the imagined stories. This obser-
vation, combined with the fact the topic for these
stories are provided only by the recalled group and
not the imagined group, points towards a poten-
tial source of bias. To further assess this potential
bias, we replaced the human-generated topics/sum-
maries with LLM-generated topics but using i) only
the recalled stories, ii) only the imagined stories,
and iii) stories randomly sampled from the recalled
and imagined conditions as input for topic genera-
tion. We expect these three conceptually equivalent

ways of picking topics to yield similar results if
there is no bias from the topic term.

4.2 Different Topic Generation Strategies
We find drastically different sequentiality patterns
depending on how the topics are generated. We
report results for LLaMa-3.1 since it displayed the
largest difference (i.e. replicated Sap et al.’s (2022)
results the best) between the groups in the previous
section. We report results from the other models in
Appendix C.

On generating topics using the imagined sto-
ries, which is a valid way of choosing topics since
both recalled and imagined stories are about the
same themes, we find that recalled stories are more
sequential than imagined ones (t = −4.91, p <
0.001, d = 0.10, df = 2394; Fig. 4a), completely
flipping the direction of the original results. The
topic-driven differences (t = 5.63, p < 0.001, d =
0.11, df = 2394) and context-driven differences
(t = 3.11, p = 0.001, d = 0.06, df = 2394) have
also changed directions, compared to the results in
Tab. 2.

On the other hand, when generating topics using
the recalled stories as in the original work, we find
that the imagined stories flow more sequentially
than the recalled ones (t = 18.27, p < 0.001, d =
0.37, df = 2394, Fig. 4b), albeit the effect size
is smaller than when using the original human-
generated topics (d = 0.37 vs d = 0.57). We
also observe that the directions of the topic-driven
(t = −15.44, p < 0.001, d = 0.31, df = 2339)
and context-driven (t = −3.59, p < 0.001, d =
0.07, df = 2360) differences replicate what were
originally reported. Critically, we note here that
the effect size differences between the overall se-
quentiality measure (d = 0.37) and topic-driven
NLL (d = 0.31) are not as stark as the original find-
ings, likely due to the topics being generated by an
LLM rather than the same humans who recalled
the stories. This result already calls into question
the validity of the overall sequentiality measure if
the observed differences are driven almost entirely
by the topic term.

A conceptually equivalent way of generating top-
ics completely flipping the results reported origi-
nally strongly indicates bias from the topic-driven
term in the sequentiality measure. When the same
people who recalled events from their lives also
generate summaries that are used as the topics in
the analysis, it should be expected that the sen-
tences in the recalled stories would be significantly
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Model Metric t-stat p-val Cohen’s d NLLI NLLR

LLaMa-3.1-7b
Topic-driven (−) -19.48 10−78 0.39 -3.39 -3.12

Context-driven (+) -2.24 0.025 0.04 -2.48 -2.46
Sequentiality (+) 28.29 10−152 0.57 0.90 0.66

Falcon3-10b
Topic-driven (−) -17.41 10−64 0.35 -3.81 -3.51

Context-driven (+) -2.62 0.008 0.05 -2.69 -2.66
Sequentiality (+) 23.89 10−113 0.48 1.12 0.85

Qwen-2.5-7b
Topic-driven (−) -18.73 10−73 0.38 -3.52 -3.24

Context-driven (+) -2.62 0.008 0.05 -2.59 -2.56
Sequentiality (+) 27.04 10−141 0.55 0.93 0.67

Table 2: Sequentiality comparison of imagined and recalled stories using different LLMs and human-generated
topics taken from the Hippocorpus dataset. NLLI & NLLR are the mean values for the negative log likelihood
of imagined and recalled stories, respectively. (+) and (−) indicate the expected direction of difference for the
metric to replicate Sap et al.’s (2022) result. For example, Sequentiality (+) indicates that a positive value in that
row replicates the finding that imagined stories flow more sequentially than recalled ones. LLaMa is chosen for
further analyses based on the strongest replication effects identified in bold. Additionally, our requirement that
the contextual term drives the effect is also indicated by a (+). Extremely small p-values are approximated to the
closest power of 10.

d = -0.10 d = +0.37 d = +0.13

Figure 4: Distribution of sequentiality scores for recalled and imagined stories, given topics generated from the
imagined (a), recalled (b), and random stories (c), respectively. A positive and large effect size (d) replicates Sap
et al. (2022).

better predicted from the topics than those in the
matched imagined stories. Since the topic also
goes into the contextual term in Eq (1), the bias
not only affects the topic-driven term but also the
contextual term, explaining why the components
also change directions when generating topics dif-
ferently. However, the topic-driven term (which
contributes negatively to the sequentiality formula)
exerts a stronger influence and drives a decrease in
sequentiality for the group from which topics were
generated and trivially explains the original result
of Sap et al. (2022).

We address the topic-driven bias by randomly
sampling a topic either from the recalled or the
imagined story. Now, we find that while imag-
ined stories are still more sequential than recalled
ones (t = 6.62, p < 0.001,d = 0.13, df = 2394;
Fig. 4c), the difference has a much lower effect

size compared to the difference obtained by us-
ing the original human-generated topics (d = 0.13
vs d = 0.57, respectively). Furthermore, there
is no context-driven difference (t = −0.23, p =
0.81, d = 0.004, df = 2394) and sequentiality
difference is almost entirely topic-driven (t =
−4.56, p < 0.001, d = 0.09, df = 2394). Re-
peating this analysis with a different topic genera-
tion strategy yields similar results (see Appendix D
for details). Yet again, when not using human-
generated biased topics, the effect sizes of the topic-
driven term and the overall sequentiality measure
are comparable, unlike those reported in Tab. 2,
challenging Sap et al.’s (2022) claim that the over-
all measure explains narrative flow differences to a
much greater extent than the topic-only term.
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5 Sequentiality in LLM-generated
Narratives

All experiments conducted thus far indicate a bias
in the formulation primarily from the topic term.
Here, we validate the sequentiality measure by
applying it on a synthetic dataset of stories with
“good” and “poor” flow (see Sec. 2.1.3).

Surprisingly, sequentiality of the stories gener-
ated to have good flow is lower than those with poor
flow (t = −12.59, p < 0.001, d = 0.51, df =
597). Critically, we find that the contextual term be-
haves as we would expect intuitively: stories with
good flow have a higher contextual likelihood than
those with poor flow (t = 10.39, p < 0.001, d =
0.42, df = 597). However, the topic-driven likeli-
hood (t = 14.93, p < 0.001, d = 0.61, df = 597)
cancels out the contextual effect and drives the over-
all measure in the opposite direction. Therefore,
in this validation exercise as well, the topic-driven
term is the driving force masking an actual ob-
servable and meaningful effect from the contextual
term. These results suggest that the topic-driven
sentence likelihoods are meaningful since even
LLMs generate stories that are more predictable
from the topics under a “good flow” instruction.
However, a standalone topic term in the formula
may be masking effects that are adequately cap-
tured by the contextual term, which already incor-
porates the topic as part of its context. Therefore, a
modified sequentiality formula with only the con-
textual term may be a more appropriate measure of
narrative flow, especially when the comparison is
between stories about the same topics.

6 Conclusion

To summarize, in the current study, we curated
a novel dataset of matched autobiographies and
biographies and applied Sap et al.’s (2022) sequen-
tiality measure but using more modern open-source
LLMs and failed to find a significant difference in
narrative flow between the two. We then directly
replicated Sap et al.’s (2022) results using the same
LLMs applied to the original dataset. To under-
stand why the narrative flow differences were so
stark in Sap et al.’s (2022) data but not in our care-
fully curated dataset of matched autobiographical
and biographical paragraphs, we analyzed both the
data and the formula in (Sap et al., 2022) and re-
port a bias in how the topics were collected which
directly influenced the results through the narra-
tive flow formula. We corrected for this bias and

found a significantly reduced effect size for Sap
et al.’s (2022) original finding. We further cu-
rated an LLM-generated dataset of stories with
good and poor narrative flow and demonstrated the
same topic-driven bias that pushed sequentiality
in the opposite direction from the expected pat-
tern. However, the contextual term captured the
expected difference in narrative flow, suggesting
that the sequentiality formula modified to have only
the contextual term may be adequate. Importantly,
this modified formulation would indicate that there
are no real narrative flow differences between re-
called and imagined stories, contrary to Sap et al.’s
(2022)’s claims. We confirmed that our findings
were not influenced by the specific LLM we used
and conclude that LLM-based sequentiality, as orig-
inally formulated, is not a suitable metric for ana-
lyzing narrative flow.

These results have direct implications for studies
that use sequentiality as a measure. Cohen et al.
(2025) evaluated the relationship between the read-
ability of medical texts and sequentiality. Rather
than considering sequentiality as a whole, they ana-
lyzed the topic term and contextual term separately.
Their results showed that the contextual term (re-
ferred to as the chain model) performed best and
was primarily used in their analysis. This approach
avoids topic bias and provides further evidence in
favor of a modified formulation that includes only
the contextual term. Cornell et al. (2023) conducted
a similar study to Sap et al. (2022), comparing se-
quentiality across groups, with the addition of a
new group consisting of generated stories based on
topics from Sap et al.’s (2022) dataset. Their goal
was to evaluate LLM-generated storytelling in com-
parison to human storytelling to better understand
underlying memory processes. They reported mul-
tiple significant differences across groups (imag-
ined, recalled, generated zero-shot, generated few-
shot), but only in terms of overall sequentiality, not
its components (topic and contextual terms). These
differences may stem from how closely the stories
align with the topic rather than from the overall
cohesion of the story and its ideas, indicating the
need for further investigation.

More generally, we recommend that future re-
search on LLM-derived measures adopt proper ran-
domization of aspects (such as topic-generation)
that enter the formula and can potentially bias re-
sults. It is also important to provide an independent
validation of such measures before they are adopted
widely, to prevent accumulating biased methods of
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assessing/measuring human cognition from LLMs
that have been argued to be cognitively implausible
(Connell and Lynott, 2024).

Limitations

Due to computational limitations, we were unable
to evaluate the generalizability of the sequential-
ity metric on larger models. However, given that
the disparity in computational capabilities across
model sizes has been narrowing and that all the
models we utilized surpass GPT-3—the largest
model examined by (Sap et al., 2022), this lim-
itation may be less consequential. Furthermore,
we were able to reproduce the results across all
the models we considered, ameliorating concerns
about generalizability of our findings. We were
also unable to extensively evaluate different LLMs
for topic generation. However, we found that our
topic generation methods replicated the original re-
sults, when applied to the recalled stories, and also
helped demonstrate the issue of topic-driven bias.
While we speculated that the contextual term in
the formula by itself should work as a measure of
narrative flow, a finer-grained investigation of how
the sequentiality formula can be modified, possibly
by incorporating weights for the topic and contex-
tual terms, may be warranted but is beyond the
scope of the current work. A more carefully cu-
rated synthetic or actual dataset with ground-truth
flow is necessary to accurately assess measures of
narrative flow. We attempted to validate the se-
quentiality measure using stories generated by an
LLM to have good and poor flow and showed that
the contextual term can indeed capture narrative
flow differences. However, further validation of the
idea that the contextual term is sufficient by itself
through more elaborate experiments is required.

Code and Data

The code and data extraction methods are
available at https://github.com/mandalab/
narrative-flow-autobio. To recreate the
autobiography-biography dataset, we provide a
pipeline to extract and match paragraphs from the
books, provided a text file version of all these
books. Other datasets can be accessed from their
referenced locations.
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A Dataset: Autobiography and Biography

A.1 Selected Books
Tab. 3 lists all the books with their respective ISBN
codes, retained in the autobiography-biography
dataset after matching and filtering as described
in Sec. 2.1.2.

A.2 Examples of Auto-Bio Paragraph Pairs
Describing the Same Events

Listing 1 and Listing 2 are examples of matching
autobiographical and biographical paragraphs nar-
rating the same events from Nelson Mandela’s and
Luis Suarez’s lives, respectively.
Personality: Nelson Mandela
AUTOBIOGRAPHY:
Mr. de Klerk decided to gamble. He announced that as a result
of the by-election in Potchefstroom he would call a
nationwide referendum for March 17 so that the white people
of South Africa could vote on his reform policy and on
negotiations with the ANC. He stated that if the referendum
was defeated, he would resign from office. The referendum
asked a plain and direct question of all white voters over
the age of eighteen: "Do you support the continuation of the
reform process which the state president began on 2 February
1990 which is aimed at a new constitution through
negotiation?"

BIOGRAPHY:
Rather than delay the matter any further, within days of the
Potchefstroom defeat de Klerk announced the holding of a
white referendum on the reform process on 17 March. A clear
majority in favour, he said, would obviate the need for the
government to return to the white electorate. The risks he
took were considerable. A defeat for the government would
almost certainly have led to civil war. All the resources of
the white establishment were thrown into securing a 'Yes'
vote. De Klerk explicitly promised the electorate that he
would prevent majority rule. The National Party's advertising
campaign was based on the slogan, 'Vote Yes, if you're scared
of majority rule'. The Conservative Party campaigned for a
'No' vote, claiming that the choice for Afrikaners was
between 'the survival of the Afrikaner volk and two cars in
the garage'. The ANC did its best to support the 'Yes'
campaign, reassuring whites about its good intentions in the
negotiating process and promising job security for civil
servants.

Listing 1: Sample paragraphs from Nelson Mandela’s
autobiography and biography pertaining to the same
theme.

Personality: Luis Suarez

AUTOBIOGRAPHY:
What came next was Ghana in the quarter-final and a penalty
shoot-out to send Uruguay through to the semi-final for the
first time in forty years. After the sending off for having
'saved' a goal on the line, I watched Asamoah Gyan miss his
penalty from the entrance to the tunnel. I was in tears,
heartbroken, but when the ball flew over the bar, I ran off
celebrating. Maybe it had been worth it.

BIOGRAPHY:
It was an instinctive move and it did the job. Ghana hadn't
scored; Uruguay were still in the tournament but now down to
ten men, as Luis was sent off. Of course, Ghana still had the
chance to seal that semi-final spot from the consequent
penalty but Asamoah Gyan could only watch in despair as his
spot-kick hit the bar and bounced away to safety.

Listing 2: Sample paragraphs from Luis Suarez’s
autobiography and biography pertaining to the same
theme.

B Prompts

B.1 Prompt for Topic Generation - One Shot
Listing 3 shows the prompt we used to generate
topics given a story/paragraph. The prompt con-
sists of an example paragraph and its corresponding
topic (topic manually annotated, refer Listing 4 for
the example paragraph and topic) to condition the
LLM (Mistral) on the expected form of topic gen-
eration - which is commonly known as one-shot
prompting. Subsequently, the prompt accepts the
given story/paragraph as input and generates a topic
based on it.
<s>[INST] A topic is the main idea discussed in a
text.
Identify the topic for the paragraph. Return only
the topic in 1-2 sentences.
Example:
Paragraph: The man who explained the difference ...
[/INST]
Topic: Bruno Silva 's vital support in Groningen.
</s>
[INST] Identify the topic for the given paragraph.
Return a single topic which is most relevent for
the paragraph. Return only the topic in 1-2
sentences with no additional text or information.
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Paragraph: {paragraph_text} [/INST]

Listing 3: Structured prompt for topic generation for
stories/paragraphs using the Mistral-7B model

Example
Topic: Bruno Silva's vital support in Groningen.

Paragraph: The man who explained the difference between net
and gross to me, and much more besides, was Bruno Silva.
Bruno would be our salvation at Groningen in those first few
months. I remembered him as a Uruguayan international and as
a player for Danubio - one of the third teams in Uruguay
along with Defensor, behind Nacional and Penarol. We used to
get together to watch games from the Uruguayan league or we
would meet up for family barbecues. We couldn't find any
Uruguayan steak so we managed to get hold of some Brazilian
meat instead from a Brazilian who had played for many years
in Groningen called Hugo Alves Velame. He was coaching in the
academy at that point and he was someone else who was great
with Sofi and me, becoming our translator whenever we had to
deal with the club.

Listing 4: Example of the topic and paragraph pair used
in the prompt for topic generation

B.2 Prompt for Topic Generation - Zero Shot

Listing 5 shows the prompt we used to generate top-
ics given a story/paragraph, in a zero shot setting.
Unlike the previous prompt, there is no example
given and the instructions correspond to those pro-
vided to the participants of Sap et al.’s (2022) study
to collect the summary. The prompt accepts the
given story/paragraph as input and generates a topic
based on it.
<s>[INST] You are given a story or event that has
happened in the given paragraph. Come up with a
short summary of the event (2-3 sentences), written
with enough details that you will remember what you
wrote about in the future. Return only the summary
in the format of "Topic: <summary >" with no
additional text.
"Paragraph: {paragraph_text }" </s>[/ INST]

Listing 5: Zero shot structured prompt for topic
generation for stories/paragraphs using the Mistral-7B
model

B.3 Prompt for Story Generation

Listing 6 details the prompt template utilized for
generating stories with "Good" narrative flow. The
prompt for "Poor" flow replaces the "Good" for
"Poor" in the instructions on generating the story,
but is identical otherwise.
<s>[INST] Narrative flow refers to the logical
progression of a story with smooth transitions
between events. A story with good narrative flow
implies it is well structured , predictable and
transitions smoothly around the events detailed ,
while a story with poor narrative flow implies it
would be poorly structured , unpredictable and with
abrupt transitions across events making it harder
to understand. Generate a single distinct short
story based on the given topic - one with good
narrative flow
Create one story , written in around 200 -300 words
and 15-20 sentences on the given topic and
structure it as follows:

Topic: {p1}
Story (Good Flow): <insert story here >

Do not write anything but the given template
above before or after the story. [/INST]

Listing 6: Structured prompt given to the Mistral-7B for
generating a story with "good" narrative flow

C Sequentiality Computation of Recalled
and Imagined Stories, Given Randomly
Sampled Topics: Comparison Across
LLMs

We report the results of sequentiality computa-
tion from Sec. 4.2 applied to all the models in
Tab. 4. The other models produce similar results as
LLaMa-3.1, with much smaller effect sizes for se-
quentiality differences between recalled and imag-
ined stories when using randomly sampled topics
compared to human-generated topics from the re-
called stories (Qwen-2.5: d = 0.12 vs d = 0.55;
Falcon3: d = 0.05 vs d = 0.48; compared against
the direct replication reported in Tab. 2). We again
note that this difference is primarily driven by the
topic term, with the contextual term having a negli-
gible effect. Additionally, we observe that Falcon
reveals negligible sequentiality differences between
recalled and imagined stories when using unbiased
topics even though it yields a moderate effect size
for the original replication in Tab. 2.

D Sequentiality Computation of Recalled
and Imagined Stories, Given Randomly
Sampled Topics: Comparison Across
Topic Generation Strategies

To ensure the robustness of our results, we re-
evaluate the sequentiality computation and compar-
ison across the groups for randomly sampled topics
using a different strategy for topic generation. We
utilize the zero-shot prompting strategy detailed in
Sec. 2.2. The results follow the same trends as us-
ing one-shot prompting in Sec. 4.2, with imagined
stories still being more sequential than recalled sto-
ries (t = 7.78, p < 0.001,d = 0.15, df = 2394)
but with a much lower effect size compared to the
difference obtained by using the original human-
generated topics (d = 0.15 vs. d = 0.57) and
comparable to one-shot prompting (d = 0.15 vs.
d = 0.13). The sequentiality difference is almost
entirely topic-driven (t = −6.65, p < 0.001, d =
0.13, df = 2394), but there is now a small differ-
ence between the context terms (t = −2.27, p =
0.02, d = 0.04, df = 2394).
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E Generated Stories

Listing 7 shows examples of a few generated sto-
ries, demonstrating clear narrative flow differences
between “good” and “poor” flow stories.
TOPIC: I had to have a thyroidectomy for thyroid
cancer. I ended up fracturing my wrist on the way
to surgery and then having a complication of a
seroma on my neck after surgery.

Good Flow: I had to have a thyroidectomy , a routine
surgery to remove my thyroid due to cancer. The day
of the procedure arrived , and I felt a strange
sense of calm. I had prepared myself mentally for
this moment. The sun was just starting to rise as I
stepped out of my house , ready to embark on this
new journey. But little did I know , my day was
about to take an unexpected turn. As I walked to
the car , I tripped over a loose stone and fell
hard , fracturing my right wrist. The pain was sharp
and intense , but I pushed it aside , knowing I
couldn 't let my fear of surgery be outweighed by a
simple injury. At the hospital , I was reassured by
the medical staff. They assured me that my wrist
would heal , and the surgery would go on as planned.
I was reassured , but deep down , I couldn 't shake
off the feeling of unease. The surgery went
smoothly , and I was relieved to wake up in
recovery , feeling groggy but otherwise fine. But
then , a few days later , I noticed a strange lump
forming on my neck. It was a seroma , a pocket of
fluid that had collected under the incision site. I
was prescribed antibiotics and given instructions
to keep the area clean. But as the days passed , the
seroma grew larger , and I began to feel a sense of
panic. I called my doctor , who scheduled an
emergency appointment. At the hospital , they
drained the seroma , and I was given more
antibiotics. This complication added to my recovery
time , but I remained determined. I knew that , with
time and patience , I would get through this.
Despite the setbacks , I remained hopeful. I knew
that the road to recovery would be long , but I was
ready to face it head -on. With each day that
passed , I grew stronger , both physically and
mentally. And though the memories of that fateful
day still lingered , I knew that I would emerge from
this experience stronger and more resilient than
ever before.

Poor Flow: I had to have a thyroidectomy for
thyroid cancer. The day of the surgery , I woke up
early and prepared myself. I packed my bag , ate a
light breakfast , and headed out the door. As I was
walking to the hospital , I tripped over a crack in
the pavement and fractured my wrist. I was shocked
and in pain , but I knew I couldn 't let this stop me
from getting the surgery I needed. I made it to the
hospital and checked in. The surgery went well , but
a few days later , I developed a serious
complication. A seroma formed on my neck , a pocket
of fluid that caused discomfort and made it
difficult to move. I went back to the hospital , and
they drained the seroma several times. But it kept
coming back. The doctors were baffled , and I was
frustrated. I couldn 't understand why this was
happening. The fractured wrist was a setback , but I
had expected to recover smoothly from the surgery.
But now , with this new complication , I was unsure
of what to expect. The days turned into weeks , and
the seroma refused to go away. I went through
numerous treatments and procedures , but nothing
seemed to work. I was losing hope , feeling like I
was stuck in a never -ending cycle of pain and
discomfort. Just when I thought things couldn 't get
any worse , I received some unexpected news. The
pathology report from the thyroidectomy showed that
the cancer had spread. My world came crashing down
around me. I was devastated , feeling like I had
been dealt a terrible hand. The fractured wrist and
seroma seemed insignificant compared to this new
revelation. I was left with so many questions and
so few answers. The journey ahead was uncertain ,
and I was unsure if I had the strength to face it.

TOPIC: I went to the fair with some of my friends
and my partner and we had a picture -perfect day.
Everything from the food , to the weather , to the
crazy fair art was amazing.

Good Flow: I went to the fair with my partners hand
in mine and my friends by my side , the sun casting
a golden glow over the vibrant scene before us. The
air was filled with the sweet scent of funnel cakes
and popcorn , and the sounds of laughter and
excitement echoed through the park. We began our
day with a leisurely stroll along the midway ,
taking in the sights and sounds. My friends and I
marveled at the carnival games , our partners
teasing us as we tried our hand at ring toss and
balloon darts. The sun continued to shine , the
weather perfect , as we made our way to the food
stands. We shared a picnic blanket beneath the
shade of a large tree , enjoying the flavors of corn
dogs , cotton candy , and funnel cakes. My friends
and I reminisced about our childhood memories of
fair visits , while my partner shared stories of
their own. The day went on in this blissful manner ,
with each event seamlessly leading to the next. We
explored the fair art exhibit , where our jaws
dropped in awe of the creative masterpieces. The
sun began to set , and as we watched the sky turn
pink and orange , we knew it was time to leave. As
we gathered our things and said our goodbyes , we
couldn 't help but feel grateful for the
picture -perfect day we had shared together. The
memories would stay with us long after the fair , a
testament to the beauty of friendship and love.

Poor Flow: I went to the fair with some of my
friends and my partner. We had an amazing roller
coaster ride to start the day. Suddenly , we were at
the cotton candy stand. My partner wanted to buy
some , but we had lost track of my friends. I went
to look for them , but they were nowhere to be
found. Suddenly , it started raining. We took
shelter under a tree , but my partner was insistent
that we should go back home. I disagreed , and we
decided to continue our fair day. But as we were
walking , we came across a petting zoo. My partner
wanted to see the animals , but we ran out of
tickets. Suddenly , we heard a loud announcement
that the Ferris wheel was malfunctioning. We
decided to check it out and found a long line , but
my partner was impatient and insisted on cutting in
line. The crowd protested , but we managed to get
on. As we were enjoying the view , suddenly , the
rain stopped , and the sun came out. We left the
Ferris wheel and went to the art stand. My partner
wanted to buy a painting , but we couldn 't decide
which one to choose. Suddenly , my friends appeared
out of nowhere and helped us make a decision. We
all had fun at the carnival games , but then , my
partner got sick and we had to leave. The day ended
abruptly , and we didn 't even get to try the funnel
cakes. The fair day was full of unexpected twists
and turns , and the day ended as suddenly as it had
begun.

Listing 7: Two example story pairs, consisting of "good"
and "bad" flow stories generated by Mistral-7B.
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Name Autobiography Biography

Isaac Asimov 9780553569971 9780810831292
Diane von Furstenberg 9781451651546 9780062041234
Lucille Ball 9781101667088 9781504018920
Muhammad Ali 9781631680496 9780791081563
Anne Frank 9780553577129 9781408842119
Ansel Adams 9780316437011 9781620405550
Bruce Springsteen 9781501141515 9781101606247
Andrew Carnegie 9789354203503 9781101201794
Fidel Castro 9781416562504 9780745630069
Julia Child 9780307277695 9780307762856
Winston Churchill 9781587315367 9780805023961
Jacques Cousteau 9780792267966 9780307378279
Alex Ferguson 9780340919408 9780224083072
Richard Feynman 9780393355628 9781453210468
Benjamin Franklin 9781508475095 9780684807614
John Kenneth Galbraith 9780345303233 9781466893757
Mahatma Gandhi 9780486245935 9780307269584
Billy Graham 9780061171062 9780849917028
Che Guevara 9781644210963 9780802197252
Buster Keaton 9780306801785 9781497602311
Henry Kissinger 9781451636468 9780698195691
Langston Hughes 9781466883499 9780195146431
Niki Lauda 9781473577954 9781471192036
Malcolm X 9780345350688 9781101445273
Nelson Mandela 9780316548182 9781586489519
Michelle Obama 9781524763138 9780307958822
Paul Robeson 9780807096932 9781497635364
Theodore Roosevelt 9781438295343 9780307777829
Elizabeth Cady Stanton 9781505923551 9780195037296
Luis Suarez 9781472224255 9781784181949
Sachin Tendulkar 9781473605190 9788174363602
Nikola Tesla 9781684222063 9781585093083
Margaret Thatcher 9780062049452 9780713992823
Mark Twain 9780520267190 9780307874597
Mike Tyson 9780007502516 9781476618029
Edith Wharton 9780684847559 9780307555854
Virginia Woolf 9781448181889 9781407066240
Paramhansa Yogananda 9781565892125 9780190668051

Table 3: List of personalities and the ISBN codes of their autobiographies and biographies used in the analysis.
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Model Metric t-statistic p-val Cohen’s d NLLI NLLR

LLaMa-3.1-7b
Topic-driven(−) -4.56 10−6 0.09 -3.58 -3.52

Context-driven(+) -0.23 0.81 0.004 -2.54 -2.54
Sequentiality(+) 6.62 10−11 0.12 1.03 0.98

Falcon3-10b
Topic-driven(−) -2.30 0.021 0.04 -3.98 -3.94

Context-driven(+) -0.008 0.24 0.01 -2.75 -2.74
Sequentiality(+) 2.65 0.008 0.05 1.23 1.20

Qwen-2.5-7b
Topic-driven(−) -4.51 10−6 0.09 -3.82 -3.75

Context-driven(+) -0.35 0.72 0.007 -2.62 -2.61
Sequentiality(+) 6.29 10−10 0.12 1.20 1.14

Table 4: Sequentiality comparison of imagined and recalled stories using different LLMs, given LLM-generated
topics sampled randomly from imagined and recalled stories. NLLI & NLLR are the mean values for negative log
likelihood of imagined and recalled stories, respectively. (+) and (−) indicate the expected direction of difference
for the metric to replicate Sap et al.’s (2022) result. For example, Sequentiality (+) indicates that a positive value
in that row replicates the finding that imagined stories flow more sequentially than recalled ones. Additionally,
our requirement that the contextual term drives the effect is also indicated by a (+). Extremely small p-values are
approximated to the closest power of 10.
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Abstract

Verbal fluency is an experimental paradigm
used to examine human knowledge retrieval,
cognitive performance and creative abilities.
This work investigates the psychometric capac-
ities of LMs in this task. We focus on switching
and clustering patterns and seek evidence to
substantiate them as two distinct and separa-
ble components of lexical retrieval processes
in LMs. We prompt different transformer-
based LMs with verbal fluency items and ask
whether metrics derived from the language
models’ prediction probabilities or internal at-
tention distributions offer reliable predictors
of switching/clustering behaviors in verbal flu-
ency. We find that token probabilities, but espe-
cially attention-based metrics have strong sta-
tistical power when separating between cases
of switching and clustering, in line with prior
research on human cognition.

1 Introduction

The processes underlying human creative abilities
have been an important topic of research in several
fields. Research in cognitive science suggests that
semantic association and search are core aspects of
creative thinking (Mednick, 1962; Gilhooly et al.,
2007; Beaty and Silvia, 2012). Therefore, creative
abilities in humans are commonly tested and mea-
sured using semantic search tasks such as verbal
fluency, in which participants are asked to list lexi-
cal items for a given category in a short period of
time (e.g., name as many animals as possible in 60
seconds) (Beaty et al., 2014a).

Human responses to such tasks exhibit a well-
known search pattern, which has been termed “clus-
tering and switching” or “exploitation and explo-
ration” (Troyer et al., 1997). During clustering,
humans generate sequences of words that belong
to the same subcategory, exploiting the neighbour-
hood of previous items in the semantic space. As
this subcategory becomes increasingly exhausted,

they switch to other subcategories, shifting their at-
tention to a different patch in their conceptual space
(see Figure 1). Recent work suggests that cluster-
ing and switching are two fundamental components
of semantic search related to creative abilities and
has aimed to identify neurocognitive correlates of
these processes (Ovando-Tellez et al., 2022).

In this paper, we investigate whether transformer
language models (LMs) provide further evidence
for the hypothesis that creative semantic search
in verbal fluency involves two distinct, separable
processes related to clustering and switching. The
design of our experiments follows Ovando-Tellez
et al. (2022), who tested correlations between the
occurrence of clusters and switches in participants’
responses to fluency tasks and metrics for partici-
pants’ creativity, semantic network structure, and
brain connectivity. In our study, we replace these
metrics of human neuro-cognitive processes with
a set of probability and attention-based measures
computed with language models over human verbal
fluency sequences. We test whether these measures
provide predictors of clusters and switches in the
human sequences, e.g., whether attention is dis-
tributed differently in the LM when retrieving a
word within a cluster as compared to a switch.

Our motivation for studying clustering and
switching in verbal fluency using LMs is twofold:
First, we note that cognitive science has a long-
standing interest in computational models that cap-
ture human behavior in verbal fluency and other cre-
ative search tasks. Existing models in this area typ-
ically implement graph-based semantic networks
and explicit search algorithms on top of these net-
works (Hills et al., 2012; Zemla and Austerweil,
2017). We believe that LMs are an obvious alterna-
tive modeling approach worth exploring here since
their implicit semantic representations and word
prediction processes have been shown to excel in
a variety of generative tasks. LM-based correlates
of clustering and switching would demonstrate the
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Figure 1: Translated verbal fluency response from BIEFU (Alacam et al., 2022) with annotations of clusters
and switches (first row); semantic distances (cosine distances of ConceptNet embeddings) between consecutive
items; LM predictors: attention entropy and surprisal predictors from BERT and GPT respectively (all scores are
min-maxed normalized for visualization). "Animals: deer" is the LM prompt used to (re)-generate the sequence.

potential of LMs to complement the landscape of
computational approaches in this field and, in par-
ticular, to provide an account of general language
and word sequence processing mechanisms in ver-
bal fluency that are hard to come by in small-scale
net-work-based models (cf. Heineman et al., 2024).
At the same time, research on LMs is increasingly
interested in testing their elementary language pro-
cessing abilities. Recent studies have tested the
extent to which surprisal or attention-based scores
computed with LM predict human reading times,
providing a cognitively plausible account of pro-
cessing difficulties in reading and language com-
prehension (see Oh and Schuler, 2022; Shain et al.,
2024). The verbal fluency paradigm complements
the landscape of existing probing tasks and analysis
methods toward production-oriented tasks involv-
ing semantic search and creative abilities. In this
study, we ask whether LM-based metrics separate
between clustering and switching, as two central
components of creative semantic search. Our re-
sults suggest that LMs provide novel and strong
predictors for modeling human behavior in the ver-
bal fluency task and that attention distribution in
LMs has predictive power in accounting for clus-
tering and switching.

2 Background

2.1 Verbal fluency

The verbal fluency task is a neuropsychological test
of verbal functioning that is commonly used to mea-
sure cognitive performance in e.g. lexical knowl-
edge and retrieval or executive control (Shao et al.,

2014). We focus on categorical fluency, which in-
volves repeated retrieval of lexical items for the
same category. This gets more challenging when
easily accessible words are exhausted and partici-
pants are required to transition from fast, associa-
tive processes to a more controlled semantic search
(Demetriou and Holtzer, 2017). Verbal fluency data
is often analyzed in terms of clusters and switches
structuring the word sequence, i.e., word spans that
fall into the same semantic subcategories or tran-
sitions between subcategories (Troyer et al., 1997;
Kim et al., 2019). In Figure 1, for example, the se-
quence rabbit, cat, dog, ... corresponds to a cluster
followed by switch from budgie to tiger. Words
within a cluster are typically produced in a fast,
associative manner. Switches, in turn, show longer
retrieval times as they involve effortful search, ex-
ecutive control (i.e. inhibition of common or pre-
vious items), and efficient navigation of long-term
semantic memory (Michalko et al., 2023).

The interaction of clustering and switching that
typically appears in human verbal fluency re-
sponses plays an important role in creativity re-
search (Silvia et al. 2013; Beaty et al. 2014b; Beaty
and Kenett 2023, among others). Ovando-Tellez
et al. (2022) show that clustering is related to di-
vergent thinking, i.e., generating new and effective
ideas, while switching is connected with conver-
gent thinking or combining available information
in creative ways, and both are characterized by
distinct brain connectivity patterns. They argue
that clustering involves associative abilities, while
switching requires controlled memory retrieval pro-
cesses, executive functions and memory.
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2.2 Computational Models of Verbal Fluency

The computational modeling of verbal fluency data
has received considerable attention in cognitive
science research. Existing models typically imple-
ment the generation of verbal fluency responses as
a search over a semantic network or graph (Hills
et al., 2012; Abbott et al., 2015; Zemla and Auster-
weil, 2017; Avery and Jones, 2018), where cluster-
ing and switching emerges from the search strategy
as in the foraging model by (Hills et al., 2012) or
from the underlying structure of the network as in
the model by (Abbott et al., 2015). To a similar
end, other approaches make use of biologically in-
spired neural networks (Kajić et al., 2017) or, more
recently, pre-trained transformer models (Nigho-
jkar et al., 2022) and LLMs (Heineman et al., 2024;
Wang et al., 2025). In general, these models are
tested for their ability to predict or simulate human
fluency sequences on a word level.

Other computational work on verbal fluency
focused explicitly on automatically annotating
clustering-switching patterns in sequences pro-
duced by humans. Some studies have explored
the use of distributional semantic representations
and word embeddings for scoring semantic fluency
data (Linz et al., 2017; Paula et al., 2018; Kim
et al., 2019; Alacam et al., 2022) or the ability of
pre-trained LMs in predicting category switches
(Heineman et al., 2024).

In contrast to these models, our study does not
aim to explicitly reproduce or simulate the seman-
tic search strategies observed in human verbal flu-
ency responses with LMs. Instead, we focus on
investigating their underlying word retrieval and
prediction processes. Inspired by Ovando-Tellez
et al. (2022), we ask whether we can identify dis-
tinct components of verbal fluency, i.e. clustering
and switching, from processing-related behavioural
measures computed with an LM.

2.3 Linguistic and Cognitive Probing of LMs

The analysis of linguistic and cognitive capabilities
captured in LMs has become an important area of
research (Belinkov and Glass, 2019; Baroni, 2022;
Chang and Bergen, 2023; Binz and Schulz, 2023;
Strachan et al., 2024). A common paradigm in
LM probing is behavioral analysis, which treats
the pretrained LM as a black box and uses care-
fully controlled test suites or experimental datasets
from (psycho-)linguistics to compare model out-
puts against human productions or judgments. This

paradigm is useful for testing whether LMs learn
particular linguistic rules and generalizations, in
particular in the domain of syntax (Warstadt et al.,
2020), but provide very limited insights into how
underlying processing mechanisms in LMs align
to human language processing and cognition (cf.
Baroni, 2022; Chang and Bergen, 2023).

Other work on probing LMs focuses on their
ability to account for effects of processing diffi-
culty, and mostly goes back to the idea of “surprisal”
(Hale, 2001; Levy, 2008; Demberg and Keller,
2008; Smith and Levy, 2013). Surprisal is defined
as the negative log probability of a word in context
and has been demonstrated to provide a very robust
predictor for human processing times (e.g., to read-
ing times) when computed with language models of
different sizes or perplexities (Goodkind and Bick-
nell, 2018; Shain et al., 2024). These findings lend
support to expectation-based accounts of sentence
processing in psycholinguistics, aligning word pre-
diction processes in LMs with humans’ anticipation
of upcoming material in sentence reading. A few
recent studies explored further predictors comple-
menting surprisal. Thus, the attention mechanism
of transformer LMs has been considered to approx-
imate aspects of memory and attention in human
cognition (Ryu and Lewis, 2021; De Varda and
Marelli, 2024). Most importantly for our study,
Oh and Schuler (2022) showed that attention dis-
tribution and distance metrics from internal layers
of the LM yield very powerful predictors for self-
paced reading times and gaze durations in naturalis-
tic reading, drawing connections to memory-based
accounts of sentence processing. As memory is
an important aspect of semantic search in the ver-
bal fluency task (Ovando-Tellez et al., 2022), our
study will examine both surprisal (or, more gen-
erally, probability-based) predictors computed at
the LM’s output layer as well as attention-based
predictors from the internal layers.

However, although LMs are now frequently used
as computational testbeds for theories of language
processing and cognition, the field is still debating
which of the many existing LMs can provide the
most robust and cognitively plausible predictors
of human processing. Oh et al. (2022) tested sur-
prisal estimates from GPT-2 models of different
sizes and showed that the surprisal computed with
smaller model sizes achieved a better fit with hu-
man reading times than larger model sizes. Similar
observations have been made in (Kuribayashi et al.,
2022; Oh and Schuler, 2023). Wilcox et al. (2023),
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on the other hand, trains LMs of small and medium
size on a range of languages and finds that LM
quality generally correlates with its psychometric
predictive power. Therefore, in the following, we
will rely on some less recent but widely used LMs
such as BERT or GPT-2, but also include variants
of more recent models available in different sizes.

3 Motivation and research questions

The main question of this work is whether current
transformer LMs can account for effects of pro-
cessing difficulty in a creative word retrieval task –
verbal fluency – where clear differences in retrieval
difficulty have been widely observed in terms of
clustering-switching patterns (Troyer et al., 1997;
Hills et al., 2012). In the following, we will detail
the assumptions underlying this question.

Why could prediction and attention mechanisms
implemented in LMs explain effects of process-
ing difficulty in the verbal fluency task? At
a basic level, verbal fluency involves repeated re-
trieval of lexical items, which aligns well with the
autoregressive, left-to-right word prediction objec-
tive implemented in modern LMs. Research on
verbal fluency in psychology and linguistics typ-
ically emphasizes that the verbal fluency task in-
volves a whole range of different cognitive and ver-
bal abilities, such as access to the mental lexicon,
semantic knowledge, search strategies, language
processing, executive control functions, long-term
memory, and attention (Kim et al., 2019; Michalko
et al., 2023; Ovando-Tellez et al., 2022). Impor-
tantly, many previous studies have found strong
evidence for lexical access and language produc-
tion processes being critical components in verbal
fluency (Weckerly et al., 2001; Whiteside et al.,
2016; Marko et al., 2023). Therefore, we believe
that LMs with their complex underlying architec-
ture for representing and modeling word sequences
may offer additional benefits over traditional, rel-
atively small-scale network models (Hills et al.,
2012; Abbott et al., 2015) building on Markovian
assumptions and being detached from general lan-
guage processing accounts (Heineman et al., 2024).

Which LM-based predictors can be expected
to account for processing effects of clustering
and switching in verbal fluency? While previ-
ous modeling approaches typically rely on some
form of semantic distance to account for clustering-
switching patterns, this work proposes to use word

prediction and attention-based measures computed
from LMs as proxies of retrieval difficulty in ver-
bal fluency. We expect these predictors to inher-
ently account for sequence processing effects and
to capture retrieval difficulties beyond semantic-
taxonomic distances. As a motivating example,
consider the first cluster of the sequence in Figure 1
corresponding to common “pets” (rabbit, dog, cat,
...). Here, attention entropy and surprisal scores
computed with BERT predict that these words are
easy to retrieve, matching the annotation as a clus-
ter. However, the semantic distance predicts greater
difficulty, potentially due to taxonomic distances
between, e.g. mouse and bird. In simple terms, we
assume that words corresponding to switches and
higher retrieval difficulty in humans are modeled
as less predictable and requiring higher attention-
entropy in LMs. For instance, the word dog fol-
lowing cat should have a relatively low surprisal
compared to the word tiger following budgie, as
illustrated in Figure 1. Higher attention entropies,
in turn, indicate that the model distributed attention
weights more evenly across the preceding sequence
which in Figure 1 is often the case for words corre-
sponding to switches (tiger, whale, sparrow, ...).

4 Experimental Method

4.1 Data

We base our experiments on BIEFU (Alacam et al.,
2022), a dataset of German verbal fluency re-
sponses, which covers a fairly high number of cat-
egories. The BIEFU data was collected from 100
participants and contains verbal fluency responses
that enumerate words for 10 different semantic cat-
egories (e.g., animals, hobbies, body parts). An
overview of the data is shown in Table 4 (App. A).

Soft and Hard Switches The BIEFU dataset in-
cludes manual annotations of lexical items with
semantic subcategories. Based on these, we deter-
mine soft (fluid) and hard (static) switches, follow-
ing Zemla and Austerweil (2019). A soft cluster
switch occurs when the next word in a list does not
share a sub-category label with the previous word,
while a hard switch occurs whenever the next word
does not share a sub-category label with any of the
previous words since the start of the last cluster.
Soft switches are the most commonly examined
types of switches in the literature and we will focus
on these in the following.
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4.2 Prompting

To obtain prompts from human verbal fluency se-
quences, Nighojkar et al. (2022) replaced the last
item in a partial verbal fluency sequence with a
mask token, cf. (1).

(1) [C]s I know are wn−1−ct, . . . , wn−1, and
the [MASK] .

Here, wn−1−ct (ct being the context size) is the ini-
tial and wn−1 the penultimate item in a sequence
produced for category C. [MASK] always repre-
sents the last item. We adopt this scheme and itera-
tively mask out subsequent items in each human-
produced sequence, i.e., shift the masked token
from left to right by truncating them at the position
of the masking token, cf. the prompts in Table 1.
Baseline prompt (pr-0), which consists of a sim-
ple enumeration preceded by the category name, is
added for comparison. Since LMs can be very sen-
sitive to the specification of their prompts, we con-
ducted further experiments with prompt design that
addresses both auto-regressive and bidirectional
prompt strategies with different wording variations,
see Table 5 (App. B.2) for additional results on
these.

Seq: dog, cat, mouse, ...

pr-01 Animals: dog, [MASK]
pr-02 Animals: dog, cat, [MASK]

pr-11 Animals I know are dog, [MASK]
pr-12 Animals I know are dog, cat, [MASK]

Table 1: A (translated) sample of a human response
and derived LM prompts for two subsequent steps in a
verbal fluency sequence for autoregressive prompting.

4.3 Language Models

Since our investigation is one of the first to test
the predictive power of LMs in distinguishing clus-
tering and switching, we select basic transformer
LMs that have also been widely used in the litera-
ture on cognitive probing – GPT-2 (Radford et al.,
2019), BERT (Devlin et al., 2019) and T5 (Raf-
fel et al., 2020). Next to these, we also include
open-source German or multilingual models that
come in different size – Bloom (350m, 1b5, 1b7)
(Scao et al., 2023) and XGLM (560M, 1b7) models
(Lin et al., 2021). This model selection ensures a
representative comparison across transformer ar-
chitectures that employ different versions of the

self-attention mechanism: BERT as a bidirectional
encoder model, GPT-2, Bloom and XGLM as uni-
directional autoregressive decoder models, and T5
as an encoder-decoder transformer.

4.4 Predictors of Switching and Clustering

We use generalized linear mixed-effect models to
test the predictive power of probability-based and
attention-based metrics derived from LMs to sepa-
rate clustering and switching in verbal fluency data.
In the following, we describe the predictors we
include in this statistical analysis.

4.4.1 Psycholinguistic Predictors
We implement a strong baseline model that predicts
clustering/switching based on fixed and random ef-
fects established in recent verbal fluency literature
(Michalko et al., 2023). These predictors are tempo-
ral order, task demand, Typicality, Inter-response
similarity. We add the participants and semantic
categories as a crossed random effect to the initial
model (m0).

Temporal order (TEMP). The normalized tem-
poral order (TEMP) corresponds to the current posi-
tion of the word in a sequence divided by the length
of that sequence (range between 0 and 1). This pre-
dictor captures the fact that words are more difficult
to produce the longer the sequences become.

Task demand (TD). This predictor reflects that
certain verbal fluency categories are systematically
easier to enumerate than others, due to their fa-
miliarity, frequency, and lexical specificity. For
instance, categories like animals and vegetables are
easier to enumerate since they are more frequent,
while other categories like fabrics or insects are less
easily accessible. Following Michalko et al. (2023),
we manually group the verbal fluency categories
into three so-called “task demand categories”.

Typicality (TYP). Next, we add a fixed effect that
captures the typicality of an item within a verbal
fluency category (TYP). TYP is calculated as the
logarithm of the absolute number of occurrences of
a word among all items enumerated by all partici-
pants within that particular category. See App. A
for further detail.

Inter-response similarity (IRS) We compute the
semantic similarity of subsequent lexical items
in a verbal fluency sequence. Here, we deviate
slightly from Michalko et al. (2023) and use the
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cosine similarity between the items’ word embed-
dings, computed with the ConceptNET Number-
batch word embedding. This semantic space is en-
riched with ConceptNet taxonomic relations (Speer
et al., 2017), achieves the best performance in pre-
dicting clustering and switching patterns in BIEFU
data Alacam et al. (2022).

Retrieval latency (RL) Our data records time
stamps of every typed character in the verbal flu-
ency sequence. We define retrieval latency as the
time span as the offset between a preceding item
and the onset of the next item. We calculate it by
subtracting the offset of the first item from the onset
of the second item.

4.4.2 Probability-based Predictors
Our first set of LM predictors is derived from word
probabilities. We regard these as measures of re-
trieval difficulty or predictability in sequence gen-
eration, mirroring the notion of “expectation” in
sequence understanding (Shain et al., 2024). We
expect that clustering corresponds to less surpris-
ing items, whereas switching should show higher
surprisal and lower probabilities. The handling of
words composed of subwords across different LM
architectures is detailed Appendix B.1. To test this
hypothesis, we consider the following predictors:

Surprisal (Surp.). We transform word probabili-
ties into surprisal scores, quantifying the informa-
tion content it conveys in the context in which it
appears. The surprisal of a word w is calculated as
the negative log-likelihood of its probability. We
expect a positive correlation with switching.

Surprisal(wi) = − log2 p(wi |w<i)

Rankings (Rank). This predictor derives deter-
mines the rank of the word w in the word probabil-
ity distribution. We expect a positive correlation
with switching. The rank parameter is highly de-
pendent on the vocabulary size of the LM architec-
ture. In our analysis, the rank scores are normal-
ized, but see Appendix B.4 for more information.

Rank(w) = arg mini {p(w | context) : i = 1, 2, . . . , N}

Entropy (Ent.). As another account of retrieval
difficulty in context, we include the entropy of
the word probability distribution, quantifying the
model’s uncertainty in the given context, regardless
of the probability or rank of the target item. We
expect a positive correlation with switching.

Entropy(wi) = −
∑

wi

p(wi |w<i) log2 p(wi |w<i)

4.4.3 Attention-based Predictors
The second set of LM predictors derives from the
model’s internal attention distributions as measures
of cognitive effort, related to monitoring and shift-
ing working memory and attention (Ryu and Lewis,
2021; De Varda and Marelli, 2024). We expect that
switching corresponds to higher cognitive effort,
e.g., wider attention distributions across layers and
heads, than clustering which we expect to show
more localized attention patterns.

We extract the attention-based predictors consid-
ering different layers and attention heads in the
transformer architecture (144 heads in total for
the smaller LMs, 256 for the larger LMs). We
first transform the embeddings of tokens or hidden
states of a sequence to a triple of query (q), key
(k), and value (v) embeddings. The heads then
compute the attention weight between the query
and key vectors for all pairs of tokens in the input
prompt as soft-max-normalized dot products.

αij =
exp(qTi kj)∑n
l=1 exp(q

T
i kl)

The diffuseness of attention obtained from these
attention maps α can be calculated in different
ways. We follow Clark et al. (2019) and consider
attention head entropy and distance between at-
tention distribution for subsequent items in the se-
quence.

Average Attention-Heads Entropy (AHE). The
attention entropy is calculated in a similar way to
the probability-based entropy metric. The key dis-
tinction lies in its application to attention weight
distributions instead of a softmax-adjusted proba-
bility distribution. Subsequently, the attention en-
tropy is obtained by averaging across all heads for
the respective iteration of the input prompt. High
entropy is associated with bag-of-words context
incorporation (Clark et al., 2019).

Entropy(head) = −
N∑

i=1

α(i) log2 α(i)

Here, α(i) represents the probability associated
with the i-th element in the attention distribution.

Average JS-Divergence in attention heads (AH-
JSD). To explore whether attention heads in the
same layer can be grouped based on similar behav-
ior, we compute the distances between all pairs of
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attention heads. This pairwise distance between the
attention distribution of each pair of heads Hi and
Hj is calculated using Jenson-Shannon Divergence
following (Clark et al., 2019). Lower divergence in-
dicates that all heads process the inputs in a similar
way.

JSD =
∑

token∈Prompt

JS(Hi(token), Hj(token))

5 Experiments

We now describe our experiments, testing the pre-
dictive power of LM predictors in distinguishing
between clustering and switching in a creative se-
mantic search task. All analyses were carried out
in R version 2024.12.x (R Core Team, 2021). The
models are compared using ANOVA and all nu-
merical values are (z-)normalized using the scale
function in R.

5.1 Baseline Models
We use mixed-effect logistic regression (glmer) and
fit them on annotations of switching and clustering
in human verbal fluency responses. The dependent
variable is coded as a binomial variable (0: clus-
ter, 1: switch), indicating clustering or switching
between consecutive words in a sequence.

For the baseline model, we applied forward step-
wise inclusion starting with m0 which has only
crossed-random effects of participant and category.
The order of the inclusion of the parameters in the
baseline is from more basic (temporal order) to
complex (retrieval latency). For model m1 to m5,
we add the baseline predictors from Section 4.4.1
as follows:

m0 :switch+ (∼ 1|part.)+ (∼ 1|cat.)
m1 :m0+ TEMP

m2 :m1+ TASKDEMAND

m3 :m2+ TYP
m4 :m3+ IRS

m5 :m4+ RL

The temporal order parameter did not improve the
model fit (χ2(1) = 1.31, p > .05). Adding task
demand (TEMP) has a significant effect (χ2(2) =
6.64, p < .05). The main effects of the typicality
(TYP) and of the inter-response similarity param-
eter (IRS) were also found significant ((χ2(1) =
44.63, p < .0001) and (χ2(1) = 3384, p < .001),
respectively). For the hard switch, all parame-
ters significantly contributed to model fit (see Ap-
pendix B.3 for the details). The results indicate that
m5 is the strongest baseline for switch modeling.

This set of baseline models, commonly used in
the verbal fluency literature, enables us to quantify
and compare the individual contributions of a rich
array of LM predictors that we propose.

5.2 Models with LM predictors

Next, we analyze the power of LM predictors in
modeling clustering and switching. The following
model list shows in which order the probability and
attention-based variables from Sections 4.4.2 and
4.4.3 are included:

lm_m6 :(m3, m4, or m5)+ ProbLMtype

lm_m7 :(m3, m4, or m5)+RankLMtype

lm_m8 :(m3, m4, or m5)+ EntLMtype

lm_m9 :(m3, m4, or m5)+AHELMtype

lm_m10 :(m3, m4, or m5)+AH − JSDLMtype

Thus, adding LM predictors to m3 shows the
contribution of probability and attention-based pre-
dictors to a model that includes the baseline predic-
tors of temporal order, task demand, and typicality.
Then, we test the predictive power of LM parame-
ters to the m4 model, which includes a significant
predictor for semantic similarity between consec-
utive words (IRS). Finally, we add them to the
m5 model, which further includes retrieval latency
(RL), a highly predictive variable for clustering and
switching.

5.3 Results

Table 2 summarizes the contribution of each LM
predictor for soft switch modeling when added to
the defacto baseline model (m3). The results for
m3 in Table 2 show clear evidence for the predic-
tive power of LM predictors, in separating between
clustering and switching processes. The attention-
based metric AH-JSD, in particular, models these
processes very robustly and independently from
the underlying LM, i.e. it is highly significant for
all LMs. This also holds for the AHE metric, which
achieves slightly lower values across the board,
though. The probability-based metrics are less con-
sistent across LMs: T5, Bloom350, and XGLM
yield a highly significant RANK variable while sur-
prisal is less significant. However, SURPRISAL

derived from BERT achieves substantial predictive
power, comparably to AHE. Most probability-based
predictors from GPT-2 are insignificant.

Analysis with Concept Similarities and Re-
trieval Latency. We further investigate the re-
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Table 2: Soft Switch: the individual contributions of LM-predictors to the base model (m3) (Chi-Square).
*** denotes significance (p) < 0.001. ** : p < 0.01 and * : p < 0.05

BERT T5 GPT-2 Bloom350 Bloom1b5 Bloom1b7 XGLM560 XGLM1b7

m
3

Prob 37.44*** 11.28*** 2.20 0.65 0.62 2.64 4.68* 15.26***
Rank 9.64** 51.25*** 1.49 50.41*** 0.74 2.41 67.79*** 76.78***
Surprisal 64.08*** 12.89*** 3.86* 46.99*** 23.09*** 2.78 30.25*** 17.25***
Entropy 2.91 0.83 3.54 33.02*** 0.72 1.03 63.16*** 3.21

AHE 60.43 *** 33.66*** 45.02*** 32.31*** 32.31*** 31.97*** 52.68*** 52.68***
AH-JSD 106.26 *** 63.64*** 92.35 *** 71.07*** 68.34*** 73.56*** 85.11*** 79.52***

Table 3: Soft Switch: the individual contributions of LM-predictors on top of m4 and m5 models (Chi-Square).
*** denotes p < 0.001. ** : p < 0.01 and * : p < 0.05

BERT T5 GPT-2 Bloom350 Bloom1b5 Bloom1b7 XGLM560 XGLM1b7

m
4

Prob 1.56 22.85 *** 29.05 *** 56.94 *** 50.15 0.005 9.77** 15.11***
Rank 4.26 * 16.50 *** 8.35 ** 35.96 *** 48.61*** 8.92** 14.92*** 29.39***
Surprisal 10.76 ** 0.89 1.34 53.55 *** 74.28*** 1.22 0.02 4.19*
Entropy 0.15 0.97 1.96 42.27*** 0.79 0.01 71.10*** 7.19**

AHE 46.65 *** 21.03 *** 31.24 *** 20.27 *** 20.27*** 15.79*** 34.95*** 34.95***
AH-JSD 71.41 *** 29.28 *** 58.64 *** 38.61 *** 35.16*** 34.88*** 43.88*** 39.10***

m
5

Prob 1.85 24.05 *** 30.05 *** 56.13 *** 50.69*** 0.001 8.81** 16.83***
Rank 4.54 * 17.57 *** 6.80 ** 33.12*** 43.35*** 7.13** 15.82*** 28.39***
Surprisal 8.95 ** 2.06 0.93 51.61 *** 74.14*** 1.55 0.20 4.68*
Entropy 0.49 1.59 2.05 35.39 *** 1.32 0.02 69.39*** 6.12*

AHE 14.99 *** 3.51 * 7.44 ** 2.67 2.67 1.11 8.73** 8.73**
AH-JSD 24.93 *** 4.02 * 17.93 *** 7.28 ** 5.71* 5.13* 8.64** 6.35*

lationship between LM parameters and semantic
similarity (IRS) – one of the most frequently used
NLP metrics in verbal fluency modeling – as well
as retrieval latency (RL) as a strong behavioural
measure of processing difficulty. Table 3 summa-
rizes the contribution of each LM predictor for soft
switch modeling when added to the m4, and m5
models, respectively. Looking at the results for m4,
we find that a number of LM predictors remain
highly significant, even on top of the strong simi-
larity variable IRS. This holds in particular for the
attention-based metrics, most notably for AH-JSD.
This confirms our hypothesis that attention distribu-
tions in the internal layers of LMs capture aspects
of processes in semantic search beyond static simi-
larities in embedding space. However, we also see
notable differences in how predictors from different
LMs interact with IRS. Bloom350 and Bloom1b5’s
attention-based metrics seem to be more closely
aligned with the IRS parameter (resulting in lower
contributions) compared to their probability-based
parameters. The probability-based predictors of
BERT, however, are not significant anymore when
combined with IRS.

The results for m5 closely align with those of

m4, with the primary difference being a substan-
tial decrease in the magnitude of contribution for
attention-based models. As m5 includes the highly
significant retrieval latency parameter from the hu-
man data, we take this as a promising finding sug-
gesting that attention-based metrics derived from
LMs show some alignment with humans internal re-
trieval processes. The inclusion of retrieval latency
does not influence the contribution of probability-
based metrics which supports the view that they
capture complementary aspects of clustering and
switching in our data.

LM Comparison. When comparing all three
testing conditions, attention-based metrics are the
most robust predictors across different LM archi-
tectures. Their predictive power only decreases
when added after the retrieval latency parameter,
which suggests that attention-based predictors are
highly aligned with retrieval latency in humans.
For the final m5 model, the probability-based met-
rics from small German Bloom models remain
highly significant. Interestingly, we observe a sim-
ilar effect here to other studies on surprisal (Oh
and Schuler, 2023), i.e. their predictive power
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decreases with increasing model size. Similarly,
we see some advantages of the smaller XGLM560
over the larger XGLM1b7. Finally, next to model
size, we see great differences between predictors
computed from different transformer architectures
(BERT, GPT2, T5). For instance, AH-JSD from
BERT remains significant in m5, while the same
is not true for T5 or GPT-2. This suggests that
attention patterns learned in different architectures
capture different aspects of humans’ cognitive pro-
cesses, supporting further research into novel LM
architectures (Charpentier and Samuel, 2024).

Finally, we complement the chi-square-based
evaluation with the model ranking according to
AIC scores (quantifying model fitness) in Appendix
Figure B.5. The AIC-based analysis confirms the
pattern described above. Among all variations for
the base model (m3), AH-JSD metric derived from
BERT had the highest model fit. However, for the
enriched models incorporating semantic similarity
(m4) and retrieval latency (m5), larger models –
particularly BLOOM1b5 and XGLM560 – demon-
strate superior performance.

5.4 Discussion
Our experiments on verbal fluency add to the exist-
ing evidence that language models show some de-
gree of human-likeness in their internal processing
mechanisms (cf. Kuribayashi et al., 2025). Thus,
we find that well-known predictors derived from
LMs’ word predictions, i.e., surprisal and related
measures, as well as predictors computed from
LMs’ attention distributions, have strong statisti-
cal power when separating between clustering and
switching in human verbal fluency responses.

For research on creativity in human cognition,
this result supports the assumption that different
processes are at play in creative semantic search
tasks (Ovando-Tellez et al., 2022). When LMs re-
generate humans’ verbal fluency responses, they
show clearly distinct attention and prediction pat-
terns that neatly align with annotations of clustering
and switching in these sequences. Previous studies
identified these patterns based on distances in word
embedding spaces (Alacam et al., 2022). Our study
complements this with further metrics computed,
in particular, from the LMs’ internal attention dis-
tribution. These attention-based LM predictors re-
mained significant even when added to a baseline
model that included a semantic distance-based vari-
able (IRS). This suggests that attention distributions
capture processing-related mechanisms in verbal

fluency beyond semantic distances.
The fact that attention-based predictors are su-

perior to probability-based metrics in our verbal
fluency setting supports previous work proposing
that attention patterns in transformer LMs could re-
flect processes or retrieval and memory search (Ryu
and Lewis, 2021; De Varda and Marelli, 2024). The
creative search processes involved in verbal fluency
pose particularly strong demands on memory and
executive processes of working memory and inhibi-
tion (Shao et al., 2014). This further underlines the
plausibility of our findings and explains why sur-
prisal predictors, which are prominent in studies on
processing difficulty in natural reading, show less
consistent patterns than attention-based metrics.

While recent work on cognitive probing of LMs
has mostly focused on autoregressive GPT-style
architectures, our results show that attention pre-
dictors from encoder models like BERT outper-
form GPT models. This is surprising since autore-
gressive word prediction and causal, left-to-right
self-attention seem intuitively more aligned with
incremental sequence generation in verbal fluency.
A hypothesis to explore in future work is that the
bidirectional self-attention in the BERT encoder
could allow the model to obtain a richer seman-
tic space and account for more complex attention
and retrieval operations involved in a challenging
semantic search task.

Finally, our study points to new directions for the
cognitive probing of LMs. Whereas most previous
work looked at modelingreading times, our study
shows the fitness of LM predictors in accounting
for generative and creative tasks. Future tasks to
consider could be related to naming (Silberer et al.,
2020), reference (Junker and Zarrieß, 2024) or as-
sociation (Chen and Ding, 2023).

6 Conclusion

Our work contributes to understanding the process-
ing mechanisms of LMs with the help of verbal
fluency, an established experimental task from cog-
nitive science research. We showed that LMs can
distinguish two central components of creative se-
matic search, clustering and switching, via their
metrics derived from their attention and probability
distributions. Our study is one of the first to show
that distributions of attention weights in the internal
layers and attention heads of the transformer archi-
tecture correlate to a great extent with processing
difficulty in a creative semantic search task.
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Limitations

We have employed the vanilla versions of the se-
lected language models and all the metrics derived
from the models were not subjected to heavy trans-
formations except the basic soft-max, negative log-
likelihood, or pooling over layers and attention
heads. Since the evidence from the analysis points
towards the advantage of using attention-based met-
rics, further investigation on calculating different
attention scores (Oh and Schuler, 2022) is a promis-
ing line of research.

The verbal fluency data were processed using
off-the-shelf NLP text processing tools. Compound
words are generally common in German, and the
vocabulary used by participants also frequently
contains compound words such as “Klavierspielen”
(piano playing), “Krankenpfleger” (health nurse),
“Fahrradfahren” (bike riding). Unfortunately, many
of the compounds do not exist in the vocabulary of
the static embedding models such as ConceptNet,
whereas BERT and succeeding language models
can deal with out-of-vocabulary tokens due to their
sub-word tokenization method.

Ethical Statement

Our study utilizes a published and openly available
dataset with annotations on verbal fluency, without
annotator-related information. Additionally, we
ensure that our use of the dataset aligns with its
intended purpose.
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Appendix

A BIEFU data

Table 4 presents basic statistics for word counts
and retrieval latencies for BIEFU verbal fluency
sequences within each category and across cate-
gories (as global). This overview highlights some
characteristic differences between the categories:
participants enumerated almost 11.5 items on av-
erage. For the animals and countries, the number
is high as 19.11 and 18.5 respectively, while it
is around or below 10 items for fabrics, insects,
and vessels. Correspondingly, retrieval latency for
countries, animals, groceries and body parts are
significantly lower than categories that are less easy
to enumerate such as fabrics or insects.

Table 4 also includes typicality and IRS scores
that we will use as predictors in our baseline model.
The IRS is the cosine similarity between consec-
utive words calculated with ConceptNet Number-
batch embeddings (Speer et al., 2017). We ob-
serve that the categories insects and fabrics which
elicited the smallest number of words (tokens and
types) across participants show the lowest typical-
ity values, i.e. participants retrieved relatively few
and rather divergent sets of words. Interestingly,
hobbies and occupations exhibit high typicality,

i.e. show more overlap between participants, but
also show the lowest IRS scores, i.e. they con-
tain words that have more distant embedding in
semantic space. The categories clothes, body parts,
insects, and vessels exhibit the highest IRS scores.
Based on the provided dataset, we further calcu-
late the retrieval latencies between each consec-
utive items. The mean retrieval latencies shown
in Table 4 further differentiate the overall picture.
Here, the categories countries and animals, the
most widely used category in verbal fluency, show
the lowest mean retrieval latencies, together with
high typicality and medium IRS.

Task demands For creating the task demand cat-
egories for BIEFU in a similar way as in Michalko
et al. (2023), we have looked at the held-out se-
quences (from another 100 participants on the same
categories, but without retrieval latency scores)
and calculated the basic statistics similar to Ta-
ble 4 except the retrieval latency score. Based on
these scores, we categorized the BIEFU categories
into three groups depending on the cognitive effort
needed to enumerate them. The low-demand cate-
gory consists of animals, body parts and countries.
Hobbies, occupations, groceries and clothes belong
to the moderate category. Finally, the high demand
category includes fabrics, vessels and insects.

B Language Models

We utilize the verbal fluency data in German by
(Alacam et al., 2022) and we employ various dis-
tinct language models for German : (i) a pretrained
German BERT model1 (ii) a pretrained German
GPT-2 model2 , and (iii) a pretrained T5 model3

for German.
In this way, we aim to minimize any potential

impact of the training data’s nature on the overall
performance of our models. We generally use the
Hugging Face4 framework for reproducibility.

Next to these common LMs, we evaluate two
more recent autoregressive models on the dataset,
investigating the effects of model size and the dif-
ference between monolingual and multilingual lan-
guage models. Specifically, we employ (i) a mono-
lingual BLOOM model that is trained from scratch
on German data, comprising 350M parameters5,

1
https://huggingface.co/dbmdz/bert-base-german-cased.

2
https://huggingface.co/dbmdz/german-gpt2.

3
https://huggingface.co/t5-base.

4
https://huggingface.co/.

5
https://huggingface.co/malteos/bloom-350m-german.
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Table 4: BIEFU: Basic statistics (Max, min, and average values of sequences, retrieval latency and sub-category
counts per semantic category)

Categories Token Count in a Sequence Mean Total Subcat. Typicality IRS
Retrieval Token Count (mean) Similarity
Latency (Type) (mean)
(in sec.) Count

animals Max: 34, Min: 8, Mean: 19.11 1,96 1548 (202) 22 4.53 .39
body parts Max: 28 , Min: 8 , Mean: 17.02 2.50 1571 (144) 8 3.98 .50

clothes Max: 24, Min: 7, Mean: 16.5 2.31 1434 15 4.04 .52
countries Max: 33, Min: 6, Mean: 18.5 1.81 1688 (140) 6 4.19 .42

fabrics Max: 14, Min: 5, Mean: 7.9 5.06 633 (142) 15 3.94 .39
groceries Max: 28, Min: 7, Mean: 16.6 2.32 1550 (276) 14 4.69 .42

hobbies Max: 25, Min: 6, Mean: 14.49 2.63 1333 (302) 31 4.86 .32
insects Max: 17, Min: 5, Mean: 9.47 4.21 843 (99) 14 3.67 .49

occupations Max: 20, Min: 6, Mean: 12.23 2.89 1113 (296) 19 4.91 .35
vessels Max: 17, Min: 5, Mean: 10.13 3.83 902 (166) 9 4.13 .46
Global Max: 34, Min: 5, Mean: 11.51 3.05 19518 (2763) 153 4.13 .43

(ii) a multilingual BLOOM model adapted to the
German language via the CLP-Transfer method
with 1.5B parameters6, and (iii) a multilingual
BLOOMoom with 1.7B parameters7. Furthermore,
we use (iv) a multilingual XGLM model with 564M
parameters8, comparable in size to the monolingual
BLOOM model, and (v) a multilingual XGLM
model with 1.7B parameters9, equivalent in size to
the biggest multilingual BLOOM model.

We omit models like Chat-GPT or GPT-4 from
our analysis since these do not generally provide to-
ken probabilities or attention distributions through
their respective APIs and, hence, do make it possi-
ble to compute the type of measures and predictors
we need for our investigation.

B.1 Tokenization

We first tokenize the masked prompt with the word
w masked out by a single mask token m) and pass
it through the model. We then restrict the output
logits of the model to the position of the masked
token and pass them through a softmax function to
obtain a probability distribution over the model’s
vocabulary for the position of m. In the resulting
distribution, we select the probability of w, the en-
tropy of the distribution as well as the rank of w in
the model’s vocabulary sorted by the probability.
In addition to this, we also store the attention map
over the whole sequence. The subword tokeniza-
tion of BERT and T5 complicates this process, i.e.
w is not always represented by a single token in
the model’s vocabulary, but may consist of multi-

6
https://huggingface.co/malteos/bloom-1b5-clp-german.

7
https://huggingface.co/bigscience/bloom-1b7.

8
https://huggingface.co/facebook/xglm-564M.

9
https://huggingface.co/facebook/xglm-1.7B.

ple subword tokens (such as [Kol, ##ib, ##ri] for
the word Kolibri (hummingbird)). In such cases,
we iteratively replace m with each subword token
for w and take the average of the log probabili-
ties of all subwords as well as the lowest rank of
any subword as representative of the whole item
w. Such a method is considered useful for extract-
ing a more meaningful score for the multiword
expressions like [Großer Panda (Big Panda), Rote
Paprika (Red paprika)]. For the autoregressive
GPT-2, BLOOM and XGLM models, where uti-
lizing a masked token isn’t feasible, we truncate
the prompt at the position of the masked item and
then pass it through the models. The process of
extracting probabilities, ranks, surprisal scores, and
entropies with GPT-2, BLOOM and XGLM models
mirrors that are utilized for BERT and T5 models.
This also extends to the handling of the subword
tokens, as the autoregressive models employ the
same tokenization strategy.

B.2 Prompt Design

Since existing LMs can be very sensitive to the
specification of their prompts, we also test sev-
eral prompt variations for the calculation of prob-
abilities and attention distributions for verbal flu-
ency sequences. Depending on the type of LM,
these prompts can be divided into (i) unidirectional
prompts that only include left context for masked
tokens and (ii) bidirectional prompts where masked
tokens are presented in a left and right context. In
the following, we describe the design of the verbal
fluency prompts.
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Table 5: A sample of a human response and derived LM prompts for two subsequent steps in a verbal fluency
sequence (1st step/left, 2nd step/right column), as input for autoregressive prompting. For T5, we use identical
prompts to BERT but replace [MASK] with the sentinel token.

Original Sequence Hund (dog), Katze (cat), Maus (mouse)

Target token Katze in the 1st step Maus in the 2nd step

(Animals: Dog, [MASK] )
Prompt-0 Tiere: Hund, [MASK]* Tiere: Hund, Katze, [MASK]*

(Animals I know are dog and [MASK].)
Prompt-1 Tiere, die ich kenne, sind Hund und [MASK]* Tiere, die ich kenne, sind Hund, Katze und [MASK]*

(Examples of animals are dog, [MASK])
Prompt-2 Beispiele für Tiere sind Hund und [MASK]*. Beispiele für Tiere sind Hund, Katze, und [MASK]*.

(The first animals that come to my mind are dog, [MASK], mouse.)
Prompt-3 Die ersten Tiere, die mir einfallen, sind Hund und [MASK]*. Die ersten Tiere, die mir einfallen, sind Hund, Katze und [MASK]*.

(Animals one can know are dog and [MASK].)
Prompt-4 Tiere, die man kennt, sind Hund und [MASK]* Tiere, die ich kenne, sind Hund, Katze und [MASK]*

(When I think of animals, I think of dog and [MASK].)
Prompt-5 Wenn ich an Tiere denke, dann denke ich an Hund und [MASK]* Wenn ich an Tiere denke, dann denke ich an Hund, Katze und [MASK]*

B.3 Hard Switches

Table 6 summarizes the results for the hard switch
modeling when the LM metrics are added to m3,
m4 and m5 models.

Unlike soft-switch modeling, the contribution
of various metrics in this specific case of switches
varies significantly, without exhibiting a consistent
pattern across all conditions. A closer examination
reveals that among the probability-based metrics,
RANK and SURPRISAL are the most influential, of-
ten performing on par with AH-JSD or even surpass-
ing it in modeling hard-switch cases. It is important
to note that a hard switch occurs when a previously
unmentioned subcategory appears in the enumera-
tion. This necessitates metrics that are sensitive to
a broader contextual lookback.

Overall, for detecting hard-switches, probability-
based metrics demonstrate greater predictive power
in decoder-only models, whereas models with en-
coders benefit substantially from AH-JSD. Fur-
ther details on these results are provided in Ap-
pendix B.3.

Psycholinguistic parameters. In the hard switch
condition, adding the retrieval order parameter
(TEMP) improves model fit (χ2(1) = 11.58, p <
.001). The task demand also significantly im-
proves the model (χ2(2) = 6.97.87, p < .0001).
The main effects of typicality (TYP) (χ2(1) =
19.76, p < .001) and the inter-response similar-
ity parameter (IRS) also significantly contributed to
explaining the data (χ2(1) = 2990.75, p < .0001)
as well as the retrival latency.

m3 + LM predictors. It is obvious that A closer
look reveals that among the probability-based met-
rics, Rank and Surprisal are the most prominent

ones except the GPT-2, Bloom1b5 and Bloom1b7
models. Furthermore, all attention-based metrics
contribute significantly to the model fit to a differ-
ing extent. Despite not having the highest contribu-
tion, almost all metrics derived from XGLM adds
explanatory power.

m4 + LM predictors . When we look at the ef-
fect of LM metrics for the model with IRS, it is
also difficult to see one distinct pattern. Again,
Rank and Surprisal parameters are generally more
informative than probability or entropy metrics.
Bloom1b7 seems to have no contribution on top of
basic psycholinguistic parameters. Entropy only
contributes to the fitness for Bloom350m.

m5 + LM predictors. In addition to the de facto
psycholinguistic parameters, we investigate the
effect of a less common parameter in verbal flu-
ency analysis – the retrieval latency – as an indi-
cator of lexical computation in explaining switch-
ing /clustering behavior. Then we also examine
the alignment between retrieval latency with the
LM predictors. To do that, we add the retrieval
latency to the m4 model. In the both hard and
soft switch conditions, we find that the retrieval
latency RL further improves the model fitness
significantly: (χ2(1) = 344.88, p < .001) and
(χ2(1) = 265.17, p < .001) respectively.

As summarized in Table 6, the Bloom350 model
continues to exhibit a significant effect for its
probability-based metrics, followed by Bloom 1b5.
Attention-based metrics continue to contribute to
the model fitness only for the BERT model, on top
of retrieval latency.
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Table 6: Hard Switch: the individual contribution of LM-predictors on top of m3, m4 and m5 models (Chi-Square)

BERT T5 GPT-2 Bloom350 Bloom1b5 Bloom1b7 XGLM560 XGLM1b7

m
3

Prob 49.67 *** 9.95 ** 1.72 0.32 0.37 2.06 19.69 *** 27.02***
Rank 12.75 ** 57.89*** 1.67 44.32 ** 0.52 7.65** 94.86*** 66.05***
Surprisal 107.08*** 0.06 9.86** 66.82 ** 31.30*** 2.07 76.61 ** 27.25***
Entropy 5.24* 0.61 2.05 24.61*** 0.89 0.33 21.87** 2.32

AHE 37.12** 24.97*** 18.17** 16.40** 16.40** 16.36** 24.64*** 24.64***
AH-JSD 73.34*** 54.89*** 43.45*** 40.03*** 37.96** 45.91** 53.31*** 48.43***

m
4

Prob 0.10 23.33 *** 18.62 *** 49.31 *** 41.76*** 0.01 0.87 28.64***
Rank 7.14 ** 11.76 *** 21.49 *** 32.58 *** 26.23*** 19.05** 32.53*** 23.52***
Surprisal 39.25 *** 9.73 ** 0.52 78.20*** 89.56*** 0.8 14.11*** 10.71**
Entropy 1.50 0.04 2.37 30.98 *** 1.09 0.14 22.05*** 4.87*

AHE 24.40 *** 13.69 *** 8.49 ** 7.40 ** 7.40** 5.14* 11.65** 11.65***
AH-JSD 43.37 *** 28.45 *** 16.12 *** 16.22 *** 14.09** 16.58** 21.68*** 18.13***

m
5

Prob 0.04 24.80 *** 20.04 *** 48.93 *** 43.01*** 0.003 0.48 31.65***
Rank 7.25 ** 9.77 ** 23.08 *** 29.23 *** 21.22*** 15.87*** 34.57*** 22.44***
Surprisal 35.21 *** 8.62 ** 1.55 75.08 *** 88.46*** 1.15 17.65*** 11.8**
Entropy 2.67 0.03 3.57 24.31 *** 1.77 0.07 20.69*** 38.9*

AHE 2.28 *** 0.15 0.06 0.37 0.37 1.26 0.00 0.001
AH-JSD 6.41 * 1.67 0.00 0.01 0.17 0.04 0.11 0.02

B.4 Effect of Vocabulary size on the Rank
Parameter

Among the explored metrics, the rank score is
highly dependent on the vocabulary size of the
language model. Figure 2 plots the predictive
power (Chi2) of the RANK parameter when added
to the to m3, m4 and m5 models. On the left, the
graph shows models with smaller vocabulary sizes
(BERT, T5); in the center, models with (relatively)
moderate vocabulary sizes (GPT-2, Bloom350m,
Bloom1b5); and on the right side, multilingual
models with substantially larger vocabulary sizes
(Bloom1b7 and XGLM models). This graphs re-
veals that when the rank is added to m3 model, no
clear pattern is observed with respect to vocabu-
lary size. On the other hand, when the rank score is
added to the m4 and m5 models, there is a slight up-
ward, suggesting a possible relation between rank
score and the vocabulary size. However, this trend
is still not consistent across models with similar
vocabulary sizes.

B.5 AIC Based Ranking

Complementary results for the Section 5.2. While
the sub-figures positioned next to each other show
the same data, they highlight the different aspects:
for example, Figure B.5 (a) is color-coded with
respect to the LM type, and Figure B.5 (b) for the
effect of the metric. The lowest AIC corresponds
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Figure 2: LMs architectures ordered w.r.t their vocabu-
lary size. Y-axes denotes the Chi2 Scores for the rank
parameter added to m3, m4 and m5 models.

to the lowest rank (1st rank/best model).
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(b) m4: Metric-based color coded
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(d) m4: Metric-based color coded
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(e) m5 : Model-based color coded
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(f) m5: Metric-based color coded

Figure 3: Individual Models’ fitness (based on AIC scores
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Abstract

This paper presents a model of affect in con-
versations by leveraging Appraisal Theory as
a generalizable framework. We propose that
the multidimensional cognitive model of Ap-
praisal Theory offers significant advantages
for analyzing emotions in conversational con-
texts, addressing the current challenges of in-
consistent annotation methodologies across
corpora. To demonstrate this, we present
AppraisePLM, a regression and classification
model trained on the crowd-EnVent corpus that
outperforms existing models in predicting 21
appraisal dimensions including pleasantness,
self-control, and alignment with social norms.
We apply AppraisePLM to diverse conversa-
tion datasets spanning task-oriented dialogues,
general-domain chit-chat, affect-specific con-
versations, and domain-specific affect analy-
sis. Our analysis reveals that AppraisePLM
successfully extrapolates emotion labels across
datasets, while capturing domain-specific pat-
terns in affect flow – change in conversational
emotion over the conversation. This work high-
lights the entangled nature of affective phenom-
ena in conversation and positions affect flow as
a promising model for holistic emotion analy-
sis, offering a standardized approach to eval-
uate and benchmark affective capabilities in
conversational agents.1

1 Introduction

Affect, which encompasses both emotion and
mood, is crucial in conversations, influencing dy-
namics such as empathy, sarcasm, and naturalness
(Ruusuvuori, 2012). In the domain of conversa-
tional agents (CAs), recognizing and responding to
affective cues is essential (Skowron and Paltoglou,
2011; Yang et al., 2019). Various methodologies
are employed for incorporating affect into CAs,
including emotion classification, dimensional rat-

1Code is available here: https://github.com/
alokdebnath/appraise-PLM

ings, intent annotations, and vicarious emotion rat-
ings such as empathy and condolence (Busso et al.,
2008; Ma et al., 2020; Karna et al., 2020). While
affect-annotated datasets exist across general and
specialized domains, inconsistencies in annotation
schemas and objectives pose challenges for stan-
dardizing affect modelling in conversational AI
(Liu et al., 2021; Islam et al., 2022).

These inconsistencies arise due to variations in
annotation methodologies, including differences
in unit-level labelling (e.g., turn-wise versus full-
conversation annotations) and dataset construction
depending on the domain (Liu et al., 2024). More-
over, evaluation metrics for contextual affect inter-
actions remain limited, coercing a generalization
of findings across datasets. Many domain-specific
models, such as diff-EPITOME (Lee et al., 2022),
are trained within a specific domain but later ap-
plied broadly, highlighting the need for standard-
ized affect evaluation (Schaaff et al., 2023). A gen-
eralizable framework for modelling affect in con-
versations could address these challenges, ensuring
more consistent benchmarking for conversational
agents.

This paper proposes that Appraisal Theory pro-
vides such a generalizable framework. Appraisal
theory conceptualizes emotions as responses to an
individual’s evaluation of a stimulus along multiple
cognitive dimensions (Ellsworth and Smith, 1988;
Scherer, 2005). For example, anger can be charac-
terized as an unpleasant, short-lived emotion with
low self-control (Roseman and Smith, 2001). Such
an approach not only allows for the modelling of
emotional intensity and duration but also enables
the analysis of affect flow, or how emotions evolve
throughout a conversation (Hendriks et al., 2014;
Poria et al., 2019b).

In this paper, we hypothesize that: (H1)
appraisal-theoretic emotion analysis aligns with
existing emotion annotations; and that (H2) such
a cognitive analysis captures affect flow: emotion
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change over the course of a conversation. To test
these hypotheses, the paper introduces Appraise-
PLM, a model for appraisal regression and emotion
classification, trained on the crowd-ENVENT cor-
pus. Crowd-ENVENT is a benchmark emotion
recognition and appraisal analysis corpus which
provides fine-grained annotations of event descrip-
tions on 21 appraisal dimensions including pleas-
antness, self-control, and suddenness (Troiano
et al., 2023).2

Our model outperforms existing classifiers and
regressors on this dataset and is subsequently ap-
plied to turn-wise appraisal annotation across four
benchmark conversation corpora: EmoWOZ (Feng
et al., 2022), EMPATHETICDIALOGUES (Rashkin
et al., 2019), DailyDialog (Li et al., 2017), and EP-
TIOME (Sharma et al., 2020). Our results show that
AppraisePLM improves appraisal estimation per-
formance on the crowd-ENVENT corpus and can
extrapolate categorical and emotion labels. Addi-
tionally, corpus domain influences affect flow, with
distinct patterns emerging in specific domains (e.g.,
empathetic conversations improving pleasantness).
Through this paper, we highlight the intertwined
nature of affective phenomena and argue towards
developing appraisal theory as an interpretable in-
tradomain model of emotion in conversation.

2 Background and Motivation

2.1 Emotion Recognition in Conversation

Emotion recognition in conversation (ERC) often
relies on Plutchik’s wheel or Ekman’s universal
emotions for annotation (Plutchik, 1965; Ekman,
2000). Commonly used general-domain dialogue
corpora, such as DailyDialog (Li et al., 2017),
MELD (Poria et al., 2019a), and EmotionLines
(Hsu et al., 2018), employ a set of basic emo-
tions like joy, fear, sadness, anger, surprise, disgust,
and neutral. However, some corpora use varying
numbers of emotion categories, ranging from fine-
grained annotations to broader affect labels (Qin
et al., 2023). The veracity and similarity of emo-
tions can differ significantly by domain, raising
questions about the accessibility and identification
of fine-grained emotions in conversation (Hancock
et al., 2007; Machová et al., 2023).

The Valence-Arousal-Dominance (VAD) model
is a prevalent dimensional model for emotion, with
IEMOCAP serving as a reference corpus provid-

2The Appraisal dimensions are defined and categorized in
Appendix B

ing both dimensional and categorical emotion la-
bels (Busso et al., 2008). The conversation cor-
pus’ domain heavily influences the taxonomy and
distribution of emotion labels (Rajapakshe et al.,
2024). For instance, mental health-focused cor-
pora may prioritize certain emotions over others
compared to general-domain corpora (Saha et al.,
2022). Additionally, factors such as access to dif-
ferent modalities and the number of participants in
the conversation can impact the emotion annotation
methodology as well (Pereira et al., 2023, 2025).
Appendix provides a table to show the inconsis-
tencies across emotion annotations in conversation
corpora.

2.2 Affective Phenomena in Conversation
The emotions expressed and perceived by interlocu-
tors influence expected conversational behavior,
though modeling "emotion shift" remains an open
problem (Pereira et al., 2025). Corpora often use di-
rect annotation methods to extract relevant affective
features and behaviours. For instance, EMPATHET-
ICDIALOGUES is a benchmark open-domain empa-
thetic conversation corpus that uses 32 fine-grained
emotion labels, also applied in EDOS (Rashkin
et al., 2019).

Some domain-specific corpora, such as EPIT-
OME (Sharma et al., 2020), ALOE (Yang and Jur-
gens, 2024), PAIR (Pérez-Rosas et al., 2022), and
ESConv (Liu et al., 2021) in the mental health
domain, do not directly annotate emotion. In-
stead, they assess characteristics of empathetic in-
teractions using direct annotator ratings, like Emo-
tional Interpretation in EPITOME. This approach
allows models to access desirable interactional be-
haviours without relying solely on emotion (Lah-
nala et al., 2022). Metrics from PAIR and EPIT-
OME have been used to benchmark open-domain
conversational agents, expecting these behaviours
in general-domain contexts (Lee et al., 2024). For
example, a general-purpose conversational agent
should provide condolence, implying expected lin-
guistic behaviour with an affective signal (Zhou
and Jurgens, 2020). The manner and display of
empathy vary with context, relationship, and per-
sonality, as noted in the PEC corpus (Zhong et al.,
2020).

2.3 Appraisal Theory in Language and
Conversation Analysis

Appraisal theory posits that experienced emotions
result from cognitive appraisals of event stimuli,
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such as pleasantness, suddenness, controllability, or
alignment with social norms (Ellsworth and Smith,
1988). This theory offers a view of an experiencer’s
cognitive state by systematically choosing context-
appropriate appraisals.

Appraisal theory has gained prominence in NLP
and conversation analysis, enhancing emotion clas-
sification and interpersonal communication studies
(Balahur et al., 2011; Hofmann et al., 2020). In
NLP, it improves emotion classification accuracy
through dimensional models and annotated corpora,
aiding in understanding how emotions arise from
event evaluations (Troiano et al., 2022; Resendiz
and Klinger, 2023). In conversation analysis, ap-
praisal theory reveals how speakers express atti-
tudes and manage relationships through evaluative
language.

The theory has also had use in analyzing motiva-
tional interviewing, with the ALOE dataset focus-
ing on empathetic alignment in therapeutic conver-
sations using appraisal theory (Yang and Jurgens,
2024). However, this work is domain-specific and
lacks correspondence with other categorical or di-
mensional labels.

Troiano et al. (2023) introduced the crowd-
enVENT dataset, consisting of 6,600 emotion-
inducing event descriptions annotated with 21 ap-
praisal dimensions, emotion labels, and author de-
mographics. This dual-perspective annotation al-
lows for comparing appraisal and emotion recon-
struction by readers versus computational models,
providing a human baseline for machine learning
tasks. Unlike ISEAR, crowd-enVENT was com-
piled specifically for text analysis, studying the re-
lationship between appraisals, emotions, and event
descriptions.

3 The AppraisePLM Framework

In this section, we propose AppraisePLM, an
appraisal-theoretic conversation analysis frame-
work which estimates the aggregate change(s) and
patterns in how the interlocutors appraise the con-
versation over time. First, we test the cross-
comparability of appraisals with other represen-
tations (§3.1-3.3) then provide the methodology to
do the same for conversations (§3.4).

3.1 Problem Definition

Given a dataset D = {(ei, li, ci)}Ni=1 where ei is
the ith event description (text), li = [l1i , l

2
i , ..., l

a
i ]

is a vector of a event description appraisals, and

ci ∈ C is a label from the set of n emotion class
labels C, we perform the following two tasks.

Appraisal Estimation Train a function fapp :
Rd → Ra where d is the dimensionality of the
encoded event description PLM(ei) and a is the
number of appraisals. The objective of this function
is to find θapp∗ = argminθapp Lapp such that:

Lapp =
1

N

N∑

i=1

1

a

a∑

j=1

(fapp(PLM(ei))j − lji )
2

Emotion Classification Upon appraisal estima-
tion, train a function femo : Rd×Ra → C, where d
is the dimensionality of the encoded event descrip-
tion PLM(ei), C is a set of n emotion class labels,
and a is the number of appraisals. The objective of
this function is to find θemo⋆ = argminθemo Lemo

such that:

comb = PLM(ei)⊕ fapp(PLM(ei))k

Lcomb
emo = − 1

N

N∑

i=1

n∑

k=1

1[ci=k] ∗ ln femo(comb)

3.2 Dataset Characteristics

The crowd-EnVENT dataset consists of 6,600
event descriptions (550 event descriptions for 13
emotion labels). Each event is annotated with 21
appraisal variables, which are cognitive evalua-
tions of the event by the event’s author. The fine-
grained emotion labels allow us to analyze how
experiencers appraise various emotions (including
a no-emotion label). The distribution of appraisal
values is skewed, more than 33% of the corpus
being either 1 or 5. Their approach for appraisal
classification involves a two-class classificaiton,
which we do not use as the differences in appraisal
values are a critical step in AppraisePLM.

3.3 Model Framework

The proposed AppraisePLM multitask framework
jointly performs appraisal regression and emotion
classification using attention-attenuated pretrained
language models (PLMs) such as RoBERTa (Liu
et al., 2019), DeBERTa (He et al., 2020), MP-Net
(Song et al., 2020) and T5 (Raffel et al., 2020);
with DeBERTa yielding the best performance. Fig-
ure 1 provides a simple schematic of the model
architecture.
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Figure 1: Model architecture for the AppraisePLM
framework.

T→ A. T→ E T + A→ E
Model MSE ↓ F1 ↑ F1 ↑
Troiano et. al. (2022) 1.97 0.59 0.60
RoBERTa-large 1.62 0.59 0.67
T5-large 1.12 0.61 0.66
MPNet-base 1.08 0.64 0.70
DeBERTa-large 1.08 0.66 0.71

Table 1: Performance of the AppraisePLM architec-
ture for appraisal estimation and emotion classification.
Emotion classification is done in two modes; with only
text (T→ E) and both text and appraisals (T + A→ E)
on the crowd-ENVENT corpus.

The event description is embedded using a PLM
encoder and a multihead attention layer. Each ap-
praisal dimension has a task-specific multihead at-
tention layer and linear head. Regression is trained
with individual MSE losses for all appraisal values.

Emotion classification utilizes both the PLM rep-
resentation and predicted appraisal values. The en-
coded event description is concatenated with the
predicted appraisal values, normalized and regular-
ized before being decoded by another multihead at-
tention layer and a linear classification head. Clas-
sification is trained on cross-entropy loss.

We use an AdamW optimizer with a weight
decay 0.01 and a learning rate 2e−5. We use a
standard grid search for hyperparameter tuning.
Training employs Distributed Data Parallel (DDP)3

on four RTX 2080 Ti GPUs, with a batch size
of 16 and gradient checkpointing, early stopping
within three epochs with a maximum training of
ten epochs. Reproducibility report is provided in
??.

3.4 AppraisePLM Results and Performance

Table 1 presents the test set performance of the
AppraisePLM architecture on the crowd-enVENT
dataset, compared to the baseline model. While
attention attenuation marginally improves appraisal
estimation, DeBERTa-large achieves the highest
performance. However, the limited improvement

3https://pytorch.org/docs/stable/generated/
torch.nn.parallel.DistributedDataParallel.html

Corpus P R F1
EMPATHETICDIALOGUES 0.77 0.79 0.78
DailyDialog 0.63 0.66 0.62
EmoWOZ 0.62 0.56 0.59

Table 2: Zero-shot emotion classification performance
of AppraisePLM (DeBERTa-large; T + A→ E) model
on conversation corpora with emotion labels. Compar-
isons are done after label folding, a smaller subset of
the crowd-EnVENT emotion labels are mapped to the
labelling schema of the corpus.

in regression scores reflects the task’s complexity
(see Appendix D).

Appraisal representations enhance categorical
emotion detection, with event descriptions ap-
pended with appraisal information yielding a 0.11
macro avg. F1 improvement over the baseline.
Multi-head attention slightly improves standard
emotion classification (T → E. in Table 6), but the
AppraisePLM architecture shows a more substan-
tial boost when integrating both text and appraisal
data.

Figure 6 visualizes appraisal estimates across
emotions using DeBERTa-large AppraisePLM,
with emotions ordered by pleasantness. As ex-
pected, no-emotion separates positive and negative
emotions, with joy being the most pleasant and dis-
gust the least. Unpleasantness follows the inverse
trend, while urgency, attention, and other-control
exhibit minimal variation across emotions.

4 Affect Annotations in Dialogue Corpora

In this section, the applicability of AppraisePLM
on conversational corpora is examined using four
datasets: EmoWOZ, DailyDialog, EMPATHETIC-
DIALOGUES, and EPITOME. These datasets vary
in emotion annotation schemes, label counts, and
domains, so the analysis considers each corpus in-
dividually while maintaining methodological con-
sistency.

AppraisePLM estimates the appraisal dimension
for dialogue turn and concatenates them with ut-
terance embeddings for zero-shot emotion classifi-
cation. The DeBERTa-large AppraisePLM model
is used for annotation. Due to differing labelling
schemas for some datasets, label folding is applied,
and a co-occurrence Emotion category similarities
with crowd-EnVENT are assessed, and relevant la-
bels are retained for weighted F1-score evaluation.
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(a) Dataset: DailyDialog

(b) Dataset: EmoWOZ

Figure 2: Average estimate of each appraisal from the
DailyDialog and EmoWOZ test corpora using the best
performing AppraisePLM DeBERTa-large. The emo-
tion labels are ordered by pleasantness from low (red)
to high (blue).

4.1 DailyDialog

The DailyDialog dataset is a high-quality, manu-
ally labeled, multi-turn dialogue dataset designed
to reflect everyday communication. It contains
13,118 dialogues, with an average of approximately
8 speaker turns per dialogue. The dataset covers
various topics related to daily life, providing a di-
verse range of conversational context and includes
manual annotations for topics, dialogue acts, and
emotion.

DailyDialog uses a six class emotion classifi-
cation (anger, fear, disgust, happiness, surprise,
sadness) along with a no-emotion. The latter is
almost 80% of the corpus, while in the emotion
labelled turns, 74% of them are labelled happiness.
This label skew affected AppraisePLM’s perfor-
mance. Since the DailyDialog emotion categories
are a subset of Plutchik’s categories, no label fold-
ing or merging was performed, computing a strict
macro weighted F1 score of 0.62 for emotion clas-
sification using AppraisePLM DeBERTa-large.

Figure 2a shows the average distribution of ap-
praisal values across emotion labels for the Daily-
Dialog corpus. We see that these appraisals are sim-
ilar to the appraisal distribution by emotion label
for crowd-EnVENT, except the average valence of
the no emotion label and the slightly higher pleas-

Figure 3: A co-occurrence heatmap of predicted emo-
tion category and annotated emotion label for the EM-
PATHETICDIALOGUES corpus. Emotion categories are
predicted for emotionally grounded situations.

antness and unpleasantness estimates of disgust-
and fear-labelled conversation turns.

4.2 EMPATHETICDIALOGUES (ED)

The EmpatheticDialogues (ED) dataset comprises
24,850 one-to-one open-domain conversations,
with 2,457 in the test set analyzed here. Each
conversation features a speaker sharing a personal
emotional experience and a listener responding em-
pathetically. The dataset includes 32 fine-grained
emotions, with 5.1% tagged as "surprised" and
1.9% as "faithful", and test set conversations av-
eraging 4.2 turns.

Since ED uses a custom emotion list, Appraise-
PLM’s emotion detection is evaluated using a
coarser emotion set. Figure 3 shows that the
model effectively distinguishes broad emotional
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(a) Appraisal Change by Emotional Reaction

(b) Appraisal Change by Emotion Expression

(c) Appraisal Change by Interpretation

Figure 4: The change in appraisal estimate between the
speaker and response posts of the EPITOME dataset.
Change in appraisal estimates is computed as a3r − a3s
where ar is the average response appraisal and as is the
seeker appraisal, scaled for trend analysis.

categories (e.g., "afraid," "anxious," "apprehen-
sive," and "terrified" all align with "fear"). It also
identifies theoretical correlations across annotation
schemas (e.g., "lonely" and "annoyed" strongly cor-
relate with "boredom"). Synonym-based label fold-
ing results are reported in Table 5.

Appendix Figure 7 presents appraisal estimates
of emotions, ordered by pleasantness, showing sim-
ilarities with the crowd-EnVENT corpus (Figure 6).
The ordering of emotions reflects their perceived
intensity or arousal (e.g., "furious" vs. "angry" and
"disgusted" vs. "annoyed"). Notably, while "dev-
astated" is among the most unpleasant, it is not the
least pleasant and exhibits higher goal support than
more negatively valenced emotions. Additionally,
the range of appraisal estimates in ED is narrower
than in crowd-EnVENT.

4.3 EPITOME

The EPITOME dataset is designed to examine em-
pathy in text-based, asynchronous conversations,
incorporating both emotional and cognitive aspects.
It consists of 10,000 post-response pairs sourced
from online platforms such as Reddit and TalkLife,
annotated along three dimensions—Emotional Re-
action (ER), Interpretation (IP), and Exploration
(EX)—each rated on a 0-2 scale: ER demonstrates

warmth, compassion, or concern, IP reflects an un-
derstanding of inferred feelings and experiences,
and EX explores aspects of the seeker’s experience
not explicitly stated. Since these annotations rely
on comparisons between posts, whereas Appraise-
PLM annotates individual turns, we reinterpret the
dimensions through differences in cognitive ap-
praisals. Specifically: High ER corresponds to in-
creased pleasantness and other-responsibility while
decreasing unpleasantness and self-responsibility;
High IP implies minimal change in appraisal
values, ensuring emotional alignment with the
seeker, and High EX suggests differences in other-
control, other-responsibility, and self-responsibility
between seeker and response, showing a distinct
but similar affect.

The heatmap analysis (Fig. 4) highlights two
key findings: (1) ER and EX ratings of 1 show
greater shifts in appraisals than ratings of 2, and
(2) IP ratings of 2 correspond to the lowest aver-
age appraisal shifts, indicating stronger alignment
between seeker and response posts.

4.4 EmoWOZ
The EmoWOZ dataset is a large-scale, manually
emotion-annotated corpus of task-oriented dia-
logues, derived from MultiWOZ. It is designed to
examine how user emotions impact task-oriented
dialogue systems. EmoWOZ contains 11,434 dia-
logues, including both human-human (MultiWOZ)
and human-machine (DialMage) dialogues. The
analysis focuses on the test set.

EmoWOZ employs a custom emotion labelling
scheme for task-oriented dialogues, with seven la-
bels: neutral, satisfied, dissatisfied, excited, apolo-
getic, fearful, and abusive, adapted from the OCC
emotion model. Due to differences in domain and
classification intent, these labels do not directly
correlate between corpora, with "neutral" being
overwhelmingly dominant.

Figure 2b shows distinct appraisal profiles across
emotion labels. The "neutral" category serves as
a separator between positive and negative states.
We can see that emotion ordering by pleasant-
ness aligns with emotional valence. The range
of appraisal values in EmoWOZ is lower than in
other conversational datasets, likely due to the task-
oriented nature of dialogues, which exhibit less
emotional variability than chit-chat. Categorical
labeling alone would not highlight such differences
effectively. Table 2 indicates that emotion detec-
tion is more challenging in EmoWOZ, partly due
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to label imbalance, with notably fewer "abusive"
and "dissatisfied" conversation turns.

5 Affect Flow in Conversation

So far, we have applied appraisal theory to examine
emotion at the level of individual dialogue turns. In
this section, we extend our analysis to the conver-
sation level by modelling affect flow—that is, how
appraisal dimensions evolve throughout a multi-
turn interaction. This expanded analysis introduces
three additional considerations: speaker interaction
dynamics, the gradient of appraisal change across
conversation turns, and the emotion-specificity of
appraisal dimensions.

Speaker interaction dynamics are addressed by
distinguishing the initiator and responder roles in
conversations. We track appraisal shifts separately
for each interlocutor, allowing us to capture role-
specific patterns in emotional evolution. As in our
prior analysis with EPITOME (§4.3), we apply a
power function transformation to enhance subtle
but consistent variations in appraisal values, mak-
ing it easier to detect meaningful affective trends
over time.

Gradient analysis enables us to compare how
specific appraisal values change turn-by-turn, par-
ticularly across corpora. While the average ap-
praisal values in a corpus may exhibit minimal vari-
ation—largely reflecting the dominant emotional
tone of that dataset (often neutral or mildly posi-
tive)—certain appraisals or their combinations re-
main predictive of emotion labels. Building on
this, we align comparable emotions across corpora
by identifying their most indicative appraisal di-
mensions, and then compare the rate and direction
of change in these dimensions over conversation
turns.

Emotion-specificity of appraisals, the notion that
distinct appraisal dimensions are reliably associ-
ated with specific emotion labels, can be extended
to study affect flow. By statistically comparing
the gradient trajectories of these key appraisal di-
mensions, we identify emotion-specific patterns of
conversational change. For instance, we observe
that in the EMPATHETICDIALOGUES corpus, con-
versations labelled with anger tend to exhibit a
rapid shift toward more neutral appraisals in the
subsequent turn, indicating quick pacification. In
contrast, conversations labelled with furious show
more gradual shifts.

We refer to Figure 5 to examine the change in

appraisals over time for a sample of the corpora.

EmoWOZ has the highest gradient and lowest
central tendency for appraisal estimates, indicating
large fluctuations in emotion appraisals over a con-
versation ((Figure 5a, 5b)). Conversations labelled
satisfied exhibit strong positive valence shifts, with
both speakers increasing appraisals of pleasantness
and goal support over turns. In contrast, conversa-
tions labelled dissatisfied show an amplifying ef-
fect for positive appraisals and a dampening effect
for negative appraisals by the second interlocutor,
highlighting a different form of emotional adapta-
tion compared to the other corpora.

EmpatheticDialogues (ED) contains the short-
est conversations on average and shows low vari-
ation in appraisal shifts between turns (Figure 5e,
5b). Conversations in this corpus display empathic
matching (Wondra and Ellsworth, 2015) for both
positive and negative emotions: speakers and lis-
teners tend to align their appraisals over time, lead-
ing to appraisal gradients closer to zero. The
happy/joyful category exhibits strong alignment,
consistent with theoretical expectations of interac-
tional empathy, where interlocutors appraise events
similarly over successive turns.

DailyDialog (DD) exhibits higher variation in
appraisal gradients, particularly for negative emo-
tions, suggesting that emotional shifts are more
dynamic ((Figure 5c, 5d)). Unlike ED, where emo-
tion directionality is clear (seeker vs. provider),
DD does not enforce speaker roles. Either partici-
pant can elicit emotion, leading to non-uniform af-
fect flow. Despite this variability, a general trend of
appraisal convergence is observed over time, partic-
ularly for emotions like joy and sadness, although
sadness shows a distinct decrease in unpleasantness
near the end of conversations.

EPITOME Unlike the other corpora, EPITOME

exhibits appraisal shifts where emotional conver-
gence occurs but with different dominant appraisal
dimensions. While pleasantness and unpleasant-
ness remain key indicators, dimensions such as
self-responsibility, other-responsibility, attention
(for emotional expression), and not consider (for
emotional reaction) play a larger role in distinguish-
ing response quality. Higher quality responses, as
measured by reaction, interpretation, and expres-
sion ratings, show distinct appraisal characteristics,
reinforcing the importance of nuanced appraisal
dynamics in emotion modelling.
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6 Discussion

Appraisal theory, as a model of emotion realized in
text, is based on post-hoc or simulated appraisals
of cognitive dimensions correlated with universal
emotion labels. We approximate conversation seg-
ments (situation, turn, or response) as event descrip-
tions, assuming that post-hoc contextual rating of
appraisals preserves the relationship between se-
mantic and cognitive representations of affect. Our
analysis of conversational corpora using appraisal
estimation yields mixed quantitative results but of-
fers promising qualitative insights. Label incon-
sistencies complicate the evaluation of emotion
detection in AppraisePLM.

In this section, we examine the veracity of the
hypotheses mentioned in §1.

6.1 H1: Aligning with Extant Affect
Annotations

In H1, we hypothesized that appraisal-theoretic
emotion analysis aligns with existing emotion an-
notations. We tested this at multiple levels by exam-
ining patterns of appraisal estimates for the overall
corpus, characterized by its domain and annotation
level (conversation, turn, or response).

We found that fully textual corpora, such as EM-
PATHETICDIALOGUES and DailyDialog, exhibit
significantly higher alignment in categorical labels
between the AppraisePLM emotion classification
and existing annotations. This finding is notable, as
both corpora have different approaches and goals
for affect annotation. However, the domain of af-
fect annotation poses challenges for quantitative
analysis.

For instance, in the EPITOME corpus, changes in
appraisal estimates between utterance and response
align with the definitions of the annotated dimen-
sions, while appraisal-informed emotion classifi-
cation reflects the source of the conversation. A
similar domain effect is observed in EmoWOZ,
where emotion classification scores after label fold-
ing were baseline, but trends in appraisal by turn
and speaker correspond to action states in the cor-
pus.

In summary, appraisal theory shows reasonable
alignment with existing affect annotations in con-
versational corpora, providing additional cognitive
insights. Using appraisal theory as the grounding
emotion annotation in general domain conversa-
tions would significantly improve the performance
and reliability of the AppraisePLM approach.

6.2 H2: Appraisal Change as Affect Flow

In H2, we hypothesized that cognitive analysis cap-
tures affect flow, examined as emotion change over
the course of a conversation. We observed that
not all appraisals are relevant to a conversation
or domain and may change minimally. However,
those appraisals that do change exhibit a small but
consistent gradient when aggregated over the con-
versation.

Section §5 details findings from one approach to
examining affect flow using the power-amplified
difference of appraisal estimates between conver-
sation turns. Appraisal gradients differ by dataset:
EMPATHETICDIALOGUES exhibits low appraisal
shifts, DailyDialog shows greater variability in neg-
ative emotions, and EmoWOZ presents the high-
est appraisal gradient with distinct trends for sat-
isfaction and dissatisfaction. Empathic matching,
where interlocutors align appraisals over time, is
evident in positive emotions across EMPATHETIC-
DIALOGUES and DailyDialog. However, Daily-
Dialog lacks directional speaker roles, leading to
broader variability in emotional elicitation. The
EPITOME corpus demonstrates distinct appraisal
relevance, with dimensions like responsibility and
attention influencing response quality.

In summary, changes in appraisal estimates rep-
resent emotion change in conversation. The mul-
tidimensionality and cognitive nature of appraisal
theory reinforce its utility in emotion modeling and
highlight corpus-specific affective dynamics.

7 Conclusion

In this paper, we introduced AppraisePLM, a mul-
titask learning model designed to estimate ap-
praisal dimensions and emotion categories using
the crowd-EnVENT dataset. By applying our
model to various conversational corpora, we lever-
aged its fine-grained dimensional representation of
emotion to analyze affect flow—the subtle evolu-
tion of emotions within a conversation as it pro-
gresses.

Our findings demonstrate that appraisal theory
provides a valuable framework for examining how
emotions manifest in conversational data. While
the crowd-EnVENT dataset is not a dialogue cor-
pus, our results support the feasibility of using
appraisal-based models to examine emotion dynam-
ics in conversation. We observed not only improved
appraisal estimation and emotion classification per-
formance over baseline models but also reasonable

240



success in appraisal-informed zero-shot emotion
classification.

We identify two key applications for this ap-
proach. First, benchmarking affective conversa-
tional agents, such as those designed for emotional
support or empathetic interaction, by assessing
how their responses modulate appraisal dimen-
sions. Second, informing agent response expec-
tations when expressing specific emotions, offering
insights into emotionally intelligent dialogue sys-
tems. These findings highlight the potential of Ap-
praisePLM in advancing computational approaches
to emotion modeling and affective dialogue analy-
sis.

Limitations

This work has several important limitations that
should be acknowledged. Firstly, we assume that
appraisal annotation for conversations occurs in
the same way as for statements or short-form text,
which may not always be the case. Additionally,
we presume that emotions are appraised similarly
in human-human and human-machine interaction
contexts, an assumption that requires further inves-
tigation. The granularity of our approach, while
providing more detailed insights, also increases the
potential for errors. We utilized 21 dimensions be-
cause it was possible, but future research should
determine which of these dimensions are most ap-
plicable and relevant. Our current system employs
power amplification of differences between val-
ues to identify interaction trends, which could be
critiqued as potentially highlighting insignificant
variations. A more robust approach would involve
the development and use of conversationally de-
fined and annotated corpora based on appraisal
theory, given its relationship to and generality of
emotion categorization systems. Lastly, the lack of
longitudinal data prevents us from observing how
appraisal patterns might change over time in ongo-
ing human-machine interactions. Addressing these
limitations in future research will be crucial for
advancing our understanding of emotion appraisal
in human-machine conversations.
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A A Review of Emotion Annotations in
Conversational Corpora

Table 3 shows the wide range of contemporary emo-
tion classification and affect-annotated datasets.
We see that there is little consistency in the emotion
labelling, dimensionality, representation and expec-
tation of emotion as a latent property of interaction.
Standard

B Crowd-EnVent Dataset and Appraisal
Definitions

B.1 Dataset Description

The crowd-EnVENT dataset consists of 6,600 in-
stances of emotion-inducing event descriptions.
Each event is annotated using 21 appraisals as well
as the stable properties of text authors (demograph-
ics, personality traits). The dataset also captures
categorical emotion. The data was collected from
English native speakers from diverse backgrounds,
not limited to college students. The dataset is an-
notated and validated by external crowdworkers
who read the descriptions and inferred the original
appraisals.

The distribution of labels for this corpus are pro-
vided in Table 4.
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Dataset Name Type Annotation Layer Domain Size

EMPATHETICDIALOGUES Conversations 32 emo cat dialogue General 24.8K
EPITOME Reddit 3 2pt dim response Mental Health 10.1K
WASSA Conversations 3 5pt dim response News 12.6K
Condolence Reddit Distress/support comment Online Support 14.1M
ALoE Reddit Empathy levels post Mental Health 10K
ESConv Conversations Support strategies turn Mental Health 1K
DailyDialog Conversations 5 emo cat turn General 13.1K
MELD Conversations (M.P) 3 senti + 7 emo cat turn Movies 13.7K
IEMOCAP Conversations 3 5pt dim + 7 emo cat turn Multimodal 10K
EmoWOZ Conversations 3 senti + 7 emo cat turn Task Oriented 11.4K
Twitter-Customer Tweet-Response 3 5pt dim + 7 emo cat turn Customer Service 9K

Table 3: Overview of benchmark conversation corpora with emotion or affect annotations, highlighting the disparity
between them. Corpora marked in bold are studied extensively in this paper. cat refers to categorical labels;
npt dim refers to an n point dimensional Likert scale; senti refers to sentiment categories; emo refers to emotion
categories. The disparity in emotion and affect annotations is apparent, depending on source and context. M.P refers
to multi-party conversations. Size is measured in number of dialogues/conversations

Label Frequency

5 1197
1 1034
4 859
2 627
3 603

Table 4: Distribution of labels from 1 to 5 in crowd-
EnVENT, showing the label skew towards 1 and 5.

B.2 Appraisal Definitions
The crowd-ENVENT corpus highlights 21 appraisal
dimensions, which can be categorized based on
four affective state responses as established by
Scherer (2005). These categories, which the pa-
per and subsequent model treat as evaluation objec-
tives, can be described as:

1. Relevance: Relevance may be determined as
a combination of novelty, intrinsic pleasant-
ness, and importance towards an experiencer’s
goal or objective; i.e. the relevance appraisal
criterion determines the experiencer’s famil-
iarity with the event responsible for the emo-
tion as well as linguistic cues about its align-
ment with the expected goals and outcomes.

2. Implication: Implication is seen as a com-
bination of the causality of the agent, con-
duciveness of the situation towards the goal,
anticipation of the consequence of the event,
and the relative urgency of response to a given
situation.

3. Coping: Coping as an appraisal objective ex-
amines how an experiencer handles the sit-

uation both in terms of their experience of
control over the situation as well as the ad-
justment “felt necessary” by the experiencer.
Some formalisms of the coping objective ac-
count for the experiencer’s “power” during
the experience. Troiano et al. (2023) replaces
this with the dimension of ‘effort’ instead.

4. Normative Significance: The normative sig-
nificance of an event or situation is the degree
of conformity that the response to that situ-
ation has to personal ideals as well as with
external laws or norms, which may be based
on the experiencer’s social or cultural environ-
ment.

These definitions are based on two critical un-
derpinnings: that the person examining the event
is also contextually involved in the event and out-
come, and that this is a retrospective cognitive out-
come of a given event. Given the methods adopted
by Troiano et al. (2023) for curating the corpus,
such an assumption is justified. However, in its
applicability to dialogue, a principally reformu-
lated set of appraisals would have to be determined.
For example, the event in question could be the
statement made by another conversation partici-
pant, or the scoping of other responsibility and
others’ control would be limited to the other con-
versation participant, and any individual external
to the conversation be treated as a part of the "sit-
uation". However, the suitability of appraisals is
beyond the scope of a feasibility study and is a
promising avenue for future work given that this
work establishes the noticeable enrichment to dia-
logue done by an appraisal based approach.
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Objectives Dimensions Definition

R
el

ev
an

ce

Suddenness The situation or event was sudden or abrupt to the experiencer.
Familiarity The situation or event was familiar to the experiencer.
Predictability The experiencer could have predicted that the event would occur or the

situation would arise.
Attention The experiencer had to pay attention to the situation.
Not Consider The experiencer tried to shut the situation out of their mind.
Pleasantness The situation or event was a pleasant experience.
Unpleasantness The situation or event was an unpleasant experience.
Goal Relevance The experiencer expected the event to have important consequences for them.

Im
pl

ic
at

io
n

Self Responsibility The experiencer believes that the event occurred because of their behaviour.
Other Responsibility The experiencer believes that the event occurred because of somebody else’s

behaviour.
Situational Responsibility The experiencer believes that the event occurred because of circumstances

external to them, such as chance, special circumstances, or natural forces.
Goal Support The experiencer expected a positive outcome of the event for them (this is

different from goal relevance as an “important” event does not necessitate the
belief of a positive outcome).

Consequence Anticipation The experiencer anticipated the consequences of the event.
Urgency The experiencer believes that the event requires an immediate response.

C
op

in
g

Own Control The experiencer believes they can influence the ongoing of the event.
Others’ Control The experiencer believes that someone other than them was influencing the

ongoing event.
Chance Control The experiencer believes that the situation was the result of outside influences

of which nobody had control.
Anticipated Consequence The experiencer anticipated the outcome of the event based on their past

experiences.
Effort The experiencer believes that the event required additional (“a great deal of”)

effort to deal with.

N.S. Standards The event clashed with the experiencer’s standards or ideals.
Social Norms The actions that produced the event violated laws or socially accepted norms.

Table 5: With appraisal objectives defined, each appraisal dimension can be examined based on the appraisal
objective they contribute to. The appraisal dimensions can be defined based on the questions asked to annotators to
examine a specific situation or event. N.S. refers to the Normative Significance objective.
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C AppraisePLM: Implementation Details

C.1 Experimental Setup

All experiments were conducted using the PyTorch
deep learning framework in conjunction with the
Hugging Face transformers library. Model train-
ing was performed on a system equipped with four
NVIDIA RTX 2080 Ti GPUs, employing mixed
precision training (FP16) to enhance computational
efficiency and memory utilization.

C.2 Dataset and Preprocessing

Text inputs were tokenized using a maximum se-
quence length of either 128 or 256 tokens, depend-
ing on the specific model configuration. No ad-
ditional preprocessing steps, such as lowercasing,
stopword removal, or normalization, were applied.

For the appraisal prediction task, appraisal val-
ues were directly used as regression labels. In
the emotion classification task, when incorporat-
ing appraisal features, these values were projected
through a linear transformation to ensure dimen-
sional compatibility before classification.

C.3 Model Architectures and Training

C.3.1 Appraisal Prediction Model

Four pretrained language models (PLMs) were uti-
lized: RoBERTa-large, DeBERTa-large, MPNet-
base, and T5-large. Each PLM was augmented
with a multihead attention layer comprising 8 atten-
tion heads and 2 layers, with a hidden size equal
to that of the PLM embedding layer. The output of
the attention mechanism was subsequently passed
through a fully connected layer for final label pre-
diction.

Optimization was performed using the AdamW
optimizer with a linear learning rate decay sched-
ule. The models were trained using Mean Squared
Error (MSE) loss with balanced class weighting.
An attention weight decay of 1×10−3 was applied,
and a dropout rate of 0.01 was employed between
sequential layers, except for T5, where a dropout
rate of 0.001 yielded superior performance. To mit-
igate exploding gradients, gradient clipping was
applied after the attention layer. Training was con-
ducted for a maximum of 10 epochs, with early
stopping enforced using a patience of 3 epochs. On
average, model convergence was achieved in 4.6
epochs.

C.3.2 Emotion Detection Model
Two variations of the emotion detection model
were developed: a text-only model and a text +
appraisal model. The text-only model followed
the architecture: PLM embeddings → attention
layer → classification layer. The text + appraisal
model incorporated appraisal features by concate-
nating them with text-based embeddings after pass-
ing them through a linear projection layer to ensure
dimensional alignment before classification.

For classification, cross-entropy loss with bal-
anced class weighting was utilized. Model perfor-
mance was evaluated using Precision, Recall, and
F1-score.

C.4 Hyperparameter Selection

A comprehensive grid search was conducted to
determine optimal values for batch size, maximum
sequence length, dropout rate, and attention weight
decay. The final hyperparameter selections were as
follows:

• Batch size: 16, except for RoBERTa, where a
batch size of 8 was optimal.

• Maximum sequence length: 128, except for
RoBERTa, where a length of 256 performed
best.

• Dropout rate: 0.01, except for T5, where
0.001 was more effective.

• Attention weight decay: 0.01.

• Learning Rate: 2e-5

All models employed a linear decay learning rate
schedule, with gradient clipping applied after the
attention layer to prevent gradient explosion.

C.5 Evaluation and Baselines

For appraisal prediction, model performance was
assessed using Mean Squared Error (MSE), Mean
Absolute Error (MAE), and Root Mean Squared
Error (RMSE). Emotion classification performance
was evaluated using Precision, Recall, and F1-
score.

As a baseline, our models were compared against
a simple RoBERTa classifier released by the dataset
authors. This baseline does not incorporate an at-
tention mechanism and can be interpreted as an
ensemble of single-task models rather than a fully
integrated multitask model.

246



Text→ Appr. Text→ Emo. Text + Appr. → Emo.
Model MSE ↓ MAE ↓ RMSE ↓ P ↑ R ↑ F1 ↑ P ↑ R ↑ F1 ↑
Troiano et. al. (2022) 1.97 3.22 1.40 0.62 0.59 0.59 0.62 0.60 0.60
RoBERTa-large 1.62 2.96 1.11 0.62 0.59 0.60 0.66 0.67 0.67
T5-large 1.64 2.77 1.12 0.63 0.61 0.61 0.63 0.65 0.66
MPNet-base 1.49 2.68 1.08 0.66 0.64 0.62 0.64 0.70 0.70
DeBERTa-large 1.44 2.60 1.08 0.67 0.65 0.66 0.73 0.71 0.71

Table 6: Performance of the AppraisePLM architecture for the appraisal regression and emotion classification
models on regression. Categorical emotion detection is done in two modes; with only text (Text→ Emo.) and
both text and appraisals (Text + Appr. → Emo.) on the crowd-ENVENT corpus. Baseline refers to the baseline
RoBERTa-large regressor used in Troiano et. al. (2022). Per-appraisal performance and comparisons for Text→
Appr. are provided in Appendix C.

To determine statistical significance, paired t-
tests and ANOVA tests were conducted to compare
model performance. These tests were performed
both across different PLM architectures and be-
fore and after hyperparameter tuning. The results
demonstrated statistically significant improvements
in model performance following hyperparameter
optimization.

To ensure the reproducibility of our results, ran-
dom seeds were set for model initialization, data
shuffling, and optimizer state. Additionally, all hy-
perparameters, training procedures, and evaluation
metrics are comprehensively documented in this
report. All models were trained under controlled
computational conditions to facilitate consistency
and comparability across experimental runs.

D AppraisePLM: Performance Analysis
Details

Since different datasets had a differing number of
labels and we did not employ a semantic space im-
plementation, we perform label folding in order to
evaluate the AppraisePLM model. Here, we detail
the emotion mapping used. Given the label skew in
the EmoWOZ and DailyDialog datasets, the emo-
tion detection metrics were computed excluding
the neutral emotion label.

EMPATHETICDIALOGUES (ED) Since the ED
corpus has 32 fine-grained emotions to the 13 (12
without no-emotion), we had to label fold from
ED into crowd-EnVENT, i.e. predictions made by
AppraisePLM would be considered true positive
for more than one label of the ED corpus. We
folded by synonymy, where each crowd-EnVENT
emotion label was mapped as follows:

We do preserve the labels for qualitative tessting,
as can be seen for Figure 3.

DailyDialog (DD) uses Plutchik’s emotion la-
bels: anger, disgust, fear, happiness, sadness, and

crowd-EnVENT EmpatheticDialogues

anger angry, annoyed, furious, disappointed
boredom None
disgust disgusted
fear afraid, anxious, apprehensive, terrified
guilt guilty
joy joyful, excited, content
no-emotion None
pride proud
relief prepared, hopeful
sadness sad, devastated
shame ashamed, embarrassed
surprise surprised
trust trust, grateful, faithful, caring

Removed confident, nostalgic, sentimental

Table 7: Emotion categories and their associated terms
from the crowd-EnVENT to the ED corpus

surprise. However, from crowd-EnVENT, it is
missing the labels boredom, guilt, shame, trust,
pride, and relief. Therefore, we had to label fold
from DD out of crowd-EnVENT, i.e. one or more
predictions made by AppraisePLM would be con-
sidered true positive for the same label of the DD
corpus. We folded here by affective synonymy,
where each crowd-EnVENT emotion label was
mapped as follows:

crowd-EnVENT DailyDialog

anger anger
boredom no emotion
disgust disgust
fear fear
guilt sadness
joy happiness
no-emotion no emotion
pride happiness
relief happiness
sadness sadness
shame sadness
surprise surprise
trust happiness

Table 8: Emotion categories and their corresponding
mapped categories from crowd-EnVENT to the DD
corpus.
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EmoWOZ EmoWOZ uses a novel emotion la-
belling scheme tailored to task-oriented dialogues,
with seven emotion labels: Neutral, Satisfied, Dis-
satisfied, Excited, Apologetic, Fearful, and Abu-
sive. Interestingly, this system is adopted from the
OCC emotion annotation schema (), which has its
roots in early cognitive emotion theory. In fact, ap-
praisal dimensions could theoretically be directly
mapped to certain labels. However, practically, due
to the presence of an overwhelmingly large cate-
gory of no emotion, and the difference in source
corpus of event descriptions and rarget corpus of
textual instructional conversation, we do not use a
semantic space representation of the OCC model,
though we leave it up to future work. Instead, we
follow an OCC mapping elicited by Steunebrink,
Dastani, and Meyer (2009, Figure 2) .

crowd-EnVENT EmoWOZ

anger dissatisfied
boredom None
disgust abusive
fear fearful
guilt apologetic
joy satisfied
no-emotion no emotion
pride satisfied
relief satisfied
sadness fearful
shame apologetic
surprise None
trust satisfied

Table 9: Emotion categories and their corresponding
mapped categories from the crowd-EnVENT to the
EmoWOZ corpus.

The model performed worst on this dataset,
partially because of the label skew, partially be-
cause the OCC mapping from crowd-EnVENT to
EmoWOZ is less than satisfactory. The goal of an
appraisal-based model is to have an interpretable
semantic space adaptable to the affective lexicon
of a domain in order to avoid doing label mapping
or using an uninterretible semantic space instead.

Figure 6: Average estimate of each appraisal from the
crowd-enVENT test corpus. The emotion labels are
ordered by pleasantness from low (red) to high (blue).

Figure 7: Average estimate of each appraisal from the
EMPATHETICDIALOGUES test corpus using the best
performing AppraisePLM DeBERTa-large. The emo-
tion labels are ordered by pleasantness from low (red)
to high (blue).

E Appraisal Distributions by Emotion
Label for Conversational Corpora

In Section §4, we presented the mean appraisal
estimates of emotion in the EmoWOZ and DailyDi-
alog dataset. Figure 6 and 7 show the distribution
of appraisal values by emotion category for crowd-
EnVENT and estimates for ED respectively.
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(a) Dataset: EmoWOZ; Emotion Category: Satisfied (b) Dataset: EmoWOZ; Emotion Category: Dissatisfied

(c) Dataset: DailyDialog; Emotion Category: Happy (d) Dataset: DailyDialog; Emotion Category: Angry

(e) Dataset: EmpatheticDialogues; Emotion Category:
Joyful

(f) Dataset: EmpatheticDialogues; Emotion Category:
Anger

Figure 5: The average gradient of change between appraisal estimates for an average number of turns isolated by
emotion category. Each turn shows the gradient, i.e. the amplified power difference between the speaker and listener
across conversational turns. We see that the way corpora expect models to handle the same emotion differs greatly
based on the dataset and context. The legend is shared across all graphs.
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(a) Dataset: DailyDialog; Emotion Category: Sad (b) Dataset: DailyDialog; Emotion Category: Surprise

(c) Dataset: EmpatheticDialogues; Emotion Category:
Sad

(d) Dataset: EmpatheticDialogues; Emotion Category:
Surprise

Figure 8: Comparing gradients from some other emotion labels in the EMPATHETICDIALOGUES and DailyDialog
corpora.
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Abstract

Principal parts—defined as the minimal set
of cells from which all other forms within
a lexeme’s inflectional paradigm can be de-
duced—are an important concept in theoretical
morphology. This concept, which outlines the
minimal memorization needed for a perfect in-
flector, has been largely overlooked in computa-
tional morphology despite impressive advances
in the field over the past decade. In this work,
we formalize PRINCIPAL PARTS DETECTION
as a computational task under the static scheme
assumption, identifying a single set of cells as
principal parts uniformly applicable across lex-
emes within a syntactic category. We construct
a multilingual dataset of verbal inflection tables
with gold principal parts annotations for ten
typologically diverse languages. We evaluate
several computational models for PRINCIPAL
PARTS DETECTION, each implementing the
same three-stage framework: characterizing re-
lations between each pair of cells, clustering
the resulting vector representations, and select-
ing a representative cell from each cluster as a
predicted principal part. Our best-performing
model, combining Edit Scripts between inflec-
tions with Hierarchical K-Means clustering,
achieves an average F1 score of 55.05%, sig-
nificantly outperforming a random baseline of
21.20%. While these results demonstrate initial
success, further research is needed to advance
PRINCIPAL PARTS DETECTION, which could
optimize inputs for morphological inflection
models and encourage exploration into the the-
oretical and practical significance of compact
morphological representations.

1 Introduction

Morphological analysis is essential for understand-
ing natural language, particularly in languages with
complex inflectional systems. In both linguistic the-
ory and language pedagogy, the concept of princi-
pal parts plays a central role in structuring and sim-
plifying inflectional paradigms (Finkel and Stump,

2007; Stump and Finkel, 2013). Principal parts
form the minimal subset of paradigm cells from
which all other forms can be systematically derived.

By identifying these key forms, principal parts
provide a compact representation of inflection ta-
bles and facilitate the analysis of morphologically
rich languages. Despite their theoretical signif-
icance, the detection of principal parts remains
largely unexplored in computational morphology.
While they have inspired research in inflection and
reinflection (Cotterell et al., 2017; Liu and Hulden,
2020), they are rarely used explicitly. Most compu-
tational approaches instead rely on a single citation
form, the lemma (Cotterell et al., 2016; Goldman
et al., 2023), or select input forms randomly (Cot-
terell et al., 2016; Kann et al., 2017). This reliance
on suboptimal input representations overlooks the
potential of principal parts as a more efficient foun-
dation for inflectional modeling.

In this paper, we formalize PRINCIPAL PARTS

DETECTION as a computational task under the
static principal-parts scheme assumption: given
a collection of inflection tables belonging to the
same syntactic category, the goal is to identify a
single, minimal set of cells that uniformly serve as
principal parts across all lexemes. Crucially, inflec-
tion tables typically contain standard morphologi-
cal annotations but are not explicitly labeled with
principal parts, making this an unsupervised learn-
ing problem. To promote research in this area, we
deliver a standardized dataset covering the verbal
paradigms of ten diverse languages. We sourced
principal parts for each language from online dictio-
naries, where they are often listed to aid language
learners, and obtained full inflection tables from
UniMorph (Batsuren et al., 2022).

We develop several computational approaches
for PRINCIPAL PARTS DETECTION, leveraging the
defining property of principal parts: their encap-
sulation of implicative relations existing among
cells in the paradigm. Our models character-
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ize inter-cell similarity and cluster cells into sub-
paradigms, selecting a representative cell from
each sub-paradigm as predicted principal parts. We
explore different methods for characterizing inter-
cell relations, including Edit Distance, Edit Script,
and Reinflection Accuracy, and we experiment with
clustering techniques such as Affinity Propagation
and a Hierarchical K-Means algorithm. Our best-
performing model, combining Edit Script similar-
ity measure + Hierarchical K-Means clustering,
achieves an average F1 score of 55.05% across the
ten languages in our dataset, significantly outper-
forming a random baseline of 21.20%.

By formalizing PRINCIPAL PARTS DETECTION

as a computational task, we lay the groundwork
for future research on more efficient morphological
representations. To the best of our knowledge, this
is the first work to deliver a standardized bench-
mark of PRINCIPAL PARTS DETECTION alongside
a fully-operational detection framework. Success-
fully solving this task could enhance applications
in morphological inflection and analysis by provid-
ing more informative input forms. Our findings
suggest that principal parts can be computation-
ally identified with reasonable accuracy, but further
improvements are necessary to fully realize their
potential.

2 The PRINCIPAL PARTS DETECTION
Task and Dataset

The PRINCIPAL PARTS DETECTION Task.
The task of PRINCIPAL PARTS DETECTION is de-
fined as identifying the minimal set of cells within
a paradigm that, when known, allow the derivation
of all other paradigm forms. For instance, in En-
glish, the principal parts of the verbal paradigm
are the cells corresponding to the infinitive, sim-
ple past and past participle (for example, eat, ate,
and eaten), as these forms are not predictable from
one another, especially for strong verbs. On the
other hand, the forms corresponding to the present
participle and the 3rd person singular present are
deterministically predictable from the infinitive and
they therefore provide no additional information
for inflection if the infinitive is known.

Formally, the task of PRINCIPAL PARTS DE-
TECTION is defined under the static principal-parts
scheme assumption. Specifically, given a language
L, a syntactic category POS, and their associated
paradigmPL

POS = {c1, c2, . . . , cn}, where each
cell ci corresponds exactly to one coherent morpho-

syntactic feature set associated with POS, along-
side a set of lexeme-specific inflection tables:

T L
POS = {tLPPOS ,ℓ1

, tLPPOS ,ℓ2
, . . . , tLPPOS ,ℓk

},

each table instantiating the paradigm PL
POS for

a specific lexeme ℓi.
Then, the task is to identify the minimal subset

of cells CPP ⊆ PL
POS from which all remaining

forms within each inflection table tLPPOS ,ℓi
∈ T L

POS

can be deterministically deduced.

The PRINCIPAL PARTS DETECTION Dataset.
To empirically evaluate methods for the detec-
tion of principal parts, we first need a dataset
to evaluate against. To this end, we constructed
the multilingual PRINCIPAL PARTS DETECTION

dataset, containing verbal inflectional paradigms
from ten typologically diverse languages: He-
brew, English, French, German, Spanish, Danish,
Swedish, Finnish, Turkish, and Latin. These lan-
guages were selected based on the availability of
comprehensive inflectional data and suitable re-
sources for identifying principal parts.

The input side of the task comprises complete in-
flection tables sourced from the UniMorph corpus
(Batsuren et al., 2022), a large-scale morphologi-
cal resource providing comprehensive inflectional
data across languages, organized by lexeme and
morpho-syntactic features.

Gold principal parts annotations — the target
output for evaluation — were primarily obtained
from two online resources. For five languages (En-
glish, German, French, Latin, and Spanish), we
directly adopted principal parts from Wikipedia’s
dedicated principal-parts page.1 For the other lan-
guages, where principal parts were not explicitly
documented, we identified them directly based on
the forms presented in Wiktionary’s standardized
verb conjugation templates, except for Finnish,
for which we consulted a specialized language-
learning resource.2

The dataset preparation involved rigorous nor-
malization and error correction applied specifically
to the inflection tables. We retained only strictly in-
flectional forms, excluding derivational forms, and
ensured exactly one form per feature set. Sparse,
marginal, or inconsistent feature sets were removed,
and problematic entries originating from the origi-
nal sources were manually reviewed and corrected

1https://en.wikipedia.org/wiki/Principal_parts
2https://ielanguages.com
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to ensure a reliable dataset (see Appendix A for
details).

The PRINCIPAL PARTS DETECTION dataset pro-
vides a strong empirical foundation for compu-
tational modeling, bridging linguistic theory and
practical applications, and constitutes a robust re-
source for future research on morphological inflec-
tion and principal parts detection. The next section
shifts focus to computational methods for detecting
principal parts, drawing on the linguistic insights
outlined in the literature.3

3 Translating Linguistic Insights into
Computational Methods

The linguistic principle underlying PRINCIPAL

PARTS DETECTION is that principal parts encap-
sulate the implicative relations among cells within
a lexeme’s inflectional paradigm, constituting the
minimal subset of cells from which all remaining
cells can be deduced (Finkel and Stump, 2007;
Stump and Finkel, 2013). In this work, we adopt
the static principal-parts scheme, framing PRINCI-
PAL PARTS DETECTION as the automatic identifi-
cation of a minimal, uniform subset of paradigm
cells applicable consistently across all lexemes
within a given syntactic category.

However, linguistic theory alone does not pro-
vide a direct computational method for system-
atically generalizing or approximating these im-
plicative relations across multiple lexemes at the
syntactic-category level. To operationalize PRINCI-
PAL PARTS DETECTION computationally, we hy-
pothesize that implicative relationships across lex-
emes can be indirectly approximated through mea-
surable morphological patterns observable within
lexemes’ inflectional paradigms. Specifically, we
propose three types of measurable morphological
patterns: (i) surface-level similarities, observed as
orthographic overlap, shared morphological mark-
ers, or recurring affixation patterns across multiple
cells; (ii) structural correspondences, represented
by minimal transformations converting one cell’s
form into another; and (iii) predictive relations,
characterized by the consistent ability of one cell’s
realization to predict another’s.

By quantifying the morphological relations
among cells based on these measurable patterns,
we obtain empirical evidence enabling the organi-
zation of cells into meaningful subsets. We intro-

3The data is publicly available in https://github.com/
DorinK/Principal-Parts-Detection.

duce the notion of sub-paradigms, computational
abstractions (not formally defined in linguistic the-
ory) that group cells whose realizations consistently
display morphological and functional similarities.
Cells grouped into a sub-paradigm thus implicitly
share similar morphological and functional roles
across lexemes, indirectly reflecting broader im-
plicative trends, even though exact implicative rela-
tionships vary between individual lexemes.

Selecting principal parts thus naturally corre-
sponds to choosing exactly one representative cell
from each identified sub-paradigm. This ensures
the resulting principal-part set compactly and effec-
tively captures the generalized morphological roles
identified through sub-paradigm formation.

This conceptualization leads directly to a three-
phase computational methodology for PRINCIPAL

PARTS DETECTION: First, we characterize mor-
phological relationships between pairs of cells
through similarity measures. Next, we cluster these
cells into coherent sub-paradigms based on their
quantified morphological similarities. Finally, we
select exactly one representative cell from each
sub-paradigm as its principal part. Together, these
principal parts constitute a minimal and compre-
hensive set capable of systematically deriving all
remaining paradigm cells across lexemes.

4 Framework and Task Empirical Design

The PRINCIPAL PARTS DETECTION framework
we propose in this work is composed of three inter-
connected stages: characterization, clustering, and
principal-parts selection, each implemented using
well-defined computational methods. These stages
operate independently, meaning that different con-
figurations of the framework can mix and match
methods in seeking the best combination. Below,
we briefly review the computational methods con-
sidered for each stage.

4.1 Characterization: Quantifying
Morphological Relations Between Cells

The characterization stage quantifies morphologi-
cal relationships between paradigm cells by com-
puting numerical similarity scores between them.
This work explores three distinct characterization
methods, each offering a different perspective on
morphological relations between cells.

Edit Distance A metric that measures surface-
level similarity between forms based on minimal
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edit operations — insertions, deletions, or substi-
tutions — required to transform one form into an-
other (Levenshtein, 1966). This method is imple-
mented by computing the average Edit Distance
from each paradigm cell to all others (calculated
across all lexemes in the data), treating one as the
source and the rest as destinations. The result-
ing vector representations store these averaged dis-
tances, capturing surface-level similarity between
cells. Pairs of paradigm cells with low Edit Dis-
tance scores exhibit orthographic overlap.

Edit Script A metric that captures transforma-
tional diversity by analyzing character-level trans-
formations between paradigm cells. Unlike tradi-
tional Edit Script approaches (Wagner and Fischer,
1974; Myers, 1986), which focus on the exact se-
quence of operations needed to transform one string
into another, this approach computes the number
of unique character-level transformations observed
across all surface realizations of each paradigm-
cell pair. Each transformation is counted only once
per cell pair (calculated across all lexemes), cap-
turing distinct transformational patterns rather than
repeatedly occurring character changes. The re-
sult is a vector representation for each cell pair,
where each entry encodes the number of unique
transformations required to convert one cell to an-
other, representing their transformational distance.
This method provides insight into the variation in
morphological transformations within a paradigm.
Cells with lower transformation diversity may ex-
hibit more stable morphological patterns, making
them stronger principal part candidates. In contrast,
higher transformation diversity may signal greater
variability in inflectional behavior, affecting pre-
dictability.

Reinflection Accuracy A metric that evaluates
the functional predictability of paradigm cells. It
leverages the Base LSTM reinflection model (Gold-
man et al., 2021) trained to generate a target form
given a source form and the morpho-syntactic fea-
tures of the target. Unlike edit-based methods that
focus on surface similarity and transformational di-
versity, Reinflection Accuracy captures functional
dependencies between cells, reflecting their predic-
tive capacity within a paradigm.

Reinflection Accuracy is particularly effective
in languages with complex inflectional systems,
where orthographic similarity alone is not a reli-
able predictor of implicative relations. By cap-
turing functional dependencies rather than surface

transformations, it provides a direct measure of a
cell’s ability to generate other forms. However,
its performance depends on training data quality
and resource availability. In low-resource settings,
data sparsity may lead to biased results, and the ap-
proach is computationally intensive, as it requires
training multiple models—one model per paradigm
cell. Despite these challenges, its ability to model
functional predictability makes it a valuable tool
for identifying paradigm cells suitable as princi-
pal parts, particularly in morphologically complex
languages.

Each characterization method produces a simi-
larity table, where rows represent source paradigm
cells and columns represent target paradigm cells,
encoding pairwise morphological relationships (see
Appendix B). Before clustering, all similarity ta-
bles are standardized by removing the mean and
scaling to unit variance to ensure comparability
across methods. These standardized characteriza-
tion tables form the empirical basis for the cluster-
ing stage.

4.2 Clustering: Structuring Cells into
Sub-Paradigms

The clustering stage groups paradigm cells based
on their quantified morphological relationships,
forming computational abstractions termed sub-
paradigms. These sub-paradigms approximate the
internal morphological organization of paradigms.
The framework implements two clustering algo-
rithms, each offering distinct computational proper-
ties. As with characterization, only one clustering
algorithm is employed at a time.

Affinity Propagation A message-passing clus-
tering algorithm that dynamically determines the
number of clusters based on pairwise similarity
scores (Frey and Dueck, 2007). Unlike traditional
clustering methods, it does not require a prede-
fined number of clusters. Instead, it iteratively up-
dates responsibility and availability values, which
determine how well a paradigm cell serves as an
exemplar (cluster center), until the algorithm con-
verges on a final set of exemplars. This property
makes it particularly suitable for paradigms with
high morphological variability. The algorithm is
implemented using scikit-learn’s AffinityPropaga-
tion module, with similarity scores computed as
negative squared Euclidean distances. The prefer-
ence parameter is set to the median similarity value,
allowing clusters to emerge naturally. Additional
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parameters include a convergence iteration limit of
30 and a random state value of 10.

Hierarchical K-Means A hierarchical variant of
K-Means that recursively partitions paradigm cells
into two clusters per iteration until a well-defined
clustering structure is reached. The stopping cri-
terion is determined using the Calinski–Harabasz
Index (CHI) (Caliński and Harabasz, 1974), which
evaluates clustering quality by comparing between-
cluster dispersion to within-cluster cohesion. At
each step, the CHI is computed across the entire
clustering structure to assess how well-separated
the clusters are relative to their internal cohesion.
To prevent over-segmentation, clustering stops if
the number of clusters in the new best CHI solu-
tion exceeds that of the previous best CHI solution
by more than one cluster. The algorithm is imple-
mented using scikit-learn’s KMeans module with a
random state value of 10. By grouping paradigm
cells into sub-paradigms, the clustering stage pro-
vides a data-driven approximation of generalized
morphological and functional roles. The resulting
sub-paradigms form the structured basis for the
principal-parts selection stage.

4.3 Principal Parts Selection: Identifying
Representative Cells

The principal-parts selection stage finalizes the
PRINCIPAL PARTS DETECTION framework by
transforming sub-paradigms into a compact, gen-
erative summary of the paradigm structure. In this
stage, exactly one representative cell from each
sub-paradigm is selected, capturing the morpholog-
ical and functional properties that characterize its
sub-paradigm. These representative cells collec-
tively constitute the principal parts, ensuring com-
prehensive morphological coverage while maintain-
ing compactness and predictive capacity.

Specifically, we adopt the Minimum Average In-
flectional Length criterion. Under this criterion, the
principal part selected from each sub-paradigm is
the paradigm cell whose realizations exhibit the
minimal average length, computed across all lex-
emes. This selection ensures that the chosen cell
is both structurally central and morphologically
efficient within its sub-paradigm. Such a crite-
rion aligns with linguistic insights suggesting that
shorter inflectional paths often correspond to cen-
tral morphological roles, enhancing their suitability
as principal parts.

Together, the principal parts derived from this se-

lection process form a minimal and comprehensive
set capable of systematically deriving all remaining
paradigm cells across lexemes, in accordance with
the static principal-parts scheme assumption.

5 Experimental Setup and Results

We conduct a series of experiments to evaluate
the effectiveness of the PRINCIPAL PARTS DE-
TECTION framework across ten typologically di-
verse languages. The evaluation compares six
model configurations, each formed by pairing one
of three characterization methods—Edit Distance,
Edit Script, and Reinflection Accuracy—with one
of two clustering algorithms—Affinity Propagation
and Hierarchical K-Means. To establish a perfor-
mance threshold, we include a random baseline,
selecting principal parts at random.

5.1 Dataset

The PRINCIPAL PARTS DETECTION dataset uti-
lized in our experiments comprises ten typologi-
cally diverse languages, structured into two sub-
sets to rigorously assess our framework’s cross-
linguistic generalization.

The first subset (Hebrew, English, French, Ger-
man, Spanish) was used during method develop-
ment, providing a broad and representative mor-
phological foundation. Hebrew exhibits synthetic
morphology, encoding multiple grammatical fea-
tures within single inflected forms. English, in con-
trast, is predominantly analytic, relying primarily
on word order and function words to indicate gram-
matical relations. French and Spanish, as fusional
languages, embed tense, mood, and person distinc-
tions within single inflectional forms, exhibiting
varying degrees of morphological regularity. Fi-
nally, German presents a hybrid morphological
system, integrating analytic and fusional charac-
teristics.

The second subset (Danish, Swedish, Finnish,
Turkish, Latin) was reserved exclusively for
independent validation of the finalized meth-
ods’ generalizability, evaluating their performance
on languages not encountered during develop-
ment. Finnish and Turkish exemplify agglutinative
morphology, expressing grammatical information
through clearly segmentable morphemes arranged
sequentially. Latin, a highly inflected classical lan-
guage, provides a challenging scenario due to ex-
tensive distinctions in case, number, and gender.
Danish and Swedish, characterized by regular and
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predictable inflectional paradigms, allow us to as-
sess method robustness in languages with simpler
morphological structures.

This structuring enables a rigorous and unbiased
evaluation of our framework’s adaptability, robust-
ness, and cross-linguistic generalization across di-
verse morphological systems.

5.2 Evaluation Metric

To evaluate model effectiveness, we utilize the F1
score, balancing precision (correctness of predicted
principal parts) and recall (coverage of gold princi-
pal parts) to assess both accuracy and completeness
in PRINCIPAL PARTS DETECTION.

In addition to reporting F1 scores, we bench-
mark our models against a random baseline,
which selects principal parts randomly within each
paradigm. Given a paradigm with x cells and y
gold principal parts, the probability of randomly
selecting a correct principal part is y

x . As the base-
line selects exactly y principal parts, the expected
number of correct predictions is y× y

x = y2

x . Thus,
the expected precision, recall, and consequently the
F1 score, are all equal to y

x .
Since principal parts are inherently sparse within

most paradigms, the random baseline represents
a challenging threshold. Models that significantly
exceed this baseline demonstrate an ability to detect
principal parts systematically rather than relying
on chance.

5.3 Reinflection Settings

For models utilizing Reinflection Accuracy, we
train a separate reinflection model for each
paradigm cell, treating it as the source while all
other cells serve as targets. The model is based
on the Base LSTM architecture (Goldman et al.,
2021), a character-based sequence-to-sequence
model comprising a one-layer bidirectional LSTM
encoder and a one-layer unidirectional LSTM de-
coder with a global soft attention layer (Bahdanau
et al., 2014). Each model is trained for 50 epochs,
optimizing categorical cross-entropy.

The dataset is split 70%-30%, ensuring test
lexemes remain unseen during training. Each
paradigm cell is trained using a dedicated dataset,
where it serves as the source inflection across differ-
ent lexemes. Since each cell is evaluated on its abil-
ity to generate all other cells within the paradigm,
corresponding test sets are created—one per target
cell.

Model Algorithmic Evaluation

Random Baseline 21.20

Edit Distance + Affinity Propagation 31.29

Edit Distance + Hierarchical K-Means 32.51

Reinflection Accuracy + Hierarchical K-Means 42.43

Edit Script + Affinity Propagation 44.62

Reinflection Accuracy + Affinity Propagation 45.56

Edit Script + Hierarchical K-Means 55.05

Table 1: Average F1 scores across the ten languages of
our PRINCIPAL PARTS DETECTION dataset for differ-
ent model configurations. The best-performing model
configuration is highlighted.

Each trained model is evaluated on how accu-
rately it inflects from its assigned source cell to
each target cell. The resulting accuracy scores
form a representation vector, capturing a cell’s pro-
ficiency in generating others. Cells with high Re-
inflection Accuracy scores demonstrate strong pre-
dictive capacity, making them effective candidates
for principal parts.

5.4 Results

Table 1 presents the average F1 scores across the
ten languages, providing a comparative evaluation
of model performance. All models outperform
the random baseline, which achieves the lowest
F1 score of 21.20%. The best-performing model,
Edit Script + Hierarchical K-Means, achieves an
F1 score of 55.05%, highlighting its ability to ef-
fectively characterize morphological relationships
among paradigm cells and cluster these cells across
diverse languages.

Reinflection Accuracy-based models perform
competitively, with F1 scores of 45.56% (Affinity
Propagation) and 42.43% (Hierarchical K-Means).
In contrast, Edit Distance-based models yield lower
scores of 31.29% and 32.51%, indicating that
surface-level similarity alone is insufficient for
PRINCIPAL PARTS DETECTION.

Overall, all tested methods surpass the random
baseline by at least 10.09 points, with the best-
performing model exceeding it by 33.85 points.
These results confirm the effectiveness of the pro-
posed methodology, highlighting a substantial im-
provement over random selection.

Table 2 provides a language-specific breakdown
of F1 scores, offering further insights into mod-
els’ performance across morphological typolo-
gies. Edit Script + Hierarchical K-Means, our
best-performing model overall, achieves the high-
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est scores in Hebrew, French, Spanish, Turkish,
and Latin. This highlights its effectiveness in
capturing systematic morphological transforma-
tions—particularly beneficial in languages with
root-and-pattern morphology (e.g., Hebrew), fu-
sional systems (e.g., French, Spanish, Latin), where
single inflections encode multiple grammatical fea-
tures simultaneously, and in Turkish, an agglutina-
tive language characterized by clearly segmentable,
predictable morphological sequences.

While the Reinflection Accuracy + Affinity Prop-
agation model ranks second-best overall (45.56%),
it does not consistently outperform other mod-
els across languages. Its strongest results appear
specifically in languages characterized by relatively
transparent, regular, and predictable inflectional
paradigms, such as Danish and Swedish, where the
exemplar-based clustering method effectively orga-
nizes paradigm cells. Conversely, its performance
drops in morphologically opaque or fusional lan-
guages (e.g., Spanish, Finnish). However, the Rein-
flection Accuracy + Hierarchical K-Means model
achieves notably stronger results in Finnish and En-
glish, indicating differences in how clustering meth-
ods handle morphological predictability. These
contrasting patterns underscore the importance of
carefully matching characterization methods and
clustering algorithms to linguistic properties.

In contrast to the previously discussed models,
the weaker performance of Edit Distance-based
models is particularly evident in morphologically
opaque or highly fusional languages (e.g., Spanish,
Finnish), where subtle or irregular morphological
variations encode multiple grammatical features
simultaneously.

6 Analysis

We analyze how methodological factors shape
model performance, focusing on transformations
in characterization data and the effectiveness of
clustering strategies. This evaluation highlights
structural patterns influencing clustering quality
and examines the extent to which clustering results
align with ideal principal-parts selection.

6.1 Transpose Ablation: Evaluating the
Impact of Data Orientation

The Transpose Ablation study investigates whether
swapping the rows and columns of the charac-
terization tables influences clustering quality and
principal-parts selection. This transformation is

particularly relevant for Reinflection Accuracy,
where original tables encode directional relation-
ships—rows indicate how easily a paradigm cell
can inflect from itself to others, while columns
represent the reverse relationship. Unlike Edit Dis-
tance and Edit Script methods, which produce sym-
metric similarity matrices, Reinflection Accuracy
matrices are inherently asymmetric. Thus, transpos-
ing these tables meaningfully changes their direc-
tional structure and potentially impacts clustering
results.

Transposition is applied only to Reinflection Ac-
curacy models, as Edit Distance and Edit Script
methods generate symmetric similarity tables, mak-
ing transposition redundant. We evaluate two mod-
els: Reinflection Accuracy + Affinity Propaga-
tion and Reinflection Accuracy + Hierarchical K-
Means, comparing their performance before and
after transposition.

The results in Table 3 show that transposition
affects models differently. Reinflection Accuracy +
Affinity Propagation experiences a slight decrease
in performance (45.56% → 44.05%), while Re-
inflection Accuracy + Hierarchical K-Means im-
proves marginally (42.43% → 43.14%). This sug-
gests that transposition does not universally en-
hance clustering effectiveness and that its impact
depends on the underlying clustering strategy.

Despite the minor improvement for Hierarchical
K-Means, transposed results are excluded from the
main evaluation due to their limited effect and mis-
alignment with the principal-parts definition. Be-
cause original (non-transposed) cells encode gen-
erative properties crucial for inflection, preserving
this structure remains preferable. These findings
suggest that alternative data transformations, better
aligned with the linguistic task, may offer greater
benefits.

6.2 Oracle Evaluation
To estimate the theoretical upper bound of our mod-
els’ performance, we conduct an Oracle Evalua-
tion, where principal parts are selected directly
from the gold principal parts annotations rather
than relying on clustering results. This evaluation
disentangles the contribution of clustering quality
from principal-parts selection effectiveness: a low
Oracle score indicates fundamental limitations in
clustering, while a significant gap between Oracle
and Algorithmic scores highlights inefficiencies
specifically in the principal-parts selection stage.
By providing this performance ceiling, the Ora-
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Model Hebrew English French German Spanish Danish Swedish Finnish Turkish Latin

Random Baseline 20.68 60.00 14.28 16.66 2.53 62.50 26.30 2.48 28.00 6.25

Edit Distance + Affinity Propagation 33.30 66.70 37.50 46.20 15.40 57.10 40.00 0.00 0.00 16.70

Edit Distance + Hierarchical K-Means 25.00 57.10 44.40 44.40 0.00 57.10 57.10 0.00 0.00 40.00

Reinflection Accuracy + Hierarchical K-Means 25.00 85.70 44.40 28.60 50.00 57.10 43.50 50.00 0.00 40.00

Edit Script + Affinity Propagation 50.00 80.00 54.50 66.70 36.40 50.00 60.00 23.50 6.90 18.20

Reinflection Accuracy + Affinity Propagation 36.40 80.00 26.70 60.00 16.70 75.00 75.00 46.20 17.40 22.20

Edit Script + Hierarchical K-Means 50.00 80.00 54.50 60.00 50.00 72.70 60.00 33.30 50.00 40.00

Table 2: Language-specific F1 scores illustrating variations in effectiveness of different model configurations across
morphological typologies. Top results are marked, with a unique color used for each language.

Model Transpose Algorithmic Evaluation

Reinflection Accuracy + Affinity Propagation
✗ 45.56

✓ 44.05

Reinflection Accuracy + Hierarchical K-Means
✗ 42.43

✓ 43.14

Table 3: Algorithmic evaluation of Reinflection Accu-
racy models with and without transposition across ten
languages. The averaged F1 scores highlight varying
impacts depending on the clustering algorithm.

Model Evaluation
Oracle Algorithmic

Edit Distance + Affinity Propagation 40.08 31.29

Edit Distance + Hierarchical K-Means 50.57 32.51

Reinflection Accuracy + Affinity Propagation 58.78 45.56

Reinflection Accuracy + Hierarchical K-Means 65.64 42.43

Edit Script + Affinity Propagation 54.16 44.62

Edit Script + Hierarchical K-Means 76.21 55.05

Table 4: Oracle and Algorithmic evaluations of PRINCI-
PAL PARTS DETECTION models across languages. Ora-
cle evaluation assumes perfect knowledge of principal
parts, establishing an upper bound on performance; Al-
gorithmic evaluation reflects actual model performance.

cle Evaluation identifies which components of the
PRINCIPAL PARTS DETECTION framework require
targeted improvement.

Table 4 reveals substantial gaps between Ora-
cle and Algorithmic scores, underscoring cluster-
ing limitations and principal-parts selection inef-
ficiencies. Edit Script + Hierarchical K-Means
achieves the highest Oracle score (76.21%), con-
firming strong clustering performance. However,
the 21.16-point gap suggests that principal-parts
selection remains a limiting factor.

Conversely, Edit Distance + Affinity Propaga-
tion exhibits the lowest Oracle score (40.08%), in-
dicating fundamental clustering challenges. Rein-

Model Transpose Evaluation
Oracle Algorithmic

Reinflection Accuracy + Affinity Propagation
✗ 58.78 45.56

✓ 58.51 44.05

Reinflection Accuracy + Hierarchical K-Means
✗ 65.64 42.43

✓ 67.70 43.14

Table 5: Oracle and Algorithmic evaluations of Rein-
flection Accuracy models before and after transposition,
assessing clustering quality under ideal (Oracle) and
practical (algorithmic) conditions.

flection Accuracy + Hierarchical K-Means shows
a notably large Oracle-Algorithmic gap (65.64%
→ 42.43%), highlighting that while clustering is
effective, principal-parts selection still requires re-
finement.

These findings emphasize the importance of opti-
mizing both clustering effectiveness and principal-
parts selection to bridge the gap between Oracle
and Algorithmic performance.

6.3 Interplay Between Transposition and
Oracle Performance

Table 5 examines the impact of transposition on
Reinflection Accuracy models under both Oracle
and Algorithmic evaluations.

The results indicate that while transposition im-
proves Oracle performance for Hierarchical K-
Means (65.64% → 67.70%), it has a negligible
effect on Algorithmic scores, indicating that while
transposition enhances clustering under ideal con-
ditions, it does not meaningfully improve principal-
parts selection. Additionally, Affinity Propagation
exhibits sensitivity to data orientation, showing
a slight decline in Oracle performance (58.78%
→ 58.51%), suggesting that its clustering mech-
anism relies on specific directional patterns that
transposition may disrupt. Conversely, Hierarchi-
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cal K-Means benefits from transposed data, likely
due to its iterative refinement of clusters. However,
since Algorithmic scores remain largely unchanged
across models, these findings reinforce that refin-
ing selection heuristics, rather than adjusting data
orientation, is the key to improving model perfor-
mance.

7 Related Work

Early computational approaches to paradigm com-
pletion predominantly relied on the lemma as the
central reference form, treating it as the sole input
for generating full inflectional paradigms (Durrett
and DeNero, 2013; Hulden, 2014; Nicolai et al.,
2015; Ahlberg et al., 2015; Faruqui et al., 2016).
However, Cotterell et al. (2017) highlighted the lim-
itations of this approach, noting that forcing trans-
formations to pass exclusively through the lemma
can introduce unnecessary complexity. Instead,
more flexible models leveraging multiple inflected
forms have been proposed, allowing transforma-
tions to occur directly or via intermediary forms,
rather than constraining them to a single privileged
form. This shift aligns with the concept of principal
parts, defined as the minimal set of paradigm cells
required to deduce all others (Finkel and Stump,
2007; Stump and Finkel, 2013).

Cotterell et al. (2017) introduced a directed
graphical model that probabilistically generates
missing inflected forms by modeling dependen-
cies within paradigms. This approach enables the
prediction of a form from multiple inflected forms
rather than exclusively from the lemma. Around
the same time, Kann et al. (2017) introduced multi-
source reinflection, demonstrating that using mul-
tiple inflected forms as input improves accuracy.
Their work explicitly references principal parts as a
linguistic motivation, reinforcing the idea that cer-
tain cells within a paradigm hold stronger predic-
tive capacity. Additionally, Cotterell et al. (2019)
examined the structural complexity of inflectional
paradigms, proposing a neural method for ordering
paradigm slots based on their predictability—an
indirect computational realization of the principal
parts concept.

Liu and Hulden (2020) extended these ideas
by reformulating morphological inflection as a
Paradigm Cell Filling Problem (PCFP), where miss-
ing forms are inferred from a partially observed set
of paradigm cells. While their work does not ex-
plicitly model principal parts, it aligns with their

predictive role in improving inflectional accuracy,
particularly in low-resource settings.

Despite these advancements, no prior work has
proposed a systematic, data-driven approach to
PRINCIPAL PARTS DETECTION. Existing stud-
ies have either assumed pre-defined principal parts
or incorporated them indirectly within broader in-
flectional tasks. In contrast, we have introduced
PRINCIPAL PARTS DETECTION as a formal com-
putational task, developed a multilingual bench-
mark, and proposed a principled methodology for
automatic PRINCIPAL PARTS DETECTION. By
integrating linguistic insights with computational
modeling, we establish a structured framework for
PRINCIPAL PARTS DETECTION.

8 Conclusions

This work introduces PRINCIPAL PARTS DETEC-
TION as a computational task, formalizing the
detection of principal parts within inflectional
paradigms under the static principal-parts scheme
assumption. We construct a multilingual dataset
covering ten typologically diverse languages and
develop a structured framework to automatically
detect principal parts uniformly applicable across
all lexemes belonging the verb syntactic category.

Our empirical evaluation demonstrates that quan-
tifying morphological relationships between cells,
clustering these cells into sub-paradigms, and se-
lecting representative cells from each sub-paradigm
provide a viable strategy for identifying principal
parts. Our best-performing approach — Edit Script
similarity combined with Hierarchical K-Means
clustering — achieves an F1 score of 55.05%,
significantly surpassing the random baseline of
21.20%. However, results across evaluated models
indicate that while clustering effectively organizes
paradigm cells into meaningful subsets, principal-
parts selection remains a key bottleneck.

Beyond theoretical interest, successfully address-
ing PRINCIPAL PARTS DETECTION has practi-
cal implications for computational morphology.
By identifying compact, generative subsets of
paradigm cells, principal parts can be leveraged
to optimize morphological inflection models, re-
duce annotation costs, and improve low-resource
language modeling. The structured computational
approach presented here lays the foundation for
future advancements, highlighting the relevance of
linguistic insights in shaping more efficient NLP
methodologies.
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Limitations

Despite the progress demonstrated in this study,
several open challenges remain. Irregular
paradigms, as seen in Latin, continue to pose dif-
ficulties, highlighting the need for methods that
can better capture morphological unpredictability.
Additionally, our reliance on UniMorph, while of-
fering broad linguistic coverage, exposes inconsis-
tencies that impact model generalization. More
curated linguistic resources could improve dataset
reliability and refine the evaluation of principal
parts across languages.

Future work could explore alternative clustering
strategies better suited to morphological structures,
such as graph-based methods or neural clustering
approaches. Transformer-based models may hold
potential for capturing deeper morphological de-
pendencies, offering an avenue for enhancing both
clustering accuracy and principal-parts selection.
These challenges are beyond the scope of this paper
and reserved for future research.

Finally, our dataset currently includes only ten
languages. Expanding the dataset to include addi-
tional morphologically rich and underrepresented
languages, such as polysynthetic languages, would
more comprehensively capture typological diver-
sity and potentially further validate the robustness
of PRINCIPAL PARTS DETECTION methods.
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Appendix

A Technical Overview of the PRINCIPAL
PARTS DETECTION Dataset

This section provides the technical details of the
PRINCIPAL PARTS DETECTION dataset, including
the number of samples per feature set in each lan-
guage’s verb paradigm and the total number of gold
principal parts for each language. In some cases,
specific feature sets were removed for various rea-
sons, as explained in subsection A.2.

Additionally, we list the gold principal parts for
each language, formatted as feature_set (e.g.,
form). When two feature sets share the same form,
the gold principal parts are listed in square brackets
[ ]. The first feature set corresponds to the princi-
pal part identified in linguistic literature, while the
second represents a feature set that consistently
shares the same form across all samples in the
dataset. In such cases, the second feature set is
included as a possible principal part, as the algo-
rithm’s choice between them does not affect the
analysis. To avoid redundancy, no principal part is
counted more than once in these scenarios.

A.1 Dataset Summary and Illustrative
Lexeme Examples

For each language, we provide an example lex-
eme to illustrate the principal parts, formatted as
feature_set (e.g., form). These examples are
illustrative and may not share the same meanings
across languages.

A.2 Explanatory Notes

The following explanatory notes clarify decisions
made during dataset preparation and supplement
the information presented in Table 6:

• Spanish: PRO feature sets, representing verbs
with object clitic pronouns, were removed.

• Swedish: The V-IMP-PASS feature set was
excluded due to insufficient samples (only
three).

• Latin:

– Passive feature sets were excluded.
– Feature sets starting with V.PTCP (in-

stead of V-V.PTCP) were removed.
– Feature sets with 30 or fewer samples

were excluded.

– The first-person-singular-perfect-active-
indicative feature set was excluded from
the gold principal parts list due to insuf-
ficient data (only two samples).

B Characterization Tables for Selected
Languages

To illustrate the structure of the characterization
methods, we present detailed characterization ta-
bles for three representative languages from our
dataset. These tables demonstrate how different
feature sets relate within the verb morphology of
each language, showcasing the variation across
Edit Distance, Edit Script, and Reinflection Ac-
curacy characterization methods.

Each language is represented by three tables, cor-
responding to the distinct characterization methods,
with principal parts highlighted in yellow for clarity.
Additionally, cases where two feature sets consis-
tently share the same form and are interchangeable
as principal parts are marked with a distinct color.
Since these feature sets carry identical information,
the model’s selection between them does not im-
pact the results.

Interpretation of Tables. The provided tables
exemplify the structure of the characterization
methods rather than an exhaustive display of all
ten languages in our study. While specific lexeme
examples are shown in the rows and columns, the
quantified relationships they capture apply to the
entire verb morphology of each language. These
examples serve to illustrate the broader implica-
tive patterns identified during the characterization
process.

B.1 Characterization Tables for English
Figures 1, 2, and 3 illustrate the Edit Distance, Edit
Script, and Reinflection Accuracy characterization
tables for English, respectively.

B.2 Characterization Tables for German
Figures 4, 5, and 6 illustrate the characterization
tables for German.

B.3 Characterization Tables for Swedish
Figures 7, 8, and 9 present the characterization
tables for Swedish.

262



Language Features Samples per
Feature Set

# of Gold
Principal

Parts
Gold Principal Parts

Hebrew 29 848–1,042 6

V-NFIN, (e.g., le’echol),
V-2-SG-IMP-MASC, (e.g., echol!),
V-3-SG-FUT-MASC, (e.g., yochal),
V-3-SG-PST-MASC, (e.g., achal),
V-SG-PRS-MASC, (e.g., ochel),

V.MSDR (e.g., achila)

English 5 23,896–31,848 3
V-NFIN-IMP+SBJV (e.g., eat),

V-PST (e.g., ate),
V-V.PTCP-PST (e.g., eaten)

French 49 7,483–7,535 7

V-NFIN (e.g., mangier),
V-IND-PRS-1-PL (e.g., manjons),

V.PTCP-PST (e.g., mangié),
V-IND-FUT-1-SG (e.g., mangerai),
V-IND-PRS-1-SG (e.g., manju),

V-IND-PRS-3-PL (e.g., manjüent),
V-IND-PST-1-SG-PFV (e.g., manjai)

German 30 2,307–6,661 5

V-NFIN (e.g., essen),
V.PTCP-PST (e.g., gegessen),

[V-IND-SG-3-PST, V-IND-SG-1-PST
(e.g., aß)],

V-IND-SG-3-PRS (e.g., isst),
[V-SBJV-SG-3-PST, V-SBJV-SG-1-PST

(e.g., äße)]

Spanish 79 6,676–6,695 2
V-NFIN (e.g., comer),
V-IND-PRS-1-SG (e.g., como)

Danish 8 162 5

V-ACT-NFIN (e.g., danse),
V-ACT-IND-PRS (e.g., danser),
V-ACT-IND-PST (e.g., dansede),

V-ACT-IMP (e.g., dans),
V.PTCP-PASS-PST (e.g., danset)

Swedish 19 2,114–2,536 5

[V-NFIN-ACT, V-IND-PL-ACT-PRS
(e.g., äta)],

V-IND-SG-ACT-PRS (e.g., äter),
V-IND-SG-ACT-PST (e.g., åt),

V-V.CVB-ACT (e.g., ätit),
V-IMP-ACT (e.g., ät)

Finnish 161 7,221–7,226 4

V-NFIN-ACT+PASS (e.g., syödä),
V-ACT-PRS-POS-IND-1-SG (e.g., syön),
V-ACT-PST-POS-IND-3-SG (e.g., söi),

V.PTCP-ACT-PST (e.g., syönyt)

Turkish 703 588 2
V-NFIN (e.g., içmek),

V-IND-PRS-HAB-3-SG-POS-DECL (e.g., içer)

Latin 48 450–947 3
V-IND-ACT-PRS-1-SG (e.g., -pleō),

V-NFIN-ACT-PRS (e.g., -plēre),
V-V.MSDR-ACC-LGSPEC1 (e.g., -plētum)

Table 6: Summary of the PRINCIPAL PARTS DETECTION dataset by language, including gold principal parts and
illustrative lexeme examples.
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Features V-NFIN-IMP+SBJV - eat V-PRS-3-SG - eats V-PST - ate V-V.PTCP-PRS - eating V-V.PTCP-PST - eaten

1 V-NFIN-IMP+SBJV - eat 0 1.157683294 1.532683294 3.088508537 1.534943087

2 V-PRS-3-SG - eats 1.157683294 0 1.421493137 3.087504185 1.410905591

3 V-PST - ate 1.532683294 1.421493137 0 3.066078005 0.048627385

4 V-V.PTCP-PRS - eating 3.088508537 3.087504185 3.066078005 0 3.034273519

5 V-V.PTCP-PST - eaten 1.534943087 1.410905591 0.048627385 3.034273519 0

Figure 1: Average edit distances for the English verb paradigm. Values range from 0 to 3.088. Darker red shades
indicate closer relationships between feature sets, while darker turquoise shades represent greater differences.

Features V-NFIN-IMP+SBJV - eat V-PRS-3-SG - eats V-PST - ate V-V.PTCP-PRS - eating V-V.PTCP-PST - eaten

1 V-NFIN-IMP+SBJV - eat 1 27 117 51 124

2 V-PRS-3-SG - eats 29 1 110 48 117

3 V-PST - ate 124 110 1 116 43

4 V-V.PTCP-PRS - eating 55 59 119 1 121

5 V-V.PTCP-PST - eaten 128 118 45 119 1

Figure 2: Edit Script scores for the English verb paradigm. Values range from 1 to 128. Darker purple shades
indicate fewer unique character sets (closer relationships), while darker air-force-blue shades reflect greater

variation.

Features V-NFIN-IMP+SBJV - eat V-PRS-3-SG - eats V-PST - ate V-V.PTCP-PRS - eating V-V.PTCP-PST - eaten

1 V-NFIN-IMP+SBJV - eat 0.95 0.96 0.92 0.94 0.92

2 V-PRS-3-SG - eats 0.95 0.96 0.92 0.94 0.91

3 V-PST - ate 0.9 0.91 0.96 0.94 0.95

4 V-V.PTCP-PRS - eating 0.91 0.92 0.92 0.95 0.92

5 V-V.PTCP-PST - eaten 0.91 0.91 0.96 0.95 0.96

Figure 3: Reinflection Accuracy scores for the English verb paradigm. Values range from 0.9 to 0.96. Darker teal
shades indicate higher accuracy, while darker pink shades reflect lower performance.

Features
V.PTCP-PRS - 

essend
V.PTCP-PST - 

gegessen
V-IMP-PL-2 - esst V-IMP-SG-2 - iss

V-IND-PL-1-PRS - 
essen

V-IND-PL-1-PST - 
aßen

V-IND-PL-2-PRS - 
esst

V-IND-PL-2-PST - 
aßt

V-IND-PL-3-PRS - 
essen

V-IND-PL-3-PST - 
aßen

V-IND-SG-1-PRS - 
esse

V-IND-SG-1-PST - 
aß

V-IND-SG-2-PRS - 
isst

V-IND-SG-2-PST - 
aßt

V-IND-SG-3-PRS - 
isst

V-IND-SG-3-PST - 
aß

V-NFIN - essen
V-NFIN-

LGSPEC01 - אין
V-SBJV-PL-1-PRS - 

 essen
V-SBJV-PL-1-PST - 

äßen
V-SBJV-PL-2-PRS - 

 esset
V-SBJV-PL-2-PST - 

äßet
V-SBJV-PL-3-PRS - 

 essen
V-SBJV-PL-3-PST - 

äßen
V-SBJV-SG-1-PRS - 

 esse
V-SBJV-SG-1-PST - 

 äße
V-SBJV-SG-2-PRS - 

 essest
V-SBJV-SG-2-PST - 

 äßest
V-SBJV-SG-3-PRS - 

 esse
V-SBJV-SG-3-PST - 

 äße

1 V.PTCP-PRS - essend 0 3.828404144 4.705590622 4.09137361 3.367172248 4.662561946 4.694548731 5.38954798 3.367172248 4.662561946 4.039945938 4.934224358 5.010211744 5.82640036 4.760774891 4.934224358 0.999849872 3.000433463 3.367172248 4.664664364 4.326325274 5.367772939 3.367172248 4.664664364 4.023126596 4.908394654 4.742003304 5.826700706 4.023126596 4.908394654

2 V.PTCP-PST - gegessen 3.828404144 0 4.06372107 4.592425609 5.027481604 5.257396005 4.052710617 5.421985283 5.027481604 5.257396005 4.559393302 4.620964109 4.822345698 6.212794714 4.093707764 4.620964109 2.839963969 3.605981795 5.027481604 5.299294188 4.607748911 5.395404715 5.027481604 5.299294188 4.546628623 4.591680432 5.460279321 6.24598288 4.546628623 4.591680432

3 V-IMP-PL-2 - esst 4.705590622 4.06372107 0 1.084310189 1.755034566 2.345807033 0.019687406 2.015479411 1.755034566 2.345807033 1.04854223 1.381574992 1.011722272 2.960925759 0.129996994 1.381574992 3.906672678 9.666521928 1.755034566 2.345807033 0.919446949 2.154042681 1.755034566 2.345807033 1.039074241 1.393748121 1.916290953 3.101893598 1.039074241 1.393748121

4 V-IMP-SG-2 - iss 4.09137361 4.592425609 1.084310189 0 1.131650135 2.366847009 1.093477607 2.331680192 1.131650135 2.366847009 0.154192967 1.460324617 1.988578299 3.282837391 1.086113616 1.460324617 3.317703637 9.226226661 1.131650135 2.366245867 1.111361587 2.363540727 1.131650135 2.366245867 0.117222723 1.373609859 2.108055305 3.349113315 0.117222723 1.373609859

5 V-IND-PL-1-PRS - essen 3.367172248 5.027481604 1.755034566 1.131650135 0 1.42183511 1.740201231 2.560444511 0 1.42183511 1.038594384 2.316714221 2.094158282 3.415227512 1.845171948 2.316714221 2.669019372 9.286767896 0 1.419132002 1.161435651 2.418831656 0 1.419132002 1.020874005 2.184562247 2.160684788 3.418381138 1.020874005 2.184562247

6 V-IND-PL-1-PST - aßen 4.662561946 5.257396005 2.345807033 2.366847009 1.42183511 0 2.333083046 1.159032888 1.42183511 0 2.313710767 1.191169845 3.136206638 2.000450518 2.363417931 1.191169845 3.942033338 10.21822126 1.42183511 0.133503529 2.208890224 1.133503529 1.42183511 0.133503529 2.302297642 1.132902838 3.206337288 2.132602493 2.302297642 1.132902838

7 V-IND-PL-2-PRS - esst 4.694548731 4.052710617 0.019687406 1.093477607 1.740201231 2.333083046 0 2.003003454 1.740201231 2.333083046 1.036642138 1.36672173 0.997447064 2.948490764 0.118786605 1.36672173 3.894728938 9.650759219 1.740201231 2.331280973 0.901787055 2.13966061 1.740201231 2.331280973 1.022075387 1.377083646 1.900886019 3.087550683 1.022075387 1.377083646

8 V-IND-PL-2-PST - aßt 5.38954798 5.421985283 2.015479411 2.331680192 2.560444511 1.159032888 2.003003454 0 2.560444511 1.159032888 2.313110077 1.031986785 2.158282024 0.970866496 2.043700255 1.031986785 4.772488362 10.52494577 2.560444511 1.290734344 1.443760324 0.290734344 2.560444511 1.290734344 2.300946088 1.132602493 2.304099715 1.290734344 2.300946088 1.132602493

9 V-IND-PL-3-PRS - essen 3.367172248 5.027481604 1.755034566 1.131650135 0 1.42183511 1.740201231 2.560444511 0 1.42183511 1.038594384 2.316714221 2.094158282 3.415227512 1.845171948 2.316714221 2.669019372 9.286767896 0 1.419132002 1.161435651 2.418831656 0 1.419132002 1.020874005 2.184562247 2.160684788 3.418381138 1.020874005 2.184562247

10 V-IND-PL-3-PST - aßen 4.662561946 5.257396005 2.345807033 2.366847009 1.42183511 0 2.333083046 1.159032888 1.42183511 0 2.313710767 1.191169845 3.136206638 2.000450518 2.363417931 1.191169845 3.942033338 10.21822126 1.42183511 0.133503529 2.208890224 1.133503529 1.42183511 0.133503529 2.302297642 1.132902838 3.206337288 2.132602493 2.302297642 1.132902838

11 V-IND-SG-1-PRS - esse 4.039945938 4.559393302 1.04854223 0.154192967 1.038594384 2.313710767 1.036642138 2.313110077 1.038594384 2.313710767 0 1.475747109 2.021925214 3.263402913 1.116083496 1.475747109 3.270761376 9.195227766 1.038594384 2.313260249 1.059168043 2.313110077 1.038594384 2.313260249 0.063823397 1.316413876 2.055263553 3.302297642 0.063823397 1.316413876

12 V-IND-SG-1-PST - aß 4.934224358 4.620964109 1.381574992 1.460324617 2.316714221 1.191169845 1.36672173 1.031986785 2.316714221 1.191169845 1.475747109 0 2.272413275 2.002853281 1.36506983 0 4.30830455 9.907158351 2.316714221 1.322420784 2.234419583 1.322120439 2.316714221 1.322420784 1.463132602 0.322570957 3.211292987 2.321970266 1.463132602 0.322570957

13 V-IND-SG-2-PRS - isst 5.010211744 4.822345698 1.011722272 1.988578299 2.094158282 3.136206638 0.997447064 2.158282024 2.094158282 3.136206638 2.021925214 2.272413275 0 2.094008109 0.921009161 2.272413275 4.393001952 10.22212581 2.094158282 3.135605947 1.117284878 2.200030035 2.094158282 3.135605947 2.015768133 2.277819492 1.099564499 2.24207839 2.015768133 2.277819492

14 V-IND-SG-2-PST - aßt 5.82640036 6.212794714 2.960925759 3.282837391 3.415227512 2.000450518 2.948490764 0.970866496 3.415227512 2.000450518 3.263402913 2.002853281 2.094008109 0 2.988436702 2.002853281 5.633428443 11.08286334 3.415227512 2.133053011 2.297492116 1.133053011 3.415227512 2.133053011 3.251689443 2.101066226 1.450518096 0.320768884 3.251689443 2.101066226

15 V-IND-SG-3-PRS - isst 4.760774891 4.093707764 0.129996994 1.086113616 1.845171948 2.363417931 0.118786605 2.043700255 1.845171948 2.363417931 1.116083496 1.36506983 0.921009161 2.988436702 0 1.36506983 3.951944736 9.709761388 1.845171948 2.364018621 1.019522451 2.181859138 1.845171948 2.364018621 1.11353056 1.395855234 2.016068479 3.123291786 1.11353056 1.395855234

16 V-IND-SG-3-PST - aß 4.934224358 4.620964109 1.381574992 1.460324617 2.316714221 1.191169845 1.36672173 1.031986785 2.316714221 1.191169845 1.475747109 0 2.272413275 2.002853281 1.36506983 0 4.30830455 9.907158351 2.316714221 1.322420784 2.234419583 1.322120439 2.316714221 1.322420784 1.463132602 0.322570957 3.211292987 2.321970266 1.463132602 0.322570957

17 V-NFIN - essen 0.999849872 2.839963969 3.906672678 3.317703637 2.669019372 3.942033338 3.894728938 4.772488362 2.669019372 3.942033338 3.270761376 4.30830455 4.393001952 5.633428443 3.951944736 4.30830455 0 2.000433463 2.669019372 3.945337138 3.671572308 4.759723682 2.669019372 3.945337138 3.253791861 4.291184863 4.622916354 5.702057366 3.253791861 4.291184863

18 V-NFIN-LGSPEC01 - אין 3.000433463 3.605981795 9.666521928 9.226226661 9.286767896 10.21822126 9.650759219 10.52494577 9.286767896 10.21822126 9.195227766 9.907158351 10.22212581 11.08286334 9.709761388 9.907158351 2.000433463 0 9.286767896 10.23991323 9.90021692 10.5813449 9.286767896 10.23991323 9.161388286 9.966160521 10.52277657 11.19392625 9.161388286 9.966160521

19 V-SBJV-PL-1-PRS - essen 3.367172248 5.027481604 1.755034566 1.131650135 0 1.42183511 1.740201231 2.560444511 0 1.42183511 1.038594384 2.316714221 2.094158282 3.415227512 1.845171948 2.316714221 2.669019372 9.286767896 0 1.419132002 1.161435651 2.418831656 0 1.419132002 1.020874005 2.184562247 2.160684788 3.418381138 1.020874005 2.184562247

20 V-SBJV-PL-1-PST - äßen 4.664664364 5.299294188 2.345807033 2.366245867 1.419132002 0.133503529 2.331280973 1.290734344 1.419132002 0.133503529 2.313260249 1.322420784 3.135605947 2.133053011 2.364018621 1.322420784 3.945337138 10.23991323 1.419132002 0 2.206187115 1.000300345 1.419132002 0 2.299594534 1.000300345 3.203934525 2.000300345 2.299594534 1.000300345

21 V-SBJV-PL-2-PRS - esset 4.326325274 4.607748911 0.919446949 1.111361587 1.161435651 2.208890224 0.901787055 1.443760324 1.161435651 2.208890224 1.059168043 2.234419583 1.117284878 2.297492116 1.019522451 2.234419583 3.671572308 9.90021692 1.161435651 2.206187115 0 1.302447815 1.161435651 2.206187115 1 2.109475897 1 2.300795915 1 2.109475897

22 V-SBJV-PL-2-PST - äßet 5.367772939 5.395404715 2.154042681 2.363540727 2.418831656 1.133503529 2.13966061 0.290734344 2.418831656 1.133503529 2.313110077 1.322120439 2.200030035 1.133053011 2.181859138 1.322120439 4.759723682 10.5813449 2.418831656 1.000300345 1.302447815 0 2.418831656 1.000300345 2.299294188 1 2.20588677 1 2.299294188 1

23 V-SBJV-PL-3-PRS - essen 3.367172248 5.027481604 1.755034566 1.131650135 0 1.42183511 1.740201231 2.560444511 0 1.42183511 1.038594384 2.316714221 2.094158282 3.415227512 1.845171948 2.316714221 2.669019372 9.286767896 0 1.419132002 1.161435651 2.418831656 0 1.419132002 1.020874005 2.184562247 2.160684788 3.418381138 1.020874005 2.184562247

24 V-SBJV-PL-3-PST - äßen 4.664664364 5.299294188 2.345807033 2.366245867 1.419132002 0.133503529 2.331280973 1.290734344 1.419132002 0.133503529 2.313260249 1.322420784 3.135605947 2.133053011 2.364018621 1.322420784 3.945337138 10.23991323 1.419132002 0 2.206187115 1.000300345 1.419132002 0 2.299594534 1.000300345 3.203934525 2.000300345 2.299594534 1.000300345

25 V-SBJV-SG-1-PRS - esse 4.023126596 4.546628623 1.039074241 0.117222723 1.020874005 2.302297642 1.022075387 2.300946088 1.020874005 2.302297642 0.063823397 1.463132602 2.015768133 3.251689443 1.11353056 1.463132602 3.253791861 9.161388286 1.020874005 2.299594534 1 2.299294188 1.020874005 2.299594534 0 1.301546779 2 3.288331581 0 1.301546779

26 V-SBJV-SG-1-PST - äße 4.908394654 4.591680432 1.393748121 1.373609859 2.184562247 1.132902838 1.377083646 1.132602493 2.184562247 1.132902838 1.316413876 0.322570957 2.277819492 2.101066226 1.395855234 0.322570957 4.291184863 9.966160521 2.184562247 1.000300345 2.109475897 1 2.184562247 1.000300345 1.301546779 0 3.099864845 2 1.301546779 0

27 V-SBJV-SG-2-PRS - essest 4.742003304 5.460279321 1.916290953 2.108055305 2.160684788 3.206337288 1.900886019 2.304099715 2.160684788 3.206337288 2.055263553 3.211292987 1.099564499 1.450518096 2.016068479 3.211292987 4.622916354 10.52277657 2.160684788 3.203934525 1 2.20588677 2.160684788 3.203934525 2 3.099864845 0 1.303649197 2 3.099864845

28 V-SBJV-SG-2-PST - äßest 5.826700706 6.24598288 3.101893598 3.349113315 3.418381138 2.132602493 3.087550683 1.290734344 3.418381138 2.132602493 3.302297642 2.321970266 2.24207839 0.320768884 3.123291786 2.321970266 5.702057366 11.19392625 3.418381138 2.000300345 2.300795915 1 3.418381138 2.000300345 3.288331581 2 1.303649197 0 3.288331581 2

29 V-SBJV-SG-3-PRS - esse 4.023126596 4.546628623 1.039074241 0.117222723 1.020874005 2.302297642 1.022075387 2.300946088 1.020874005 2.302297642 0.063823397 1.463132602 2.015768133 3.251689443 1.11353056 1.463132602 3.253791861 9.161388286 1.020874005 2.299594534 1 2.299294188 1.020874005 2.299594534 0 1.301546779 2 3.288331581 0 1.301546779

30 V-SBJV-SG-3-PST - äße 4.908394654 4.591680432 1.393748121 1.373609859 2.184562247 1.132902838 1.377083646 1.132602493 2.184562247 1.132902838 1.316413876 0.322570957 2.277819492 2.101066226 1.395855234 0.322570957 4.291184863 9.966160521 2.184562247 1.000300345 2.109475897 1 2.184562247 1.000300345 1.301546779 0 3.099864845 2 1.301546779 0

Figure 4: Average edit distances for the German verb paradigm. Values range from 0 to 11.19. Darker red shades
indicate closer relationships between feature sets, while darker ball-blue shades represent greater distances.
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Features
V.PTCP-PRS - 

essend
V.PTCP-PST - 

gegessen
V-IMP-PL-2 - esst V-IMP-SG-2 - iss

V-IND-PL-1-PRS - 
essen

V-IND-PL-1-PST - 
aßen

V-IND-PL-2-PRS - 
esst

V-IND-PL-2-PST - 
aßt

V-IND-PL-3-PRS - 
essen

V-IND-PL-3-PST - 
aßen

V-IND-SG-1-PRS - 
esse

V-IND-SG-1-PST - 
aß

V-IND-SG-2-PRS - 
isst

V-IND-SG-2-PST - 
aßt

V-IND-SG-3-PRS - 
isst

V-IND-SG-3-PST - 
aß

V-NFIN - essen
V-NFIN-

LGSPEC01 - אין
V-SBJV-PL-1-PRS - 

 essen
V-SBJV-PL-1-PST - 

äßen
V-SBJV-PL-2-PRS - 

 esset
V-SBJV-PL-2-PST - 

äßet
V-SBJV-PL-3-PRS - 

 essen
V-SBJV-PL-3-PST - 

äßen
V-SBJV-SG-1-PRS - 

 esse
V-SBJV-SG-1-PST - 

 äße
V-SBJV-SG-2-PRS - 

 essest
V-SBJV-SG-2-PST - 

 äßest
V-SBJV-SG-3-PRS - 

 esse
V-SBJV-SG-3-PST - 

 äße

1 V.PTCP-PRS - essend 1 141 473 511 352 892 466 876 352 892 417 847 652 913 586 847 2 6 352 896 405 854 352 896 400 849 421 869 400 849

2 V.PTCP-PST - gegessen 102 1 885 1026 982 845 884 880 982 845 963 810 1010 947 926 810 101 81 982 926 900 931 982 926 938 901 943 974 938 901

3 V-IMP-PL-2 - esst 551 922 1 32 12 69 11 64 12 69 29 70 28 77 25 70 559 579 12 80 18 81 12 80 22 80 19 91 22 80

4 V-IMP-SG-2 - iss 554 1107 37 1 39 108 45 122 39 108 41 118 50 135 45 118 561 564 39 117 31 118 39 117 30 116 33 119 30 116

5 V-IND-PL-1-PRS - essen 404 1107 13 33 1 58 3 74 1 58 24 69 25 86 19 69 412 422 1 65 9 64 1 65 9 64 9 64 9 64

6 V-IND-PL-1-PST - aßen 912 924 83 110 58 1 77 3 58 1 85 4 89 5 81 4 909 886 58 15 72 15 58 15 72 15 72 15 72 15

7 V-IND-PL-2-PRS - esst 544 921 11 40 2 63 1 58 2 63 24 64 23 72 21 64 552 581 2 72 8 73 2 72 12 72 9 83 12 72

8 V-IND-PL-2-PST - aßt 860 912 65 111 64 2 59 1 64 2 90 4 80 4 70 4 857 844 64 19 78 19 64 19 78 19 85 23 78 19

9 V-IND-PL-3-PRS - essen 404 1107 13 33 1 58 3 74 1 58 24 69 25 86 19 69 412 422 1 65 9 64 1 65 9 64 9 64 9 64

10 V-IND-PL-3-PST - aßen 912 924 83 110 58 1 77 3 58 1 85 4 89 5 81 4 909 886 58 15 72 15 58 15 72 15 72 15 72 15

11 V-IND-SG-1-PRS - esse 469 1066 38 40 29 86 33 101 29 86 1 96 44 114 38 96 482 489 29 96 31 95 29 96 34 95 31 95 34 95

12 V-IND-SG-1-PST - aß 833 832 69 104 58 4 63 4 58 4 83 1 79 9 68 1 825 816 58 21 75 23 58 21 71 20 82 28 71 20

13 V-IND-SG-2-PRS - isst 715 1029 28 49 25 81 23 79 25 81 42 81 1 76 6 81 719 731 25 91 34 89 25 91 39 91 38 96 39 91

14 V-IND-SG-2-PST - aßt 904 985 78 125 79 5 73 4 79 5 106 9 76 1 85 9 901 877 79 25 90 24 79 25 93 25 94 27 93 25

15 V-IND-SG-3-PRS - isst 643 949 25 41 18 69 21 70 18 69 32 68 6 85 1 68 648 666 18 78 28 81 18 78 29 78 32 90 29 78

16 V-IND-SG-3-PST - aß 833 832 69 104 58 4 63 4 58 4 83 1 79 9 68 1 825 816 58 21 75 23 58 21 71 20 82 28 71 20

17 V-NFIN - essen 2 138 485 519 361 888 478 878 361 888 427 842 657 915 590 842 1 6 361 892 415 854 361 892 410 849 432 869 410 849

18 V-NFIN-LGSPEC01 - אין 6 103 490 512 370 851 492 831 370 851 426 802 654 860 588 802 6 1 370 853 429 821 370 853 422 815 445 835 422 815

19 V-SBJV-PL-1-PRS - essen 404 1107 13 33 1 58 3 74 1 58 24 69 25 86 19 69 412 422 1 65 9 64 1 65 9 64 9 64 9 64

20 V-SBJV-PL-1-PST - äßen 881 984 94 119 65 15 86 20 65 15 95 21 99 25 90 21 879 851 65 1 79 2 65 1 79 2 79 2 79 2

21 V-SBJV-PL-2-PRS - esset 479 986 22 30 13 74 12 88 13 74 31 87 35 100 31 87 490 510 13 81 1 79 13 81 1 81 1 79 1 81

22 V-SBJV-PL-2-PST - äßet 853 976 94 120 65 15 86 19 65 15 95 23 100 24 92 23 853 832 65 2 79 1 65 2 79 1 79 1 79 1

23 V-SBJV-PL-3-PRS - essen 404 1107 13 33 1 58 3 74 1 58 24 69 25 86 19 69 412 422 1 65 9 64 1 65 9 64 9 64 9 64

24 V-SBJV-PL-3-PST - äßen 881 984 94 119 65 15 86 20 65 15 95 21 99 25 90 21 879 851 65 1 79 2 65 1 79 2 79 2 79 2

25 V-SBJV-SG-1-PRS - esse 451 1046 26 29 13 74 16 89 13 74 33 84 39 101 33 84 462 482 13 81 1 81 13 81 1 81 1 81 1 81

26 V-SBJV-SG-1-PST - äße 846 931 93 118 65 15 85 19 65 15 95 20 98 24 89 20 846 823 65 2 79 1 65 2 79 1 79 1 79 1

27 V-SBJV-SG-2-PRS - essest 508 1049 23 32 13 78 13 92 13 78 31 96 37 101 35 96 520 544 13 84 1 79 13 84 1 84 1 79 1 84

28 V-SBJV-SG-2-PST - äßest 886 1044 104 121 68 15 96 23 68 15 98 28 107 27 101 28 885 862 68 2 79 1 68 2 82 1 80 1 82 1

29 V-SBJV-SG-3-PRS - esse 451 1046 26 29 13 74 16 89 13 74 33 84 39 101 33 84 462 482 13 81 1 81 13 81 1 81 1 81 1 81

30 V-SBJV-SG-3-PST - äße 846 931 93 118 65 15 85 19 65 15 95 20 98 24 89 20 846 823 65 2 79 1 65 2 79 1 79 1 79 1

Figure 5: Edit Script scores for the German Verb Paradigm. Values range from 1 to 1,107. Darker purple shades
indicate fewer unique character sets (closer relationships), while darker air-force-blue shades reflect greater

variation.

Features V.PTCP-PRS - 
essend

V.PTCP-PST - 
gegessen

V-IMP-PL-2 - esst V-IMP-SG-2 - iss
V-IND-PL-1-PRS - 

 essen
V-IND-PL-1-PST - 

aßen
V-IND-PL-2-PRS - 

 esst
V-IND-PL-2-PST - 

aßt
V-IND-PL-3-PRS - 

 essen
V-IND-PL-3-PST - 

aßen
V-IND-SG-1-PRS - 

 esse
V-IND-SG-1-PST - 

 aß
V-IND-SG-2-PRS - 

 isst
V-IND-SG-2-PST - 

 aßt
V-IND-SG-3-PRS - 

 isst
V-IND-SG-3-PST - 

 aß
V-NFIN - essen

V-NFIN-
LGSPEC01 - אין

V-SBJV-PL-1-PRS 
- essen

V-SBJV-PL-1-PST 
- äßen

V-SBJV-PL-2-PRS 
- esset

V-SBJV-PL-2-PST 
- äßet

V-SBJV-PL-3-PRS 
- essen

V-SBJV-PL-3-PST 
- äßen

V-SBJV-SG-1-PRS 
- esse

V-SBJV-SG-1-PST 
- äße

V-SBJV-SG-2-PRS 
- essest

V-SBJV-SG-2-PST 
- äßest

V-SBJV-SG-3-PRS 
- esse

V-SBJV-SG-3-PST 
- äße

1 V.PTCP-PRS - essend 0.85 0.75 0.82 0.8 0.82 0.77 0.82 0.77 0.83 0.77 0.81 0.78 0.78 0.77 0.79 0.78 0.85 0.81 0.82 0.77 0.83 0.77 0.83 0.77 0.83 0.77 0.83 0.77 0.83 0.77

2 V.PTCP-PST - gegessen 0.83 0.87 0.83 0.83 0.84 0.85 0.83 0.85 0.85 0.85 0.82 0.84 0.83 0.84 0.83 0.85 0.83 0.81 0.85 0.84 0.85 0.84 0.85 0.84 0.85 0.84 0.85 0.84 0.85 0.84

3 V-IMP-PL-2 - esst 0.86 0.8 0.89 0.86 0.89 0.86 0.89 0.86 0.89 0.86 0.88 0.86 0.86 0.86 0.88 0.86 0.86 0.84 0.88 0.86 0.88 0.84 0.88 0.86 0.89 0.86 0.88 0.85 0.89 0.85

4 V-IMP-SG-2 - iss 0.84 0.81 0.88 0.89 0.88 0.85 0.88 0.84 0.88 0.85 0.88 0.84 0.86 0.84 0.87 0.84 0.85 0.85 0.89 0.84 0.89 0.84 0.89 0.85 0.89 0.84 0.89 0.84 0.89 0.84

5 V-IND-PL-1-PRS - essen 0.85 0.81 0.88 0.86 0.9 0.86 0.88 0.85 0.89 0.86 0.87 0.86 0.85 0.85 0.87 0.86 0.85 0.84 0.89 0.85 0.89 0.85 0.89 0.85 0.88 0.85 0.88 0.85 0.88 0.85

6 V-IND-PL-1-PST - aßen 0.84 0.82 0.88 0.86 0.88 0.9 0.88 0.9 0.88 0.9 0.87 0.9 0.86 0.89 0.88 0.9 0.83 0.8 0.88 0.89 0.88 0.89 0.88 0.89 0.88 0.89 0.88 0.89 0.88 0.89

7 V-IND-PL-2-PRS - esst 0.86 0.81 0.89 0.87 0.89 0.86 0.89 0.86 0.89 0.86 0.88 0.85 0.86 0.86 0.88 0.85 0.85 0.84 0.89 0.85 0.88 0.86 0.89 0.86 0.89 0.85 0.88 0.86 0.89 0.85

8 V-IND-PL-2-PST - aßt 0.84 0.83 0.88 0.86 0.87 0.89 0.88 0.89 0.87 0.89 0.87 0.89 0.87 0.89 0.88 0.89 0.84 0.82 0.87 0.87 0.87 0.88 0.87 0.88 0.87 0.88 0.87 0.88 0.88 0.88

9 V-IND-PL-3-PRS - essen 0.86 0.8 0.88 0.86 0.89 0.85 0.88 0.85 0.88 0.85 0.87 0.85 0.86 0.85 0.87 0.85 0.85 0.84 0.88 0.85 0.88 0.85 0.88 0.85 0.88 0.85 0.88 0.84 0.88 0.85

10 V-IND-PL-3-PST - aßen 0.85 0.83 0.88 0.87 0.88 0.9 0.88 0.9 0.88 0.9 0.88 0.9 0.87 0.9 0.88 0.9 0.86 0.85 0.88 0.89 0.88 0.89 0.88 0.89 0.88 0.89 0.88 0.9 0.88 0.89

11 V-IND-SG-1-PRS - esse 0.85 0.79 0.88 0.86 0.88 0.84 0.87 0.83 0.88 0.84 0.89 0.84 0.84 0.83 0.85 0.84 0.85 0.85 0.88 0.84 0.88 0.84 0.88 0.84 0.88 0.84 0.87 0.84 0.88 0.84

12 V-IND-SG-1-PST - aß 0.84 0.82 0.88 0.86 0.88 0.9 0.88 0.89 0.88 0.9 0.87 0.9 0.86 0.89 0.87 0.89 0.85 0.83 0.88 0.89 0.88 0.88 0.88 0.89 0.88 0.89 0.88 0.89 0.88 0.88

13 V-IND-SG-2-PRS - isst 0.83 0.79 0.87 0.84 0.87 0.85 0.87 0.85 0.87 0.85 0.86 0.85 0.88 0.84 0.87 0.85 0.84 0.84 0.87 0.84 0.87 0.84 0.87 0.85 0.87 0.84 0.86 0.84 0.87 0.84

14 V-IND-SG-2-PST - aßt 0.86 0.85 0.89 0.86 0.89 0.9 0.88 0.9 0.88 0.9 0.87 0.9 0.86 0.9 0.89 0.9 0.86 0.86 0.89 0.9 0.88 0.89 0.89 0.89 0.88 0.89 0.89 0.89 0.88 0.89

15 V-IND-SG-3-PRS - isst 0.84 0.79 0.87 0.86 0.88 0.85 0.87 0.85 0.88 0.85 0.86 0.84 0.88 0.85 0.89 0.84 0.84 0.81 0.88 0.85 0.87 0.85 0.88 0.85 0.87 0.85 0.86 0.85 0.87 0.85

16 V-IND-SG-3-PST - aß 0.85 0.82 0.87 0.86 0.88 0.9 0.87 0.89 0.88 0.9 0.87 0.89 0.86 0.89 0.87 0.89 0.85 0.84 0.88 0.88 0.87 0.88 0.88 0.89 0.87 0.88 0.88 0.88 0.87 0.88

17 V-NFIN - essen 0.85 0.78 0.82 0.79 0.83 0.78 0.82 0.78 0.83 0.78 0.81 0.77 0.78 0.78 0.79 0.77 0.85 0.81 0.83 0.77 0.82 0.77 0.83 0.77 0.82 0.77 0.82 0.77 0.82 0.77

18 V-NFIN-LGSPEC01 - אין 0.72 0.66 0.79 0.76 0.79 0.73 0.79 0.73 0.79 0.73 0.81 0.74 0.76 0.73 0.77 0.74 0.74 0.76 0.8 0.74 0.8 0.74 0.8 0.72 0.81 0.73 0.81 0.73 0.81 0.73

19 V-SBJV-PL-1-PRS - essen 0.86 0.81 0.88 0.85 0.89 0.84 0.88 0.83 0.89 0.84 0.87 0.83 0.85 0.83 0.86 0.83 0.86 0.87 0.89 0.85 0.88 0.84 0.89 0.84 0.88 0.83 0.88 0.84 0.88 0.84

20 V-SBJV-PL-1-PST - äßen 0.85 0.84 0.88 0.87 0.88 0.89 0.88 0.89 0.88 0.9 0.88 0.89 0.86 0.89 0.87 0.89 0.85 0.84 0.88 0.9 0.88 0.89 0.88 0.9 0.88 0.89 0.88 0.89 0.88 0.89

21 V-SBJV-PL-2-PRS - esset 0.86 0.81 0.89 0.87 0.89 0.86 0.89 0.86 0.89 0.86 0.88 0.86 0.86 0.86 0.88 0.86 0.86 0.84 0.89 0.86 0.9 0.86 0.89 0.85 0.9 0.85 0.89 0.86 0.9 0.86

22 V-SBJV-PL-2-PST - äßet 0.82 0.82 0.87 0.85 0.87 0.88 0.87 0.88 0.87 0.88 0.85 0.88 0.85 0.88 0.86 0.88 0.83 0.79 0.87 0.89 0.86 0.89 0.86 0.89 0.87 0.88 0.86 0.89 0.87 0.89

23 V-SBJV-PL-3-PRS - essen 0.87 0.8 0.88 0.86 0.89 0.85 0.88 0.85 0.89 0.85 0.88 0.85 0.86 0.85 0.88 0.85 0.87 0.87 0.89 0.85 0.89 0.85 0.89 0.84 0.89 0.85 0.89 0.85 0.89 0.85

24 V-SBJV-PL-3-PST - äßen 0.86 0.83 0.89 0.87 0.89 0.9 0.89 0.89 0.89 0.9 0.87 0.9 0.87 0.89 0.89 0.9 0.86 0.85 0.89 0.9 0.88 0.9 0.89 0.9 0.88 0.9 0.89 0.9 0.88 0.9

25 V-SBJV-SG-1-PRS - esse 0.86 0.81 0.89 0.86 0.9 0.86 0.89 0.85 0.9 0.86 0.88 0.85 0.85 0.85 0.87 0.85 0.86 0.87 0.9 0.85 0.9 0.85 0.9 0.85 0.9 0.85 0.9 0.85 0.9 0.85

26 V-SBJV-SG-1-PST - äße 0.85 0.82 0.88 0.87 0.89 0.9 0.89 0.89 0.89 0.9 0.88 0.9 0.86 0.89 0.88 0.89 0.85 0.85 0.89 0.9 0.88 0.9 0.89 0.9 0.88 0.9 0.88 0.9 0.88 0.9

27 V-SBJV-SG-2-PRS - essest 0.87 0.79 0.88 0.87 0.88 0.85 0.89 0.85 0.88 0.85 0.88 0.85 0.85 0.85 0.87 0.85 0.87 0.86 0.89 0.85 0.89 0.85 0.89 0.85 0.9 0.85 0.89 0.84 0.89 0.85

28 V-SBJV-SG-2-PST - äßest 0.84 0.84 0.88 0.86 0.88 0.89 0.87 0.88 0.88 0.89 0.87 0.89 0.86 0.88 0.87 0.89 0.85 0.83 0.88 0.89 0.88 0.89 0.88 0.89 0.88 0.89 0.88 0.89 0.88 0.89

29 V-SBJV-SG-3-PRS - esse 0.87 0.79 0.89 0.86 0.88 0.85 0.89 0.84 0.88 0.85 0.88 0.84 0.85 0.84 0.87 0.84 0.87 0.87 0.89 0.84 0.89 0.84 0.89 0.84 0.89 0.84 0.89 0.84 0.89 0.84

30 V-SBJV-SG-3-PST - äße 0.86 0.84 0.88 0.87 0.88 0.9 0.88 0.89 0.88 0.9 0.87 0.89 0.86 0.89 0.88 0.89 0.85 0.85 0.88 0.9 0.88 0.9 0.88 0.9 0.88 0.9 0.88 0.9 0.88 0.9

Figure 6: Reinflection Accuracy scores for the German verb paradigm. Values range from 0.66 to 0.9. Darker teal
shades indicate higher accuracy, while darker pink shades reflect lower performance.
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Features V-IMP-ACT - ät
V-IND-PL-ACT-PRS - 

äta
V-IND-PL-ACT-PST - 

åto
V-IND-PL-PASS-PRS - 

 ätas
V-IND-PL-PASS-PST - 

 åtos
V-IND-SG-ACT-PRS - 

äter
V-IND-SG-ACT-PST - 

åt
V-IND-SG-PASS-PRS - 

 äts/ätes
V-IND-SG-PASS-PST - 

 åts
V-NFIN-ACT - äta V-NFIN-PASS - ätas

V-SBJV-ACT-PRS - 
äte

V-SBJV-ACT-PST - 
åte

V-SBJV-PASS-PRS - 
ätes

V-SBJV-PASS-PST - 
åtes

V-V.CVB-ACT - ätit V-V.CVB-PASS - ätits
V-V.PTCP-PRS - 

ätande
V-V.PTCP-PST - äten

1 V-IMP-ACT - ät 0 0.272978304 2.085601578 1.275225012 3.081004263 1.216568047 1.95147929 1.01657982 2.963524396 0.272404264 1.275225012 0.964497041 2.07495069 1.968261487 3.069635244 1.236291913 2.210800568 3.456418384 1.408969805

2 V-IND-PL-ACT-PRS - äta 0.272978304 0 2.087933754 1 3.075793463 1.229495268 2.057176656 1.029843676 2.968735197 0 1 0.952287066 2.077287066 1.957366177 3.064424443 1.27011041 2.206537186 3.196039604 1.461606747

3 V-IND-PL-ACT-PST - åto 2.085601578 2.087933754 0 2.216011369 1.005210801 2.174290221 0.173895899 2.096162956 1.037896731 2.088003157 2.216011369 1.921529968 0.128154574 2.86215064 1.117479867 2.092665615 2.200378967 2.00950495 1.46560142

4 V-IND-PL-PASS-PRS - ätas 1.275225012 1 2.216011369 0 2.087511826 1.263382283 2.187115111 0.274834437 2.058656575 1 0 1.959261014 2.216011369 0.959318827 2.07615894 1.43628612 1.252601703 3.19734974 1.61431316

5 V-IND-PL-PASS-PST - åtos 3.081004263 3.075793463 1.005210801 2.087511826 0 2.932259593 1.150165798 2.069063387 0.145222327 3.075865339 2.087511826 2.905258171 1.116532449 1.906811731 0.112582781 2.986736144 2.078524125 2.844297208 2.323246878

6 V-IND-SG-ACT-PRS - äter 1.216568047 1.229495268 2.174290221 1.263382283 2.932259593 0 2.140378549 1.230222643 2.90052108 1.228887135 1.263382283 1.693611987 2.086750789 1.72382757 2.843202274 1.413643533 2.251539555 3.486732673 1.545051043

7 V-IND-SG-ACT-PST - åt 1.95147929 2.057176656 0.173895899 2.187115111 1.150165798 2.140378549 0 2.059687352 1.005210801 2.057221784 2.187115111 1.890772871 0.173895899 2.833254382 1.150165798 2.107255521 2.213169114 2.011089109 1.485130937

8 V-IND-SG-PASS-PRS - äts/ätes 1.01657982 1.029843676 2.096162956 0.274834437 2.069063387 1.230222643 2.059687352 0 1.958372753 1.029397819 0.274834437 1.70724775 2.091425865 0.952223273 2.052980132 1.258171483 1.209555345 3.454803597 1.426512968

9 V-IND-SG-PASS-PST - åts 2.963524396 2.968735197 1.037896731 2.058656575 0.145222327 2.90052108 1.005210801 1.958372753 0 2.969653864 2.058656575 2.797252487 1.036949313 1.877956481 0.145222327 2.980104216 2.0884579 2.833885471 2.323727185

10 V-NFIN-ACT - äta 0.272404264 0 2.088003157 1 3.075865339 1.228887135 2.057221784 1.029397819 2.969653864 0 1 0.952249408 2.077348066 1.957325747 3.064485538 1.269534333 2.205784732 3.196195006 1.461128387

11 V-NFIN-PASS - ätas 1.275225012 1 2.216011369 0 2.087511826 1.263382283 2.187115111 0.274834437 2.058656575 1 0 1.959261014 2.216011369 0.959318827 2.07615894 1.43628612 1.252601703 3.19734974 1.61431316

12 V-SBJV-ACT-PRS - äte 0.964497041 0.952287066 1.921529968 1.959261014 2.905258171 1.693611987 1.890772871 1.70724775 2.797252487 0.952249408 1.959261014 0 1.820189274 1 2.814779725 1.960962145 2.901942207 3.229306931 2.058144696

13 V-SBJV-ACT-PST - åte 2.07495069 2.077287066 0.128154574 2.216011369 1.116532449 2.086750789 0.173895899 2.091425865 1.036949313 2.077348066 2.216011369 1.820189274 0 2.780672667 1.004263382 2.092665615 2.200378967 1.892277228 1.351531292

14 V-SBJV-PASS-PRS - ätes 1.968261487 1.957366177 2.86215064 0.959318827 1.906811731 1.72382757 2.833254382 0.952223273 1.877956481 1.957325747 0.959318827 1 2.780672667 0 1.814569536 2.129796305 1.94512772 4.153809749 2.231508165

15 V-SBJV-PASS-PST - åtes 3.069635244 3.064424443 1.117479867 2.07615894 0.112582781 2.843202274 1.150165798 2.052980132 0.145222327 3.064485538 2.07615894 2.814779725 1.004263382 1.814569536 0 2.986736144 2.078524125 2.834358732 2.226705091

16 V-V.CVB-ACT - ätit 1.236291913 1.27011041 2.092665615 1.43628612 2.986736144 1.413643533 2.107255521 1.258171483 2.980104216 1.269534333 1.43628612 1.960962145 2.092665615 2.129796305 2.986736144 0 1.001421127 3.582178218 1.349312028

17 V-V.CVB-PASS - ätits 2.210800568 2.206537186 2.200378967 1.252601703 2.078524125 2.251539555 2.213169114 1.209555345 2.0884579 2.205784732 1.252601703 2.901942207 2.200378967 1.94512772 2.078524125 1.001421127 0 3.575958353 2.288184438

18 V-V.PTCP-PRS - ätande 3.456418384 3.196039604 2.00950495 3.19734974 2.844297208 3.486732673 2.011089109 3.454803597 2.833885471 3.196195006 3.19734974 3.229306931 1.892277228 4.153809749 2.834358732 3.582178218 3.575958353 0 2.467584369

19 V-V.PTCP-PST - äten 1.408969805 1.461606747 1.46560142 1.61431316 2.323246878 1.545051043 1.485130937 1.426512968 2.323727185 1.461128387 1.61431316 2.058144696 1.351531292 2.231508165 2.226705091 1.349312028 2.288184438 2.467584369 0

Figure 7: Average edit distances for the Swedish verb paradigm. Values range from 0 to 4.153. Darker red shades
indicate closer relationships between feature sets, while darker ball-blue shades represent greater differences.

Features V-IMP-ACT - ät
V-IND-PL-ACT-PRS - 

äta
V-IND-PL-ACT-PST - 

åto
V-IND-PL-PASS-PRS - 

 ätas
V-IND-PL-PASS-PST - 

 åtos
V-IND-SG-ACT-PRS - 

äter
V-IND-SG-ACT-PST - 

åt
V-IND-SG-PASS-PRS - 

 äts/ätes
V-IND-SG-PASS-PST - 

 åts
V-NFIN-ACT - äta V-NFIN-PASS - ätas

V-SBJV-ACT-PRS - 
äte

V-SBJV-ACT-PST - 
åte

V-SBJV-PASS-PRS - 
ätes

V-SBJV-PASS-PST - 
åtes

V-V.CVB-ACT - ätit V-V.CVB-PASS - ätits
V-V.PTCP-PRS - 

ätande
V-V.PTCP-PST - äten

1 V-IMP-ACT - ät 1 6 52 7 54 6 47 5 48 6 7 6 51 6 53 37 38 66 80

2 V-IND-PL-ACT-PRS - äta 6 1 55 1 51 5 61 7 55 1 1 7 54 6 50 36 34 48 88

3 V-IND-PL-ACT-PST - åto 54 54 1 49 4 56 11 57 13 54 49 57 2 52 5 33 34 116 70

4 V-IND-PL-PASS-PRS - ätas 7 1 51 1 51 6 55 7 55 1 1 7 50 6 50 35 34 33 79

5 V-IND-PL-PASS-PST - åtos 55 50 4 49 1 54 13 54 10 50 49 52 5 52 2 34 31 100 67

6 V-IND-SG-ACT-PRS - äter 6 6 63 6 59 1 65 8 61 6 6 7 53 6 52 39 38 65 93

7 V-IND-SG-ACT-PST - åt 47 55 11 50 13 57 1 50 4 55 50 58 11 53 13 40 41 124 77

8 V-IND-SG-PASS-PRS - äts/ätes 5 8 55 7 53 7 49 1 47 8 7 6 54 5 52 36 36 51 76

9 V-IND-SG-PASS-PST - åts 48 51 13 50 10 56 4 47 1 51 50 53 13 53 10 38 38 103 72

10 V-NFIN-ACT - äta 6 1 55 1 51 5 61 7 55 1 1 7 54 6 50 36 34 48 88

11 V-NFIN-PASS - ätas 7 1 51 1 51 6 55 7 55 1 1 7 50 6 50 35 34 33 79

12 V-SBJV-ACT-PRS - äte 6 7 64 6 57 6 66 5 58 7 6 1 54 1 50 35 32 62 88

13 V-SBJV-ACT-PST - åte 53 53 2 48 5 55 11 56 13 53 48 56 1 51 4 33 34 124 73

14 V-SBJV-PASS-PRS - ätes 7 7 56 6 57 6 57 5 58 7 6 1 49 1 50 34 33 47 79

15 V-SBJV-PASS-PST - åtes 54 49 5 48 2 53 13 53 10 49 48 51 4 51 1 34 31 104 68

16 V-V.CVB-ACT - ätit 38 40 33 36 34 40 39 38 39 40 36 40 33 35 34 1 3 100 60

17 V-V.CVB-PASS - ätits 38 37 36 36 32 40 41 36 37 37 36 39 35 36 32 3 1 88 54

18 V-V.PTCP-PRS - ätande 66 48 137 33 115 68 142 57 119 48 33 64 128 48 108 106 91 1 39

19 V-V.PTCP-PST - äten 81 90 80 79 74 91 85 78 79 90 79 87 73 76 68 56 49 34 1

Figure 8: Edit Script scores for the Swedish verb paradigm. Values range from 1 to 142. Darker purple shades
indicate fewer unique character sets (closer relationships), while darker air-force-blue shades reflect greater

variation.
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Features V-IMP-ACT - ät V-IND-PL-ACT-PRS - 
äta

V-IND-PL-ACT-PST - 
åto

V-IND-PL-PASS-PRS - 
ätas

V-IND-PL-PASS-PST - 
åtos

V-IND-SG-ACT-PRS - 
äter

V-IND-SG-ACT-PST - 
åt

V-IND-SG-PASS-PRS - 
 äts/ätes

V-IND-SG-PASS-PST - 
 åts

V-NFIN-ACT - äta V-NFIN-PASS - ätas V-SBJV-ACT-PRS - äte V-SBJV-ACT-PST - åte V-SBJV-PASS-PRS - 
ätes

V-SBJV-PASS-PST - 
åtes

V-V.CVB-ACT - ätit V-V.CVB-PASS - ätits V-V.PTCP-PRS - 
ätande

V-V.PTCP-PST - äten

1 V-IMP-ACT - ät 0.88 0.87 0.82 0.86 0.81 0.87 0.82 0.87 0.82 0.86 0.87 0.85 0.82 0.85 0.82 0.82 0.82 0.85 0.81

2 V-IND-PL-ACT-PRS - äta 0.73 0.83 0.7 0.82 0.69 0.73 0.7 0.71 0.69 0.83 0.82 0.81 0.7 0.82 0.69 0.69 0.68 0.81 0.69

3 V-IND-PL-ACT-PST - åto 0.75 0.74 0.84 0.74 0.83 0.75 0.83 0.74 0.82 0.75 0.75 0.75 0.84 0.73 0.83 0.8 0.8 0.77 0.8

4 V-IND-PL-PASS-PRS - ätas 0.72 0.82 0.69 0.83 0.68 0.71 0.69 0.7 0.69 0.82 0.83 0.81 0.69 0.81 0.69 0.7 0.7 0.82 0.7

5 V-IND-PL-PASS-PST - åtos 0.73 0.73 0.78 0.72 0.8 0.73 0.79 0.73 0.79 0.72 0.73 0.71 0.79 0.71 0.8 0.78 0.77 0.74 0.78

6 V-IND-SG-ACT-PRS - äter 0.82 0.81 0.77 0.81 0.75 0.83 0.78 0.79 0.76 0.81 0.81 0.82 0.76 0.81 0.75 0.77 0.77 0.8 0.75

7 V-IND-SG-ACT-PST - åt 0.76 0.75 0.81 0.74 0.79 0.75 0.82 0.75 0.8 0.75 0.75 0.75 0.81 0.74 0.8 0.77 0.77 0.75 0.79

8 V-IND-SG-PASS-PRS - äts/ätes 0.8 0.8 0.76 0.8 0.76 0.79 0.76 0.8 0.75 0.81 0.8 0.78 0.74 0.77 0.75 0.75 0.75 0.77 0.73

9 V-IND-SG-PASS-PST - åts 0.72 0.7 0.78 0.71 0.78 0.71 0.79 0.7 0.79 0.7 0.71 0.71 0.79 0.71 0.78 0.75 0.76 0.72 0.75

10 V-NFIN-ACT - äta 0.72 0.84 0.7 0.82 0.69 0.72 0.7 0.71 0.7 0.84 0.82 0.82 0.7 0.81 0.7 0.7 0.7 0.81 0.7

11 V-NFIN-PASS - ätas 0.69 0.79 0.66 0.78 0.65 0.68 0.66 0.66 0.66 0.79 0.8 0.76 0.67 0.77 0.65 0.69 0.68 0.76 0.68

12 V-SBJV-ACT-PRS - äte 0.71 0.8 0.68 0.79 0.68 0.71 0.68 0.69 0.68 0.8 0.8 0.81 0.69 0.8 0.68 0.7 0.69 0.78 0.67

13 V-SBJV-ACT-PST - åte 0.77 0.77 0.83 0.76 0.83 0.76 0.82 0.75 0.81 0.77 0.76 0.74 0.84 0.74 0.83 0.8 0.79 0.76 0.81

14 V-SBJV-PASS-PRS - ätes 0.69 0.77 0.68 0.77 0.68 0.69 0.67 0.68 0.67 0.77 0.77 0.77 0.67 0.77 0.66 0.67 0.67 0.75 0.68

15 V-SBJV-PASS-PST - åtes 0.67 0.66 0.74 0.66 0.73 0.65 0.74 0.67 0.74 0.68 0.67 0.66 0.75 0.66 0.75 0.69 0.69 0.66 0.71

16 V-V.CVB-ACT - ätit 0.76 0.76 0.8 0.76 0.79 0.77 0.8 0.76 0.79 0.76 0.76 0.76 0.8 0.75 0.79 0.82 0.81 0.77 0.8

17 V-V.CVB-PASS - ätits 0.71 0.73 0.74 0.72 0.75 0.71 0.75 0.73 0.74 0.72 0.73 0.7 0.73 0.71 0.75 0.78 0.77 0.71 0.73

18 V-V.PTCP-PRS - ätande 0.65 0.74 0.64 0.74 0.63 0.65 0.64 0.62 0.63 0.75 0.74 0.73 0.65 0.72 0.63 0.64 0.63 0.8 0.68

19 V-V.PTCP-PST - äten 0.71 0.7 0.74 0.69 0.73 0.69 0.75 0.7 0.73 0.7 0.69 0.7 0.74 0.69 0.74 0.74 0.73 0.75 0.8

Figure 9: Reinflection Accuracy scores for the Swedish verb paradigm. Values range from 0.62 to 0.88. Darker teal
shades indicate higher accuracy, while darker pink shades reflect lower performance.
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Abstract

We introduce an effective and scalable data
selection technique to accelerate the pretrain-
ing of large language models (LLMs). Given
the variation in quality and informativeness of
web-scale corpora, we present the Learn-Focus-
Review (LFR) paradigm-a dynamic training
approach that adapts to the model’s learn-
ing progress. Inspired by human learning
techniques like spaced repetition, LFR tracks
the model’s learning performance across data
instances and prioritizes revisiting challeng-
ing and diverse regions of the dataset that
are more prone to being forgotten, enabling
better retention and more efficient learning.
Through experiments spanning over 2200 GPU
hours, we show that LFR significantly enhances
data efficiency in pretraining while improv-
ing downstream performance across common-
sense reasoning, question answering, problem-
solving, language modeling, and translation
tasks. LFR consistently achieves lower perplex-
ity and higher accuracy using just 5%–19% of
the training tokens as models trained on the
full dataset. Notably, LFR matches the per-
formance of industry-standard Pythia models
with up to 2× the parameter count while requir-
ing only 3.2% of the training tokens. Unlike
prior work on data selection, LFR models are
Chinchilla-optimal demonstrating the effective-
ness of our training methodology.

1 Introduction

LLMs have achieved remarkable success in under-
standing and generating human language. This suc-
cess is driven by the ever-increasing model param-
eter sizes which require web-scale training datasets
like SlimPajama (Soboleva et al., 2023), Common-
Crawl (Penedo et al., 2023; Raffel et al., 2023),
Pile (Gao et al., 2020), and OpenWebText (Rad-
ford et al., 2019; ope), leading to unsustainable
training costs. Between 2016 and 2023, model
training costs have skyrocketed by a factor of 750×
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Figure 1: Average accuracy norm across common-
sense reasoning, problem-solving, world knowledge,
and reading comprehension tasks. Across model sizes
(300M–1.1B), LFR (stars) outperforms full-dataset
training (RS in black circles) by 6%, Pythia (yellow
circles) by 1.5%, and Quad (Zhang et al., 2024) (red
circle) by 9%, using only 3–6% and 65% of the training
tokens of Pythia and Quad, respectively. Notably, Pythia
and Quad have larger parameter counts. See Section 5
for details.

every two years (Gholami et al., 2024), while GPU
memory has scaled at a much slower pace of 2×
every two years. For example, pretraining the GPT-
4 model (OpenAI et al., 2024) was estimated to
have cost around $100M USD over a period of 3-4
months using 25k NVIDIA A100 GPUs (gpt).

As such, a key challenge for unlocking the next
generation of language models is to significantly
reduce training costs while retaining or improving
downstream task performance.

Data quality and selection play a key role
in the development of cost-effective and high-
performance models (Hoffmann et al., 2022;
Brown et al., 2020; Tirumala et al., 2023; Abbas
et al., 2023; lla, 2024). In fact, DeepSeek-V3
technical report (DeepSeek-AI et al., 2025) and
the Llama 3.1 Technical Report (lla, 2024) high-
light the importance of data quality through curated
data mixes and sophisticated data preprocessing
pipelines to minimize redundancy and maximize
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corpus diversity.
Recent work on data selection for pretraining

has achieved great strides in reducing the overall
training time. Methods like D4 (Tirumala et al.,
2023), SemDeDup (Abbas et al., 2023), MiniP-
ile (Kaddour, 2023; min), DSIR (Xie et al., 2023),
and perplexity-based filtering (Marion et al., 2023;
Chen et al., 2024; Muennighoff et al., 2023) rely on
similarity metrics, clustering, or perplexity to filter
data. However, data importance evolves through-
out training and depends on model architecture,
making static filtering inherently limited in effec-
tiveness. While (Zhang et al., 2024) employ a
dynamic data selection approach using the multi-
armed bandit technique, they select 30B tokens
from the SlimPajama dataset to train a 1.3B pa-
rameter model. However, according to the Chin-
chilla scaling laws (Hoffmann et al., 2022), this
token count exceeds the optimal range for models
of this size, suggesting that their selected subsets
may contain redundant or lower-quality data. Other
studies propose leveraging state-of-the-art (SOTA)
pretrained LLMs like GPT-4 (Wettig et al., 2024) or
proxy models, as seen in MATES (Yu et al., 2024)
and RHO-1 (Lin et al., 2024), to assess data quality
for a target model. However, these approaches rely
on existing separately trained models, which may
introduce a mismatch between the data needed for
optimal convergence and the data selected.

We address the high training cost of LLMs and
the shortcomings of existing data selection meth-
ods by drawing inspiration from spaced repeti-
tion (Smolen et al., 2016a; spa). This scientifically
proven technique enhances retention by strategi-
cally presenting information at optimal intervals,
ensuring that the most relevant data is introduced
at the right time for efficient learning. Building
on this foundation, we propose the Learn-Focus-
Review (LFR) training paradigm. Figure 1 displays
the overall efficacy of LFR. Our work offers the
following contributions:

1. Profile LLM pretraining to observe multiple
descent behavior in 25-78% of the training
tokens from web-scale corpuses, which are
forgotten multiple times during training.

2. Develop a Learn-Focus-Review (LFR) train-
ing pipeline that dynamically gauges the
LLM’s learning pace, focusing on complex
data blocks while regularly reviewing all data
blocks to prevent forgetting.

3. Conduct over 2200 GPU hours of training
experiments using the AMD MI250, AMD
MI210, and AMD MI100 GPUs. We pretrain
Llama and GPT models of varying sizes from
scratch on the SlimPajama (627B) and Open-
WebText (9B) datasets and evaluate them on
several downstream tasks from the common-
sense reasoning, question-answering, problem
solving, language modeling, and translation
domains.

4. LFR results in significantly lower perplex-
ity and higher accuracy compared to baseline
models trained on the full dataset, achieving
these improvements by training on just 5-19%
of the training tokens used by the baseline.
All our models are Chinchilla-optimal.

5. LFR outperforms the performance on 70% of
tasks of the Pythia models with up to 2× the
parameter count while requiring only 3-6% of
the training tokens.

6. LFR outperforms prior state-of-the-art data
selection work by 9-13% in downstream task
accuracy while using only 65% of the training
tokens.

7. Observe that LLMs first learn conversational
and anecdotal data, before being able to retain
factual, instructional, and coding language in-
formation in long-term memory.

In the following sections, we examine prior
works on efficient LLM pretraining before diving
deeper into our proposed training strategies and
design decisions.

2 Related Work

Prior works on efficient pretraining of LLMs using
data selection have primarily focused on using dis-
tance metrics and clustering techniques. Tirumala
et al. (2023) proposes D4, which deduplicates and
selects cluster centers in the embedding space gen-
erated by pretrained models. SemDeDup (Abbas
et al., 2023) prunes semantic duplicates using pre-
trained models. It can successfully prune 50% of
the training data with minimal performance loss.
MiniPile (Kaddour, 2023; min) uses the pretrained
E5-Large (Wang et al., 2024) model to embed docu-
ments in the Pile dataset and clusters them to select
a smaller pretraining corpus of ∼6GB. DSIR (Xie
et al., 2023) proposes selecting subsets from large
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unlabeled datasets through importance resampling
to match the distribution of the target dataset. How-
ever, considering the high cost of training, it is
unsustainable to sample a new subset and pretrain
the LLM from scratch for every new downstream
task.

More recently, perplexity-based and influence
function-based filtering techniques have been pro-
posed (Marion et al., 2023; Lin et al., 2024; Muen-
nighoff et al., 2023; Chen et al., 2024; Wettig et al.,
2024; Yu et al., 2024), which use proxy models
to obtain perplexity/influence scores for different
data points and assess sample importance. How-
ever, these methods require an additional pretrained
model, increasing computational overhead. More-
over, if the proxy model has a different architec-
ture from the target model, its assessment of data
importance may not accurately transfer, leading
to suboptimal data selection and inefficiencies in
training.

The Chinchilla scaling laws (Hoffmann et al.,
2022) derive an optimal model size–to–training to-
kens ratio for fixed compute budgets, finding that
parameters and data should scale roughly 1:1. We
observe that several of the prior works discussed
in this Section do not incorporate Chinchilla scal-
ing laws (Hoffmann et al., 2022) into their data
selection strategies, leading to suboptimal filtering
of web-scale corpora and potential overtraining.
For example, Zhang et al. (2024) present Quad, a
data selection method which calculates influence
scores to measure a data point’s impact on model
performance. They select 30B tokens from the
SlimPajama dataset (627B) for their 1.3B model
and continual pretraining of the 7B model. This
indicates that the models have been overtrained or
trained on redundant tokens.

3 Problem Formulation and Profiling

3.1 LLM Pretraining Objective

Given an LLM model parameterized by weights
θ and a web-scale dataset D, we first tokenize all
documents in the dataset and obtain context-length-
sized sequences of tokens, called data blocks,
si such that the training corpus becomes D =
{s1, s2, s3, ...sn}. For the SlimPajama and Open-
WebText datasets used in this paper, the context
length is 1024 tokens, with a total of 627B and
9B tokens, respectively. Given one such sequence
of tokens or data block, si = {x1, x2, ...xn}, the
training objective is to autoregressively predict the

Figure 2: PPL trajectories of data samples from the
SlimPajama dataset as processed by the Llama-300M
model, focusing on a subset of 50 samples for clarity.
Notably, 78.5% of the samples exhibit this behavior,
characterized by multiple descent patterns rather than a
steady decline. This indicates that the model frequently
forgets and relearns data during training, highlighting
inefficiencies in traditional training dynamics

Figure 3: PPLs of data samples being forgotton by the
GPT2-345M model on the OpenWebText dataset. This
multi-descent behavior is exhibited by 20% of the data.

next M tokens:

pθ(y | x) =
M∏

i=1

pθ(yi | y1:i−1, x). (1)

3.2 Observations from Training on Randomly
Sampled Data

In order to better understand the drawbacks of this
traditional training technique, we profile the pre-
training process for the Llama and GPT models.
The training hyperparameters and model configu-
rations are provided in the Appendix A. Similarly
to Marion et al. (2023), we use perplexity as a met-
ric to monitor the training progress. Given a token
sequence si = {x1, x2, ..., xn} from the dataset D,
perplexity is computed as:

PPL(si) = exp


 1

|si|
∑

xj∈si
NLL(xj)


 , (2)
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where NLL(xj) is the negative log likelihood of
token xj computed as follows:

NLL(xj) = − logP (xj | x<j ; θ). (3)

Using this metric, models exhibiting lower perplex-
ities are considered better since this indicates a
high probability of selecting text closest to the raw
dataset.

The observed PPL values associated with each
data block are classified as one of the following:

1. Learned: recorded perplexities monotonically
decrease.

2. Unlearned: recorded perplexities monotoni-
cally increase.

3. Forgotten: recorded perplexities first increase
and then decrease. Such an upward and down-
ward trend may repeat any number of times
during training.

Based on this classification, we observe that
78.5% of the data blocks are forgotten at least once
in the Llama model (Figure 2), compared to 25%
in the GPT model (Figure 3). We hypothesize that
more data blocks are frequently forgotten in the
Llama model due to the higher complexity and
challenge posed by the SlimPajama dataset, as op-
posed to the OpenWebText dataset. It is important
to note that the SlimPajama dataset is an aggrega-
tion of seven datasets, including sources such as
GitHub, Wikipedia, and CommonCrawl. In fact, of
the data blocks that are forgotten, 82% are forgot-
ten multiple times during training, i.e., they display
multiple descent behavior (Figure 3). Xia et al.
(2022) reported a double-descent behavior for the
OPT models (Zhang et al., 2022), and our above ex-
periment further demonstrates that the “forgetting”
can happen multiple times in LLM pretraining.

4 LFR Training Methodology

Based on our profiling observations in Section 3.2
we propose to replace traditional autoregressive
language modeling methods with Spaced Repeti-
tion (Tabibian et al., 2019). Spaced Repetition is an
evidence-based learning method proven to improve
information retention and learning pace in humans
(Smolen et al., 2016b). In this technique, challeng-
ing pieces of information are reviewed more often,
at regular intervals, and easier pieces of informa-
tion are presented to the learner less often. Our

algorithm is detailed in Algorithm 1. We pretrain
our models with a combination of the following
three steps:

1. Learn: Initially, we present the model with
the entire dataset and train on randomly se-
lected data blocks for p1 steps, as normally
seen in the traditional approach (line 1 in
Alg. 1). p1 can be configured by the user based
on the available compute budget, model, and
dataset. In single-epoch training (lines 3-7 in
Alg. 1), we measure the perplexities (PPLs) of
all data samples in the training set and cluster
the data embeddings (inputs to the model’s
last layer). For multi-epoch training (lines 8-
11 in Alg 1), we record the perplexities for all
data blocks during the p1 steps. Depending
on the training style (single or multi-epoch),
we either pass the clustered embeddings and
PPL values or the PPL values observed dur-
ing training to the next step. The following
two phases can be repeated up to reps times,
depending on the available compute budget.

2. Focus: We provide two variations of the Fo-
cus stage based on the number of training
epochs.

(a) Single-epoch training: We discard s1%
of the clusters (line 6 in Alg 1).
Within the retained clusters, we perform
weighted sampling from sub-clusters, pri-
oritizing regions of the retained clusters
which the model finds most challeng-
ing (line 7 in Alg. 1). Sub-clusters with
higher PPL are assigned greater sam-
pling weights, enabling a hierarchical fo-
cus on the most critical regions. For in-
stance, during Llama training, GitHub
code emerged as the most challenging
cluster. Within this cluster, the Focus
stage further emphasizes sampling from
C++ code, which proved more difficult
for the model, over Python code. In
this phase of training, we restrict the
weighted sampling of data points to this
reduced subset for p2 steps. s1 and p2
are user-controlled hyperparameters.

(b) Multi-epoch training: We discard s1%
of the data blocks (line 10 in Alg. 1)
with the lowest PPL values. In doing
so, we provide a mechanism for shift-
ing the model’s focus towards learning
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data blocks that were determined to be
difficult.

3. Review: Next, we reintroduce all of the re-
moved data blocks and train the model by
randomly sampling from the entire corpus for
p3 steps (line 13 in Alg. 1). This ensures that
we allow the model to review and revisit data
blocks which it may have forgotten.

Algorithm 1 LFR Training Methodology

Require: Training dataset D, model M with ini-
tial parameters θ0, hyperparameters p1, s1, p2,
p3, reps, and epochs.

Ensure: Minimization of Equation 3.
1: PPLs, θp1 ← Learn(θ0, D, p1)
2: for r = 1, 2, . . . , reps do
3: if epochs == 1 then
4: Dk ← Cluster(D)
5: Sort(PPLs,Dk)
6: Ssub ← (1− s1)×Dk

7: S1 ← sample(Ssub, PPLs)
8: else
9: Sort(PPLs,D)

10: S1 ← (1− s1)×D
11: end if
12: θp2 ← Focus(θp1 , S1, p2)
13: PPLs, θp3 ← Review(θp2 , D, p3)
14: end for

Return θ

Our training strategy is simple, intuitive and
human-like. It gives the model an opportunity to
learn from all of the data, prioritize and relearn
forgotten data points, and review data samples
from harder regions of the dataset more frequently
than they would have been using random sampling.
While the static clustering-based techniques (Tiru-
mala et al., 2023; Abbas et al., 2023; Kaddour,
2023) presented in Section 2 allow for accelerated
training, they are not designed to suit the multi-
descent training dynamics observed in Section 4
and require pretrained model embeddings to calcu-
late distance metrics. Furthermore, prior methods
including perplexity-based pruning methods (Mar-
ion et al., 2023) are static. Sections 5.4 and the
Appendix characterize the data blocks found easy
and hard by the LLM, and demonstrate why static,
clustering-based data selection methods achieve
poor downstream task performance. Lastly, our
approach does not require any pretrained models to
obtain embeddings. Our focused training strategy

allows the model to absorb harder information (data
blocks with higher perplexity) faster, by presenting
them more number of times.

5 Evaluation

In this section, we present a comprehensive eval-
uation of LFR. We pretrain the Llama models of
sizes 300M, 500M, and 1.1B and the GPT mod-
els (Radford et al., 2019) of various sizes between
124M and 1.5B parameters. We use the SlimPa-
jama (Soboleva et al., 2023) (627B) and OpenWeb-
Text dataset (ope) (9B) and train from scratch using
4 AMD MI100, 4 AMD MI210 GPUs, and 8 AMD
MI250 GPUs. Our pretraining experiments utilize
a fully sharded data parallel (FSDP) approach. All
model configurations and training hyperparameters
of our experiments are detailed in the Appendix A.

Our models and all baselines are evaluated
across a diverse set of downstream tasks span-
ning multiple domains: (1) Commonsense rea-
soning (HellaSwag, Winogrande, PIQA), (2)
General knowledge (ARC_C, ARC_E, MMLU,
Natural Questions), (3) Reading comprehension
(OpenbookQA, BoolQ), (4) Language modeling
(WikiText-2, WikiText-103, LAMBADA, 1BW),
and (5) Translation (WMT-14). Performance re-
sults and comparisons to prior state-of-the-art meth-
ods are detailed in Sections 5.3.

Section 5.4 analyzes the impact of the Focus
and Review stages and the data LFR prioritizes
in SlimPajama. The Appendix provides examples,
details on retained/dropped data across models, ev-
idence that LLMs learn instructions and code after
facts and anecdotes, and a sensitivity study on LFR
hyperparameters.

5.1 LFR Configuration

We pretrain the Llama models for 100k steps, us-
ing 9.8B tokens for the 300M and 500M models
and 19.6B tokens for the 1.1B model, following
the Chinchilla scaling law (Hoffmann et al., 2022)
to ensure optimal data utilization. First, we Learn
for 20k steps (p1 = 20k). Next, we cluster the data
and discard 57.2% of the clusters, retaining only
the 3 most challenging clusters out of 7 based on
their PPL values (s1 = 50). We chose this con-
figuration based on our limited pretraining budget
and profiling in Section 3.2, which showed that
78.5% and 25% of data samples are forgotten at
least once during training for the Llama and GPT
models, respectively. We then apply the Focus
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Model Tokens Arc_C Arc_E Boolq HS OBQA Piqa WG Avg
300M-RS 50B 17.29 39.06 33.17 32.3 28.83 58.36 48.54 36.79

Pythia-410M 300B 20.1 44 40 35.82 29.59 61.8 49.7 40.14
300M-LFR 9.8B 23.61 39.52 54.86 35.44 30.56 63.21 53.88 43.01
500M-RS 50B 25.1 43.7 53.7 36.5 32.6 65.1 52.2 44.47

Pythia-1.0B 300B 27.05 48.99 60.83 47.16 31.4 69.21 53.43 48.29
500M-LFR 9.8B 28.11 52.89 58.72 50.65 31.1 68.66 55.72 49.4

1.1B-RS 50B 27.31 50.27 60.58 38.11 31.11 66.67 54.99 47
Pythia-1.4B 300B 30.1 61.7 62.11 55.18 30.2 72 63.1 53.48

DSIR 30B 20.14 49.28 61.41 30.89 16.2 61.17 47.99 41.01
PPL 30B 20.82 45.41 58.35 35.92 18.8 66.89 54.62 42.97

1.3B-Quad 30B 20.99 52.27 62.14 34.41 20.00 70.04 52.09 44.56
1.1B-LFR 19.6B 29.18 63.47 62.23 54.27 34.89 73.29 61.12 54.06

Table 1: Zero-shot performance (acc_norm for all except Winogrande and Boolq which use acc) on downstream
tasks evaluated using LLM Evaluation Harness (Gao et al., 2024). RS refers to the random sampling baseline,
HS refers to HellaSwag, and WG refers to Winogrande. The model with the highest performance (measured by
acc_norm) is highlighted in bold. Notably, LFR models are trained using only 3.2-6% of the tokens required to train
Pythia models of comparable size, yet they achieve higher accuracy in 70% of cases. Additionally, LFR models
consistently outperform the random sampling baseline by a large margin, despite being trained on 19.6% of the
pretraining tokens.

stage for 60k steps (p2 = 60k), prioritizing the re-
tained high-PPL clusters. It takes <10min to cluster
which can be hidden by the high training latency.
We provide a detailed analysis on the hierarchical
clustering and the data points found easy and dif-
ficult in Section 5. Lastly, we Review the entire
dataset for the last 20k steps (p3 = 20k). In the
case of the GPT models, we Learn for 1 epoch
(p1 = 1), Focus on 50% of the data for 1 epoch
(s1 = 50, p2 = 1), Review the entire dataset for
another epoch (p3 = 1), and Focus on 30% of the
data for 5 epochs (reps = 2, s2 = 70, p4 = 1).
This configuration is chosen based on the findings
in Section 3.2. Figure 3 reveals that forgotten sam-
ples are typically forgotten multiple times, requir-
ing an average of 4 presentations to be learned.
For GPT, we use the first three phases to identify
these samples and allocate 5 epochs focusing on
30% of them in the final phase to ensure long-term
retention.

These configurations are tunable based on the
available pretraining budget and the optimal tokens
estimated through the Chinchilla scaling laws. Fur-
thermore, we test LFR’s sensitivity to hyperparam-
eters p1, s1, p2, p3, and reps in the Appendix A.

5.2 Baselines

We evaluate the models pretrained using LFR with
a comprehensive set of prior works and industry-
standard checkpoints. They include:

1. Industry-standard models: We compare the
Llama models trained through LFR with
Pythia models (Biderman et al., 2023) of up to
2× the size obtained from EleutherAI’s Hug-
gingface1. These models have been trained
on 300B tokens while the LFR models were
trained on 9.8B-19.6B tokens (3.2-6% of the
tokens). We compare the GPT models pre-
trained through LFR for 40k iterations with
the same GPT architectures pretrained by Ope-
nAI 2 for 800k iterations. We use the same
batch size as these models (Refer to the Ap-
pendix for details) by adjusting the gradient
accumulation steps and the per-device batch
size.

2. Random Sampling: while the previous base-
lines ensures that we compare with industry-
standard models, we also train and compare
LFR against the same models pretrained using
random sampling with 5.10× and 20× more
tokens than LFR for the Llama and GPT mod-
els respectively. This baseline allows us to test
LFR against the same models trained through
traditional autoregressive techniques.

3. Prior works: We compare our training method-
ology with the models trained through the

1https://huggingface.co/models?other=pythia
2https://huggingface.co/openai-community
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current state-of-the-art data selection meth-
ods such as Quad (Zhang et al., 2024), static-
PPL based filtering (Marion et al., 2023),
DSIR (Xie et al., 2023), and MiniPile (Kad-
dour, 2023) in Section 5.3.

5.3 Performance on Downstream Tasks

We evaluate Llama models trained with LFR on
commonsense reasoning, general knowledge QA,
and reading comprehension, comparing accuracy
norms with baselines in Table 1. LFR outper-
forms random sampling (RS) by 6% while using
2.4×–5× fewer training tokens and improves ac-
curacy over Pythia by 1.5% despite using only
3.2–6% of the tokens. Compared to prior SOTA
data selection, LFR achieves greater dataset prun-
ing while improving downstream performance. No-
tably, their models are over-trained per Chinchilla
laws, highlighting suboptimal data selection.

We test the GPT models on language model-
ing tasks and compare with the OpenAI baseline
in Table 2 by measuring the PPL. Note that our
models are trained on 5% of the training tokens
as compared with the OpenAI models, further val-
idating that data quality is more important than
quantity. We find that the PPL reduction obtained
by LFR increase as the dataset size increases (from
WikiText-2 to 1BW). Also, smaller models show
a larger PPL reduction by using LFR than larger
models. On average, using our approach, perplex-
ity was reduced by 4.92, 3.26, 2.17, and 1.40 for
the GPT 124M, 345M, 774M, and 1.5B models,
respectively.

We also test the LFR-trained models on stan-
dard benchmarks from the translation, question-
answering, world knowledge, and problem solv-
ing domains in Table 3. LFR models trained with
20× fewer training iterations achieves better perfor-
mance than models trained using random sampling.
Details of each of the datasets is provided in the
Appendix A.

5.4 Ablation Study

In this section, our goal is to understand the im-
pacts of the Focus and Review stages of LFR and
exploring more aggressive data selection strategies
by varying the hyperparameters p1, s1, p2, p3, and
reps.

5.4.1 Impact of Focus
Consider training the Llama 300M parameter
model on the SlimPajama dataset, which comprises

Learn Focus Review

Figure 4: PPL values are tracked at different training
iterations for the clusters identified as challenging and
prioritized during the Focus stage of LFR. The dotted
line represents the PPL values for the same clusters
when trained with random sampling (RS). Notably, LFR
facilitates accelerated learning of these challenging data
points between 20k and 60k iterations (the Focus stage),
whereas random sampling consistently results in higher
PPL values throughout.

of seven sub-datasets sourced from CommonCrawl,
Github, C4, Books, Wikipedia, StackExchange,
and ArXiv. During the Focus stage, LFR employs
weighted sampling from the three most challenging
clusters while discarding clusters with the lowest
perplexity (PPL). Additionally, within the retained
clusters, LFR performs hierarchical sampling by
prioritizing regions with higher PPL, further re-
fining the data selection process. LFR classifies
the Github, StackExchange, and ArXiv clusters as
more challenging at 20k iterations, than the other
four data sources.

Figure 4 illustrates the training dynamics of chal-
lenging data points. LFR (solid line) accelerates
learning of these harder examples compared to ran-
dom sampling (dotted line), ensuring complex in-
formation is learned earlier, which drives the per-
formance gains in Table 1. In the Review stage,
discarded clusters (CommonCrawl, C4, Books,
Wikipedia) are reintroduced, bringing LFR and ran-
dom sampling closer together. However, LFR re-
tains the benefits of the Focus stage by performing
marginally better on the challenging sections.

5.4.2 Impact of Review
Next, we analyze the impact of the Review phase
on data points deemed simple and discarded during
Focus. Unlike prior data selection methods, LFR
reintroduces these samples, preventing catastrophic
forgetting. Figure 5 highlights the importance of
Review by plotting PPL values for easy data points
under LFR (solid line) and random sampling (dot-
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Model WikiText-2 WikiText-103 LAMBADA 1BW
124M-OpenAI (800k iters) 22.1 31.58 18 39.18

124M-RS (40k iters) 23.32 23.42 17.71 39.49
124M-LFR (40k iters) 19.81 22.49 16.61 32.27

345M-OpenAI (800k iters) 19.82 22.05 14.26 29.95
345M-RS (40k iters) 21.11 21.8 14.84 30.66

345M-LFR (40k iters) 16.31 17.48 13.7 25.52
774M-OpenAI (800k iters) 15.93 18.53 13.74 26.52

774M-RS (40k iters) 16.71 18.89 14.10 28.56
774M-LFR (40k iters) 15.11 14.58 12.51 23.83

1.5B-OpenAI (800k iters) 13.80 16.59 12.15 23.87
1.5B-LFR (40k iters) 13.10 14.37 11.23 22.09

Table 2: PPL results for language modeling datasets across model sizes. Here, N -OpenAI refers to the OpenAI
baseline (trained for 800k iterations), N -RS refers to the random sampling baseline (trained for 40k iterations),
and N -LFR refers to our proposed training pedagogy (trained for 40k iterations), where N is the number of model
parameters.

Model Iters
WMT NQ MMLU
(BLEU) (Acc) STEM

(Acc)
HM
(Acc)

SS
(Acc)

Other
(Acc)

Avg.
(Acc)

1.5B OpenAI 800k 11.5 4.1 24.5 24.8 24.0 27.8 25.3
1.5B LFR 40k 11.8 4.61 26.1 27.2 23.8 25.1 25.5

Table 3: LFR-trained GPT models evaluated on translation (WMT-14 (wmt)), question-answering (Natural Ques-
tions (Kwiatkowski et al., 2019)), and world knowledge and problem solving (MMLU (Hendrycks et al., 2021)
domains using the BLEU scores and accuracy metrics. Note that NQ refers to Natural Questions, HM refers to
Humanities, SS refers to Social Sciences, Other refers to business, health, and other miscellaneous topics, and Avg.
refers to the average accuracy across all 57 subjects in MMLU. We compare our 1.5B parameter model with those
trained by OpenAI for 20× more training iterations. The model with the superior performance is highlighted in
bold.

Learn Focus Review

Figure 5: PPL values are tracked at different training
iterations for the clusters identified as easy, discarded
during the Focus stage, and reintroduced during the Re-
view phase. The dotted line represents the PPL values
for the same clusters when trained with random sam-
pling (RS). Notably, we demonstrate that models forget
the data points discarded during training, unless reintro-
duced to the training corpus as in the case of LFR.

ted line). During Focus, when the model prioritizes

challenging clusters like GitHub, StackExchange,
and ArXiv (Figure 4), it forgets discarded data
(solid line rises above dotted). The Review phase
restores these points, ensuring better model perfor-
mance and giving LFR a distinct edge over other
methods (Section 5.3). See the Appendix for raw
examples of easy and difficult samples identified
by LFR.

5.5 Overall Learning Schedule

LFR reveals that models follow a structured learn-
ing trajectory: first mastering conversational and
anecdotal data (CommonCrawl, C4, books), then
retaining factual knowledge (Wikipedia), and fi-
nally learning code, QA, and scientific content
(ArXiv). By recognizing this progression auto-
matically as shown in Sections 5.4.1 and 5.4.2,
LFR optimizes training by dynamically guiding the
model at its own learning pace, ensuring efficient
and targeted learning.
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6 Conclusion

We introduced LFR (Learn-Focus-Review), a novel
data selection paradigm that accelerates LLM pre-
training while significantly reducing training costs.
Through 2200 GPU hours of experiments, LFR
achieved lower perplexity and higher accuracy
while using up to 20× fewer training iterations than
traditional methods. Our findings show that LLMs
follow a natural learning progression—first acquir-
ing conversational data, then factual knowledge,
and finally mastering code and scientific concepts.
By dynamically guiding learning, LFR provides a
scalable, cost-effective alternative to existing pre-
training strategies. We hope this work inspires
further research into more adaptive and efficient
training paradigms.
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8 Limitations and Ethical Considerations

LFR presents the following directions for future
work:

1. LFR is evaluated on models up to 1.5B pa-
rameters using open-source corpus like the
SlimPajama dataset, constrained by our com-
pute resources. With the clear success on
models of such scale, we hope to inspire re-
searchers to validate such focused learning
approaches for different model families, and
domains.

2. The sensitivity study in Section 5.4 and the
Appendix reveals that the hyperparameters se-
lected in Section 4 have a large impact on
the performance of the trained model. Due to
our limited compute budget, we are unable to
present more comprehensive hyperparameter
tuning experiments than those presented in
Section 5.4.
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A Appendix

A.1 Experiment Details
Datasets The datasets used for our experiments are
detailed below:

1. ARC-Challenge (arc, a): A subset of the AI2
Reasoning Challenge with 2,590 challenging
multiple-choice science questions designed to
test advanced reasoning and knowledge.

2. ARC-Easy (arc, b): A subset of the AI2 Rea-
soning Challenge with 5,117 relatively easier
multiple-choice science questions focusing on
basic reasoning and recall.

3. BoolQ (boo, b): A dataset of 16,000+ boolean
(yes/no) questions paired with passages, re-
quiring models to infer answers from support-
ing evidence.

4. HellaSwag (hel): A dataset with 70,000+
multiple-choice questions focused on com-
monsense reasoning and contextual under-
standing, particularly in describing scenarios.

5. OpenBookQA (Ope): A multiple-choice
question-answering dataset with 5,957 ques-
tions requiring knowledge retrieval from a sci-
ence "open book" and commonsense reason-
ing.

6. PIQA (Piq): A physical commonsense reason-
ing dataset with 20,000+ binary-choice ques-
tions about everyday situations and physical
interactions.

7. Winogrande (win): A dataset with 44,000+
sentence pairs designed to test commonsense
reasoning through pronoun disambiguation
challenges.

8. WikiText (wik): the WikiText language mod-
eling dataset consists of 100M tokens ex-
tracted from Wikipedia articles with high rat-
ing. It features two different variants, namely,
WikiText-2 and WikiText-103 which differ
in the number of tokens and vocabulary size.
WikiText-2 consists of 2M tokens and a vo-
cabulary size of 33k whereas WikiText-103
is larger with 103M tokens and a vocabulary
size of 267k.

9. LAMBADA (Paperno et al., 2016): the LAM-
BADA dataset is extracted from the BookCor-
pus dataset (boo, a) and contains 10k passages.

This dataset is useful for testing the ability of
an LLM to capture long-range dependencies
in text. The objective of this model is to pre-
dict the final word in a set of sentences, where
humans need at least 50 tokens of context to
accurately anticipate the word.

10. One Billion Word Benchmark (Chelba et al.,
2014) (1BW): this dataset contains one billion
words extracted from the WMT 2011 News
Crawl data and is used to measure progress in
statistical language modeling.

11. WMT-14 French-English Translation (Artetxe
et al., 2018): This dataset contains 36 million
training sentence pairs for english to french
translation. The test set, which is used for eval-
uation purposes, consists of 3,003 sentence
pairs.

12. Natural Questions (Kwiatkowski et al., 2019):
This dataset contains question-answer pairs
from Google Search and Wikipedia-based an-
notations. The training, validation, and test
sets consist of 307,372, 7,830, and 7,842 ex-
amples.

Models: Tables 4 and 5 describes the different
model configurations and pretraining hyperparame-
ters used in LFR for the Llama models.

300M 500M 1.1B
Layers 12 11 22
#Heads 16 32 32
n_embd 1024 2048 2048

Table 4: Number of layers, attention heads, and the
embedding dimensions in the Llama models used for
pretraining.

Tables 6 and 7 describes the different model con-
figurations and pretraining hyperparameters used
in LFR for the GPT-2 models.

Pretraining: Table 7 shows the hyperparameters
for pretraining the GPT-2 124M-1.5B parameter
models.

Note that OpenAI pretrained the GPT-2 models
using a batch size of 512. Due to insufficient GPU
memory, we adjust the number of gradient accumu-
lation steps to achieve the same effective batch size
of 512.

Finetuning: We use all the same hyperparame-
ters as pretraining, except for the following:

1. Learning rate: 3.00E-5
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Parameter Value
Context Length 1024
Embedding Dimen-
sion

(768, 1024, 2048)

Total Iterations 100,000
Effective Batch Size 768
Block Size 4096
Weight Decay 1.00E-1
Adam β1 0.90
Adam β2 0.95
Warmup Iterations 8000
Minimum Learning
Rate

4.00E-5

Maximum Learning
Rate

4.00E-04

Learning Rate Sched-
ule

Cosine Decay

Learning Rate Decay
Iterations

100,000

GPUs (4x AMD MI210,
4x AMD MI210, 8x
AMD MI250)

Table 5: Pretraining hyperparameters for the Llama
300M-1.1B parameter models. Parameters with mul-
tiple values (e.g. Embedding dimensions, batch size,
gradient accumulation steps, and GPUs) specified in
brackets are for the 300M, 500M, and 1.1B parameter
models respectively.

2. Learning rate schedule: Constant

3. Total iterations: 50

A.2 Limitations and Ethical Considerations
LFR presents the following directions for future
work:

1. LFR is evaluated on models up to 1.5B pa-
rameters using web-scale datasets such as
SlimPajama, constrained by our compute re-
sources. With the clear success on models of
such scale, we hope to inspire researchers to
validate such focused learning approaches for
different model families, and domains.

2. The sensitivity study in this Appendix reveals
that the hyperparameters selected in the evalu-
ation section have a large impact on the perfor-
mance of the trained model. Due to our lim-
ited compute budget, we are unable to present
more comprehensive hyperparameter tuning
experiments than those presented later in this
Appendix.

124M 355M 774M 1.5B
Layers 12 24 36 48
#Heads 12 16 20 25
n_embd 768 1024 1280 1600

Table 6: Number of layers, attention heads, and the
embedding dimensions in the GPT-2 models used for
pretraining.

Figure 6: Clustering the data embeddings from the
SlimPajama dataset using the Llama-300M model at
the 50k training step.

A.3 Llama Pretraining - Data Importance

In this section, we study the data points identified
as easy and challenging by LFR when pretraining
with the SlimPajama dataset. Listing A.3 provides
an example of a code snippet from Github classified
as easy by LFR, and discarded in the Focus stage
of the Llama model training. Listing A.3 provides
an example of a data sample retained from the
Github cluster. Note that this code is more complex,
presents an opportunity to the model to improve
its coding capabilities as opposed to the variable
declarations in Listing A.3.

Listing 1: Code snippet classified as easy by LFR, pri-
marily consisting of variable declarations. As seen
from the code, it contributes minimally to enhancing the
model’s coding capabilities.

package f r c l i b j ;

import edu . wpi . f i r s t . w p i l i b j .
Timer ;

p u b l i c c l a s s TrcDbgTrace
{

p u b l i c s t a t i c f i n a l S t r i n g
ESC_PREFIX = " \ u001b
[ " ;
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Parameter Value
Context Length 1024
Embedding Dimen-
sion

(768, 1024, 1280,
1600)

Total Iterations 40000
Effective Batch Size 512
Batch Size (16, 16, 8, 4)
Gradient Accumula-
tion Steps

(32, 32, 64, 128)

Block Size 1024
Weight Decay 1.00E-01
Adam β1 0.9
Adam β2 0.95
Warmup Iterations 2000
Minimum Learning
Rate

6.00E-05

Maximum Learning
Rate

6.00E-04

Learning Rate Sched-
ule

Linear

Learning Rate Decay
Iterations

40000

GPUs (4xMI100, 4xMI210,
4xMI210, 4xMI210)

Table 7: Pretraining hyperparameters for the GPT-2
124M-1.5B parameter models. Parameters with multiple
values (e.g. Embedding dimensions, batch size, gradient
accumulation steps, and GPUs) specified in brackets are
for the 124M, 345M, 774M, and 1.5B parameter models
respectively.

p u b l i c s t a t i c f i n a l S t r i n g
ESC_SUFFIX = "m" ;

p u b l i c s t a t i c f i n a l S t r i n g
ESC_SEP = " ; " ;

p u b l i c s t a t i c f i n a l S t r i n g
SGR_RESET = " 0 " ;

p u b l i c s t a t i c f i n a l S t r i n g
SGR_BRIGHT = " 1 " ;

p u b l i c s t a t i c f i n a l S t r i n g
SGR_DIM = " 2 " ;

p u b l i c s t a t i c f i n a l S t r i n g
SGR_ITALIC = " 3 " ;

p u b l i c s t a t i c f i n a l S t r i n g
SGR_UNDERLINE = " 4 " ;

p u b l i c s t a t i c f i n a l S t r i n g
SGR_BLINKSLOW = " 5 " ;

p u b l i c s t a t i c f i n a l S t r i n g
SGR_BLINKFAST = " 6 " ;

p u b l i c s t a t i c f i n a l S t r i n g
SGR_REVERSE = " 7 " ;

p u b l i c s t a t i c f i n a l S t r i n g
SGR_HIDDEN = " 8 " ;

p u b l i c s t a t i c f i n a l S t r i n g
SGR_CROSSEDOUT = " 9 " ;

p u b l i c s t a t i c f i n a l S t r i n g
ESC_NORMAL =
ESC_PREFIX ;

}

Listing 2: Code snippet classified as challenging by
LFR. This code consists of a function which executes
an Oracle query and returns a scalar value. As seen
from the code, it contributes significantly to enhanc-
ing the model’s coding capabilities as compared with
Listing A.3.

/ / / <summary>
/ / / E x e c u t e s an O r a c l e que ry t h a t

r e t u r n s a s i n g l e s c a l a r v a l u e
as t h e r e s u l t .

/ / / </ summary >
/ / / <param name=" commandText ">The

O r a c l e que ry t o e x e c u t e < /
param >

/ / / <param name=" p a r a m e t e r s ">
O p t i o n a l p a r a m e t e r s t o p a s s t o

t h e query < / param >
/ / / < r e t u r n s >The r e s u l t o f t h e

que ry as an o b j e c t < / r e t u r n s >
p u b l i c o b j e c t QueryValue ( s t r i n g

commandText , IEnumerab le
p a r a m e t e r s )

{
o b j e c t r e s u l t ;

i f ( S t r i n g . I sNul lOrEmpty (
commandText ) )

{
throw new

ArgumentExcep t ion ( "
Command t e x t c a n n o t be

n u l l o r empty . " ) ;
}

t r y
{

ensu reConne c t i onOpen ( ) ;
v a r command =

createCommand (
commandText ,
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p a r a m e t e r s ) ;
r e s u l t = command .

E x e c u t e S c a l a r ( ) ;
}
f i n a l l y
{

e n s u r e C o n n e c t i o n C l o s e d ( ) ;
}

r e t u r n r e s u l t ;
}

Similarly, we also provide examples of question-
answer pairs from StackExchange which were dis-
carded and retained in the Focus stage of the Llama
pretraining in Listings A.3 and A.3 respectively.

Listing 3: Question-answer pair from StackExchange
classified as easy by LFR. The question revolves around
a process in PayPal which does not contribute as much
to the answering capability or world knowledge of the
model.

Q: PayPa l IPN $_POST [ ’ t x n _ i d ’ ]
n o t s e t . I ’m u s i n g t h e PayPa l
sandbox t o do a s u b s c r i b e
b u t t o n , and t h e n when I g e t
t h e IPN r e s p o n s e f o r a
s u b s c r i p t i o n o r a s u b s c r i p t i o n

c a n c e l l a t i o n $_POST [ ’ t x n _ i d ’ ]
i s n e v e r s e t .

So I don ’ t know how t o i d e n t i f y
t r a n s a c t i o n s t o on ly a c c e p t
un iq ue ones .

Thanks !
EDIT : f o r example , a l l t h e i n f o

t h a t I have i n POST f o r a
s u b s c r _ c a n c e l a r e :

amount1 , amount3 , a d d r e s s _ s t a t u s ,
s u b s c r _ d a t e , p a y e r _ i d ,

a d d r e s s _ s t r e e t , mc_amount1 ,
mc_amount3 , c h a r s e t ,
a d d r e s s _ z i p , f i r s t _ n a m e ,
r e a t t e m p t ,
a d d r e s s _ c o u n t r y _ c o d e ,
address_name , n o t i f y _ v e r s i o n ,
s u b s c r _ i d , custom ,
p a y e r _ s t a t u s , b u s i n e s s ,
a d d r e s s _ c o u n t r y , a d d r e s s _ c i t y ,

v e r i f y _ s i g n , p a y e r _ e m a i l ,
b t n _ i d , l a s t_name ,
a d d r e s s _ s t a t e , r e c e i v e r _ e m a i l ,

r e c u r r i n g , t x n _ t y p e ,
item_name , mc_currency ,

r e s i d e n c e _ c o u n t r y , t e s t _ i p n ,
p e r i o d 1 , p e r i o d 3 ,
c o r r e l a t i o n _ i d .

A: Accord ing t o Tab le 2 . Summary
of s u b s c r i p t i o n v a r i a b l e s :

For s u b s c r i p t i o n v a r i a b l e s , t h e
t r a n s a c t i o n ID ( t x n _ i d ) i s
on ly a v a i l a b l e f o r USD Payment

and Mul t i − Cur rency Payment
t r a n s a c t i o n t y p e s ( t x n _ t y p e ) .

As e xpec t ed , PayPa l w i l l n o t send
t h e t x n _ i d t o your IPN f o r

t h e t r a n s a c t i o n type ,
s u b s c r _ c a n c e l , and w i l l on l y
send t x n _ i d i f t h e t r a n s a c t i o n

t y p e i s s u b s c r _ p a y m e n t .

For f u r t h e r e x p l a n a t i o n on which
v a r i a b l e s a r e s e n t t o your IPN
URL based on your t r a n s a c t i o n

, p l e a s e check o u t IPN and PDT
V a r i a b l e s .

Have you checked $_REQUEST[ ’
t x n _ i d ’ ] a s t h i s may be s e n t
t o your s e r v e r v i a GET .

Listing 4: Question-answer pair from StackExchange
classified as challenging by LFR. The question revolves
around solving an ODE which contributes more to the
learning of the model than Listing A.3.

Q: P a s s i n g a d d i t i o n a l i t e r a t i o n −
d e p e n d e n t i n p u t s t o ode45

I ’m t r y i n g t o s o l v e a
d i f f e r e n t i a l e q u a t i o n u s i n g
t h e ode45 f u n c t i o n . C o n s i d e r
t h e f o l l o w i n g code ,

[ t1 , X2 ] = ode45 (@( t , x ) fun ( t , x , C1 ,
C2 , C3 , C4 ) , t0 , X01 ) ;

where p a r a m e t e r s C1 , C2 , C3 , and
C4 a r e column v e c t o r s , which
s h o u l d be a v a i l a b l e t o t h e
f u n c t i o n t h a t ode45 i s
r e f e r r i n g t o ( fun .m) .

I want t h e v a l u e s t o change a f t e r
e v e r y i t e r a t i o n , so f o r

example , a t t h e b e g i n n i n g t h e
e n t r y o f C1 I want i s C1 ( 1 ) ,
i n t h e n e x t i t e r a t i o n i t ’ s C1
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( 2 ) , e t c .
How can I implement t h a t ?

A: You may have n o t i c e d t h a t t h e
o f f i c i a l docs a r e n o t t o o
h e l p f u l i n t h i s s c e n a r i o ( a s
t h e y p r e t t y much f o r c e you t o
use g l o b a l v a r i a b l e s − which
i s doab le , b u t d i s c o u r a g e d ) .

I n s t e a d , I ’ l l show you how t h i s
can be done wi th c l a s s e s and
f u n c t i o n h a n d l e s . C o n s i d e r t h e

f o l l o w i n g :

c l a s s d e f SimpleQueue < h a n d l e
%SIMPLEQUEUE A s i m p l e FIFO d a t a

s t r u c t u r e .

p r o p e r t i e s ( Access = p r i v a t e )
d a t a
p o s i t i o n

end

methods ( Access = p u b l i c )
f u n c t i o n o b j = SimpleQueue (

i n p u t D a t a )
%SIMPLEQUEUE C o n s t r u c t an

i n s t a n c e o f t h i s c l a s s
o b j . d a t a = i n p u t D a t a ;
r ewind ( o b j ) ;

end % c o n s t r u c t o r

f u n c t i o n o u t = pop ( obj ,
howMany )

%POP r e t u r n t h e n e x t
howMany e l e m e n t s .

i f n a r g i n < 2
howMany = 1 ; % d e f a u l t

amount o f v a l u e s t o
r e t u r n

end
f i n a l P o s i t i o n = o b j .

p o s i t i o n + howMany ;
i f f i n a l P o s i t i o n > numel (

o b j . d a t a )
e r r o r ( ’ Too many e l e m e n t s

r e q u e s t e d ! ’ ) ;
end
o u t = o b j . d a t a ( o b j . p o s i t i o n

+ 1 : o b j . p o s i t i o n +
howMany ) ;

o b j . p o s i t i o n =

f i n a l P o s i t i o n ;
end % pop

f u n c t i o n [ ] = rewind ( o b j )
%REWIND r e s t a r t s t h e

e l e m e n t t r a c k i n g
% S u b s e q u e n t c a l l s t o pop ( )

s h a l l r e t u r n e l e m e n t s
from t h e b e g i n n i n g .

o b j . p o s i t i o n = 0 ;
end % rewind

end % methods
end % c l a s s d e f

How t o use t h i s ? Simple :
C1q = SimpleQueue ( C1 ) ;
C2q = SimpleQueue ( C2 ) ;
C3q = SimpleQueue ( C3 ) ;
C4q = SimpleQueue ( C4 ) ;

[ t1 , X2 ] = ode45 (@( t , x ) fun ( t , x ,
@C1q . pop , @C2q . pop ,

@C3q . pop , @C4q . pop ) , t0 , X01 ) ;

As you can see , i n s i d e fun we use
C1q ( ) i n s t e a d o f C1 .

A.4 Sensitivity Study

In this section, our goal is to understand the effects
of more aggressive focus, revision, and learning
strategies than the training strategy presented in the
paper. Here, we vary the values of hyperparame-
ters p1, s1, p2, p3, and reps and study the effects
on the downstream task perplexity. Note that the
GPT-2 models used a four phase training process.
Specifically, we aim to answer the following two
questions using the GPT-2 models:

1. What is the impact of not reintroducing the
discarded data samples?

2. What is the impact of the degree of pruning in
Phases 2 and 4?

To answer the first question, we pretrain a 124M
parameter GPT-2 model without the reintroduction
of data blocks in Phase 3, and use the reduced sub-
set from Phase 2 for the rest of the training. Then,
we finetune for downstream language modeling
tasks similarly and compared the perplexities us-
ing LFR in Table 8. This training strategy which
removes Phase 3, is labeled as no-reintro. Next,
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to answer the second question, we pretrain a 124M
parameter GPT-2 model using LFR but increase the
degree of pruning in Phase 2 from 50% to 70%, i.e.,
reduce the training subset to 30% of the original
size. This aggressive training strategy is labeled as
aggr-2.

We observe that both aggressive training strate-
gies do not work as well as the original method.
However, we continue to explore more automated
ways of deciding the training schedule for different
model families as part of our future work.

Model WikiText-2 WikiText-103 LAMBADA 1BW
no-reintro 23.24 25.76 17.27 36.02

aggr-2 23.91 27.00 21.11 38.62
LFR 19.81 22.49 16.61 32.27

Table 8: Downstream task perplexities with more ag-
gressive training strategies.

A.5 Analysis on Dropped and Retained Data
Blocks - GPT-2

In this section, our goal is to characterize the data
points retained and dropped during pretraining by
LFR in Phases 2 and 4 across the training time
and model size. Specifically, we aim to answer the
following questions:

1. What types of data blocks are learned ear-
lier in the training process compared to those
learned later?

2. Are similar data blocks considered learned
and dropped in Phases 2 and 4?

3. Are the dropped data blocks similar across
model sizes?

4. Are the data blocks dropped similar to those
retained at any given training phase?

To answer the first question, we printed out the
texts dropped and retained at different training
phases. Tables 12 and 14 show text blocks dropped
in Phases 2 and 4 by the 345M and 124M parameter
models, while Tables 13 and 15 show data blocks
retained. By reading through the texts, we notice
that the model first learned conversations and per-
sonal anecdotes, before being able to retain factual
information. We provide a more detailed analysis
of the learning process in Section A.6.

In order to answer questions 2-4, we recorded
only the IDs of dropped data blocks during Phases
2 and 4 for both the GPT-2 124M and GPT-2 345M

models, totaling 4 lists of dropped IDs. We then
load the recorded data blocks and embed them into
a higher dimensional space using the GPT-2 tok-
enizer. Considering that there is a total of 8.7M
data blocks (9B tokens divided into blocks of 1024
tokens), we cluster the embeddings using k-means
clustering with k = 270 to reduce the analysis
space and complexity. Finally, for each model, we
compute the cosine similarity for all combinations
of the embeddings of dropped data blocks across
training phases and visualize them using a heatmap.
These heatmaps plot the cosine similarity values
(ranging between 0 and 1) such that lighter values
(closer to 1) indicate higher similarity.

Figure 7 shows the similarity of dropped data
blocks across the time scale (Phase 2 shown on the
X-axis and Phase 4 shown on the Y-axis) for the
124M (left) and 345M (right) parameter models.
We find that there is a higher similarity in the data
points dropped by the 124M parameter model in
Phases 2 and 4 than in the case of the 345M param-
eter model (mean, variance, and standard deviation
are provided in Table 9). This behavior signals that
the lower capacity of the 124M parameter model
inhibits its learning process in Phase 3, such that it
finds similar points confusing in Phases 2 and 4. In
contrast, the 345M parameter model learns the data
blocks it found confusing in Phase 2 by focusing
on them, and moves on to learning new complex
blocks by Phase 4.

We conduct a similar study in order to character-
ize the similarity in data blocks across model sizes.
Figure 8 plots the cosine similarity heatmap for the
data blocks dropped by the 124M parameter model
(X-axis) and those dropped by the 345M parameter
model (Y-axis) in Phase 2. The mean, variance,
and standard deviations of the cosine similarity are
0.38, 0.15, and 0.023, respectively. This indicates
that the data blocks found easy and dropped in
Phase 2 by both models display a moderate level
of similarity, but also differ significantly.

Finally, we observe the cosine similarity of data
blocks dropped and retained during phase 4 for the
124M (left) and 345M (right) parameter models in
Figure 9. The mean, standard deviation, and vari-
ance are detailed in Table 10. The smaller model
displays greater similarity (lighter values in the
heatmap) between the dropped and retained blocks
than the larger model. We hypothesize that the
larger model can perform reasonably well across
similar data points, but struggles with very differ-
ent complex blocks by the fourth training phase.
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GPT-2 124M Dropped Data Blocks in Phase 2
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GPT-2 345M Dropped Data Blocks in Phase 2
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Figure 7: Cosine similarity heatmaps for dropped data blocks during phases 2 and 4 of pretraining for the GPT-2
124M (right) and 345M (left) models. The smaller model displays greater similarity in dropped data blocks over
time (lighter color), indicating that it remained uncertain about similar data points than the larger model.

Model Mean Std Variance
GPT-2 124M 0.45 0.20 0.04
GPT-2 345M 0.30 0.12 0.01

Table 9: Mean, standard deviation (std), and variance
of cosine similarity matrices for dropped data blocks
across time scale (Phase 2 and Phase 4) for the GPT-2
124M and 345M models.

In contrast, the smaller model does not display the
same high-level of understanding (similar perplex-
ity values) on related data blocks.

To summarize, data block importance varies
across training time, and across model sizes.
Therefore, static data selection techniques (Tiru-
mala et al., 2023; Abbas et al., 2023; Kaddour,
2023; Xie et al., 2023) which select a fixed subset
to train for the entire training duration for all model
architectures do not adapt to the changing train-
ing dynamics of LLMs. Based on our analysis in
Figure 8 and 7, different data blocks are found dif-
ficult by models of different capacities at different
training instants, driving the need for dynamic data
selection methods like LFR. We detail further anal-
ysis on the selected and discarded data blocks and
demonstrate how models initially focus on learning
conversational and anecdotal data, before proceed-
ing to learn factual data in Appendix A.6.

A.6 Extended Analysis on Dropped and
Retained Data Blocks for GPT-2

In this section, we expand on the ablation study in
Section A.5 in order to better characterize the data

Model Mean Std Variance
GPT-2 124M 0.44 0.21 0.046
GPT-2 345M 0.32 0.13 0.018

Table 10: Mean, standard deviation (std), and variance
of cosine similarity matrices for dropped and retained
data blocks in Phase 4 of pretraining for the GPT-2
124M and 345M models.

Figure 8: Cosine similarity heatmap for data blocks
dropped during Phase 2 of GPT-2 124M and 345M pre-
training shows moderate similarity, indicating different
data points are considered easy by each model.

Model Mean Std Variance
GPT-2 124M 0.42 0.19 0.04
GPT-2 345M 0.40 0.18 0.03

Table 11: Mean, standard deviation (std), and variance
of cosine similarity matrices for dropped and retained
data blocks in phase 2 of pretraining for the GPT-2
124M and 345M models.
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GPT-2 124M Dropped Data Blocks in Phase 4
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GPT-2 345M Dropped Data Blocks in Phase 4

Figure 9: Cosine similarity heatmaps for dropped and retained data blocks during Phase 4 of pretraining for the
GPT-2 124M (right) and 345M (left) models.

Become a fan of Slate on Facebook. Follow us
on Twitter.The first time I crocheted a soccer
ball was on the occasion of the 2010 World Cup.
It was being held on the continent of Africa,
and I thought the African Flower hexagon motif
was the perfect vehicle for a crochet soccer ball
celebrating the continent’s first time hosting the
World Cup: This time around, instead of using
all 9000 of my favorite colors, I limited myself
to the colors of the flags of the thirty-two coun-
tries that had made it to the final rounds of the
World Cup competition, and I did my best to
incorporate the designs of their flags into the
thirty-two hexagons and pentagons of a soccer
ball.
ML-77 Missile Launcher: Based on existing
technology, the ML-77 is a rapid-fire missile
launcher using seeking projectiles. Each projec-
tile features a friend-or-foe recognition system,
ensuring it will find a hostile target even if the
user’s aim is not completely accurate. The lock-
ing mechanism of the ML-77 allows the shooter
to ignore cover and line of sight when shooting
at locked on enemies, though an attack roll is
still required. Locking on to an enemy requires
a move action when the enemy is in line of sight
and lasts for the rest of the encounter, or until a
new target is locked.

Table 12: Examples of text dropped by the 345M model
in phase 2 (top) and phase 4 (bottom).

Figure 10: Cosine similarity heatmap for dropped data
blocks during Phase 4 of GPT-2 124M and Phase 2 of
the 345M model.

blocks considered easy / hard.
Tables 12 and 14 provides examples of text

blocks dropped in Phases 2 and 4 by the 345M and
124M parameter models respectively. Similarly,
Tables 13 and 15 provide examples of data blocks
retained by the models in Phases 2 and 4. We
printed out and went over all the text dropped and
retained in both Phases, and notice that text con-
sidered easy in phase 2 was more conversational,
and those considered easy in phase 4 were more
factual. This might indicate that the model first
learned conversations and personal anecdotes, be-
fore being able to retain factual information. These
findings are further corroborated by the examples
of data retained in both phases. We are working on
further analysis across different model families and
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sizes to strengthen this understanding.
Next, we continue the analysis of the cosine sim-

ilarity heatmaps evaluated across training time and
model parameter scales presented in Section A.5.
Here, we answer the following questions:

1. Are there similarities in the data blocks con-
sidered easy and dropped in Phase 4 of train-
ing of the 124M parameter model with those
considered easy and dropped by the 345M
parameter model in Phase 2?

2. Are the data blocks dropped similar to those
retained at any given training phase? Note
that Section A.5 presented this analysis only
for Phase 4 of the 124M and 345M parameter
models in Figure 9.

Figure 10 depicts the cosine similarity heatmap
for the data blocks dropped by the 124M parame-
ter model in Phase 4 (X-axis) with those dropped
by the 345M parameter model in Phase 2 (Y-axis).
The mean, standard deviation, and variance of the
similarity are 0.43, 0.18, and 0.03 respectively. In
contrast, the mean cosine similarity of data blocks
dropped in Phase 2 of pretraining of both the mod-
els was 0.38 (Section A.5 and Figure 8). This indi-
cates that the smaller model "catches up" with the
knowledge accumulated by the larger model, and
considers similar block easy in Phase 4 as those
considered easy by the larger model in Phase 2.

Next, we plot the cosine similarity heatmap for
the dropped and retained data blocks in Phase 2 for
the 124M (left) and 345M (right) parameter mod-
els. The mean, variance, and standard deviations
of the similarity are shown in Table 11. Observing
the mean similarity value and heatmap in Table 10
and Figure 9, we find that the cosine similarity
for dropped and retained data blocks is higher in
Phase 2 than Phase 4 in case of the 345M parameter
model. In contrast, the value remains high in both
Phases for the 124M parameter model. This find-
ing indicates that both the smaller and larger model
start the training by being confused about similar
data blocks. However, the larger capacity of the
345M parameter model allows it to learn the dataset
well in Phases 2 and 3, and move on to more com-
plex data blocks in Phase 4 (thus reducing the mean
similarity in Phase 4). The smaller model continues
remaining unsure about similar data blocks. Since
we observed that the smaller model "catches up"
with the training of the larger model (in Figure 10),

we hypothesize that the smaller model will eventu-
ally display similar behaviour as the larger model
once trained for longer iterations.
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Unofficial reports claimed the car was powered
by a 95kW 1.5-litre non-turbo petrol engine but
Tada didn’t confirm. When asked what pow-
ers the S-FR Tada revealed he was considering
three choices. "When you see the S-FR concept
I suppose you imagine it is a 1.5-litre car but
nowadays I can choose many kind of engines,"
he explained. "Downsized turbo, 1.5-litre natu-
rally aspirated and something additional as well.
Now we are thinking which one is the best en-
gine for a small sports car." Tada also admitted
that the company is unlikely to turn to a partner
like it did with Subaru for the 86/BRZ or the
new ’big brother’ sports car with BMW.
In April, MYIR released a Linux-powered MYS-
6ULX single board computer, which was no-
table for being available in two different ver-
sions using NXP’s low power, Cortex-A7 i.MX6
UltraLite (UL) or the more affordable, and al-
most identical i.MX6 ULL SoC. Now, MYIR
has released an “MYB-6ULX Expansion Board”
designed to stack onto either model. The
$21.20 accessory adds a second 10100 Ethernet
port to the MYS-6ULX, as well as new CAN,
RS485, audio, micro-USB, RTC, and camera
functions. MYB-6ULX Expansion Board with
MYS-6ULX (left) and detail view (click im-
ages to enlarge). The MYB-6ULX Expansion
Board has the same 70 x 55mm dimensions as
the MYS-6ULX, which is available in two mod-
els: The i.MX6 UL based MYS-6ULX-IND
has -40 to 85°C support instead of 0 to 70°C,
and the i.MX6 ULL based MYS-6ULX-IOT fea-
tures a USB-powered WiFi radio. The 4-layer
expansion board runs on 5V power, and shares
the industrial temperature support of the IND
model.

Table 13: Examples of text retained by the 345M model
in Phase 2 (top) and Phase 4 (bottom).

In the book, the mythical California is ruled by
Queen Califa and populated only with female
warriors who brandish gold weapons. They even
harness their animals in gold because it is the
only mineral on the island. The legend of Cal-
ifa and her island was well known among New
World explorers. In 1536 when Hernán Cortéz
arrived in Baja California, he believed he had
landed on the legendary island. Over three hun-
dred years later gold was discovered in Califor-
nia, making the legend partially true and earning
the state its nickname: The Golden State.
Segregated Witness, defined by Bitcoin Im-
provement Proposal 141 (BIP141), was de-
ployed using an activation mechanism (BIP9)
that requires 95 percent of all miners (by hash
power) to signal support for the upgrade within
the span of a two-week difficulty period. That’s
at least 1916 blocks within 2016 blocks, to be ex-
act. This threshold has just been reached. While
the current difficulty period will not end until
tomorrow, all blocks in this difficulty period are
signaling support for the upgrade so far. This
now totals over 1916 of them.

Table 14: Examples of text dropped by the 124M model
in Phase 2 (top) and Phase 4 (bottom).
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to the GUI installer. Most notably there is no
support for configuring partition layout, storage
methods or package selection. Please refer to
the official documentation for details. Here you
can find some useful information on creating
and using kickstart files which can be used to
perform advanced configuring without the need
for the GUI installer. The message "Insufficient
memory to configure kdump!" appears during
install. This is a known issue which appears on
systems with less than 2 GB RAM. This can be
ignored. Content for both the i386 and x86_64
architectures is split into two DVDs. We have
tried to get all basic server and basic desktop
installs only from DVD-1. Make sure that you
setup correctly the selinux context of the public
key if you transfer it to a CentOS 6 server with
selinux enabled.
Once you signed up, you can either click on the
Todo tab or the sign in link to gain access to
the application. Note that if you are selecting
sign in in the same session in which you signed
up, you will automatically sign in with the same
account you used for signing up. If you are
signing in during a new session, you will be
presented with Azure AD’s credentials prompt:
sign in using an account compatible with the
sign up option you chose earlier (the exact same
account if you used user consent, any user form
the same tenant if you used admin consent). If
you try to sign-in before the tenant administrator
has provisioned the app in the tenant using the
Sign up link above, you will see the following
error.

Table 15: Examples of text retained by the 124M model
in phase 2 (top) and phase 4 (bottom).
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Abstract

Despite being ubiquitous in natural language,
collocations (e.g., kick+habit) incur a unique
processing cost, compared to compositional
phrases (kick+door) and idioms (kick+bucket).
We confirm this cost with behavioural data as
well as MINERVA2, a memory model, sug-
gesting that collocations constitute a distinct
linguistic category. While the model fails to
fully capture the observed human processing
patterns, we find that below a specific item fre-
quency threshold, the model’s retrieval failures
align with human reaction times across con-
ditions. This suggests an alternative process-
ing mechanism that activates when memory
retrieval fails.

1 The Curious Case of Collocations

From killing time and playing dead to running
baths and making beds, word combinations with
semi-compositional meanings are ubiquitous in hu-
man language (Cowie, 1998). Often referred to as
collocations, these idiosyncratic lexical elements
comprise one word used in its literal sense and
another in its figurative sense, constrained by an ar-
bitrary restriction on substitution (Mel’čuk, 2003;
Howarth, 1998). Thus, one can raise questions
or lift bans, but neither #lift questions nor #raise
bans. Collocations are syntactically well formed,
but deviate from or violate the expected semantic
representation (Culicover et al., 2017). To illustrate,
the verb kill prototypically requires an animate ob-
ject, so one can kill bugs and kill trees, but not *kill
books. Yet one can kill time, hope, and dreams.
Collocations are the largest subset of formulaic lan-
guage (Barfield and Gyllstad, 2009) with many be-
ing cross-linguistically attested (Yamashita, 2018).
It is hardly surprising, then, that proper knowl-
edge and use of such units provides fluency and id-
iomaticity to the language user (Pawley and Syder,
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1983; Durrant and Schmitt, 2009). Yet, they pose
an enormous hurdle to second-language learners
and machines.

According to Howarth (1998), human lan-
guage lies on a theoretical continuum of semantic
compositionality—the degree to which the mean-
ing of a phrase can be derived from the mean-
ing of its constituent parts and their syntactic re-
lations (Frege, 1892). Fully compositional com-
binations (e.g., chase rabbits, chase thieves, etc.)
and fully non-compositional figurative idioms (e.g.,
chase one’s tail)1 lie on extreme ends of the spec-
trum. Semi-compositional collocations (e.g., chase
dreams, chase money, etc.) lie in between. The
psychological validity of this continuum has been
tested with the expectation that a decrease in com-
positionality is directly proportional to a decrease
in processing time (Gyllstad and Wolter, 2016).
However, empirical evidence from both first (L1)
and second (L2) language speakers shows that col-
locations are processed slower and less accurately
than fully compositional combinations (Gyllstad
and Wolter, 2016; de Souza et al., 2024), and fully
opaque and non-compositional figurative idioms
(e.g., break the ice) are processed faster and more
accurately than compositional combinations (e.g,
break the cup) (Carrol and Conklin, 2020; Tabossi
et al., 2008).

These disparities are also seen in evidence from
L2 acquisition2. Research shows that colloca-

1It is important to note that (Howarth, 1998) also spec-
ifies a fourth category called "pure idioms" (e.g., blow the
gaff, take a leak, shoot the breeze). These do not possess
well-specified literal meanings (see Mueller and Gibbs, 1987,
for further reading) and comprise a very small subset of for-
mulaic language occurring quite infrequently (Grant, 2005).
Furthermore, most of the studies in this area focus on figura-
tive idioms that have an additional literal reading (e.g., kick
the bucket). Therefore, in order to constrain the scope of this
paper, we limit our discussion to figurative idioms.

2Note that collocations as a distinct linguistic class have
largely been ignored in L1 acquisition research and little is
known about the mechanisms behind a child’s acquisition of
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tions are a major hurdle for second language
(L2) learners—be they early sequential bilinguals
(Nishikawa, 2019; Riches et al., 2022) or adults
(Yamagata et al., 2023; Sonbul et al., 2024), even at
high proficiency levels (Wolter and Gyllstad, 2013;
Tsai, 2020). In contrast, idioms are learned better
and used more accurately than collocations (Fiora-
vanti et al., 2021). Cast under the broader term of
conceptual metaphor (Lakoff and Johnson, 1980),
collocations are also found to be challenging for
NLP systems (Liu et al., 2022; Zayed et al., 2018;
Czinczoll et al., 2022) despite the fact that the last
decade has seen immense progress (see Tong et al.,
2021; Wang et al., 2025).

The coalescing picture suggests that idioms are
processed the fastest, followed by compositional
units, and collocations the slowest. However, this
processing hierarchy has not yet been directly
tested in a within-participants design—a gap the
present study addresses. Next, we discuss how this
empirical gap is compounded by a theoretical gap.

2 Accounting for Collocation Processing

It is generally agreed upon in the language pro-
cessing literature that idioms are stored and re-
trieved from memory holistically (Carrol and Con-
klin, 2014; Noveck et al., 2023). Although there
are several theories concerning the processing of
compositional language, there is less consensus on
the matter. Being not too compositional and not too
idiomatic, collocations have occupied a theoretical
grey zone in mainstream psycholinguistics wherein
they have been conveniently ignored in favour of
a binary distinction between rules and exceptions.
As a result, researchers in second language acqui-
sition and applied psycholinguistics have drawn
on the (in)famous Past Tense Debate (Seidenberg
and Plaut, 2014) in morphological processing and
resorted to single- versus dual-route models to ex-
plain processing at the multi-word level (Wray,
2002). We explore these models and consider their
ability to account for collocational processing.

Assuming a domain-general hypothesis space,
single-route models posit that all linguistic forms
are stored in and retrieved from a single massive
associative memory system3 based on frequency of
input and use (Bybee, 2012; Ambridge and Lieven,
2011). The more often a unit is encountered and/or

collocations over development (see Handl and Graf, 2010).
3Or that all forms are processed equally as in a connection-

ist network (see McClelland and Rumelhart, 1985).

used, the better it is entrenched in memory (Div-
jak, 2019; Langacker, 1987). Eventually, this leads
to automatization—pure retrieval from memory4

(Bybee, 2006) which makes processing fast and
effortless. Positing such a homogenous mechanism
makes for a parsimonious theoretical account of our
language abilities, in particular, and our cognition
in general. However, human memory is not only
limited in capacity (Christiansen and Chater, 2008)
but is also unstable (Kornell and Bjork, 2009). We
do not store everything we encounter, nor do we re-
member everything we do store. More importantly,
recall that behavioural evidence points to colloca-
tions incurring a processing cost versus compo-
sitional units even when frequency-matched (see
de Souza et al., 2024). While memory undoubtedly
plays an important role in language processing,
it does not provide a satisfactory account for the
processing cost of collocations which occur quite
frequently (Barfield and Gyllstad, 2009).

The dual-route model assumes a domain-
specific hypothesis space, differentiating between
words and rules (Pinker, 1991). Regular word
forms are thought to be computed analytically (e.g.,
walk → walk + ed, scratch→ scratch + ed) by
way of rules, while irregular word forms (e.g., run
→ ran, think→ thought) are processed via holistic
storage and retrieval from memory (Pinker, 2013).

This theoretical distinction between computation
and storage is a practical trade-off between two
independent cognitive processes—procedural com-
putation and declarative memory (Pinker and Ull-
man, 2002). More rule-based computation means
less storage. More storage means less computation.
Positing such a heterogenous mechanism makes
for a persuasive theoretical account of how human
language can be infinitely compositional despite
our limited cognitive capacities (O’Donnell et al.,
2009; Galke et al., 2024). The dual-route expla-
nation is used to account for formulaic language
processing as a whole, i.e., it does not distinguish
between the various subsets of multi-word units
such as idioms, phrasal verbs, binomials, etc. (see
Wray, 2002, 2008; Sidtis, 2020). All formulaic lan-
guage is thought to be stored, while compositional
language is computed on the fly. Memory retrieval
is faster than analytic processing (Logan, 1997;
Dasgupta and Gershman, 2021), therefore formu-
laic language is thought to be processed faster

4See Logan and Etherton (1994) for a domain-general
cognitive account of automatization.
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than non-formulaic language (Carrol and Conklin,
2014; Vilkaite and Schmitt, 2019). This is empir-
ically consistent across a variety of tasks only in
the case of fully non-compositional units like id-
ioms (Noveck et al., 2023). However, dual-route
hypotheses make a binary distinction between com-
positional and formulaic language and ignores the
effect of frequency on computation and retrieval. If
collocations are frequent and retrieved from mem-
ory, the processing cost they incur remains unac-
counted for.

3 The Present Study

We begin by addressing the empirical gap laid out
in Section 1 and test whether collocations incur a
processing cost relative to idioms and fully com-
positional phrases, as suggested by prior literature.
To this end, we ask: Do collocations take longer to
process than idioms and compositional items? We
extend de Souza et al. (2024) by testing L1 English
speakers on an acceptability judgement task (AJT)
using stimuli from all three conditions and analyse
reaction times (RTs) and accuracy. We consider
three competing predictions:

Under a single-route account, frequency ef-
fects should dominate: idioms should be retrieved
fastest, followed by collocations and then com-
positional items. Under a dual-route account,
idioms and collocations—both stored, familiar
units—should be processed similarly and faster
than compositional phrases, which require compu-
tation. However, given prior findings, we predict
that human participants will process idioms fastest,
followed by compositional phrases, with colloca-
tions being the slowest—-even though collocations
are often more frequent than compositional items
in our dataset (see Appendix A).

Furthermore, based on the review in Section 2,
it would be uncontroversial to say that memory is
critical to all forms of language processing (see
also Divjak, 2019; Divjak et al., 2022; Corballis,
2019). It encapsulates single-route processes and is
an integral component of dual-route models. Build-
ing on this foundational role of memory, we sim-
ulate memory retrieval using a well-established
frequency-based mechanistic model of memory—
MINERVA2 (Hintzman, 1984), modified to incor-
porate two key factors known to influence collo-
cational processing: frequency (Wolter and Gyll-
stad, 2013) and semantics (Gyllstad and Wolter,
2016; Fioravanti et al., 2021). We adopt a distribu-

tional semantic framework (Landauer and Dumais,
1997; Mikolov et al., 2013) and use contextualized
embeddings from Sentence-BERT (Reimers and
Gurevych, 2019). We modify MINERVA to sim-
ulate RTs and load its memory according to the
frequency of the stimuli in the corpus. We explore
successful and failed retrievals to assess their influ-
ence on the processing signatures of different item
conditions under a pure memory-based model. Our
central research question is:

To what extent can pure memory retrieval ac-
count for processing differences observed in L1
English speakers across idioms, collocations, and
compositional phrases?

Here, we expect MINERVA2 to show differences
across conditions primarily as a function of fre-
quency, with no added processing cost for colloca-
tions. In any case, if retrieval alone were sufficient
to account for human processing trends, the model
should mirror the human patterns consistent with a
single-route account. If not, the model will allow
us to probe what aspects of human performance
can be explained by memory alone, and where
memory-based retrieval may fall short.

4 Collocations Incur a Processing Cost

4.1 Methodology

Stimuli de Souza et al. (2024) introduced a stim-
ulus set consisting of 100 Verb-Noun collocations
(e.g., spill secrets) and 100 compositional Verb-
Noun combinations containing the same verb as
the collocation (e.g., spill water). We attempted
to augment this stimulus set with a matching fig-
urative idiom (e.g., spill the beans) for each verb
with the help of the ‘word sketch’ function in The
Sketch Engine’s enTenTen21 corpus (Kilgarriff
et al., 2024). However, we were only able to iden-
tify idioms for 82 verbs in the dataset resulting in
a final dataset of 246 target items (1 collocation,
one composition, and one idiom for each of the
82 verbs). 82 baseline items, nonsense Verb-Noun
combinations (fry knob), were created to use as dis-
tractors in the experiment. The dataset was divided
into 3 folds of 82 items wherein no two items had
the same verb. As expected, there are statistically
significant differences between the mean frequen-
cies of all three constructions with idioms being
the most frequent, followed by collocations and
compositional items being the least frequent group
(see Appendix A for more details). We account
for this discrepancy by including frequency as a
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covariate in our statistical models.

Participants & Task A total of 186 L1 English
speakers (F = 112; M = 71; NB = 3) were
recruited using Prolific. They were remunerated
£1.50 for their participation. The mean age of the
sample was 38.6 years (SD = 10.81). They were
asked to judge whether or not the word combina-
tion presented to them sounded acceptable (i.e.,
would they as L1 English speakers use this word
combination in their everyday speech). They were
asked to respond as quickly and accurately as pos-
sible, by pressing the ‘y’ key for yes or the ‘n’ key
for no. During testing, each participant saw 164
items: 82 target items and 82 distractors. Items
were presented in an individualized random order.
A fixation cross with an inter-stimulus interval of
350 ms was presented between trials. Trials timed
out at 8,000 ms if no decision was taken.

Data Pre-processing Data pre-processing was
carried out using R version 4.4.1 "Race for Your
Life" (R Core Team, 2024). Due to an error in data
collection, data of four participants were replaced.
We also remove all incorrect trials for reaction time
analyses (2, 752; see Appendix B). We then elimi-
nated responses below 450 ms and responses over
3.5 standard deviation from the grand mean includ-
ing time-outs. These outliers accounted for 1.484%
of the total data (n = 30, 504 including distractors).
In terms of accuracy, all participants scored above
50%. However, we found 4 items with a mean accu-
racy of less than 50%. We eliminated those items
along with other items that comprised the same
verbs from our analyses. We do not analyse distrac-
tors (15, 252). All reaction time (RT) analyses are
conducted on this final dataset (n = 13, 369).

4.2 Statistical Modelling

We first specified a maximal model as “justified
by the design” (Barr et al., 2013). The main de-
pendent variable was the reaction times (RTs) from
the acceptability judgement task while the main
predictor variable was Condition (Compositional,
Collocation, Idiom; treatment coded, with idiom
as the reference level). Phrasal Frequency (scaled)
was included as a covariate. The maximal con-
verging random effect structure included intercepts
for Participant and Verb. The analysis model in
R syntax specified using the ’lme4’ (Bates et al.,
2015) package is: RT ∼ Condition + Phrasal
Frequency + (1 | ID) + (1 | Verb).

Figure 1: Left: mean reaction times (ms) by condition.
Error bars indicate bootstrapped confidence intervals.
Right: decile plot of reaction times by condition. Note
the differences in the y-axes.

4.3 Results

Figure 1 shows the mean reaction times (RTs) by
condition, as well as a breakdown by decile. Col-
locations have the slowest responses with a mean
of 1007.87 ms (SD = 370.84 ms) compared to
compositional items (995.32 ms, SD = 375.76
ms) and idioms (984.20 ms, SD = 365.39 ms).

Our statistical results showed a small, signif-
icant difference in RTs between compositional
items and idioms (β = 4.69;SE = 2.240; p =
0.037), suggesting that compositional units were
processed slower than idioms. A larger differ-
ence was found between collocations and idioms
(β = 13.80;SE = 1.760; p < 0.001), replicat-
ing the processing costs predicted by the litera-
ture. Unsurprisingly, Phrasal Frequency also has
a significant effect on RTs (β = −18.50;SE =
1.640; p < 0.001), corresponding to a 18.5 ms
decrease in RT for every 1 standard deviation in-
crease in phrasal frequency. In terms of accuracy,
we found no significant difference between idioms
and compositional items, but we do see a marginal
difference (p = 0.04) between idioms and collo-
cations. This is expected as all stimuli are highly
frequent and should be familiar to adult L1 speak-
ers. See Appendix B for detailed results.

5 Failures in Memory Retrieval Capture
Behavioural Trends

As a first step toward elucidating the cognitive
mechanisms underlying the processing trend that
humans display across the compositionality con-
tinuum, we investigate the extent to which we can
account for the trend with memory retrieval alone.

MINERVA is an instance-based model of
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episodic memory that has been successfully ap-
plied to many cognitive phenomena from frequency
judgements (Hintzman, 1988) to false memory
(Arndt and Hirshman, 1998). It has also been used
to model artificial grammar learning (Jamieson and
Mewhort, 2009) and, recently, to metaphor recog-
nition (Nick Reid and Jamieson, 2023).

MINERVA’s core assumptions are: (i) every item
encountered leaves a memory trace, represented as
a distributed set of features, and (ii) similar items
have similar traces. Similarities between present
and past encounters drive item-specific and parallel
memory retrieval. As a global memory model, it
encapsulates both episodic and semantic memory
which communicate with each other. On encounter-
ing a stimulus, the episodic memory sends a probe
to the semantic memory to retrieve traces from past
encounters. The familiarity of the probe is then
calculated as the sum of the values of a similarity
measure between the probe and each stored trace.

MINERVA is instantiated in a linear algebra sys-
tem. The MINERVA memory M is an n×d matrix,
each row of which contains a d-dimensional mem-
ory trace vector. When cued for retrieval with a
probe p ∈ Rd, MINERVA retrieves the represen-
tation of the probe iff the probe’s familiarity f is
greater than a threshold K ∈ [0, 1). Familiarity is
calculated by taking the cosine similarity s of the
probe to all instances stored in memory, scaling s
to reflect activation (weighting) of memory items
a over elapsed time τ , and linearly combining in-
stances in memory to compute a memory echo e.
The familiarity score at timestep τ is the cosine
similarity of the echo to the probe, following this
system of equations:

s = sim(p,M) (1)

aτ = sτ sign(s) (2)

eτ = aτM (3)

fτ = sim(eτ , p) (4)

Modelling AJT Responses with Taus (τ ) The
free parameter τ is used to accentuate differences
in similarity values (Hintzman, 1988; Nick Reid
and Jamieson, 2023). By raising the value of τ ,
higher-similarity memory traces will elicit expo-
nentially more activation, allowing those traces to
play a larger role in the overall activation profile
versus pooling a potentially large number of low-
similarity items.

Following Nick Reid and Jamieson (2023), we
depart from prior work wherein τ is kept constant

Figure 2: Illustration of how embeddings are noised
and loaded into MINERVA’s memory matrix M . Colors
depict values within a vector. Note that the noise vectors
ϵ are independently sampled for each memory trace.

for a particular experiment and model reaction
times by dynamically increasing τ for a particu-
lar probe p until a desired threshold of familiarity
K ∈ [0, 1) is reached. At this point, we take the
final value of τ as a proxy for the time required
to recognize p from memory, i.e, a proxy for reac-
tion time (RT). We set a time-out at τ = 300 after
which the next probe is presented.

In human acceptability judgements, reaction
times serve as a proxy for processing difficulty.
We implicitly model acceptability judgements in
MINERVA as a function of whether the familiarity
threshold K is reached within the allowable time
window. If the familiarity score surpasses K before
the time-out, i.e., successful recognition, we treat
this as a "yes". Conversely, if familiarity remains
below the threshold when τ = 300, we treat the
failure to retrieve as a "no" response.

5.1 Motivations & Assumptions

Collocational processing is known to be driven by
two factors: semantic transparency and frequency
(see Gyllstad and Wolter, 2016; Fioravanti et al.,
2021). Our model captures semantic transparency
by means of distributional semantics, i.e, vector
embeddings, while frequency is captured by means
of phrasal frequency in a dynamic web corpus. We
demonstrate the effect of both factors in our abla-
tions (see Section 5.4).

Semantics of Memory Traces Using distributed
vector representations as memory traces for MIN-
ERVA is well-established in the literature (Chubala
and Jamieson, 2013; Jamieson et al., 2018;
Nick Reid and Jamieson, 2023). Given that the
figurative idioms (e.g., spill the beans) also have a
compositional reading, we need a contextualized,
fine-grained vector representation to capture the
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semantics of each word combination. Therefore,
we rely on Sentence-BERT (sBERT) which pro-
vides semantically meaningful vector embeddings
for sentences (Reimers and Gurevych, 2019). To
derive the vector embedding for each of the 246
target stimuli, we follow Vulić et al. (2020). First,
we collect a set of 100 sentences of the word com-
bination5 from the enTenTen21 corpus, in which
the noun occurs as the direct object of the verb.
We feed each sentence to sBERT obtaining a set
of contextualized word embeddings representing
each word in the sentence (we perform mean pool-
ing over sub-words). Given that the higher layers
of BERT architectures are the most sensitive to
lexical semantics (Reif et al., 2019), we take our
embeddings from the last hidden layer of the model.
From each of the 100 sentences, we extract the em-
beddings corresponding to the verb and the noun
and average across them separately, resulting in
the mean contextualized representation of the verb
when paired with the noun, and of the noun when
paired with the verb. Finally, we concatenate the
mean embedding for the verb with the mean embed-
ding for the noun to form the vector representation
of our stimulus6.

Memory Frequencies & Forgetting In accor-
dance with the instance theory, MINERVA’s re-
trieval time is inversely proportional to the number
of memory traces that strongly respond to a partic-
ular probe (Nick Reid and Jamieson, 2023). There-
fore, we populate MINERVA’s memory matrix us-
ing 10, 000 items sampled proportionally to their
phrasal frequency. Following prior work, we sim-
ulate forgetting by adding zero-centered Gaussian
noise to each memory trace vector such that each
dimension of each trace has an independent proba-
bility F ∈ [0, 1) of being corrupted with noise. The
more frequent a particular item, the more traces it
will have in memory, averaging out the noise and
making high-frequency items easier to retrieve.

5.2 Simulations

To explore the extent to which simple memory re-
trieval is sufficient to reproduce processing trends
for each condition, we load the memory matrix

5Distractor items were not included in the simulations as
they are nonsense combinations, have no context sentences
and would have very low frequency in MINERVA’s memory.

6We use concatenation instead of mean pooling as our stim-
uli are all Verb + Direct Object and concatenation preserves
word order and therefore, syntactic role information. However,
see Appendix E.

as described above (see Figure 2) and test MIN-
ERVA’s recognition capabilities using a noiseless
vector embedding of the target stimulus as the
probe. To simulate N different participants who
are exposed to different samplings of items from
the same environmental distributions, as well as
different patterns of forgetting, we run each simula-
tion N=300 times with different random seeds,
re-sampling and re-noising the memory matrix
each time. We perform a thorough hyperparam-
eter sweep of activation threshold K and forget-
ting probability F . We discuss results for hyper-
parameter values K=0.99 and F=0.8, although
our results are robust across many hyperparameter
combinations (see Figure 10).

We use the same statistical model described in
Section 4 to analyse the effect of semantics and
frequency on retrieval (i.e., Tau).

5.3 Results
The results of our computational experiment are
shown in Figure 3. As MINERVA was not pre-
sented with any baseline items and as all items were
in MINERVA’s memory, it should have succeeded
at recognizing all items (Figure 3, left panel). Thus,
we first considered only successful retrievals. De-
spite being provided with meaningful embeddings
and frequencies, the model failed to capture hu-
man processing trends. Collocations were retrieved
faster than idioms (β = −0.41;SE = 0.004; p <
0.001) while compositional items were retrieved
slower than idioms (β = 0.62;SE = 0.004; p <
0.001). See Appendix C for more details. Given
the surprising results, we analyzed the model’s fail-
ures to retrieve, i.e., timeouts, on every item (see
Figure 3, right panel). MINERVA timed out on
50% of the retrievals for collocations, followed
by compositional items (38.6%), with idioms tim-
ing out the least (33.8%). A mixed-effects logistic
regression confirmed all differences between con-
ditions to be statistically significant7 (see Table 6).

7To rule out the possibility that these results are a quirk
of the MINERVA architecture, we also ran memory retrieval
simulations using the same memory matrix on the Modern
Hopfield Network (Ramsauer et al., 2021, MHN). The MHN
is a generalization of the classical Hopfield network (Hopfield,
1982) adapted to work with continuous states, and is formally
connected to the QKV attention mechanism in Transformers.
We find that the MHN displays the same characteristic pattern
of failures in at least one configuration of hyperparameters
(see Appendix D). Although our MHN results are a proof-of-
concept, given the robustness of the MINERVA findings with
respect to hyperparameters (see Figure 10) they suggest that
elevated failure rates on collocations may be a property of
associative memory retrieval writ large.
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Figure 3: Left: mean Tau (τ ) by condition for success-
ful retrievals in MINERVA. The y-axis represents mean
Tau, the model’s output which acts as a proxy for reac-
tion times. Error bars indicate bootstrapped confidence
intervals. Right: percentage of failed retrievals, i.e.,
timeouts, per condition. Note that while the pattern of
Taus on successful retrievals is different from the pat-
tern of human RTs, the pattern of timeouts per condition
matches the pattern of human RTs.

Unlike the pattern of Taus on successful retrievals,
the pattern of retrieval failures in MINERVA ap-
pears to capture the trend in human RTs across the
three conditions.

Additionally, we found that MINERVA always
succeeds at retrieving items above a high frequency
threshold (Figure 4, black line). We find a simi-
lar frequency boundary in humans (Figure 4, green
line), which lies very close to the MINERVA thresh-
old. On items above this threshold8, participants
did not show a significant difference in RT by con-
dition, while still showing a significant effect of
frequency.

5.4 Ablations

Semantics-only In the semantics-only ablation,
the model was loaded with all instances being
equally frequent. Thus, the only distinguishing
factor between the memory traces were their se-
mantics. The results are shown in Figure 5. We
visually observe that the trends for collocations
match those of the main experiment—they time out
the most, but are retrieved the fastest on successful
retrievals. However, unlike in the main experiment,
we observe that compositional items are retrieved
slightly faster and time out less frequently than id-
ioms. Investigating the cause of this discrepancy is
an interesting avenue for future work.

816 compositional, 18 collocations, 17 idioms

Figure 4: Percentage of failed retrievals (i.e., timeouts)
in MINERVA per stimulus item, as a function of the
frequency of the item. The x-axis is displayed in log
scale. The black line indicates the frequency threshold
(f = 27123) above which MINERVA times out less
than 1% of the time. The green line (f = 28000) in-
dicates the frequency threshold above which condition
stops being a significant predictor of human RTs.

Frequency-only In the frequency-only ablation,
the model was loaded with embeddings comprised
of Gaussian noise9. However, each noise-item was
sampled according to correct frequency informa-
tion. The results are shown in Figure 6. For suc-
cessful retrievals, we visually observed that idioms
and collocations were retrieved equally quickly,
whereas compositional items were retrieved slower.
This pattern also persists in the timeouts. Given that
frequency drives MINERVA’s retrieval mechanism,
this pattern of Taus and timeouts is not surprising.
Idioms—the most frequent subset—are retrieved
most easily, followed by collocations, and finally
compositional units which are the least frequent.

The results of these ablations suggest that it is the
semantics of the item traces that drive the unique
processing cost for collocations in MINERVA. Ad-
ditionally, as shown with the trends for idioms vs
compositional items, frequency dynamics mitigate
the effects of semantic dynamics, producing the
overall behaviour observed in the main experiment.

6 Discussion & Analysis

Our behavioural results confirm the processing cost
for collocations surmised from the literature. This
effect occurs despite collocations and composi-
tional items being very close in frequency (with
the balance in favour of collocations), and the par-

9We calibrate the noise to the mean and standard deviation
of the embeddings in the main condition.
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Figure 5: Left: mean Tau (τ ) by condition for success-
ful retrievals in Ablation 1, wherein frequency infor-
mation was eliminated. The y-axis represents mean
Tau, the model’s output which acts as a proxy for reac-
tion times. Error bars indicate bootstrapped confidence
intervals. Right: percentage of failed retrievals, i.e.,
timeouts, per condition in Ablation 1. Note that just as
in the main MINERVA experiment, collocations time
out much more frequently than the other conditions.

ticipants as adult L1 English speakers being highly
familiar with the items. The result is mirrored in
our computational findings. These stark differences
in processing patterns for collocations compared to
idioms and compositional items suggest that they
must be treated as a separate class of linguistic
items, and not be cast under the broad umbrella of
formulaic language.

To recap our simulation results, MINERVA’s suc-
cessful retrievals failed to reproduce the process-
ing trend observed in humans and also exhibited
many more incorrect responses, i.e., unsuccessful
memory retrievals, than humans. However, these
retrieval failures do appear to capture the key asym-
metries in human processing. Again, this is espe-
cially noticeable for collocations on which MIN-
ERVA timed out the most. We also found that
above a certain frequency threshold, MINERVA
matches human patterns. This suggests that simple
memory retrieval, as implemented in a frequency
based model of memory, is only sufficient to ex-
plain human processing trends for highly frequent
items. Below this threshold, retrieval starts to fail.
Given that MINERVA does not have any process-
ing mechanism beyond memory retrieval, it simply
times out on these items. We conjecture that at this
point humans invoke other processing mechanisms
to facilitate interpreting of the stimulus, incurring
a cost in reaction time.

The fact that collocations incur a higher process-
ing cost despite being more frequent than com-

Figure 6: Left: mean Tau (τ ) by condition for suc-
cessful retrievals in Ablation 2, wherein semantic infor-
mation was eliminated while leaving the correct item
frequency distribution. The y-axis represents mean Tau,
the model’s output which acts as a proxy for reaction
times. Error bars indicate bootstrapped confidence in-
tervals. Right: percentage of failed retrievals, i.e., time-
outs, per condition. Note that the trends in timeouts
follow the frequency distribution across the conditions.

positional items shows that single-route accounts
provide an incomplete picture. They further demon-
strate that dual-route accounts with a binary dis-
tinction between formulaic versus compositional
language are also insufficient to account for the
processing of this large and frequent subset of lan-
guage. This underscores the need for a model
which can account for a more fine-grained repre-
sentation of semantic compositionality. One such
plausible mechanism is analogical reasoning (Ed-
dington, 2000; Ambridge, 2020). Like single-route
models, this domain-general approach posits that
all linguistic units are processed by a single mech-
anism (Skousen, 1990). However, in addition to
memory retrieval, it posits on-the-fly analogy with-
out resorting to any rule-based mechanisms. On re-
ceiving an input, a memory search is undertaken to
find analogous exemplars previously experienced.
The input is then evaluated based on the degree of
similarity in order to find the most frequent cate-
gory within the found set of most similar exemplars
(Gentner and Namy, 2006).

Memory retrieval is the first step in analogical
processing (Gentner and Colhoun, 2010). Thus,
processing a sufficiently frequent item via anal-
ogy will simply resort to memory retrieval. Such a
mechanism would be invariant to the semantic com-
positionality of the item in question, as we have
seen in humans. Below this threshold, however,
proper analogical machinery comes into play.

In compositional items, both the verb and the
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noun play a prototypical role. Thus, even though
the language user may not recall this exact verb-
noun pairing from memory, it is relatively easy to
map the verb and noun to similar instances of the
same, due to the high semantic overlap between
compositional uses of the verb and the noun. In
collocations, however, the verb is not used in its
prototypical sense. Resolving the meaning of the
verb requires a much “farther” mapping, which may
involve increased search over possible abstractions
of the verb or extensive structure-mapping. Engag-
ing such machinery inevitably incurs a processing
cost with respect to compositional items (Gentner
and Namy, 2006), as reflected in RTs. Finally, id-
ioms, which cannot be processed analytically, must
be retrieved holistically irrespective of frequency.

Moreover, there is a body of evidence for the
role of analogy in metaphor comprehension (see
Morsanyi et al., 2022, for a review), child language
acquisition (see Raynal et al., 2024), and process-
ing of novel verb metaphors (King and Gentner,
2022), which are, in essence, unconventionalized
collocations. We posit that that an analogical ac-
count of language processing may provide a more
complete explanation of these findings, and that
further work should explore this proposal.

The retrieval failures for idioms may stem from
a limitation of our dataset—the fact that we only
consider figurative idioms which have a composi-
tional reading. We were unable to ascertain the
relative frequency of idiomatic versus literal read-
ings in the context sentences of every idiom in our
stimuli that we use to generate embeddings. It is
also unknown to what precise extent sBERT can ac-
curately represent idiomatic meanings, or whether
our human participants interpreted idiomatic stim-
uli in a figurative sense. Combined, these factors
suggest that the semantics of our set of idioms are
somewhat akin to our set of compositional items,
and some of the processing trends which pertain
to compositional items are inadvertently present
in the trend of responses to idioms. In line with
the holistic retrieval hypothesis, we surmise that
idioms for which the literal reading is much less fre-
quent than the idiomatic one (e.g., kick the bucket)
will tend to be processed faster and with fewer
timeouts than more ambiguous ones (e.g., hold the
key). Future work will attempt to investigate this
prediction and further augment our understanding
of idiomatic processing by including pure idioms,
i.e., those without a literal reading, in the dataset,
and employing other behavioural tasks which in-

volve presentation of items within context (e.g.,
self-paced reading).

One intriguing implication of our computational
experiment may be of interest to the NLP commu-
nity. Switching Equation 2 for aτ = softmax(τs),
MINERVA’s retrieval mechanism becomes identi-
cal to query-key-value attention in Transformers
(Vaswani et al., 2017). Here, the probe plays the
role of the query and the memory items the role
of keys and value. Increasing Tau can be consid-
ered as a mechanism for dynamically weighting
the output toward the keys which bear most similar-
ity to the query, similar to increasing the softmax
scale parameter over time. Under this formulation,
MINERVA is also a variant of the Modern Hopfield
Network with no learnable parameters (Ramsauer
et al., 2021). This wealth of connections suggests
that our findings may apply more broadly to all
attention-based methods. Given the prevalence
of collocations in language, if neural embeddings
of semi-compositional language are particularly
prone to failures in attention-based retrieval, this
may significantly impair language understanding
and generation in Transformer-based models. Fu-
ture work will attempt to mechanistically diagnose
the underlying reasons for the increased failure
rates in collocations and ascertain whether these
issues impact the performance of general-purpose
Transformer-based language models.

On a more applied level, large language models
(LLMs) as writing assistants have gained popu-
larity (Boisson et al., 2024). This has drawn at-
tention to how these models handle figurative lan-
guage like metaphors, of which collocations are
a prominent subset. While LLMs can produce
metaphors, users often note shortcomings such as
clichéd phrasing or a lack of creativity in metaphor
generation (Chakrabarty et al., 2024), perhaps re-
flecting an underlying lack of capability in inter-
preting these linguistic units. These observations
further underscore the importance of understanding
collocational processing not only in human cogni-
tion, but also in NLP systems.

Overall, we show that semi-compositional units
are a bigger “pain in the neck” (Sag et al., 2002)
than other subsets of the semantic compositionality
continuum: too complex for rote retrieval, yet too
idiosyncratic for rule-based computation. As it
stands, memory retrieval does leave something on
the table, underscoring the need for theories that
capture the graded nature of meaning and structure
in language.
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7 Limitations

• Our approach relies on contextual embeddings
to capture semantic information. However,
these embeddings do not always differentiate
clearly between compositional and idiomatic
readings. Given that our idiomatic stimuli also
have a productive reading, the same embed-
ding may be used for both literal and figurative
interpretations. Similarly, we cannot ensure
that our task is eliciting an idiomatic reading
in humans as human listeners disambiguate
based on context.

• The current dataset was not built from scratch
with frequency-matching criteria for idioms.
Frequency is a well-established predictor of
language processing and an ideal dataset
would equate or carefully control the fre-
quency distributions of idioms relative to other
word types.

• Our study exclusively examined verb–noun
(VN) collocations. While these are a critical
class of multiword expressions, little is known
about other collocational structures (e.g., ad-
jective–noun, phrasal verbs, etc.) which are
also prevalent in natural language and may
be processed differently. Extending our in-
vestigation to these additional types will be
important for assessing the generalizability of
our findings across the broader spectrum of
semi-compositional linguistic units.

• MINERVA provides a parsimonious frame-
work for modelling memory retrieval, yet it
inherently simplifies many aspects of human
cognitive processing. The model does not in-
tegrate attentional mechanisms or dynamic
contextual cues beyond the static embeddings
provided, and it does not account for develop-
mental changes in memory and language pro-
cessing. These simplifications may limit the
model’s ability to capture the full complexity
of human language processing, particularly
in cases where retrieval failures (time-outs)
interact with other cognitive processes. Our
simulations relied on specific hyperparameter
settings (e.g., activation threshold K=0.99
and forgetting probability F=0.8) that were
chosen based on qualitative assessments. Al-
though results were robust across a range of
parameter values, the possibility remains that

different parametrizations could yield differ-
ent patterns.
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A Dataset Statistics

Table 1: Descriptive statistics of phrasal frequency by
condition

Condition Mean SD N
Compositional 19374.47 30671.53 78
Collocation 21528.21 30971.42 78
Idiom 36784.68 87468.40 78

Figure 7: Item frequencies across conditions, by decile

B Human Data

Table 2: Descriptive statistics of human reaction times
(ms) by condition

Condition Mean SD N
Idiom 984.20 365.39 4462
Compositional 995.32 375.76 4423
Collocation 1007.87 370.84 4484

Table 3: Descriptive statistics of human accuracy by
condition

Condition Mean SD N
Idiom 0.93 0.25 4785

Compositional 0.92 0.27 4791
Collocation 0.94 0.24 4772

Table 4: Number of incorrect trials by condition

Condition n
Compositional 400
Collocation 464
Idiom 433
Baseline 1455
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C GLMM Results for Main Simulation

Table 5: Generalized mixed-effects regression results
for human AJT reaction times (left), and Tau, a proxy
for reaction times, simulated in MINERVA (right). MIN-
ERVA is run with K = 0.99, F = 0.8. Only correct
responses and succesfull retrievals are analysed.

Dependent variable:

RT Tau

Human MINERVA

Compositional 4.690∗∗ 0.624∗∗∗

(2.240) (0.004)

Collocation 13.800∗∗∗ −0.410∗∗∗

(1.760) (0.004)

Frequency −18.500∗∗∗ −0.541∗∗∗

(1.640) (0.004)

Constant 1,047.0∗∗∗ 5.900∗∗∗

(2.140) (0.004)

N 13,369 43,708

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

D Modern Hopfield Network
Experiments

Figure 8: Percentage of failed retrievals in the Modern
Hopfield Network. Collocations fail the most, followed
by compositional items, and idioms fail the least. This
matches the trends for the failures by condition in MIN-
ERVA, and the trend of reaction times in humans.

We suggest that our computational results per-
tain to the algorithmic implications of memory re-
trieval and are not based on a spurious quirk of the
MINERVA architecture. To reinforce this claim,
we present a proof-of-concept simulation of the
same behaviour with the Modern Hopfield Network
(Ramsauer et al., 2021, MHN).

The classical Hopfield network (Hopfield, 1982)
is a model of associative memory based on binary
states, designed for pattern completion and associa-
tive memory retrieval. MHN generalizes the Hop-
field network and the recent iterations thereof (Kro-
tov and Hopfield, 2016; Demircigil et al., 2017)
with continuous states, and introduces a corre-
sponding update rule which is closely connected to
the query-key-value attention operation in Trans-
formers.

The MHN can be configured in a number of dif-
ferent ways in order to simulate different functions,
such as pattern matching, sequence pooling, and
attention. In this simulation, we focus on the con-
figuration denoted as HopfieldLayer in Ramsauer
et al. (2021). Specifically, the model learns a static
memory matrix of size M ∈ Rn×c, where n is the
number of memory items and c is the dimension-
ality of the memory’s latent space. It also learns
projection matrices A ∈ Rd×c, B ∈ Rc×d which
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Table 6: Logistic regression results for retrieval failures. Reference Level is Idiom. Left column: MINERVA is run
with K = 0.99, F = 0.8. Right column: Modern Hopfield Network for parameters presented in Appendix D. Both
models converged but with singular fits. This was due to the (1|ID) random intercept (where ID is the random seed
for the model run) accounting for nearly 0 variance.

Dependent variable:

Retrieval Failures

MINERVA MHN

Compositional 0.68∗∗∗ 0.817∗∗∗

(0.63, 0.73) (0.71, 0.942)

Collocation 4.074∗∗∗ 1.192∗∗

(3.78, 4.39) (1.022, 1.39)

Frequency 1.61e−08∗∗∗ 1.75e−25∗∗∗
(8.68e−09, 2.98e−08) (1.22e−26, 2.53e−24)

Constant 1,047.0∗∗∗ 5.900∗∗∗

(1.02e−03, 3.58e−03) (1.03e−10, 8.25e−10)

N 70200 23400

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

project inputs into and out of the latent space, re-
spectively. Matching between inputs and memory
items is done via query-key attention in the latent
space, so a lower value for c forces the MHN to
compress more strongly.

The experimental setup is similar to that for
MINERVA, with the difference being the learn-
able nature of the model’s memory. As in Section
5.1, for each stimulus item x ∈ Rd we construct a
number of noisy versions {x′1, . . . x′i} of its vector
embedding, where i is proportional to the item’s
corpus frequency. Analogously to the MINERVA
memory matrix, our total training set for the MHN
comprises 10, 000 embeddings, with more frequent
items being more represented. Given one such
noisy embedding x′, the MHN was trained to out-
put the un-noisy source embedding x. Specifically,
it must maximize s = cosine_similarity(x̂, x),
where x̂ model output. We conjecture that to suc-
ceed on the task, the model must optimize its lim-
ited memory to map multiple noisy versions of the
same item to the item’s canonical representation.

As in the MINERVA experiments, we judge
whether the model’s retrieval was successful based
on the cosine similarity s. If s is above threshold
K, we say the retrieval is a success. Otherwise, it

is a failure. Unlike in MINERVA, there is currently
no analogue to RTs in MHN.

We ran a Bayesian hyperparameter sweep with
Hyperband early stopping (Falkner et al., 2018) to
find configurations in which the pattern of failures
across the three conditions which match human
trends. The results of one such configuration run
over 100 seeds is presented in Figure 8. As in the
MINERVA experiments, collocations fail the most,
followed by compositional items, with idioms fail-
ing the least. All differences between conditions
are statistically significant (see Table 6) when ana-
lyzed with the same model as the MINERVA fail-
ures. This matches the trends for the failures by
condition in MINERVA, and the trend of reaction
times in humans.

Please note that our parameter sweep was not
exhaustive and we cannot make any claims with
respect to hyperparameter robustness of the MHN
simulations. However, the fact that the MHN can
be shown to display the same behaviour as MIN-
ERVA in at least one case suggests that the ele-
vated retrieval failure rate of collocations may be a
property of associative memory retrieval writ large,
rather than a quirk of the MINERVA architecture.

The model hyperparameters are as follows: F =
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0.2,K = 0.971, c = 625, n = 2205. Scaling
parameter β was set to 1√

c
= 0.0016. The model

was trained for 300 epochs with batch size 16 on
one A100 GPU.

E Averaging vs Concatenating sBERT
Embeddings

In this ablation, we investigate the impact which
concatenating verb and noun embeddings has on
our modelling results. Instead of concatenating
verb and noun embeddings, we perform mean-
pooling across them, the same as we do for sub-
word tokens. As shown in Figure 9, the trends
exhibited by the model in the K = 0.99, F = 0.8
hyperparameter configuration are largely the same
as those reported in the main text.

Figure 9: Reduced hyperparameter sweep showing the
effects of mean-pooling the verb and noun embeddings
before loading them into MINERVA, instead of concate-
nating them. Note that the hyperparemeter combination
reported in the main text is K = 0.99, F = 0.8.

F Hyperparameter Sweeps for Simulation
Experiments

See next page.
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Figure 10: Results of the hyperparameter sweep for all values of activation threshold K and forgetting probability
F for our main experiment. Error bars indicate bootstrapped confidence intervals. Note the difference in scales on
the y-axis.
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Figure 11: Results of the hyperparameter sweep for all values of activation threshold K and forgetting probability
F for Simulation 2: Semantics-only wherein the matrix was loaded with all items having equal frequency. Error
bars indicate bootstrapped confidence intervals. Note the difference in scales on the y-axis.
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Figure 12: Results of the hyperparameter sweep for all values of activation threshold K and forgetting probability
F for Simulation 2: Semantics-only wherein the matrix was loaded with noised embeddings but with the correct
frequency. Error bars indicate bootstrapped confidence intervals. Note the difference in scales on the y-axis.
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Figure 13: Results of the hyperparameter sweep for all values of activation threshold K and forgetting probability
F for the Null Model wherein all the items in the matrix were loaded with noised embeddings and equal frequency.
Error bars indicate bootstrapped confidence intervals. Note the difference in scales on the y-axis.
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Abstract

From a linguistic perspective, negation is a
unique and inherently compositional opera-
tor. In this study, we investigate whether
the bert-large-cased Pretrained Language
Model (PLM) properly encodes this composi-
tional aspect of negation when embedding a
token that falls within the scope of negation.
To explore this, we train two external Multi-
Layer Perceptrons to modify contextual embed-
dings in a controlled manner. The goal is to
reverse the polarity information encoded in the
embedding while preserving all other token-
related information. The first MLP, called the
Negator, transforms a negative polarity into a
positive one, while the second, the Affirmator,
performs the reverse transformation. We then
conduct a series of evaluations to assess the
effectiveness of these operators. Our results
indicate that while the Negator/Affirmator is
functional, it only partially simulates the nega-
tion operator. Specifically, applying it recur-
sively does not allow us to recover the original
polarity, suggesting an incomplete representa-
tion of negation within the PLM’s embeddings.
In addition, a downstream evaluation on the
Negated LAMA dataset reveals that the modi-
fications introduced by the Negator/Affirmator
lead to a slight improvement in the model’s
ability to account for negation in its predictions.
However, applying the Negator/Affirmator re-
cursively results in degraded representations,
further reinforcing the idea that negation is not
fully compositional within PLM embeddings.

1 Introduction

In this work, we aim to investigate how well Pre-
trained Language Models (PLMs) handle composi-
tionality, by focusing on the possibility of defining
a “negation operator.”

From a logical and linguistic perspective, nega-
tion provides a typical example of semantic compo-
sitionalism: its effect is systematic and independent
of the specific meaning of the clause to which it

applies: negation simply reverses the truth value of
a statement.

To put it differently, the meaning of a negation
word (such as not) in a sentence does not depend
on the particular verb used in the sentence, nor on
the original polarity (i.e., whether the sentence was
initially affirmative or negative). Instead, it follows
a general rule: it systematically flips the sentence’s
polarity.

PLMs, however, do not construct the meaning
of a sentence by recursively decomposing it into
meaningful constituents. Instead, they generate
contextual embeddings, so that the representation
of a word depends on the surrounding words in
the sentence. Given this, our goal is to identify
a transformation (a function) that acts as a "nega-
tion operator" on embeddings. In other words, we
want to find a way to manipulate the numerical
representation of a word such that, after applying
this transformation, we obtain an embedding that
closely resembles what the model would have pro-
duced if the same word had occurred in a sentence
with the opposite polarity.

For example, given an affirmative sentence
like (1-a), we want to define an operation such
that, when applied to the embedding that a PLM
associates with the main verb buy in an affirmative
context (noted Vp), it yields an embedding (noted
Vp−) that is as close as possible to the embedding
that the same PLM would assign to the token buy
in a negative context (1-b) (noted Vn).

(1) a. Sam will buy a new car.
b. Sam will not buy a new car.

In the remainder of this paper, we will refer to
a pair of sentences such as (1) as a minimal pair
(keeping implicit the fact that the difference be-
tween the two sentences necessarily involves nega-
tion).

Our reasoning is as follows: if a PLM contains
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a compositional negation operator, then the differ-
ence between the embeddings Vp and Vn should
be learnable, regardless of the lexical properties of
the verb and the polarity of its context.

We therefore try in this work to learn a polarity
inversion function that can operate on verb em-
beddings and that is sufficiently general to work
on verbs whose lemmas were not seen at training,
and on verbs occurring in affirmative or negative
contexts.

We show that it is indeed possible to learn an
operator (a Negator) that produces from Vp embed-
dings new embeddings Vp− close enough to their
corresponding Vn, and such that it generalizes cor-
rectly to lemmas not seen during training. This sug-
gests that it is possible to locate in the embeddings
distinct encodings for lexical representation and
polarity. It is also possible to learn an Affirmator
that produces an appropriate embedding Vn+ even
for lemmas not seen at training (section 3). How-
ever, it turns out that these two operators cannot be
used one for another: a Negator (trained only with
embeddings occurring in affirmative contexts) does
not succeed at “inverting” the embedding of a verb
occurring in a positive context (similarly for the Af-
firmator). This indicates that they do not generalize
to a true polarity inversion operation independent
of the direction of the inversion, which is contrary
to the classical logical and linguistic interpreta-
tion of negation (they are not involutions, i.e., they
are not their own inverse: Negator(Negator(x)) ̸=
x and Affirmator(Affirmator(x)) ̸= x). On
the contrary, we show (in section 4) that they
are indeed reciprocal functions of each other:
Affirmator(Negator(x)) ≈ x.

It is worth studying further the properties of
these two operators, even though they don’t behave
exactly as is expected from a logical perspective.
Since they are not involutions, we study in section 5
the effect of their multiple application, and in par-
ticular a possible (non-linguistic) effect of "polarity
reinforcement", usable to improve the processing
of negation by a PLM.

Finally, in the last section of this paper (§ 6), we
study the impact of the integration of our Negator
into the processing pipeline of the negated LAMA
task.

Our experiments show that the integration of
the Negator leads to a slight improvement in the
model’s predictions. This suggests that modifying
embeddings with the Negator allows the language
modeling head to differentiate a little bit better be-

tween positive and negative embeddings, enabling
it to adjust its predictions more accurately. How-
ever, the operator is applied several times (“recur-
sively”), the predictions of the model become very
unnatural, which is another way to show that our
operators do not restrain their action to the strict
encoding of polarity in the embeddings.

2 Related works

Negation in PLMs The presence of contextual
polarity information in contextual embeddings gen-
erated by PLMs has been investigated by Ce-
likkanat et al. (2020), who specifically looked for
“traces” of negation. By analyzing contextual em-
beddings produced by a PLM, they showed that it is
possible to predict whether the main verb of a sen-
tence is negated or not. Building on this, Kletz et al.
(2023b) showed that the encoding of such informa-
tion is itself dependent on the syntactic position
of the token used as input, in particular whether it
falls or not within the scope of a negation.

Beyond encoding, the ability of models to con-
sider negation in their predictions within a Masked
Language Model (MLM) setup has also been ex-
plored. Kassner and Schütze (2020) and Ettinger
(2020) examined how negating the main verb of a
clause affects its truth value. Specifically, they in-
vestigated the capability of masked language mod-
els to adjust their predictions for a masked position
when confronted with factual world knowledge (Li
et al., 2016).

Kassner and Schütze (2020) constructed the
negated LAMA dataset by negating sentences from
the original LAMA dataset (Petroni et al., 2019).
They then analyzed the behavior of masked PLMs
when processing negated cloze-style sentences.
Their findings revealed a similarity between model
predictions in affirmative and negative contexts,
leading them to conclude that “PLMs do not distin-
guish positive and negative sentences.”

Similarly, Ettinger (2020) used sentences origi-
nally designed by Fischler et al. (1983) to observe
how human expectations about sentence continu-
ation shift when negation is introduced. The lack
of corresponding adjustments in PLM predictions
led her to a similar conclusion that PLMs exhibit
insensitivity to negation.

However, other approaches (Gubelmann and
Handschuh (2022) and Kletz et al. (2023a)), de-
cided to avoid factual statements. They constructed
examples with two sentences, where a particular
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word was either highly plausible (in positive cases)
or semantically ruled out (in negative cases) at a
masked position in the second sentence, given the
context provided by the first. The fact that larger
PLMs adjusted their predictions based on sentence
polarity led these authors to a different conclusion
that certain PLMs are indeed capable of consider-
ing negation.

Hosseini et al. (2021) proposed improving the
predictions of bert-base-cased in negative con-
texts by fine-tuning it into a new model called
BERTNOT. They created a dataset of 40,000 concate-
nated sentence pairs, each consisting of a premise
(sourced from Wikipedia) and a hypothesis where a
noun dependent on the main verb was selected and
masked. Half of these pairs retained the hypoth-
esis unchanged, while the other half contained a
negated version of the premise, created by negating
the main verb. The fine-tuning process involved
two key objectives: one function aimed to prevent
the model from predicting the selected token in
sequences where the second sentence was negated,
while another function ensured that the masked to-
ken distribution remained unchanged for the other
20,000 sequences. BERTNOT was subsequently eval-
uated using NLI datasets and Negated LAMA. The
evaluation results indicated that BERTNOT made far
fewer factually incorrect predictions than bert
-base-cased.

Compositionality in PLMs In general, the eval-
uation of compositionality in language models fo-
cuses on compositional behaviors (McCurdy et al.,
2024) and the ability of PLMs to generalize. Re-
search in this area typically tests models through
external tasks, where successful resolution implies
the ability to generalize compositionally—either
lexically (as in COGS (Kim and Linzen, 2020) and
SCAN (Lake and Baroni, 2018)) or structurally (as
in SLOG (Li et al., 2023)).

Kim and Linzen (2020) reported disappointing
performance from tested models on generalization
sets, concluding that these models struggle with
both lexical and structural compositional general-
ization. However, more recent studies have shown
that using models with pretraining strategies fo-
cused on meta-learning (Conklin et al., 2021) or
employing newer transformer-based architectures
(Sun et al., 2023; Tay et al., 2021; Raffel et al.,
2020) significantly improves compositional gen-
eralization, surpassing the capabilities of smaller
transformer models.

3 Inverting polarity : training a Negator
and Affirmator

In this section, we learn mathematical functions
(MLPs) to modify contextualized embeddings so
as to mimic the difference between embeddings
originating from the two clauses of a minimal pair.
We will talk of the "polarity of an embedding"
for short. Hence for instance, in I wish war didn’t
exist, the polarity of the embedding of exist or war
is negative, whereas the polarity of the embedding
of I or wish is positive.

More precisely, we consider embeddings of tar-
get verbs. The basic principle for our Negator func-
tion (resp. Affirmator) is to take as input the contex-
tualized embedding of an affirmative verb, noted
Vp (Vn for a negative verb) and output the corre-
sponding embedding as if the verb was in a negative
(resp. affirmative) context (Vp−, resp. Vn+)1.

The Negator (resp. Affirmator) consists in a MLP
trained on (Vp,Vn) pairs (resp. (Vn,Vp) pairs). The
evaluation consists in comparing Vp− to the orig-
inal Vn, and Vn+ to the original Vp. For short
we will talk of the original embeddings (Vp or
Vn) and their corresponding reversed embeddings
(Vn+ and Vp−).

Data We took as a starting point a set of 20,000
minimal pairs provided by Hosseini et al. (2021),
formed with 20,000 sentences from Wikipedia,
where the direct object of a target verb has been
masked, along with a version where the target verb
is negated.

We have deduplicated the 20,000 pairs, and re-
moved pairs containing either zero or more than
one masked position (resulting from errors in the
masking process), and those where the target verb
is tokenized into several subwords when encoded
by the PLM we test (namely bert-large-cased).
This brought the dataset down to ∼15,000 pairs.
For our purposes, we restored the masked object,
and identified the target verb2, left unmasked.

We then split this data into 11,708 training pairs
and 2,927 test pairs, each set corresponding to dis-
joint sets of target verb lemmas.

1We did try to obtain the Affirmator by defining the recip-
rocal function of the Negator. However, the learned parameter
square matrices turned out to be non-invertible (details in
Appendix A).

2To this end, we parsed the sentences using stanza (Qi
et al., 2020), and took the closest verbal ancestor node of the
direct object, in the dependency tree.
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Architecture and training The MLPs for Nega-
tor and Affirmator have the same architecture: 4
hidden layers of same size as input contextualized
embeddings, namely 1024, with LeakyRELU acti-
vation (with a negative slope of 10−2) for the first
3 layers and ELU for the last layer (α = 1).

We train the Negator on the training (Vp,Vn)
pairs using the MSE loss, and simply switched to
(Vn,Vp) pairs to train the Affirmator3.

Evaluation metrics We measure the quality of
the Negator (resp. Affirmator) using two direct
metrics and two indirect metrics, each comparing
the original embeddings to their corresponding re-
versed embeddings (hence comparing Vp− to Vn,
and Vn+ to the original Vp). The two direct met-
rics are simply cosine similarity and mean square
error (MSE). The two indirect metrics compare
the probability distributions output by the language
modeling head of the PLM, when fed with an origi-
nal embedding vs. when fed with the corresponding
reversed one. More precisely, if we note Pn the
distribution obtained with the original Vn embed-
ding, and Pp− that obtained from Vp−, we use the
KL-divergence DKL(Pp− ||Pn) averaged over
each evaluated pair, and the proportion of evaluated
pairs for which the top-1 prediction is the same in
Pn and Pp− (and accordingly for the Affirmator
case), hereafter same-top-1. Among these four
metrics, higher cosines and same-top-1 will mean
better quality, while it is the opposite for MSE and
KL divergences.

Moreover, while same-top-1 can be interpreted
in isolation, for the other three metrics, we need
reference values for comparison. To this effect,
we compute cosine, MSE and KL-divergence for
sets of various pairs of embeddings, obtained by
encoding sentence pairs from our dataset, with
bert-large-cased. These pairs of embeddings
either concern the same token from a pair of sen-
tences varying in polarity (V p, V n), or different to-
kens from the same sentence, or two tokens in two
different sentences but corresponding to the same
word form, and finally two embeddings from two
random tokens taken from two random sentences
from the affirmative sentences of our dataset.

The reference values are provided in Table 1.
The first row concerns Vp and Vn pairs, and pro-
vide the reference values for embeddings differing

3We use the Adam optimizer. We tuned the learning rate
(103) and the number of epochs (4) using cross-validation on
the training set.

sent. pol. token MSE Cosine KL-div
= ̸= = 0.02 0.96 0.05
= = ̸= 0.30 0.50 8.17
̸= ? = 0.46 0.23 9.21
̸= + ? 0.57 0.14 20.74

Table 1: Calibration of metrics: reference values for
MSE, cosine and KL-divergence metrics, when using
various kinds of pairs of embeddings. The pairs are
either embeddings from the same sentence (when ignor-
ing polarity) (first column), from sentences with equal,
different, irrelevant (?) or positive polarity (pol. col-
umn), and from the same word or not (token column).
The first row compares (V p, V n).

only in polarity, and we will refer to these values
to evaluate our Negator and Affirmator. As all the
metrics show, all other tested pairs of embeddings
show a much higher divergence. Note that two
distinct tokens of the same sentence (second row)
have much closer embeddings than the embeddings
of the same word in two different sentences (third
row).

3.1 Results

MSE cosine KL-div same-top-1
Vp vs. Vn+ 0.12 0.80 0.66 83.9
Vn vs. Vp− 0.13 0.79 0.80 81.5

Table 2: Evaluation of the Affirmator (first row) and
Negator (second row) on the test set: comparison met-
rics for pairs of original vs reversed embeddings.

We provide the evaluation results of the Negator
and Affirmator, computed on the test set, in Table 2.
The same-top-1 results are above 80%. Interpreting
the three other metrics requires to compare them to
the reference values in Table 1. The same trend is
observed for MSE, cosine and KL-divergence: al-
though the results comparing original and reversed
embeddings are less good than when comparing the
original (V p, V n) pair (first row of Table 1), they
are a lot better than when comparing other kinds of
pairs of embeddings (last 3 rows of Table 1). These
observations tend to show that our trained polarity
inversion operations lead to embeddings that are
(i) close to the corresponding original embedding
(Vn+ close to Vp, Vp− close to Vn); and (ii) close
enough to appropriately feed the original language
modeling head, resulting in a probability distribu-
tion over the vocabulary that is close to the original
one.
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Generalization across verbs Since the training
and test set contain disjoint sets of verb lemmas, the
previous observations tend to show a good general-
ization to verbs unseen during training. To further
check this generalization, we would also like to ver-
ify that the averaging applied in the metrics does
not hide a disparity in performance, and in partic-
ular that errors are not concentrated on a specific
set of verbs. To this end we calculate the same-
top-1 proportion per lemma, and count the number
of verbal lemmas for which the proportion is very
low (top-1 accuracy below 20%), indicating a total
failure of inverting the polarity of embeddings for
these verbs. We restrict ourselves to lemmas with
at least 5 occurrences in the test set.

The results are provided in table 3. We observe
only 3 lemmas with a same-top-1 proportion of less
than 20% for Affirmator, and none for Negator. We
can thus conclude that there are practically no lem-
mas for which polarity re-encoding systematically
fails.

This further confirms that it is indeed possible to
learn a polarity transformation of a verbal embed-
ding, independently of the corresponding verb, a
first step towards a compositional polarity inversion
operator (cf. section 1).

Model # tested lemmas Cases w/ rate <20%
Affirmator 277 3
Negator 271 0

Table 3: Total number of unique lemmas tested, and
number with same-top-1 proportion below 20%.

Generalization across polarities The second
necessary condition was that the learnt polarity
inversion operations should generalize across polar-
ity. In our case, it means firstly that the Negator and
Affirmator should actually correspond to the same
(or a close) mathematical function, performing a
polarity inversion independently of the polarity of
its input. Secondly, given the logical interpreta-
tion of negation, both the Negator and Affirmator
should be an involution, namely their own recipro-
cal function, hence Negator(Negator(V )) should
be close to V . We report on this investigation in
section 5.

4 Evaluation via a polarity probe

In order to further assess the effectiveness of
the Negator/Affirmator, we employ a MLP probe
trained to predict the polarity of verbal embeddings.

Importantly, the probe is trained exclusively on Vp
and Vn, without exposure to reversed embeddings
(V p− and V n+).

Training of the probe The trained probe is an
MLP consisting of a hidden layer of the same size
as the input (1024), with sigmoid activation. It is
trained for 5 epochs with a learning rate of 0.3.

As training data we reuse the dataset used to
train our Affirmators/Negators: we keep at random
one sentence from each pair, which yields≃14,000
sentences balanced with respect of their polarity.
We split them into 11708/2927 for training and
testing, keeping a balanced polarity in each set.

Evaluation on original embeddings The accu-
racy of the probe on the test set is provided in the
“Original” columns of Table 4.

Embedding
Original Reversed Reinforced

inp. exp. acc. inp. exp. acc. inp. exp. acc.
Vn n 95.9 Vn+ p 99.9 Vn− n 99.9
Vp p 96.6 Vp− n 99.9 Vp+ p 99.8

Table 4: Accuracies of the polarity-predicting probe,
on the verbal embeddings of the test set, using either
the Original embeddings (Vn or Vp), the Reversed
ones (V n+ or V p−), and the Reinforced ones (V p+
or V n−). Columns inp.: type of input embedding;
Columns exp.: expected polarity label; Columns acc.:
probe accuracy

We observe that the probe has a very high accu-
racy to predict the polarity of original embeddings
(first three columns, above 95%), although not per-
fect.

Evaluation on reversed embeddings We now
check how the probe behave when fed with re-
versed embeddings. Results of applying the probe
on these are provided in the "Reversed" columns
of Table 4. We observe almost perfect accuracy
for both the Negator and the Affirmator. This con-
stitutes a further evaluation of the quality of the
Negator/Affirmator, since they allow to better pre-
dict the polarity of an embedding.

5 Polarity inversion or reinforcement?

In this section, we examine the effects of apply-
ing the Negator to a verbal embedding originating
from a negated verb (which, following our nota-
tion, results in V n−). Similarly, we analyze V p+
cases, where the Affirmator is applied to a verbal
embedding originally not negated.
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In this case, if the Negator/Affirmator is the same
transformation, applying a real inversion of polarity
independently of the polarity of their argument,
then V n− should be close to Vp and have positive
polarity. V p+ should be close to Vn and have
negative polarity.

If on the contrary the Negator/Affirmator are dis-
tinct, each "moving" the polarity of their argument
on a "polarity scale" in opposite directions, then we
anticipate a reinforcement of the encoding of the
polarity (and we will use the term reinforced em-
bedding for V n− and V p+ types of embeddings).

The results are provided in the "Reinforced"
columns of Table 4, the accuracy being calculated
when expecting a reinforcement rather than an in-
version. We can see that the accuracies are almost
perfect for both the Negator and Affirmator. So as
the name "reinforced" hinted, we observe a rein-
forcement of the polarity instead of an inversion
independent of input polarity.

Note though that the accuracy on the Reinforced
cases is similar to that of the Reversed cases. So
while it shows that the Negator/Affirmator does
strengthen the polarity encoding, it is surprising it
cannot surpass the reversed cases.

Error analysis We further study the counts of
well-classified/misclassified cases, and whether
the polarity inversion or reinforcement introduces
new errors. Table 4 provides the exact counts of
correct/incorrect polarity prediction by the probe,
when fed by original, reversed and reinforced em-
beddings. After polarity inversion, we count 179
corrected errors and only 3 introduced errors (resp.
177 and 3 after reinforcement).

The very low number of new errors introduced
by the Negator/Affirmator further assesses their
ability to inverse/reinforce polarity encoding in em-
beddings, without altering it.

Orig. Count After modif. Rev. Reinf.
✓ re

↪→✓ 4589 4589
↪→ x 3 3

x 180
↪→✓ 179 177
↪→ x 1 3

Table 5: Counts of correct/incorrect labels after applying
the polarity probe on original, reversed and reinforced
embeddings.

6 Using the Negator to enhance bert
-large-cased’s predictions

We now propose to use the Negator for a dif-
ferent objective: rather than studying the possi-
bility of learning a compositional negation op-
erator, we investigate whether the negator can
help to improve the negation "understanding" of a
bert-large-cased model, in a downstream task.
We choose the negatedLAMA task, which Kassner
and Schütze (2020) designed to assess the ability
of bert to adapt its language modeling predictions
to the presence of negation (cf. section 2).

6.1 The negated LAMA data and task

The negated LAMA dataset (Kassner and Schütze,
2020) is a negated version of LAMA (Petroni et al.,
2019), itself developed to assess the factual knowl-
edge stored in PLMs. It consists of factual state-
ments derived from various encyclopedic sources4,
in which a token is masked (e.g. dog (2)), hereafter
the original affirmative token).

The negated LAMA dataset is constructed by
associating each affirmative factual statement (p)
from LAMA with their negated counterpart (n).

(2) Op (Original): A beagle is a type of dog.
Mp A beagle is a type of [MASK].
Mn A beagle is not a type of [MASK].

The original affirmative token should be the top-1
prediction for the affirmative sentences, but this to-
ken becomes factually wrong in the negative coun-
terparts, hence these pairs provide a way to assess
a model’s sensitivity to polarity changes.

Since the negated LAMA data is not explicitly
available, we reconstructed the dataset, and the
details of this process can be found in Appendix B.
Consequently, although we made every effort to
ensure accuracy, the version of the dataset we use
differs from the ones employed by Kassner and
Schütze (2020) and Hosseini et al. (2021).

To measure performances of the model, we use
the stability rate of Kassner and Schütze (2020),
which measures the percentage of identical top-1
predictions for (Mp,Mn) pairs. The lower the sta-
bility rate is, the more the model is sensitive to
negation. Note that this measure does not take into
consideration the cases where the top-1 prediction
for Mp is not identical to the original affirmative

4Google-RE (Google, 2013), T-REX (Elsahar et al., 2018),
ConceptNet (Speer and Havasi, 2012), and SQuAD (Rajpurkar
et al., 2016).
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token: if, for example in (2), a model has mam-
mal as its top-1 prediction, what matters for the
stability rate is whether this token is still the top-1
prediction in the negative case Mn. Hence, we
also introduce a metric to quantify the average rate
of factually incorrect predictions, referred to as the
fipa rate5. The fipa rate measures the proportion
of top-1 predictions for negated sentences that still
match the original affirmative token. A lower fipa
rate suggests that the model is better at generating
factually correct predictions under negation6.

6.2 Setup

We propose to integrate the Negator into the lan-
guage modeling prediction pipeline of a bert
-large-cased model, by applying the Negator to a
token’s representation at last layer, before feeding
the language modeling head (see Figure 1).

Figure 1: Inserting the Negator in the language model-
ing task.

Training We retrain a Negator using the encod-
ings of the original masked tokens of Hosseini et al.
(2021)’s dataset, not being unmasked (using our
notation scheme, we consider Mp, Mp−, Mn,
Mn−, under the same conditions as described in
Section 3).

Application to negated LAMA The use of the
Negator allows us to make two comparisons: be-
tween original, reversed and reinforced embed-
dings (Mn, Mp-, Mn-).

Furthermore, inspired by Ravfogel et al. (2021),
we apply the Negator recursively multiple times,
progressively even more reinforcing the encod-
ing of negation polarity (e.g., Mp → Mp− →
Mp − − → Mp − −− etc.). We will call these
super-reinforced embeddings, and note Mnk−
the result of applying k times the Negator to Mn.

5This metric may correspond to the average top-1 error
rate used by Hosseini et al. (2021). However, since they do
not explicitly define it, we cannot confirm this equivalence.

6Note each above cited work use only one of these two
metrics, which clearly gives an incomplete evaluation.

6.3 Quantitative analysis
The results for the fipa rate and stability rate are
presented in Table 6.

The prediction shifts of the PLM are highly de-
pendent on the dataset subset used, with no subset
enabling the PLM to achieve a stability rate below
30%.

The insertion of the Negator into the process-
ing pipeline under a polarity inversion configura-
tion (line 2) alters the model’s predictions. How-
ever, the stability and fipa rates do not show any
improvement—often remaining similar or even
worse—compared to directly negating the input
sentence. The insertion of the Negator into the
processing pipeline under a polarity reinforcement
configuration (line 3) is the first combination to
yield an improvement, reducing fipa rate by 5% to
20% and increasing the stability rate from 14% to
26%.

The use of super-reinforced embeddings leads
to the most significant improvements in evalua-
tion quality, both in polarity reinforcement and
inversion configurations. The fipa rate decreases,
ranging from 65% to 79%, and the stability rate
improves between 71% and 84%.

Compared to other models, the model incorpo-
rating super-reinforced embeddings surpasses the
performance of bert-large-cased, as tested by Kass-
ner and Schütze (2020). Additionally, it outper-
forms BERTNOT (Hosseini et al., 2021), 7 achiev-
ing lower fipa rates than those reported by Hosseini
et al. (2021). Furthermore, a comparison between
line 1 and line 4 reveals that the reduction in fipa
rate is even more significant than the improvement
achieved by BERTNOT.

6.4 Qualitative analysis
To ensure that the representations are not degraded
by the application of the Negator and that only the
encoding of polarity is affected, we now conduct a
complementary qualitative analysis.

We analyze the top-1 predictions of our architec-
ture. For comparison, we revisit the four examples
highlighted in Hosseini et al. (2021) and the eight
examples from Kassner and Schütze (2020). The
results are presented in Table 7.

Semantic and syntactic constraints are preserved
in the Mn− configuration.8 However, the model’s

7For this comparison, we refer to Table 12 in the Appendix
of their paper, as the results presented in the main text—while
higher—were obtained using a BERT-base-cased model.

8For instance, in the sentence “Charles Nodier did not die
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fipa rate stability rate
subset SQUAD conceptnet Google-re T-rex SQUAD conceptnet Google-re T-rex
Mn 11.2 2.7 22.2 57.7 43.4 31.6 60.3 90.0
Mp- 15.5 3.3 22.5 58.3 59.5 59.0 61.1 84.8
Mn- 8.9 2.4 20.2 54.5 32.6 23.5 44.1 77.4
Mn5- 2.3 0.8 6.4 19.8 9.5 7.3 11.6 25.3
Mp5- 5.3 1.4 11.9 23.1 18.4 14.6 25.3 31.4

Table 6: Percentage of cases where the top-1 prediction when feeding the LM head with embedding in column 1 is
(left) identical to the expected factual answer for the Vp case, and (right) identical to the top-1 prediction for the Vp
case; each broken down for each LAMA subset.

Paper Sentence Representation received by the LM head
Mn Mn- Mn5-

H iOS is not developed by [MASK]. Apple (0.22) Apple (0.19) it (0.05)

H The majority of the amazon forest is not in [MASK]. cultivation (0.43) cultivation (0.13) forest (0.04)

H Charles Nodier did not die in [MASK]. battle (0.29) battle (0.14) prison (0.13)

H Mac OS is not developed by [MASK]. Apple (0.73) Apple (0.64) Apple (0.19)

K&S Marcel Oopa did not die in the city of [MASK]. Paris (0.09) Paris (0.08) residence (0.04)

K&S Anatoly Alexine was not born in the city of [MASK]. Moscow (0.31) Moscow (0.28) town (0.05)

K&S Platonism is not named after [MASK]. Plato (0.78) Plato (0.35) himself (0.48)

K&S Lexus is not owned by [MASK]. Toyota (0.18) Google (0.07) it (0.03)

K&S Birds cannot [MASK]. fly (0.76) fly (0.33) property (0.01)

K&S A beagle is not a type of [MASK]. dog (0.83) dog (0.72) person (0.53)

K&S Quran is not a [MASK] text. religious (0.32) religious (0.23) valid (0.13)

K&S Isaac’s chains are not made out of [MASK]. iron (0.22) iron(0.16) stone (0.08)

Table 7: Qualitative analysis of predictions on embeddings modified by Negator. Column ‘Paper’: ‘H’ refers to
sentences from Hosseini et al. (2021) ‘K&S’ refers to sentences from Kassner and Schütze (2020). Each cell
indicates the prediction. The associated probability is given in parentheses.

predictions frequently remain unchanged from the
original, which are often factually incorrect.

Incorporating super-reinforced embeddings does
lead to modifications in predictions. However, with
the super-reinforced embeddings, the generated
sentences often appear unnatural, ultimately com-
promising the quality of the predictions.

These observations suggest that this method can-
not serve to enhance negation interpretation of
bert-large-cased.

7 Conclusions

In this paper, we explored the compositional-
ity of negation within PLMs by investigating
whether a transformation, which we call the “Nega-
tor/Affirmator,” could reverse the polarity of a
verb’s embedding. Our results show that it is pos-
sible to learn such a function and that it can gener-
alize to unseen lemmas. However, a complemen-
tary study reveals that the simple application of the
Negator is not sufficient to significantly improve

in [MASK].”, the masked position is syntactically constrained
to be filled by a noun, noun phrase, or temporal expression,
while semantically, it must refer to a place or time of death.

the predictions of bert-large-cased in the pres-
ence of negation, while multiple applications of
the Negator improve the treatment of negation at
the expense of a degradation of the embeddings.
Even though a negation operation seems therefore
learnable, its use for improving the predictions of a
PLM still remains problematic.

Looking ahead, it would be interesting to extend
this work by isolating operations that encode other
compositional operators. This could help deter-
mine whether the handling of negation by PLMs
is specific or if it is part of a broader pattern in the
treatment of compositional operations.
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Limitations

Our study focuses solely on the bert-large-
cased model, meaning our findings cannot be di-
rectly generalized to other Pretrained Language
Models (PLMs). Future work should extend this

analysis to a broader range of architectures to as-
sess whether our observations hold across different
models.

Additionally, both our dataset and model were in
English, limiting our conclusions to this linguistic
context. Since negation varies across languages
in both syntax and semantics, evaluating models
trained on other languages would be necessary
to determine the broader applicability of our ap-
proach.

A Attemps to define the reciprocal of the
Negator

Instead of learning both a Negator and Affirmator,
we also tried to learn a Negator, and then define its
reciprocal, to serve as Affirmator. This supposes to
define the reciprocal of activation functions and of
linear combinations.

To this end, we used bijective activation func-
tions, whose reciprocal functions are:

LeakyRELU−1(x) =

{
x, if x ≥ 0
x
α , otherwise

ELU−1(x) =

{
x, if x ≥ 0

log( x
α+1), otherwise

The reciprocal of the linear combination with
parameters W and b, requires W to be invertible
(which is why we chose square parameter matrices),
and is written as:

x = W−1(y − b) (1)

Unfortunately, we empirically observed across
various runs that the resulting Negator contained
at least one non-invertible matrix (namely with a
rank lower than the shape of the matrix).

We also tried to use Moore-Penrose pseudoin-
verse parameter matrices9. In such a case, the defi-
nition of the reciprocal is as below (with WPI the
pseudoinverse of W):

x = WPI(y − b) (2)

So for a given linear layer, if y = Wx+ b then
we compute a x′ such that x′ = WPI(y − b) ≃ x,
namely there exists a matrix M such that x′ =
x+M .

9Using pytorch, https://pytorch.org/docs/stable/
generated/torch.linalg.pinv.html, Paszke et al. (2019))
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This empirically failed in the sense that when
applying the reciprocal functions in sequence, we
noted the M matrices kept growing exponentially.
The approximation made using pseudoinverses led
to growing errors.

We conclude to the impossibility of inversing the
Negator to obtain an Affirmator.

B Reconstruction and Preprocessing of
Negated LAMA

The original LAMA dataset is available both in the
repository of Petroni et al. (2019) 10 and on the
Hugging Face (Wolf et al., 2020) platform 11. How-
ever, with the exception of the SQUAD subset, the
number of entries differs between these two sources
for every subset. A comparison of the dataset sizes
from these two sources can be found in Table 8,
under the columns "LAMA" (repository from the
original paper) and "LAMA HF" (Hugging Face
platform).

The inputs of negated LAMA are either explic-
itly provided, or through the introduction of a nega-
tion pattern.

Upon examining the data, we found that not all
entries could be used to reconstruct the negated
LAMA dataset. We applied filtering criteria to
exclude entries with the following issues:

• Presence of multiple masked tokens

• Absence of a corresponding negated sentence

• Lack of alignment with a recognizable nega-
tion pattern

These inconsistencies accounted for nearly two-
thirds of the data in the Google-RE and T-REx
subsets, and we were unable to fully resolve all of
them.

The final sizes of the subsets used to evaluate
our models are listed in the "Retained Examples"
column of Table 8.

Consequently, we use a version of negated
LAMA that is different from the one used by Kass-
ner and Schütze (2020) and Hosseini et al. (2021).

10https://dl.fbaipublicfiles.com/LAMA/negated_
data.tar.gz

11https://huggingface.co/datasets/facebook/lama

Dataset LAMA Subsets
LAMA LAMA HF #retained examples

SQUAD 305 305 301
conceptnet 2996 29774 8296
Google-re 5527 6106 2926
T-rex 34039 1304391 16991

Table 8: Subset sizes of LAMA from different sources.
**Col. “LAMA”**: Number of entries in Petroni et al.
(2019) repository. **Col. “LAMA HF”**: Number
of entries in the Hugging Face version. **Col. “Re-
tained Examples”**: Final number of entries used in
our negated LAMA version.
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Abstract

Recent developments in aligning Large Lan-
guage Models (LLMs) with human prefer-
ences have significantly enhanced their utility
in human-AI collaborative scenarios. However,
such approaches often neglect the critical role
of "epistemic friction," or the inherent resis-
tance encountered when updating beliefs in re-
sponse to new, conflicting, or ambiguous in-
formation. In this paper, we define dynamic
epistemic friction as the resistance to epistemic
integration, characterized by the misalignment
between an agent’s current belief state and
new propositions supported by external evi-
dence. We position this within the framework
of Dynamic Epistemic Logic (Van Benthem
and Pacuit, 2011), where friction emerges as
nontrivial belief-revision during the interaction.
We then present analyses from a situated collab-
orative task that demonstrate how this model
of epistemic friction can effectively predict be-
lief updates in dialogues, and we subsequently
discuss how the model of belief alignment as
a measure of epistemic resistance or friction
can naturally be made more sophisticated to
accommodate the complexities of real-world
dialogue scenarios.

1 Introduction

In cooperative, well-grounded conversations, the
exchange of information often appears straightfor-
ward. Participants typically assume that updates
to one another’s beliefs will be smooth and con-
sistent with mutual common ground. A listener
hears a speaker’s assertion and, assuming trust
and shared context, incorporates it into their be-
liefs with minimal hesitation. However, in many
situations—including disputes and strategic decep-
tion, but also innocent misalignment in good-faith
collaborations—new information generates resis-
tance to belief revision. In these cases, not all
updates fit so neatly. Sometimes, new information
conflicts with the listener’s prior understanding,

challenges their assumptions, or signals a hidden
agenda. Here, the process of updating belief states
is not "frictionless." Instead, the listener encoun-
ters a kind of "resistance" to easy assimilation, a
phenomenon we call epistemic friction.

Friction in conversational updates reflects an un-
derlying complexity in how we process and accom-
modate new information, while pointing to deeper
inferential processes within the participants’ epis-
temic state. Understanding friction can help us
identify when a speaker might be deceptive, when
a conversation is strategically misaligned, or when
a seemingly simple statement actually encodes a
more complex epistemic move. In short, friction of-
fers insight into the subtle interplay between logical
inference, pragmatic reasoning, and the architec-
ture of cognitive representations.

In physical systems, friction is a force that re-
sists motion. By analogy, epistemic friction is a
resistance to the smooth "motion" of belief revi-
sion. This resistance might be epistemically ben-
eficial—encouraging the listener to scrutinize the
new information more carefully, or to consider al-
ternative explanations. It might also expose un-
derlying strategic interests, deceptive behavior, or
complexities in the conceptual structure of what
is being communicated. Here, we explore frictive
interactions in terms of evidence-based dynamic
epistemic logic (DEL; Van Benthem and Pacuit
(2011)), a well-established logical framework for
modeling belief updates, as recently explored in
(Khebour et al., 2024b).

We introduce a vector-based modeling approach,
drawing on Holographic Reduced Representations
(HRR) (Plate, 1995; Luo et al., 2018) and related
vector symbolic architectures (Kanerva, 1988).
This approach treats agents’ belief states and propo-
sitions as high-dimensional vectors, allowing ge-
ometric notions like orthogonality and angle to
characterize the friction that arises when assimilat-
ing new information. By bridging the gap between
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symbolic logic and geometric intuition, this model
provides a novel perspective on the cognitive and
communicative processes underlying conversation.

Finally, we provide case studies from a situated
collaborative task that demonstrate how this model
of epistemic friction can be used to create a straight-
forward vectorization of task-relevant proposition-
alized beliefs and their subsequent updates in the
face of new interlocutor assertions. Our analyses
demonstrate the utility of epistemic friction in both
modeling dialogues and in human-AI interactions,
and we subsequently discuss how the model of
belief alignment as a measure of epistemic resis-
tance or friction can naturally be made more so-
phisticated to accommodate the complexities of
real-world dialogue scenarios.

2 Related Work

Epistemic friction is clearly related to the clas-
sic notions of miscommunication and misalign-
ment of common ground in conversation (Grice,
1975; Asher and Gillies, 2003; Stalnaker, 2002;
Traum and Larsson, 2003). The concept of com-
mon ground refers to the set of shared beliefs
among participants in a Human-Human interac-
tion (HHI) (Markowska et al.; Traum, 1994;
Hadley et al., 2022), as well as HCI (Krishnaswamy
and Pustejovsky, 2020; Pustejovsky and Krish-
naswamy, 2021; Ohmer et al., 2022) and HRI inter-
actions (Kruijff et al., 2010; Fischer, 2011; Scheutz
et al., 2011). When common ground is lacking or
divergent, interlocutors experience misunderstand-
ings or must exert an effort to clarify and realign
their beliefs (Clark and Wilkes-Gibbs, 1986). Such
effortful moments are essentially points of fric-
tion. Although friction is typically seen as some-
thing to overcome or mitigate in dialogue (Brown
et al., 2003; Hunter et al., 2018), friction can also
play a beneficial role in the interaction (Chen and
Schmidt, 2024).

In Dynamic Epistemic Logic (DEL), degrees of
evidence (or strength of belief) towards a proposi-
tion, can be seen as correlated to the friction that
an agent has towards a public proposition (Van Dit-
marsch et al., 2007; van Benthem and Smets, 2015;
Van Benthem and Pacuit, 2011). Similarly, in argu-
mentation theory, friction can be seen as analogous
to the degree of acceptance or rejection of beliefs in
an argument (Baumann and Brewka, 2015; Hunter
et al., 2020). From this perspective, friction is not
only about the endpoint of belief revision but about

the trajectory: how beliefs resist, adapt, or trans-
form as agents encounter a continuous stream of
arguments and evidence.

Beyond logical and probabilistic formalisms, re-
searchers have explored vector-space representa-
tions of propositions within distributional models
(Baroni, 2013; Boleda, 2020; Lenci and Sahlgren,
2023), as well as hyperdimensional models (Plate,
1995; Kanerva, 1988; Ginzburg et al., 2024; Obiso,
2024). Within the areas of dialogue and multiparty
interactions, vector models of propositional con-
tent have been employed in the service of tracking
common ground (Khebour et al., 2024b; Zhu et al.,
2024; Palmer et al., 2024).

3 Epistemic Friction in Communication

A core assumption in many theories of discourse,
ranging from Grice’s cooperative principle (Grice,
1975) to Stalnaker’s common ground framework
(Stalnaker, 2002), is that participants in a con-
versation share a basis of mutual knowledge and
strive for coherence. However, in many situations
new information generates resistance to belief re-
vision. These situations may include adversarial
or cooperative-competitive situations such as dis-
putes or strategic deception (Niculae et al., 2015),
but also ordinary good-faith collaboration. In these
cases, a listener hears a speaker’s assertion and,
assuming trust and shared context, incorporates it
into their beliefs with minimal hesitation. Neverthe-
less, not all updates fit so neatly. Sometimes, new
information conflicts with the listener’s prior un-
derstanding, challenges their assumptions, signals
a hidden agenda, or this misunderstanding or mis-
remembering mutates the information the listener
believes they are incorporating . In these cases,
the process of updating belief states is not "fric-
tionless." Instead, the listener encounters a kind of
"resistance" to easy assimilation, a phenomenon
we call epistemic friction. In the context of a con-
stantly updating dialgoue, we call this phenomenon
dynamic epistemic friction.

In DEL, we use a standard modal model, M =
(W, {Ra}a∈A,V), where:

(1) a. W is a set of possible worlds;
b. Ra is the accessibility relation for agent a,
c. V is a valuation function assigning truth
conditions to atomic propositions.

Knowledge or belief operators (Baφ) are evaluated
by requiring φ to hold in all Ra-accessible worlds.
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DEL captures belief change by product updates
with event models (Bolander, 2014). Formally, an
event model E = (E, {RE

a }, pre) is combined with
M as in (2), where ⊗ denotes the product update:

(2) a. M ⊗ E = (W × E, {R⊗a }, V⊗)
b. where (w, e)R⊗a (w′, e′) iff wRaw′, eRE

a e′,
and M,w |= pre(e) and M,w′ |= pre(e′).

If an event is public, each agent’s belief set typi-
cally refines (or filters) to those worlds consistent
with the event’s precondition. Usually, we assume
that all agents smoothly integrate the new proposi-
tion. But if the proposition conflicts strongly with
the agent’s prior beliefs, friction ensues.

We say friction occurs when an agent’s newly up-
dated beliefs cannot be derived by a simple mono-
tonic restriction of the old ones. Formally, consider
an agent a with old beliefs Bold

a , updated by ψ to
Bnew

a . Alignment is quantified by checking how
trivially ψ is entailed by Ba. Friction occurs when
updates require epistemic revision, formally:

(3) Bnew ⊈ Bold ∪ {ψ | Bold ⊢ ψ}

Conversely, a lack of friction corresponds to min-
imal cognitive effort in integrating new proposi-
tions.

Khebour et al. (2024b) introduce the framework
of evidence-based DEL, in which common ground
is structured into:

(4) a. QBank (Questions Under Discussion):
Propositions requiring evaluation.

b. EBank (Evidence Bank): Propositions
with supporting evidence.

c. FBank (Fact Bank): Propositions ac-
cepted as true.

In this framework, one tracks how propositions
move from the Question Bank (QBank) to the
Evidence Bank (EBank) and eventually to Fact
Bank (FBank) when evidence is deemed sufficient
(Ginzburg et al., 1996). When new evidence [E]φ
enters, high friction signals that φ is misaligned
with the agent’s prior or insufficiently supported.
As more supporting evidence accumulates, friction
reduces.

How can we infer the beliefs Ba of an agent a?
Following Bolander (2014) and Zhu et al. (2024),
we can obtain evidence for what an agent believes
from what they do, say, or perceive, formalized in
the following axioms:

(5) a. Acting is Believing: DOaφ→ Baφ (you
believe your own actions)
As an agent participant in an event, you
believe it has happened.

b. Saying is Believing: S AYaφ→ Baφ (you
believe what you say)
As actor of a declarative speech act, you
believe the proposition you express.

c. Seeing is Believing: S EEaφ→ Baφ (you
believe what you see)
As witness to a situation or event, you
believe it to have occurred.

4 Epistemic Alignment

Suppose an agent a has a belief state Ba ⊆ W,
where W is the set of possible worlds that the agent
considers viable. Let {w ∈ Ba | w |= φ} be the
subset of worlds in which φ holds, and let E be
some set of "evidence worlds". In the context of
modal logic, Ba functions as a modal operator; in
the context of alignment and misalignment, Ba is
interpreted as a predefined set. A straightforward
way to define epistemic alignment is to define what
fraction of a’s currently possible worlds also satisfy
φ (and are consistent with the evidence E). That is:

alignment(φ, Ba, E) =
|{w ∈ Ba | w |= φ} ∩ E|

|Ba|
If almost all of Ba already support φ, then align-

ment ≈ 1, so friction is low. If few or none of
the worlds in Ba satisfy φ, alignment ≈ 0, so fric-
tion is high. One can define "consistent with E"
in many ways (e.g., requiring each w ∈ Ba to also
satisfy whatever constraints the evidence imposes).
The key idea is that alignment measures how large
the overlap is between φ and the agent’s current
doxastic possibilities, modulated by the evidence.

If we consider the propositional content as dense
vector encodings, then we can define vBa to be
the vector encoding agent a’s overall belief state,
vφ to be a vector encoding the proposition φ, and
vE to be a vector encoding relevant evidence E.
A natural strategy is to use cosine similarity due
to its prevalence in HRR (Plate, 1995). However,
the choice of similarity function may depend on
the algebras or symbolic logic used to represent
propositions in a given system (Kleyko et al., 2022,
2023). This function should also be chosen based
on the way propositional content is vectorized in
the propositionalized vector.
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In our case, a simple encoding treats "φ + E"
as the combined proposition-plus-evidence vector,
measuring its similarity to the agent’s belief vector:

alignment(φ, Ba, E) = CosSim(vBa , vφ + vE)

A large positive dot product indicates high align-
ment, while a near-zero or negative dot product
indicates strong orthogonality or conflict, meaning
the agent’s existing beliefs are quite distant from φ,
so friction is higher.

To weight the evidence differently in order to
model uncertainty, one could add coefficients (e.g.
λ1vφ + λ2vE) or use other similarity measures. The
core idea is that "alignment" = "similarity" between
the combined proposition/evidence vector and the
agent’s belief vector.

In the previous section, we have characterized
friction F(φ, B, E) as proportional to "misalign-
ment." That is,

(6) F(φ, B, E) ∝ 1 − alignment(φ, B, E).

So when alignment is high, friction is low, and vice
versa. We use the term "orthogonal" to indicate
that the new proposition is "hard to assimilate."
Orthogonality in vector spaces (cosine near zero)
naturally corresponds to low alignment.

In both the set-theoretic and vector-based ver-
sions, one can incorporate E to reflect how evi-
dence changes the "effective proposition." More
(or stronger) evidence typically boosts alignment
with B, reducing friction.

Friction in epistemic updates occurs when new
evidence [E]φ conflicts with or is near-orthogonal
to the agent’s current belief state [B]¬φ. Given
the evidence-based DEL framework from the pre-
vious section, we can assume that friction modifies
how propositions transition between the different
banks. The transition rules from bank to bank can
be viewed as follows:

(7) a. QBank
E sufficient, F low−−−−−−−−−−−−−→ EBank;

b. EBank
F near-zero−−−−−−−−→ FBank.

4.1 Friction Equilibrium in Discourse
Dynamic Epistemic Friction (DEF) quantifies the
resistance encountered during belief updates. Our
goal is to iteratively reduce friction in discourse
in order to guide participants toward a better epis-
temic equilibrium. To this end, we assume:

(8) a. D = [φ1, φ2, . . . , φn]: The set of proposi-
tions in the discourse;

b. S = [B1, B2, . . . , Bm]: The epistemic states
of participants;
c. E = [E1, E2 . . . En]: Evidence associated
with each proposition φi.

We then proceed as follows:

(9) Initialize the belief set:
Start withD0 = D and S0 = S.
Set iteration k = 0. This defines the basic
elements required to measure friction and
move toward equilibrium: the propositions
discussed, the belief states of the participants,
and the evidence supporting each proposition.

(10) Measure Friction: For each proposition
ϕi ∈ Dk: Fi(a) = 1 − alignment(ϕi, Ba, Ei),
where Fi(a) is the friction for participant a.
Start the iterative equilibrium process from an
initial state (no friction measured yet). Here,
friction is measured by how misaligned each
participant’s belief state is with each proposi-
tion, given the available evidence: high align-
ment means that the participant’s beliefs eas-
ily incorporate the proposition, resulting in
low friction; low alignment means substan-
tial disagreement or conflict, indicating high
friction and a need for epistemic revision.

(11) Identify High-Friction Propositions: For
any a, extract propositions ϕi where Fi(a) >
T , the threshold for high friction. LetH de-
note these high-friction propositions. Such
propositions are difficult for at least one par-
ticipant to integrate into their beliefs, signal-
ing a need for further discussion or clarifica-
tion.

(12) Rank Propositions by Friction: RankH by
their average friction:

Rank(ϕi) =
1
m

m∑

a=1

Fi(a).

Propositions are prioritized by how difficult
(on average) they are to assimilate across all
m participants. Propositions with the high-
est average friction are candidates for clari-
fication or refinement first, representing the
greatest obstacle to achieving shared under-
standing.

(13) Refine High-Friction Propositions: For the
top-ranked ϕ j ∈ H , propose a refinement ϕ∗j:
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Figure 1: A group of 3 performing the Weights Task.

(i) add evidence E′j, making the proposition
easier to accept or (ii) modify ϕ j for better
alignment with the current belief state.

(14) Update Belief States: For each participant
a:

Bk+1
a = Bk

a + ∆Ba,

where ∆Ba = −∇F(ϕ∗j , Ba, E′j). Beliefs are
updated by applying a gradient step, effec-
tively moving the belief states in a direction
that reduces friction. The gradient descent
step systematically adjusts participants’ be-
liefs closer to propositions supported by evi-
dence.

(15) Check Equilibrium: Measure net friction:

F k =
1

n × m

n∑

i=1

m∑

a=1

Fi(a).

If F k ≤ T , return equilibrium Dk,Sk. This
computes the net friction averaged across all
propositions and participants, and quantifies
how well the group is aligned as a whole. If
the net friction is less than or equal to some
threshold T , equilibrium is achieved. The par-
ticipants’ beliefs are now sufficiently aligned
and no more substantial cognitive effort is
required to maintain common ground.

(16) Iterate or Halt: If k < µ, the maximum
number of iterations, set k = k + 1 and repeat.
Otherwise, report no equilibrium.

5 Empirical Demonstration

In this section we illustrate how the formal model
detailed above can be operationalized to show
how DEF can predict updates in the implied be-
liefs of real dialogue participants in a situated col-
laborative task. We experiment on the Weights

Task Dataset (WTD; (Khebour et al., 2024a)), in
which triads collaborate to deduce the weights of
differently-colored blocks using a balance scale
(Fig. 1). The correct block weight assignments are
[red = 10g, blue = 10g, green = 20g, purple =
30g, yellow = 50g]. The Weights Task is a col-
laborative task with one ideal convergent outcome.
Use of this fixed condition allows the use of the
aforementioned formal model in an analysis that
can rigorously quantify the trajectory of conver-
gence relative to a consistent ground truth and fit
this model to the dynamics of any group, by con-
trolling for the expected outcome while varying the
individual participants.

We perform an experimental evaluation over 4
of of the 10 groups in the WTD, which are fully an-
notated with dialogue transcripts and the beliefs as-
serted by the three participants in each group (Van-
derHoeven et al., 2025), as indicated by speech,
gesture, gaze, and action.

For these analyses we adopt a simplified model
of propositionalized belief states that can be used to
construct multidimensional sparse vectors accord-
ing to the assumptions given in (5), with a specific
emphasis on Saying is Believing. Belief states are
vectorized such that logical operators can be real-
ized as arithmetic and algebraic operations, which
gives intuitive properties like "alignment" and "ir-
relevance" analogies in measures like similarity
and orthgonality (Sec. 4).

Given the 5 blocks in the task, be-
lief states are vectorized in R5, ordered
component-wise as in Khebour et al. (2024a,b)
([red, blue, green, purple, yellow]). Thus, an
assertion of red = 10 ∧ blue = 10 is represented
as [10, 10, 0, 0, 0] indicating affirmative assertions
regarding the weights of the red and blue blocks.
The 0 components for the other blocks represent
that no information regarding them is being as-
serted. Similarly, green , 20 would be represented
as [0, 0,−20, 0, 0] (negative positioning toward
green = 20, no other information asserted). Where
blocks are related to other blocks by inequalities,
the belief vector encodes a lower or upper bound
regarding that block, such that yellow < 40
becomes [0, 0, 0, 0, 40 − U(0, 1)], thus anchoring
the assertion relative to that weight value, in the
appropriate direction.

Worked Example Consider the novel dialogue
in Table 1, generated using GPT-4 given a descrip-
tion of the task setup and goals. P1’s assertion that
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p1: Alright team, let’s start weighing
the blocks! Since we know the
red block is 10 grams, should we
weigh the blue block against it?

p2: Great idea, I feel like the blue
block will also be 10 grams. Let’s
do it!

p1: [Weighs red and blue blocks] They
balance! So, the blue block is also
10 grams.

p2: Confirmed! That’s awesome.
Now, what should we weigh
next?

Table 1: Example generated dialogue.

the red and blue blocks both weigh 10 grams would
be vectorized as [10, 10, 0, 0, 0]. Now consider a
"frictive" utterance that pushes back on some of this
assertion, which may inserted by an AI agent or
another participant: "Hey, let’s not jump to conclu-
sions about the blue block’s weight just yet. What
if it’s not 10 grams?" This assertion, expressing
(conditionally) that blue , 10, would be vectorized
as [0,−10, 0, 0, 0].

Now, letting φ⃗a be the focus participant’s current
belief vector, φ⃗b be the vector expressing the inter-
locutor’s utterance, and s = sgn(φ⃗a · φ⃗b), consider
an update operation akin to (14):

(17) φ⃗′a = φ⃗a+min
(
β, α× s

)×CosSim(φ⃗a, φ⃗b)⊙φ⃗b.

Here, we introduce some friction coefficients that
allow us to tune how much empirical effect friction
has on the belief update: α expresses how much
"force" to apply the friction with (e.g., a scalar
multiple of the gradient step), and β establishes
a "ceiling" on how much an assertion φ⃗b that is
roughly aligned with φ⃗a can reinforce or "acceler-
ate" it toward the status of an established belief,
when compared to how much a contradictory or
frictive assertion φ⃗b would suppress φ⃗a.

Given the above φ⃗a = [10, 10, 0, 0, 0] and φ⃗b =

[0,−10, 0, 0, 0], with α = 1 and β = 1, the up-
dated belief state φ⃗′a after applying (17) becomes
[10, 2.929, 0, 0, 0]. The assertion contradictory to
blue = 10 renders it a "frictive" proposition and
has lessened P1’s epistemic commitment toward it.
The precise component-wise values in the vector
should not be taken to indicate what the participant
believes the weight of the relevant block to be, but

rather as an indicator of the degree of belief they
have in the block’s weight being the value assigned
to it by the ground truth value assignment.

An interesting effect of these operations is that in
certain circumstances when an assertion expresses
information contrary to certain elements of the be-
lief state but aligned with others, the effect may
be greater on the component of the belief state
against which friction is exercised. I.e., given
φ⃗a = [10, 10, 20, 0, 0], φ⃗b = [10,−10, 20, 0, 0], (φ⃗a

and φ⃗b have the same red and green components
but opposite blue components), α = 1 and β = 1,
the updated φ⃗′a = [10, 3.333, 20, 0, 0], but given
φ⃗a = [10, 10, 20, 0, 0], φ⃗b = [0,−10, 20, 0, 0] (only
the same green components, but opposite blue com-
ponents), φ⃗′a = [10, 4.523, 20, 0, 0]. That is, ac-
cordance on certain propositions gives differences
more "weight" in the update.

5.1 Experimental Procedure

We adopt this procedure to evaluate the operational-
ization of our formal model of dynamic epistemic
friction on the task of predicting what the final
belief state (final state of FBank) of a target partici-
pant should be, given the utterances in the dialogue
in order. This allows us to iteratively evaluate how
the belief state evolves according to the DEF model.
Since all groups in the Weights Task successfully
deduced the weights of all blocks, the ground truth
final state is a fixed [10, 10, 20, 30, 50].

For tractability reasons we focus on modeling the
only the belief state of the participant who speaks
the least in each group.1 This provides the greatest
number of interlocutor utterances that affect the
focus participant’s belief state without updating it
directly due to Saying is Believing (5).

As a consequence of Saying is Believing, if the
focus participant makes a statement asserting a
block weight or explicitly accepts another partici-
pant’s positive and specific assertion about a block
weight (e.g., green = 20, but not green , 20 or
green > blue), then that value gets directly as-
signed to the relevant component in the focus par-
ticipant’s belief vector before the update function
is run over subsequent utterances in the dialogue.

Under these conditions, we conduct the follow-
ing procedure:

1. Initialize the focus participant’s "belief vec-
tor" from a uniform distributionU(0, 10) and

1Which specific participant this is may vary across groups
and is not further explicated here.
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set the first ("red") element of the belief vec-
tor to 10. This reflects the initial state of the
Weights Task where participants are told that
the red block weighs 10g. The U(0, 10) ini-
tialization ensures that belief vectors are not
strictly 0 in most components, allowing for up-
dates to actually shift the vector and reflecting
participants’ assumption (apparent in the orig-
inal data) that weight values are somewhere
in intervals of 10g.

2. Iterate through the statements or acceptances
of propositional content in each group dia-
logue. For each interlocutor utterance, ap-
propriately encoded as described, apply the
update function (17) to the focus participant’s
belief vector.

3. At the end of each dialogue, extract the focus
participant’s final vectorized belief state.

4. Fit a ridge regressor (L2 scaling constant of 1)
to map this extracted belief state to the ground
truth final FBank [10, 10, 20, 30, 50]. We use
a rotating leave-one-group-out split, such that
we fit to the extracted final states from 3 of
the annotated WTD dialogues and test on the
remaining.

This procedure allows us to test how well the fi-
nal extracted belief state, as constructed using DEF
interpretation of the naturally occurring friction in
the dialogue, predicts the actual final FBank at the
conclusion of the task. Due to inherent stochastic-
ity in steps 1 and 4, we ran the aforementioned loop
100 times and average over the outcomes. We also
conduct a variant where the belief state features
extracted in step 3 include the concatenated final
k belief states in each dialogue, for k ∈ {1..4}. We
use root mean-squared error for our primary met-
ric, which puts error back in the original units and
establishes how many "grams" the final prediction
is off by in aggregate.

5.2 Results

Table 2 presents average weight prediction RMSE
over each of the 4 test groups using 100 iterations
of leave-one-group-out evaluation.

Using the FBank constructed with DEF, we are
able to get very close to the true weight values, with
an average RMSE of 2-3g for most test groups at
low k, showing the efficacy of DEF in belief state

k Group 1 Group 2 Group 4 Group 5

1 2.613±0.421 2.946±0.595 7.678±0.983 2.229±0.233

2 1.889±0.217 2.573±0.395 10.731±0.930 1.953±0.204

3 4.449±1.740 2.873±0.631 13.292±1.059 2.368±0.453

4 5.187±1.011 2.366±0.505 17.501±2.190 3.112±1.012

Table 2: Average RMSE on weight prediction from
DEF-constructed FBank over the 4 test groups, using
update function (17) with friction coefficients α = 5 and
β = 2 and dialogue history length k.

tracking and prediction.2 This figure represents
error across all blocks in all groups. In most cases
the block weight introducing the most error into
prediction was that of the yellow block. This is
likely because the participants deduce the weight
of the yellow (largest) block at the very end of the
task, and while many utterances in the dialogue re-
iterate and deliberate upon the weights of the other
blocks, fewer utterances discuss the yellow block,
meaning there are fewer instances that shift the yel-
low component of the belief state vector toward the
correct value. Thus, propositions pertaining to the
yellow block, and yellow = 50 particularly, appear
to be "high friction" propositions as in (11) above.

Fig. 2 shows how the different values of fric-
tion coefficients α and β as used in the vector up-
date function (17) affect DEF’s performance on
belief state prediction. We performed a grid search
through different values ∈ {0.01..100} with a dia-
logue history window size k of up to 4, using leave-
one-group-out cross-validation. From this search,
α = 5 and β = 2 emerged as the best-performing
combination.3 Fig. 2a presents RMSE as a function
of α with β fixed at 2, and Fig. 2b presents RMSE
as a function of β with α fixed at 5.

These figures show the importance of friction
coefficients. α and β are complementary and have
similar effects, particularly as strong regularizers.
When k = 4, meaning longer dialogue history is
used, prediction at lower α and β values is noisy,
with high RMSE and standard error. The lowest
values of α and β are effectively equivalent to a
"minimal friction" or "no friction" setting in which
interlocutor assertions are naively adopted by the
listener. However, as the friction coefficients grow
larger, meaning more friction is effected by each

2Group 4 is a shorter, sparser dialogue with fewer updates,
and is therefore noisier.

3These values were used to compute the groupwise results
in Table 2.
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(a) DEF peformance as a function of α with β = 2 (dashed
lines β = 1 as a default baseline).

(b) DEF peformance as a function of β with α = 5 (dashed
lines α = 1 as a default baseline).

Figure 2: Effects of different α and β values in the vector update function (17) on DEF peformance in FBank
prediction. Values shown are averaged over leave-one-group-out cross-validation. Error bars represent standard
error over 100 iterations, after cross-validation.

update , error drops dramatically. In other words,
without enough friction, beliefs shift too rapidly
toward ultimately incorrect positions. With too
much, they become unchangeable and a slow trend
of increasing error may emerge, particularly with
longer dialogue histories and higher β. However,
the right modulation of epistemic friction in the
dialogue facilitates arriving at equilibrium as in
(15), where beliefs are guided toward agreed-upon
propositions and remain there, achieving common
ground.

Without consideration of epistemic friction,
these propositions would naively be immediately
adopted by every participant (cf. İnan et al. (2025))
A frictionless setting would not reflect the group
dynamics of acceptance or refusal of propositions
and would involve a greater error than all models
involving friction.

6 Conclusion

In this paper, we presented a formal model of Dy-
namic Epistemic Friction (DEF) in dialogue, op-
erationalized within the framework of Dynamic
Epistemic Logic (DEL) and vector-based belief
representations. We draw on the metaphor of fric-
tion as a physical force that changes the trajectory
of a moving object as it encounters resistance and
show that through the lens of DEL, analogous oper-
ations describe resistance to or accommodation of
belief updates. Through empirical analyses using
data from a situated collaborative task (the Weights
Task Dataset), our results demonstrate that DEF

effectively predicts participant belief updates by
quantifying resistance encountered during belief
revisions. Specifically, by operationalizing epis-
temic states and propositional assertions within an
evidence-based dynamic logic with vector-based
propositional encoding, we show that epistemic
friction reliably indicates how smoothly partici-
pants integrate new evidence into their existing
beliefs.

We should note that for a propositional vectoriza-
tion as used in Sec. 5 to hold, the vectorized propo-
sitional space needs to be at least roughly isotopic
(Ethayarajh, 2019; Nath et al., 2023). This property
is known to be at best inconsistent in modern LLMs
(Machina and Mercer, 2024), and for realistic data
where the belief state may not be preannotated as
in the WTD, a more sophisticated vectorization
needs to be used such that arithmetic and algebraic
operations have equivalent logical consequents. In
order to retrieve high-quality vectorizations for re-
alistic data, a vector-symbolic method (Goldowsky
and Sarathy, 2024) could operate over a library of
propositions. The extraction of these propositions
from natural language or multimodal data is crucial
for implementing dynamic epistemic friction in an
end-to-end system (Venkatesha et al., 2024).

While the direct application of LLMs on this task
is underexplored, off-the-shelf LLMs are unlikely
to be able to operationalize the quantitative formal-
ism to belief revision outlined in this paper. İnan
et al. (2025) show that friction improves qualitative
mental modeling, and OTS systems may be able
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to provide qualitative judgments about belief at a
given point in the task. LLMs specifically aligned
with a formal and functional definition of friction
may be more adept at quantitative dialogue tasks.
For instance, Nath et al. (2025) show that LLMs
optimized to be "friction agents" provide more ef-
fective interventions and guidance when optimized
to be directly sensitive to "frictive states" (dialogue
occurrences similar to how we define epistemic fric-
ton here). Pustejovsky and Krishnaswamy (2025)
propose three types of optimization strategies that
exploit representations of group beliefs at various
levels of depth. Following such lines as the above,
combining DEF with qualitative judgments may
allow for an even more accurate representation of
human belief revision. Our theoretical formalism
and empirical data are an important stepping-stone
that shows the validity of this work in isolation, lay-
ing the foundation for further experimentation and
implementation in end-to-end systems, especially
those involving extraction from natural language.

Future work should investigate a vectorized ap-
proach to belief revision in adversarial or compet-
itive tasks. These tasks may explicitly involve
deception and other actions unobserved in the
Weights Task; they may commonly use forms of
communication prohibitive to collaborative settings
but conducive to high performance in competitive
environments. For example, the game of Diplo-
macy has been an object of study as a challeng-
ing setting for benchmarking communicative AI
(Wongkamjan et al., 2024), and contains both coop-
erative and adversarial elements. The formalism of
epistemic friction alloes an analysis of when con-
vergent properties as seen in alliances, suddenly
change character, as when former allies become
adversaries, but one of the players may not real-
ize this change has occurred. These state changes
are accommodated by the DEF formalism, our ex-
perimental procedure can be used to detect these
changes (in terms of changes in the convergent
properties over time), and our experimental results
provide a baseline convergent condition to test col-
laborator and adversary behavior against.

One could also use the common ground frame-
work and dynamic epistemic friction updates to
predict agent behavior. The difference between an
agent’s current belief state and the proposed up-
dated state, as well as task history and agent behav-
ior, can inform a classifier of how an agent might
respond (immediate acceptance, counterargument,
asking clarifying questions, etc.) to a given sce-

nario at any moment. This analysis would show
how deeply our model of dynamic epistemic fric-
tion corresponds to agent behavior and how it may
serve as a necessary link in instructive or monitor-
ing systems.

Our empirical results show DEF’s effectiveness
as a model and the importance of properly modulat-
ing the amount of friction in a dialogue (as shown
as in the tuning of selected friction coefficients),
but we did not compare DEF to other approaches as
this novel model of friction in dialogue and novel
method of evaluating does not have at present any
direct competitors in the literature. It is not clear
that existing methods, such as those used in the Di-
alogue State Tracking Challenge (Williams et al.,
2016) provide a meaningful comparison.

The friction metaphor serves as a bridge between
logical updating operations (e.g., dynamic epis-
temic logic) and cognitively motivated geometric
models (e.g., vector symbolic architectures). Im-
portantly, it highlights the fact that belief change
in dialogue is not always straightforward but can
generate internal or inter-agent tension, where the
appropriate coefficient of friction plays a crucial
role in mitigating misunderstanding.
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Mert İnan, Anthony Sicilia, Suvodip Dey, Vardhan
Dongre, Tejas Srinivasan, Jesse Thomason, Gökhan
Tür, Dilek Hakkani-Tür, and Malihe Alikhani. 2025.
Better slow than sorry: Introducing positive fric-
tion for reliable dialogue systems. arXiv preprint
arXiv:2501.17348.

Pentti Kanerva. 1988. Sparse distributed memory. MIT
press.

Ibrahim Khebour, Richard Brutti, Indrani Dey, Rachel
Dickler, Kelsey Sikes, Kenneth Lai, Mariah Brad-
ford, Brittany Cates, Paige Hansen, Changsoo Jung,
Brett Wisniewski, Corbyn Terpstra, Leanne M Hir-
shfield, Sadhana Puntambekar, Nathaniel Blanchard,
James Pustejovsky, and Nikhil Krishnaswamy. 2024a.
When text and speech are not enough: A multimodal
dataset of collaboration in a situated task. Journal of
open humanities data, 10.

Ibrahim Khebour, Kenneth Lai, Mariah Bradford, Yi-
fan Zhu, Richard Brutti, Christopher Tam, Jingxuan
Tu, Benjamin Ibarra, Nathaniel Blanchard, Nikhil
Krishnaswamy, and James Pustejovsky. 2024b. Com-
mon ground tracking in multimodal dialogue. arXiv
preprint arXiv:2403.17284.

Denis Kleyko, Dmitri Rachkovskij, Evgeny Osipov, and
Abbas Rahimi. 2023. A survey on hyperdimensional
computing aka vector symbolic architectures, part
ii: Applications, cognitive models, and challenges.
ACM Computing Surveys, 55(9):1–52.

Denis Kleyko, Dmitri A. Rachkovskij, Evgeny Osipov,
and Abbas Rahimi. 2022. A survey on hyperdimen-
sional computing aka vector symbolic architectures,
part i: Models and data transformations. ACM Com-
puting Surveys, 55(6):1–40.

Nikhil Krishnaswamy and James Pustejovsky. 2020.
A formal analysis of multimodal referring strate-
gies under common ground. In Proceedings of the
Twelfth Language Resources and Evaluation Confer-
ence, pages 5919–5927.

Geert-Jan M Kruijff, Pierre Lison, Trevor Benjamin,
Henrik Jacobsson, Hendrik Zender, Ivana Kruijff-
Korbayová, and Nick Hawes. 2010. Situated dia-
logue processing for human-robot interaction. In
Cognitive systems, pages 311–364. Springer.

Alessandro Lenci and Magnus Sahlgren. 2023. Distri-
butional semantics. Cambridge University Press.

Jiaming Luo, Yuan Cao, and Yonghui Wu. 2018. To-
wards decomposed linguistic representation with
holographic reduced representation.

Anemily Machina and Robert Mercer. 2024. Anisotropy
is not inherent to transformers. In Proceedings of
the 2024 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Pa-
pers), pages 4892–4907.

332

https://aclanthology.org/2003.mtsummit-papers.4/
https://aclanthology.org/2003.mtsummit-papers.4/
https://aclanthology.org/2003.mtsummit-papers.4/
https://www.semdial.org/anthology/Z24-Ginzburg_semdial_0007.pdf
https://www.semdial.org/anthology/Z24-Ginzburg_semdial_0007.pdf
https://doi.org/10.1038/s44159-021-00008-w
https://doi.org/10.1038/s44159-021-00008-w
https://doi.org/10.1145/3558000
https://doi.org/10.1145/3558000
https://doi.org/10.1145/3558000
https://doi.org/10.1145/3538531
https://doi.org/10.1145/3538531
https://doi.org/10.1145/3538531


Magdalena Markowska, Adil Soubki, Gary Mar,
Seyed Abolghasem Mirroshandel, Owen Rambow,
and Anita Wasilewska. Formal representation of
common ground in dialogue.

Abhijnan Nath, Carine Graff, Andrei Bachinin, and
Nikhil Krishnaswamy. 2025. Frictional Agent Align-
ment Framework: Slow Down and Don’t Break
Things. In Annual Meeting of the Association for
Computational Linguistics (ACL). ACL.

Abhijnan Nath, Sheikh Mannan, and Nikhil Krish-
naswamy. 2023. Axomiyaberta: A phonologically-
aware transformer model for assamese. In Findings
of the Association for Computational Linguistics:
ACL 2023, pages 11629–11646.

Vlad Niculae, Srijan Kumar, Jordan Boyd-Graber, and
Cristian Danescu-Niculescu-Mizil. 2015. Linguistic
harbingers of betrayal: A case study on an online
strategy game. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 1650–1659.

Timothy Obiso. 2024. Holographic embeddings for text
and graphs a master’s thesis presented to the faculty
of the graduate school of arts and sciences.

Xenia Ohmer, Marko Duda, and Elia Bruni. 2022. Emer-
gence of hierarchical reference systems in multi-
agent communication. In Proceedings of the 29th
International Conference on Computational Linguis-
tics, pages 5689–5706.

Derek Palmer, Yifan Zhu, Kenneth Lai, Hannah Van-
derHoeven, Mariah Bradford, Ibrahim Khebour, Car-
los Mabrey, Jack Fitzgerald, Nikhil Krishnaswamy,
Martha Palmer, and 1 others. 2024. Speech is not
enough: Interpreting nonverbal indicators of com-
mon knowledge and engagement. arXiv preprint
arXiv:2412.05797.

Tony A Plate. 1995. Holographic reduced represen-
tations. IEEE Transactions on Neural networks,
6(3):623–641.

James Pustejovsky and Nikhil Krishnaswamy. 2021.
Embodied human computer interaction. KI-
Künstliche Intelligenz, 35(3):307–327.

James Pustejovsky and Nikhil Krishnaswamy. 2025.
Frictive policy optimization for llm agent interac-
tions. In Proc. of the 24th International Conference
on Autonomous Agents and Multiagent Systems (AA-
MAS 2025).

Matthias Scheutz, Rehj Cantrell, and Paul Schermer-
horn. 2011. Toward humanlike task-based dialogue
processing for human robot interaction. Ai Magazine,
32(4):77–84.

Robert Stalnaker. 2002. Common ground. Linguistics
and philosophy, 25(5/6):701–721.

David Traum. 1994. A computational theory of ground-
ing in natural language conversation. PhD thesis,
University of Rochester.

David R Traum and Staffan Larsson. 2003. The informa-
tion state approach to dialogue management. Current
and new directions in discourse and dialogue, pages
325–353.

Johan Van Benthem and Eric Pacuit. 2011. Logical
dynamics of evidence. In International Workshop
on Logic, Rationality and Interaction, pages 1–27.
Springer.

Johan van Benthem and Sonja Smets. 2015. Dynamic
logics of belief change.

Hans Van Ditmarsch, Wiebe van Der Hoek, and Barteld
Kooi. 2007. Dynamic epistemic logic, volume 337.
Springer Science & Business Media.

Hannah VanderHoeven, Brady Bhalla, Ibrahim Khe-
bour, Austin Youngren, Videep Venkatesha, Mariah
Bradford, Jack Fitzgerald, Carlos Mabrey, Jingx-
uan Tu, Yifan Zhu, Kenneth Lai, Changsoo Jung,
James Pustejovsky, and Nikhil Krishnaswamy. 2025.
TRACE: Real-Time Multimodal Common Ground
Tracking in Situated Collaborative Dialogues. In Pro-
ceedings of the 2025 Meeting of the Nations of the
Americas Chapter of the Association for Computa-
tional Linguistics: System Demonstrations.

Videep Venkatesha, Abhijnan Nath, Ibrahim Khebour,
Avyakta Chelle, Mariah Bradford, Jingxuan Tu,
James Pustejovsky, Nathaniel Blanchard, and Nikhil
Krishnaswamy. 2024. Propositional extraction from
natural speech in small group collaborative tasks. In
Proceedings of the 17th International Conference on
Educational Data Mining, pages 169–180.

Jason D Williams, Antoine Raux, and Matthew Hender-
son. 2016. The dialog state tracking challenge series:
A review. Dialogue & Discourse, 7(3):4–33.

Wichayaporn Wongkamjan, Feng Gu, Yanze Wang,
Ulf Hermjakob, Jonathan May, Brandon M Stewart,
Jonathan Kummerfeld, Denis Peskoff, and Jordan
Boyd-Graber. 2024. More victories, less cooperation:
Assessing cicero’s diplomacy play. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 12423–12441.

Yifan Zhu, Hannah VanderHoeven, Kenneth Lai,
Mariah Bradford, Christopher Tam, Ibrahim Khebour,
Richard Brutti, Nikhil Krishnaswamy, and James
Pustejovsky. 2024. Modeling theory of mind in mul-
timodal hci. In International Conference on Human-
Computer Interaction, pages 205–225. Springer.

333



Proceedings of the 29th Conference on Computational Natural Language Learning, pages 334–347
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

A Three-Tier LLM Framework for Forecasting Student Engagement from
Qualitative Longitudinal Data

Ahatsham Hayat1 Helen Martinez1 Bilal Khan2 Mohammad Rashedul Hasan1

University of Nebraska-Lincoln1 Lehigh University2

aahatsham2@huskers.unl.edu, hasan@unl.edu

Abstract

Forecasting nuanced shifts in student en-
gagement from longitudinal experiential (LE)
data—multi-modal, qualitative trajectories of
academic experiences over time—remains chal-
lenging due to high dimensionality and missing-
ness. We propose a natural language processing
(NLP)-driven framework using large language
models (LLMs) to forecast binary engagement
levels across four dimensions: Lecture En-
gagement Disposition, Academic Self-Efficacy,
Performance Self-Evaluation, and Academic
Identity and Value Perception. Evaluated on
960 trajectories from 96 first-year STEM stu-
dents, our three-tier approach—LLM-informed
imputation to generate textual descriptors for
missing-not-at-random (MNAR) patterns, zero-
shot feature selection via ensemble voting,
and fine-tuned LLMs—processes textual non-
cognitive responses. LLMs substantially out-
perform numeric baselines (e.g., Random For-
est, LSTM) by capturing contextual nuances
in student responses. Encoder-only LLMs sur-
pass decoder-only variants, highlighting archi-
tectural strengths for sparse, qualitative LE data.
Our framework advances NLP solutions for
modeling student engagement from complex
LE data, excelling where traditional methods
struggle.

1 Introduction

Transformer-based (Vaswani et al., 2017) large lan-
guage models (LLMs) have significantly advanced
natural language processing (NLP), pushing bound-
aries in text understanding and generation across
diverse applications (Bommasani et al., 2021). Be-
yond excelling in traditional NLP tasks such as
summarization and translation (Zhao et al., 2025),
LLMs have demonstrated a remarkable capacity
for reasoning over complex, context-rich informa-
tion, suggesting their potential for analyzing se-
quential and subjective data (Wei et al., 2022; Tou-
vron et al., 2023). One particularly promising, yet

relatively untapped, area for LLM application lies
in the analysis of longitudinal experiential (LE)
data—time-series records capturing individuals’
evolving perceptions, emotions, and experiences
(Xu et al., 2022).

Within educational contexts, LE data offers a
unique and valuable perspective on students’ sub-
jective engagement, a well-established predictor
of retention and academic achievement (Fredricks,
2014; Sinatra et al., 2015). Despite its richness,
the inherent characteristics of LE data, including
its qualitative nature, temporal dependencies, and
frequent missingness, present substantial computa-
tional challenges that often limit the effectiveness
of traditional machine learning approaches (Xu
et al., 2023). Our research focuses on this underex-
plored intersection of LLMs and the complexities
of LE data analysis in education.

In educational research, LE data systematically
gathers real-time, self-reported insights—including
emotional responses, shifts in motivation, and the
development of self-efficacy—from individuals
over time, complementing traditional cognitive as-
sessments (Kolb, 1984; Palmer et al., 2010). Un-
derstanding these non-cognitive (NC) dimensions
can reveal critical engagement patterns predictive
of academic outcomes, informing timely interven-
tions (Wang et al., 2014; Li et al., 2020).

Our research is based on a dataset of 28 dis-
tinct NC features collected weekly from 96 first-
year college STEM (science, technology, engineer-
ing, mathematics) students across three semesters
(Hayat et al., 2024a,b). These features aimed to
capture a comprehensive view of their engage-
ment. However, initial analysis revealed that many
of these features suffered from extreme missing-
ness, with some having up to 100% unanswered
responses. To ensure a more robust analysis, we
focused on 10 key qualitative NC features that ex-
hibited a response rate of at least 35%. Our fore-
casting task specifically targets predicting weekly
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binary engagement shifts (positive vs. negative)
across four critical dimensions using 4-week his-
torical sequences, where each prediction involves
determining whether a student’s engagement level
in week 5 will exceed their average from weeks
1-4. These 10 features, despite the inherent chal-
lenges of qualitative data, form the basis of our
investigation into student engagement forecasting.

Initial attempts to forecast engagement by con-
verting the textual responses of these 10 features
into numeric values (e.g., via Likert scale encod-
ing) and training traditional machine learning mod-
els like Random Forest (Breiman, 2001) and Sup-
port Vector Machines (Hearst et al., 1998), as
well as time-series models like LSTMs (Hochreiter
and Schmidhuber, 1997), yielded poor forecasting
performance. Similarly, directly fine-tuning stan-
dard decoder-only and encoder-only LLMs on the
raw text of these 10 NC features also resulted in
suboptimal forecasting accuracy, although show-
ing marginal improvement over the numeric-based
models. This suggests that while LLMs possess in-
herent advantages, directly processing all available
qualitative features, even after initial filtering for
missingness, can still introduce noise, hindering
their ability to effectively discern predictive signals
in this specific type of LE data.

The limitations observed with both traditional
numeric approaches and direct LLM fine-tuning
underscore the need for a more tailored strat-
egy for analyzing this qualitative, time-series LE
data with significant missingness. Unlike tra-
ditional time-series models (e.g., ARIMA (Box
et al., 2015), LSTMs (Hochreiter and Schmidhuber,
1997)), which struggle with non-numeric input and
are particularly vulnerable to biases introduced by
missing data, LLMs offer the potential to directly
process qualitative information.

As highlighted earlier, processing LE data
presents a complex array of challenges, includ-
ing its qualitative nature, temporal dependencies,
and significant sparsity due to missing self-reports.
These difficulties are further compounded by the
prevalence of missing-not-at-random (MNAR) pat-
terns (Rubin, 1976), where the absence of a report
is often correlated with the very engagement phe-
nomena we aim to study. This introduces biases
that conventional statistical imputation techniques,
such as Last Observation Carried Forward (LOCF),
are often inadequate to handle effectively (Schafer,
1997).

To address this critical issue of biased missing-
ness and the noise within the qualitative LE feature
space, we propose a three-tier LLM framework
specifically designed for the unique characteristics
of this LE data: (1) LLM-informed imputation,
using LLMs’ contextual understanding to generate
textual descriptors for missing values, mitigating
MNAR bias where traditional methods fall short;
(2) LLM-based zero-shot feature selection, em-
ploying a panel of expert LLMs to infer and se-
lect the most relevant subset of our 10 qualitative
NC features via majority voting, thereby reducing
noise; and (3) fine-tuned forecasting, comparing
decoder-only and encoder-only LLMs to predict
binary engagement levels for four key dimensions:
Lecture Engagement Disposition (LED), Academic
Self-Efficacy (ASE), Performance Self-Evaluation
(PSE), and Academic Identity and Value Perception
(AIVP).

Evaluated on 960 overlapping 4-week trajecto-
ries (weeks 1-4 predicting week 5) derived from our
dataset, our three-tier approach significantly outper-
forms numeric baselines. Ablation studies further
demonstrate the efficacy of each component: (1)
zero-shot feature selection yields substantial gains
compared to using all 10 NC features, highlighting
the noise reduction achieved through expert LLM
guidance; and (2) LLM-based feature selection sur-
passes numeric feature-based models that utilize
all available features, directly justifying the need
for our LLM-driven feature selection process for
this qualitative data. Encoder-only architectures
consistently outperform decoder-only variants in
this sparse LE forecasting task. This work con-
tributes to the advancement of NLP by reframing
qualitative time-series forecasting as a language
problem.

Our main contributions are summarized as fol-
lows.

• A three-tier LLM framework tackling qualita-
tive LE data’s noise and MNAR missingness
via imputation and feature selection.

• A novel zero-shot LLM selection method, out-
performing numeric baselines on textual time-
series.

• Evidence of LLMs’ superiority for sparse, sub-
jective sequences, advancing NLP’s temporal
scope.
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2 Related Work

This research leverages LLMs for time-series fore-
casting, extending their NLP strengths to quali-
tative LE data in education. Transformer-based
LLMs like TimeGPT (Garza et al., 2024) and
PromptCast (Xue and Salim, 2024) verbalize nu-
meric time-series for prediction, with data-centric
approaches transforming sequences into text for
pre-trained LMs (Jin et al., 2024) and model-centric
methods fine-tuning LMs for temporal tasks (Zhou
et al., 2023). Our model-centric approach fine-
tunes LLMs for subjective LE sequences, diverg-
ing from numeric trends to target engagement
attributes—a domain underexplored by existing
LLM-based time-series models despite their se-
quential modeling prowess.

Student engagement forecasting in educational
analytics often relies on cognitive (e.g., grades)
or behavioral (e.g., clickstreams) data, using ML
methods like LSTMs and Random Forests (Xu
and Ouyang, 2022). Recent work incorporates
NC factors—self-efficacy, motivation—from sur-
veys (Fredricks, 2014), yet struggles with textual
responses, temporal dynamics, and MNAR miss-
ingness prevalent in LE data (Sinatra et al., 2015).
Unlike these numeric-focused efforts, our frame-
work verbalizes weekly NC trajectories for LLM
processing, forecasting binary engagement levels
and bridging educational analytics with NLP’s tex-
tual capabilities, addressing a gap in longitudinal
engagement modeling.

Handling missing data and feature selection in
LE sequences poses further challenges. Traditional
imputation (e.g., MICE (van Buuren and Groothuis-
Oudshoorn, 2011)) assumes MCAR/MAR, falter-
ing with MNAR patterns (e.g., disengagement-
driven skips) and LE’s qualitative heterogeneity
(Rubin, 1976). Generative models like GAIN
(Yoon et al., 2018) impute numeric values but lack
context for textual NC features, while standard
feature selection (e.g., variance thresholding (Jain
et al., 2000)) misses nuanced semantic relevance.
Our three-tier framework—LLM-informed impu-
tation (GPT-4o), zero-shot feature selection, and
fine-tuned forecasting—outperforms these by cap-
turing MNAR context and selecting predictive NC
subsets, leveraging LLMs’ reasoning for sparse,
subjective data. See Appendix A.2 for a detailed
discussion.

3 Three-Tier LLM Framework

This section details our three-tier NLP framework
for forecasting weekly student engagement levels
from qualitative LE data, designed to address the
challenges of MNAR missingness and noise in the
feature space. The framework, illustrated in Figure
1, consists of: (1) LLM-informed imputation to ad-
dress MNAR gaps, (2) zero-shot feature selection
via an ensemble of expert LLMs, and (3) fine-tuned
forecasting with diverse LLM architectures. These
tiers transform sparse, qualitative NC sequences
into predictive models, evaluated against numeric
baselines.

3.1 Dataset

We utilize a dataset from 96 first-year college stu-
dents in introductory programming courses at a
U.S. public university, collected over 15 weeks
per semester across three semesters (Hayat et al.,
2024a,b). The data captures 78-dimensional aca-
demic experiential trajectories across three modali-
ties: 9-dimensional background data (e.g., demo-
graphics, socioeconomic status), 41-dimensional
cognitive data (e.g., quiz scores, coding assignment
grades), and 28-dimensional NC data (e.g., self-
reported motivation, lecture engagement). Back-
ground data derives from an initial web survey, cog-
nitive data from the course learning management
system, and NC data from daily, context-adaptive
questions via a privacy-preserving smartphone app,
stored anonymously on cloud servers.

For forecasting, we focus on the NC data, com-
prising responses to 28 questions targeting behav-
ioral, emotional, and cognitive engagement dimen-
sions (e.g., “How much are you looking forward to
your CS1 class lecture today?”). Due to high miss-
ingness—over 90% for 18 questions, with some
entirely unanswered—we curated 10 key qualita-
tive NC features with at least 35% response rates,
detailed in Appendix A.1. These 10 features repre-
sent our curated set of key qualitative non-cognitive
indicators of student engagement, chosen after ad-
dressing the issue of high missingness in the ini-
tial 28 features. Using a sliding window, we con-
struct 4-week sequences to predict the subsequent
week’s engagement shift (e.g., weeks 1-4 predict
week 5), yielding 960 trajectories (96 students ×
10 predictions per semester). Each trajectory tar-
gets four binary engagement outcomes—Lecture
Engagement Disposition, Academic Self-Efficacy,
Performance Self-Evaluation, and Academic Iden-
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Figure 1: Three-tier LLM framework: (1) LLM-informed imputation fills MNAR gaps in LE trajectories, (2) zero-
shot feature selection by expert LLMs curates NC subsets, and (3) fine-tuned LLMs forecast binary engagement
levels, enhanced by background features.

tity and Value Perception—derived as composite
scores from the 10 NC features.

3.2 LLM-Informed Imputation

The NC data exhibits significant missingness (e.g.,
66% of responses missing in week 1, 37% of stu-
dents skipping questions for over two weeks), often
due to students skipping questions or uninstalling
the app—patterns indicative of MNAR behavior
(Rubin, 1976). Traditional imputation methods
like LOCF (Liu, 2016) are unsuitable, as entire
weekly response sets may be absent, leaving no
prior values to propagate, and numeric imputation
risks introducing bias by ignoring MNAR’s seman-
tic context (Little and Rubin, 2019). To address
this critical issue of biased missingness, we employ
GPT-4o (OpenAI, 2024) in a zero-shot manner to
generate textual descriptors for missing responses
(e.g., “The student skipped this question” or “No
response due to app uninstallation”), preserving
contextual meaning without forcing numeric as-
sumptions.

For each missing response in our dataset, we
construct a detailed prompt that includes surround-
ing NC data, such as responses from prior or sub-
sequent weeks, and contextual metadata, such as
question type and week number. This informa-
tion serves as the dataset features information pro-

vided to GPT-4o, enabling it to infer a descrip-
tor for the missing response. GPT-4o processes
these prompts zero-shot—without task-specific
training—leveraging its linguistic reasoning to in-
fer descriptors that reflect MNAR dynamics (e.g.,
disengagement patterns). This approach enhances
data quality by embedding semantic context into
the 960 trajectories, enabling downstream feature
selection and forecasting to exploit qualitative sig-
nals overlooked by statistical methods (Little and
Rubin, 2019).

3.3 Zero-Shot Feature Selection

Our dataset’s 10 curated NC features, reduced from
an initial set of 28 due to extreme missingness,
form a semantically rich yet sparse space requir-
ing feature selection to optimize forecasting by
reducing noise inherent in the qualitative feature
space (Guyon and Elisseeff, 2003). Traditional
methods—e.g., variance thresholding, correlation
analysis (Jain et al., 2000), or attention-based deep
learning (Ying et al., 2024)—rely on statistical dis-
tributions or labeled data, often missing qualitative,
non-linear relationships in LE sequences. Instead,
we propose a zero-shot feature selection method
using an ensemble of expert LLMs: GPT-4o (Ope-
nAI, 2024), Google Gemini (Team et al., 2024a),
DeepSeek (DeepSeek-AI et al., 2025), and Mi-
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crosoft Copilot (Copilot, 2024). This panel lever-
ages each model’s linguistic reasoning and world
knowledge to identify predictive NC subsets for
four engagement dimensions without accessing the
data itself (Kojima et al., 2022).

Mathematical Formulation. Formally, let X
denote the dataset of student responses, where each
instance Xi = (Xi

1, . . . , X
i
d) is a d-dimensional

vector, and d = 10 represents the curated NC fea-
tures (e.g., Xi

1: motivation, Xi
5: lecture enjoyment).

For each engagement dimension k (e.g., k = LED
for Lecture Engagement Disposition), we define
a candidate feature set F = {X1, . . . , X10} and
seek an optimal subset Sk ⊆ F that maximizes
predictive relevance for target Yk. Unlike statisti-
cal methods that require data access, our ensemble
operates zero-shot: given only semantic descrip-
tions of the 10 features and target definitions, each
LLM Mj independently produces a ranking Rk

j of
features by inferred relevance. We aggregate these
rankings via majority voting, where a feature Xi is
included in Sk if selected by at least ⌈J/2⌉ models,
where J = 4 is the ensemble size. This yields
consensus-driven subsets Sk that capture semantic
relationships across multiple expert perspectives.

Implementation via Unified Expert Prompt.
To systematically guide the feature selection pro-
cess across all four engagement dimensions, we
employ a single comprehensive prompt that lever-
ages psychological domain expertise. Each LLM
in our ensemble receives the following structured
prompt:

“You are an expert psychologist analyz-
ing and predicting student engagement.
Given a set of survey questions (e.g., Q1:
How much are you looking forward to
today’s lecture?, Q5: How much did you
enjoy today’s lecture?, Q18: How confi-
dent are you in your programming skills?,
. . . ), identify the most predictive ones for
forecasting students’ engagement levels
in the following domains for the upcom-
ing week:”

1. Lecture Engagement Disposition

2. Academic Self-Efficacy

3. Performance Self-Evaluation

4. Academic Identity and Value Per-
ception

This unified prompting approach ensures con-
sistency across the ensemble while allowing each
LLM to apply its domain knowledge to identify
dimension-specific feature subsets. The stream-
lined prompt structure enables each model to con-
sider all available features and make informed se-
lections based on psychological theory and seman-
tic relationships between questions and target con-
structs.

The systematic application of this expert prompt
yields tailored feature subsets: Lecture Engage-
ment Disposition SLED = {Q1, Q5}, Academic
Self-Efficacy SASE = {Q18, Q19, Q20}, Perfor-
mance Self-Evaluation SPSE = {Q21, Q22, Q23},
and Academic Identity and Value Perception
SAIVP = {Q24, Q25}. By reasoning over semantic
nuance (e.g., prioritizing “lecture enjoyment” over
“general motivation” for LED), the ensemble cap-
tures contextual relationships statistical methods
overlook. This data-agnostic, scalable approach
leverages LLMs’ prior knowledge, offering a novel
alternative to traditional feature selection for quali-
tative time-series tasks (Kojima et al., 2022).

We acknowledge that our current implemen-
tation relies on closed-source LLMs (GPT-4o,
Google Gemini, DeepSeek, and Microsoft Copilot),
though the framework is adaptable to open-source
alternatives such as Llama (Touvron et al., 2023)
or Mistral (Mistral AI, 2024) for enhanced repro-
ducibility.

3.4 Data Preprocessing
To generate binary labels for our 960 trajectories,
we score NC responses on a scale capturing engage-
ment intensity (e.g., for X1: “I am really looking
forward to it” = 1, “I am not planning to attend” =
-1, “I am kind of looking forward” = 0.5, “I am not
really looking forward” = -0.5). For each student
and week, we compute a composite score per di-
mension by averaging the subset’s scores selected
for that dimension (e.g., for Lecture Engagement
Disposition: (X1 + X5)/2, aggregating daily re-
sponses). For a 4-week sequence (e.g., weeks 1–
4), we calculate the week 5 score; a positive shift
(Yk = 1) is assigned if the week 5 score exceeds
the 4-week average, otherwise negative (Yk = 0),
yielding a positive-to-negative ratio between 60:40
and 70:30 across the four dimensions.

For baseline models, we convert NC responses
into numeric features using these assigned scores
(e.g., X1 = 1 for “I am really looking forward
to it”), preserving the 10-feature structure post-
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selection (Section 3.3). Missing values, reflecting
MNAR patterns, are imputed with zeros, forming
36-D vectors (10 features × 4 weeks) or 4 × 10-D
sequences for model input. For LLMs, we verbal-
ize these imputed 4-week sequences into natural
language narratives, integrating GPT-4o descrip-
tors from Section 3.2 to leverage text-processing
strengths (Radford et al., 2019). For example, a
sequence might read: “Week 1, Monday: Prior to
the lecture, the student reported I am not looking
forward to it; in the evening, they reflected: I did
not enjoy the lecture. Week 2: [imputed] skipped
the question”. This transformation embeds daily
responses (e.g., X1: motivation, X5: enjoyment)
and imputed MNAR patterns, tailored to the four
engagement dimensions, preparing data for fine-
tuning with qualitative context intact.

3.5 Fine-Tuned Forecasting with LLM
Architectures

We forecast binary engagement levels (positive
vs. negative) over 10 weeks (weeks 5–14) us-
ing the 960 verbalized trajectories (Section 3.4).
Two different LLM architecture classes are fine-
tuned for binary classification of student engage-
ment across key dimensions: decoder-only mod-
els (Gemma2 9B (Team et al., 2024b), Mixtral
8x7B (Jiang et al., 2024), Llama 7B (Touvron et al.,
2023)) and encoder-only models (RoBERTa (Liu
et al., 2021), DistilBERT-base-uncased (Sanh et al.,
2020)).

Decoder-only models leverage autoregressive
reasoning to model the narrative complexity and
temporal dependencies of verbalized NC trajecto-
ries (e.g., 4-week sequences with MNAR-imputed
text), potentially capturing nuanced shifts in quali-
tative LE data. Specifically, we include Gemma2
9B for its strong performance and efficiency, Mix-
tral 8x7B as a sparse mixture-of-experts model
known for its high quality and fast inference, and
Llama 7B as a widely adopted and well-studied
foundational model.

Conversely, encoder-only models excel at bidi-
rectional sequence encoding, optimizing discrimi-
native power for sparse, noisy inputs by focusing
on contextual feature interactions—critical for our
960 trajectories with varying missingness (35%–
100%). We select RoBERTa for its robust pre-
training and state-of-the-art results on various clas-
sification tasks, and DistilBERT-base-uncased as a
computationally efficient yet effective transformer
model, allowing us to explore the trade-off between

model size and performance.
This dual selection tests architectural suitability:

generative flexibility for sequential coherence vs.
compact representation for classification efficacy.

Performance is evaluated using balanced accu-
racy and macro-F1, against numeric baselines: Ran-
dom Forest (Breiman, 2001), Support Vector Ma-
chines (Hearst et al., 1998), 1D CNN (O’Shea and
Nash, 2015), LSTM (Hochreiter and Schmidhu-
ber, 1997), and Transformer (Vaswani et al., 2017).
Baselines use scored responses (no verbalization).

4 Experiments and Results

We evaluate our three-tier LLM framework—LLM-
informed imputation, zero-shot feature selection,
and fine-tuned forecasting—against numeric base-
lines to demonstrate its effectiveness in forecasting
student engagement from qualitative LE data. Key
comparisons assess: (1) baseline machine and deep
learning models with numeric NC subset features,
(2) LLMs with verbalized NC subset features, and
(3) LLMs with NC subset plus background features.
Two ablation studies further explore feature quan-
tity (subset vs. all NC features) and input modality
(textual LLMs vs. numeric baselines with all fea-
tures), validating LLMs’ superiority and selection
benefits for noisy, MNAR-impaired data.

4.1 Experimental Setup

The dataset comprises 960 trajectories (Sec-
tion 3.1), split into 70% training (672 trajectories),
15% validation (144), and 15% testing (144), with
positive-to-negative class ratios ranging from 60:40
to 70:30 across four dimensions: Lecture Engage-
ment Disposition (LED), Academic Self-Efficacy
(ASE), Performance Self-Efficacy (PSE), and Aca-
demic Identity and Value Perception (AIVP). Three
configurations are tested: (1) numeric NC sub-
set features (e.g., LED: Q1, Q5 post zero-shot
selection, Section 3.3), (2) verbalized NC subset
features, and (3) verbalized NC subset features
plus 9 background features (e.g., demographics)
appended as “Background: Female, Mechanical
Engineering Major...”.

Baseline models—Random Forest (RF, 100
trees), SVM (RBF kernel), 1D CNN, LSTM, and
Transformer—are implemented via scikit-learn,
trained on numeric NC subset features (e.g., LED:
Q1, Q5 as scores, Section 3.4). The 1D CNN
uses two convolutional layers with max-pooling,
followed by fully connected and dropout layers.
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Table 1: Baseline Performance Across Dimensions Using Numeric NC Subset Features

Model LED ASE PSE AIVP
B.Acc. F1 B.Acc. F1 B.Acc. F1 B.Acc. F1

Random Forest 54.5 53.5 46.0 44.5 53.5 52.5 44.0 41.0
SVM 52.0 48.0 50.0 41.0 51.5 47.0 50.0 39.0
1D CNN 49.0 49.0 48.5 46.0 42.5 39.5 50.0 41.5
Transformer 49.5 47.0 50.0 50.0 50.0 46.5 49.5 38.5
LSTM 55.5 54.0 53.5 48.0 47.5 45.0 51.5 40.5

The LSTM employs two 50-unit layers, the first
returning sequences, with dropout. The Trans-
former features two MultiHeadAttention layers,
feed-forward networks, and global average pooling,
with dropout. These run on 8× NVIDIA A40 GPUs
with a batch size of 32, learning rate of 0.001, 50
epochs, and AdamW optimizer (Loshchilov and
Hutter, 2019). LLMs—decoder-only (Gemma2
9B (Team et al., 2024b), Mixtral 8x7B (Jiang et al.,
2024), LLaMA 7B (Touvron et al., 2023)) and
encoder-only (RoBERTa (Liu et al., 2021), Dis-
tilBERT (Sanh et al., 2020))—are fine-tuned via
Hugging Face Transformers on the same GPUs,
with a batch size of 8, learning rate of 1 × 10−5,
20 epochs, and AdamW with weight decay 0.01.
Given class imbalance, we report balanced accu-
racy (B.Acc.) and macro-F1 score.

4.2 Results and Analysis

4.2.1 Baseline Performance

Table 1 shows the performance of baseline mod-
els trained on numeric NC subset features (e.g.,
LED: Q1, Q5; Section 3.3) across four dimensions:
LED, ASE, PSE, and AIVP. LSTM leads in three
dimensions, with balanced accuracy (B.Acc.) of
55.5% (LED), 53.5% (ASE), and 51.5% (AIVP),
and macro-F1 peaking at 54.0% (LED), leverag-
ing its sequential modeling capability. Random
Forest (RF) excels for PSE (53.5% B.Acc., 52.5%
F1), surpassing LSTM through robust feature ag-
gregation. SVM and Transformer achieve moder-
ate results, with Transformer’s best F1 at 50.0%
(ASE), while 1D CNN consistently underperforms
(e.g., 39.5% F1 for PSE). Across dimensions, base-
lines average 50.8% balanced accuracy and 46.9%
macro-F1, struggling with sparsity and MNAR pat-
terns. These models have demonstrated a tendency
to deliver unreliable results, with a significant skew
towards predicting outcomes predominantly in the
positive class, which makes these models unreli-
able for these tasks.

4.2.2 LLM Performance with NC Subset
Features

Table 2 presents the performance of fine-tuned
LLMs using verbalized NC subset features (e.g.,
2–3 features per dimension, Section 3.3) across
all four dimensions: LED, ASE, PSE, and
AIVP. RoBERTa consistently achieves the high-
est macro-F1 scores, ranging from 65.0% (LED)
to 70.5% (ASE, AIVP), with balanced accuracy
peaking at 69.0% (AIVP), surpassing the best
baseline (LSTM, 54.0% F1 for LED) by 11%–
17%. Encoder-only models outperform decoder-
only counterparts, with DistilBERT close behind
RoBERTa (e.g., 68.5% F1 for AIVP vs. 70.5%),
while decoder-only models show variability: Llama
excels for PSE (73.0% F1) but drops to 56.5% for
LED, and Mixtral lags across dimensions (55.5%–
63.0% F1). Gemma2 performs well for ASE
(70.0% F1) but averages lower elsewhere. The
mean balanced accuracy (64.2%) and macro-F1
(64.4%) of LLMs highlight their textual reasoning
advantage over numeric baselines, supporting their
baseline superiority.

4.2.3 LLM Performance with NC Subset +
Background Features

Table 3 reports LLM performance when NC sub-
set features are augmented with background data
(e.g., demographics). RoBERTa again dominates,
with balanced accuracy improving to 72.5%–77.5%
and macro-F1 to 73.0%–77.5% across dimensions,
a 3%–12% gain over NC-only results (e.g., LED
F1: 65.0% to 77.5%). This boost peaks for LED
(77.5% F1), affirming background data’s contex-
tual value. DistilBERT follows closely, with no-
table gains (e.g., LED F1: 64.5% to 75.0%), while
decoder-only models improve but remain incon-
sistent: Llama reaches 74.5% F1 for LED but
dips to 66.5% for PSE, Gemma2 holds steady
(e.g., 70.0% F1 for AIVP), and Mixtral trails
(61.0%–66.0% F1). The mean balanced accu-
racy rises to 69.0% and macro-F1 to 69.5%, with
encoder-only models (RoBERTa: 74.5% mean F1,
DistilBERT: 68.3%) outperforming decoder-only
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Table 2: LLM Performance Across Dimensions Using NC Subset Features Only

Model LED ASE PSE AIVP
B.Acc. F1 B.Acc. F1 B.Acc. F1 B.Acc. F1

Gemma2 9B 62.0 61.0 72.0 70.0 65.5 66.5 65.5 66.5
Mixtral 8x7B 62.0 61.5 63.5 63.0 55.5 55.5 59.0 59.0
Llama 7B 59.5 56.5 62.0 61.5 73.0 73.0 59.5 59.0
DistilBERT 65.0 64.0 63.5 67.0 67.5 67.0 67.5 68.5
RoBERTa 65.0 65.0 66.5 70.5 68.0 69.5 69.0 70.5

Table 3: LLM Performance Across Dimensions Using NC Subset and Background Features

Model LED ASE PSE AIVP
B.Acc. F1 B.Acc. F1 B.Acc. F1 B.Acc. F1

Gemma2 9B 71.5 72.0 69.0 69.0 65.5 64.5 69.0 70.0
Mixtral 8x7B 60.0 61.5 66.0 66.0 61.5 61.5 61.0 61.0
Llama 7B 72.5 74.5 68.0 69.0 66.5 66.5 66.5 66.5
DistilBERT 74.5 75.0 65.5 66.0 70.5 68.0 65.0 64.5
RoBERTa 77.5 77.5 73.5 73.0 74.0 73.5 72.5 74.0

Table 4: LLM Performance Across Dimensions Using All NC and Background Features

Model LED ASE PSE AIVP
B.Acc. F1 B.Acc. F1 B.Acc. F1 B.Acc. F1

Gemma2 9B 58.50 52.50 62.50 65.50 59.50 58.50 66.00 65.50
Mixtral 8x7B 55.50 56.50 59.00 63.00 58.00 56.50 52.00 53.50
Llama 7B 59.50 56.50 62.50 62.50 59.00 59.00 60.00 63.50
DistilBERT 62.00 62.50 64.00 63.50 60.50 62.50 65.50 64.00
RoBERTa 66.50 65.00 64.50 65.00 63.00 62.50 64.50 64.00

(Llama: 69.1%, Gemma2: 67.9%, Mixtral: 62.5%)
by 5%–12%. Compared to baselines (max 54.0%
F1), NC+background LLMs extend the gap to 19%–
23%.

4.3 Ablation Study

We conduct two ablation studies to evaluate our
LLM-based approach for forecasting student en-
gagement levels across four dimensions.

Evaluating Feature Quantity: Subset vs. All
NC Features. We compare LLMs fine-tuned on
a zero-shot selected subset of NC features plus
background features (Table 3) against those using
all 10 NC features plus background features (Ta-
ble 4). In the all-features case, RoBERTa achieves
macro-F1 scores of 62.5%–65.0% and balanced ac-
curacy (B.Acc.) of 63.0%–66.5%, markedly lower
than the subset case’s 73.0%–77.5% F1 and 72.5%–
77.5% B.Acc. Dimension-specific F1 losses range
from 8.0% (ASE) to 12.5% (LED), indicating that
all 10 NC features introduce noise, weakening
the signal distilled by expert LLM selection (Sec-
tion 3.3). Encoder-only models (RoBERTa, Distil-
BERT) consistently outperform decoder-only vari-
ants (Gemma2 9B, Mixtral 8x7B, LLaMA 7B)
across both configurations, though the gap nar-
rows with all features—e.g., RoBERTa’s LED F1
lead over LLaMA 7B shrinks from 18.0% (subset)
to 8.5%—suggesting noise impacts decoder-only
models less severely.

Assessing Input Modality: Textual LLMs vs.
Numeric Baselines with All Features. We
train baseline models—Random Forest (RF, 100
trees (Breiman, 2001)), Support Vector Machine
(SVM), 1D CNN, Transformer, and LSTM—on nu-
meric LE data with all 10 NC features (converted
to scores, forming 960 × 36-D vectors, Section 3.4)
and fine-tune RoBERTa (Liu et al., 2021), our top
performer with subset features, on textual all NC
features (verbalized responses). Table 5 reports
results across 960 trajectories for four dimensions:
LED, ASE, PSE, and AIVP. RoBERTa consistently
outperforms numeric baselines in balanced accu-
racy and macro-F1 across most dimensions, lever-
aging textual reasoning to capture qualitative nu-
ances and MNAR-impaired patterns that numeric
models struggle to model. Notably, 1D CNN ex-
cels for ASE, suggesting some sequential patterns
in numeric data align with convolutional strengths,
yet RoBERTa’s broader superiority—particularly
for LED, PSE, and AIVP—underscores LLMs’ ad-
vantage in processing raw verbalized sequences.
Baselines like SVM and LSTM exhibit variability,
often skewed by noise or positive-class bias, while
Transformer and RF show moderate consistency
but lack the discriminative power of textual LLMs.
This complements the first ablation study (subset
vs. all NC features), affirming that while subset
selection enhances performance, even with all fea-
tures, LLMs’ textual modality outstrips numeric
approaches for sparse, qualitative LE data.
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Table 5: Performance of Numeric Baselines and Textual RoBERTa with All NC Features Across Dimensions

Model LED ASE PSE AIVP
B.Acc. F1 B.Acc. F1 B.Acc. F1 B.Acc. F1

Random Forest 52.5 49.5 50.5 45.5 49.0 46.5 48.0 41.0
SVM 50.5 45.5 50.0 40.5 44.5 40.0 50.0 38.0
1D CNN 52.0 51.5 62.0 61.5 48.0 47.5 44.5 43.0
Transformer 48.5 47.5 45.5 45.0 51.5 51.5 53.5 53.0
LSTM 44.0 43.5 47.5 47.5 47.0 47.0 50.0 47.5
RoBERTa 61.0 60.5 59.0 65.0 64.0 62.5 62.5 62.0

5 Conclusion

Our findings provide compelling evidence for the
efficacy of our three-tier LLM framework in fore-
casting student engagement from qualitative LE
data. We highlight three key insights. First,
LLMs consistently outperformed traditional nu-
meric baselines across all engagement dimensions,
even when both were trained on the same selected
non-cognitive feature subsets. This superiority
underscores the inherent capability of LLMs to
process and understand the nuanced information
present in verbalized student responses, effectively
capturing contextual patterns missed by numeric
conversions and sequential models, particularly in
the presence of MNAR missingness and data spar-
sity. Notably, this advantage persisted even when
all available non-cognitive features were used, fur-
ther emphasizing the limitations of traditional ma-
chine learning approaches for this type of qualita-
tive time-series data.

Second, our analysis revealed a significant per-
formance difference between LLM architectures.
Encoder-only models, such as RoBERTa and Dis-
tilBERT, demonstrated a clear advantage over
decoder-only models across various configurations.
This suggests that their strength in creating ro-
bust representations from sparse textual sequences
makes them particularly well-suited for the bi-
nary classification task of engagement forecast-
ing. While decoder-only models showed occa-
sional strong performance on specific dimensions,
their overall variability indicates that their gener-
ative focus might be less optimal for the discrim-
inative demands of this task. The consistent out-
performance of encoder-only models, even with
increased data complexity, highlights their robust-
ness for this application.

Third, integrating background data significantly
boosted LLM performance, particularly for specific
engagement dimensions, emphasizing the impor-
tance of context. Furthermore, the synergy between
our LLM-driven feature selection and forecasting
tiers was validated by the enhanced performance

achieved with selected feature subsets.

In conclusion, this work demonstrates the trans-
formative potential of our three-tier LLM frame-
work for analyzing complex, qualitative LE data
in educational settings. By effectively addressing
challenges such as MNAR missingness and noisy
feature spaces, our approach offers a significant
advancement over traditional numeric methods,
paving the way for richer and more insightful anal-
yses of student engagement and potentially other
subjective, time-series datasets. However, respon-
sible deployment of such frameworks requires
careful consideration of their limitations and
ethical implications.

6 Limitations

Our study acknowledges several important limita-
tions. Dataset scale and diversity: Our analysis
is based on data from 96 first-year STEM students
at a single U.S. university, resulting in 960 tra-
jectories. This relatively small and homogeneous
sample limits generalizability to broader student
populations, diverse educational contexts, or differ-
ent demographic groups. Validation constraints:
Our LLM-informed imputation method has not un-
dergone human validation to verify the accuracy of
generated missing value descriptors, affecting con-
fidence in semantic quality and downstream fore-
casting performance. Baseline limitations: Our
evaluation focuses on traditional machine learning
and basic deep learning models, but does not bench-
mark against state-of-the-art multimodal or recent
transformer-based time-series forecasting models.
Theoretical justification: While empirical results
demonstrate encoder-only LLMs’ superior perfor-
mance over decoder-only models, we provide lim-
ited theoretical explanation for this architectural
advantage. Dependency on proprietary mod-
els: Our framework relies on closed-source LLMs
(GPT-4o, Gemini, DeepSeek, Copilot), which may
limit reproducibility and accessibility.
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7 Ethical Considerations

7.1 LLM Biases and Educational Harms

Foundation models encode systemic biases from
pretraining data (Bommasani et al., 2021), which
can be amplified when fine-tuned on small educa-
tional datasets. LLMs characterized as “stochastic
parrots” (Bender et al., 2021) exhibit stereotypi-
cal biases across gender, race, profession, and reli-
gion (Nadeem et al., 2021; Gallegos et al., 2024),
with documented religious bias analogizing “Mus-
lim” to “terrorist” in 23% of cases (Abid et al.,
2021). A comprehensive risk taxonomy identifies
discrimination, hate speech, and human-computer
interaction harms as primary concerns (Weidinger
et al., 2022).

Our framework’s LLM-informed imputation and
feature selection may inadvertently reflect these bi-
ases, potentially misrepresenting underrepresented
student voices or reinforcing stereotypical engage-
ment assumptions. Algorithmic bias in educa-
tion disproportionately affects students based on
race/ethnicity, gender, nationality, socioeconomic
status, and disability (Baker and Hawn, 2022). Au-
tomated engagement predictions risk reinforcing
inequalities through biased classifications that sys-
tematically disadvantage certain groups, as founda-
tion model defects are inherited downstream (Bom-
masani et al., 2021).

7.2 Potential Harms and Mitigation

Self-fulfilling prophecies: Predictions may in-
fluence educator expectations, creating scenarios
where students labeled “disengaged” receive re-
duced support. Automated decision-making risks
“reducing a human being to a percentage,” under-
mining student dignity (Binns et al., 2018). Stu-
dent autonomy: Engagement monitoring may cre-
ate surveillance environments compromising au-
thentic self-expression and altering social dynam-
ics the technology purports to measure (Weidinger
et al., 2022). Resource allocation: Binary pre-
dictions could lead to misallocation if false posi-
tives/negatives disproportionately affect vulnerable
populations (Corbett-Davies et al., 2017).

Privacy considerations: Our dataset involves
sensitive student information including academic
performance and personal reflections. While com-
mitting to full anonymization, evolving LLM ca-
pabilities may create unforeseen privacy risks not
understood at consent time.

Mitigation strategies: We propose safeguards

informed by responsible AI principles (Weidinger
et al., 2022; Bommasani et al., 2021): (1) Regular
bias auditing across demographic subgroups; (2)
Human-in-the-loop validation requiring educator
oversight before interventions (Binns et al., 2018);
(3) Transparent communication about data use; (4)
Supportive-only intervention guidelines; (5) Con-
tinuous monitoring of deployment outcomes. Our
framework should augment, not replace, human ed-
ucational judgment, emphasizing fairness, account-
ability, and transparency in high-stakes educational
applications (Binns et al., 2018; Weidinger et al.,
2022; Baker and Hawn, 2022).
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Abstract

Students’ academic performance is influenced
by various demographic factors, with socioeco-
nomic class being a prominently researched
and debated factor. Computer Science re-
search traditionally prioritizes computationally
definable problems, yet challenges such as the
scarcity of high-quality labeled data and ethical
concerns surrounding the mining of personal in-
formation can pose barriers to exploring topics
like the impact of socioeconomic status (SES)
on students’ education. Overcoming these bar-
riers may involve automating the collection and
annotation of high-quality language data from
diverse social groups through human collabo-
ration. Therefore, our focus is on gathering
unstructured narratives from Internet forums
written by students with low-SES using ma-
chine learning models and human insights. We
developed a hybrid data collection model that
semi-automatically retrieved narratives from
the Reddit website and created a dataset five
times larger than the seed dataset. Additionally,
we compared the performance of traditional
ML models with recent large language mod-
els (LLMs) in classifying narratives written by
low-SES students, and analyzed the collected
data to extract valuable insights into the socioe-
conomic challenges these students encounter
and the solutions they pursue.

1 Introduction
Low socioeconomic status (SES) refers to a dis-
advantaged position in society determined by fac-
tors such as income, education, and occupation.
Individuals with low SES typically have limited
financial resources (Scott-Clayton, 2015), lower
educational attainment (Titus, 2006), and reduced
access to quality healthcare and academic oppor-
tunities (Adler and Newman, 2017). These dis-
parities profoundly impact students’ educational
experiences, shaping their academic performance,
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career prospects, and long-term well-being. Stu-
dents from low socioeconomic backgrounds often
struggle with financial barriers, making it difficult
to afford tuition and educational resources (Brown
and Carr, 2013). They also have limited access to
academic support and technology, which can im-
pede their academic success. Additionally, these
students may experience social isolation and psy-
chological stress due to the pressure of competing
with peers from more privileged backgrounds (Lee
et al., 2008).
Research on students from low socioeconomic
backgrounds is crucial for identifying and address-
ing the unique challenges they face in education.
Understanding these struggles can inform policies
and interventions that promote equity, ensuring that
students receive the necessary support to succeed.
Despite this importance, NLP research has largely
overlooked socioeconomic status. A survey by
(Cercas Curry et al., 2024) found only 20 papers
in the ACL Anthology explicitly mentioning SES,
highlighting a substantial gap in computational re-
search. This lack of attention limits our understand-
ing of how SES affects student life and contributes
to the development of educational technologies that
may not adequately address the needs of low-SES
students, potentially widening the digital divide
(Kelbessa et al., 2024).
A major challenge in computational research on
low-SES students is the scarcity of high-quality
labeled data. Most existing datasets rely on struc-
tured survey responses, which fail to fully capture
the complexity of students’ experiences. To address
this, we analyze a dataset published by (Kelbessa
et al., 2024), containing 74 narratives written by
low-SES students on Reddit. These narratives of-
fer valuable firsthand insights into the struggles
and coping mechanisms of low-SES students, mak-
ing them an important resource for NLP research.
However, as the dataset was annotated by only two
individuals and lacks gold-standard validation, it
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presents both an opportunity and a challenge for
refinement and further analysis.
The remainder of this paper is structured as fol-
lows: In §2, we review previous research on
SES and NLP. In §3, we describe our dataset, in-
cluding its source and key attributes. In §4, we
present our data evaluation and analysis methodol-
ogy, which involves assessing data quality, filter-
ing high-quality narratives, and applying linguistic
metrics, sentiment analysis, and topic modeling.
Finally, we summarize our findings (§5), discuss
our key contributions (§6), explore the ethical and
societal implications of our research (§7).

2 Related Work
Socioeconomic status (SES) influences various as-
pects of life, including education, health, and social
mobility. Understanding SES disparities requires
high-quality datasets that capture linguistic, behav-
ioral, and demographic patterns. However, acquir-
ing such datasets poses significant challenges, in-
cluding ethical concerns, accessibility restrictions,
and issues of representativeness.
Several datasets have been developed for SES re-
search, particularly leveraging online sources and
social media platforms. Twitter has been widely
used due to its accessibility and large user base. For
instance, (Lampos et al., 2014) used UK Twitter
data to analyze how user-generated content predicts
SES. Similarly, (Mentink, 2016) collected a dataset
of 2.5 million Dutch Twitter users to infer their
socioeconomic backgrounds. While Twitter data
provides valuable large-scale insights, its brevity
and informal nature limit its usefulness for in-depth
socioeconomic analysis.
Beyond social media, narrative-based data pro-
vides rich contextual insights into SES struggles.
(Kelbessa et al., 2024) compiled a dataset of 74
SES-related narratives as a foundation for further
research. Unlike social media posts, these narra-
tives offer longer, structured reflections on lived
experiences, making them more informative for un-
derstanding the personal and systemic challenges
faced by individuals from low-SES backgrounds.
Despite advancements in SES-related data collec-
tion, several challenges persist. Ethical concerns
arise when gathering data from social media, as it
raises privacy and consent issues (Stieglitz et al.,
2018). Data accessibility is another major barrier,
as many relevant datasets are either proprietary
or require restrictive permissions. Additionally,

existing SES datasets often overrepresent specific
demographics, reducing their generalizability and
limiting their applicability across diverse popula-
tions.
In this work, we aim to address these challenges
by expanding SES-related narrative datasets with a
focus on depth—the inclusion of rich, first-person
accounts that describe the lived experiences, strug-
gles, and coping strategies of low-SES individu-
als—and representativeness, meaning coverage of
diverse challenges within the SES spectrum, such
as financial hardship, social marginalization, and
academic barriers. Unlike short-form social me-
dia posts, our dataset consists of longer, structured
narratives that offer greater contextual detail. This
work contributes to the growing body of research
on SES in computational linguistics and provides
a valuable resource for future studies examining
socioeconomic barriers in education.

3 Data
Unlabeled Reddit Posts: This data is publicly
available and was collected on 2019 for the
ThinkPlayHack event hosted in July 2019 in Taos
for Dr. Jo Guldi (Southern Methodist University
(SMU), 2019). It contains over 1 terabyte of Red-
dit posts published from 2005 to 2013. To manage
the extensive data, measured in terabytes, we ini-
tially selected posts exclusively from subreddits
associated with low-SES, such as ‘college’, ‘Apply-
ingToCollege’, ‘depression’, ‘askReddit’, ‘broke’,
‘financialaid’, and ‘fafsa’. After filtering for rel-
evant subreddits and eliminating duplicates, the
resulting dataset comprised 799,032 Reddit posts
(total 106859972 words) with 7 average sentences
and 134 average words per post.
Labeled Reddit Posts: (Kelbessa et al., 2024) gath-
ered 74 low-SES narratives from Reddit. To ensure
the validity of these narratives as data points, the
following criteria were applied: 1) The narratives
needed to shed light on the experience of being a
low-SES student and attending higher education,
focusing on financial, psychological, physical, or
social struggles. 2) The narratives should describe
the challenges faced by individuals with low-SES
backgrounds, their efforts to improve their situa-
tion, and the outcomes of those efforts. 3) Narra-
tives that primarily offered general commentary,
described a condition, or provided advice were ex-
cluded, as they did not qualify as valid data points.
Each narrative had to meet at least one of the first
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two criteria and also satisfy the third qualification
to be included in the dataset. The narratives were
doubly annotated by two annotators to ensure the
consistency and quality of the data. To ensure the
quality of this publicly available data (Kelbessa
et al., 2024), we thoroughly applied the above cri-
teria on the 74 narratives and identified 64 of them
met the criteria (background of low-SES).
We note that this dataset is framed around college
accessibility and affordability—an issue particu-
larly salient within the context of the U.S. educa-
tional system. While such focus is not inherently
limiting, we acknowledge that the effects and ex-
pressions of low socioeconomic status (SES) can
vary significantly across different countries and ed-
ucational models. As such, our framing may not
fully capture the global diversity of SES-related
challenges. We aim to address this limitation in
future work by broadening the scope beyond U.S.-
centric educational themes and exploring SES nar-
ratives in other domains such as employment, hous-
ing, or healthcare access. Additionally, the criteria
used for selecting valid narratives could be adapted
to include financial hardship contexts not strictly
tied to higher education.
To process 64 non-low-SES data points, we applied
semantic textual similarity to determine which
posts in the unlabeled Reddit Posts (mentioned
above) had the weakest correlation with the ground
truth 64 low-SES narratives. We explored sev-
eral similarity measures, such as the Negative Eu-
clidean Distance, Negative Manhattan Distance,
and Cosine Similarity, using the top-ranked Sen-
tence Transformer model from the Massive Text
Embedding Benchmark (Muennighoff et al., 2022)
leaderboard on Hugging Face. We identified the
64 posts and manually evaluated them that had the
lowest similarity to the ground truth data points,
treating these as the non-low-SES ground truth. An
example for illustration is provided in the appendix
A.1. The final dataset comprised 64 non-low-SES
Reddit posts with 15 average sentences and 299
average words per post.

4 Empirical Study
We started with the labeled dataset of 128 Reddit
posts, consisting of 64 narratives from low-SES
students and 64 from non-low-SES students. Over
the course of three iterations, we curated and ex-
panded this dataset, ultimately building a larger
collection of narratives. Our primary goal is to col-

lect enough data for future training and automation
of the model. In each iteration, we added narra-
tives in the training data that are newly labeled in
the previous iteration as low-SES and then try to
label the remaining unlabeled narratives. Every
iteration followed a three-step process: first, we
applied traditional binary ML classifiers and LLMs
to categorize the unlabeled Reddit posts as either
low-SES or non-low-SES; second, we used clus-
tering techniques to identify and remove outliers
from the dataset. Third, we manually annotated
the narratives to perform the final evaluation. The
numbers of the resulted labeled narratives at each
step are shown at Table 2.

4.1 Step 1: Classification
We evaluated the performance of 22 traditional ML
models and LLMs to distinguish between low-SES
and non-low-SES texts. All the models we used
are from scikit-learn (Pedregosa et al., 2011) and
Hugging Face Transformers (Wolf et al., 2020).
The evaluation followed a 5-fold cross-validation
approach, with 70% of the dataset allocated for
training, 15% for validation, and 15% for reporting
the results. We conducted our experiments over
three iterations, each with increasing complexity.
In the first iteration, the dataset consisted of 64
low-SES narratives and 64 non-low-SES narratives,
which were easily separable. This was due to our
careful selection of the non-low-SES narratives, en-
suring they were clearly distinguishable from the
low-SES narratives. By the second iteration, the
dataset had nearly doubled in size, and the classi-
fication task became more challenging. This time,
the non-low-SES narratives were selected from the
false positives of the first iteration, resulting in less
clear separation between the classes. In the third
iteration, the challenge intensified further as the
dataset again doubled, with non-low-SES narra-
tives chosen from the false positives of the second
iteration. Consequently, the classes were signifi-
cantly harder to separate, reflecting the increasing
difficulty of the classification task. To address these
increasingly complex classification tasks, we uti-
lized a variety of fine-tuned pre-trained language
models, models with few-shot capabilities, and tra-
ditional ML models. The overall results in three
different iterations are shown at Table 1 and de-
tailed parameters for all models are provided in
Table 3 in Section A.2.
The Traditional models included Random Forest
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Model 1st iteration 2nd iteration 3rd iteration Model 1st iteration 2nd iteration 3rd iteration

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

RF 0.55 0.55 0.54 0.74 0.74 0.74 0.61 0.61 0.61 BERT 0.71 0.70 0.70 0.71 0.69 0.68 0.56 0.56 0.56
MNB 0.81 0.70 0.67 0.79 0.76 0.75 0.65 0.63 0.62 OPT-13B few 0.50 0.50 0.40 0.52 0.52 0.52 0.51 0.50 0.49
SVM 0.60 0.60 0.60 0.87 0.87 0.87 0.60 0.60 0.60 Claudia few 0.60 0.55 0.49 0.49 0.50 0.47 0.50 0.50 0.46
LR 0.60 0.60 0.60 0.87 0.87 0.87 0.64 0.64 0.64 LLamA-7B few 0.34 0.35 0.34 0.69 0.64 0.66 0.47 0.48 0.46
XGBoost 0.66 0.65 0.64 0.74 0.74 0.74 0.55 0.54 0.54 LLaMA-1.3B few 0.50 0.50 0.45 0.38 0.41 0.38 0.55 0.54 0.53
RoBERTa 0.75 0.75 0.75 0.76 0.76 0.76 0.73 0.67 0.65 LoRA DistillGPT 0.25 0.50 0.33 0.27 0.52 0.35 0.25 0.50 0.33
RoBERTa-large 0.75 0.75 0.75 0.74 0.74 0.74 0.72 0.72 0.72 LoRA LLaMA-1.3B 0.25 0.50 0.33 0.30 0.41 0.32 0.25 0.50 0.33
DeBERTa 0.77 0.75 0.74 0.74 0.74 0.74 0.56 0.55 0.55 LoRA GPT-2 0.25 0.50 0.33 0.27 0.52 0.35 0.25 0.50 0.33
ELECTRA 0.77 0.75 0.74 0.83 0.80 0.79 0.59 0.56 0.53 bart-large-mnli Zero 0.80 0.80 0.80 0.22 0.43 0.29 0.46 0.46 0.46
ALBERT 0.66 0.65 0.64 0.65 0.65 0.65 0.55 0.55 0.55 DistilBert 0.75 0.75 0.75 0.77 0.74 0.74 0.63 0.62 0.62
XLNet 0.60 0.55 0.49 0.63 0.61 0.60 0.66 0.65 0.65 T5 0.50 0.50 0.48 0.75 0.72 0.72 0.55 0.55 0.55

Table 1: Comparison of average Precision (P), Recall (R), and F1 scores for both classes across three iterations for various classification models.

Iteration
No.

Unlabeled
Texts

Labeled
(Classifier)

Labeled
(Cluster)

Labeled
(Human)

Iteration 1 799,032 13,635 289 110
Iteration 2 798,743 390 381 167
Iteration 3 798,362 5195 444 121

Table 2: Summary of the annotated narratives at three different steps- Classifi-
cation, Clustering, and Human Annotation.

(RF), Multinomial Naive Bayes (MNB), Support
Vector Machine (SVM), Logistic Regression (LR),
and Gradient Boosting (XGBoost). Overall, MNB,
SVM, and LR demonstrated effective performance
across the iterations, while RF and XGBoost strug-
gled, particularly in the more challenging contexts.
The fine-tuned pre-trained language models in-
cluded Robustly Optimized BERT (RoBERTa), Ro-
bustly Optimized BERT-Large (RoBERTa-Large),
Decoding-Enhanced BERT (DeBERTa), Efficiently
Learning an Encoder that Classifies Token Re-
placements Accurately (ELECTRA), A Lite BERT
(ALBERT), eXtreme Language Model (XLNet),
Text-to-Text Transfer Transformer (T5), Distilled
BERT (DistilBERT), and Bidirectional Encoder
Representations from Transformers (BERT). Over-
all, RoBERTa, RoBERTa-Large, and ELECTRA
demonstrated strong and consistent performance
across iterations, while ALBERT and XLNet
had difficulty handling the increasing complex-
ity of the task. The few-shot models included
Open Pre-trained Transformer (OPT-13B), Claudia,
LLM Meta AI (LLaMA-7B), and LLM Meta AI
(LLaMA-1.3B). Few-shot models were not as ef-
fective in distinguishing between increasingly sim-
ilar narratives as the dataset complexity grew. The
LoRA fine-tuning models included Distilled Gener-
ative Pre-trained Transformer (DistillGPT), LLM
Meta AI (LLaMA-7B), and Generative Pre-trained
Transformer (GPT-2). The results suggest that the
LoRA fine-tuning models were not well-suited for
the increasing complexity of the classification task,
possibly due to their limited adaptation to more

challenging data. The zero-shot model used was
bart-large-mnli Zero (Yin et al., 2019). The sharp
decline in performance in the second and third it-
erations suggests that the zero-shot model strug-
gled to handle the increasing similarity between
the low-SES and non-low-SES texts, as it lacked
the fine-tuning capabilities of other models.
In the first iteration, the BART-large-mnli zero-shot
model showed superior performance in terms of
balanced metrics. We applied a confidence thresh-
old of 0.7, meaning a text was classified as low-
SES only if the model predicted it with confidence
greater than 0.7. This threshold was empirically
selected after testing a range of values above and
below it; 0.7 offered the best balance between high-
confidence predictions and getting a manageable
number of samples. As a result, this model fil-
tered the data, yielding 13,635 low-SES texts out
of 799,032 unlabelled texts. In the second iteration,
we employed an ensemble approach using SVM
and LR, the two models that performed best in the
first phase. Both models were trained separately
and combined to improve classification accuracy.
The SVM provided decision scores, and LR pro-
duced class probabilities. We again applied a 0.7
threshold to both models, ensuring that a text was
classified as low-SES only if both classifiers agreed
with high confidence. This approach yielded 390
low-SES texts.
Traditional ML Models Versus LLMs: In it-
eration 1, traditional models, such as SVM and
LR, achieved balanced performance, with macro-
averaged F1 scores of 0.60. These models demon-
strated robust precision and recall across both
classes, although they did not outperform more ad-
vanced models. XGBoost performed slightly better,
with an F1 score of 0.66, particularly excelling in
classifying non-low-SES texts.
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Among LLMs, RoBERTa achieved an F1 score of
0.75, showcasing strong performance with a bal-
anced precision and recall across both SES classes.
Similarly, DeBERTa and ELECTRA performed
well, both achieving F1 scores of 0.74. These
models demonstrated better balance than some tra-
ditional models in classifying both low-SES and
non-low-SES texts. However, other LLMs, such as
ALBERT and XLNet, underperformed compared
to their counterparts, with F1 scores of 0.64 and
0.60, respectively. XLNet particularly struggled
with the low-SES class, achieving an F1 score of
0.31, highlighting its difficulty in accurately identi-
fying low-SES narratives. Interestingly, zero-shot
models like bart-large-mnli demonstrated strong
performance, with an F1 score of 0.80, matching
the best-performing models in this iteration. In con-
trast, few-shot models, such as LoRA Fine-Tuned
LLaMA and DistilGPT, performed poorly, indi-
cating that few-shot learning in this context was
less effective than fine-tuning. Detailed results are
shown in section A.3 at Table 4.
In iteration 2, the comparison between traditional
ML and LLMs highlights the distinct strengths and
weaknesses of each group. Traditional models,
such as SVM and LR, outperformed most LLMs,
achieving the highest F1 scores of 0.87 across both
low-SES and non-low-SES categories. These mod-
els demonstrated strong precision and recall, partic-
ularly in the non-low-SES class, underscoring their
robustness in effectively balancing both classes.
For example, SVM achieved a precision of 0.88
and recall of 0.85 for low-SES, while LR displayed
a precision of 0.91 for low-SES and a recall of 0.93
for non-low-SES, making them reliable in these
classification tasks.
In contrast, fine-tuned LLMs, such as RoBERTa
and ELECTRA, also performed well but fell
slightly behind the top traditional models.
RoBERTa achieved a weighted F1 score of 0.76,
showing a strong balance between precision (0.74)
and recall (0.82) for the non-low-SES class. How-
ever, its recall for low-SES (0.69) was lower com-
pared to traditional models, meaning it missed
more low-SES texts. ELECTRA achieved a higher
F1 score of 0.79 and performed exceptionally well
in identifying non-low-SES texts, with a precision
of 0.73 and recall of 0.96. Nevertheless, ELECTRA
struggled with low-SES classification, showing a
precision of 0.94 but a much lower recall of 0.62,
indicating it missed more low-SES examples. De-

BERTa displayed performance similar to traditional
models like RF and XGBoost, with an F1 score of
0.74. Its precision and recall were balanced across
both classes but did not achieve the standout per-
formance of models like RoBERTa or ELECTRA.
Other LLMs, including ALBERT and XLNet, sig-
nificantly underperformed compared to both tra-
ditional models and other LLMs, with F1 scores
of 0.65 and 0.60, respectively. XLNet particularly
struggled with the non-low-SES class, achieving
a recall of only 0.46, indicating significant diffi-
culty in identifying non-low-SES texts accurately.
ALBERT exhibited more balanced but lower per-
formance across both classes.
These results for iteration 2 indicate that while
LLMs have shown potential—particularly models
like RoBERTa and ELECTRA—traditional models
such as SVM and LR remain more reliable for tasks
involving both low-SES and non-low-SES classifi-
cation. Their superior balance between precision
and recall across both categories demonstrates their
robustness, whereas LLMs, though effective in cer-
tain areas such as precision for non-low-SES, may
require further fine-tuning to achieve the same com-
prehensive balance seen in traditional models. De-
tailed results are shown in section A.3 at Table 5.
A further evaluation of traditional ML models and
LLMs reveals interesting trends in model perfor-
mance as the dataset complexity increases. While
traditional models like SVM and LR continued to
show stability, their dominance observed in ear-
lier iterations has now been matched or exceeded
by fine-tuned LLMs in certain aspects. Among
the traditional models, LR demonstrated consis-
tency, achieving an average 0.64 F1 across both
SES classes. While it excelled in the non-low-SES
class, with a precision of 0.84 and recall of 0.93, it
showed less robustness in the low-SES class, with
precision and recall hovering around 0.64. Simi-
larly, RF maintained stable performance, with an
F1 score of 0.61, although it underperformed com-
pared to LR, particularly in the non-low-SES class
(precision: 0.63, recall: 0.53).
Fine-tuned LLMs displayed notable improvements.
RoBERTa-large emerged as one of the top perform-
ers, achieving the highest average F1 score of 0.72
across both classes, surpassing traditional models
like SVM and LR. This model exhibited a well-
balanced performance with precision, recall, and
F1 scores closely aligned (precision: 0.70, recall:
0.76 for non-low-SES; precision: 0.74, recall: 0.67
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for low-SES), indicating its capability to handle
both classes. DeBERTa also showcased a solid per-
formance, with an average F1 of 0.55, though it
struggled with the low-SES class (F1: 0.49) com-
pared to RoBERTa-large. Similarly, ELECTRA
achieved an average F1 of 0.53 but encountered
challenges in classifying low-SES examples, where
recall dropped to 0.31. These results suggest that
while LLMs like RoBERTa-large are emerging as
strong contenders, certain models such as ELEC-
TRA and DeBERTa still require fine-tuning to han-
dle the low-SES class. Few-shot models, such as
Claudia and LLaMA-1.3B, presented mixed results.
Claudia, in its few-shot configuration, achieved an
average F1 of 0.46, highlighting difficulties in iden-
tifying low-SES narratives (F1: 0.32). On the other
hand, LLaMA-1.3B fared slightly better, with an
average F1 score of 0.53, performing consistently
across both SES classes. However, neither of these
models surpassed fine-tuned LLMs or traditional
models in overall performance. Fine-tuned models
with LoRA (Low-Rank Adaptation), such as LoRA
GPT-2 and LoRA LLaMA-1.3B, delivered uneven
outcomes. Both models demonstrated high preci-
sion for the non-low-SES class (0.50) but struggled
significantly with the low-SES class, where they
failed to capture any true positive examples (recall:
0.00, F1: 0.00).
Iteration 3 reveals a growing strength of fine-tuned
LLMs, particularly RoBERTa-large, which outper-
forms traditional models. This model’s balanced
precision and recall across SES classes emphasize
its versatility. Models like DeBERTa and ELEC-
TRA show that while LLMs are improving, they
can still struggle with the low-SES class. Few-
shot models and LoRA fine-tuned models exhibited
less consistent results, often failing to achieve the
comprehensive balance required for SES classifica-
tion. This highlights the continued importance of
fully fine-tuning LLMs for this task, as parameter-
efficient models and few-shot learning may not yet
match the robustness of more thoroughly fine-tuned
counterparts like RoBERTa-large. Detailed results
are shown in section A.3 at Table 6.

4.2 Step 2: Clustering
Once the classification step was completed, we
used clustering to group similar texts and remove
outliers. In the first iteration, we analyzed 13,635
posts identified as low-SES by the classifier. To
compare the similarity between the ground truth

samples and the collected posts, we applied PCA
(Jolliffe, 2002) for dimensionality reduction using a
tf-idf vectorizer (Salton and Buckley, 1988) with a
maximum of 1,000 features, visualizing the clusters
in 2D space. Some outliers were detected in the
ground truth data. These outliers were removed
by applying the interquartile range (IQR) method,
reducing the dataset to 55 points (Fig. 1a).
Next, we computed cosine similarity between the
normalized vectors of the collected data and the
outlier-free ground truth data. A threshold of 0.9
was set to classify data points as similar or dis-
similar. This process revealed that 289 from the
collected data points met or exceeded the total sim-
ilarity score(where the summation of the classified
data is similar to ground truth data points) of 35,
940 data points had a similarity score of at least 34,
and 10,821 data points had a score of 33 or less.
In the second iteration, after applying PCA to the
collected data and the ground truth data, visualizing
the results in a 2D space (see Fig. 1b). The col-
lected data points and ground truth data were plot-
ted to observe clustering patterns, allowing us to
assess the similarity between the two datasets. Out-
liers were removed using the Interquartile Range
(IQR) method, where values outside 1.5 times the
IQR from the first (Q1) and third quartiles (Q3)
were identified and excluded from both datasets.
This process reduced the total number of collected
data points from 390 to 381.
In the Third iteration, we analyzed 5195 posts iden-
tified as low-SES. To compare the similarity be-
tween the ground truth samples and the collected
posts, we applied PCA for dimensionality reduc-
tion using a tf-idf Vectorizer with a maximum of
1,000 features, visualizing the clusters in 2D space.
Some outliers were detected in the ground truth
data. These outliers were removed by applying
the interquartile range (IQR) method, reducing the
dataset to 331 points (Figure 1c). Next, we com-
puted cosine similarity between the normalized
vectors of the collected data and the outlier-free
ground truth data. We used the same threshold of
0.9 to classify data points as similar or dissimilar.
This process revealed that 121 from the collected
data points met or exceeded the total similarity
score of 86, 260 data points with similarity score
of at least 85, and 444 data points had a score of 84
or less.
In iteration 1, the collected data predominantly cov-
ers the central portion of the ground truth spectrum,
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(a) Iteration 1 Clustering Without Outliers

(b) Iteration 2 Clustering Without Outliers

(c) Iteration 3 Clustering Without Outliers

Figure 1: Clustering of Ground Truth and Collected Data Using PCA Across
Three Iterations Without Outliers

indicating that the initial classification managed to
capture a concentrated part of the low-SES class but
left much of the outer spectrum of the ground truth
unexplored. Moving to iteration 2, the collected
data begins to diverge, covering less of the ground
truth spectrum compared to Iteration 1. This sug-
gests that the classification in this iteration was
more selective but also less comprehensive in cap-
turing the full range of the low-SES data. Finally,
in iteration 3, we see a significant improvement,
with the collected data covering over 70% of the
ground truth spectrum. This indicates a better align-
ment between the collected and ground truth data,
suggesting that the classification in this iteration
successfully captured a much broader range of the
ground truth low-SES examples, resulting in a more
balanced and comprehensive dataset.

5 Data Annotation
Human Annotation: The first three authors fol-
lowed the criteria described in Section 3 to annotate
the 289 texts from the clustering step at iteration 1
and getting the data points with a similarity score
of at least 35. This process resulted in 110 texts

being annotated as low-SES out of 289. In the sec-
ond iteration, we annotated 381 texts, of which 167
were classified as low-SES and in the third itera-
tion, we annotated 121 texts that has a similarity
score of at least 86, we got 46 low-SES Text.
In iteration 1, most of the texts annotated as not
low-SES contained general advice and lacked the
background indicative of being from a low-SES
perspective. These texts often focused on provid-
ing broad recommendations rather than sharing
personal experiences tied to financial difficulties.
The absence of key indicators, such as struggles
with income, debt, or reliance on social services,
made it clear that these individuals did not face
the same economic constraints typical of low-SES
situations. As a result, their narratives were more
aligned with middle or higher SES backgrounds,
where financial stability was not a central concern.
In iteration 2, as the task became more challeng-
ing, some of the texts annotated as not low-SES
included background information and challenges
but lacked personal experience that would vali-
date them as low-SES. Upon further analysis, clear
patterns emerged from the texts classified as low-
SES. Many highlighted the need for financial aid,
with individuals working multiple jobs or living in
single-parent households with little to no income.
Debt, particularly from educational loans or basic
expenses, was a recurring theme, as was the lack of
family support, indicating broader financial insta-
bility. These socio-economic markers—multiple
jobs, debt, and minimal family support—are cru-
cial for refining the model to better detect low-SES
cases in future iterations. In iteration 3, after ex-
tracting 277 low-SES texts, some of the texts an-
notated as not low-SES described challenges and
solutions but appeared to originate from individuals
of medium SES rather than low-SES. We noticed
that some texts annotated as not low-SES described
challenges like juggling multiple jobs or balancing
full-time work and studies. These individuals of-
ten discussed FAFSA loans or supporting a family
due to a relative’s disability. However, many of
these cases appeared to stem from medium SES
backgrounds, as they had access to basic loans or
even an inheritance. This suggests that while these
individuals faced financial difficulties, their situa-
tions were distinct from those typically associated
with low-SES, highlighting the nuanced differences
between SES classifications.
LLM Annotation: We used a pre-trained LLaMA
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model with 7 billion parameters (Touvron et al.,
2023) to annotate the dataset of low-SES student
narratives. The model was configured with a maxi-
mum of 200 tokens, a temperature of 0.5 for less
randomness, and deterministic sampling. The goal
was to extract information about students’ back-
ground, struggles, and solutions related to finan-
cial, psychological, physical, or social challenges.
Comprehensive descriptions of the prompts are pro-
vided in Section A.4. Although LLM was effective,
the extraction of structured data was a challenge.
The model occasionally produced extraneous text
or improperly formatted outputs, requiring post-
processing.
For visualization, We applied Principal Component
Analysis (PCA) to reduce high-dimensional sen-
tence embeddings on extracted background infor-
mation from ground truth and collected datasets for
visualization. K-means clustering was then used to
group semantically similar sentences, identifying
key thematic clusters. The resulting scatter plot
(Figure 2) shows how the collected data expands
the thematic coverage by displaying cluster distri-
butions for both datasets. Collected data cluster 0
(Work Struggles) shows an expansion of themes
around work experience and internships, academic
support systems, and mental health or emotional
struggles, which are less represented in the original
data. Data cluster 1 (Family Dynamics) has more
diverse and specific family backgrounds, strug-
gles with independence and support, and impact
of wider social and economic systems. Data clus-
ter 2 (Mental Health) introduces more detailed re-
flections on emotional struggles and mental health
challenges. Data cluster 3 (Societal Challenges)
significantly enriches the thematic representation
of challenges faced by low-SES students, particu-
larly by introducing broader societal and personal
insights that were underrepresented in the original
dataset. Data cluster 4 (Systemic Critiques) reflects
more detailed critiques of systemic issues affecting
students, such as the cost of education, the student
debt crisis, and the unrealistic promises of higher
education as a golden ticket to success.
The final dataset began with a seed of 64 data
points and, through the application of the proposed
methodology, expanded to include 323 new data
points. Both the ground truth and collected datasets
were processed using prompt engineering with the
LLaMA model to extract background information,
struggles during higher education, and solutions

Figure 2: Ground Truth and Collected Data Clusters of Background Information

students devised to improve their situations. While
some data points have missing background, strug-
gle, or solution information due to limitations in
LLM extraction, we are actively working on re-
fining the dataset through a rigorous gold-standard
validation process. Additionally, we performed sen-
timent analysis on the entire text of both datasets
using a sentiment fine-tuned model (Camacho-
collados et al.). In the ground truth dataset, the
sentiment distribution consisted of 10 positive, 29
neutral, and 25 negative texts. For the collected
data, the distribution shifted to 37 positive, 138
neutral, and 148 negative texts. This significant
increase in both neutral and negative sentiments in
the collected dataset provides a broader scope for
future exploration of the emotional landscape of
low-SES students.

6 Contributions
First, we developed a dataset of unstructured narra-
tives from low-SES students by semi-automatically
collecting and expanding data from Reddit, pro-
ducing a dataset five times larger than the initial
seed. We will make our code and data publicly
available for the research community. Second, we
designed a hybrid model that combines machine
learning and human insights to classify low-SES
student narratives, comparing the performance of
traditional ML models with recent LLMs. Third,
given the challenges associated with data collec-
tion in this underexplored area, our work paves
the way for fully automating this process, encour-
aging future research to focus on the educational
barriers faced by low-SES students. Finally, by
releasing a large, high-quality corpus of low-SES
student narratives, our work enables a wide range
of downstream applications such as profiling so-
cioeconomic discourse, detecting financial or psy-
chological hardship, and supporting educational
policy research. The dataset can also serve as a
valuable benchmark for future NLP models target-
ing underrepresented demographic dimensions.
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7 Ethical and Societal Impact
First, while we strive for fairness, it is challenging
to ensure equal representation across geographic
regions and genders in our dataset. This could
lead to unintentional biases that affect the results
and interpretations of our work. Second, although
we will release the model under the appropriate
license to ensure compliance with legal and ethical
standards, there remains a risk of misuse. Specifi-
cally, the model could be used to classify low-SES
individuals from publicly available narratives, po-
tentially exposing them to harmful activities such
as discrimination or exploitation. To mitigate this,
we will enforce user agreements that explicitly pro-
hibit harmful uses. Finally, although the data we
collected is anonymous, it was sourced from public
online forums, and we, as authors, cannot edit or
delete this data once retrieved. This raises privacy
concerns, as individuals may not have anticipated
their posts being used for research purposes, even
in an anonymized form. Additionally, although the
narratives are public and anonymous, we still make
sure we have IRB exempt status before publishing
our collected narratives. Despite these concerns,
we believe our work will have a positive societal
impact. By providing a deeper understanding of the
challenges faced by low-SES students, our findings
could inform educational policies and initiatives
aimed at addressing socioeconomic disparities. Ul-
timately, our research could contribute to greater
equity and inclusion for marginalized communities.
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A Appendix

A.1 Data

You need to buy textbooks or find PDFs. Talk to your faculty adviser if you ever have questions, and make
sure you’re talking to the general university adviser too. Welcome, if you’ve ever been to the bank. Some
teachers might inflate grades, but in the end, don’t skip class or slack off on homework. Stop studying for
exams the night before—it’s a terrible habit. Get an internship as quickly as possible, and try to have a job
lined up before graduation. Well, go to the career center and make friends with people who are getting
jobs. Put together a serious resume and cover letter as soon as you can. No one is going to be impressed
with fancy colors or formatting in the professional world. The career center can help you critique them for
free. You’re also going to get wrecked by student loans in a few years, so prepare wisely unless you’re
Richie Rich.

A.2 Classification

Model Parameter values

RF n_estimators = 100, random_state = 46. Random Forest model using 100 trees to ensure a balanced performance.

MNB Default parameters, suitable for text data with TF-IDF representation. The Multinomial Naive Bayes assumes feature independence
and is efficient for large-scale text data.

SVM kernel = linear, probability = True, random_state = 46. A linear kernel is efficient for text classification, with probability estimates
enabled for evaluation purposes.

LR max_iter = 500, random_state = 46. LR with a limit on the number of iterations to ensure convergence.

BERT Model = bert-base-uncased, MAX_LEN = 512, TRAIN_BATCH_SIZE = 32, VALID_BATCH_SIZE = 32, EPOCHS = 40, LEARN-
ING_RATE = 1e-05, hidden size = 768, dropout = 0.3. Fine-tuned for binary classification with early stopping, patience = 8.

DistilBERT Model = distilbert-base-uncased, MAX_LEN = 512, TRAIN_BATCH_SIZE = 32, VALID_BATCH_SIZE = 32, EPOCHS = 40,
LEARNING_RATE = 1e-05, hidden size = 768, dropout = 0.3. Fine-tuned for binary classification with early stopping, patience = 8.

ALBERT Model = albert-base-v2, MAX_LEN = 512, TRAIN_BATCH_SIZE = 32, VALID_BATCH_SIZE = 32, EPOCHS = 40, LEARN-
ING_RATE = 1e-05, hidden size = 768, dropout = 0.3. Fine-tuned for binary classification with early stopping, patience = 8.

BART Model = facebook/bart-large-mnli, MAX_LEN = 512, TRAIN_BATCH_SIZE = 16, VALID_BATCH_SIZE = 16, EPOCHS = 40,
LEARNING_RATE = 1e-05, hidden size = 1024, dropout = 0.3. Fine-tuned BART with a binary classification head and early stopping,
patience = 8.

DeBERTa Model = microsoft/deberta-base, MAX_LEN = 512, TRAIN_BATCH_SIZE = 32, VALID_BATCH_SIZE = 32, EPOCHS = 40,
LEARNING_RATE = 1e-05, hidden size = 768, dropout = 0.3. Fine-tuned for binary classification using CLS token with early
stopping, patience = 8.

ELECTRA Model = google/electra-base-discriminator, MAX_LEN = 512, TRAIN_BATCH_SIZE = 32, VALID_BATCH_SIZE = 32, EPOCHS =
40, LEARNING_RATE = 1e-05, hidden size = 768, dropout = 0.3. Fine-tuned for binary classification using CLS token with early
stopping, patience = 8.

XLNet Model = xlnet-base-cased, MAX_LEN = 512, TRAIN_BATCH_SIZE = 32, VALID_BATCH_SIZE = 32, EPOCHS = 40, LEARN-
ING_RATE = 1e-05, hidden size = 768, dropout = 0.3. Fine-tuned XLNet model for binary classification with early stopping, patience
= 8.

T5 Model = t5-base, MAX_LEN = 512, TRAIN_BATCH_SIZE = 32, VALID_BATCH_SIZE = 32, EPOCHS = 40, LEARNING_RATE
= 1e-05, output = logits for binary classification with early stopping, patience = 8.

LLaMA Model = princeton-nlp/Sheared-LLaMA-1.3B, MAX_LEN = 512, TRAIN_BATCH_SIZE = 8, VALID_BATCH_SIZE = 8, EPOCHS
= 40, LEARNING_RATE = 1e-05, dropout = 0.3, with LoRA fine-tuning for binary classification with early stopping, patience = 8.

GPT-2 Model = gpt, MAX_LEN = 512, TRAIN_BATCH_SIZE = 2, VALID_BATCH_SIZE = 2, EPOCHS = 10, LEARNING_RATE =
1e-04, dropout = 0.3, early stopping, patience = 5.

DistilGPT-2 Model = distilgpt2, MAX_LEN = 512, TRAIN_BATCH_SIZE = 2, VALID_BATCH_SIZE = 2, EPOCHS = 10, LEARNING_RATE =
1e-04, dropout = 0.3, early stopping, patience = 5.

OPT-13B Model = KoboldAI/OPT-13B-Erebus, MAX_LEN = 64, batch_size = 1, gradient checkpointing enabled, mixed precision used, early
stopping, patience = 5.

LoRA GPT-2 Model = gpt2, MAX_LEN = 512, TRAIN_BATCH_SIZE = 2, VALID_BATCH_SIZE = 2, EPOCHS = 10, LEARNING_RATE =
1e-04, dropout = 0.3, with LoRA fine-tuning, early stopping, patience = 5.

LoRA LLaMA-
1.3B

Model = princeton-nlp/Sheared-LLaMA-1.3B, MAX_LEN = 512, TRAIN_BATCH_SIZE = 8, VALID_BATCH_SIZE = 8, EPOCHS
= 40, LEARNING_RATE = 1e-05, dropout = 0.3, with LoRA fine-tuning, early stopping, patience = 8.

LoRA Distill-
GPT

Model = distilgpt2, MAX_LEN = 512, TRAIN_BATCH_SIZE = 2, VALID_BATCH_SIZE = 2, EPOCHS = 10, LEARNING_RATE =
1e-04, dropout = 0.3, with LoRA fine-tuning, early stopping, patience = 5.

Claudia few-
shot

Model = Claudia few-shot, few-shot prompt-based learning, early stopping patience = 5, uses structured prompting with the dataset of
examples.

LLaMA-7B
few-shot

Model = LLaMA-7B, few-shot learning using a structured prompting with the dataset of examples.

Table 3: Summary of the architecture and parameters for each model used for classification.
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Model SES Precision Recall F1 Model SES Precision Recall F1

Random Forest
not-Low 0.57 0.40 0.47 Multinomial

Naive Bayes
not-Low 1.00 0.40 0.57

Low 0.54 0.70 0.61 Low 0.62 1.00 0.77

Avg. 0.55 0.55 0.54 Avg. 0.81 0.70 0.67

Support Vector
Machine (SVM)

not-Low 0.58 0.70 0.64 Logistic
Regression

not-Low 0.58 0.70 0.64
Low 0.62 0.50 0.56 Low 0.62 0.50 0.56

Avg. 0.60 0.60 0.60 Avg. 0.60 0.60 0.60

Gradient Boosting
not-Low 0.62 0.80 0.70

RoBERTa
not-Low 0.78 0.70 0.74

Low 0.71 0.50 0.59 Low 0.73 0.80 0.76

Avg. 0.66 0.65 0.64 Avg. 0.75 0.75 0.75

DeBERTa
not-Low 0.69 0.90 0.78

ELECTRA
not-Low 0.69 0.90 0.78

Low 0.86 0.60 0.71 Low 0.86 0.60 0.71

Avg. 0.77 0.75 0.74 Avg. 0.77 0.75 0.74

ALBERT
not-Low 0.71 0.50 0.59

XLNet
not-Low 0.53 0.90 0.67

Low 0.62 0.80 0.70 Low 0.67 0.20 0.31

Avg. 0.66 0.65 0.64 Avg. 0.60 0.55 0.49

T5
not-Low 0.50 0.30 0.38

OPT-13B fewshot
not-Low 0.50 0.90 0.64

Low 0.50 0.70 0.58 Low 0.50 0.10 0.17

Avg. 0.50 0.50 0.48 Avg. 0.50 0.50 0.40

Claudia fewshot
not-Low 0.53 0.90 0.67 LLamA-1.3B

fewshot
not-Low 0.50 0.80 0.62

Low 0.67 0.20 0.31 Low 0.50 0.20 0.29

Avg. 0.60 0.55 0.49 Avg. 0.50 0.50 0.45

LoRA Fine-Tune
GPT-2

not-Low 0.50 1.00 0.67
LLaMA-7B fewshot

not-Low 0.38 0.50 0.43
Low 0.00 0.00 0.00 Low 0.29 0.20 0.24

Avg. 0.25 0.50 0.33 Avg. 0.34 0.35 0.34

LoRA Fine-Tune
DistilGPT

not-Low 0.50 1.00 0.67 LoRA Fine-Tune
LLaMA-1.3B

not-Low 0.50 1.00 0.67
Low 0.00 0.00 0.00 Low 0.00 0.00 0.00

Avg. 0.25 0.50 0.33 Avg. 0.25 0.50 0.33

bart-large-mnli
Zero Shot

not-Low 0.80 0.80 0.80
DistilBERT

not-Low 0.78 0.70 0.74
Low 0.80 0.80 0.80 Low 0.73 0.80 0.76

Avg. 0.80 0.80 0.80 Avg. 0.75 0.75 0.75

BERT
not-Low 0.75 0.60 0.67

RoBERTa-large
not-Low 0.78 0.70 0.74

Low 0.67 0.80 0.73 Low 0.73 0.80 0.76

Avg. 0.71 0.70 0.70 Avg. 0.75 0.75 0.75

Table 4: First Iteration Performance of different models for classifying socioeconomic classes. Avg. = Macro average.

A.3 Results
This Section has the results tables from the three iterations
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Model SES Precision Recall F1 Model SES Precision Recall F1

Random Forest
not-Low 0.72 0.82 0.77 Multinomial

Naive Bayes
not-Low 0.89 0.61 0.72

Low 0.77 0.65 0.71 Low 0.69 0.92 0.79

Avg. 0.74 0.74 0.74 Avg. 0.79 0.76 0.75

Support Vector
Machine (SVM)

not-Low 0.86 0.89 0.88 Logistic
Regression

not-Low 0.84 0.93 0.88
Low 0.88 0.85 0.86 Low 0.91 0.81 0.86

Avg. 0.87 0.87 0.87 Avg. 0.87 0.87 0.87

Gradient Boosting
not-Low 0.75 0.75 0.75

RoBERTa
not-Low 0.74 0.82 0.78

Low 0.73 0.73 0.73 Low 0.78 0.69 0.73

Avg. 0.74 0.74 0.74 Avg. 0.76 0.76 0.76

DeBERTa
not-Low 0.75 0.75 0.75

ELECTRA
not-Low 0.73 0.96 0.83

Low 0.73 0.73 0.73 Low 0.94 0.62 0.74

Avg. 0.74 0.74 0.74 Avg. 0.83 0.80 0.79

ALBERT
not-Low 0.66 0.68 0.67

XLNet
not-Low 0.68 0.46 0.55

Low 0.64 0.62 0.63 Low 0.57 0.77 0.66

Avg. 0.65 0.65 0.65 Avg. 0.63 0.61 0.60

T5
not-Low 0.84 0.57 0.68

OPT-13B fewshot
not-Low 0.53 0.57 0.55

Low 0.66 0.88 0.75 Low 0.50 0.46 0.48

Avg. 0.75 0.72 0.72 Avg. 0.52 0.52 0.52

Claudia fewshot
not-Low 0.51 0.71 0.60 LLamA-1.3B

fewshot
not-Low 0.45 0.61 0.52

Low 0.47 0.27 0.34 Low 0.31 0.19 0.24

Avg. 0.49 0.50 0.47 Avg. 0.38 0.41 0.38

Lora finetune GPT-2
not-Low 0.52 1.00 0.68

LLamA-7B fewshot
not-Low 0.79 0.33 0.46

Low 0.00 0.00 0.00 Low 0.74 0.78 0.76

Avg. 0.27 0.52 0.35 Avg. 0.69 0.64 0.66

Lora finetune
DistillGPT

not-Low 0.52 1.00 0.68 LoRA Fine-Tuning
LLaMA-1.3B

not-Low 0.46 0.75 0.57
Low 0.00 0.00 0.00 Low 0.12 0.04 0.06

Avg. 0.27 0.52 0.35 Avg. 0.30 0.41 0.32

bart-large-mnli
Zero Shot

not-Low 0.00 0.00 0.00
DistilBert

not-Low 0.85 0.61 0.71
Low 0.45 0.88 0.60 Low 0.68 0.88 0.77

Avg. 0.22 0.43 0.29 Avg. 0.77 0.74 0.74

BERT
not-Low 0.79 0.54 0.64

RoBERTa-large
not-Low 0 0.85 0.61 0.71

Low 0.63 0.85 0.72 Low 0.68 0.88 0.77

Avg. 0.71 0.69 0.68 Avg. 0.74 0.74 0.74

Table 5: Second Iteration Performance of different models for classifying socioeconomic classes on second iteration. Avg. = Weighted average by the number of
narratives.
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Model SES Precision Recall F1 Model SES Precision Recall F1

Random Forest
not-Low 0.63 0.53 0.57 Multinomial

Naive Bayes
not-Low 0.70 0.45 0.55

Low 0.60 0.69 0.64 Low 0.60 0.81 0.69

Avg. 0.61 0.61 0.61 Avg. 0.65 0.63 0.62

Support Vector
Machine (SVM)

not-Low 0.59 0.63 0.61 Logistic
Regression

not-Low 0.84 0.93 0.88
Low 0.61 0.58 0.59 Low 0.64 0.65 0.65

Avg. 0.60 0.60 0.60 Avg. 0.64 0.64 0.64

Gradient Boosting
not-Low 0.53 0.65 0.58

RoBERTa
not-Low 0.61 0.92 0.73

Low 0.56 0.44 0.49 Low 0.85 0.42 0.56

Avg. 0.55 0.54 0.54 Avg. 0.73 0.67 0.65

DeBERTa
not-Low 0.54 0.69 0.60

ELECTRA
not-Low 0.54 0.82 0.65

Low 0.58 0.42 0.49 Low 0.64 0.31 0.42

Avg. 0.56 0.55 0.55 Avg. 0.59 0.56 0.53

ALBERT
not-Low 0.54 0.61 0.57

XLNet
not-Low 0.62 0.75 0.68

Low 0.57 0.50 0.53 Low 0.69 0.56 0.62

Avg. 0.55 0.55 0.55 Avg. 0.66 0.65 0.65

T5
not-Low 0.55 0.55 0.55

OPT-13B fewshot
not-Low 0.50 0.69 0.58

Low 0.56 0.56 0.56 Low 0.52 0.33 0.40

Avg. 0.55 0.55 0.55 Avg. 0.51 0.50 0.49

Claudia fewshot
not-Low 0.49 0.76 0.60 LLamA-1.3B

fewshot
not-Low 0.53 0.71 0.61

Low 0.50 0.23 0.32 Low 0.57 0.38 0.46

Avg. 0.50 0.50 0.46 Avg. 0.55 0.54 0.53

Lora finetune GPT-2
not-Low 0.50 1.00 0.66

LLamA-7B fewshot
not-Low 0.48 0.65 0.55

Low 0.00 0.00 0.00 Low 0.47 0.31 0.37

Avg. 0.25 0.50 0.33 Avg. 0.47 0.48 0.46

Lora finetune
DistillGPT

not-Low 0.50 1.00 0.66 LoRA Fine-Tuning
LLaMA-1.3B

not-Low 0.50 1.00 0.66
Low 0.00 0.00 0.00 Low 0.12 0.04 0.06

Avg. 0.25 0.50 0.33 Avg. 0.25 0.50 0.33

bart-large-mnli
Zero Shot

not-Low 0.45 0.45 0.45
DistilBert

not-Low 0.65 0.51 0.57
Low 0.46 0.46 0.46 Low 0.60 0.73 0.66

Avg. 0.46 0.46 0.46 Avg. 0.63 0.62 0.62

BERT
not-Low 0.56 0.55 0.55

RoBERTa-large
not-Low 0.70 0.76 0.73

Low 0.57 0.58 0.57 Low 0.74 0.67 0.71

Avg. 0.56 0.56 0.56 Avg. 0.72 0.72 0.72

Table 6: Third Iteration Performance of different models for classifying socioeconomic classes on second iteration. Avg. = Weighted average by the number of
narratives.
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A.4 Prompt Engineering for Extracting Background, Solutions, and Struggles Information
This subsection provides a detailed explanation of the prompt engineering techniques used to extract
background information, solutions, and struggles from the narratives of low-SES students. By constructing
specific prompts and using the LLaMA model, we ensured the precise extraction of information in a struc-
tured format, relying only on direct quotes from the texts. These prompts aim to assist in understanding
the challenges and efforts described by low-SES students, ensuring that no additional information is added
or altered during extraction.

A.4.1 Model Pipeline Setup
We utilized the transformers library from Hugging Face to create a pipeline for text generation and
extraction. The LLaMA model was fine-tuned for generating outputs that align with our prompt design.
The following configuration was applied to the pipeline for all tasks:

• max_new_tokens=300: Sets the maximum number of tokens to generate during extraction. This
ensures that the output is concise and focused.

• do_sample=False: Sampling is disabled to provide deterministic and consistent outputs from the
model.

• temperature=0.5: A lower temperature value ensures less randomness in the output, resulting in
more controlled and accurate text generation.

• device: The model was configured to run on either GPU (if available) or CPU, ensuring flexibility in
processing.

The prompts were specifically designed to elicit structured information, such as family background,
solutions, and struggles, from the students’ narratives. Below, we describe each function used to extract
these key elements.

A.4.2 Extracting Background Information
The first step was to extract background information, particularly focusing on the family situations
described in the narratives. The goal was to identify direct quotes that describe the family context of the
students, such as financial hardships or living conditions.
The following function was designed to handle this task:

def extract_background(text):
prompt = f’’’
All the texts provided are written by low -SES (SES) students

who are writing about their struggles.
...
Important: Extract the following information exactly from the

text without adding or changing any words:
- background or any texts about family situations (directly

quoted from the text)

Text: {text}

valid JSON Output (only with direct quotes from the text):
’’’

output = llama_pipeline(prompt , max_new_tokens =200, do_sample=
False , temperature =0.5)

generated_text = output [0][’ generated_text ’]
# Process output for background quotes
...

This prompt ensures that only direct quotes describing the students’ family background are extracted and
returned in a valid JSON format.
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A.4.3 Extracting Solutions Information
In addition to background information, we extracted the solutions that students employed to address their
struggles. These solutions may involve actions taken to overcome financial or social barriers, as well as
any efforts to improve their academic or personal circumstances.
The function below is responsible for extracting the solutions from each text:

def extract_solutions(text):
prompt = f’’’
All the texts provided are written by low -SES (SES) students

who are writing about their struggles.
...
Important: Extract the following information exactly from the

text without adding or changing any words:
- Solutions or actions they took to address these struggles (

directly quoted from the text)

Text: {text}

valid JSON Output (only with direct quotes from the text):
’’’

output = llama_pipeline(prompt , max_new_tokens =200, do_sample=
False , temperature =0.5)

generated_text = output [0][’ generated_text ’]
# Process output for solutions quotes
...

This function captures the strategies or actions the students took to manage or overcome their struggles,
returning the data in a structured JSON format for analysis.

A.4.4 Extracting Struggles Information
The third aspect of our extraction was to focus on the specific struggles described by the students. These
struggles include financial, psychological, physical, or social hardships. The function uses a similar
approach, instructing the model to identify and extract direct quotes related to the students’ difficulties.
The function for extracting struggles is as follows:

def extract_struggles(text):
prompt = f’’’
All the texts provided are written by low -SES (SES) students

who are writing about their struggles.
...
Important: Extract the following information exactly from the

text without adding or changing any words:
- Struggles they faced (directly quoted from the text)

Text: {text}

Output valid JSON with only direct quotes related to struggles:
’’’

output = llama_pipeline(prompt , max_new_tokens =300, do_sample=
False , temperature =0.5)

generated_text = output [0][’ generated_text ’]

# Process and return the generated text as JSON
...

This function extracts the struggles faced by the students and returns them as direct quotes in a JSON
structure.

A.4.5 Post-processing and Valid JSON Output
In all cases, after the output is generated by the LLaMA model, the generated text is processed to extract
the relevant information in JSON format. The output is validated to ensure it contains the correct fields
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(e.g., background, solutions, or struggles), and any parsing errors are handled gracefully by returning a
fallback structure if needed.
The extracted data is then consolidated into a structured format for further analysis. This structured data
helps in understanding the key themes and experiences described by the low-SES students.

A.4.6 Conclusion
By employing these prompt engineering techniques, we were able to extract detailed and structured infor-
mation regarding the backgrounds, struggles, and solutions described by the students in their narratives.
The use of precise prompts, alongside the LLaMA model, allowed for accurate extraction of direct quotes,
preserving the authenticity of the students’ experiences. This extracted data provides valuable insights
into the challenges faced by low-SES students and their efforts to overcome them.

A.4.7 Limitations
We acknowledge several limitations in our current research that we plan to address in future work. First,
although our dataset offers valuable insights into the experiences of low-SES students, it is limited to
narratives collected from Reddit, primarily from a small number of subreddits. This platform and genre
bias may affect the generalizability of our findings, as narratives from other forums or formats (e.g., blogs,
surveys, or interviews) could present significantly different linguistic and contextual patterns.
Second, while our data were annotated semi-automatically, it has not yet undergone a rigorous double-
annotation or gold-standard validation process, which we are currently working on to enhance the dataset’s
reliability. Implementing this more precise annotation method will improve the consistency and robustness
of our results.
Third, the thresholding heuristic used in our model—a fixed confidence cutoff of 0.7—was chosen based
on empirical observation but lacks formal justification. This may have led to the exclusion of valid
narratives or inclusion of false positives, affecting the overall quality of the extended dataset. In future
iterations, we plan to explore more adaptive or learned thresholding techniques, possibly incorporating
human-in-the-loop validation.
Fourth, although our semi-automatic data collection model showed promising results, we have not yet
evaluated the utility of the expanded dataset in downstream NLP tasks. For example, it remains to be seen
whether the additional 323 narratives improve the performance of SES classification or sentiment models.
We plan to address this by testing our dataset’s impact on real-world applications.
Fifth, while our analysis reveals meaningful linguistic patterns, the paper would benefit from a deeper
engagement with educational or sociological theories. Connecting our findings more explicitly to existing
research on SES, educational inequality, or psychological well-being could strengthen the interpretability
and societal relevance of our work.
Finally, our dataset is currently constrained to a specific time frame. Expanding it to cover a wider range
of years will allow us to better capture the evolving nature of SES-related challenges in education. We
also plan to further refine our model using active learning to increase its scalability and independence.
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Abstract

Construction Grammar hypothesizes that
knowledge of a language consists chiefly of
knowledge of form–meaning pairs (“construc-
tions”) that include vocabulary, general gram-
mar rules, and even idiosyncratic patterns. Re-
cent work has shown that transformer language
models represent at least some constructional
patterns, including ones where the construction
is rare overall. In this work, we probe BERT’s
representation of the form and meaning of a
minor construction of English, the NPN (noun–
preposition–noun) construction—exhibited in
such expressions as face to face and day to
day—which is known to be polysemous. We
construct a benchmark dataset of semantically
annotated corpus instances (including distrac-
tors that superficially resemble the construc-
tion). With this dataset, we train and evaluate
probing classifiers. They achieve decent dis-
crimination of the construction from distrac-
tors, as well as sense disambiguation among
true instances of the construction, revealing
that BERT embeddings carry indications of the
construction’s semantics. Moreover, artificially
permuting the word order of true construction
instances causes them to be rejected, indicating
sensitivity to matters of form. We conclude that
BERT does latently encode at least some knowl-
edge of the NPN construction going beyond a
surface syntactic pattern and lexical cues.

1 Introduction

The “black box” nature of Language Models (LMs)
like has spawned a great deal of research inves-
tigating the extent to which these LMs are able
to represent and understand a variety of linguis-
tic phenomena (Linzen and Baroni, 2021; Rogers
et al., 2021; Chang and Bergen, 2024). There has
been substantial work focusing on many aspects of
linguistic knowledge, including hierarchical struc-
ture (Clark et al., 2019; Hewitt and Manning, 2019;
Jawahar et al., 2019), lexical semantics (Chang
and Chen, 2019; Vulić et al., 2020), negation (Et-

tinger, 2020), agreement phenomena (Linzen et al.,
2016; Weissweiler et al., 2023), and filler-gap de-
pendencies (Wilcox et al., 2018, 2024). Broadly,
these results show that even relatively modest sized
LSTMs and transformer models are able to demon-
strate nontrivial (though far from perfect) linguistic
knowledge. However, there is some indication that
these models are sometimes reliant on more sur-
face level heuristics, and fail in situations which
are straightforward to humans (McCoy et al., 2019;
Ettinger, 2020). More generally, language models
have been generally shown to struggle in out-of-
domain situations (McCoy et al., 2024) and have
some difficulty applying linguistic paradigms to
nonce words (Weissweiler et al., 2023) and rare
syntactic constructions (Scivetti et al., 2025).

Thus, there is need to evaluate language models
on a range of linguistic tasks which go beyond the
more studied “core” linguistic phenomena. Such
work serves to provide a more complete picture of
how language models succeed and fail across the
broad spectrum of phenomena in language. Indeed,
beyond the more mainstream notions of linguistic
structure and information, there is also work on
investigating LM knowledge of more idiosyncratic
constructions, as defined by Construction Gram-
mar. Construction Grammar is broadly a family
of linguistic theories which consider all parts of
language to be made up of constructions, which
are pairings of linguistic forms with meaning or
function (Goldberg 1995; Croft 2001, inter alia).
It remains unclear the extent to which LMs may
implicitly view constructions as distinct units. Be-
cause of their emphasis on pairing form with mean-
ing, CxG theories provide possibilities for testing
language model capabilities at the interface of form
and meaning for different aspects of language, in
contrast to past work which has focused on either
syntax (e.g. Hewitt and Manning 2019) or seman-
tics (e.g. Vulić et al. 2020) in isolation. A substan-
tial and growing amount of research has recently
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focused on the intersection of LM knowledge and
Construction Grammar (Tayyar Madabushi et al.,
2020; Tseng et al., 2022; Pannitto and Herbelot,
2023; Veenboer and Bloem, 2023, inter alia), with
a particular focus on argument structure construc-
tions (Li et al., 2022), the English Comparative
Correlative (Weissweiler et al., 2022), and the En-
glish AANN construction (Chronis et al., 2023;
Mahowald, 2023). While these studies have pro-
vided valuable insight into LM processing of con-
structions with varying levels of schematicity, there
remain many constructions which have not been
addressed at all in previous work. Furthermore,
while Zhou et al. (2024) do test model understand-
ing of constructions which are similar in form, no
past work has focused on individual constructions
as polysemous units. We argue this is a gap in
past work, as constructions, like words, can have
related but distinct meanings that must be prop-
erly disambiguated in context in order for correct
interpretation. We address this gap by providing
experiments which pair formal sensitivity with se-
mantic disambiguation in a controlled manner for
a single construction.

This work is the first to study whether language
models capture the NPN construction (Jackendoff,
2008), an infrequent yet productive pattern exhib-
ited in expressions like face to face and day to day.
Even for the subset where two instances of the same
noun are linked by the preposition to, the pattern
is polysemous, and sequences matching this pat-
tern on the surface are not always instances of the
construction (§2). Guided by CxG theory, we sepa-
rate our inquiry in terms of the construction’s form
and meaning in context. To investigate language
modeling of NPN, we:

• Construct and annotate a novel dataset of nat-
ural NPN examples from COCA (§3).

• Probe BERT’s ability to distinguish true con-
structional instances from related construc-
tions and artificial orders (§4 and §5).

• Introduce the task of construction sense dis-
ambiguation and perform experiments using
our dataset (§6).

To summarize our findings, we show that probes
using BERT embeddings are able to both identify
correct instances of NPN and disambiguate the
construction within context at respectable accuracy.
Overall, these findings indicate that BERT latently
encodes relevant information to the NPN construc-
tion, leading to strong sensitivity to both the con-

struction’s form and its meaning.

2 The NPN Construction

The NPN construction (Jackendoff, 2008) follows
the general pattern of Noun + Preposition + Noun.
Below are 2 examples of the NPN construction.
These examples, along with all others, are taken
from the Corpus of Contemporary American En-
glish (COCA, Davies 2010).

(1) There is a rebellious quality to your day to day
responses which have not gone unnoticed.

(2) I need you to get this word for word.

Given the general rules of English, the NPN
construction has several unique properties, which
we argue separate it from more “core” linguistic
phenomena. Firstly, the nouns almost always lack
determiners, which is unusual for count nouns like
“day”. Secondly, the construction can occur in a
variety of syntactic positions, including as an adver-
bial modifier (as in (2)) and as a prenominal modi-
fier (as in (1)). Finally, it conveys a meaning which
is not entirely predictable from its components, and
varies considerably depending on the preposition.
Common meanings of the NPN construction are
the SUCCESSION meaning (shown in (1)) and the
MATCHING/COMPARISON meaning (shown in (2)).
See Jackendoff (2008) for an overview of the NPN
construction and the common meanings associated
with various prepositional lemmas.

While it is conceptually and intuitively appealing
to think of NPN as a single construction, some work
has argued in favor of viewing NPN as a group of
related constructions, which are linked within the
mind but not necessarily dominated by a single
overarching abstract NPN construction (Sommerer
and Baumann, 2021). Due to the wide variety of
meanings and distributions of the different NPN
constructions, we choose to limit our focus to a
single subtype of NPNs, which all share the lemma
“to” as their preposition, which we refer to as the
NtoN construction. There is still considerable se-
mantic variation even within the NtoN construction,
with 2 broad meanings that we highlight: SUCCES-
SION (shown in (3)) and JUXTAPOSITION (shown
in (4)).

(3) I was living moment to moment.

(4) You can preserve core warmth by huddling
with a buddy, chest to chest.
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While there are additional meanings of NPN that
do not occur with “to” as the preposition, it is one
of the only prepositions that is ambiguous in the
NPN construction. By not considering examples
of NPN with other prepositions, we remove the
prepositional lemma as a potential shallow cue that
models could learn to predict the construction’s
semantics. While there are arguably examples of
NPNs where the two nouns are not identical, we
limit our analysis to cases where the two nouns
in the construction match exactly. This allows us
to easily gather examples of the construction from
corpus data.

3 Dataset

3.1 Corpus Gathering and Cleaning
In this work, we endeavor to use natural corpus data
to the extent that it was possible. First, we use a
simple pattern matching query to extract instances
of the sequence Noun + “to” + Noun from COCA.
We extract the examples from the corpus in a fixed
window of +/- 50 tokens from the construction,
and then used Stanza (Qi et al., 2020) to segment
the results into sentences and extract the sentences
which contained NtoNs. We automatically exclude
sentences which contained “from” preceding the
construction, because from N to N does not have
exactly the same distribution as the more general
NtoN (Jackendoff, 2008), and is sometimes stud-
ied as a separate (but closely related) construction
(Zwarts, 2013).

After extracting all sentences which contained
a possible instance of NtoN, we then manually
clean the data, removing sentences that were ei-
ther too short (<5 tokens) or contained too many
typos. We annotate all instances of the construc-
tion for their semantic subtype, and double annotate
roughly 25% of the dataset, achieving an agreement
of 84% and a Cohen’s kappa value of .754 between
the two annotators, indicating strong agreement.1

The final dataset has 6599 instances of NtoN, of
which 1885 were double annotated.

3.2 Near Minimal Pairs
In addition to true instances of the NtoN construc-
tion, we also find grammatical corpus instances of
Noun + “to” + Noun patterns, which are not in-
stances of the construction. These patterns often
occur when a verb licenses a direct object and a “to”

1Disagreements between the two annotators were resolved
through discussion and a gold label was chosen jointly.

prepositional phrase, and the direct object and the
object of the preposition happen to have the same
lemma. Three examples are shown below in (5),
(6), and (7).

(5) Then there’s the problem of sticking plastic to
plastic.

(6) In Rome largesse was doled out by individuals
to individuals.

(7) I don’t have time to time travel ...

We do not consider such cases to be examples of
the NtoN construction because the surface pattern
of Noun + Preposition + Noun clearly arises from
a different syntactic context (e.g. a verb licensing
a direct object and a PP modifier). Furthermore,
the meanings of these examples do not evoke the
unique semantics that accompany the NtoN con-
struction. While these cases are not instances of
the NtoN construction, they do provide a set of
negative examples which we can use to probe the
model’s ability to recognize true NtoN construc-
tions. Throughout this paper, we refer to this set
of examples as instances of the NtoN distractors,
since we test of if the model is “distracted” by the
shallow similarity of the examples to the NPN con-
struction. We refer to true examples of NtoN as
instances of the NtoN construction. Since these
NtoN examples exhibit the same surface form as
the NtoN construction, we consider them to be near
minimal pairs, following Weissweiler et al. (2022)
who extract near minimal pairs from corpus data
based on part-of-speech patterns. While these sen-
tences inevitably contain more lexical biases than
a true minimal pair dataset, they are completely
natural, and provide a good comparison point for
a construction where creating true minimal pairs
is otherwise difficult (because there is no obvious
minimal change that can be made to result in a
grammatical sentence that is not an example of
the construction, similar to the struggles of Weis-
sweiler et al. (2022) regarding the Comparative
Correlative construction). In total, we collect 456
total instances of NtoN distractors from COCA.

3.3 Train/Test Split
The resulting dataset contains many instances of
very common NtoN constructions, such as “day to
day”. We control for the effect of these frequent
lemmas in two ways. Firstly, we artificially shrink
the dataset by randomly sampling 20 sentences
for each noun lemma which occurs more than 20
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SUCCESSION JUXTAPOSITION Distractors

train 289 287 287
test 731 678 72

Table 1: Number of noun–to–noun sequences: two
meanings of the NPN Construction, as well as distrac-
tors. Train sets are balanced to be equal between the
categories. The remaining examples are left for testing.

times, and discard the remaining sentences for the
purposes of model training and testing. This is to
make sure that no overly common lemmas have an
overstated impact on the probing classifier perfor-
mance.

Secondly, we generate random train/test splits
based on lemma of the noun in the NtoN, meaning
that there are no lemmas that are seen in both the
training set and the testing set. In other words, if an
example with “day to day” is seen during training,
a sentence with “day to day” will never be seen
during testing (but a sentence with “week to week”
might be). Each sentence in the dataset has one
target instance of the NtoN construction.

In Table 1, we report the final dataset sizes, split
by semantic subtype for the construction examples.
NtoN constructions are much more frequent than
the NtoN distractor patterns which serve as their
near minimal pairs. We choose to balance the sizes
of the two types of examples during training. We
take 80 percent of the NtoN distractor patterns for
training and withhold twenty percent. We take a
similar number of NtoN constructions for training
and then test on the remainder, ensuring training
sets are balanced between constructions and dis-
tractors.

4 Experiment 1: Constructions vs.
Distractors

4.1 Methodology

We probe the ability for BERT to distinguish natu-
ral instances of the NtoN construction from natural
examples of the NtoN distractor pattern. To ad-
dress the issue of lexical overlap, we control for
the lexical cue of the nouns in NtoN by making
sure there is no overlap of nouns in the training
and testing data splits, as described in §3.3. How-
ever, it is still entirely possible that the classifier
learns to utilize lexical similarity of the nouns in
the construction, or even other words beyond the
construction. We address this by providing two
baseline systems which give perspective on per-
formance based on lexical cues: a control classi-
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Figure 1: Accuracy of NtoN construction across layers
of BERT-base, averaged across 5 random seeds. Max-
imal accuracy in the mid to late layers. Reducing the
number of training examples does not drastically harm
performance. The light grey line represents control
probe (Hewitt and Liang, 2019) accuracy, which hovers
around chance. The dark grey line represents accuracy
of the lexical semantic GloVe baseline. Darker lines
indicate larger amounts of training examples, with pos-
sible values of 10, 25, 100, and 287. Reducing the
amount of training examples for the probes does not
lead to drastically changed performance. Error Bars
indicate 95% confidence intervals over the mean accu-
racies across the 5 runs.

fier (Hewitt and Liang, 2019) and a non-contextual
baseline based on GloVe embeddings (Pennington
et al., 2014).

Control classifiers involve training new classi-
fiers based on data where the labels are randomized
and correspond deterministically to word type, ide-
ally leading to chance performance. Following
Hewitt and Liang (2019), who deterministically
assign each word a POS tag for their probing ex-
periments, we assign a random positive or negative
label deterministically based on the first noun word
type in the construction. The performance of these
control classifiers should be near chance, in the ab-
sence of any spurious correlations which allow the
classifier to solve the task given arbitrary labels.

We provide an additional, non-contextual base-
line by training a linear classifier on GloVe embed-
dings for the nouns in the construction as input. It
is well known that the NPN construction is biased
towards certain lexical types of nouns, such as tem-
poral phrases and body parts (Jackendoff, 2008).
Thus, we expect that a classifier trained on the static
embedding of the noun alone will achieve nontriv-
ial performance. We argue that if a BERT-based
classifier substantially outperforms this baseline,
the difference in performance is an indication of
nontrivial contextual understanding of the construc-
tion as a whole, beyond the lexical semantics of the
present nouns.
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Following previous probing work which tracks
performance layer by layer Liu et al. (2019); Weiss-
weiler et al. (2022), we train a separate probe based
on embeddings from each layer of BERT and track
performance across layers. We use the BERT-base-
cased model, available through the Huggingface
transformers library (Wolf et al., 2020), and choose
logistic regression as our linear classification ar-
chitecture.2 For all experiments and data settings,
we run probes with 5 random seeds and report the
average results.

4.2 Results
For the probing classifier results, we graph accu-
racy on the NtoN construction in Figure 1. As we
can see, the classifier is relatively strong at distin-
guishing the NtoN construction from distractors
even in the early layers, with an accuracy over .90
by layer 5 with full training examples. Addition-
ally, the classifiers are robust to sharp reductions in
the number of training examples (shown in lighter
shades of green in Figure 1), showing strong per-
formance even with as few as 10 per-class training
examples, echoing similar findings for other con-
structions (Tayyar Madabushi et al., 2020). The
control classifier achieves roughly chance perfor-
mance, meaning that our trained probes have high
selectivity (Hewitt and Liang, 2019). The lexical se-
mantic baseline using GloVe achieves performance
well above chance (≈68%), though its performance
lags far behind the BERT-based probes, regardless
of how many training example those BERT-based
probes receive. This shows that overall, the probing
classifier seems to be picking up on some sort of in-
formation in BERT which can reliably distinguish
the NtoN construction from its near minimal pair
NtoN distractor counterparts, beyond what is possi-
ble through lexical semantic clues alone. However,
the distractor examples generally have syntactic
structure which is divergent from the construction
examples. To provide another comparison point,
we now test if the existing probes can distinguish
true instances of the NtoN construction from exam-
ples with artificially altered word orders.

5 Experiment 2: Perturbing Word Order

As we have seen in §4.2, a BERT-based probe
can generally distinguish the NtoN distractor pat-
terns from the NtoN construction. However, we

2We take the embedding of “to” as the input into the clas-
sifier, as some past work has considered it the “head” of the
overall construction (Jackendoff, 2008).

wish to further test how robust the model is at dis-
tinguishing the construction from related patterns.
While we have compared to naturally occuring near
minimal pairs, we now test the classifier on a set
of examples with artificially perturbed word or-
der. If the classifier is robust at recognizing the
NtoN construction, it should be able to correctly
distinguish construction instances from artificial
sentences with altered non-NPN word orders. To
illustrate this point, consider the following two sen-
tences:

(8) I need you to get this word for word.

(9) I need you to get this for word word.

Example (8) is a copy of (2) and is a true NPN con-
struction. On the other hand, (9) is not an instance
of the construction (because it does not follow the
NPN word order), and is a generally ungrammat-
ical sentence. We hypothesize that if the probe
trained in §4 is not robust to the actual word order
pattern of NtoN, it will be unable to distinguish
sentences like (8) from those like (9). If indeed the
lexical cues are influencing classifier performance
independent of word order, we expect that the clas-
sifier will predominantly classify examples like (9)
as positive instances of the NtoN construction.

To test this hypothesis, we manipulate the test
set of the probe by creating 4 perturbed orderings
of each test example sentence: PNN, PN, NNP,
NP. A true NtoN example is shown in (10) the
corresponding 4 different perturbed orderings are
shown below in (11), (12), (13), and (14).

(10) Go room to room removing anything you
don’t need and selling it. (Original NtoN)

(11) Go to room room removing anything you
don’t need and selling it. (PNN Perturbed
Order)

(12) Go to room removing anything you don’t
need and selling it. (PN Perturbed Order)

(13) Go room to removing anything you don’t
need and selling it. (NP Perturbed Order)

(14) Go room room to removing anything you
don’t need and selling it. (NNP Perturbed
Order)

Crucially, we do not retrain the linear probe on this
perturbed data. This means that during training,
the classifier only saw instances with the correct
N + to + N ordering, either positive instances of
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Figure 2: Accuracy of perturbed orderings of original NtoN constructions. Since the perturbed word orders are not
true instances of the construction, the true class is negative for all instances. High accuracy indicates that probes are
rejecting the validity of the artificial orderings. Lighter colors represent fewer training examples for the probings.
Error bars indicate 95% confidence intervals over the average of 5 random seeds.

the NtoN construction (like in (1) and (2)), or near
minimal pairs of the NtoN distractor patterns (like
in (5), (6), and (7)). Thus, this experiment tests the
robustness of the original probing classifier when it
is confronted with out of domain word orders that
contain the same lexical cues as positive instances
of the construction.

5.1 Results

Figure 2 shows the probe’s performance on the per-
turbed test sets for the NtoN construction. We see
that in the very early layers (1-3), the probe often
predicts the NtoN construction despite the word or-
der shifts, leading to relatively low accuracy. This
possibly means that the classifier is biased by the
lexical cues in the sentence early on. Interestingly,
performance on PN and PN perturbations is sub-
stantially worse than performance on NP and NNP
in the early layers. Accuracy on all perturbations
trends upwards in the later layers, with reduction in
training examples leading to drops in performance
especially for NP/NNP.

5.2 Analysis

Overall, we find that classifier probes are able
to distinguish instances of the NtoN construction
from both near minimal pairs (NtoN distractor pat-
terns) and artificial examples (perturbed word or-
derings). This finding aligns with the strong per-
formance on form-based recognition that has been

observed in previous work on other constructions
(Li et al., 2022; Weissweiler et al., 2022; Mahowald,
2023). The peak in performance in the late-middle
layers is consistent with much previous work on
linguistic probing, which show that the middle and
late-middle layers perform best for a variety of lin-
guistic tasks (Goldberg, 2019; Hewitt and Manning,
2019; Lin et al., 2019; Liu et al., 2019).

The differences in the performance between the
NP/NNP and the PN/PNN perturbed orderings is
an unexpected finding. According to Rogers et al.
(2021), the earlier layers of BERT encode “word
order”, while the middle layers are where syntactic
capabilities emerge. Based on this logic, it is un-
surprising that the classifier’s ability to distinguish
PN/PNN emerges in the middle and later layers.
Why might the NP/NNP instances be distinguished
so much quicker? Our intuition is that in general,
preposition tokens probably attend more to their
immediately following word than their immedi-
ately preceding word. This is because prepositions
are often immediately followed by objects, while
their syntactic governor may or may not be directly
adjacent to them. Perhaps in the early layers of
the model (before hierarchy is as explicitly repre-
sented) prepositions attend to their following token
more quickly because this is a surface word order
pattern that feeds quite well into syntax.

One alternative explanation is that PN/PNN may
produce generally more grammatical sounding sen-
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tences than NP/NNP. For instance, (12) sounds
much closer to a real sentence than (14). It could
be that the classifier probe takes into account the
ungrammaticality of NP/NNP, even though it was
not explicitly trained to do this, since the classi-
fier probe is only trained on grammatical sentences.
How exactly the ungrammaticality is represented in
these embedding representations is unknown, but
provides one possible explanation for the differen-
tial performance of the perturbed word ordering
patterns.

Having established that performance on identi-
fying the NtoN construction is strong, we now turn
to the task of disambiguating the meaning of the
construction within context.

6 Experiment 3: Semantic
Disambiguation

6.1 NtoN Subtypes

We have established that classifier performance is
strong at identifying instances of the NtoN con-
struction relative to similar patterns. However, the
construction itself is ambiguous, and can have dif-
ferent meanings in context. The two primary mean-
ings are SUCCESSION and JUXTAPOSITION, which
are shown in (3) and (4) respectively.

The two types co-occur with different nouns at
different frequencies. The SUCCESSION subtype
most often occurs with spatiotemporal nouns (e.g.
day to day or coast to coast). On the other hand, the
JUXTAPOSITION subtype most often occurs with
body parts or humans (e.g. face to face or friend
to friend). However, the noun meaning is not de-
terminative, and within context some noun lemmas
occur with the less common meaning. Furthermore,
both constructions occur with rare noun lemmas
for which it is not clear what type would be more
common.

6.2 Methodology

In this section, we train a classifier to distinguish
semantic subtypes of NtoN. We focus on the two
main subtypes that are well attested in the data:
SUCCESSION and JUXTAPOSITION. We also in-
clude examples of the NtoN distractor patterns
which are not examples of the construction. Thus,
the probe is faced with a 3-class classification prob-
lem: it must distinguish between the SUCCESSION

subtype, the JUXTAPOSITION subtype, and non-
examples of the construction (distractors). Fol-
lowing Hewitt and Liang (2019), we train control

classifiers with a random label assigned to each
lemma. If the probes are properly selective, the
control classifiers should have accuracies of around
33 percent.

6.3 Results
Figure 3 shows the precision and recall scores of
the semantic probing experiments. Across all se-
mantic types, performance is generally high for
the classifiers trained on the full split of data, with
recall on all 3 classes near 80%, and strong perfor-
mance even in the early layers. This is in contrast to
some other semantic tasks, for which probes only
reach their peaks in the mid to late layers of BERT.

Across all layers, both SUCCESSION and JUX-
TAPOSITION perform worse with only 10 training
examples, but performance stabilizes after only
25 examples for the probe. The relatively low re-
call for JUXTAPOSITION and SUCCESSION when
the classifiers are only trained with 10 examples
indicates that the probe has not fully learned to
correctly distinguish the two main semantic sub-
types. It is somewhat striking that there is not a
larger difference between SUCCESSION and JUX-
TAPOSITION in performance, given that SUCCES-
SION accounts for roughly 68% of all instances
of the construction in our dataset. While probes
are trained with balanced training sets, the rela-
tive frequency of these semantic subtypes within
our dataset (and by extension COCA) is a strong
indication that SUCCESSION is the more frequent
meaning. Nevertheless, performance is roughly
comparable between the two semantic subtypes. In
all cases, the distractor class is overpredicted, lead-
ing to a relatively low precision compared to the
subtypes of the construction. As expected, the con-
trol classifiers achieve roughly chance performance
across layers, indicating that our probes have high
selectivity. The GloVe-based baseline achieves an
average recall of around .54 across the subtypes,
but has widely variable performance depending on
the semantic subtype. In general, the GloVe based
classifier is much more likely to underpredict SUC-
CESSION, leading to very high precision and very
low recall for this class.3

7 Related Work

There has been substantial research on investigat-
ing the linguistic information that is encoded by

3We report GloVe and control results using the full training
set. Performance of the GloVe baselines degrades with fewer
examples, while the control classifiers remain near chance.
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Figure 3: Precision and Recall of different semantic subtypes of NPN in 3-way classification. Lighter colors indicate
fewer training examples, with possible values of 10, 25, 100, and 287 training examples per class. Classifiers trained
with at least 25 per-class training examples begin to show strong performance across classes. JUXTAPOSITION takes
substantially more training examples for classifiers to learn compared with SUCCESSION. Each line represents the
average of 5 random seeds. Dotted lines represent baselines: GloVe (black) and control (gray). Error Bars indicate
95% confidence intervals over the average of the random seeds.

BERT. Much of this work has focused on syntac-
tic structure (Hewitt and Manning, 2019; Jawahar
et al., 2019; Liu et al., 2019; Hu et al., 2020), agree-
ment phenomena (Lin et al., 2019) and semantics
(Vulić et al., 2020; Chang and Chen, 2019; Ettinger,
2020), with the BLiMP (Warstadt et al., 2020) and
SyntaxGym (Gauthier et al., 2020) providing key
evaluation datasets. Belinkov (2022) and Elazar
et al. (2021) provide critiques of the probing clas-
sifier methodology for its indirectness and suscep-
tibility to spurious correlations. Various improve-
ments on the methodology have been suggested,
with a general focus on providing more controlled
probing environments (Pimentel et al., 2020; Kim
et al., 2022) and causal claims through counterfac-
tuals (Ravfogel et al., 2021; Elazar et al., 2021).
Of particular relevance to this work is Hewitt and
Liang (2019), who propose the control classifier
methodology as one methodology for controlling
for spurious correlations in classifier performance.
We believe our use of control classifiers and non-
contextual baselines provide proper context for our
probing results.

Earlier computational linguistic work on English
trained classifiers for such grammatico-semantic
phenomena as identifying argument structure con-
structions (Hwang and Palmer, 2015) and disam-
biguating functions of tense and definiteness (Re-

ichart and Rappoport, 2010; Bhatia et al., 2014),
as well as generally to disambiguate the senses
of prepositions (Litkowski and Hargraves, 2007;
Schneider et al., 2018). Tayyar Madabushi et al.
(2020) were the first to investigate BERT’s per-
formance on learning constructions, finding that
BERT is able to identify a large set of hundreds
of automatically identified constructions. Regard-
ing well-established argument structure construc-
tions, Li et al. (2022) find that RoBERTa implic-
itly contains abstract knowledge of the construc-
tions beyond specific lexical cues. Weissweiler
et al. (2022) find that BERT-scale models are
able to correctly distinguish the COMPARATIVE-
CORRELATIVE construction from similar looking
patterns, but find that the models fail on reasoning
tests related to the construction’s semantics. Ma-
howald (2023) finds that the larger GPT-3 model
can provide acceptability judgments for the Arti-
cle+Adjective+Numeral+Noun (AANN) construc-
tion which generally align with human judgements,
and find that the model is sensitive to constraints on
the slots in the construction. Chronis et al. (2023)
test BERT’s knowledge of the same AANN con-
struction by projecting tokens in the construction
into an interpretable embedding space, finding that
features aligning with measure-words are evoked
by tokens in the construction. Beyond BERT-scale
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models, Zhou et al. (2024), Bonial and Tayyar Mad-
abushi (2024) and Scivetti et al. (2025) all test
LLM knowledge of constructions in more complex
scenarios, finding that their performance generally
lags behind humans regarding construction under-
standing, though there is variation depending on
the construction. Zhou et al. (2024) test a range
of LLMs on understanding the CAUSAL-EXCESS

constructions in comparison to constructions with
highly similar forms, showing that the model is of-
ten misled by form-based cues. Their experiments
most closely mirror our inquiries into construction
sense disambiguation, though they disambiguate
between similar but distinct constructions while we
focus on a single polysemous construction. While
Zhou et al. (2024) find that LLMs largely are un-
sucessful at meaning-based disambiguation, and
Weissweiler et al. (2022) also find negative re-
sults regarding the semantics of the COMPARATIVE-
CORRELATIVE, our relatively positive results on
construction disambiguation in this present work
demonstrate that for NtoN, models may possess
more robust models of constructional semantics
than would be previously expected.

While NPN has not been the major focus of past
analysis Weissweiler et al. (2024) do consider it as
one of the constructions which they include in their
UCxn dataset, which is compiled by automatically
using Universal Dependencies (de Marneffe et al.,
2021) graphs to find indications of constructions
across 10 languages. We do not use this dataset
due to its limited size (it contains under 50 total
examples of the NPN construction in English).

8 Conclusion

In this work, we constructed a novel dataset of
NtoN construction by extracting all instances of
the construction which we found in COCA. Using
our dataset, we have probed BERT’s knowledge of
the NtoN construction by training a linear probe
to distinguish instances of the construction from
near minimal pairs from corpus data. We show
that a linear probe is largely able to distinguish
true instances construction from naturally occur-
ring distractor patterns, as well as from artificially
perturbed versions of the construction, though the
probe is more robust to recognizing the effect of
some word order changes than others. Further-
more, we show that a BERT-based classifier can
disambiguate the sense of the NtoN construction
in context, beyond the lexical semantic cues that

are present. For both form- and meaning-based
experiments, we show that the classifier results are
robust even in the face of dramatic reductions in the
number of training examples. This indicates that
constructional knowledge is likely latently encoded
within BERT and not due to spurious correlations
learned by the classifiers. Overall, these results con-
tribute to the growing body of evidence that LMs
have some ability to acquire grammatical proper-
ties of rare and idiosyncratic constructions.

9 Limitations

This work is limited in several ways. Due to natural
relative frequencies of various constructions, the
dataset used for NtoN is unbalanced between the
NtoN construction and pattern. This means that
the training set for the classifier was quite small,
because we ensured that training was balanced be-
tween the different classes. While the probing clas-
sifiers do achieve high accuracy, it is unclear how
much accuracy is being capped by the limited data
available. However, this fact, alongside our experi-
ments with reduced training set sizes, indicate that
the probes can learn with relatively little training
signal.

This is experiment is also limited in only con-
sidering NtoN, as opposed to the broader NPN
construction. This is an intentional choice, as “to”
has the most semantic subtypes of NPN associ-
ated with it. Future work is needed to see if the
results here are robust to the inclusion of additional
NPN examples with other lemmas into the dataset.
We also only consider the English NPN construc-
tion, though the construction has been observed
in a range of languages, including Dutch, English,
French, German, Norwegian, Japanese, Mandarin,
Polish, and Spanish (Weissweiler et al., 2024). We
also limit our experiments to cases where the nouns
match. This choice greatly simplifies our process
of detecting true constructions as well as distrac-
tors, but also excludes some interesting examples
of the construction, as pointed out by Jackendoff
(2008).

Finally, this work utilizes the probing classifier
methodology, which has been criticized for provid-
ing indirect/correlational evidence of linguistic in-
formation in LM representations (Belinkov, 2022).
Future work is needed to broaden the analysis to
include causal probing methodologies (e.g. Alter-
Rep, Ravfogel et al. 2021; MaPP, Karidi et al. 2021;
Reconstruction Probing, Kim et al. 2022).
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Abstract

The syntactic probing literature has been
largely limited to shallow structures like de-
pendency trees, which are unable to capture
the subtle differences in sub-surface syntactic
structures that yield semantic nuances. These
structures are captured by theories of syntax
like generative syntax, but have not been re-
searched in the LLM literature due to the dif-
ficulties in probing these complex structures
that have many silent, covert nodes. Our
work presents a method for overcoming this
limitation by deploying Hewitt and Manning
(2019)’s dependency-trained probe on sentence
constructions whose structural representation
is identical in a dependency parse, but dif-
fers in theoretical syntax. If a pretrained lan-
guage model has captured the theoretical syn-
tax structure, then the probe’s predicted dis-
tances should vary in syntactically-predicted
ways. Using this methodology and a novel
dataset, we find evidence that LLMs have cap-
tured syntactic structures far richer than pre-
viously realized, indicating LLMs are able to
capture the nuanced meanings that result from
sub-surface differences in structural form.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable language capabilities that have
been steadily increasing ever since BERT (Devlin
et al., 2019). This impressive performance has
prompted a body of research interested in investi-
gating why these models are so successful. From
this came a subset of research seeking to under-
stand what, if any, linguistic features or knowledge
these models have acquired (Jawahar et al., 2019;
Belinkov and Glass, 2019; He et al., 2024; Kallini
et al., 2024) as means to better understand their lan-
guage performance. The focus of linguistic inquiry
can vary from the semantic (Nikolaev and Padó,
2023; Kamath et al., 2024) to the morphological
(Coleman, 2020; Anh et al., 2024) to the syntactic

(Clark et al., 2019; Chi et al., 2020; Kulmizev et al.,
2020; Maudslay and Cotterell, 2021), the latter of
which our current research seeks to extend.

Much of the research into syntactic representa-
tion in LLMs have utilized dependency parses to
represent a sentence’s syntactic structure (Hewitt
and Manning, 2019; Maudslay and Cotterell, 2021;
Tucker et al., 2022; Eisape et al., 2022; Buder-
Gröndahl, 2024). However, these relatively shallow
representations can fail to capture features of a sen-
tence and the nuanced differences in meaning that
result from different sub-surface syntactic struc-
tures. Adopting a dependency framework makes
theoretical assumptions and imposes limitations on
the richness of meaning that can be expressed, the
consequences of which are often not addressed.
These simple, compact representations stand in
stark contrast to the deeper, hierarchically-complex
structures that are posited in theoretical syntax, par-
ticularly the generative frameworks, which postu-
late these complexities in order to account for the
difference in semantic meaning and syntactic pat-
terning of certain syntactic constructions. Because
the structures posed by theoretical syntax are far
more complex with more tree nodes than words in
the sentence, attempts to probe for generative syn-
tactic structures have been stymied, and it remains
unclear whether LLMs have captured these richer
sub-surface structures.

Our work seeks to overcome this through our
unprecedented application of Hewitt and Man-
ning (2019)’s dependency-trained probe to test
for theory-backed syntactic structures. To imple-
ment this, we identified two sentences structures—
Subject Raising (SR) and Subject Control (SC)—
whose surface and dependency representations are
identical, but whose generative structures differ as
their complement sizes differ (control predicates
take larger complements than raising predicates).
Using this method, we are able to circumvent the
issue of handling empty nodes in the syntactic tree
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as the probe only recovers dependency distances.
Our hypothesis holds that if the probe predicts dis-
tances for the two sentence types that significantly
differ in syntactically-predicted ways, then this is
evidence that LLMs have captured the more com-
plex structures of generative syntax, which can
yield structures to explain the pattern variations
and semantic nuances of certain constructions.

To test this, we developed a novel dataset of over
33,000 SR/SC sentences, which we fed into our
dependency-trained probes using pretrained mod-
els of BERT, RoBERTa, GPT2, and Qwen2.5.
When we probe the content words, our results find
strong evidence of the SR/SC difference that aligns
with SC taking a larger complement than SR as
generative syntax proposes. However, probing
the distances with infinitival "to" suggest that the
functional word may encode syntactic structure in
an aberrant manner. Together, our work suggests
LLMs have encoded structure that is more com-
plex than previously realized, and provides a novel
method to probe for theoretical syntactic structure
in LLMs.

2 Related Work

The impressive language abilities of recent LLMs
have prompted researchers to ask whether this per-
formance is due to some probabilistic modeling, or
if these language models have managed to capture
linguistic structures. To answer this question, a
line of research known as probing was developed.
This methodology feeds the model’s contextualized
vector representations into a neural network whose
training objective is to predict a targeted linguistic
structure from the representations alone (see Alain
and Bengio, 2017 or Conneau et al., 2018 for ex-
ample). The argument follows that if such a neural
network probe is in fact able to predict the target
pattern or structure, then it can be concluded that
the language model has indeed implicitly learned
that linguistic feature; otherwise, the probe task
would have been doomed to failure.

This area of research has largely focused specifi-
cally on investigating whether models have learned
to properly encode syntactic phenomenon (Mueller
et al., 2020; Hu et al., 2020; Warstadt et al., 2020;
Ravfogel et al., 2021; Davis et al., 2022). However,
much of this structural syntactic research has relied
on dependency parses as a means of representing
syntactic structure (Hewitt and Manning, 2019; Chi
et al., 2020; Maudslay and Cotterell, 2021; Tucker
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Figure 1: An example of the dependency tree (left)
and generative syntax tree (right) for the sentence "The
moose ate my pumpkin." Note how the dependency tree
has a flatter structure with a one-to-one mapping of
words to nodes in the tree. Compare this to the deeper
generative tree where there are far more nodes in the
tree than words in the sentence.

et al., 2022; Eisape et al., 2022), with one notable
exception being Arps et al. (2022), which sought
to (and largely succeeded) in training a probe to
reconstruct a skeletal constituency tree. While this
line of research is of value and great interest, there
are theoretical assumptions made by using depen-
dency parses, and there are limitations to using that
particular syntactic framework.

2.1 Syntactic Theories

Dependency parses derive from French linguist Lu-
cien Tesnière’s (1959) theory of syntax known as
Dependency Grammar (DG), which focuses on the
head-dependent relationship between words (see
Figure 1). In these trees, each word can have one
and only one incoming arc that indicates it is the
dependent of its head, excepting the root of the sen-
tence (often the matrix verb), which has no head.

DG trees are relatively flat structures with one-
to-one mappings between words in the sentence
and nodes in the tree. The appeal of such trees are
largely three-fold: (1) the representations are com-
pact and efficient due to the one-to-one mapping,
(2) learning to parse a dependency tree is relatively
easy once one understands the head-dependent re-
lationships that exist, and (3) the dependency tree
does not need to capture the sentence’s linear order
of words. The last factor makes DG an appealing
theory for researchers working on languages with
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freer word-order (Müller, 2019); however, this "fea-
ture" can become a bug when it loses nuance or
creates ambiguous parses (see Figure 2).

An alternative, more structurally-rich approach
to syntax has built off the theories of Chomsky
(1957; 1981; 1986; 1995) and others who have
refined this phrase-structure (also known as a
constituency-based) framework to build up the syn-
tactic framework known as generative syntax (GS).
This family of syntactic theories are built on the
X-bar theory, which proposes the operations Ex-
ternal Merge and Internal Merge (formerly known
as "Move"), and stipulates that nodes are binary-
branching and that every phrase has a head (Chom-
sky, 1995). After all operations are applied in the
course of derivation, the end result is the lineariza-
tion of the sentence when read from left to right
along the children nodes.1 The generative frame-
work is concerned with identifying the operations
and rules that together generate licit sentences but
do not generate illict constructions.

Unlike DG, generative syntax and other phrase-
structure grammars thus yield deeper, more com-
plex trees with hierarchical structures and phono-
logically null nodes whose presence must be de-
duced through testing. While this complexity is
well-warranted (in that it can generate sentences
that are grammatical and explain what causes un-
grammaticality), the tree’s size and complexity cre-
ates a complicated and unwieldy structure that is
difficult for non-linguists to implement.

The result of this has been a limitation in the
scope of feasible GS research in Natural Language
Processing (NLP). Even work that has sought to
test for the deeper, more complex phrase-structures
in NLP has largely focused either on only seek-
ing to recover a phrase’s boundaries (Tenney et al.,
2019; Kallini et al., 2024) or has otherwise trained
their probe on the overly-simplified, n-branching
constituency trees of the English Penn Treebank
(PTB) (Marcus et al., 1993), which are only an-
notated with “skeletal” syntactic structure schema
that is relatively atheoretical. The PTB’s annotation
is often used for automatic conversion into a de-

1In earlier versions of GS, it was argued that when an
element moves, it leaves behind a coindexed trace element
(Chomsky, 1973; Fiengo, 1977). Because such an deriva-
tion introduces a new element, Chomsky (1993) revised the
approach to the Copy Theory of Movement, claiming that
movement leaves behind a copied element that is not phonolog-
ically realized. Thus, the sentence used above would be "Do
you [do] [you] know [know] who [who] [who] stole [stole]
the Crown Jewels?" For a discussion on which elements are
phonologically realized and why, see Corver (2007).

(1) Do you know who stole the Crown Jewels?

(2) Who do you know stole the Crown Jewels?

know

do you stole

who Crown

the Jewels

aux

ns
ub

j

ccomp

ns
ub

j dobj

de
t nn

Figure 2: Above are two different sentences that yield
identical dependency parses. While similar, the sen-
tences have different meanings (imagine you are being
questioned about the theft of the Crown Jewels: the first
question merely seeks to inquire whether or not you
know who the thief is, while the latter presumes you
know who the thief is and seeks to learn the identity).
This illustrates both the ways in which dependency trees
do not capture linear order, and highlights some of the
limitations of dependency trees.

pendency parse with little issue since the simplicity
of PTB syntax is non-problematic for the simpler
structures and principles of an NLP dependency
parse. However, the result of this is a corpora that
is not theoretically-sound for many of the deeper
linguistic inquiries into phrase-structure grammars.

Because of this, it has yet to be discovered
whether LLMs have managed to capture the deeper,
hierarchical structures of GS. However, there are
three major barriers to testing whether models have
captured the richer hierarchical structures as pro-
posed by generative frameworks:

1. GS and similar frameworks often have
"empty" nodes that are not overtly realized.2

As such, they are not overtly present in the
texts LLMs train on, and so probing at their
presence is difficult because it raises the ques-
tion: how can you probe at something that is
not overtly represented?

2. Probes largely require a gold tree that indi-
cates the correct structure or parse. Human
annotation, while crucial when handling such

2This can be due to movement (see Footnote 1) or the
feature not having an overt representation (e.g., there is no
specific word or morpheme that indicates present tense for
plural subjects as in "They walkpres to the store"). See Figure
1 for demonstration.
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fine-grained analysis, is laborious and costly
in resources and time.

3. Even if one is able to secure the resources nec-
essary to create such a gold standard, there are
competing theories even within the generative
framework that would change a sentence’s rep-
resentation. As such, a gold parse would be
subject to great theoretical scrutiny and likely
face present or future dissenting opinions.

Our research develops a method that circum-
vents these obstacles while still addressing the fun-
damental research question of whether LLMs have
captured something of the deeper, sub-surface syn-
tactic representation theorized by many linguists.

3 Methodology

3.1 Probing Method

To combat the first issue of accounting for struc-
tures that are not phonologically realized, we have
opted for the novel approach of re-purposing the
original Hewitt and Manning (2019), which was
trained to recover dependency trees, to investi-
gate whether LLMs have encoded theoretically-
motivated generative phrase-structure trees.

The structural probe developed by Hewitt and
Manning (2019) proposes a model M that encodes
a sequence of vector representations hl

1:n from an
input sequence of n words wl

1:n where l identifies
the sentence index. From there, they define a linear
transformation matrix B → Rk↑n to parameterize
the parse tree-encoding distances:

dB(hl
i, hl

j)
2 = (B(hl

i ↑ hl
j))

T (B(hl
i ↑ hl

j))

where i and j are the words in the sentence and
where the transformation matrix B’s objective is to
reproduce the gold parse distances between each
pair of words (wl

i, wl
j) for all sentences l in the

parsed training corpus T l. The training uses a gra-
dient descent objective:

min
B

∑

l

1

| sl |2
∑

i,j

| dT l(wl
i, w

l
j)↑ dB(hl

i, h
l
j)

2 |

In this equation, | sl | is the length of sen-
tences, which the function normalizes using the
square of the sentence’s length as each sentence
contains | sl |2 pairs of words. The probe’s objec-
tive thus seeks to approximate a matrix of distances

that most closely resembles the gold-standard dis-
tances. Because Hewitt and Manning (2019) use a
dependency parse, gold-standard parses were con-
verted into gold-standard distance matrices where
distances are defined such that the distance between
a parent node and its child nodes is 1, the distance
between a child node and its grandparent node is
2, the distance between a child node and a so to
speak “aunt” or “uncle” node is 3, and so on and so
forth. Evaluation of the probe involved calculating
the minimum spanning tree for each sentence’s pre-
dicted distances to derive the sentence’s predicted
undirected, unlabeled attachment score (UUAS)
compared to the gold tree, and the average Spear-
man correlation of the predicted matrix of distances
compared to the gold-standard matrix.

We chose this method specifically because it is
a probe trained only to capture dependency parses
with their one-to-one mappings between a sen-
tence’s words and a tree’s nodes. Though there
are critical limitations to dependency parses as dis-
cussed in Section 2.1, we argue that its simplicity
and overgeneralization can in fact be converted into
a benefit. It is because the probe is superficially
only supposed to capture shallow-level, generalized
syntactic structures that we can use the method to
tease apart syntactic structures whose representa-
tions are identical in a dependency parse but vary
in a generative framework.

3.2 Syntactic Structures of Interest
Our method hinges on testing syntactic structures
whose representations are crucially different in gen-
erative accounts, but are invariant in a dependency
parse. In doing so, we propose turning the limi-
tations of a dependency probe to an asset. If the
probe’s predicted dependency distances vary be-
tween the sentences in question in ways that align
with generative theoretical predictions, then we
have evidence that not only do LLMs’ contextual-
ized vector representations capture generative syn-
tactic structures, but that a probe trained only to
recover dependency parses is additionally sensitive
to hierarchical phrase-structure distances.

To test this, we have selected the well-researched
Subject Control (SC) and Subject Raising (SR) con-
structions as our experimental condition. Observed
first by Rosenbaum (1967), SR constructions are
those that consist of two clauses: a matrix clause
and an infinitival Tense Phrase (TP) complement.
Since its initial observation by Rosenbaum (1967),
it’s largely been accepted that the subject position
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of the embedded clause is occupied by a trace ele-
ment (later revised to a copy element, see footnote
1) due to the subject being raised into the matrix
clause by the EPP features3 in the matrix clause.
SC constructions, meanwhile, are assumed to take
a larger complement than a raising verb, with many
typically assuming an SC complement to be a Com-
plement Phrase (CP). Many theories follow Chom-
sky and Lasnik (1993) and posit a silent PRO ele-
ment that is co-indexed with and controlled by the
matrix’s subject. This PRO receives its theta-role
from the embedded verb while the matrix subject
receives its theta-role from the matrix verb, thus
satisfying the Theta Criterion (Chomsky, 1957).4

For the purposes of our experiment, the crucial
things to know are: Subject Raising takes a Tense
Phrase (TP) as its complement, while Subject Con-
trol takes the larger Complement Phrase (CP) as
its complement, which inherently contains a TP
itself. Thus, the result are two structures whose
surface forms and dependency parses are identical,
but whose hierarchical syntactic representations are
different. Thus, we would expect that if the LLM
has not acquired any knowledge of deeper syntactic
representations or if the dependency-trained probe
is insensitive to phrase-structure representations,
then the probe’s predicted distances between rele-
vant word-pairs should not differ between the two
structures. However, if such hierarchical repre-
sentations are indeed captured and if the probe is
sensitive to these structures, then we would antici-
pate that the distances between certain word-pairs
in an SC construction are longer than the equiva-
lent word-pairs in an SR construction due to SCs
containing the larger CP complement as opposed
to the smaller TP complement of SR predicates.

4 Experiments

4.1 Generating Data

For our experiment, we identified 6 SR verbs and 6
SC verbs, which we permutationally paired with a
set of 8 subject words, 61 embedded verbs, and
a set of possible direct objects (either a single
pronominal direct object or a two-word definite

3Chomsky (1995) proposed the Extended Projection Prin-
ciple, which stipulates that Tense bears a strong D-feature
that requires a subject in its Specifier. This can be satisfied
by either moving the subject to Spec,TP or by inserting an
expletive like "it."

4For further discussion on Subject Control and Subject
Raising and their structural and semantic differences, see Ap-
pendix A.

wanted/seemed
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Figure 3: Dependency parse for the two sentences "They
seemed/wanted to annoy him." The two trees are identi-
cal, and the distance between the subject and embedded
verb is 2 while the distance between the subject and the
infinitive or direct object is 3. This is true even if one
were to use extended Universal Dependencies, which
also conflates SC and SR verbs.

object that was matched to a specific embedded
verb). Thus, we yielded 33,120 unique sentences,
such as "They wanted/seemed to annoy him."

Metrics Should the LLMs not have any aware-
ness of the deeper hierarchies or should the probe
be insensitive to such differences, then should be
no difference between SR’s and SC’s distances be-
tween words in the matrix clauses and words in
the complement clauses. However, if such struc-
tures are captured and if the probe is sensitive to
this, then we anticipate that the distance between a
word in the matrix clause and a word in the comple-
ment clause will be longer in an SC construction
compared to an SR construction since the CP com-
plement is larger (see Figure 4).

For this reason, we opted to investigate the
probe’s predicted distances between the following
word-pairs: subject and the infinitive (subj-infin,
e.g., "they" and "to"), subject and the embedded
verb (subj-embed, e.g., "they" and "annoy"), sub-
ject and the direct object (subj-dobj, e.g., "they"
and "him"), and lastly, embedded verb and the di-
rect object (embed-dobj, e.g., "annoy" and "him"),
which serves as our baseline. We should acknowl-
edge at this point that excepting our baseline com-
parison, none of our word-pairs have any direct de-
pendent or syntactic relationship to each other. This
is not a problem. Recall that the probe was trained
on a the gold parses for dependency trees where the
distance between two nodes can be counted as the
number of edges between the two. Because of this
design, we are able to probe the distances between
the words in the matrix clause and the words in the
complement clause despite there being no direct
dependency or syntactic relationship.

As the dependency parses do not differ between
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Figure 4: Syntactic trees of the SR sentence "They seemed to annoy him" (left) and the SC sentence "They wanted
to annoy him" (right). The two structures are nearly identical, except SC contains a CP above the TP (red), which
makes the hierarchical distances between the subject and the embedded clause’s elements (i.e., the infinitive "to",
the embedded verb "annoy", and the direct object "him") longer in the SC sentence.

the two structures, the gold-parse distances are also
stable: subj-embed has a dependency distance of
2 while subj-infin and subj-dobj have depen-
dency distances of 3 (see Figure 3). For this reason,
if the LLMs do not capture generative syntactic
hierarchies or if the probe is insensitive to such
differences, then we should see no difference in
predicted distances between the two experimental
conditions. If, however, the models do capture this
deep structural difference and if the probe is an
adequate tool to measure this, then we should antic-
ipate that the SC distances should be longer than
their equivalent SR distances. To verify that our
probe is working as anticipated, we included the
baseline word-pair embed-dobj, which should not
show any differences in distances as these words
are not affected by the SC/SR distinction.

4.2 Experimental Setup

Models We probed three pre-trained Transformer
(Vaswani et al., 2017) models: BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019), GPT-
2 (Radford et al., 2019), and Qwen2.5 (Team,
2024). We constrained our probing to mod-
els with hidden dimensions of 768 and 1024,
which corresponded to the bert-base-cased,

roberta-base, and gpt2-small for the smaller
models and bert-large-cased, roberta-large,
and gpt2-medium for the larger models. Per the
suggestions of our reviewers, we also included two
newer models: qwen2.5-0.5 and qwen2.5-1.5
(referred to in this paper as "Qwen2.5Baby" and
"Qwen2.5Small", respectively). All models were
accessed using the Huggingface Transformers li-
brary (Wolf et al., 2020), and the probe was devel-
oped using the parsing train/dev/test splits of the
Penn Treebank (Marcus et al., 1993).

Following Hewitt and Manning (2019),5 a probe
was trained to convergence (maximum of 40
epochs) on each layer with a batch size of 20. Anal-
ysis was conducted on the best-performing layer.

Once the best-performing layer6 was selected,
we fed our novel dataset to that probe and obtained
the predicted distances for our word-pairs of in-
terest. Analysis was conducted on the predicted

5Hewitt and Manning (2019)’s original code can
be found at https://github.com/john-hewitt/
structural-probes, which includes the BERT
models. A helpful starting point to modify the
code for RoBERTa and GPT2 can be found at
https://github.com/leoier/structural-probes.

6See Appendix C, Figures 5, 6, and 7 for model perfor-
mances.
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distances for our word-pairs if and only if the probe
properly established the necessary dependency rela-
tionships. That is to say, if the probe misparsed the
tree in a relevant manner, that word-pair’s predicted
distance was excluded from analysis. Using Figure
3 as a gold-parse, if the probe’s minimum spanning
tree situated "him" as a dependent of "wanted,"
then we excluded the subj-dobj word-pair as the
tree was misparsed in a critical way for that word-
pair. We currently do not have strong reason to
suspect that such a misparse would affect non-
impacted word-pairs; therefore, the subj-embed
and subj-infin’s predicted distances would still
be used for analysis since the probe would have
correctly parsed the subject and embedded verb
as being dependents of "wanted" and parsed the
infinitive as the dependent of "annoy."7

5 Results

As mentioned, we generated 33,120 sentences for
which we gathered a total of 935,419 distances
across our four word-pairs and all eight language
models. Overall, this represents an 88.05% ac-
curacy score for correctly parsed word-pairs. The
accuracy for our four word-pairs can be found in Ta-
ble 1 where we may observe that while the accuracy
for the SC condition is slightly higher, both showed
high accuracy with the lowest being attributable to
the subj-dobj word-pair, which was due to the
direct object not being tied to the embedded verb,
hence the equivalent scores with embed-dobj.

Due to the large size of the data, we split the data
by word-pair for statistical analyses. Mixed effect
models were developed with the lmer function from
lme4 (v. 1.1-31) (Bates et al., 2015) and lmerTest (v.
3.1-3) (Kuznetsova et al., 2017). Fixed effects were
identified as the condition (SC or SR) and the linear
distance (the number of intervening words plus 1
to avoid issues of 0 multiplication) as well as their
interaction. The latter two only applied to word-
pairs with the direct object as the direct object could
be a single pronominal like "it" (in which case the
linear distance would be 1) or a full nominal phrase

7For our current study, the best-performing layer was se-
lected as the probe with the highest UUAS. As such, we opted
only to use word-pairs in which the minimum spanning tree es-
tablished the correct necessary dependencies for the word-pair
in question. However, future work may investigate selecting
the probe based on the Spearman correlation, in which case,
the motivation to reject data based on improper parses disap-
pears as the Spearman metric does not utilize the minimum
spanning tree and instead seeks to globally reduce the differ-
ences between the gold distances and the predicted distances.

like "the car" (in which case the linear distance
would be 2). For the other word-pairs, there was no
variation in linear distance, hence its exclusion as
a fixed effect. Condition was contrast-coded with
SC being -0.5 and SR being 0.5.

Model comparison via anova was used to de-
termine the random effects of by-MatrixVerb, by-
SubjectWord, by-EmbedVerb, by-ObjectWord, and
by-LanguageModel as well as random slopes for
Condition (and LinDist for dobj). For the full lin-
ear models, see Appendix B.

To recap, our hypothesis is that the probe’s pre-
dicted distances between the matrix subject and
elements in the embedded clause (i.e., the infinitive,
the embedded verb, and the direct object) should
be longer in the SC condition compared to the
SR condition. Should this be the case, this effect
should appear in all of our word-pairs (excepting
our baseline of embed-dobj). In this regard, our
study uses conjunction testing in that we require
all tests be significant in order to reject the null
hypothesis (Weber, 2007). We thus follow Rubin
(2021) and do not adjust our alpha level.

Table 1 reports our results where we find a
main effect for Condition in our subj-embed,
subj-infin, and subj-dobj data (p = 2.77e↓5, p
= 0.035, and p = 1.90e↓12). Thus we find evidence
that the predicted distances from an SC construc-
tion are significantly longer than an SR construc-
tion when considering the distance between the
subject and a word within the embedded clause.

Crucially, we do not find Condition to be a sig-
nificant predictor for our baseline, suggesting the
probe is not spuriously attributing higher distances
to SCs than SRs in ways that are not predicted by
the syntax. However, interaction between Linear
Distance and Condition is found to be a main effect
for embed-dobj. To conduct follow-up models to
investigate this result, we split the data by linear dis-
tance, meaning sentences were grouped into those
that took a pronominal direct object such as "it"
(linear distance of 1) and those that took a nominal
phrase object such as "the car" (linear distance of
2). In doing so, we do not find Condition to be a
main effect in either group.

Analysis of the data further reveals that linear
distance decreases the predicted distance for sub-
ject raising verbs only. When we control for linear
distance by splitting up the data by direct object
type, though, our follow-up analyses find that the
predicted distance between the embedded verb and
the direct object do not significantly vary between
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Fixed Effects
WordPair Condition Acc PredDist (avg) Coefficient ω̂ SE(ω̂) df t p
Subj-Embed Cont 96.01% 2.04 (Intercept) 1.93655 0.10610 13.24239 18.253 8.99e-11

Raise 94.35% 1.82 Condition -0.22879 0.04147 18.53383 -5.517 2.77e-05
Subj-Infin Cont 89.50% 2.86 (Intercept) 2.81437 0.07561 13.77291 37.221 3.21e-15

Raise 84.75% 2.74 Condition -0.13397 0.05517 10.25726 -2.428 0.035
Subj-Dobj Cont 86.29% 2.98 (Intercept) 2.823 0.3260 24.68 8.659 6.01e-09

Raise 84.45% 2.76 Condition -4.805e-01 4.309e-02 31.38 -11.152 1.90e-12
LinDist 2.572e-03 6.602e-02 22.62 0.039 0.969
Interaction 6.023e-02 5.436e-03 2.260e+05 11.081 <2e-16

Embed-Dobj Cont 86.29% 1.50 (Intercept) 1.54498 0.08508 75.04190 18.160 <2e-16
(baseline) Raise 84.45% 1.50 Condition -0.04512 0.02990 41.13811 -1.509 0.138948

LinDist -0.04085 0.05312 44.15045 -0.769 0.445915
Interaction 0.03901 0.01095 48.82859 3.561 0.000835

Table 1: Results of the probes’ predicted squared Euclidean distances between the word-pairs of interest. Accuracy
records what percentage of the sentences properly established the necessary dependency relationships for that
particular word-pair. The right side of the table reports the fixed effects findings for the linear mixed-effect models
that were built for each word-pair. See Appendix C, Figures 8 and 9 for visuals.

the two conditions (p = 0.816 for pronominal direct
objects and p = 0.238 for nominal phrase objects).

The significantly longer predicted distances of
the SC condition in subj-embed, subj-infin, and
subj-dobj, paired with Condition not being a sig-
nificant predictor for our baseline comparison of
embed-dobj (even when accounting for interaction
effects), together show strong evidence to reject
our null hypothesis.

5.1 Results by LLM
While our results indicate that the probe is sensitive
on some level to syntactic hierarchies, this is not
equally true for all word-pairs across all models.
As can be seen in Table 2 in Appendix C, a sig-
nificant main effect for the SC/SR Condition for
word-pairs subj-embed and subj-dobj was found
for the probes of all models except gpt2-medium,
which revealed Condition to be marginal (p =
0.0818), though the reason for this is unclear. As
for subj-infin however, Condition was signifi-
cant only for the Qwen2.5-1.5 model (p = 0.0419),
and roberta-large (p = 0.00345).8 For all other
models, Condition was not a significant predictor.

If the structures proposed by generative syn-
tax to account for Subject Raising and Subject
Control are indeed captured by LLMs and sub-
sequently by the probe, then we would antici-
pate that all three word-pairs of interest across
all LLMs should show significantly longer pre-
dicted distances in the SCs compared to SRs while
the baseline comparison of embed-dobj (which is
not affected by an SC or SR construction) should
not. While these predictions are largely borne

8For gpt2-small, Condition was marginal (p = 0.0688).

out by subj-embed and subj-dobj along with our
baseline of embed-dobj, it does not hold true for
subj-infin for many models.

This finding is particularly puzzling. Should it
be that the LLMs do not capture the SC/SR dis-
tinction, then none of the word-pairs should have
significant differences in distances rather than just
one (namely, subj-infin). Additionally, there is
no theory in any school of syntax (generative or
otherwise) we are aware of that suggests SC verbs
take larger complements below the TP head of "to."
We might then posit that the infinitive’s seemingly
imperviousness to the SC/SR distinction may arise
from these LLMs somehow building a novel and
alien structure in which the infinitival "to" sits in
the matrix clause while the complement size dis-
tinctions are displayed beneath it. Again, however,
we resist this notion as we know of no theory pos-
tulating such an arbitrary and alien structure.

It is evident this matter requires further inves-
tigation, but it is possible the aberrant behavior
of the infinitive is due to the nature of infinitives
themselves. Infinitival "to" is semantically vacu-
ous: there is little to any rich semantic meaning to
the word, which is entirely functional in nature—
denoting either non-finiteness as an infinitive9 or
directionality or telicity as a preposition. For this
reason, we suspect the lack of semantic-richness of
purely functional words may impact how structure
is captured by embedding vectors.10

9See (Satik, 2022) for discussion on the subtle semantic
differences between different types of infinitives.

10We exempt pronouns from this hypothesis. Our dataset
subjects were pronominal and our single-word direct objects
were also pronouns. Unlike infinitival "to," pronouns pick
out referents in the real world, and can furthermore carry
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We also cannot attribute the lack of significant
findings amid subj-infin to model complexity or
novelty. While the model with the highest num-
ber of parameters (qwen2.5-1.5 at 1.54B param-
eters) did find Condition to be a significant pre-
dictor for subj-infin, so did the 340m parameter
roberta-large. Despite this, models with simi-
lar parameter sizes as roberta-large did not find
the SC/SR distinction to significantly predict the
distance for subj-infin. Nor can we suggest that
it is the newer models whose embedding represen-
tations capture linguistic aspects that correlate to
syntactic hierarchy; the 2024 Qwen2.5-0.5 failed
to find Condition to be significant for subj-infin.
Further research is needed done to understand
why only a select few models’ (Qwen2.5-1.5 and
roberta-large) embedding representations for in-
finitives appear to capture linguistic aspects corre-
sponding to syntactic hierarchies.

6 Discussion

While the matter of infinitives remains murky, our
findings suggest that models are capable of en-
coding some linguistic aspects corresponding to
the syntactic hierarchies as proposed in generative
syntax. That SC verbs yield longer predicted Eu-
clidean distances than SR (as opposed to the re-
verse) already aligns with generative theories that
control verbs take larger, more complex comple-
ments (Chomsky and Lasnik, 1993; Landau, 2007,
2013, 2024) than raising verbs.

It may be asked whether these results are merely
a product of semantics rather than syntax. How-
ever, we maintain that seeking to entirely divorce
syntax from semantics should not be the main goal.
As Leivada and Murphy (2021) comments, "syntax,
semantics, and the other levels of linguistic anal-
ysis are not undecomposable modules that work
autonomously," which makes it difficult to separate
the two when researching the neural processing of
the human mind, and, we argue, when research-
ing the artificial neural processing of an LLM. Our
findings may be due to hierarchical distance be-
ing larger in SC, or it may be due to the genera-
tive syntactic theory that SCs assign an extra theta
role(Chomsky and Lasnik, 1993; Landau, 2024;
Beockx and Hornstein, 2010). Both explanations
speak to LLMs being able to encode deeper linguis-
tic aspects that interface with syntactic structure.

information such as Case, Gender, and Number as opposed to
infinitival "to," which indicates non-finiteness only.

In order to determine if these findings are in
fact indicative of syntactic hierarchical distance
or merely a quirk of the SC/SR constructions, fu-
ture work should aim to test other syntactic struc-
tures. Preliminary work by Kennedy (2025) tests
wh-extraction from different sized complements
(e.g., "What did she see him eat" vs "What did
she expect him to eat" vs "What did she think he
ate") and finds that Hewitt and Manning (2019)’s
probe’s predicted distance between the extracted
wh-word and its embedded verb (e.g., "What" and
"eat") increases as the size of the complement in-
creases. With continued research like this, should
multiple different sentence structures all converge
on larger syntactic hierarchical distances yielding
longer predicted probe distances, then we can say
with even greater confidence that LLMs are capa-
ble of encoding linguistic attributes that correspond
to the structures propose by generative syntax.

7 Conclusion

The implications of this work have impact on both
the field of NLP and the field of linguistics. Our
work suggests that LLMs have learned to capture
elements of deeper and more complex syntactic
structures within their embeddings than previously
realized and thus have the ability to capture the se-
mantic nuances that result from sub-surface struc-
tural differences. Our findings therefore further
the interpretability research of LLMs to discover
what these models have actually learned regarding
the features and structures of language. We also
find evidence that neural networks trained using
the dependency framework can still capture deeper
syntactic features, suggesting these simpler repre-
sentations may be adequate for downstream tasks
as they appear to be capable of reaping the benefits
of deep structure without needing to explicitly train
on deep structure. As for linguists, the findings of
our work warrant further investigation into the via-
bility of using language models as a means to test
syntactic structures. Our work begins to open up
the possibility of utilizing LLMs as another source
of data to help augment, build, and perhaps even
test syntactic theories.

Taken together, we situate our work as a realiza-
tion of Linzen (2019) and Futrell and Mahowald
(2025)’s claim that the skillsets and knowledge of
the fields of NLP and linguistics complement each
other, and that the two stand primed to advance
each other’s respective fields through collaboration.
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Limitations

Our work still faces limitations in that it does not
enable a full reconstruction of the hierarchical syn-
tactic tree. This is a limitation currently inherent
to the data and format of LLMs. As can be seen
in Figure 4, the generative syntax trees consist of
branches and nodes that do not overtly appear in the
final derivation. That is to say, trace nodes/moved
elements are not surfaced, nor are all syntactic ele-
ments (such as tense) realized by a separate word.
Because of this, an LLM’s contextualized word
embeddings cannot currently be used to directly
derive the sub-surface syntactic trees. The method-
ology that we’ve deployed allows us to probe for
behaviors that would indicate that LLMs have cap-
tured more complex, hierarchically-rich structural
information within their embeddings, but this can-
not be directly shown the way Hewitt and Manning
(2019) did with the one-to-one mappings of de-
pendency parses. Thus, our work is still largely
in the tradition of much of linguistics. We can-
not directly observe people’s mental grammars, but
we probe for their knowledge and structures using
measurements that indicate how people process and
produce language. Similarly, our use of Hewitt and
Manning (2019)’s probe also provides an apparatus
to measure behaviors that we can use to reverse-
engineer the possible behaviors and mechanisms
that would derive such results. The interpretability
question of LLMs is not far at all from the research
questions of linguistics.
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A Data Generation

Our data was generated through combinatorics of
sets of words for each grammatical role. In short,
our sentences followed the base structure of:

(3) [Subject] [past-tense matrix verb] [to] [em-
bedded verb] [direct object].

In order to easily control linear distance, subject
verbs were limited to pronominal subjects. Because
control verbs are typically volitional, all subjects
were prototypically [+HUMAN], but varied in Case,
Gender, and Number (see List (4)).

We additionally selected 61 transitive verbs for
our embedded verb (see List (5)). Of these verbs,
30 verbs implied human direct objects while 31
implied non-human direct objects. That is to say,
a person can flatter the king, but it’s nonsensical
for them to drink the king. Conversely, they can
drink sodas, but it would be hard to flatter an inan-
imate soda. This dichotomy was taken into ac-
count when selecting direct objects. Thus, when
the direct object was a single-word pronominal,
inanimate-coded verbs permutated through it, that,
this, stuff, and things while animate-coded verbs
permutated through me, you, him, her, us, them,
everyone, and someone. The animate list is longer;
however, the animates were truncated as we omit-
ted direct objects that were the correspondent of
the subject. That is to say, if the subject was "she",
the direct object would not be her. Additionally,
to avoid scope ambiguities, we excluded instances
where the subject was "someone" and the direct
object was "everyone".11 Nominal direct objects

11We did, however, include the distributive scopal alter-
native in which "someone" is the subject" of an "everyone"
object. The two readings of this can either be there is some
person X who [verbs] everyone, or it can be the distributive
reading where for every person X, they are [verbed] by some-
one (not necessarily the same someone). The inclusion of a
scopal ambiguity was due to an oversight on our part; how-
ever, because there were proportionally fewer of these pairings
and because these pairings occurred in both conditions, the

("the" + the noun) were more limited as we selected
only one plausible noun to pair with the embedding
verb.

(4) Subjects: You, He, She, We, They, Every-
one, Someone

(5) Embedded Verbs
a. Inanimate-coded Verbs: say, yell,

whisper, shout, think, write, read,
cook, eat, drink, buy, sell, rent, pro-
vide, offer, collect, grab, steal, bump,
move, kick, break, destroy, build,
wash, wear, sew, mend, fix, enjoy

b. Animate-coded Verbs: kiss, hug, slap,
wrestle, fight, bully, harass, intimidate,
insult, slander, annoy, tease, seduce,
flatter, comfort, compliment, question,
interrogate, interview, meet, fire, hire,
pay, reward, punish, scold, teach, train,
serve, admire

(6) Pronominal Direct Objects
a. Inanimates: it, that, this, stuff, things
b. Animates: me, you, him, her, us, them,

everyone, someone

(7) Nominal Direct Objects and Their Corre-
sponding Embedded Verb: say the words,
yell the answer, whisper the clues, shout
the lyrics, think the worst, write the essay,
read the book, cook the meal, eat the food,
drink the sodas, buy the clothes, sell the
toy, rent the apartment, provide the sup-
plies, offer the bribes, collect the rocks,
grab the keys, steal the gold, bump the ta-
ble, move the chairs, kick the ball, break
the glass, destroy the house, build the tower,
wash the socks, wear the uniform, sew a
shirt, mend the tears, fix the issue, enjoy
the dessert, kiss the puppy, hug the baby,
slap the clown, wrestle the children, fight
the administration, bully the student, harass
the reporter, intimidate the intern, insult the
actress, slander the politician, annoy the
teenagers, tease the toddlers, seduce the ac-
tor, flatter the king, comfort the victims,
compliment the model, question the judge,
interrogate the witness, interview the sus-
pect, meet the manager, fire the employee,
hire the applicant, pay the consultant, re-
ward the winner, punish the cheaters, scold

possible scopal ambiguity should not have an impact on our
results.
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the liars, teach the trainees, train the re-
cruits, serve the queen, admire the hero

We utilized the following suite of diagnostics to
select our condition matrix verbs:

1. SR predicates can be replaced by an exple-
tive it; SCs cannot. (Polinsky, 2013; Landau,
2024)

• Base: John seems/wants to annoy his
brother.

• SR: It seems John annoys his brother.
• SC: *It wants John annoys his brother.

2. SR predicates can be replaced by an expletive
there; SCs cannot. (Polinsky, 2013; Landau,
2024)

• Base: A mouse seemed/wanted to be
stuck in the house.

• SR: There seemed to be a mouse stuck
in the house.

• SC: *There wanted to be a mouse stuck
in the house.

3. SR predicates allow for idioms to retain their
idiomatic meanings; SCs can only retrieve
the literal meaning. (Polinsky, 2013; Landau,
2024)

• Idiom: Every time my friend pet-sits, my
fish go belly up. (meaning: my fish die)

• SR: My fish seem to go belly up every
time my friend pet-sits. (Die meaning:
still easily accessible)

• SC: My fish want to go belly up every
time my friend pet-sits. (Die meaning:
less accessible if at all)

4. When SR sentences are passivized, the mean-
ing is equivalent. Passivization of the SC
yields asymmetric meanings. (Sánchez et al.,
2016)

• SR: The teachers seemed to select the
volunteers. = The volunteers seemed to
be selected by the teachers.

• SC: The teachers wanted to select the
volunteers. ↓= The volunteers wanted to
be selected by the teachers.

5. SRs allow for scope ambiguity, but SCs do
not. (Polinsky, 2013; Landau, 2024)

• SC: Someone from HR seems to win the
office raffle every year.

– De re reading: There is someone spe-
cific in HR who seems to win the
raffle each year.

– De dicto reading: It seems that the
winner of the office raffle each year
is someone from HR.

• SR: Someone from HR wants to win the
office raffle every year.

– De re reading: There is someone spe-
cific in HR who wants to win the raf-
fle each year.

– De dicto reading: inaccessible.

6. Singular subjects of SC predicates can partici-
pate in plural-coded verbs,12 but SRs cannot.
(Landau, 2024). By plural-coded verbs, we
mean those that necessitate multiple partici-
pants (e.g., it’s ungrammatical to say "I met at
midnight" as "meeting" requires two or more
participants).

• SR: *The student seemed to meet in the
library.

• SC: The student wanted to meet in the
library.

From this, we selected 6 SC verbs—all of which
met Landau (2024)’s criteria for logophoric control
predicates—and 6 SR verbs, listed in List (8).13

(8) Matrix Verbs
a. Subject Control Verbs: wanted, ex-

pected, wished, liked, hated, promised
b. Subject Raising Verbs: appeared,

seemed, happened, began, continued,
tended

B Linear Mixed Effect Models

Below are the linear mixed effect models fit for re-
sults reported in Table 1. Random effects were
identified via model comparison and included
by-MatrixVerb, by-SubjectWord, by-EmbedVerb,
by-ObjectWord, and by-LanguageModel random

12This is known as "partial control," and is a diagnostic for
(Landau, 2024)’s logophoric control predicates.

13We acknowledge that three of our raising verbs are con-
tentious: begin and continue, though they do appear as raising
verbs in Postal (1974). There are instances of both appearing
in the expletive construction (e.g., “It continued that the re-
serve would be ‘a back-up solution only”’ and “There began
to be fewer men who paid taxes,” both taken from Davies
(2008–)).
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slopes for our factor(s) of interest (Condition and
LinDist). Word-pairs with direct objects made for
more complicated linear models due to the addi-
tion of a by-ObjectWord grouping factor for ran-
dom effects. Because of this, the linear model
for subj-dobj included random intercepts for all
grouping factors mentioned, but only warranted
random slopes for the grouping factor of language
model and linear distance. The linear model for
subj-dobj included the same as well as a ran-
dom slope for the group factor of the direct object
noun/pronoun.

"Cond" refers to the Condition (SC vs SR),
"CondVerb" refers to the matrix verb (6 in each
condition); "Subjword" refers to the word used as
the subject; "Objword" refers to the word used as
the object; "Embed" refers to the embedded verb;
and "Model" refers to the LLM.

• subj-embed: PredDist Cond + (1 | Cond-
Verb) + (1 + Cond | SubjWord) + (1 + Cond |
Embed) + (1 + Cond | Model)

• subj-infin: PredDist Cond + (1 | Cond-
Verb) + (1 + Cond | SubjWord) + (1 + Cond |
Embed) + (1 | Model)

• subj-dobj: PredDist Cond * LinDist + (1 |
CondVerb) + (1 | ObjWord) + (1 | SubjWord)
+ (1 | Embed) + (1 + Cond + LinDist| Model)

• embed-dobj: PredDist Cond * LinDist + (1
| CondVerb) + (1 + Cond | ObjWord) + (1
| SubjWord) + (1 | Embed) + (1 + Cond +
LinDist | Model)

C Figures
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Figure 5: Probe performance for all small models. The solid lines are plotted against the left-hand y-axis and display
the performance by Unlabeled Unattached Accuracy Score (UUAS) while the dotted lines plot the average Spearman
correlation between the predicted and gold distances (DSpr.) along the right-hand y-axis. Highest-performing
probes were BERT-base-layer7, RoBERTa-base-layer4, and GPT2-layer7.
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Figure 6: Probe Unlabeled Unattached Accuracy Score (UUAS) performance for all of the larger mod-
els. Highest-performing probes were BERT-large-layer15, RoBERTa-large-layer5, GPT2-med-layer11,
Qwen2.5-0.5-layer13 "Qwen25Baby", and Qwen2.5-1.5-layer19 "Qwen25Small".
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Figure 7: Probe average Spearman correlation (DSpr) performance for all of the larger models. Highest-performing
probes were BERT-large-layer15, RoBERTa-large-layer5, GPT2-med-layer11, Qwen2.5-0.5-layer13
"Qwen25Baby", and Qwen2.5-1.5-layer19 "Qwen25Small".
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Figure 9: Predicted distances by WordPair and by LLM.
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Fixed Effects
Model WordPair Condition Acc PredDist (avg) Coefficient ω̂ SE(ω̂) df t p
BB7 Subj-Embed Cont 94.95% 1.96 (Intercept) 1.82245 0.04081 19.77873 44.655 <2e-16

Raise 85.34% 1.69 Condition -0.28385 0.04832 12.41598 -5.874 6.58e-05
Subj-Infin Cont 89.53% 2.56 (Intercept) 2.83493 0.08243 13.12998 34.39 2.97e-14

Raise 81.48% 2.38 Condition -0.11851 0.10040 12.28409 -1.18 0.26
Subj-Dobj Cont 68.54% 2.90 (Intercept) 2.77837 0.33444 69.00598 8.307 5.47e-12

Raise 58.51% 2.81 Condition -0.58313 0.13924 53.28816 -4.188 0.000106
LinDist -0.08603 0.06823 66.18457 -1.261 0.211758
Interaction 0.09568 0.02659 43.99406 3.598 0.000808

BL15 Subj-Embed Cont 96.51% 2.00 (Intercept) 1.84524 0.04304 24.16131 42.87 <2e-16
Raise 90.34% 1.69 Condition -0.31813 0.06931 13.65580 -4.59 0.000448

Subj-Infin Cont 95.22% 2.46 (Intercept) 2.92094 0.08590 12.97574 34.002 4.54e-14
Raise 90.16% 2.28 Condition 0.02512 0.16398 11.02102 0.153 0.881

Subj-Dobj Cont 55.15% 2.91 (Intercept) 2.48195 0.26788 69.34548 9.265 9.42e-14
Raise 58.58% 2.96 Condition -0.38234 0.12774 39.42419 -2.993 0.00475

LinDist -0.03076 0.05465 66.48586 -0.563 0.57547
Interaction 0.05318 0.02370 29.59535 2.243 0.03251

RB4 Subj-Embed Cont 96.42% 1.89 (Intercept) 0.03251 0.02186 45.07316 81.24 <2e-16
Raise 91.27% 1.68 Condition -0.20958 0.01251 13.41216 -16.75 2.23e-10

Subj-Infin Cont 96.31% 2.54 (Intercept) 2.51492 0.04079 19.76975 61.652 <2e-16
Raise 91.18% 2.49 Condition -0.04289 0.06567 10.36167 -0.653 0.528

Subj-Dobj Cont 96.21% 2.75 (Intercept) 2.44086 0.46053 67.63892 5.300 1.37e-06
Raise 90.68% 2.58 Condition -0.55603 0.10135 53.91938 -5.486 1.12e-06

LinDist 0.05054 0.09478 67.00031 0.533 0.596
Interaction 0.09185 0.01952 45.36245 4.705 2.41e-05

RL5 Subj-Embed Cont 98.61% 1.97 (Intercept) 1.88802 0.03756 71.54606 50.261 <2e-16
Raise 96.61% 1.81 Condition -0.15973 0.03398 11.28757 -4.701 0.000605

Subj-Infin Cont 96.91% 2.74 (Intercept) 0.000605 0.02767 24.94310 96.339 <2e-16
Raise 93.80% 2.60 Condition -0.14062 0.03783 10.90377 -3.717 0.00345

Subj-Dobj Cont 95.31% 2.99 (Intercept) 1.84384 0.66272 69.63534 2.782 0.00694
Raise 91.96% 2.83 Condition -0.62076 0.10333 52.19872 -6.008 1.85e-07

LinDist 0.25798 0.13658 69.36638 1.889 0.06308
Interaction 0.10951 0.02027 45.48663 5.402 2.32e-06

GS7 Subj-Embed Cont 99.52% 1.86 (Intercept) 1.77275 0.03519 32.62122 50.379 <2e-16
Raise 98.88% 1.69 Condition -0.17882 0.05412 13.69496 -3.304 0.00536

Subj-Infin Cont 99.22% 2.90 (Intercept) 2.76690 0.06601 11.33192 41.91 8.7e-14
Raise 87.23% 2.67 Condition -0.26820 0.13411 11.95000 -2.00 0.0688

Subj-Dobj Cont 98.85% 3.04 (Intercept) 3.02957 0.44599 69.57371 6.793 3.05e-09
Raise 96.32% 2.73 Condition -0.66348 0.14587 54.34750 -4.548 3.07e-05

LinDist -0.03567 0.09176 68.84865 -0.389 0.69867
Interaction 0.08601 0.02911 48.70634 2.954 0.00481

GM11 Subj-Embed Cont 99.67% 1.92 (Intercept) 1.84576 0.05312 19.30353 34.745 <2e-16
Raise 98.18% 1.77 Condition -0.16218 0.08630 13.61600 -1.879 0.0818

Subj-Infin Cont 98.74% 2.89 (Intercept) 2.77503 0.07324 14.28224 37.891 9.76e-16
Raise 93.16% 2.69 Condition -0.18272 0.13783 12.19611 -1.326 0.209

Subj-Dobj Cont 97.49% 3.15 (Intercept) 2.93307 0.05039 54.90142 58.210 <2e-16
Raise 90.68% 2.83 Condition -0.33108 0.07295 17.11412 4.538 0.000286

QB13 Subj-Embed Cont 95.14% 2.10 (Intercept) 2.01250 0.06700 11.27262 30.039 4.08e-12
Raise 99.32% 1.91 Condition -0.18818 0.06758 12.38379 -2.785 0.0161

Subj-Infin Cont 72.19% 2.95 (Intercept) 2.8575 0.1087 12.3465 26.276 3.27e-12
Raise 72.32% 2.78 Condition -0.2119 0.1363 11.6518 -1.555 0.147

Subj-Dobj Cont 92.73% 3.12 (Intercept) 2.39605 0.40124 68.76982 5.972 9.24e-08
Raise 95.83% 2.93 Condition -0.19786 0.06810 12.92618 -2.905 0.0123

LinDist 0.15452 0.08148 65.01205 1.896 0.0624
QS19 Subj-Embed Cont 87.29% 2.66 (Intercept) 2.55208 0.43185 6.06759 5.910 0.00100

Raise 94.86% 2.30 Condition -0.31453 0.08549 14.93464 -3.679 0.00225
Subj-Infin Cont 67.86% 3.23 (Intercept) 3.2211 0.3615 6.1781 8.911 9.44e-05

Raise 68.65% 2.95 Condition -0.2839 0.1270 14.2346 -2.236 0.0419
Subj-Dobj Cont 86.06% 3.50 (Intercept) 3.98534 0.53651 13.82113 7.428 3.47e-06

Raise 93.00% 3.18 Condition -0.27527 0.05825 11.01648 -4.726 0.000621
LinDist -0.14038 0.06518 66.57211 -2.154 0.034893

Table 2: From top to bottom, models are: BERT-base-layer7, BERT-large-layer15, RoBERT-base-layer4,
RoBERT-large-layer5, GPT2-small-layer7, GPT2-medium-layer11, Qwen2.5-0.5-layer13, and
Qwen2.5-1.5-layer19. Model comparison using anova revealed LinDist did not significantly improve
the linear mixed-effects model for GPT2-medium; this method also showed the interaction between the Condition
(SC vs SR) and LinDist was not a main effect for the Qwen2.5 models.
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Abstract

Diffusion models have achieved remarkable
success in various generative tasks, particularly
in image and audio synthesis, which work by
iteratively refining random noise into realistic
data. Recent studies have highlighted the po-
tential of diffusion models for text generation,
but several challenges remain unresolved. One
significant issue is that the model begins to de-
grade a previous sample rather than improve it
after a certain timestep in the generation pro-
cess, resulting in broken text. In this paper, we
reveal that timestep embeddings are a princi-
pal cause of the collapse problem by analyz-
ing their interactions with word embeddings.
Further, we propose two key methods: (a) a
simple lightweight word embedding technique
that enhances model analyzability as well as
learning efficiency; (b) a novel regularization
on both word and timestep embeddings. Exper-
imental results demonstrate that our approach
effectively mitigates the collapse problem and
can lead to a considerable improvement in the
quality of generated text.

1 Introduction

Diffusion models are a class of generative models
that have achieved state-of-the-art performance in
continuous data generation, such as image and au-
dio synthesis (Ho et al., 2020; Song et al., 2021;
Kong et al., 2021). The generation process begins
by sampling random noise at timestep T , and then
progressively denoising it toward timestep 0, result-
ing in realistic data. Several studies have attempted
to adapt diffusion models for text generation via
word embeddings and have recently demonstrated
performance comparable to earlier autoregressive
models (Li et al., 2022; Gong et al., 2023; Yuan
et al., 2024; Gao et al., 2024), such as GPT-2 (Rad-
ford et al., 2019).

However, diffusion-based text generation still
faces challenges in ensuring high-quality output.
For text generation, the one-step denoising task at

timestep t is typically formulated as fully removing
noise and reintroducing a smaller amount of noise
corresponding to timestep t− 1. One critical issue
is that the model starts failing to perform the full
denoising task after a certain timestep, leading to
incoherent or grammatically incorrect output (Gao
et al., 2024). We refer to it as the collapse prob-
lem. This phenomenon is counterintuitive, as the
denoising task should gradually become easier as
the generation process progresses.

To obtain a high-quality sample, a common ap-
proach is to generate multiple times and then select
the best one using a re-ranking algorithm like Min-
imum Bayes-Risk (MBR) decoding (Kumar and
Byrne, 2004). However, it compromises diversity,
which is a key strength of diffusion models. Gao
et al. (2024) reported that the collapse problem can
be mitigated by their regularization for word em-
beddings and heuristically modified training and
generation processes. This highlights that learning
continuous representations of the vocabulary is a
core problem, and motivates us to develop a solu-
tion that does not rely on heuristically tweaking the
diffusion framework.

Usually, a single denoiser model is shared across
all timesteps, and learned timestep embeddings are
incorporated as signals of timesteps. Although
it has long been common practice, the relation
between the timestep embeddings and the col-
lapse problem has not been adequately investi-
gated. Meanwhile, it is also widely adopted to
use low-dimensional word embeddings combined
with additional projection layers. This approach
enhances learning efficiency, but increases model
complexity; it introduces non-linearity into the way
timestep embeddings act on the model.

In this paper, in pursuit of a fundamental solu-
tion to preserve the expected behavior of diffusion
models—progressively refining data quality—we
investigate both word and timestep embeddings and
their relationship. Firstly, we introduce a plug-and-
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play low-rank word embedding technique. It makes
the effect of timestep embeddings more transpar-
ent while keeping computational cost low. Sec-
ondly, we propose a new metric that reveals that
the timestep embedding disrupts word embeddings
in addition to the noise. Moreover, based on our
metric, we design a novel regularization method
to counteract the adverse effects of timestep em-
beddings within the standard diffusion architecture.
Experiments demonstrated the occurrence of the
collapse problem and its mitigation through the
combination of our two methods.

2 Related Work

2.1 Text Generation with Diffusion Models

Diffusion models are highly powerful generative
models. They first intentionally diffuse real data
step by step and learn to reverse this process. New
realistic data are then generated by sampling from
the stationary distribution and iteratively applying
the learned denoising operation.

In recent years, research on diffusion-based text
generation has been advancing. Broadly, two pri-
mary approaches have been proposed: continuous
and discrete diffusion language models. Continu-
ous methods generate word embeddings and dis-
cretize them to obtain words. Following diffusion
image synthesis methods, such as DDPM (Ho et al.,
2020) and DDIM (Song et al., 2021), they are based
on Gaussian distributions (Li et al., 2022). Discrete
methods work directly in word space and define the
forward process as sampling from a categorical dis-
tribution, such as gradually replacing words with
other words or mask tokens (Austin et al., 2021).

At present, diffusion language models are gener-
ally known to have limitations in generating high-
quality text. In this paper, we focus on how continu-
ous models work, which are built upon the standard
diffusion architecture.

2.2 Word Embeddings

In continuous diffusion text generation, the key
distinction from image generation lies in the neces-
sity of constructing continuous representations of
words in parallel with learning the denoiser model.
Gong et al. (2023) reported a significant perfor-
mance degradation when using fixed pretrained
embeddings, implying that word embeddings need
to be optimized for diffusion language models.

It is simultaneously essential to consider the dis-
cretization. Typically, a rounding distribution is

defined and its likelihood is maximized, which fa-
cilitates the segregation of word embeddings. Re-
garding this, Gao et al. (2024) pointed out that the
traditional rounding loss is insufficient to procure
the desired distribution and proposed the anchor
loss. Their method enhances the distinguishability
of embeddings than the rounding loss, although the
collapse problem still occurs around the final steps
of generation.

2.3 Timestep Embeddings
Timestep embeddings play an important role by
conditioning the denoiser model on the noise level
of input. For continuous diffusion models, a
timestep embedding is typically constructed by
mapping a timestep to a vector using sinusoidal
encoding and transforming it with a multi-layer
perceptron (MLP). Particularly in text generation,
research on the impact of timestep embeddings re-
mains limited, whereas there are reports in discrete
models. For instance, He et al. (2023) tested sev-
eral embedding methods of timesteps and reported
that they significantly impact on the performance.
While this pertains to the discrete method, it em-
phasizes the importance and challenges of timestep
embeddings.

3 Preliminaries

3.1 Diffusion Models
Denoising diffusion probabilistic models (DDPMs)
(Ho et al., 2020) are the standard architecture of dif-
fusion models. A DDPM consists of two processes:
the forward process and the reverse process.

Given a training data sample z0 ∼ q(z0), the
forward process gradually adds noise to z0, trans-
forming it into random noise zT :

q(zt | zt−1) = N (zt;
√
αtzt−1, βtI)

where 0 < β1 < · · · < βT < 1, αt = 1 − βt
are hyperparameters called noise schedule. Since
Gaussian distributions are reproducible, the distri-
bution of zt conditioned on z0 has a closed form
for any timestep t:

q(zt | z0) = N
(
zt;
√
ᾱtz0, β̄tI

)
(1)

with ᾱt =
∏t

s=1 αs, β̄t = 1 − ᾱt. A denoiser
model pθ(zt−1 | zt) is trained using {zt}Tt=0.

The reverse process generates a new sample z0
by starting from random noise zT ∼ N (0, I) and
iteratively denoising via pθ(zt−1 | zt).
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Figure 1: Architecture overview. In the conventional model, the diffusion model (i.e., noisy word embeddings)
and Transformer work on spaces of different dimensions and MLPs are unavoidably inserted to bridge them. The
proposed model eliminates this discrepancy by consolidating up-/down-projections within the OFE.

3.2 Text Generation with Diffusion Models
Diffusion text generation first generates a sequence
of word embeddings z0 = [z0i]Li=1 through denois-
ing and then discretize it into a sequence of words
y = [yi]

L
i=1 (Yuan et al., 2024).

Let wk be the embedding of the k-th word in
the vocabulary (k ∈ {1, 2, ..., V }). The forward
process begins by sampling each z0i as follows:

qϕ(z0i | yi) = N (z0i;wyi , β0I)

where β0 is a very small constant.
At timestep t, the one-step denoising is ex-

pressed as

pθ(zt−1 | zt) = q(zt−1 | z0 = zθ (zt, t)),
zθ (zt, t) = Transformerθ(uϕ(zt, t)),

uϕ(zt, t) = [zti + ut]
L
i=1 .

The full denoiser zθ is a Transformer model
(Vaswani et al., 2017). The function uϕ fuses a
cue of the timestep into noisy word embeddings by
adding the timestep embedding. The timestep em-
bedding ut is usually parameterized by transform-
ing sinusoidal encoding of the timestep t through
an MLP and we follow it. The denoising loss
Ldenoise is

Ldenoise = Ey,z0:T

[
T∑

t=2

∥z0 − zθ (zt, t) ∥2

+ ∥wyi − zθ (z1, 1) ∥2 + ∥
√
ᾱT z0∥2

]
.

In practice, we sample t ∈ {1, 2, ..., T} for each
minibatch.

Minimizing only Ldenoise would cause all word
embeddings to collapse into a single point because
Ldenoise is mainly composed of the mean squared
error between z0 and zθ (zt, t). Therefore, we need
to promote appropriate segregation among word
embeddings. Concretely, we define the distribution
for rounding an embedding w ∈ Rd to the k-th
word as

pϕ(k | w) =
expw⊤wk∑V
ℓ=1 expw⊤wℓ

(2)

and the rounding loss Lround as

Lround =
1

L

L∑

i=1

Ey,z0 [− log pϕ (yi | z0i)] .

Another approach is the anchor loss (Gao et al.,
2024) that uses the full denoising prediction instead
of training data samples:

Lanchor =
1

L

L∑

i=1

Ey,zt [− log pϕ (yi | zθ (zt, t)i)] .

In this work, we choose the rounding loss, which
is the standard way. The total loss Ltotal is

Ltotal = Ldenoise + Lround.

Computing Lround is expensive because it is per-
formed over the entire target sequence. On the
other hand, using low-dimensional word embed-
dings and a smaller Transformer hurts prediction
performance (see §5). Hence, in order to reduce

399



d′ d & Hidden Dim. Feed-Forward Dim. Layers Attention Heads
Base - 768 2048 6 12
Low-d - 132 2048 6 12
OFE 128 768 2048 6 12

Table 1: Hyperparameters in the exploratory experiments.

computational costs while keeping the capacity of
Transformer, it is common practice to use low-
dimensional word embeddings and append MLPs
for up- and down-projection before uϕ and after
the Transformer (see Figure 1).

In reverse process, the prediction of zt−1 given
the previous prediction of zt is sampled by

zt−1 =
√
ᾱtzθ (zt, t) +

√
β̄tε, (3)

ε ∼ N (0, I).

Then the last output zθ (z1, 1) are rounded to words.
The simplest way to perform a sequence-to-

sequence task is to use an encoder-decoder Trans-
former. The source text is input to the encoder,
and the noisy target text zt to the decoder with
non-causal attention.

4 Lightweight Word Embeddings

The conventional MLP-based method for reducing
the dimensionality of word embeddings is effective
but complicates the interaction between word and
timestep embeddings; the MLP first non-linearly
transforms noisy word embeddings, and then the
timestep embedding is applied. Besides, it may
also extract information about timesteps according
to the noise level of input, making it difficult to
analyze the conditioning by timesteps.

This MLP is actually not required if the model
has no such dimensional mismatch. To eliminate
this entanglement, we propose the Orthogonally
Factorized Embedding (OFE) technique that em-
ploys low-dimensional embeddings while letting
both the diffusion model (i.e., noisy word embed-
dings) and Transformer work on high-dimensional
space (see Figure 1). The OFE consists of low-
dimensional word embeddings {wk ∈ Rd′}k along
with a learned column-orthogonal matrix Rϕ ∈
Rd×d′ . Every word embedding wk is expressed as

wk = Rϕwk.

The rounding distribution can be rewritten as

pϕ(k | w) =
exp(R⊤

ϕ w)⊤wk
∑V

ℓ=1 exp(R
⊤
ϕ w)⊤wℓ

.

Notably, for every word embedding wm = Rϕwm,

pϕ(k | wm) =
exp(R⊤

ϕRϕwm)⊤wk
∑V

ℓ=1 exp(R
⊤
ϕRϕwm)⊤wℓ

(4)

=
expw⊤

mwk∑V
ℓ=1 expw⊤

mwℓ

since R⊤
ϕRϕ = I . Consequently, pϕ(k | w) re-

duces to the rounding in the low-dimensional em-
bedding space.

Here, we provide the rationale behind the
column-orthogonal constraint. Since the round-
ing loss promotes appropriate separation of word
embeddings as noted in §3.2, the reconstruction
of a low-dimensional embedding from a high-
dimensional representation, i.e., R⊤

ϕRϕwm = wm

as can be seen in Eq. (4), seems to be naturally ac-
quired due to the rounding loss even when using an
unconstrained matrix for Rϕ. However, we empiri-
cally found that this is not the case; in the course
of training, R⊤

ϕRϕ gets close to a scaled identity
matrix λI and λ gets larger and larger, and training
becomes unstable. We conjecture that the reason of
this phenomenon is that λ works similarity to the in-
verse temperature in a temperature softmax. There-
fore, we attempt to remedy this problem by elim-
inating a scaling ambiguity between Rϕ and low-
dimensional embeddings wk, i.e., the same high-
dimensional embedding is obtained with γRϕ and
γ−1wk for any γ ̸= 0: wk = (γRϕ)

(
γ−1wk

)
. For

that, we choose to impose column-orthogonality
on Rϕ, thereby constraining its Frobenius norm.
In addition, it enables the reconstruction by mul-
tiplying R⊤

ϕ from the left, which ensures that the
high-dimensional rounding pϕ(k | w) is equivalent
to the low-dimensional rounding. We expect that
this property further contributes to stability.

Because a matrix can be parameterized under the
column-orthogonal constraint,1 we can employ the
OFE by simply replacing the existing embedding
and rounding functions in a model with those of
the OFE.

1https://pytorch.org/docs/stable/generated/
torch.nn.utils.parametrizations.orthogonal.html
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5 Exploratory Experiments

In this section, we demonstrate the collapse prob-
lem and confirm that it is not attributable to the
dimensionality reduction by comparing the three
cases of denoisers shown in Table 1. Base does
not use low-dimensional embeddings. In Low-d,
d = 132 was chosen as the best feasible alternative
to 128 (= d′ in OFE) conforming with 12 attention
heads. We conducted experiments on Quora Ques-
tion Pairs (DataCanary et al., 2017) and measured
the BERTScore (Zhang et al., 2020) of the para-
phrased questions generated by the models. Further
details are described in the main experiments (§7),
including the reason for setting d′ = 128 in OFE.

Figure 2 illustrates the evaluation of intermediate
samples during the reverse process, namely the full
denoising predictions zθ (zt, t) at each timestep t.
The collapse problem was observed in all models,
including Base. Thus, the collapse is not due to the
dimensionality reduction techniques.
Low-d expectedly exhibited worse performance

than Base. By contrast, OFE substantially outper-
formed Low-d and stood comparison with Base.
Furthermore, it is noteworthy that OFE surpassed
Base early in generation.

We found that models before convergence hardly
exhibit collapse as shown in Figure 3. These find-
ings suggest that continuing training only with the
traditional loss makes the vectors uϕ(zt, t), the in-
put to the Transformer, more difficult to handle.

6 Study of Timestep Embeddings

The model has been simplified by the OFE, which
allows word embeddings to naturally work on the
same dimension as timestep embeddings (Figure
1). Thus, we are now able to analyze the relation-
ship between these two embeddings directly. In
this section, we first introduce a new metric that
measures how timestep embeddings are implicated
in the phenomenon that the vectors uϕ(zt, t) tend
to form an undesired structure. We then transform
this score to a regularization method to mitigate the
collapse problem.

6.1 Analysis of Ambiguity

A denoiser model learns the mapping from a hidden
variable z0i to a word yi via the rounding loss. In
addition, each vector in uϕ(zt, t), the input of the
denoiser, must be properly distinguished from one
another, particularly at early diffusion steps.

Figure 2: The evaluation of full denoising predictions
zθ (zt, t) at each timestep t in the exploratory experi-
ments.

Figure 3: The progression of the collapse problem in
OFE in the course of training.

The forward process is performed by shrink-
ing word embeddings toward the origin and then
adding Gaussian noise (Eq. (3); Figure 4). Since
the model learns the inverse operation of the for-
ward process, the variance of the full denoising pre-
diction z0i = zθ (zt, t)i for the input zti is expected
to decrease as the generation progresses, and hence
the sample is gradually determined. However, due
to the timestep embedding, the actual input vector
zti + ut may be confused with unrelated words at
different timesteps (Figure 5).

This hypothesis motivates us to measure which
words are now mistaken for which words due
to timestep embeddings. Inspired by Kullback-
Leibler divergence, we define the Temporal Ambi-
guity Score (TAS) between t and t′ as follows:2

Ambig
(
t, t′
)
:=

1

V

V∑

k=1

V∑

ℓ=1

Ewtk,wt′k

[

pϕ
(
ℓ | uϕ

(
wt′k, t

′)) log pϕ (ℓ | uϕ(wt′k, t
′))

pϕ (ℓ | uϕ(wtk, t))

]

2The rounding pϕ always denotes the softmax distribution
over unmodified word embeddings, as shown in Eq. (2).
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Figure 4: Noise addition at timesteps 0.2T and 0.8T .
The circles represent the regions from which zt is mostly
sampled. The regions move closer to the origin and
expand their radii as the forward process progresses.

Figure 5: How the timestep embeddings disrupt noisy
word embeddings. The noisy “write” at timestep t
will be confused with the noisy “watch” and “look” at
timestep t′.

where wtk is a noisy embedding of the k-th word at
timestep t. This metric represents how the round-
ing results of noisy word embeddings are altered
by timestep embeddings. It is based on a fact that is
peculiar to text generation: unlike in image synthe-
sis, the effect of noise addition lies in whether the
rounding yields different words before and after it.

Since exact calculation of Ambig (t, t′) is chal-
lenging, we estimate it by sampling (wtk,wt′k)
once for each k.

6.2 Regularization for Disambiguation
We consider using the ambiguity score as an objec-
tive function. In imitation of the rounding loss, we
introduce the Temporal Disambiguation Loss using
training data samples instead of entire vocabulary:

Ldisambig :=
1

L

L∑

i=1

L∑

j=1

Ey,zt,zt′∼q

[

pϕ(yj | uϕ

(
zt′i, t′

)
) log

pϕ(yj | uϕ(zt′i, t′))
pϕ(yj | uϕ(zti, t))

]
.

Since directly minimizing it is difficult, we further
simplify the loss. First, we fix t′ at 0, because it
is not meaningful to disambiguate embeddings at
late diffusion steps, which are distributed almost
randomly. Thus, we get

L′disambig =
1

L

L∑

i=1

L∑

j=1

Ey,zt∼q

[

pϕ(yj | wyi) log
pϕ(yj | wyi)

pϕ(yj | uϕ(zti, t))

]
.

Besides, the model easily learns so that pϕ(yj |
wyi) ≈ 1 if i = j, and 0 otherwise. Ignoring noise
for training stability, we arrive at the Simplified
Temporal Disambiguation Loss (STDL):

Lsimple
disambig :=

1

L

L∑

i=1

Ey,t∼q

[
− log pϕ

(
yi | uϕ

(√
ᾱtwyi , t

)) ]
.

Note that, from Eq. (1),
√
ᾱtwyi is the expectation

of q(zti | z0i = wyi). If we set ᾱ0 = 1 and ignore
the timestep embedding (i.e., u0 = 0), Lsimple

disambig

equals Lround when t = 0. Hence, this is a gener-
alization of the conventional loss associated with
rounding. Intuitively, it aims to obtain consistency
across all timesteps in the space of uϕ(·, t) with
respect to the noiseless word embedding space.

7 Main Experiments

7.1 Setup

We set the number of diffusion steps to T = 2000
and use the sqrt noise schedule (Li et al., 2022),
which are widely used. We choose d′ = 128 to
align with baselines that utilize the MLP-based di-
mensionality reduction method. The output length
is adjusted by generating padding tokens. The em-
bedding of the padding token is learned as well as
other word embeddings.
Base and OFE are identical to those used in §5.

OFE+STDL refers to the model incorporating both
OFE and STDL.

The generation proceeds step by step. The re-
sults were saved every 25 steps and the final step3

to reduce the computational cost of evaluation.

Datasets We conduct experiments on two popu-
lar sequence-to-sequence tasks: Paraphrasing on
Quora Question Pairs (DataCanary et al., 2017)
and Text Simplification on Wiki-Auto (Jiang et al.,
2020). The data split follows that used for DiffuSeq
(Gong et al., 2023).

Metrics The quality of samples is evaluated us-
ing BLEU (Papineni et al., 2002), ROUGE-L (Lin,
2004) and BERTScore (Zhang et al., 2020) 4. The
diversity among outputs generated from the same

3That is, t = 2000, 1975, ..., 25, 1.
4Following DiffuSeq, we use microsoft/deberta-

xlarge-mnli for computing BERTScore.
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MBR BLEU ROUGE-L BERTScore Self-BLEU
DiffuSeq - 18.29† 52.99† 79.30† 27.32
DiffuSeq 10 24.13 58.80 83.65 -
SeqDiffuSeq - 23.28 - 82.91 -
SeqDiffuSeq 10 24.34 - 84.00 -
Difformer - 28.52 60.15 83.80 -
Difformer 10 30.43 61.25 85.02 -
Difformer 20 30.52 61.08 85.02 -
Base - 22.19 (−2.38) 53.27 (−3.74) 77.39 (−3.66) 59.19 (+ 0.12)
OFE - 19.21 (−7.68) 50.29 (−9.34) 74.86 (−7.64) 30.67 (+ 0.34)
OFE 10 25.85 57.73 80.64 -
OFE+STDL - 27.24 (−0.12) 60.29 (−0.11) 83.60 (−0.14) 78.76 (+25.08)
OFE+STDL 10 27.90 60.90 84.20 -
OFE+STDL 20 28.05 61.02 84.30 -

(a) Quora Question Pairs

MBR BLEU ROUGE-L BERTScore Self-BLEU
DiffuSeq - 29.29† 53.13† 77.81† 46.42
DiffuSeq 10 36.22 58.49 81.26 -
SeqDiffuSeq - 37.09 - 82.11 -
SeqDiffuSeq 10 37.12 - 82.14 -
Difformer - 40.37 59.56 81.96 -
Difformer 10 40.77 59.86 82.21 -
Difformer 20 40.84 59.88 82.29 -
Base - 27.85 (−11.68) 50.99 (− 8.78) 72.98 (−9.19) 58.32 (+ 1.43)
OFE - 30.20 (−12.71) 49.78 (−10.03) 72.70 (−9.38) 48.51 (− 0.00)
OFE 10 39.82 58.15 80.25 -
OFE+STDL - 41.45 (− 0.12) 59.02 (− 0.07) 81.75 (−0.09) 96.16 (+20.01)
OFE+STDL 10 41.49 59.12 81.84 -
OFE+STDL 20 41.49 62.35 81.84 -

(b) Wiki-Auto

Table 2: Generation qualities and diversities in the main experiments. Difference between the best sample through
generation process and the final output are shown in parentheses. † indicates that we evaluated the samples released
by the authors. Other baseline results are cited from their paper.

Quora Question Pairs

Figure 6: The evaluation of full denoising predictions zθ (zt, t) at each timestep t in the main experiments.
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input is a unique strength of diffusion models. To
measure this, we employ Self-BLEU (Zhu et al.,
2018).

Baselines DiffuSeq (Gong et al., 2023) is a ba-
sic diffusion language model. SeqDiffuSeq (Yuan
et al., 2024) is an advanced encoder-decoder model
with adjusting noise schedule during training. Dif-
former (Gao et al., 2024) is a model designed to mit-
igate the collapse problem by improving its training
objective and generation process.

7.2 Generation Quality and Diversity

Table 2 shows the evaluation of the final outputs.
As we saw in §5, the collapse problem occurred
in Base and OFE, where BLEU, ROUGE-L and
BERTScore deteriorated in the course of sampling.
Their final results were roughly comparable per-
formance to DiffuSeq as expected, since DiffuSeq
is largely equivalent to the conventional model in
Figure 1. However, OFE’s BERTScore is lower
than DiffuSeq across all datasets. It suggests that
the OFE may cause more severe collapse than the
MLP-based method. OFE+STDL showed essentially
comparable performance to Difformer, although
it occasionally underperformed Difformer when
combined with MBR.
OFE+STDL without MBR was substantially bet-

ter than OFE with MBR. It is remarkable that the
STDL achieves better performance without pro-
longed generation times, the drawback of MBR.

Figure 6 presents the assessment of intermedi-
ate outputs in the reverse process. In contrast to
OFE, OFE+STDL consistently maintained generation
quality throughout the reverse process. Moreover,
on Quora Question Pairs, the STDL not only sup-
pressed the collapse but also entirely improved sam-
ple quality.

The diversity unfortunately fell with STDL.
However, as shown in Figure 6, the improvement
in Self-BLEU of OFE’s output progresses in tan-
dem with a decline in BLEU and BERTScore. This
suggests that the diversity previously reported in
diffusion language models may actually be an il-
lusion arising from corrupted samples. Even if
the collapse is partially tolerated, since Self-BLEU
should ideally be comparable to BLEU, further
improvements are required for text generation to
achieve genuine diversity.

As a side note, employing MBR is also likely to
reduce diversity. Comparing MBR = 10 and 20 of
Difformer on Quora Question Pairs and OFE+STDL

(a) OFE (50 K) (b) OFE (200 K)

(c) OFE+STDL (50 K) (d) OFE+STDL (500 K)

Quora Question Pairs

Figure 7: Temporal Ambiguity Score of the checkpoints
at the training steps indicated in parentheses.

Checkpoint Step
Base 500 K
OFE 200 K
OFE+STDL 500 K

Quora Question Pairs

Table 3: The training step at which the evaluation check-
point was saved.

on Wiki-Auto, although the sequence-level simi-
larity to the reference data measured by BLEU or
ROUGE-L increased, the semantic similarity indi-
cated by BERTScore remains unchanged.

7.3 Ambiguity across Timesteps

As observed in §5, the collapse problem in OFE
becomes more severe as training progresses. To
analyze this phenomenon, we compare the TAS
between checkpoints that do and do not exhibit
collapse. Figure 7 depicts the TAS for these check-
points of OFE and OFE+STDL. In the early stage of
training, the ambiguity is low for small timesteps
and high for large timesteps as expected. How-
ever, as training of OFE advances, the ambiguity
increases for small timesteps while decreasing for
large timesteps. This suggests that the conventional
loss function excessively focuses on constructing
timestep embeddings for high noise levels while
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neglecting those for small noise levels. By contrast,
in OFE+STDL, the TAS remains relatively stable
throughout training, preserving the distinguisha-
bility of the non-collapsing embeddings space.

7.4 Training Efficiency
Table 3 presents the training steps corresponding to
the evaluation checkpoints. OFE was trained faster
than Base, even though the former achieved perfor-
mance comparable to the latter. We also observed
that the STDL led to slower convergence.

8 Conclusion

In this work, we investigated the collapse problem
through careful observation of the emergence of the
phenomenon and the lens of how timestep embed-
dings influence word embeddings. To address this
challenge, we proposed a principled dimensionality
reduction technique and a regularization method
that acts on both embeddings. Our methods are
simple and easy to employ, yet dramatically miti-
gate the collapse problem. In addition, we revisited
generation diversity of diffusion language models,
and suggested its intrinsic difficulty.

9 Limitations

One limitation of our study is that it remains un-
clear whether the STDL mitigates only the collapse
problem or may also reduce the generation of de-
sirable diversity. That said, our findings call for
further investigation into timestep embeddings for
diffusion models and diversity in text generation.
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Abstract

In computational psycholinguistics, Merkx and
Frank (2021) demonstrated that surprisal values
from Transformers exhibit a closer fit to mea-
sures of human reading effort than those from
Recurrent Neural Networks (RNNs), suggest-
ing that Transformers’ attention mechanisms
may capture cue-based retrieval-like operations
in human sentence processing. Meanwhile,
explicit integration of syntactic structures has
been shown to improve language models’ abil-
ity to model human sentence processing—for
example, Hale et al. (2018) demonstrated that
Recurrent Neural Network Grammars (RN-
NGs), which integrate RNNs with explicit
syntactic structures, account for human brain
activities that vanilla RNNs cannot capture.
In this paper, we investigate the psychome-
tric predictive power of Composition Atten-
tion Grammars (CAGs), which integrate Trans-
formers with explicit syntactic structures, to
test whether they provide a better fit to hu-
man reading times than both vanilla Trans-
formers and RNNGs. We hypothesized that
CAGs’ syntactic attention mechanisms capture
cue-based retrieval-like operations over syntac-
tic memory representations—operations that
may be involved in human sentence process-
ing. The results of our strictly controlled exper-
iments demonstrate that CAGs outperformed
vanilla Transformers and RNNGs, suggesting
that syntactic attention mechanisms of CAGs
may serve as a mechanistic implementation of
cue-based retrieval from syntactic memory.

1 Introduction

In computational psycholinguistics, language mod-
els (LMs) developed in Natural Language Process-
ing (NLP) have been evaluated for their ability to
model human sentence processing. Recurrent Neu-
ral Networks (RNNs; Elman, 1990), which pro-
cess sequential representations recurrently, have
traditionally been considered a practical imple-
mentation that demonstrates strong correspondence

with human sentence processing, with their sur-
prisal values successfully correlating with human
reading times (Goodkind and Bicknell, 2018) and
brain activities (Frank et al., 2015). Recently,
Transformers (Vaswani et al., 2017), which have
achieved state-of-the-art results on various down-
stream tasks, have also been tested for their power
to predict human reading effort. Merkx and Frank
(2021) demonstrated that Transformers outper-
formed RNNs in predicting human reading times
and brain activities, suggesting that Transform-
ers’ attention mechanisms may provide a computa-
tional parallel to cue-based retrieval (Van Dyke and
Lewis, 2003), a theory of human memory retrieval
proposed in psycholinguistics.

While RNNs and Transformers primarily pro-
cess sequential representations, the previous litera-
ture on computational psycholinguistics has empir-
ically shown that explicit integration of syntactic
structures can significantly improve LMs’ ability
to model human sentence processing. For instance,
Hale et al. (2018) showed that Recurrent Neural
Network Grammars (RNNGs; Dyer et al., 2016),
which integrate RNNs with explicit syntactic struc-
tures, capture variance in human brain activities
that cannot be accounted for by vanilla RNNs.1

Given that (i) Transformers may capture cue-
based retrieval-like operations in human sentence
processing and (ii) LMs integrated with explicit
syntactic structures may capture variance in human
syntactic processing, we investigate whether the
integration of these two approaches might provide
a better fit to measures of human reading effort

1More recently, Wolfman et al. (2024) showed that sur-
prisal values from Transformer Grammars (TGs; Sartran et al.,
2022), which integrate Transformers with explicit syntactic
structures, also explain human brain activities that vanilla
Transformers cannot predict. While their work and ours are
similar in that both investigate the advantage of explicit in-
tegration of syntactic structures on Transformers, we addi-
tionally investigate the advantage of syntactic attention over
syntactic recurrence, a research question not addressed in
Wolfman et al. (2024).
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than LMs employing either approach in isolation.
Specifically, we investigate the psychometric pre-
dictive power of Composition Attention Grammars
(CAGs; Yoshida and Oseki, 2022), which integrate
Transformers with explicit syntactic structures, to
test whether they provide a better fit to human read-
ing times than both vanilla Transformers and RN-
NGs. We hypothesize that CAGs’ syntactic atten-
tion mechanisms capture cue-based retrieval-like
operations over syntactic memory representations—
operations that may be involved in human sentence
processing. The results of our controlled experi-
ments demonstrate that CAGs outperformed vanilla
Transformers and RNNGs, suggesting that syntac-
tic attention mechanisms of CAGs may serve as a
mechanistic implementation of cue-based retrieval
from syntactic memory.2

2 Background

2.1 Psychometric predictive power

In psycholinguistics, it is well established that hu-
mans predict the next word during sentence pro-
cessing (i.e., expectation-based theories), and the
less predictable the next word is, the more effort
is required to process it. The computational psy-
cholinguistics literature (Hale, 2001; Levy, 2008)
quantifies this predictability as surprisal, the nega-
tive log probability of a word given the context:

surprisal = − log p(word|context). (1)

Previous work has employed this information-
theoretic complexity metric to link LMs’ proba-
bility estimates with human reading effort (Smith
and Levy, 2013; Goodkind and Bicknell, 2018).
Building upon this paradigm, the computational
psycholinguistics community has investigated LMs
with high psychometric predictive power—i.e.,
LMs that can compute surprisal values with trends
similar to measures of human reading effort—by
comparing surprisal from various models with read-
ing times or brain activities from humans (Frank
and Bod, 2011; Fossum and Levy, 2012; Frank
et al., 2015; Hale et al., 2018; Brennan and Hale,
2019; Wilcox et al., 2020; Brennan et al., 2020;
Merkx and Frank, 2021; Kuribayashi et al., 2022;
Wolfman et al., 2024, inter alia).

2Code for reproducing our results is available at https:
//github.com/osekilab/CAG-EyeTrack.

2.2 Sequential recurrence vs. sequential
attention

RNNs (Elman, 1990) process sequential informa-
tion (i.e., word embeddings) in a recurrent manner;
they maintain a single vector representing a “con-
text” and, at each time step, update this context
vector with the embedding of the current input
word (implementing sequential recurrence; Fig-
ure 1a). In contrast, recently introduced Trans-
formers (Vaswani et al., 2017) employ an attention
mechanism; they maintain all previous word em-
beddings and, at each time step, generate a context
vector by selectively attending to them (implement-
ing sequential attention; Figure 1b). Taking advan-
tage of direct access to previous information, Trans-
formers have been shown to outperform RNNs in
various NLP tasks (cf. Wang et al., 2018, 2020).

Recently, the computational psycholinguistics
community has also investigated whether Trans-
formers have an advantage over RNNs in psycho-
metric predictive power. Merkx and Frank (2021)
compared Transformers and RNNs on their pre-
dictive power for human reading times and brain
activities. The results showed that Transformers
generally outperformed RNNs, suggesting that se-
quential attention, implemented by Transformers,
captures aspects of human reading effort that se-
quential recurrence, implemented by RNNs, cannot
account for.

Based on these findings, Merkx and Frank (2021)
argued that the explained effort might be attributed
to cue-based retrieval-like operations during hu-
man sentence processing (Van Dyke and Lewis,
2003). The cue-based retrieval theory posits that
human sentence processing involves memory re-
trieval, where elements are retrieved from working
memory based on cues provided by the current in-
put word. Merkx and Frank’s (2021) argument was
that Transformers’ attention mechanism—selective
attention to previous word embeddings based on
Queries from current input and Keys from previous
words—might serve as a mechanistic implemen-
tation of this cue-based memory retrieval. Conse-
quently, surprisal values from the attention mech-
anism would show similar trends to human read-
ing effort, serving as the causal bottleneck (Levy,
2008).3

3Complementary research has examined the relationship
between attention-based metrics (such as attention entropy)
and human reading effort to assess the validity of attention
mechanisms as a mechanistic implementation of cue-based
retrieval (Ryu and Lewis, 2021; Oh and Schuler, 2022).
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Figure 1: Four types of architectures. Previous work has investigated three types of architectural comparisons: (i)
recurrence vs. attention in sequential architectures (a vs. b), (ii) sequential vs. syntactic in recurrent architectures
(a vs. c), and (iii) sequential vs. syntactic in attention architectures (b vs. d). In this paper, we complete this
comparison framework by directly comparing recurrence vs. attention in syntactic architectures (c vs. d).

More recently, Michaelov et al. (2021) replicated
Merkx and Frank’s (2021) results and presented ad-
ditional analysis suggesting that Transformers can
better capture human semantic facilitation effects
than RNNs.

2.3 Sequential vs. syntactic

Although RNNs and Transformers have shown non-
negligible results in psychometric predictive power,
these architectures are fundamentally “sequen-
tial” models that process sequential information—
without explicitly modeling the hierarchical syntac-
tic structures of natural languages. The distinction
between vanilla LMs and syntactic LMs such as
RNNGs lies in this structural aspect—syntactic
LMs not only generate a word sequence but also
explicitly construct its underlying syntactic struc-
ture. Specifically, syntactic LMs jointly generate
sentences and their syntactic structures through
next-action prediction for the following three ac-
tions:

• (X: Generate a non-terminal symbol (X, where
X represents a phrasal tag (e.g., NP). The vec-
tor representing the phrasal tag is placed on
top of the stack, which maintains a list of vec-
tors corresponding to the current context in
syntactic LMs.

• w: Generate a terminal symbol w, where w
represents a word (e.g., bird). The vector

representing the word is placed on top of the
stack.

• ): Close the most recent open non-terminal
symbol. The vectors that constitute the closed
phrase (i.e., the closed phrasal tag and its con-
stituent vectors) are typically combined into
a single vector representation using a compo-
sition function and placed on top of the stack.
However, some syntactic LMs omit this com-
position step and simply place a vector repre-
senting the phrase closure on top of the stack
(henceforth, we denote this type of syntactic
LM with the subscript −comp).

Computational psycholinguistics studies have
shown that syntactic LMs outperform their vanilla
LM counterparts in psychometric predictive power,
suggesting that syntactic LMs can capture non-
trivial variance in human syntactic processing. For
instance, RNNGs, which recurrently summarize
the stack state using RNNs (Dyer et al., 2015)
(implementing syntactic recurrence; Figure 1c),
can predict patterns in human brain activity (Hale
et al., 2018) and human reading time (Yoshida et al.,
2021) that vanilla RNNs cannot. Hale et al. (2018)
also showed the advantage of the composition func-
tion, demonstrating that RNNGs−comp cannot ex-
plain the brain activity that RNNGs can.

More recently, Wolfman et al. (2024) demon-
strated that Transformer Grammars (TGs; Sartran
et al., 2022), which summarize the stack state by se-
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lectively attending to previous vectors using Trans-
formers (implementing syntactic attention; Fig-
ure 1d), also explain human brain activities more
successfully than vanilla Transformers.4

3 Syntactic recurrence vs. syntactic
attention

As reviewed in Section 2, previous work has in-
vestigated three types of architectural compar-
isons: (i) recurrence vs. attention in sequential
architectures (Merkx and Frank, 2021; Michaelov
et al., 2021) (Figure 1a vs. 1b), (ii) sequential vs.
syntactic in recurrent architectures (Hale et al.,
2018; Yoshida et al., 2021) (Figure 1a vs. 1c), and
(iii) sequential vs. syntactic in attention architec-
tures (Wolfman et al., 2024) (Figure 1b vs. 1d). In
this paper, we complete this comparison framework
by directly comparing recurrence vs. attention in
syntactic architectures (Figure 1c vs. 1d).

We hypothesize that syntactic attention—where
previous vectors “in the stack” are selectively at-
tended to based on Queries from current input and
Keys from previous vectors—might show superior
psychometric predictive power over syntactic recur-
rence by capturing cue-based retrieval-like opera-
tions over “syntactic memory representations”—
operations that may be involved in human sen-
tence processing. This hypothesis extends Merkx
and Frank’s (2021) argument that sequential atten-
tion (implemented by vanilla Transformers) out-
performs sequential recurrence (implemented by
RNNs), capturing cue-based retrieval-like opera-
tions over sequential memory representations.

LMs that implement syntactic attention in-
clude Transformer Grammars (TGs; Sartran et al.,
2022) and Composition Attention Grammars
(CAGs; Yoshida and Oseki, 2022). Both TGs
and CAGs are syntactic LMs based on Trans-
formers and employ composition functions. For
our investigation, we employ CAGs for three rea-
sons. First, CAGs’ implementation includes word-
synchronous beam search (Stern et al., 2017), an
inference technique commonly used in computa-
tional psycholinguistics to model human local am-
biguity resolution through parallel parsing (Hale
et al., 2018; Sugimoto et al., 2024) (see Section 4.3
for details), whereas TGs lack this capability. Sec-
ond, CAGs’ probability estimation aligns more

4Yoshida et al. (2025) also demonstrated that attention
entropy derived from TGs can predict human reading times
more successfully than vanilla Transformers.

closely with human offline grammaticality judg-
ments than TGs (Yoshida and Oseki, 2022). Third,
CAGs employ bidirectional LSTMs for the compo-
sition function, which is the same implementation
used in RNNGs, while TGs implement the com-
position function via attention masks. This design
choice enables a more controlled comparison be-
tween syntactic recurrence and syntactic attention,
as the architectures differ only in their stack sum-
marization process.

4 Method

We evaluate four LMs that employ either selec-
tive attention or recurrent processing on word se-
quences or syntactic structures, comparing their
psychometric predictive power for human reading
times using the Zurich Cognitive Language Pro-
cessing Corpus (ZuCo; Hollenstein et al., 2018).
Following Hale et al. (2018), we also include de-
graded versions of syntactic LMs that lack the com-
position function. The following subsections de-
scribe our experimental settings in detail.

4.1 Language models
In our experiment, we trained LMs with strictly
controlled hyperparameters following Yoshida and
Oseki (2022), as their model sizes were made max-
imally comparable.

LSTM (sequential recurrence) Long Short-
Term Memories (LSTMs; Hochreiter and Schmid-
huber, 1997) are LMs that perform recurrent pro-
cessing on word sequences. We used 2-layer
LSTMs with 301 hidden and input dimensions
(model size: 16.59M).5

RNNG (syntactic recurrence) Recurrent Neural
Network Grammars (RNNGs; Dyer et al., 2016)
are LMs that perform recurrent processing on syn-
tactic structures. RNNGs are equipped with a com-
position function based on bidirectional LSTMs.
We used stack-only RNNGs (Kuncoro et al., 2018;
Noji and Oseki, 2021) with 2-layer stack LSTMs
with 276 hidden and input dimensions (model size:
16.61M).6

RNNG−comp (degraded syntactic recurrence)
RNNGs−comp (Choe and Charniak, 2016; Hale
et al., 2018) are a degraded version of RN-
NGs without the composition function. We used

5We implemented LSTMs using the PyTorch package
(https://github.com/pytorch/pytorch).

6https://github.com/aistairc/rnng-pytorch
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RNNGs−comp with 2-layer LSTMs with 301 hidden
and input dimensions (model size: 16.58M).

Transformer (sequential attention) Transform-
ers (Radford et al., 2018) are LMs that perform
selective attention on word sequences. We used
3-layer 4-head Transformers with 272 hidden and
input dimensions (model size: 16.62M).7

CAG (syntactic attention) Composition Atten-
tion Grammars (CAGs; Yoshida and Oseki, 2022)
are LMs that perform selective attention on syntac-
tic structures. CAGs are equipped with a composi-
tion function based on bidirectional LSTMs. We
used 3-layer 4-head CAGs with 256 hidden and
input dimensions (model size: 16.57M).8

CAG−comp (degraded syntactic attention)
CAGs−comp (Qian et al., 2021) are a degraded
version of CAGs without the composition func-
tion. We used 3-layer 4-head CAGs−comp with
272 hidden and input dimensions (model size:
16.63M).9

4.2 Training data

All LMs were trained using BLLIP-LG, which
comprises 1.8M sentences and 42M tokens sam-
pled from the Brown Laboratory for Linguistic In-
formation Processing 1987-89 Corpus Release 1
(BLLIP; Charniak et al., 2000). The train-dev-test
split followed Hu et al. (2020). Following Qian
et al. (2021), sentences were tokenized into sub-
words using a Byte Pair Encoding tokenizer (Sen-
nrich et al., 2016) from the Huggingface Trans-
formers package (Wolf et al., 2020).

All LMs were trained at the sentence level:
LSTMs and Transformers were trained on terminal
subwords, whereas RNNGs, RNNG−comp, CAGs,
and CAG−comp were trained on both terminal sub-
words and syntactic structures, which were parsed
by Hu et al. (2020) using a state-of-the-art con-
stituency parser (Kitaev and Klein, 2018). All
LMs shared the same training hyperparameters:
a learning rate of 10−3, a dropout rate of 0.1, the
Adam optimizer (Kingma and Ba, 2015), and a
minibatch size of 256. Training was conducted
for 15 epochs. We selected the checkpoint with

7We implemented Transformers using the Hugging-
face Transformers package (https://github.com/
huggingface/transformers).

8https://github.com/osekilab/CAG
9https://github.com/IBM/

transformers-struct-guidance

the lowest loss on the development set for evalua-
tion and conducted experiments three times with
different random seeds.

4.3 Eye tracking data

We used reading times from the Zurich Cognitive
Language Processing Corpus (ZuCo; Hollenstein
et al., 2018) to evaluate whether LMs can suc-
cessfully predict human reading effort. ZuCo is
a collection of single sentences from the Stanford
Sentiment Treebank and the Wikipedia relation ex-
traction corpus, accompanied by simultaneous eye-
tracking and electroencephalography (EEG) record-
ings from 12 native English speakers. Although
ZuCo comprises data from both normal reading
and task-specific reading tasks, we used only 700
sentences from the natural reading task, follow-
ing previous work (e.g., Hollenstein et al., 2021).
During the natural reading task, sentences were
displayed one by one, and participants read them
at their own pace. During preprocessing by Hol-
lenstein et al. (2018), fixations that were (i) shorter
than 100ms or (ii) recorded when EEG amplitude
exceeded±90 µV were removed due to irrelevance
to reading activity or data quality concerns.

In this paper, first-pass reading time (the sum of
all fixation times on a word before the eye moves
away from it) was used as the prediction target.10

Following the convention of psycholinguistic stud-
ies, we excluded words with missing values (e.g.,
non-fixations) or at sentence-initial and sentence-
final positions from our statistical analysis. We
further removed words that were out of vocabu-
lary (OOV) in the large corpus (Wikitext-2; Merity
et al., 2017) or words following OOV words, as fre-
quency values are required for our baseline regres-
sion model. Consequently, 80,853 data points were
included in the statistical analysis out of 161,597
total data points. The high proportion of deleted
data points during preprocessing was mainly due
to the large number of missing values (52,240 data
points).

In previous computational psycholinguistic re-
search, there was often a mismatch between
LMs’ processing level and human data collection
procedures—for instance, LMs trained at the sen-
tence level were evaluated against human data col-

10We first conduct validation using reading time as the most
accessible and interpretable human data source, given that the
specific event-related potential (ERP) components of EEG
that would best reflect cue-based retrieval-like operations over
syntactic memory representations remain to be determined.
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lected during document-level reading (cf. Wilcox
et al., 2020). In this paper, we address this gap
by conducting more strictly controlled experiments
using ZuCo, a corpus where eye-tracking data was
recorded during sentence-level reading.11

Since only word sequences were input dur-
ing surprisal calculation, we employed word-
synchronous beam search (Stern et al., 2017) to
infer syntactic structures for CAGs and RNNGs.
Word-synchronous beam search retains a collec-
tion of the most likely syntactic structures given a
partial word sequence and marginalizes their prob-
abilities to approximate next-word probabilities.
Hale et al. (2018) argued that the combination of
syntactic LMs and word-synchronous beam search
successfully captured human local ambiguity reso-
lution during online sentence processing.12

4.4 Statistical analysis

We analyzed how well surprisal from each LM
predicts human reading time, measuring improve-
ments in regression model fit when adding surprisal
values as predictors. For each LM, we included
both the surprisal of the current word and the previ-
ous word to account for spillover effects (Mitchell,
1984).13 As a measure of psychometric predictive
power, we evaluated the per-token increase in log-
likelihood (∆LogLik) on the entire dataset. This
evaluation was conducted for each random seed,
and we report the mean psychometric predictive
power with standard deviation.

Following previous studies such as Merkx and
Frank (2021), the baseline regression model con-
trolled for several predictors relevant to reading
activity:

• order (integer): sentence display order during
the reading task;

• position (integer): word position in the sen-
tence;

11An alternative approach would be to train LMs at the doc-
ument level and evaluate them on document-level reading data.
However, we adopt the sentence-level setting because syntac-
tic LMs are conventionally trained on sentences, and RNNGs
and CAGs lack implementations applicable to document-level
training.

12We set the action beam size to 100, word beam size to
10, and fast-track to 1. Word beam size corresponds to the
number of syntactic structures to be marginalized.

13Following the convention of previous studies (e.g., Wilcox
et al., 2020; Kuribayashi et al., 2021), the word-level surprisal
was calculated as the cumulative surprisal of its constituent
subwords.

• length and prev_length (integer): number
of characters in the current and previous word;

• freq and prev_freq (continuous): log-
transformed frequencies of the current and
previous word.

Previous words’ values were included for modeling
the spillover effect. All numeric factors were z-
transformed.

The baseline regression model was a linear
mixed-effects model (Baayen et al., 2008) with
these fixed effects and a by-subject random inter-
cept:14

log(RT) ∼ order+ position +

length+ prev_length +

freq+ prev_freq +

(1|subj). (2)

Before evaluating psychometric predictive
power, we conducted baseline regression model-
based data omission, removing data points beyond
three standard deviations. This removed 559 data
points, leaving 80,294 data points for the final sta-
tistical analysis.

4.5 Nested model comparison
We conducted nested model comparisons (Wurm
and Fisicaro, 2014) to evaluate whether the dif-
ferences in ∆LogLik are statistically significant.
Specifically, we extended Equation 2 by adding
surprisal values from two LMs versus adding sur-
prisal values from only one LM, and tested the
statistical significance of the deviance using the χ2

test (p ≤ 0.05). Following Aurnhammer and Frank
(2019), we used surprisal values averaged across
different random seeds for these nested model com-
parisons.

5 Results

5.1 Overall
The Psychometric Predictive Power (PPP, per-
token ∆LogLik) of each LM is summarized in Fig-
ure 2. The psychometric predictive power averaged
across different random seeds (the vertical axis) is
plotted against the LMs investigated in this paper
(the horizontal axis). Error bars denote standard
deviations across random seeds. We confirmed that
the psychometric predictive power was statistically

14We implemented the regression model using the lme4
package (Bates et al., 2015) in R (R Core Team, 2024).
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Figure 2: Psychometric Predictive Power (PPP, per-token ∆LogLik) of each LM. The psychometric predictive
power averaged across different random seeds (vertical axis) is plotted against the LMs investigated in this paper
(horizontal axis). Error bars denote standard deviations across random seeds.

significant for all LMs under nested model com-
parisons against the baseline regression model, and
the direction was appropriate for reading time—
that is, higher surprisal values corresponded to
longer reading times. The results demonstrated that
CAGs achieved the highest psychometric predic-
tive power: CAG > RNNG > Transformer > LSTM
> CAG−comp > RNNG−comp, showing that the ar-
chitecture performing syntactic attention captures
the most variance in human reading time.

Reproduction of sequential recurrence vs. se-
quential attention In our experiment, Transform-
ers outperformed LSTMs in psychometric predic-
tive power. To confirm that this difference is sta-
tistically significant, the result of the nested model
comparison is shown in the top block of Table 1.
The nested model comparison revealed that Trans-
formers significantly outperformed LSTMs, cor-
roborating Merkx and Frank’s (2021) finding that
Transformers, which implement sequential atten-
tion, capture variance in human reading effort that
RNNs, which implement sequential recurrence,
cannot.15

Reproduction of sequential vs. syntactic In
our experiment, RNNGs and CAGs outperformed
LSTMs and Transformers, respectively. To confirm
that these differences are statistically significant,
the results of nested model comparisons are shown
in the middle block of Table 1. The nested model

15Incidentally, Merkx and Frank (2021) found the advan-
tage of Transformers on self-paced reading times and EEG but
obtained mixed results on first-pass reading time. Our more
definitive findings may be attributed to our strictly controlled
experimental settings, where Transformer advantages could
become more consistently observable.

comparisons revealed that RNNGs and CAGs sig-
nificantly outperformed LSTMs and Transformers,
respectively, supporting the findings of Hale et al.
(2018) and Wolfman et al. (2024) that syntactic
LMs can account for human reading effort that
vanilla LMs cannot predict.

In addition, RNNGs and CAGs also significantly
outperformed RNNGs−comp and CAGs−comp, re-
spectively, corroborating Hale et al.’s (2018) argu-
ment that the composition function is crucial for
syntactic LMs to capture human syntactic process-
ing. As a side note, RNNGs−comp and CAGs−comp
underperformed LSTMs and Transformers, respec-
tively. This implies that stack representations with-
out the composition function not only harm the
ability to account for syntactic processing but also
cause a loss in simulating general human predictive
processing. Hale et al. (2018) also showed a null
result when comparing the psychometric predictive
power of RNNGs−comp to that of LSTMs.

Syntactic recurrence vs. syntactic attention In
our experiment, CAGs outperformed RNNGs in the
absolute value of psychometric predictive power.
To confirm that the difference between CAGs and
RNNGs is statistically significant, the result of the
nested model comparison is shown in the bottom
block of Table 1. The nested model comparison
revealed that CAGs significantly outperformed RN-
NGs, suggesting that CAGs, which implement syn-
tactic attention, can successfully capture variance
in human reading time that RNNGs, which imple-
ment syntactic recurrence, cannot account for.
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χ2 df p

Sequential recurrence vs. sequential attention
LSTM < TF 16.75 2 0.00023

Sequential vs. syntactic
LSTM < RNNG 315.7 2 <0.0001
TF < CAG 308.5 2 <0.0001

RNNG−c. < RNNG 369.8 2 <0.0001
CAG−c. < CAG 372.0 2 <0.0001

Syntactic recurrence vs. syntactic attention
RNNG < CAG 11.42 2 0.00331

Table 1: Results of nested model comparisons from
three perspectives: (i) reproduction of sequential re-
currence vs. sequential attention, (ii) reproduction of
sequential vs. syntactic, and (iii) syntactic recurrence
vs. syntactic attention. TF and −c. indicate Transformer
and −comp, respectively.

5.2 Longer and shorter sentences

To investigate under what conditions syntactic at-
tention has an advantage over syntactic recurrence,
we split the data points in ZuCo into two subsets
based on sentences longer or shorter than the av-
erage sentence length, following Merkx and Frank
(2021). Merkx and Frank (2021) conducted this
analysis expecting that longer sentences could ac-
centuate Transformers’ advantage of direct access
to previous information. The longer and shorter
subsets include 37,578 and 43,275 data points, re-
spectively. We removed 601 and 703 data points
that were beyond three standard deviations, leaving
37,307 and 42,997 data points for the final statisti-
cal analysis, respectively.

The psychometric predictive power of CAGs and
RNNGs on longer and shorter sentences is shown in
Figure 3. The results show that CAGs and RNNGs
achieve comparable psychometric predictive power
on shorter sentences, but CAGs outperformed RN-
NGs on longer sentences. To confirm that these
differences are statistically significant, the results
of nested model comparisons are shown in Table 2.
The nested model comparisons revealed that CAGs
significantly outperformed RNNGs only on longer
sentences, consistent with their performance on the
complete dataset.

6 Discussion

In this paper, we reproduced the results of (i)
sequential recurrence vs. sequential attention
(cf. Merkx and Frank, 2021), (ii) sequential vs.
syntactic (cf. Hale et al., 2018; Wolfman et al.,

Figure 3: Psychometric predictive power (PPP, per-
token ∆LogLik) of CAGs and RNNGs on longer and
shorter sentences. The psychometric predictive power
averaged across different random seeds (vertical axis)
is plotted against the LMs (horizontal axis). Error bars
denote standard deviations across random seeds.

χ2 df p

Short sentences
RNNG < CAG 0.8359 2 0.6584

Long sentences
RNNG < CAG 14.793 2 0.0006133

Table 2: Results of nested model comparisons on longer
and shorter subsets of ZuCo

2024), and (iii) demonstrated that CAGs, which
implement syntactic attention, achieve higher psy-
chometric predictive power than both vanilla Trans-
formers and RNNGs. Given that Merkx and Frank
(2021) and Hale et al. (2018) suggest that atten-
tion mechanisms and syntactic LMs can serve as
mechanistic implementations of human cue-based
retrieval and syntactic processing, respectively, our
results suggest that syntactic attention in CAGs
may serve as a mechanistic implementation of cue-
based retrieval from syntactic memory. This inter-
pretation is also consistent with psycholinguistic
studies demonstrating that memory costs derived
from syntactic structures successfully predict read-
ing times and brain activities (Isono, 2024; Shain
et al., 2022)—findings that support the cognitive
plausibility of syntactic memory representations
and operations over them.

Furthermore, the analyses of longer versus
shorter sentences suggest that cue-based retrieval-
like operations over syntactic memory representa-
tions may become more prominent when process-
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ing longer sentences. Merkx and Frank (2021)
demonstrated that Transformers’ superior psycho-
metric predictive power over RNNs was particu-
larly pronounced on longer sentences, suggesting
that retrieval operations may be especially impor-
tant when accessing information from linearly dis-
tant words. While both CAGs and RNNGs can
maintain information from linearly distant words
through their composition functions, the direct ac-
cess afforded by attention mechanisms neverthe-
less provides additional advantages as sentences
get longer.

Interestingly, Wilcox et al. (2018) and Oh et al.
(2021) found that syntactic LMs (i.e., RNNGs) un-
derperformed LSTMs or Transformers in model-
ing human reading times and brain activities, con-
tradicting the advantages observed by Hale et al.
(2018), Wolfman et al. (2024), and our sequential
vs. syntactic results. One potential explanation
for these discrepancies lies in experimental control:
while Wilcox et al. (2018) and Oh et al. (2021)
compared LMs with varying model sizes, Hale
et al. (2018), Wolfman et al. (2024) and our experi-
ment all employed LMs with maximally compara-
ble model sizes. Our approach further extends this
methodology by aligning LMs’ processing units
with human data collection procedures at the sen-
tence level. These results highlight the critical role
of controlled experimental design, especially when
comparing minimally different architectures.

7 Conclusion

In this paper, we investigated the psychometric
predictive power of Composition Attention Gram-
mars (CAGs) through strictly controlled experi-
ments. Our results demonstrated that CAGs out-
performed both vanilla Transformers and RNNGs,
suggesting that syntactic attention may serve as a
mechanistic implementation of cue-based retrieval
from syntactic memory. Further analyses revealed
that this result is primarily driven by improved
performance on longer sentences, indicating that
cue-based retrieval-like operations over syntactic
memory representations became increasingly im-
portant as sentences got longer.

Limitations

There are several limitations to this study. First,
although we utilized CAGs as a model of syntac-
tic attention, TGs could also serve as an alterna-
tive. While our choice of CAGs was motivated

by (i) their word-synchronous beam search capa-
bility, (ii) better alignment to human offline gram-
maticality judgments, and (iii) their use of bidirec-
tional LSTMs for the composition function (see
Section 3), whether our positive results for syntac-
tic attention generalize to TGs remains an open
question.

Second, our experiments were based solely on
reading time data from ZuCo. As noted earlier,
we chose reading time as the most accessible and
interpretable human data source, given that the spe-
cific event-related potential (ERP) components of
EEG that would best reflect cue-based retrieval-like
operations over syntactic memory representations
remain to be determined. Future research should
explore which ERP components might be most sen-
sitive to these operations and extend the evaluation
to additional measures of human sentence process-
ing.

Third, while our sentence-level analysis pro-
vided technical advantages for controlled compar-
isons, extending these syntactic LMs to document-
level processing would be valuable for future re-
search, as this would enable controlled experiments
on additional datasets (e.g., the Natural Stories cor-
pus; Futrell et al., 2018).
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Abstract

Linguistic accounts show that a word’s poly-
semy structure is largely governed by system-
atic sense alternations that form overarching
patterns across the vocabulary. While psy-
cholinguistic studies confirm the psychological
validity of regularity in human language pro-
cessing, in the research on large language mod-
els (LLMs) this phenomenon remains largely
unaddressed. Revealing models’ sensitivity to
systematic sense alternations of polysemous
words can give us a better understanding of
how LLMs process ambiguity and to what ex-
tent they emulate representations in the human
mind. For this, we employ the measures of
surprisal and semantic similarity as proxies of
human judgment on the acceptability of novel
senses. We focus on two aspects that have not
received much attention previously – metaphor-
ically motivated patterns and the continuous
nature of regularity. We find evidence that sur-
prisal from language models represents regu-
larity of polysemic extensions in a human-like
way, discriminating between different types of
senses and varying regularity degrees, and over-
all strongly correlating with human acceptabil-
ity scores.

1 Introduction

Polysemy, a linguistic phenomenon whereby a
word is associated with multiple related senses,
is fundamental to language. As most lexical words
are polysemes to varying degrees (Zipf, 1945;
Durkin and Manning, 1989; Haber and Poesio,
2024), this form of ambiguity remains a challenge
for NLP. However, recent studies show that cur-
rent language models (LMs) based on Transform-
ers are able to reveal the degree of a word’s pol-
ysemy, meaningfully cluster word senses, distin-
guish homonymy from polysemy or perform su-
perior word sense disambiguation (see Garí Soler
and Apidianaki, 2021; Li and Joanisse, 2021; Nair
et al., 2020; Wiedemann et al., 2019 for each of the

above).
We focus on the topic that received less atten-

tion in LM research – the regularity dimension of
polysemy and its continuous nature. The defini-
tion and scope of regular polysemy vary depending
on the linguistic theory. The widely cited defini-
tion has been proposed by Apresjan (1974, p. 16)
and states that “Polysemy of the word A with the
meanings ai and aj is called regular if [...] there
exists at least one other word B with the meanings
bi and bj, which are semantically distinguished
from each other in exactly the same way as ai and
aj [...]”. Pustejovsky’s (1991) approach, also fre-
quently adopted, frames regular polysemy as an
ability of words that belong to one semantic type
to act as members of another, behaving predictably,
unlike irregular (accidental) polysemes.

To exemplify, the word star shows irregularity
in its sense structure referring to a celestial body or
a highly celebrated, famous person. To our knowl-
edge, such meaning extension is not shared with
any other lexical units of English. In contrast, reg-
ular polysemy forms patterns of meaning structure
across the vocabulary. Some of the widely used
examples of such patterns are ANIMAL - MEAT

pattern (instantiated by chicken or salmon) or CON-
TAINER - CONTENT (e.g. cup, glass), as exempli-
fied with sentences (1) and (2) below.

(1) a. We keep our chicken in the backyard.
b. Chicken is a great source of protein.

(2) a. Glass is made of liquid sand.
b. He drank the whole glass.

These are an instance of metonymy – a sense ex-
tension device that is based on contiguity (associa-
tion, referential co-existence) of two concepts. The
theoretical approaches mentioned above largely at-
tribute regular polysemy to this figure, and so do the
researchers in computational linguistics who adopt
these theories (see Section 2 for their overview).
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There is, however, another cognitive tool that
structures polysemy – metaphor. Unlike metonymy,
it is based on analogy, or referential disjunction
(Lombard et al., 2023). Regular polysemy by
metaphor can be exemplified by such polysemes as
antenna (insect’s organ, signal transmission device)
or leg (limb, table support) instantiating the pat-
tern BODY PART - OBJECT PART. The two figures
are based on different cognitive mechanisms, have
different processing profiles in our brain (Klepous-
niotou et al., 2012), but, as recent psycholinguis-
tic studies show, they equally govern polysemous
sense extensions (Lombard et al., 2023, 2024).

Another important aspect of regular polysemy is
its continuous nature. In a recent study, Lombard
et al. (2024) introduce a method to extract regular
polysemes (including metaphors) from WordNet
and suggest metrics to measure the degree of regu-
larity of the patterns they are governed by (Table 1).
Their findings are in contrast with the widely ap-
plied categorical approach to polysemy, where a
sense extension of a polyseme is labeled in a binary
way, i.e. as either regular or irregular.

Here we adopt this continuous view, aligning
with recent work that argues that word meaning,
polysemy regularity, and productivity form a con-
tinuum rather than discrete representations (Trott
and Bergen, 2023; Li, 2024). To the best of our
knowledge, no experimental design has previously
targeted the graded aspect of regularity in LLMs,
although researchers have noted that some patterns
seemed more regular or productive than others (Li
and Armstrong, 2024). We also contribute by focus-
ing on metaphorically motivated regular polysemy.
Only a handful of works in computational linguis-
tics include regular metaphor in their experiments,
and even less in the experiments with LMs in par-
ticular.

In order to investigate the effect of graded regu-
larity on models’ representation of metaphorically
motivated polysemes, we rely on datasets compiled
for psycholinguistic studies on human polysemy
processing in French and English (Lombard et al.,
2023, 2024). The datasets feature semantic neol-
ogisms – novel senses of existing words created
using polysemy patterns of varying regularity de-
grees. These are compared against attested, exist-
ing polysemes and nonsensical derivations (refer
to Table 2 for the examples). Human acceptability
assessment confirmed the psychological validity of
graded regularity for human processing: the more
regular the polysemy pattern, the more acceptable

its novel senses. Using surprisal and semantic sim-
ilarity measures, we aim to find out how closely
language model processing of semantic neologisms
aligns with human processing, and whether the de-
gree of regularity plays a role in it. With this in
mind, we outline the following research questions:

RQ1. Which of the two measures (surprisal or
semantic similarity) would be a better proxy for
human behaviour in our task? As discussed in
Methods section (§3), both proved to have psy-
cholinguistic predictive power, despite operating at
different levels of language structure.

RQ2. Are the results consistent across model
types and sizes? Oh and Schuler (2022) show, e.g.,
that larger models do not necessarily deliver more
human-like linguistic representations.

RQ3. Do models distinguish between the novel
senses based on existing regular polysemy patterns
and the senses created using the patterns that do not
exist? To match human behaviour, models should
be able to discriminate between these groups.

RQ4. Are LMs sensitive to the varying degrees
of regularity of polysemy patterns? If their pro-
cessing matches human ratings, we should expect
the models to be less surprised by neologisms from
highly regular patterns and vice versa.

RQ5. What type of regularity metrics (as defined
in Table 1) are models more sensitive to: count-
based or consistency-based? Do word frequency
and word length play a role, and how does this
compare with data from human evaluators?

In the case of LLMs, evaluating novel senses
allows us to test their ability to generalize beyond
previously seen material and avoid data contamina-
tion. Additionally, on a higher level, we can assess
their sensitivity to the polysemy patterns abstracted
from concrete, previously seen words.

Our results show that LLMs could discriminate
between different sense types and regularity grada-
tions in a human-like way, and overall correlated
well with human sense plausibility judgment.

In the following sections we will briefly discuss
the existing work on regular polysemy (§2), justify
our methodology (§3), present the experiments (§4)
and discuss their results (§5).

2 Related Work

Aside from the theoretical frameworks cited in the
Introduction (§1), regular polysemy is studied in
several areas dealing with language processing.

Psycholinguistics. In psycholinguistics, regular
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polysemy is addressed in the discussion about the
meaning representation in human mind and the na-
ture of restrictions that govern polysemy patterns in
language. Many authors defend hybrid approaches
to these problems. Rabagliati and Snedeker (2013)
suggest that irregular senses are stored separately,
while senses that follow regular patterns form core
meanings. Analyzing co-predication acceptability
and sense similarity of polysemes and homonyms,
Haber and Poesio (2020) suggest that senses form
groups according to their similarity (in line with
Ortega-Andrés and Vicente, 2019), and reject the
idea of a fully underspecified representation. In
contrast, Vicente (2024) analyses regular and ir-
regular polysemy along several dimensions and
defends the one-representation hypothesis.

In the discussion on whether linguistic conven-
tions or an underlying conceptual structure re-
strict polysemy patterns, Srinivasan and Rabagliati
(2015) propose the “conventions-constrained-by-
concepts” model. Their study across 15 languages
suggests that while the conceptual structure gov-
erns the patterns, the language-specific conventions
define senses that instantiate them. A hybrid ap-
proach is also supported by the investigations in lan-
guage learning: Zhu (2021) studies how preschool-
ers acquire regular metonymies, highlighting their
ability to quickly grasp semantic generalizations
without extensive prior exposure. Children rely on
an early-emerging conceptual structure, although
at later stages linguistic generalizations also play a
crucial role in word learning.

Mental processing of ambiguous words is af-
fected by the degree of relatedness of meanings in
memory. This is demonstrated by Brocher (2016;
2018), who report increased processing effort asso-
ciated with disambiguation of unrelated meanings.

Computational Linguistics. In this field, reg-
ular polysemy is addressed in a variety of works,
such as Boleda et al. (2012a,b); Lopukhina and
Lopukhin (2016), who model systematic poly-
semy, or Del Tredici and Bel (2015), exploring the
representations of polysemous and monosemous
words in static word embeddings. A number of
researchers propose methods of sense annotation
for regular polysemy (Nimb and Pedersen, 2000;
Freihat et al., 2013; Martinez Alonso, 2013), while
other authors use WordNet to automatically extract
regular polysemes (Peters and Peters, 2000; Barque
and Chaumartin, 2009; Lombard et al., 2024). Inter-
estingly, the latter authors recognize metaphoric ex-
tensions as types of systematic polysemy patterns,

in contrast to most of the previously mentioned
studies. Peters and Peters (2000) depart from an
assumption that metaphoric alternations are irreg-
ular, but after applying their extraction method,
“stumble upon” the instances of metaphoric sense
extensions that can only be described as regular.
Only a few more works mentioned in this section
fully recognize that regular polysemy by metaphor
is possible: Nimb and Pedersen, 2000; Freihat et al.,
2013; Lopukhina and Lopukhin, 2016; Lombard
et al., 2023 and Lombard et al., 2024.

Language models. Regarding regular polysemy
and neural language models, Haber and Poesio
(2021) test BERT’s ability to predict human as-
sessment of sense similarity degree. They report
that BERTLARGE captures distinctions between pol-
ysemic, homonymic and same-sense samples in a
human-like way. BERT delivers sensible results in
sense clustering, suggesting that this model is sen-
sitive to polysemy patterns. Sørensen et al. (2023)
explore BERT sense clustering as a guidance tool
for annotation of systematic polysemy in lexical re-
sources. Similarly to Haber and Poesio (2021), they
got mixed results but see potential: for one of the
patterns, BERT discovered a sense that the authors
overlooked when creating the dataset. Finally, Li
and Armstrong (2024) use sense analogy questions
to investigate how regular polysemy is represented
in BERT embeddings. The authors observe that the
pattern of BERT’s sense similarity score distribu-
tion reflects differences not only in the processing
of regular polysemes and irregular/homonymous
controls, but also of distinct polysemy patterns.
They also note on the scalar nature of regularity, an
observation that contributes to Li’s (2024) compre-
hensive approach to polysemy as continuous in its
sense individuation, regularity, and productivity.

The present paper adopts the recent insights
about the graded nature and metaphoric motiva-
tion of regular patterns and incorporates them in
the experimental design.

3 Materials and Methods

3.1 Data

To answer our research questions, we evaluated
two datasets compiled by Lombard et al. (2023)
and Lombard et al. (2024)1. Both data sets were
created for psycholinguistic experiments investigat-
ing the effect of graded regularity on the human

1Licensed under Creative Commons Attribution 4.0 Inter-
national (CC-BY-4.0)
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Metr. Definition Formula

R1 Number of words having SENSE1 and SENSE2 in a given pattern. R1 = NS2

R2 Ratio of R1 and the number of words with SENSE1, whether or not
they have SENSE2.

R2 =
NS2
NS1

R3 R1 weighted by the log-frequency of occurrence of the word. R3 =
NS2∑

w=1

log(fw)

R4 R2 weighted by the log-frequency of occurrence of the word R4 =

∑NS2
w=1

log(fw)∑NS1
w=1

log(fw)

Table 1: Regularity metrics as proposed by (Lombard et al., 2024, pp. 4–5). While R1 and R3 capture the number
of pattern instantiations, R2 and R4 reflect the consistency with which words having a base sense (SENSE1) also
have a derived sense (SENSE2) within a pattern.

Type Pattern Example W. S.

new

ANIMAL - ARTIFACT My sister cleaned the porcupine of the brush.

35 70

ANIMAL - PERSON The chessplayer is always a cruel spider with his opponents.
ARTIFACT - MESSAGE A mean spear slipped through her lips in an angry tone.
BODY PART - OBJECT PART We can see the knee of the chair getting damaged.
NATURAL EVENT - HAPPENING There was a huge tornado of claps at the final of the challenge.
PERSON - ANIMAL Some zoos are trying to protect the doctor from extinction.
PHYS. PROP. - PSYCHOL. PROP. She said that the density of the project was an issue.

illegal My brother painted the curry of the controller in blue. 40 80
existing My dog chewed the tongue of my new shoes 40 40
all 115 190

Table 2: Sentence examples of each sense type, labeled in the original dataset as new, illegal, and existing. New
senses include 7 polysemy patterns (5 words per pattern). Illegal and existing senses are not annotated with patterns
in the original dataset. The column W. lists the number of words per sense type, while S. – the number of sentences.

perception of neology. The more recent study is
in English and focuses solely on regular metaphor,
whereas the earlier one is in French and involves
both metaphor and metonymy. Since the present
research focuses on metaphoric polysemy, we only
evaluate the part of the French dataset containing
metaphors. Having removed the metonymies, we
were left with only 42 sentences to evaluate, which
limited our ability to derive meaningful results for
French (see §4.2 and §5). The English dataset com-
prises 190 sentences.

The stimuli. The datasets contain sentences
with target words of three types:

1. Semantic neology: words used in a novel,
unattested sense. The derived metaphoric sense,
together with the base sense, represent a polysemy
pattern that a given word has never developed, un-
like other words from its semantic field. To ex-
emplify, the word knee represents a pattern BODY

PART-OBJECT PART and is used in the sentence
We can see the knee of the chair getting damaged.
For comparison, some of the words that actually
developed both senses are leg, heart, artery, vein,

antenna, wing, head, skeleton, brow, tongue etc.
2. Non-sensical derivation: semantic neolo-

gisms that follow a non-existent pattern in each lan-
guage. For instance, curry in My brother painted
the curry of the controller in blue represents an
unattested pattern FOOD-OBJECT PART.

3. Existing polysemy: words used in an attested
sense of a valid, existing polysemy pattern. For
example, tongue in My dog chewed the tongue of
my new shoes is used in an attested sense of an
OBJECT PART. An overview of the English dataset
with sentence examples is presented in Table 2.

The dataset is annotated with human acceptabil-
ity scores, regularity degree of polysemy patterns,
word frequency and word length.

Human acceptability rating. Human accept-
ability scores are derived from the initial psycholin-
guistic experiment. They reflect how plausible the
annotators found each sentence on a scale from ‘no
sense at all’ (0) to ‘completely acceptable’ (100).

Regularity. Each target word is annotated with
a score reflecting the degree of regularity of a poly-
semy pattern it instantiates. For the two languages,
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this metric has been calculated using different pro-
cedures. For English, the authors developed an
automatic extraction technique using WordNet and
proposed several formulas to calculate the regular-
ity degree of a pattern based on the extracted data.
These regularity metrics are summarized in Table 1.
For French, the authors relied on the judgment of
experts in French lexicology to assess the degree
of regularity for each pattern. The methodologi-
cal differences in the compilation of both datasets
seem to affect our results, which will be discussed
in more detail in Section 4.2.

3.2 Methods
To answer our research questions, we explore two
common methods in NLP and computational psy-
cholinguistics – surprisal and semantic similarity
from large language models.

Surprisal. Surprisal is the negative log-
probability of a token given its immediate con-
text. Surprisal theory (Hale, 2001; Levy, 2008)
assumes that the processing difficulty of the word
is based on its predictability. This information-
theoretic measure is typically used in the studies on
human reading, where it proved to predict reading
times and, consequently, cognitive processing dif-
ficulty in multiple languages (for recent work, see
de Varda and Marelli, 2022; Nair and Resnik, 2023;
Wilcox et al., 2023; Xu et al., 2023). It is also used
to assess the models’ ability to predict linguistic
acceptability (grammaticality) of sentences (Noh
et al., 2024). In our study, we use surprisal from
language models as a proxy of human acceptability
judgment of novel word senses: we assume that
higher surprisal values assigned to a target word
by an LM correspond to lower acceptability scores
obtained from human evaluation.

Semantic relatedness. Semantic similarity be-
tween a word and its context is used along with
surprisal to predict reading times, assess process-
ing difficulty and explain brain activity during lan-
guage processing (Leal et al., 2021; Salicchi et al.,
2021; Kun et al., 2023). Specifically, we apply the
cosine similarity between the vector of the target
word and the vector of the sentence obtained by
mean-pooling. Additionally, since a few rogue di-
mensions often dominate similarity measures in
transformer models (Timkey and van Schijndel,
2021), we compare the original and normalized
vectors (z-scoring) to assess their impact. We also
use Spearman’s ρ as a similarity metric, another
technique suggested by Timkey and van Schijn-

del (2021) and replicated by Lyu et al. (2023) and
Salicchi et al. (2023).

In reading experiments, low similarity between
a word and its context is associated with increased
human reading difficulty. In our study, we expect
to associate low similarity rating from LMs with
low human acceptability of semantic neologisms.

As shown by Salicchi et al. (2023), both surprisal
and semantic relatedness equally contribute to the
prediction of reading difficulty, despite operating
at different levels of language structure. While
surprisal operates at the syntagmatic level and re-
flects how predictable the word is from its context,
semantic relatedness reflects coherence of a word
with its context modeling paradigmatic dimension.
Both surprisal and semantic relatedness proved to
predict brain activity during language comprehen-
sion and are associated with signals from distinct
brain areas (Frank and Willems, 2017; Michaelov
et al., 2023; Salicchi and Hsu, 2025).

3.3 Models

We used a set of masked language models and com-
pared them with an autoregressive Llama.

For English, we use the monolingual BERT as
well as RoBERTa. For French, we took the BERT-
based FlauBERT, and the RoBERTa-based Camem-
BERTv2. We also evaluate multilingual models on
both languages: mBERT and XLM-RoBERTa.

Surprisal experiments typically use unidirec-
tional decoder models (e.g., GPT), as they rely only
on left-context to emulate human reading, avoiding
access to future words. In our case, the experi-
mental settings of the initial psycholinguistic study
entail the choice of a masked model: the evaluators
were first presented with the context on both sides
before seeing the full sentence. We still include
an autoregressive LM to compare the results and
challenge our assumption about masked language
modeling being more suitable for our task. For
this, we chose Llama 3.1 8B and Llama 3.2 3B,
which we oppose to BERT as more recent and sig-
nificantly larger multilingual models that include
English and French. For all models, weights were
taken off HuggingFace. Additional information on
these models is presented in Table 5 of Appendix A.
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4 Experiments and Results

4.1 Experiments
We feed the sentences into each of the language
models and compute2 the surprisal and semantic
relatedness scores as described in Methods section
(§3). For this, we use the minicons library pro-
vided by Misra (2022). For bi-directional models,
we rely on the ‘pseudo-log-likelihood’ proposed by
Kauf and Ivanova (2023), which takes into account
multi-token and out-of-vocabulary words.3

We then compute the Spearman correlation be-
tween the human acceptability scores and each of
the measures (target word surprisal and the similar-
ity between the target word and its context).

4.2 Results

Models Default K & I PF
BERTBASE -0.65 -0.63 -0.61
BERTLARGE -0.68 -0.65 -0.64
RoBERTaBASE -0.67 -0.76 -0.68
RoBERTaLARGE -0.72 -0.78 -0.70
XLM-RoBERTaBASE -0.38 -0.56 -0.39
XLM-RoBERTaLARGE -0.44 -0.63 -0.43
mBERTBASE -0.26 -0.47 -0.47
Llama 3.1 8B -0.65 - -
Llama 3.2 3B -0.65 - -

Table 3: Results of the surprisal experiment in English.
The column Default reports results obtained from the
default implementation of minicons (Misra, 2022), the
column K & I reports the results from the method by
Kauf and Ivanova (2023), and PF – from the PsychForm-
ers application (Michaelov et al., 2023). All results are
statistically significant (p<.05). Bold formatting points
to the strongest correlation achieved by each model.

Surprisal. Across models, we observe moderate
to strong correlation with human judgment. As
expected, models correlate negatively, showing that
more acceptable senses elicit lower surprisal.

Among masked models, the strongest correlation
was achieved by RoBERTaLARGE at -0.78, p<.001.
It is followed by BERTLARGE showing moderate
negative correlation of -0.68, p<.001. Multilingual
models demonstrated poorer results with correla-
tion coefficients of -0.63 for XLM-RoBERTaLARGE

(p<.001), as well as -0.47 for mBERT (p<.001).
2The information on GPU use and computation time is

reported in Appendix B.
3We also tested the standard scoring based on Salazar et al.,

2020, and that of PsychoFormers (Michaelov and Bergen,
2022), obtaining generally lower results, as shown in Table 3.

As mentioned previously, the method of Kauf and
Ivanova (2023) yielded the best results, except for
the BERT models which performed slightly better
using the standard metric. See Table 3 for a com-
plete overview of the different models and metrics.

As for autoregressive models, Llama 3.1 8B and
Llama 3.2 3B achieved correlation of -0.65 (p<.001
for both), yielding the best results among the mul-
tilingual models but exhibiting a lower correlation
than the smaller monolingual encoders.

In French, none of the models gave statistically
significant correlation at the word level. We at-
tribute this to the much smaller dataset size (42
sentences). However, we could still obtain usable
results by changing the experimental settings: we
checked correlation of sentence-wise surprisal with
human judgment (obtained by sum and mean) and
received statistically significant results for XLM-
RoBERTaLARGE, at -0.32, p=.039 (sum). We com-
pared this result with the sentence surprisal of the
English version from XLM-RoBERTa, and curi-
ously, for English, this was the only model that
showed stronger correlation when computing sen-
tence surprisal instead of the target word surprisal
(-0.65 vs. -0.63, p<.001 in both cases). Table 6
in Appendix C presents all scores obtained from
the sentence-wise correlation experiment. Addi-
tionally, it reports correlation of sentence surprisal
with the acceptability of polysemy patterns, where
XLM-RoBERTaLARGE achieved moderate signifi-
cant correlation.

Semantic relatedness. The results of the experi-
ment with semantic relatedness are more difficult
to summarize, as the data does not allow to dis-
cern clear trends. In different models, the high-
est correlation was achieved across varying layers,
model sizes and normalization approaches. More-
over, some models show positive correlation with
human judgment, while others correlate negatively.
This is not expected, as usually we assume a better
word/context coherence to elicit higher acceptabil-
ity scores. Tables 7 to 10 of Appendix D offer a
full overview of the correlation scores distribution
within several selected models: masked RoBERTa
and FlauBERT for English and French, as well as
a significantly bigger multilingual autoregressive
Llama 3.1 8B. Here, we will only highlight the
best results achieved by the models to give an idea
of how inconsistent they are across experimental
settings.

The strongest correlation was reached by Llama
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3.1 8B (32 layers) in the layer 4 using Spearman’s
ρ instead of cosine, the correlation being positive
(0.66, p<.001). RoBERTaBASE (12 layers) follows
with coefficient of -0.58, p<.001 in the ninth layer
without applying any normalization techniques.
Finally, BERTBASE (12 layers) achieved the cor-
relation of 0.52 in the last layer when applying
Spearman’s ρ instead of the cosine (p<.001). Mul-
tilingual models score 0.5 and below, their best
achieved correlation coefficients being scattered
across different experimental settings.

For French, the scores lie in the same range, but
with the strongest correlation achieved by a smaller
Llama 3.2 3B (-0.53, p<.001, in the last 28th layer,
non-normalized).

Lyu et al. (2023) report similar outcome of their
study of lexical stylistic features in language mod-
els: although normalization generally improves the
results (especially for the multilingual models), it
is hard to single out the best technique for all mod-
els and experimental settings. As for Salicchi et al.
(2023), they do not notice any effect of BERT’s
embedding anisotropy on reading times prediction.

Overall, semantic relatedness results show no
clear interpretable trend across models and settings.

5 Discussion

In this section, we will address the research ques-
tions presented in the Introduction (§1).
RQ1. Regarding the choice of measure (surprisal
or semantic relatedness), the results suggest that
surprisal is preferable. Not only because it achieved
strong correlation (-0.78 for RoBERTaLARGE in sur-
prisal vs. -0.61 for Llama 3.2 3B in similarity
setting), but also because it is consistent, more in-
terpretable, and easier to obtain. While we can con-
firm the assumption that surprisal is in an inverse
relationship with sense plausibility as assessed by
humans, the semantic similarity scores correlated
both negatively and positively depending on the
model, its layer and the embedding normalization
technique (see Tables in Appendix D). Finding the
most suitable configuration thus demands running
a considerable number of trials.
RQ2. In surprisal setting, masked LMs performed
better, confirming our assumption that masked
model scoring with its access to the bi-directional
context would be more suitable for our task. Pre-
vious research has repeatedly shown that larger
model size delivers a poorer prediction of process-
ing difficulty (Oh and Schuler, 2022; Salicchi et al.,

2023; Liu et al., 2024; Shain et al., 2024). In con-
trast, in our experiments, large varieties of the same
models always performed above the base ones (see
Table 3). Interestingly, much larger Llama 3.1 8B
and 3.2 3B did not outperform masked monolin-
gual BERT and RoBERTa (330M and 355M re-
spectively for large varieties). We attribute this
to differences in model architecture, although it
requires further investigation. The Limitations sec-
tion (Appendix E) elaborates more on this issue. In
the case of semantic similarity, results are not con-
sistent enough to draw conclusions on this topic, as
explained in the Results section.

We further analyse the results to test the models’
sensitivity to such features as sense types, regular-
ity degrees, word frequency and word length.
RQ3. We run a series of tests to confirm whether
the models discriminate between the senses de-
rived using the existing and non-existing patterns,
as well as to see if they are sensitive to the vary-
ing pattern regularity degrees. We took our best-
performing masked model RoBERTaLARGE and an
autoregressive Llama 3.1 8B, for comparison. For
French, we picked the same Llama model and
FlauBERTLARGE. A Mann-Whitney U test on two
independent samples for the two sense types (two-
sided, p<0.05) shows that the difference is signif-
icant for RoBERTa, Llama and human evaluators.
They could distinguish between all three groups
of senses (Figure 1). For French, FlauBERT and
Llama 3.1 8B did not yield significancy (see Fig-
ure 4 in Appendix E for score distribution).
RQ4. In the same way, we established that lan-
guage models were sensitive to the degrees of reg-
ularity of the polysemy patterns the senses instanti-
ated, although not as fine-grained as humans: while
the Mann-Whitney U test shows significancy in the
difference between low, medium and high regular-
ity of patterns for humans, the models only discrim-
inate between high/low and medium/low groups
(Figure 2). Again, neither Llama nor FlauBERT
reached statistical significance in French. The dis-
tribution plot can be found in Appendix E, Figure 5.
RQ5. We also establish whether there is a rela-
tion between the model scoring and such factors
as the degree of polysemy pattern regularity, word
frequency and word length. The latter two factors
contribute to the cognitive processing load in hu-
mans since less frequent and longer words require
more time to process (Pollatsek et al., 2008). Fig-
ure 3 illustrates the pattern of correlation (Pearson)
between four regularity metrics and the measures
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Figure 1: Distribution of English surprisal scores by condition labeled in the original dataset as new, illegal and
existing. These correspond to the groups (1), (2) and (3) respectively, as described in the Section 3.1. High model
surprisal is expected to correspond to the low acceptability scores in the human rating.

Figure 2: Distribution of surprisal scores by regularity degrees labeled as high, medium and low for the English data.
High model surprisal is expected to correspond to the low acceptability scores in the human rating.

of semantic similarity and surprisal from RoBERTa
and Llama, as compared to human evaluators. As
described in Table 1, we consider a count-based
metric R1, consistency-based metric R2 and two
metrics that weight them by the log-frequency of
the occurrence of the word – R3 and R4. The
measure of surprisal is more aligned with the hu-
man judgment correlated with regularity, Llama
showing almost identical coefficients for most met-
rics. The same as for human evaluators, for both
language models, the regularity metrics that re-
flect how consistently words instantiate a poly-
semy pattern appeared to be more relevant than the
sheer number of words having the SENSE1 and the
SENSE2. Weighting R1 and R2 by word frequency
generally did not improve the correlation coeffi-
cients (except for RoBERTa in R4 where it gains
one point). Again, the correlation scores for the
measure of semantic relatedness are generally low,
with apparent preference for consistency-based and
frequency-weighted metrics. All correlation coeffi-
cients are listed in Table 11, Appendix E.

As for the effect of the word frequency and word
length, the models generally show a low correla-
tion, although it is higher than the one computed
with human scoring. The exceptions are RoBERTa

in the similarity setting and FlauBERT in the sur-
prisal setting relying on these features more and
correlating moderately (see Table 4 for correlation
scores and Figure 6 in Appendix E for visualiza-
tion).

English
Models W. freq. W. length

RoBERTaLARGE SURP -0.21* 0.24*
EN Llama 3.1 8B SURP -0.27* 0.16*
RoBERTaLARGE SIMIL -0.34* 0.33*
Llama 3.1. 8B SIMIL 0.07 0.1
Human acceptability rating 0.04* -0.09*

French
FlauBERTLARGE SURP 0.38* 0.41*
Llama 3.1 8B SURP 0.00 0.29
FlauBERTLARGE SIMIL 0.06 -0.07
Llama 3.1 8B SIMIL -0.16 0.16
Human acceptability rating -0.15 0.17

Table 4: Correlation (Pearson) of word length and word
frequency with model scoring and human evaluation.
Asterisk (*) indicates a statistically significant correla-
tion (p<.05).

6 Conclusions

In this paper, we investigated the effect of the
graded regularity of polysemy patterns on the pro-
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Figure 3: Pearson’s r for regularity metrics as described in Section 5, in absolute numbers. The dashed line marks
the measure of surprisal from RoBERTa and Llama, while word/context similarity remains unmarked.

cessing of novel metaphorical word senses by large
language models. Using surprisal and semantic re-
latedness as proxies, we found evidence that mod-
els represent regularity of polysemy extensions in a
human-like way. Especially surprisal proved to ad-
equately model sense plausibility, showing a strong
correlation with human judgment. Among models,
RoBERTa delivered the best results. Furthermore,
the distributions of model scores suggest sensitivity
to different types of sense extensions and regularity
degrees. Similarly to humans, LLMs could dis-
criminate between attested polysemes, novel senses
derived from regular polysemy patterns and non-
sensical derivations. They were, however, less re-
sponsive to the gradations in regularity, only differ-
entiating very regular and weakly regular patterns.
These observations allow us to better understand
how LLMs model lexical ambiguity and to what ex-
tent such factors as regularity, continuity and sense
relatedness affect model representations.
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A Model Information

Table 5 offers a model description in terms of size and languages, HuggingFace names, as well as paper
references.

Model Reference Layers Lang. Size
google-bert/bert-base-uncased Devlin et al., 2019 12 EN 110M
google-bert/bert-large-uncased Devlin et al., 2019 24 EN 330M
FacebookAI/roberta-base Liu et al., 2019 12 EN 125M
FacebookAI/roberta-large Liu et al., 2019 24 EN 355M
almanach/camembertv2-base Antoun et al., 2024 12 FR 112M
FlauBERT/flaubert_base_cased Le et al., 2020 12 FR 138M
FlauBERT/flaubert_large_cased Le et al., 2020 24 FR 373M
google-bert/bert-base-multilingual-uncased Devlin et al., 2019 12 multi 179M
FacebookAI/xlm-roberta-base Conneau et al., 2019 12 multi 279M
FacebookAI/xlm-roberta-large Conneau et al., 2019 24 multi 560M
meta-llama/Llama-3.1-8B Grattafiori et al., 2024 32 multi 8B
meta-llama/Llama-3.2-3B Grattafiori et al., 2024 28 multi 3B

Table 5: Models used in this experiment can be obtained from https://huggingface.co.

B GPU Use

We ran the experiments with Llama 3.1 8B and LLama 3.2 3B on an Nvidia Ampere A100 80GB GPU
node. We estimate the overall execution time to be 200 hours.

C Sentence-wise Surprisal

Sentence surprisal for EN models,
word acceptability

Sentence surprisal for FR models,
word acceptability

Sent. surprisal for FR models,
pattern acceptability

Model Default K & I Model Default K & I Default K & I
BERTBASE -0.46* -0.54* CamemBERTv2BASE 0.02 -0.06 -0.2 -0.11
BERTLARGE -0.46* -0.55* FlauBERTBASE -0.18 - -0.11 -
RoBERTaBASE -0.57* -0.63* FlauBERTLARGE -0.17 - -0.06 -
RoBERTaLARGE -0.54* -0.61* XLM-RoBERTaBASE -0.24 -0.15 -0.3 0.01
XLM-RoBERTaBASE -0.36* -0.54* XLM-RoBERTaLARGE -0.32* -0.23 -0.52* -0.21
XLM-RoBERTaLARGE -0.42* -0.65* mBERTBASE 0.02 0.02 -0.12 -0.02
mBERTBASE -0.16 -0.41* Llama 3.2 3B -0.2 - -0.23 -
Llama 3.2 3B -0.62* - Llama 3.1 8B -0.19 - -0.27 -
Llama 3.1 8B -0.62* -

Table 6: Spearman correlaiton coefficients for sentence surprisal and human acceptability scores in English and
French. For French, we additionally include the correlation with human acceptability as per polysemy pattern
(averaged over acceptability of each word instance of a pattern). Asterisk (*) indicates a statistically significant
result at p < .05.

D Semantic Similarity vs. Human Acceptability Judgment

We show mixed results obtained from the experiments with semantic similarity for selected models in
Tables 7 to 10. Results are presented for RoBERTa, FlauBERT and Llama 3.1 8B covering both languages.
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RoBERTaBASE

L. Cosine Cosine norm. Spearman
0 -0.2, p=.034 0.08, p=.422 0.0, p=.964
1 -0.18, p=.058 0.27, p=.003 0.2, p=.031
2 -0.27, p=.003 0.37, p<.001 0.25, p=.006
3 -0.28, p=.002 0.44, p<.001 0.34, p<.001
4 -0.31, p<.001 0.56, p<.001 0.38, p<.001
5 -0.32, p<.001 0.54, p<.001 0.42, p<.001
6 -0.39, p<.001 0.42, p<.001 0.32, p<.001
7 -0.52, p<.001 0.25, p=.008 0.15, p=.105
8 -0.55, p<.001 0.1, p=.301 0.06, p=.494
9 -0.58, p<.001 -0.14, p=.129 -0.14, p=.144

10 -0.38, p<.001 -0.26, p=.006 -0.27, p=.003
11 -0.15, p=.102 -0.33, p<.001 -0.26, p=.005
12 -0.19, p=.04 -0.3, p=.001 -0.23, p=.013

RoBERTaLARGE

0 -0.02, p=.808 -0.0, p=.959 -0.05, p=.6
1 -0.15, p=.121 0.15, p=.104 0.0, p=.966
2 -0.32, p<.001 0.27, p=.004 -0.07, p=.485
3 -0.36, p<.001 0.29, p=.001 0.0, p=.974
4 -0.29, p=.002 0.32, p<.001 0.22, p=.017
5 -0.14, p=.131 0.36, p<.001 0.17, p=.062
6 -0.16, p=.086 0.43, p<.001 0.2, p=.034
7 -0.21, p=.022 0.48, p<.001 0.33, p<.001
8 -0.2, p=.029 0.5, p<.001 0.31, p<.001
9 -0.26, p=.005 0.47, p<.001 0.29, p=.002

10 -0.17, p=.078 0.41, p<.001 0.16, p=.083
11 0.01, p=.923 0.36, p<.001 0.09, p=.325
12 -0.25, p=.007 0.42, p<.001 0.14, p=.123
13 -0.17, p=.078 0.32, p<.001 0.06, p=.508
14 -0.21, p=.022 0.18, p=.048 -0.0, p=.99
15 -0.23, p=.016 0.11, p=.238 -0.09, p=.316
16 -0.23, p=.014 0.13, p=.166 -0.06, p=.549
17 -0.21, p=.023 0.11, p=.254 -0.08, p=.376
18 -0.2, p=.029 -0.05, p=.589 -0.2, p=.033
19 -0.37, p<.001 -0.18, p=.059 -0.26, p=.006
20 -0.48, p<.001 -0.29, p=.002 -0.18, p=.057
21 -0.48, p<.001 -0.36, p<.001 -0.12, p=.188
22 -0.34, p<.001 -0.46, p<.001 -0.2, p=.028
23 -0.0, p=.974 -0.49, p<.001 -0.34, p<.001
24 -0.4, p<.001 -0.26, p=.005 -0.21, p=.025

Table 7: Layerwise correlation of human acceptability
scores with semantic relatedness of a word with its con-
text, as computed by RoBERTaBASE and RoBERTaLARGE

models.

FlauBERTBASE

L. Cosine Cosine norm. Spearman
0 -0.01, p=.937 0.15, p=.356 -0.05, p=.764
1 0.05, p=.763 0.19, p=.22 0.08, p=.623
2 0.03, p=.848 0.19, p=.221 0.05, p=.773
3 0.02, p=.901 0.22, p=.17 0.04, p=.796
4 0.02, p=.882 0.24, p=.126 0.07, p=.677
5 0.04, p=.825 0.24, p=.125 0.07, p=.673
6 0.01, p=.935 0.21, p=.187 0.05, p=.737
7 0.05, p=.736 0.2, p=.205 0.04, p=.793
8 0.06, p=.696 0.21, p=.181 0.1, p=.51
9 0.11, p=.491 0.15, p=.331 0.09, p=.562

10 0.09, p=.55 0.15, p=.347 0.09, p=.578
11 0.13, p=.404 0.21, p=.182 0.13, p=.401
12 0.31, p=.049 0.35, p=.023 0.33, p=.031

FlauBERTLARGE

0 -0.05, p=.765 0.17, p=.293 -0.06, p=.719
1 -0.08, p=.628 0.18, p=.241 0.04, p=.81
2 -0.11, p=.471 0.14, p=.375 -0.07, p=.647
3 -0.15, p=.352 0.09, p=.553 -0.05, p=.76
4 -0.32, p=.041 0.04, p=.79 -0.15, p=.359
5 -0.34, p=.026 0.1, p=.513 -0.12, p=.464
6 -0.35, p=.022 0.2, p=.207 -0.08, p=.634
7 -0.31, p=.045 0.4, p=.01 -0.01, p=.944
8 -0.32, p=.036 0.45, p=.003 0.09, p=.577
9 -0.41, p=.008 0.45, p=.002 0.06, p=.684

10 -0.39, p=.011 0.45, p=.003 0.12, p=.436
11 -0.4, p=.009 0.45, p=.003 0.16, p=.316
12 -0.38, p=.014 0.46, p=.002 0.15, p=.329
13 -0.38, p=.014 0.5, p<.001 0.14, p=.369
14 -0.42, p=.006 0.42, p=.005 0.12, p=.43
15 -0.39, p=.01 0.37, p=.016 0.13, p=.42
16 -0.41, p=.007 0.38, p=.014 0.16, p=.324
17 -0.35, p=.023 0.42, p=.006 0.19, p=.232
18 -0.31, p=.044 0.43, p=.005 0.14, p=.38
19 -0.35, p=.023 0.41, p=.008 0.15, p=.332
20 -0.32, p=.036 0.39, p=.011 0.13, p=.414
21 -0.24, p=.121 0.38, p=.013 0.12, p=.438
22 -0.23, p=.136 0.39, p=.01 0.13, p=.395
23 -0.21, p=.18 0.4, p=.01 0.11, p=.489
24 -0.25, p=.106 0.44, p=.003 0.15, p=.336

Table 8: Layerwise correlation of human accept-
ability scores with semantic relatedness of a word
with its context, as computed by FlauBERTBASE and
FlauBERTLARGE.
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Llama 3.1 8B (on English)
L. Cosine Cosine norm. Spearman

0 -0.01, p=.886 -0.16, p=.095 0.07, p=.464
1 0.02, p=.814 -0.01, p=.938 0.13, p=.164
2 -0.03, p=.749 0.19, p=.039 0.39, p<.001
3 -0.13, p=.157 0.34, p<.001 0.49, p<.001
4 0.06, p=.522 0.54, p<.001 0.66, p<.001
5 0.07, p=.449 0.5, p<.001 0.61, p<.001
6 0.13, p=.164 0.41, p<.001 0.51, p<.001
7 0.21, p=.026 0.43, p<.001 0.54, p<.001
8 0.28, p=.002 0.43, p<.001 0.54, p<.001
9 0.42, p<.001 0.4, p<.001 0.5, p<.001

10 0.42, p<.001 0.41, p<.001 0.52, p<.001
11 0.48, p<.001 0.4, p<.001 0.48, p<.001
12 0.51, p<.001 0.44, p<.001 0.51, p<.001
13 0.58, p<.001 0.48, p<.001 0.54, p<.001
14 0.58, p<.001 0.49, p<.001 0.54, p<.001
15 0.54, p<.001 0.48, p<.001 0.5, p<.001
16 0.52, p<.001 0.43, p<.001 0.47, p<.001
17 0.47, p<.001 0.42, p<.001 0.49, p<.001
18 0.38, p<.001 0.38, p<.001 0.45, p<.001
19 0.36, p<.001 0.38, p<.001 0.46, p<.001
20 0.32, p<.001 0.36, p<.001 0.47, p<.001
21 0.31, p<.001 0.35, p<.001 0.47, p<.001
22 0.29, p=.002 0.26, p=.005 0.41, p<.001
23 0.25, p=.007 0.19, p=.041 0.35, p<.001
24 0.22, p=.016 0.16, p=.08 0.33, p<.001
25 0.2, p=.03 0.13, p=.152 0.3, p=.001
26 0.19, p=.042 0.11, p=.222 0.29, p=.001
27 0.21, p=.022 0.1, p=.28 0.27, p=.003
28 0.15, p=.109 0.09, p=.328 0.29, p=.002
29 0.12, p=.194 0.07, p=.486 0.26, p=.005
30 0.11, p=.228 0.05, p=.563 0.25, p=.007
31 0.04, p=.648 0.06, p=.54 0.21, p=.023
32 -0.26, p=.004 0.07, p=.428 -0.2, p=.032

Table 9: Layerwise correlation of human acceptability
scores with semantic relatedness of a word with its con-
text, as computed by Llama 3.1 8B, on English.

Llama 3.1 8B (on French)
L. Cosine Cosine norm. Spearman
0 -0.04, p=.812 0.12, p=.478 -0.02, p=.885
1 0.04, p=.816 0.05, p=.779 -0.01, p=.943
2 -0.13, p=.444 0.29, p=.076 0.03, p=.867
3 -0.23, p=.17 0.06, p=.74 -0.01, p=.947
4 -0.29, p=.073 0.11, p=.525 0.08, p=.651
5 -0.21, p=.214 0.31, p=.059 0.16, p=.348
6 -0.06, p=.741 0.4, p=.013 0.19, p=.263
7 0.09, p=.596 0.41, p=.01 0.2, p=.228
8 -0.06, p=.703 0.37, p=.022 0.2, p=.239
9 -0.03, p=.859 0.3, p=.07 0.19, p=.263

10 0.06, p=.723 0.27, p=.099 0.18, p=.27
11 0.17, p=.31 0.3, p=.066 0.2, p=.234
12 0.12, p=.455 0.26, p=.121 0.14, p=.388
13 0.06, p=.725 0.25, p=.128 0.2, p=.238
14 0.12, p=.492 0.24, p=.141 0.2, p=.226
15 0.09, p=.608 0.15, p=.385 0.12, p=.472
16 0.04, p=.805 0.09, p=.609 0.01, p=.94
17 -0.01, p=.968 0.12, p=.478 0.11, p=.518
18 -0.09, p=.591 0.1, p=.569 0.14, p=.411
19 -0.14, p=.392 0.09, p=.605 0.13, p=.431
20 -0.22, p=.185 0.1, p=.555 0.1, p=.55
21 -0.23, p=.156 0.09, p=.581 0.04, p=.811
22 -0.24, p=.14 0.1, p=.541 0.02, p=.895
23 -0.25, p=.133 0.07, p=.655 -0.0, p=.996
24 -0.27, p=.107 0.15, p=.364 0.0, p=.98
25 -0.27, p=.097 0.1, p=.537 0.04, p=.806
26 -0.3, p=.065 0.17, p=.316 0.07, p=.695
27 -0.24, p=.139 0.16, p=.345 0.09, p=.611
28 -0.26, p=.117 0.16, p=.34 0.1, p=.559
29 -0.26, p=.113 0.17, p=.316 0.11, p=.524
30 -0.33, p=.04 0.14, p=.393 0.02, p=.888
31 -0.29, p=.074 0.1, p=.549 -0.1, p=.541
32 -0.33, p=.046 0.09, p=.609 -0.21, p=.21

Table 10: Layerwise correlation of human acceptability
scores with semantic relatedness of a word with its con-
text, as computed by Llama 3.1 8B, on French.
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E Analysis of Model Scoring

Figure 4 demonstrates the surprisal score distribu-
tion in French for three types of senses as described
in Section 3.1. The data on human evaluation is
absent from this figure, since it was not obtained
by the authors of the initial psycholinguistic exper-
iment (Lombard et al., 2023).

Figure 5 shows surprisal score distribution in
French as per regularity degree, along with human
acceptability judgment.

Table 11 reveals the relationships of the models
with the degree of pattern regularity, while Figure 4
shows correlation with word frequency and word
length, as compared to the human evaluators.

Figure 4: Distribution of French surprisal scores by
condition labeled in the original dataset as new, illegal
and existing. These correspond to the groups (1), (2)
and (3) described in the Section 3.1

Limitations

Languages. In our experiments, we mainly fo-
cus on English data. The size of the dataset in
French often did not allow us to make meaning-
ful comparisons or confirm the validity of results
received from English. As shown by Srinivasan
and Rabagliati (2015), polysemy patterns and their
degree of regularity overlap only partially across
languages. Hence, studying the phenomenon of

Figure 5: Distribution of surprisal scores by regularity
degrees labeled as high and low for the French data.

Models R1 R2 R3 R4
RoBERTaLARGE SURP -0.36* -0.43* -0.18 -0.44*
Llama 3.1 8B SURP -0.26* -0.43* -0.01 -0.3*
RoBERTaLARGE SIMIL -0.08 -0.17 -0.22 -0.27*
Llama 3.1 8B SIMIL 0.03 -0.12 -0.03 -0.08
Human acceptability rating 0.28* 0.53* 0.00 0.31*

Table 11: Correlation (Pearson) between the regularity
metrics and scores from surprisal, similarity and human
evaluation. The regularity metrics are defined in Table 1.
Asterisk (*) indicates a statistically significant correla-
tion (p < .05). Since the high human acceptability is
associated with low model surprisal, the negative corre-
lation with model-derived metrics is expected.

continuous regular polysemy in one language has
limited generalization potential. More languages
from diverse language families need to be involved
in such investigations.
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Figure 6: Correlation (Pearson) of word frequency and
word length with the measures of semantic relatedness,
surprisal and human rating. The empty circles repre-
sent word length, while the filled circles represent word
frequency.

Model size. Regarding the models represented
in our study, it would be interesting to compare
masked BERT-based varieties with an autoregres-
sive model that actually matches their size (such as
GPT-2). Certain differences in polysemy process-
ing were difficult to interpret since both varying
architectures and wide-ranging model sizes were
involved.

Model architecture. It is possible that the
weaker correlation with human judgment achieved
by the autoregressive language models is due to
the initial psycholinguistic experiment design that
favors bidirectional language models over unidirec-
tional ones. Precisely, the authors first introduce
the participants to a sentence with the target word
masked. Afterwards, the participants see the full
sentence and are asked to judge its plausibility on
a scale from 1 to 100 by moving the cursor. This
way, the human evaluators have a chance to con-
sider the context on both sides before deciding on
plausibility. In the surprisal setting, having access
to the left context only, the autoregressive Llama
does not mimic this behavior and does not align

as closely with human estimation. Another argu-
ment in favor of this idea is that the subsequent
analysis of the correlation of surprisal scores with
the different regularity metrics showed that Llama
delivers identical results to human evaluators for
almost all regularity metrics. At the same time,
RoBERTa, while generally following the correla-
tion pattern, does not align as closely (see Figure 3
and Table 11, Appendix E). This suggests that our
experimental design might poorly accommodate
this model type, and we need other means of estab-
lishing whether the sensitivity to scalar regularity
in models of different architectures varies.

Methodology. In order to understand the effect
of such variables as word length, word frequency,
and pattern regularity degree on the model scoring,
we conducted correlation analyses and were able
to gain insights from them. However, a deeper
understanding of each variable’s contribution to the
results requires a regression study, which we plan
to conduct as part of future work.
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Abstract

While natural language is processed incremen-
tally, it is unclear whether the syntactic struc-
ture prediction process is universal across lan-
guages or language-specific. This study investi-
gates this question by revisiting parsing strate-
gies of syntactic language models that incre-
mentally predict both the next token and the
associated syntactic structure. Unlike previous
studies that have focused on a few strategies,
we examine a wide range of strategies by intro-
ducing different parameterizations of “specu-
lation”, which quantifies the degree to which
a model predicts syntactic structure before en-
countering the corresponding tokens. The ex-
periments with 10 typologically diverse lan-
guages reveal that the optimal strategy differs
depending on the language and the beam size.

1 Introduction

Understanding how syntactic structure is incremen-
tally processed during language comprehension is a
fundamental challenge in computational linguistics
and cognitive science. Syntactic language model-
ing (SLM), also known as syntax-aware language
modeling, provides a direct approach to addressing
this question (Choe and Charniak, 2016; Dyer et al.,
2016; Qian et al., 2021; Sartran et al., 2022). SLM
is a task that jointly performs parsing and next-
token prediction, thereby explicitly modeling the
interplay between syntactic structure and incremen-
tal sequence processing. This approach has proven
valuable for offering insights into the cognitive
mechanisms of human language processing (Hale
et al., 2018; Yoshida et al., 2021; Sugimoto et al.,
2024).

While SLM provides a framework for modeling
syntactic processing, there exist multiple ways to
incrementally process the same sequence of tokens
and syntactic structures depending on the timing of
structure prediction (Figure 1). These differences
in processing are captured by the concept of “pars-

Figure 1: Example of incremental structure prediction
process.

ing strategy,” (Abney and Johnson, 1991). For ex-
ample, Figure 1 illustrates the two most commonly
used strategies in parsing: top-down and bottom-
up. Top-down is a strategy that predicts structure
before tokens, while bottom-up is a strategy that
predicts structure after tokens. Previous studies in
SLM, however, have primarily focused on a lim-
ited set of strategies, such as top-down, bottom-up,
and left-corner, and, moreover, lack cross-linguistic
comparisons (Kuncoro et al., 2018; Yoshida et al.,
2021), leaving it unclear whether optimal strategies
are universal or language-specific.

This paper aims to address this gap in the liter-
ature by conducting a comprehensive analysis of
parsing strategies for SLM across a diverse set of
languages. To this end, we explore a wide range of
parsing strategies from the perspective of “specula-
tion”, which quantifies the degree to which a model
predicts syntactic structure before encountering the
corresponding tokens. For example, the top-down
strategy is highly speculative because it cannot use
token information for structure prediction, and the
predicted structure may be incorrect depending on
subsequent tokens. In this work, we consider strate-
gies based on 4 different parameterizations of spec-
ulation and evaluate a total of 15 distinct strategies
on SLM tasks in 10 typologically diverse languages.
While less speculative strategies might intuitively
seem more advantageous, our experiment demon-
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strates that it is not always the case: the optimal
strategy can vary across languages and depends on
the beam size. Furthermore, we also analyze the
fundamental question: does syntactic structure con-
tribute to token prediction? By comparing strate-
gies with different degrees of speculation, we show
that syntactic structure indeed captures information
about tokens, while also suggesting that exact pars-
ing might not be necessary for token prediction.
The implementation code is available at https:
//github.com/mynlp/optimal-strategy.git.

2 Background

Early studies argued that the left-corner strategy is
more efficient and cognitively plausible than top-
down or bottom-up strategies (Abney and John-
son, 1991; Resnik, 1992).1 These arguments relied
primarily on analyzing the maximum stack size
required by shift-reduce parsers (Abney and John-
son, 1991; Resnik, 1992; Noji and Miyao, 2014).
However, as Resnik (1992) points out, the differ-
ence in stack efficiency between strategies depends
on the specific implementation of the parser. For
instance, implementations of Recurrent Neural Net-
work Grammar (RNNG) (Dyer et al., 2016; Noji
and Oseki, 2021) require O(n) stack size for right-
branching structures even with the top-down strat-
egy unlike claimed to be O(1) in (Abney and John-
son, 1991). Therefore, it is unclear to what extent
stack efficiency influences the choice of incremen-
tal processing strategies.

In the context of SLM, recent studies have ex-
plored the impact of different parsing strategies
on downstream tasks such as language modeling
and parsing. For example, Kuncoro et al. (2018)
compared top-down, bottom-up, and left-corner
strategies for English number agreement, finding
that top-down parsing yielded better performance.
Yoshida et al. (2021) compared top-down and left-
corner strategies for Japanese language modeling,
demonstrating the effectiveness of the left-corner
strategy. Kuribayashi et al. (2024) compared top-
down and left-corner strategies using an artificial
language dataset with varying word order. How-
ever, these studies are limited in several aspects.
First, they focus on a limited set of parsing strate-
gies, e.g., top-down, bottom-up, and left-corner,
due to the ease of implementation. Second, there
is a lack of comprehensive cross-linguistic com-

1The left-corner strategy predicts a phrase structure imme-
diately after reading the leftmost token of that phrase.

top-down left-n-corner

uniform-speculation local-first

global-first bottom-up

Table 1: Examples of parsing strategies. The numbers
inside the circles indicate the order of node enumeration,
and the numbers to the right of each nonterminal node
represent its iv .

parisons using real-world natural language data,
leaving it unclear whether optimal parsing strate-
gies are universal or language-specific.

To this end, this study conducts a more com-
prehensive analysis of parsing strategies for SLM,
both in terms of strategies and languages.

3 Formulating Various Strategies

Following the general formulation of Abney and
Johnson (1991), we formalize various parsing
strategies. The difference between parsing strate-
gies is defined by the timing at which each nonter-
minal node is opened. This allows us to express
each strategy as a specific enumeration order of
the nodes in a syntactic tree. Abney and Johnson
(1991) demonstrated that different parsing strate-
gies can be represented by strategy parameters iv
for each node v.2 Let u1, . . . , un be the children of
v; iv = i indicates that the parent node v is opened
immediately after its i-th child ui is completed.
The case of iv = 0 indicates that v is opened be-
fore any of its children are created. By assigning
iv to every node v in a given syntactic tree, we

2While Abney and Johnson (1991) originally defined the
parameters for grammar rules, we generalize it to the nodes in
syntactic trees.

438

https://github.com/mynlp/optimal-strategy.git
https://github.com/mynlp/optimal-strategy.git


can uniquely determine an incremental process of
predicting the syntactic tree. Strategies represented
by this parameterization are called syntax-directed
strategies (Abney and Johnson, 1991).

In this study, we formulate a variety of distinct
strategies within the class of syntax-directed strate-
gies to investigate whether the optimal strategy is
language-universal or language-specific. Our for-
mulation is based on the concept of “speculation”,
which refers to the degree to which a model pre-
dicts syntactic structure before encountering the
corresponding tokens. We consider 4 different pa-
rameterizations of speculation, each capturing a
different aspect of this concept. By exploring mul-
tiple parameter settings within each parameteriza-
tion, we analyze a total of 15 strategies. Table 1
shows some examples of the strategies used in this
study. Note that both top-down and bottom-up
strategies can be expressed by specific parameter
settings within any of the four parameterizations.

3.1 Left-n-corner strategy

Besides top-down and bottom-up strategies, the
left-corner strategy is another major strategy used
in parsing research. In this study, we also ex-
periment with a generalization of the left-corner
strategy formulated by Abney and Johnson (1991),
which we refer to as the “left-n-corner strategy”.3

In a left-n-corner strategy, the parent node v is pre-
dicted after at most n of its children have been
completed. Formally, left-n-corner strategies are
defined by a speculation parameter n as iv =
min(n, nv). When n = 0, the left-n-corner strat-
egy is equivalent to the top-down strategy. When
n =∞, it is equivalent to the bottom-up strategy.

3.2 Uniform-speculation Strategy

In the left-n-corner strategies, the number of chil-
dren completed before predicting the parent n is
constant for all nodes. However, with this parame-
terization, whether the timing of opening the parent
node v is closer to top-down or bottom-up can vary
across nodes, depending on the number of children
nv. Therefore, in this study, we introduce strategies
in which the timing of opening the parent node v
is less dependent on nv and is consistent across all
nodes.

Intuitively, this strategy, which we call the

3This formulation is called “uniform syntax-directed strat-
egy” in (Abney and Johnson, 1991). However, we use the
name left-n-corner instead to emphasize that it is a generaliza-
tion of the left-corner strategy.

“uniform-speculation strategy”, is defined by a real-
valued speculation parameter θ ∈ [0, 1], represent-
ing the proportion of children created before the
parent. For a node v with nv children, iv is cal-
culated as iv = ⌊θ · (nv + 1)⌋. Here, θ → 0
corresponds to strategies closer to top-down, while
θ → 1 corresponds to strategies closer to bottom-
up.

3.3 Local/global-first Strategy
The two strategies discussed above, left-n-corner
and uniform-speculation, determine the timing of
opening a node v independently of its position
within the syntactic tree. In this study, we also
analyze strategies where the timing of opening v –
that is, the degree of speculation – varies depending
on whether v belongs to a local or global structure.

Defining whether a structure is local or global
is not trivial. Here, we use the height and depth
of each node to define local and global structures,
and use these as parameters to control the degree
of speculation of the strategies. Intuitively, nodes
closer to leaf nodes, i.e., nodes with smaller height,
are considered local, while nodes closer to the root
node, i.e., nodes with smaller depth, are considered
global.

First, we consider a “local-first strategy”, which
predicts local structures in a top-down manner and
global structures in a bottom-up manner. Specifi-
cally, the speculation parameter of this strategy is a
height threshold h:

iv =

{
0, if hv ≤ h

nv, otherwise

where hv is the height of node v.4

Similarly, we can also consider a “global-first
strategy”, which predicts global structures in a top-
down manner and local structures in a bottom-up
manner. This strategy is parameterized by a depth
threshold d as follows:

iv =

{
0, if dv ≤ d

nv, otherwise

where dv is the depth of node v.5

When h → ∞, the local-first strategy is closer
to top-down, and when h = 0, it is equivalent to
bottom-up. Similarly, when d → ∞, the global-
first strategy is closer to top-down, and when d < 0,
it becomes bottom-up.

4We define the height of leaf nodes to be 0.
5We define the depth of the root node to be 0.
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4 Shift-reduce Syntactic Language
Modeling

This section formalizes the syntactic language mod-
eling task (SLM). In SLM, structure prediction is
typically performed by a shift-reduce parser with
a stack (Dyer et al., 2016; Noji and Oseki, 2021;
Choe and Charniak, 2016; Qian et al., 2021; Sar-
tran et al., 2022; Kuncoro et al., 2018). Stack-based
parsing is performed by predicting a sequence of
actions defined as stack operations. However, pre-
vious work designed a separate action set for each
parsing strategy, making it difficult to handle vari-
ous strategies within a unified framework (Kuncoro
et al., 2018). To address this limitation, we gener-
alize the action set used by a shift-reduce parser to
represent a wide range of strategies with a single,
unified set of actions.

4.1 Generalizing Shift-reduce Actions

A simple approach to represent various strategies
with a single action set is to extend the stack op-
erations beyond push and pop to include an “in-
sert” operation. This allows us to open nonterminal
nodes at different positions within the stack, effec-
tively controlling the timing of structure prediction.
Specifically, we define the following action set:

• NT(X; n): Inserts an open nonterminal node
“(X” at the n-th position from the top of the
stack, opening a phrase with category X. Note
that a new phrase cannot be opened deeper
than any already open phrase.6

• SHIFT: Pushes the next token onto the stack.

• REDUCE: Completes the topmost open
phrase on the stack, popping and combining
its elements into a single constituent.

While strategies other than top-down typically re-
quire a special FINISH action to terminate the pars-
ing process (Kuncoro et al., 2018), we do not explic-
itly introduce a FINISH action. Instead, we termi-
nate the parsing process when the end-of-sentence
(EOS) token is shifted. This simplifies the formula-
tion of syntactic language modeling and the beam
search procedure, which will be described later.

This generalized action set can represent various
parsing strategies by restricting how actions are
selected. For example, if the position to open a
phrase is always n = 0, i.e., the top of the stack,

6This restriction is for implementation simplicity.

the strategy becomes equivalent to top-down. If
REDUCE action is always performed immediately
after NT(X; n) action, the strategy becomes equiv-
alent to bottom-up, because the prediction of a
phrase with n children always occurs after all its
children are completed.

4.2 Model Formulation
First, we introduce the notations used to formu-
late SLM. Let A be the set of actions defined
above. We define Ak ⊂ A∗ as the set of action
sequences that contain exactly k SHIFT actions
and end with a SHIFT action. For an action se-
quence a = (a1, . . . , aT ), let li denote the index of
the i-th SHIFT action ali in a.

Given a token sequence x and an action sequence
a, the syntactic language model M defines the
following joint probability:

pMjoint(x, a) ≡
|a|∏

t=1

pMaction(at | a<t, x≤s(a<t))

·
|x|∏

i=1

pMtoken(xi | a<li , x<i),

where pMjoint is the joint distribution of the token
sequence and the parsing action sequence, pMaction
is the conditional probability of the next parsing ac-
tion, pMtoken is the conditional probability of the next
token, and s(a<t) denotes the number of SHIFT
actions in the given action sequence. While the
probability of generating a token is not typically
separated into pMaction and pMtoken in the formula-
tion, the probabilities are typically separated in the
implementations (Dyer et al., 2016; Noji and Os-
eki, 2021). Here, we introduce a formulation that
aligns more closely with actual implementations.
During supervised training, the model is trained to
maximize log pMjoint(x, a) on the train dataset.

The probability distribution over token se-
quences of length |x| is computed as follows:

pM(x) =
∑

a∈A|x|

pMjoint(x, a).

To calculate the probability distribution over sen-
tences of arbitrary length, one can simply calculate
pM for token sequences x that end with the EOS
token.

4.3 Modeling Incremental Inference Process
The goal of this study is to evaluate the incremental
structure prediction process in natural language.
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Previous work on SLM has primarily focused on
evaluating models by approximating pM using a
trained modelM.

Approaches to approximating pM in SLM can
be broadly categorized into two types. The first
approach uses candidate actions Ã obtained from
an external parser (Dyer et al., 2016; Kuncoro et al.,
2018; Sartran et al., 2022). The second approach
uses word-synchronous beam search (Stern et al.,
2017) and approximates pM by the set of inferred
action sequences (Hale et al., 2018; Noji and Oseki,
2021; Yoshida et al., 2021), which we denote by
p̃M. In this study, we focus on the latter approach
since the former does not involve inference with
the SLM model itself.

The process of word-synchronous beam search
aims to model the joint prediction of the next token
and its corresponding syntactic structure. For a
token sequence x, the process can be represented
by a sequence of sets of action sequences ending
with SHIFT: B0, B1, . . . , B|x|. Here, Bi represents
the set of (partial) syntactic structures in the beam
when predicting token xi, corresponding to the i-th
step of word-synchronous beam search, and satis-
fying Bi ⊆ Ai. Note that B0 = ∅, and each Bi is
deterministically computed based on Algorithm 1.
While previous work (Stern et al., 2017) introduces
a word beam bottleneck, we instead limit the max-
imum number of actions between SHIFT actions
to kn to reduce inference time. The score func-
tion for selecting an action sequence b′c is the joint
probability:

{
pMjoint(x<ixi, b

′c), if c == SHIFT,

pMjoint(x<i, b
′c), otherwise.

5 Experiments

Evaluation. Here, we describe the overall flow
of the experiments. For each treebank and strat-
egy, we convert the gold trees to action sequences
and train a base modelM in a supervised manner.
We then perform inference using word synchronous
beam search with the trained model to obtain the set
of action sequences B|x|. We evaluate performance
across a range of beam sizes, k ∈ {50, 200, 800}.
To reduce inference time, we utilize fast-track selec-
tion with ks = k/50 and limit the maximum num-
ber of actions between SHIFT actions to kn = 20.
For each setting, we train models with 3 different
random seeds and report the average performance.

Algorithm 1 Word synchronous beam search with
fast-track selection and a step limit.

Input: x≤i ▷ Token sequence
Input: k ▷ Beam size
Input: ks ▷ Number of fast-tracked samples
Input: kn ▷ Maximum number of actions

between SHIFT actions
Input: Bi−1 ▷ Last beam
B′

i ← Bi−1

for j = 1, . . . do
Cfast ← topks({b′ · SHIFT | b′ ∈ B′

i})
Bi ← Bi ∪ Cfast ▷ Fast-track selection
C ← ⋃

b′∈B′
i
{b′c | c ∈ A}

B′
i ← topk(C \ Cfast) ▷ Select candidates

for b′c ∈ B′
i do

if c == SHIFT then
Bi ← Bi ∪ {b′c} ▷ Update beam
B′

i ← B′
i \ {b′c}

if |Bi| = k ∨ j ≥ kn then
Break ▷ Quit search when the beam is

full or the step limit is reached
return Bi

Dataset. We use treebanks from 10 languages:
English (Penn Treebank (Marcus et al., 1993)),
Chinese (Chinese Treebank (Palmer et al., 2005)),
French, German, Korean, Basque, Hebrew, Hungar-
ian, Polish, and Swedish (SPMRL (Seddah et al.,
2013)). Following Noji and Oseki (2021), we re-
move POS tags and split words into subwords. All
evaluations in this paper are performed on the val-
idation datasets. To reduce the size of the action
set and simplify model training, we limit the n in
NT(X;n) actions to a maximum of 10. To ensure
consistent parsability across strategies, we restrict
the train and validation data to instances where
the gold trees are parsable by all strategies with
n ≤ 10. Furthermore, we only use sentences that
are parsable with n ≤ 10 and kn = 20 for evalua-
tion. Further details are provided in Appendix A.

Strategy. In our experiments, we analyze a to-
tal of 15 strategies: top-down, bottom-up, left-
n-corner with n ∈ {1, 2, 3}, uniform-speculation
with θ ∈ {0.26, 0.35, 0.65, 0.74}, local-first with
h ∈ {1, 2, 3}, and global-first with d ∈ {1, 2, 3}.7
For simplicity, we consider the insertion position
of NT actions at the subword level rather than the
word level.

7The values of θ are chosen such that iv changes for a node
v with nv = 2, 3, 4 depending on θ.
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Beam English Chinese French German Korean
50 BU (88.7±0.3) LC-1 (86.1±0.2) TD (81.8±0.2) LC-1 (86.4±0.1) BU (84.5±0.1)

LF-2 (87.3±0.1) BU (86.1±0.1) BU (79.6±0.1) LC-2 (85.8±0.1) LC-2 (84.1±0.1)

200 LF-2 (89.4±0.1) LC-1 (87.0±0.2) TD (83.3±0.2) LC-1 (87.3±0.1) BU (84.5±0.1)

LF-3 (89.4±0.0) BU (86.6±0.3) US-0.26 (81.1±0.1) LC-2 (86.5±0.0) LF-1 (84.2±0.1)

800 TD (90.9±0.1) LC-1 (87.0±0.2) TD (83.7±0.2) TD (87.7±0.1) BU (84.4±0.1)

LF-3 (90.2±0.0) BU (86.7±0.2) US-0.26 (81.8±0.1) LC-1 (87.4±0.1) LF-1 (84.2±0.1)

Beam Basque Hebrew Hungarian Polish Swedish
50 BU (83.0±0.1) LF-1 (80.8±0.3) LC-1 (87.2±0.1) GF-1 (78.9±0.3) LC-1 (72.8±0.2)

LF-1 (82.8±0.1) LC-1 (80.5±0.3) LC-2 (86.6±0.1) BU (77.1±0.1) US-0.26 (69.8±0.1)

200 BU (83.1±0.1) TD (82.2±0.3) LC-1 (88.1±0.1) GF-1 (79.5±0.1) LC-1 (73.5±0.1)

LC-1 (83.1±0.2) LF-1 (81.6±0.3) LC-2 (87.1±0.0) BU (77.2±0.2) TD (73.0±0.3)

800 LF-1 (83.3±0.2) TD (83.7±0.2) LC-1 (88.1±0.1) GF-1 (79.5±0.1) TD (74.9±0.3)

LC-1 (83.1±0.2) LF-3 (82.3±0.2) TD (87.9±0.1) BU (77.0±0.3) LC-1 (73.6±0.2)

Table 2: Top-2 strategies for the labeld parsing f1 scores for each dataset and beam size. TD and BU denote
top-down and bottom-up strategies, and LC, US, LF, and GF denote left-n-corner, uniform-speculation, local-first,
and global-first strategies with their corresponding parameters. Mean f1 scores and standard errors are shown in the
parentheses.

Model. For the model, we extend the commonly
used syntactic language model the Recurrent Neu-
ral Network Grammar (RNNG) (Dyer et al., 2016)
to handle the proposed generalized shift-reduce
action set. The implementation is based on the
batched version of RNNG (Noji and Oseki, 2021).
For the action set implementation, we simply rep-
resent SHIFT, REDUCE, and each NT(X;n) ac-
tion by one-hot vectors. For each setting, we
train a model for either 80 epochs or 8000 steps,
whichever is larger, and evaluate the model with
the lowest validation loss. Details of the training
settings are provided in Appendix B.

5.1 Results on Parsing

First, we analyze parsing performance. We calcu-
late the labeled F1 score using the highest-scoring
action sequence in B|x|. Table 2 shows the top
two performing strategies for each language, and
Figure 2 presents the parsing performance for all
strategies. Note that in Figure 2, strategies are
sorted from left to right in descending order of
speculation degree, i.e., from top-down to bottom-
up, for each speculation parameterization. The re-
sults reveal that the strategy that maximizes parsing
performance depends on the language and beam
size. For example, for English, bottom-up per-
forms best when k = 50, local-first (h = 2, 3)
performs best when k = 200, and top-down when
k = 800. Similarly, top-down shows higher F1

scores than other strategies for French, German,
Hebrew, and Swedish when k = 800. In con-
trast, for Chinese, Korean, and Basque, bottom-up,
left-n-corner (n = 1), or local-first (h = 1) ob-
tain higher F1 scores for all beam sizes. For these
languages, the performance of top-down is lower
compared to other strategies, especially when the
beam size is small (Figure 2). The sentence prob-
ability marginalized over the beam, p̃M, showed
a similar overall trend to the parsing performance.
We show the results for p̃M in Appendix C.

5.2 Results on Structure-conditioned Token
Probability

Figure 3 shows the perplexity based on the pMtoken
for the best action sequence obtained by beam
search for English, Chinese, German, and Ko-
rean.89 Generally, higher speculation leads to lower
perplexity, i.e., higher pMtoken, regardless of the spec-
ulation parameterization. However, for Chinese
and Korean, perplexity tends to be higher when the
degree of speculation is too high when the beam
size is smaller.10

5.3 Additional Experiments for Polish
The experimental results for Polish in this section
are based on the standard preprocessing, where

8This is different from the sentence probability pM.
9The results for other languages are shown in Appendix C.

10Basque and Hungarian also show similar trend (Ap-
pendix C).
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Figure 2: Labeled parsing F1 scores for all datasets.
Error bars show the standard error of the mean.

Figure 3: Perplexity based on pMtoken. Error bars show
the standard error of the mean.

preterminal nodes are removed. As observed in
Table 2 and Figure 2, the results for Polish exhibit
a distinct pattern from that of English. We found
that this is due to an idiosyncratic structure in the
Polish treebank; specifically, the lowest layer of
nonterminals, i.e., nonterminals immediately above
preterminals, functions similarly to standard preter-
minals. We conducted additional experiments and
found that when both the lowest layer nonterminals
and preterminals are removed, Polish exhibits a pat-
tern similar to English. Further details are provided
in Appendix D.

6 Discussion

6.1 Is the Optimal Strategy Universal across
Languages?

The results of the experiments suggest that the opti-
mal strategy for incremental structure prediction in
syntactic language models is not universal across
languages, but rather language-specific. Previous
research has suggested that left-corner is a better
strategy due to its stack size efficiency, but our find-
ings indicate that it is not necessarily the best in
practical tasks.

What factors contribute to these differences
between languages? If we simply consider the
amount of information available during inference,
less speculative strategies should be advantageous
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Figure 4: Validation loss, i.e., − log pMjoint. Error bars
show the standard error of the mean.

even with larger beam sizes. However, contrary to
this expectation, top-down outperforms less spec-
ulative strategies in some languages. We hypothe-
size that this is due to a combination of two factors:
the ease of learning of each strategy and the re-
quired parallel inference capacity.

First, Figure 4 shows the validation loss, i.e.,
negative joint log-likelihood − log pMjoint, for En-
glish, Chinese, German, and Korean for the same
data points as in Figure 2.11 Generally across all
languages except Korean, top-down has the lowest
loss, followed by left-n-corner (n = 1), indicat-
ing that these strategies, especially top-down, are
easier to learn.12

Second, top-down requires larger beam size, i.e.,
parallel inference capacity, than other less specu-
lative strategies because top-down cannot use to-
ken information to predict structures. Furthermore,
top-down requires even larger beam size for left-
branching languages as discussed in the previous
work (Abney and Johnson, 1991; Yoshida et al.,
2021).

Overall, the top-down strategy exhibits a trade-
off between ease of learning, which contributes to

11The results for other languages are shown in Appendix C.
12For other strategies, except for global-first parameteri-

zation, we generally observe that lower speculation leads to
better learning, i.e., lower validation loss. However, bottom-
up sometimes shows lower loss than strategies other than
top-down.

strong performance, and the difficulty of inference
due to the required large beam size. The differences
in the optimal strategy across languages might be
attributed to differences in the balance of this trade-
off. For example, in English, German, Hebrew, and
Swedish, the parsing performance of top-down is
low when the beam size is small, but it significantly
improves as the beam size increases, becoming the
best strategy at k = 800 (Figure 2). In Chinese and
Korean, which are more left-branching and thus
expected to require larger beam size than English,
the performance of top-down tends to be lower than
that of less speculative strategies like bottom-up,
even with beam size k = 800. However, given
the lower validation loss of the top-down strategy
(Figure 4), it may be possible that top-down could
become competitive with or even outperform less
speculative strategies, even for these languages,
with a sufficiently large beam size.

6.2 Does syntactic structure contribute to
token prediction?

In speculative strategies, token prediction is condi-
tioned on the already-predicted syntactic structures.
Thus, if pMtoken increases with the degree of specula-
tion, i.e., the amount of structures usable for token
prediction, syntactic structure is likely to be infor-
mative for token prediction. As shown in Figure 3,
pMtoken tends to increase with the degree of specu-
lation, suggesting that syntactic structure indeed
captures information about tokens. For some lan-
guages, e.g., Korean, Chinese, and Basque, pMtoken
decreases for more speculative strategies, likely
due to inference failure. Nevertheless, with gold
actions, pMtoken increases with the degree of specu-
lation across all languages, which also supports the
informativeness of syntactic structures.

Meanwhile, the token probability conditioned on
the gold tree is lower than that conditioned on the
structures inferred by the model for most languages
and strategies with the exception of highly specu-
lative strategies with small beam sizes. This result
suggests that, from the perspective of token predic-
tion, a certain level of parsing accuracy is sufficient,
and exact parsing may not be necessary. In fact,
it is also argued that human language processing
only utilizes partial shallow structures (Sanford and
Sturt, 2002; Ferreira et al., 2002; Ferreira and Pat-
son, 2007), and Noji and Oseki (2023) showed that
syntactic ablation, i.e., removing some syntactic
categories, improves the syntactic generalization
ability of top-down models in English. Therefore,
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to further investigate the extent to which syntax is
necessary for token prediction, it would be neces-
sary to perform syntactic ablation across various
strategies.

6.3 Future Directions

The experiments revealed that the optimal strategy
depends on both language and beam size. This
finding leads to a hypothesis: if humans and (large)
language models possess different internal “beam
sizes”, i.e., parallel inference capacities, they might
also employ distinct parsing strategies. Moreover,
investigating whether the cross-lingual differences
in incremental processing affect second or multi
language acquisition is an interesting future direc-
tion.

Furthermore, the analysis showed that structures
inferred by the models yield higher pMtoken than gold
trees. This raises a hypothesis: the gold tree struc-
tures in natural language treebanks are not optimal
with respect to token prediction. This potential dis-
crepancy might also explain the low performance
of unsupervised parsing models trained with a se-
quence reconstruction objective (Li et al., 2020).
Analyzing this relationship to unsupervised pars-
ing presents another promising direction for future
research.

7 Conclusion

This study analyzed whether the incremental struc-
ture prediction process in natural language is uni-
versal across languages or language-specific. We
considered a total of 15 strategies based on 4 differ-
ent parameterizations of speculation. Experiments
on 10 typologically diverse languages suggest that
the optimal strategy can vary across languages and
is influenced by two factors: the ease of learning
and the required parallel inference capacity.

Furthermore, a comparison between strategies
with different degrees of speculation reveals that
the syntactic structure of natural language is indeed
informative for token prediction, while also sug-
gesting that exact parsing might not be necessary.

Finally, this study focused on phrase structure;
however, natural language also encompasses other
structures such as dependency and semantic struc-
tures. Future work examining strategies for such
structures is expected to further reveal universals
and differences across languages.

Limitations

Dataset. While this study showed that the opti-
mal strategy can vary across languages, a signif-
icant limitation is our inability to pinpoint which
specific linguistic properties or dataset character-
istics are responsible for these differences. As we
discussed in section 6, one possible factor is the
branching direction. For example, the top-down
strategy, which requires a larger beam size for left-
branching languages such as Chinese and Korean,
showed lower performance for these languages in
the experiments. Nevertheless, a quantitative analy-
sis is necessary to evaluate the impact of branching
direction. Other factors, such as differences in an-
notation schemes or tokenization, could also con-
tribute to the observed differences in the optimal
strategies.

Moreover, this study was exclusively limited to
constituency treebanks. Experiments using tree-
banks based on other grammar formalisms, such as
dependency grammar, Head-driven Phrase Struc-
ture Grammar, and Combinatory Categorial Gram-
mar, etc., might reveal different findings.

Strategy. Another limitation stems from the use
of subword tokenization. As described in section 5,
the insertion position of NT actions is at the sub-
word level. Thus, the strategies used in this study
are based on subword-level speculation and do not
explicitly consider word boundaries. Strategies
based on word-level speculation, which allow NTs
to be opened only around word boundaries, await
further investigation.

Furthermore, it is possible to define symmetric
counterparts to the strategies used in this study. For
example, given a strategy parameter iv, we can
define more bottom-up oriented strategies with a
parameter jv = nv − iv. Analysis of such comple-
mentary strategies has yet to be explored.

Model. Our study is limited to a specific syntactic
language model, RNNG, with a fixed set of hyper-
parameters (Appendix B). Various other architec-
tures have been proposed, such as PLM (Choe and
Charniak, 2016) and Transformer Grammar (Sar-
tran et al., 2022). How the inductive biases of dif-
ferent architectures and hyperparameters influence
the optimal strategies remains an open question.

Additionally, as mentioned in section 2, RNNG
is considered less sensitive to stack size. How the
optimal strategy changes in models that are more
strongly affected by stack size also remains unclear.
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A Datset Setting

To split the words into subwords, we applied byte
pair encoding (BPE). For datasets with 13K-30K
different words that appear at least twice (English,
Chinese, French, German, Korean, and Hungarian),
we used BPE with a vocabulary size of 5000. For
the remaining datasets (Basque, Hebrew, Polish,
and Swedish), which have 5K-8K words appear-
ing at least twice, we used BPE with a vocabulary
size of 1500. We used SentencePiece for subword
segmentation.13

B Model Setting

For the hyperparameters of RNNG, we used a 2-
layer LSTM (Hochreiter and Schmidhuber, 1997)
for hidden state transitions, a BiLSTM as the com-
position model, 256-dimensional embedding vec-
tors, 256-dimensional hidden state vectors, and a
dropout rate of 0.3. For optimization, we used
Adam (Kingma and Ba, 2015) with a learning rate
of 0.001. Training was performed for either 80
epochs or 8000 steps, whichever was larger for
each dataset. Regarding the batch size, we set
it to 512 for datasets with more than 10K data
points (English, Chinese, French, German, and Ko-
rean), and 128 for datasets with fewer than 10K
data points (Basque, Hebrew, Hungarian, Polish,
and Swedish).

C Other Results

Figure 5 shows the perplexity based on sentence
probability p̃M, calculated by marginalizing the
joint probability pMjoint within the last beam B|x|
to approximate pM, for each language and strat-
egy. Figure 6 shows the perplexity calculated using
the pMtoken for the best action sequence obtained by
beam search for each language and strategy. Fig-
ure 7 shows the validation loss, i.e., the negative
joint log-likelihood − log pMjoint, calculated for the
same data points as in Figure 2 for each language
and strategy.

D Additional Experiments for Polish

This section presents an additional experiment for
Polish involving a different preprocessing proce-
dure. As described in section 5, our standard pre-
processing removes preterminal nodes from the
constituency trees. The Polish treebank, however,
is an exceptional case. In the Polish treebank, the

13https://github.com/google/sentencepiece

Figure 5: Perplexity based on p̃M for all datasets. Error
bars show the standard error of the mean.
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Figure 6: Perplexity based on pMtoken for all datasets.
Error bars show the standard error of the mean.

Figure 7: Validation loss, i.e., − log pMjoint for all
datasets. Error bars show the standard error of the mean.
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Figure 8: Labeled parsing F1 scores for Polish with
lowest layer nonterminals removed. Error bars show the
standard error of the mean.

Figure 9: Perplexity based on p̃M for Polish with low-
est layer nonterminals removed. Error bars show the
standard error of the mean.

lowest layer of nonterminal nodes, i.e., those im-
mediately above the preterminals, functions sim-
ilarly to standard preterminals. Yet, these lowest
layer nonterminals differ from standard pretermi-
nals in that they can be nested. The results for
Polish shown in Figure 2, Figure 5, Figure 6 and
Figure 7 are based on the standard preprocessing
where only preterminals are removed, while pre-
serving the lowest layer nonterminals. To investi-
gate the effect of the lowest layer nonterminals, we
also conduct experiments where models are trained
on data with both the preterminals and the lowest
layer of nonterminals removed.

Preprocess. To remove the lowest layer nonter-
minals including the nested ones, we remove all
preterminal and nonterminal nodes within subtrees
that have a minimum leaf depth of 2. Consequently,
the leaf nodes are directly attached to the parent of
the removed subtrees. Apart from this modification,
all other settings are the same as the standard pre-
processing procedure in section 5. We denote the
dataset created with this preprocessing procedure
as Polish-additional.

Results. Figure 8 shows the parsing performance
for Polish-additional (corresponding results with
standard preprocessing are shown in Figure 2). Fig-
ure 9 shows the perplexity based on sentence prob-
ability p̃M for Polish-additional (corresponding

Figure 10: Perplexity based on pMtoken for Polish with
lowest layer nonterminals removed. Error bars show the
standard error of the mean.

Figure 11: Validation loss, i.e., − log pMjoint for Polish
with lowest layer nonterminals removed. Error bars
show the standard error of the mean.

results with standard preprocessing are shown in
Figure 5). Figure 10 shows the perplexity calcu-
lated using the pMtoken for the best action sequence
obtained by beam search for Polish-additional (cor-
responding results with standard preprocessing are
shown in Figure 6). Figure 11 shows the vali-
dation loss, i.e., the negative joint log-likelihood
− log pMjoint for Polish-additional (corresponding
results with standard preprocessing are shown in
Figure 7).

Interestingly, the experimental results reveal
a significant difference between the Polish and
Polish-additional. For instance, while Figure 2
shows that Polish and English exhibit distinct
trends in parsing performance, the pattern for
Polish-additional in Figure 8 closely resembles
that of English. More specifically, for Polish
(Figure 2), low speculation strategies, such as
bottom-up and global-first (d = 1), tend to achieve
higher scores across all beam sizes. In contrast,
for Polish-additional (Figure 8), top-down yields
the best performance at larger beam sizes, such
as k = 200, 800. Furthermore, regarding the
structure-conditioned token PPL (Figure 6), Polish
is exceptional in that the PPL of the gold tree is
lower than that of the structures inferred by mod-
els. For Polish-additional, on the other hand, the
gold tree PPL is often higher than that of the in-
ferred structures; this trend is consistent with other
languages. Finally, in terms of validation loss, no
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significant difference is observed between Polish
and Polish-additional.

These findings demonstrate that the optimal pars-
ing strategy is sensitive to the presence or absence
of the lowest layer of nonterminals in the Polish
treebank. Given that Polish and Polish-additional
show a significant difference in the performance
patterns across strategies for parsing and structure-
conditioned token PPL, while showing no such
difference for validation loss, we hypothesize that
the lowest layer nonterminals strongly influence
the difficulty of inference.
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Abstract

In this paper, we evaluate the capacity of
current language technologies to understand
Basque and Spanish language varieties. We use
Natural Language Inference (NLI) as a pivot
task and introduce a novel, manually-curated
parallel dataset in Basque and Spanish, along
with their respective variants. Our empirical
analysis of crosslingual and in-context learning
experiments using encoder-only and decoder-
based Large Language Models (LLMs) shows
a performance drop when handling linguistic
variation, especially in Basque. Error analysis
suggests that this decline is not due to lexical
overlap, but rather to the linguistic variation it-
self. Further ablation experiments indicate that
encoder-only models particularly struggle with
Western Basque, which aligns with linguistic
theory that identifies peripheral dialects (e.g.,
Western) as more distant from the standard. All
data and code are publicly available.1

1 Introduction

Sociolinguistics examines language variation in re-
lation to various regional, contextual, or social fac-
tors. During the 70s and 80s, sociolinguist William
Labov highlighted the social aspect of language,
and his work on rule-governed language variation
has thereby legitimized non-standard language and
transformed the study of sociolinguistics. For ex-
ample, Labov (2006) noted that “the linguistic be-
havior of individuals cannot be understood without
knowledge of the communities that they belong
to”. Thus, variation is an intrinsic characteristic
of language, influenced by factors such as gender,
age, socio-economics, or geographical location. In
fact, humans make no distinction when processing
their own dialect or the standard variant.

In this regard, Coseriu (1956) offered a system-
atic typology of language variation, based on the

1https://huggingface.co/datasets/HiTZ/XNLIvar

Basque
Standard Variation

Zeharo hunkituta gelditu
nintzen ezusteko agur
honekin

Asko emoziona nintzen
ezusteko agur horregaz

Spanish
Me quedé completa-
mente conmovido con
esta despedida inesperada

Me quedé completa-
mente conmovío con
ehta dehpedía inehperá

English
I was completely surprised by that unexpected goodbye

Table 1: Example from standard to variation sentences
in Basque and Spanish.

following three types: (i) diatopic variation, or ge-
ographical variation such as dialects, (ii) diastratic
variation, or speech of different societal groups,
and (iii) diaphasic variation, or speech changes de-
pending on the communicative environment.

In this paper, we focus on geographical variation
in Basque, a low-resource language isolate with
around 1 million speakers that is still undergoing
a normalization process (started in 1968), and in
Spanish, a higher-resourced language whose stan-
dardization process started in the 18th century with
around 600 million speakers worldwide.

Recent developments in Artificial Intelligence
(AI) and Natural Language Processing (NLP) have
underscored the significance of social factors in
language for NLP systems, as noted by Hovy and
Yang (2021). This indicates the importance of de-
veloping NLP technology that not only processes
standard language but also variations, as this would
alleviate any potential language-based discrimina-
tion by providing more linguistically-inclusive re-
sources.

Although previous work on NLP has primarily
focused on standard language, recent research has
slightly shifted its attention to the exploration of

452

https://huggingface.co/datasets/HiTZ/XNLIvar


language variation. For instance, Zampieri et al.
(2020) or Joshi et al. (2024) present thorough out-
lines of variation-inclusive research. However, due
to the lack of data on linguistic variation, most NLP
research has focused on a narrow list of languages
and their variants, such as Arabic, Indic languages,
or German (Joshi et al., 2024). Furthermore, other
larger efforts are either based on automatically ob-
tained data or do not provide fine-grained varia-
tion distinctions for some widely-spread languages,
such as Spanish (Faisal et al., 2024; Alam et al.,
2024).

Regarding Basque, the few available works have
focused on historical dialects (Estarrona et al.,
2020) or northern Basque dialects (Uria and Etxe-
pare, 2012). In Spanish, all datasets with linguistic
variation have been automatically collected through
geolocation techniques (España-Bonet and Barrón-
Cedeño, 2024; Valentini et al., 2024).

In this context, the objective of this paper is to
provide the first manually curated variation dataset
for Basque and Spanish that captures language vari-
ation in real-world usage. To do so, we introduce
XNLIvar, the first variation-inclusive Natural Lan-
guage Inference (NLI) dataset in Basque and Span-
ish. An example of an instance from our dataset
can be found in Table 1, which will be used to eval-
uate current state-of-the-art language models. The
main contributions are the following:

1. The first publicly available manually-curated
NLI dataset for Basque and Spanish geo-
graphic language variations.

2. A comprehensive evaluation of encoder-only
and decoder-based Large Language Models
(LLMs) demonstrates substantially worse per-
formance when processing language variation,
particularly in Basque. Detailed error analysis
shows that lexical overlap between premise
and hypothesis has no impact on the perfor-
mance drop, which indicates that linguistic
variation could be the primary factor for this
decrease in accuracy.

3. Empirical results suggest that LLM perfor-
mance with Spanish variants may be attributed
to the substantial representation of Spanish-
language content in pre-training corpora. Fur-
ther error analysis suggests that orthographic
changes have a substantially negative effect
on Spanish language variation processing.

To the best of our knowledge, no work has ex-
tensively addressed the automatic processing of

language variation of Western and Central Basque
dialects in the task of NLI.

2 Related Work

This section presents previous work on language
variation in the field of NLP, with a specific focus
on Basque language variation.

Language variation in NLP In recent years,
there has been an increasing interest in dialects in
several fields of NLP, such as dialect identification
(Ramponi and Casula, 2023), sentiment analysis
(Ball-Burack et al., 2021), Machine Translation
(MT) (Kuparinen et al., 2023), and dialogue sys-
tems (Alshareef and Siddiqui, 2020).

Aepli and Sennrich (2022) explored cross-
lingual transfer between closely related varieties by
adding character-level noise to high-resource data
to improve generalization. Moreover, Ramponi
and Casula (2023) pretrained LLMs for geographic
variations of Italian tweets. Finally, Demszky et al.
(2021) showed that BERT models trained on an-
notated corpora obtained high accuracy for Indian
English feature detection.

One of the primary limitations of these studies
is the scarcity of available dialectal data. There-
fore, research has largely focused on developing
resources such as lexicons and dialectal datasets
on a small subset of languages: Artemova and
Plank (2023) propose a bilingual lexicon induction
method for German dialects using LLMs, while
Hassan et al. (2017) introduce a synthetic data cre-
ation method through embeddings by transforming
input data into its dialectic variant. With respect
to language coverage, the Arabic family, due to
its relative data availability, has received the most
attention, followed by Indic languages, Chinese,
and German (Joshi et al., 2024).

Basque language variation In dialectology,
Zuazu (2008) established an extensive and com-
prehensive descriptive representation of features of
modern Basque dialects. In NLP, Estarrona et al.
(2020) worked on a morpho-syntactically anno-
tated corpus of Basque historical texts as an aid
in the normalization process. Moreover, Uria and
Etxepare (2012) introduced a corpus of syntactic
variation in northern Basque dialects.

Additionally, some dialectal benchmark works
have included Basque in their experimentation:
both Alam et al. (2024) and Faisal et al. (2024) pre-
sented benchmarks for MT with northern Basque
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dialects.

Spanish language variation Several works have
dealt with Spanish varieties. For instance, España-
Bonet and Barrón-Cedeño (2024) automatically fil-
tered Open Super-large Crawled Aggregated coR-
pus (OSCAR) by geolocation into different Spanish
variants and performed a stylistic analysis. Valen-
tini et al. (2024) automatically collected Google
queries from several Spanish-speaking countries
and provided an Information Retrieval baseline for
Spanish varieties.

Additionally, Lopetegui et al. (2025) introduced
a Cuban Spanish dataset by collecting geolocated
tweets from Twitter. They focused their study on
common examples, i.e., instances that can be valid
across several dialects. They performed a man-
ual annotation of tweets into Cuban dialect, other
dialect, or common example. Similarly, Castillo-
lópez et al. (2023) collected tweets from European
and Latin American geolocations and annotated
them for hate speech.

3 Data

In this work, we introduce a novel dataset, XNLI-
var, that expands the XNLI framework by gener-
ating various dialectal variations for both Basque
and Spanish languages. We choose NLI as an eval-
uation framework because it is considered to be a
general benchmark for evaluating language under-
standing, which requires dealing with semantic re-
lationships, logical implications, world knowledge,
and contextual nuances (Williams et al., 2018; Con-
neau et al., 2018; Artetxe et al., 2020), including
figurative language (Naik et al., 2018; Stowe et al.,
2022; Liu et al., 2022; Sanchez-Bayona and Agerri,
2024). NLI is a fundamental NLP task that in-
volves classifying the logical relationship between
two segments (a premise and a hypothesis) as one
of three categories: entailment (the hypothesis log-
ically follows from the premise), contradiction (the
hypothesis contradicts the premise), or neutral (the
hypothesis neither follows from nor contradicts the
premise). The most popular dataset is the English
MultiNLI (Williams et al., 2018).

XNLI (Conneau et al., 2018) provides an exten-
sion of MultiNLI in 15 languages, among them
Spanish (XNLIes). The training set for each lan-
guage was created by translating the original MNLI
data. However, as the test partition of MNLI is not
public, Conneau et al. (2018) collected 7,500 En-
glish examples via crowdsourcing, which were then

professionally translated to create the development
(2500 instances) and the test (5K instances) splits
of XNLI. This parallel multilingual corpus has fa-
cilitated crosslingual NLI research beyond English-
centric approaches by exploring model-transfer,
translate-train, and translate-test techniques to alle-
viate the lack of annotated training data in a given
target language (Artetxe et al., 2020, 2022).

XNLIeu is a professionally translated version
of the English XNLI set into Basque (Heredia
et al., 2024), a language not included in the orig-
inal XNLI dataset. Additionally, we also use
XNLIeunative, an NLI dataset generated by col-
lecting native Basque premises and hiring Basque
annotators to create three hypotheses per premise
(Heredia et al., 2024). The experimental results
from XNLIeu demonstrate that NLI systems ex-
hibit significant performance sensitivity to dispari-
ties between training and testing data distributions,
highlighting the critical role of data provenance
(Artetxe et al., 2020; Volansky et al., 2013).

3.1 XNLI with Geographic Variants

To investigate the impact of language variation via
evaluation in NLI, we developed two novel XNLI
variants datasets encompassing Basque and Span-
ish geographic-based linguistic variations, namely,
XNLIeuvar and XNLIesvar. The methodology in-
volved a language adaptation phase to ensure the
incorporation of variant diversity within the data.
These two variant datasets were developed taking
XNLIeunative as a starting point for dialectal aug-
mentation due to its authentic representation of
Basque language patterns and its suitable scale for
manual paraphrasing.

The adaptation process was the same for Basque
and Spanish, including native speakers as linguistic
informants for variant transformation. We wanted
to analyze the variation that naturally occurs among
native speakers, employing minimally restrictive
parameters to capture authentic dialectal features.
Thus, informants were instructed to perform dialec-
tal adaptations of source sentences, with allowance
for modifications across multiple linguistic dimen-
sions, including lexical, grammatical, phonetic, and
orthographic alterations. The full adaptation guide-
lines are detailed in Appendix A.

XNLIeuvar Twelve native Basque speakers were
recruited from diverse geographical regions. All
participants possessed expertise in NLP and held
university degrees in either Linguistics, Computer
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Science, or Engineering. Each participant was
tasked with reformulating approximately 20 brief
sentences, with the resulting adaptations catego-
rized according to three major dialectal variants:
Western, Central, and Navarrese. To facilitate cross-
dialectal comparison, a subset of 10 identical sen-
tences was assigned to more than one annotator,
enabling parallel dialectal representations. The de-
mographic and professional characteristics of the
annotators, including age, gender, and educational
background, are detailed in Appendix B.

It should be noted that during data collection, a
single annotator generated two types of variants
for each sentence, including both dialectal varia-
tions and allocutive agreement forms in Basque.
The allocutive system in Basque requires morpho-
logical marking of the addressee’s gender (mas-
culine/feminine) within the verbal form. Con-
sequently, XNLIeuvar exhibits a higher instance
count (894) compared to the original XNLIeunative
dataset (621), as shown in Table 2.

In terms of dialect distribution, 592 instances
correspond to the Central dialect, usually associ-
ated with the province of Gipuzkoa, 240 instances
to the Western dialect (West Gipuzkoa and Biscay),
and just 63 instances to the Navarrese dialect, com-
prising 7% of the data. Thus, the Navarrese dialect
is clearly under-represented in our data.

XNLIesvar XNLIeunative was automatically trans-
lated into Spanish using Claude 3.5 Sonnet2, gener-
ating the XNLIeu2esnative dataset and facilitating
the creation of a parallel corpus for Basque and
Spanish texts with their respective variants. Quality
verification was conducted through manual review
of the machine-generated translations, making sure
that they constituted an authentic representation of
Spanish language patterns. Finally, the translated
corpus was provided to Spanish-language annota-
tors for variant-specific adaptation.

The adaptation task involved six independent an-
notators, each assigned a set of 50 sentences for
dialectal adaptation into their respective Spanish
variants. They represented four distinct geographi-
cal locations: Cuba, Ecuador, Spain, and Uruguay.
Two annotators from Spain performed adaptations
into separate dialectal variants (Andalusian and
Tenerife), resulting in a total of five Spanish dialec-
tal variations in the final dataset. The demographic
and professional characteristics of the annotators,

2https://www.anthropic.com/news/
claude-3-5-sonnet

Train
Dataset Instances

MNLI 392k
MNLIeu 392k
MNLIes 392k

Test
XNLIeu 5010
XNLIes 5010

XNLIeunative 621
XNLIeu2esnative 621

XNLIeuvar 894
XNLIesvar 666

Table 2: Datasets used for training and testing.

including age, gender, and educational background,
are documented in Appendix B.

It is worth noting that some annotators found it
difficult to add dialectal features to the standard
sentences. This could be due to the high number of
common examples in Spanish varieties (Lopetegui
et al., 2025; Zampieri et al., 2024). In other words,
the distinctions between Spanish varieties tend to
be more homogeneous and thus contain less varia-
tion compared to Basque (Section 6).

Similar to the Basque adaptation, multiple dialec-
tal variants were documented by some annotators.
These variants exhibited phonological phenomena
such as word-final /s/ deletion (e.g., digamos →
digamo) and /s/ to /j/ substitution in word-final
position (resulting in digamoj). Thus, XNLIesvar
contains 666 examples, representing a marginally
higher count than the base dataset.

Table 2 provides an overview of the datasets used
for experimentation, including our newly generated
XNLIvar, consisting of XNLIeuvar and XNLIesvar.

4 Experimental settings

Empirical research was based on the aforemen-
tioned datasets to evaluate the impact of dialectal
variation on NLI performance.

Discriminative experiments Table 3 illustrates
the experiments performed using encoder-only
Transformer models and the datasets specified in
Table 2.

• Model transfer: The train split of the original
MNLI (English) is used to fine-tune multilin-
gual encoder models. Evaluation is performed
on the test sets for Basque and Spanish speci-
fied in Table 2.
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• Translate-train: The MNLI training is au-
tomatically translated into Basque and Span-
ish (MNLIeu and MNLIes); multilingual and
monolingual encoders are then fine-tuned us-
ing the translated training data and evaluated
in each of the target languages.

• Translate-test: Tests in the target languages
are translated into English and evaluated using
the MNLI fine-tuned encoders (in English).

Configuration Train Test
Model transfer English Target language

Translate-train Target language Target language

Translate-test English Target → English

Table 3: Discriminative model configurations and data.
→: Translated to.

Summarizing, training is always done with
MNLI, either in its original English form or us-
ing the automatically translated versions to Basque
and Spanish. Moreover, there are three differ-
ent test data types: (i) XNLI test data profession-
ally translated into the target languages (XNLIeu,
XNLIes) (ii) the manually created native Basque
data and its translation to Spanish (XNLIeunative,
XNLIeu2esnative) and, (iii) the native datasets
adapted to different variations for each of the target
languages (XNLIeuvar, XNLIesvar).

We employed two multilingual encoder-only
language models for our target languages: XLM-
RoBERTa large (Conneau et al., 2020) and mDe-
BERTa (He et al., 2021). The hyperparameter con-
figuration followed Heredia et al. (2024), imple-
menting differential learning rates of 5e-5 and 10e-
6 for BERT and RoBERTa architectures, respec-
tively. All other parameters were maintained at
their default values. The training process consisted
of 10 epochs across all model configurations.

Generative experiments We experimented with
generative LLMs to evaluate the decoders’ abil-
ity to perform NLI when language variation is
present. We started with a zero-shot setting, where
we prompt LLMs to identify the NLI relation.

We also evaluated alternative prompting method-
ologies, specifically, few-shot and Chain of
Thought (CoT) approaches. The few-shot prompt
implemented a single example for each classifica-
tion category. The CoT methodology incorporated
detailed task-specific contextual information along-
side a single example for each label.

To further evaluate the linguistic comprehension
capabilities of LLMs with respect to Basque and
Spanish variants, we implemented an alternative
methodological approach by transforming the NLI
task into a Question-Answering (QA) setting. In
this experimental configuration, the input prompt
was restructured as a question to be answered by
the LLM, with the three possible answers based on
the NLI inference labels. Zero-shot and few-shot
prompting strategies kept the same. The complete
set of prompt templates used across all task formu-
lations is available in Appendix C.

We selected Llama-3.1-Instruct (8B and 70B ver-
sions) (Dubey et al., 2024) and Gemma 2 instruct
(9B and 27B versions) (Mesnard et al., 2024) due
to their strong performance in both Basque and
Spanish languages3 (Etxaniz et al., 2024; Figueras
et al., 2025). In the next section we focus on the
results obtained by the larger LLMs (performances
with smaller LLMs in Appendix E).

5 Results

We first report the results obtained in the discrimi-
native settings, while in Section 5.2, we discuss the
results of in-context learning with LLMs.

5.1 Discriminative Experiments

By looking at the results reported in Table 4, the
empirical results demonstrate a significant perfor-
mance degradation when comparing XNLIeu and
XNLIes against the native and variation datasets.
This observation aligns with existing literature doc-
umenting the adverse effects of train-test distribu-
tion shifts in cross-lingual settings (Artetxe et al.,
2020; Volansky et al., 2013). When comparing
native and variation data results, where the only
difference is the presence of dialectal data, we see
a decrease in results. Therefore, results show that
language models perform worse when variants are
included in the NLI task.

By doing a cross-configuration analysis, we
see that for Basque, the best results are obtained
with XLM-RoBERTa in the translate-train for XN-
LIeu (83.42) and XNLIeuvar (73.21), while for
XNLIeunative (75.85), the train-test is superior.
Overall, the empirical results demonstrate that
the translate-train approach with XLM-RoBERTa
yielded the best overall performance for Spanish
and Basque. This suggests that training and evalu-

3https://hf.co/spaces/la-leaderboard/
la-leaderboard
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Basque

Model transfer Translate-train Translate-test

XNLIeu XNLIeunative XNLIeuvar XNLIeu XNLIeunative XNLIeuvar XNLIeu XNLIeunative XNLIeuvar

XLM-RoBERTa large 80.00 72.09 68.24 83.42 75.63 73.21 - 75.85 71.63
mDeBERTa 78.95 70.21 67.26 81.42 72.14 69.77 - 72.68 70.28

Spanish

XNLIes XNLIeu2esnative XNLIesvar XNLIes XNLIeu2esnative XNLIesvar XNLIes XNLIeu2esnative XNLIesvar

XLM-RoBERTa large 83.05 74.02 73.07 84.69 74.61 73.72 - 73.86 71.77
mDeBERTa 82.02 74.13 71.57 83.27 72.25 70.77 - 72.30 69.89

Table 4: Accuracy results for Basque and Spanish discriminative experiments.

Basque

Llama-3.1-Instruct-70B Gemma-2-it-27B

nli-zero nli-few qa-zero qa-few chain nli-zero nli-few qa-zero qa-few chain

XNLIeu 33.65 53.17 33.31 54.89 55.25 61.10 62.81 61.84 65.27 58.28
XNLIeunative 38.81 56.68 39.61 58.61 60.71 64.90 66.67 65.70 68.28 66.99
XNLIeuvar 33.78 48.66 31.54 50.11 49.22 57.61 60.96 57.49 61.52 58.05

Spanish

Llama-3.1-Instruct-70B Gemma-2-it-27B

nli-zero nli-few qa-zero qa-few chain nli-zero nli-few qa-zero qa-few chain

XNLIes 54.65 62.18 51.54 65.69 73.97 66.75 71.28 70.52 73.05 68.88
XNLIeu2esnative 62.96 62.48 62.16 70.69 77.29 71.50 72.62 73.91 73.43 76.97
XNLIesvar 59.42 62.32 54.27 69.24 75.52 70.37 72.30 72.79 72.14 74.56

Table 5: Results with generative LLMs.

ating in the target language constitutes the optimal
method, irrespective of whether the data includes
standard or variation-inclusive linguistic content.

Regarding native and variant results, analysis re-
veals that Spanish consistently outperforms Basque
across all settings and evaluation datasets, demon-
strating greater resilience to linguistic variation. In
fact, while Spanish accuracy drops minimally (less
than 1 percentage point in most cases), Basque
performance suffers a higher decrease, with model-
transfer and translate-test approaches showing an
approximately 4-point drop and translate-train a
2.5-point drop. This highlights a sharper impact of
variation on Basque performance.

These results show that when English is the
source training data, model-transfer provides com-
petitive results for a high-resource, structurally sim-
ilar language such as Spanish, while for a low-
resource and morphologically different language
such as Basque, the data-transfer (translate-train)
strategy remains preferable (Agerri et al., 2020;
Artetxe et al., 2020; García-Ferrero et al., 2022).

Overall, the consistently lower performance ob-
served in Basque relative to Spanish across all eval-
uation conditions can be attributed to three key
factors: (i) Basque’s agglutinative morphological

structure, (ii) its classification as a language isolate,
and (ii) reduced Basque language representation in
the models’ pre-training data (Agerri et al., 2020;
Etxaniz et al., 2024).

Finally, we also experimented with two Basque
monolingual models, RoBERTa-Euscrawl (Artetxe
et al., 2022) and BERTeus (Agerri et al., 2020), in
the translate-train setting. However, while competi-
tive, their results did not outperform those obtained
by XLM-RoBERTa large. Further details can be
found in Appendix D.

5.2 Generative Experiments

Table 5 presents the evaluation results for LLMs in
the task on variation-inclusive NLI with the largest
LLMs tested, namely, Llama-3.1-Instruct-70B and
Gemma-2-it-27B.

A first observation reveals a significant
performance degradation across all evaluated
LLMs when transitioning from standard datasets
(XNLIeunative and XNLIeu2esnative) to their vari-
ant counterparts (XNLIeuvar and XNLIesvar). This
suggests a substantial limitation in the capacity of
LLMs to process and comprehend linguistic varia-
tions within the task. The results also indicate that
including examples in the prompt engineering pro-
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Figure 1: Standard to dialectal Levenshtein distance vs accuracy of best discriminative models.

cess yields positive effects (in the qa-few and CoT
methodologies). Notably, for Spanish, the CoT
approach demonstrates superior performance com-
pared to XLM-RoBERTa large on XNLIeu2esvar
and XNLIesvar datasets.

Concerning Basque, the experimental results
demonstrate that Gemma-2 exhibits better perfor-
mance compared to Llama-3.1. Moreover, for
XNLIeuvar Gemma’s optimal performance (61.52)
experiences a reduction of 6.5 percentage points
relative to the standard XNLIeunative (68.28). In
contrast, Llama-3.1 exhibits a more substantial de-
cline of 10 percentage points in XNLIeuvar perfor-
mance. These findings indicate that Gemma main-
tains greater robustness against linguistic variation
compared to Llama-3.1.

For Spanish, CoT prompting generally yields the
highest accuracy. The variation-inclusive evalua-
tion dataset (XNLIesvar) produces results very close
to those of XNLIesnative, with Llama 3.1 achieving
75.77 and 77.29, and Gemma 2 reaching 74.56 and
76.56, respectively. Despite this closeness, linguis-
tic variation still causes a drop in accuracy. Overall,
Llama 3.1 performs slightly better than Gemma 2,
though the difference is minimal.

The empirical evidence obtained from these anal-
yses of Basque and Spanish language understand-
ing indicates that LLMs exhibit significant limi-
tations in their capacity to comprehend linguistic
content when confronted with dialectal and geo-
graphical variations.

6 Error analysis

This section presents a quantitative error analysis
to evaluate XLM-RoBERTa large’s performance
with respect to variation-inclusive evaluation data.

Dialect to standard distance The Levenshtein
distance metric, which quantifies the minimum
number of single-character operations (insertions,
deletions, or substitutions) necessary for string
transformation, was computed between dialectal
and standard sentences. The analysis of distance
results demonstrates that Basque dialectal variants
(Figure 1a) exhibit significantly greater divergence
from the standard form compared to Spanish vari-
ants (Figure 1b), which display higher proximity
to their standardized counterpart. The observed
inter-dialectal variation patterns suggest a more
pronounced linguistic differentiation within Basque
dialectal systems relative to Spanish dialectal vari-
eties. This emphasizes the difference in variation
between languages and highlights the importance
of language-specific analysis in the field of lan-
guage variation processing in NLP.

Accuracy per dialect We analyzed the accuracy
results for each individual dialect class, in order to
see if some dialects are more difficult to process
than others. The relation between the accuracy
for each dialect and the distance from standard to
dialect is illustrated in Figure 1.

In the case of Basque (Figure 1a), we see that,
in terms of string distance, the Western dialect is
the one that is the most different from the stan-
dard, followed by the Central and Navarrese di-
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alects. However, the lowest accuracy is accounted
for in the Navarrese dialect, which is the dialect
label that seems to be closest to the standard form
of language. This could be because of its under-
representation in our dataset, as Navarrese exam-
ples comprise only 7% of our data (Appendix B).
When focusing on Western and Central dialects, it
can be observed that, as the distance from standard
to dialectal gets higher, accuracy gets lower, sug-
gesting that dialects further from the standard (in
our case, Western) are harder to process. The Cen-
tral dialect being closer to the standard is expected,
as it served as the main foundation for the current
standard form of Basque.

In fact, according to research in Basque dialec-
tology, peripheral dialects have been found to be
more distant from the rest (Mitxelena, 1981). This
fact has also been corroborated by NLP studies
analyzing Basque historical dialects, where Bis-
cayan (Western) and Souletin display the greatest
difference (Estarrona et al., 2023). Additionally,
research has documented the Bizkaian dialect’s his-
torical tendency toward linguistic divergence, both
from other Basque dialects and from its own earlier
forms (Zuazu, 2015).

In Spanish variants, Figure 1b shows Ecuador
and Uruguay displaying the highest distance values
and accuracy scores. Further analysis has shown
that adaptations into these two variants mostly in-
clude replacing lexical words with alternatives that
are more commonly used in those varieties (e.g.,
construccion futura > nuevos edificios), as well
as grammatical structures typical of those dialects
(e.g., he podido > pude). However, standard or-
thography has been preserved throughout.

In turn, adaptations into Cuban, SpainAnd and
SpainTen variants mostly include phonological or
orthography changes (e.g. misma > mihma, fuerza
> fuersa), which have resulted in lower distance to
the standard form of Spanish, but a decrease in ac-
curacy compared to the variants written in standard
orthography (Ecuador and Uruguay). This reveals a
correlation between standard orthography and high
accuracy, and highlights the difficulties of discrimi-
native models to deal with data which includes non-
standard orthography. This analysis is illustrated in
Appendix G. These results match those observed in
earlier studies, where orthography variations have
also been found to be problematic (De la Rosa et al.,
2024). Additional results of per-dialect accuracy
results are presented in Appendix F.

Basque

Dataset Instances Discrimin. Genera.

XNLIeunative 621 75.63 68.28

XNLIeuvar 894 73.21 61.52

Less-western 834 73.14 60.79

Less-central 834 72.70 61.03

No repetitions 621 71.77 60.39

Spanish

XNLIeu2esnative 621 74.61 77.29

XNLIesvar 666 73.72 75.52

No repetitions 621 73.00 77.13

Table 6: Ablation experiments on Basque and Spanish
variation data (XNLIeuvar and XNLIesvar, respectively).
Results obtained using the best discriminative setting
(Translate-train XLM-RoBERTa large in Table 4) as
well as best generative results for Basque (Gemma-2
qa-few) and Spanish (Llama-3.1 chain) in Table 5.

Ablation Tests As explained in Section 3.1 and
illustrated in Table 2, test data in XNLIeuvar and
XNLIesvar contains duplicated instances in differ-
ent dialects. In order to see the effect that different
types of variation have on accuracy, we have per-
formed some ablation experiments.

Four different Basque speakers (two Western
and two Central) adapted the same 10 sentences,
providing us with four distinct versions of those
10 sentences. We used these instances to create
two new versions of the dataset, one by removing
the repeated sentences from Western variants (Less-
western), and another one without the repeated in-
stances from the Central one (Less-central). Table
6 presents accuracy results with these datasets.

The results show that accuracy is higher when
Western-dialect instances are removed (73.14) than
when Central instances are excluded (72.70).

Additionally, we removed all duplicated vari-
ant instances from XNLIvareu, resulting in a com-
pletely parallel variation dataset to XNLIeunative
(No repetitions), which allows us to calculate
whether the results between the standard and the
variant versions are statistically significant. As
reported in Table 6, accuracy between No repe-
titions and the standard substantially decreases
(71.77 vs 75.63) for the Basque discriminative ex-
periments. According to a chi-square test of in-
dependence, this difference is highly statistically
significant (p < .001, df=1). Similar to Basque,
all the repeated variant instances from the Spanish
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(a) Premise-Hypothesis distance and accuracy for
Basque
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(b) Premise-Hypothesis distance and accuracy for
Spanish

Figure 2: Levenshtein distance from premise to hypothesis and accuracy of discriminative models.

variation dataset were removed, obtaining a parallel
dataset to XNLIesnative. Using the No repetitions
split, a chi-square test of independence establishes
that differences with results on XNLIeu2esnative are
highly statistically significant (p < .001, df=1).

Generative LLMs follow the same trend, with
differences in performance being highly statisti-
cally significant in both languages (p < .001, df=1).

Premise and hypothesis lexical overlap To in-
vestigate the potential correlation between lexical
overlap and accuracy, we measured the Levenshtein
distance between premises and hypotheses. The
analysis of the data in Figure 2 indicates that lexi-
cal overlap remains consistent across standard and
dialectal varieties, while a substantial decrease in
accuracy was observed in both Basque and Spanish
datasets. These findings suggest that while lexical
overlap appears to have minimal impact on accu-
racy metrics, linguistic variation emerges as the
significant factor affecting performance. Therefore,
the observed pattern implies that dialectal varia-
tions, rather than lexical similarities, may be the
primary factor of accuracy degradation in this con-
text.

In fact, Figure 2a demonstrates a more pro-
nounced decrease in accuracy for Basque compared
to Spanish, underscoring both the critical need to
improve Basque representation in multilingual dis-
criminative models and the necessity for additional
investigation into language variation processing.

7 Concluding Remarks

This paper presents a novel dataset that includes
geographical variants of Basque and Spanish. The
dataset represents the first documented instance

of a manually-curated, variation-inclusive corpus
for these languages, facilitating research and eval-
uation on linguistic variants via NLI. Additional
speaker metadata expands its value as a resource
for sociolinguistic research on generational and ge-
ographical differences in Basque and Spanish. Our
investigation involved the empirical evaluation of
both discriminative and generative language mod-
els across various NLI task configurations.

Results indicate that language models’ perfor-
mance drops when linguistic variation is present.
This performance degradation is particularly pro-
nounced in Basque variants, where linguistic vari-
ation is higher compared to Spanish variants. Fur-
thermore, the performance drop intensifies propor-
tionally with the linguistic distance between dialec-
tal variants and their respective standardized forms
for Basque, with a higher impact in the Western
dialect. This coincides with previously established
linguistic theory, which states that some Basque
dialects (such as Western) have a historical ten-
dency to distance themselves from the standard. In
the case of Spanish, variants with non-standard or-
thography have shown a significant accuracy drop.
Finally, the lexical overlap between premises and
hypotheses appears to have minimal impact, sug-
gesting that lower performance is due to linguistic
variation.

Future work will involve expanding the dataset
to include additional geographical variants of both
Basque and Spanish, as well as incorporating other
languages. Investigation of variation-inclusive
monolingual models represents a promising avenue
for future research.
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Limitations

In this paper, we have focused on geographic
variants of language due to their low representa-
tion in NLP. We conducted our experiments for a
lesser-resourced language, Basque, and a higher-
resourced language, Spanish. However, we have
only represented some of the variations of these
languages, and our variation datasets have been
created by 12 speakers for Basque and 6 speakers
for Spanish. We tried to include the most represen-
tative dialects with different kinds of speakers, but
we are aware that all the speakers have linguistic
and NLP backgrounds, and laypeople could con-
tribute differently.

Our empirical findings demonstrate decreased
accuracy in natural language inference tasks within
our variants dataset. However, generalization of
these results requires expansion to include addi-
tional linguistic variants and evaluation across a
broader range of NLP tasks.

To augment the dataset, we are recruiting speak-
ers from diverse linguistic backgrounds to con-
tribute additional variation data. We further in-
tend to evaluate the performance of NLP tools and
LLMs on tasks incorporating dialectal and register
variation.
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2023. Dialect-to-standard normalization: A large-
scale multilingual evaluation. In Findings of the As-
sociation for Computational Linguistics: EMNLP
2023, pages 13814–13828, Singapore. Association
for Computational Linguistics.

William Labov. 2006. The Social Stratification of En-
glish in New York City, 2 edition. Cambridge Univer-
sity Press.

Emmy Liu, Chenxuan Cui, Kenneth Zheng, and Graham
Neubig. 2022. Testing the ability of language models
to interpret figurative language. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 4437–4452.

Javier A. Lopetegui, Arij Riabi, and Djamé Seddah.
2025. Common ground, diverse roots: The diffi-
culty of classifying common examples in Spanish
varieties. In Proceedings of the 12th Workshop on
NLP for Similar Languages, Varieties and Dialects,
pages 168–181, Abu Dhabi, UAE. Association for
Computational Linguistics.

Gemma Team Thomas Mesnard, Cassidy Hardin,
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
L. Sifre, Morgane Rivière, Mihir Kale, J Christo-
pher Love, Pouya Dehghani Tafti, L’eonard Hussenot,
Aakanksha Chowdhery, Adam Roberts, Aditya
Barua, Alex Botev, Alex Castro-Ros, Ambrose Slone,
Am’elie H’eliou, Andrea Tacchetti, Anna Bulanova,
(...), and Kathleen Kenealy. 2024. Gemma: Open
models based on gemini research and technology.
ArXiv, abs/2403.08295.

Luis Mitxelena. 1981. Lengua común y dialectos vascos.
Anuario del Seminario de Filología Vasca" Julio de
Urquijo", 15:289–313.

Aakanksha Naik, Abhilasha Ravichander, Norman
Sadeh, Carolyn Rose, and Graham Neubig. 2018.
Stress test evaluation for natural language inference.
In Proceedings of the 27th International Conference
on Computational Linguistics, pages 2340–2353.

Alan Ramponi and Camilla Casula. 2023. DiatopIt: A
corpus of social media posts for the study of diatopic
language variation in Italy. In Tenth Workshop on
NLP for Similar Languages, Varieties and Dialects
(VarDial 2023), pages 187–199, Dubrovnik, Croatia.
Association for Computational Linguistics.

Elisa Sanchez-Bayona and Rodrigo Agerri. 2024.
Meta4xnli: A crosslingual parallel corpus for
metaphor detection and interpretation. arXiv,
2404.07053.

Kevin Stowe, Prasetya Utama, and Iryna Gurevych.
2022. IMPLI: Investigating NLI models’ perfor-
mance on figurative language. In Proceedings of the

60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
5375–5388.

Larraitz Uria and Ricardo Etxepare. 2012. Hizkeren
arteko aldakortasun sintaktikoa aztertzeko metodolo-
giaren nondik norakoak: Basyque aplikazioa. La-
purdum. Euskal ikerketen aldizkaria| Revue d’études
basques| Revista de estudios vascos| Basque studies
review, (16):117–135.

Francisco Valentini, Viviana Cotik, Damián Ariel
Furman, Ivan Bercovich, Edgar Altszyler, and
Juan Manuel P’erez. 2024. Messirve: A large-
scale spanish information retrieval dataset. ArXiv,
abs/2409.05994.

Vered Volansky, Noam Ordan, and Shuly Wintner. 2013.
On the features of translationese. Digital Scholarship
in the Humanities, 30(1):98–118.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Marcos Zampieri, Preslav Nakov, and Yves Scherrer.
2020. Natural language processing for similar lan-
guages, varieties, and dialects: A survey. Natural
Language Engineering, 26(6):595–612.

Marcos Zampieri, Kai North, Tommi Jauhiainen, Mari-
ano Felice, Neha Kumari, Nishant Nair, and Yash Ma-
hesh Bangera. 2024. Language variety identification
with true labels. In Proceedings of the 2024 Joint
International Conference on Computational Linguis-
tics, Language Resources and Evaluation (LREC-
COLING 2024), pages 10100–10109, Torino, Italia.
ELRA and ICCL.

Koldo Zuazu. 2008. Euskalkiak. Euskararen dialektoak.
Elkar.

Koldo Zuazu. 2015. The unification of the
basque language. http://euskalkiak.eus/en/
euskararen_batasuna.php. Accessed: 09-06-
2025.

463

https://arxiv.org/abs/2401.05632
https://doi.org/10.18653/v1/2023.findings-emnlp.923
https://doi.org/10.18653/v1/2023.findings-emnlp.923
https://aclanthology.org/2025.vardial-1.13/
https://aclanthology.org/2025.vardial-1.13/
https://aclanthology.org/2025.vardial-1.13/
https://api.semanticscholar.org/CorpusID:268379206
https://api.semanticscholar.org/CorpusID:268379206
https://doi.org/10.18653/v1/2023.vardial-1.19
https://doi.org/10.18653/v1/2023.vardial-1.19
https://doi.org/10.18653/v1/2023.vardial-1.19
https://api.semanticscholar.org/CorpusID:272550762
https://api.semanticscholar.org/CorpusID:272550762
https://doi.org/10.1093/llc/fqt031
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.1017/S1351324920000492
https://doi.org/10.1017/S1351324920000492
https://aclanthology.org/2024.lrec-main.882/
https://aclanthology.org/2024.lrec-main.882/
http://euskalkiak.eus/en/euskararen_batasuna.php
http://euskalkiak.eus/en/euskararen_batasuna.php


A Guidelines for Variation Adaptation

Language Adaptation guidelines
Basque Ataza honetan testu motz batzuk hizkuntza formal/estandarretik hizkuntza

informalagora/euskalkietara berridatzi behar dira. Bakoitzak bere
hizkuntza informal/dialektalean esango lukeen bezala idaztea da helburua.
Hau horrela, ondorengo aldaketak proposatzen ditugu:

• Esamolde edo hizkuntza informalagoa bilakatu.

• Ezaugarri dialektalak gehitu, bai lexiko aldetik eta bai gramatika edo
fonetika aldetik.

• Hika.

Erregistroa edo dialektoak barne hartzen dituen beste edozein aldaketa
ongietorria da. Adibidez:

Jatorrizkoa: Bi dantzari horiek dantza hunkigarria eskaini zuten herriko
frontoian.

Berridatzia: Bi dantsari hoiek dantza emozionantia eskeiñi zuten her-
riko frontoien.

Spanish En esta tarea se deben reescribir algunos textos cortos del lenguaje for-
mal/estándar a un lenguaje más informal/dialectal. El objetivo es adaptar
las frases como cada persona lo diría en su propio lenguaje dialectal. De
esta manera, se propone hacer los siguientes cambios:

• A nivel de registro: Más informal, reescribiéndola de manera más
coloquial

• Con rasgos dialectales, sean léxicos, gramaticales o fonéticos

• Adaptar la ortografía para que refleje vuestra pronunciación, dialecto

Cualquier otro cambio que refleje un cambio de registro o dialecto es
bienvenido. Por ejemplo:

Frase original: El amigo se quedó sin opciones cuando le dijeron que
el autobús no pasaría más.

Frase adaptada: El socio se quedo botao cuando le dijeron que la
guagua no pasaba ma.

English This task involves rewriting short texts from formal/standard language
to a more informal/dialectal language. The objective is to rewrite the
sentences as each person would say them in their own dialectal language.
The following changes are proposed:

• At the register level: More informal, rewriting in a more colloquial
manner

• With dialectal features, whether lexical, grammatical, or phonetic

• Adapting spelling to reflect your pronunciation, dialect

Any other changes that reflect a change in register or dialect are welcome.
For example:

Original phrase: Everyone, hurry up now, dinner is about to get cold.

Adapted phrase: Y’all better hurry up now, supper’s fixin’ to get cold.

Table 7: Guidelines for standard to dialectal adaptations, both in Basque and Spanish, and an English translation
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B Adaptation Process Information

B.1 Annotator Metadata

Variable Category N %
Location Gipuzkoa 7 58.34

Biscay 4 33.34
Navarre 1 8.34

Age 20-30 5 41.67
30-40 3 25.00
40+ 4 33.34

Gender Male 5 41.67
Female 7 58.34

Background Linguist 8 66.67
Non-linguist 4 33.34

(a) Demographic metadata of annotators. N =
Count; % = Percentage

Variable Category N %
Location Cuba 2 33.33

Ecuador 1 16.67
SpainAndalusia 1 16.67
SpainTenerife 1 16.67
Uruguay 1 16.67

Age 20-30 1 16.67
30-40 3 50.00
40+ 2 33.33

Gender Male 2 33.34
Female 4 66.67

Background Linguist 3 50.00
Non-linguist 3 50.00

(b) Demographic metadata of annotators. N =
Count; % = Percentage

Table 8: Annotator metadata

B.2 Adaptation Type

Basque Spanish
Change type N % N %
re-write 18 6.04 61 27.48
dialectal 223 74.83 161 72.52
Allocutive_masc 37 12.41 - -
allocutive_fem 20 6.71 - -

Total 298 222

Table 9: Number and percentage of change types in Basque and Spanish data. N: Count of examples; %: Percentage

B.3 Geographical Variants Distribution in Data

Navarrese
7.0%

Central
66.1%

Western
26.8%

(a) Number of examples per geographical variants
in Basque

Uruguay
5.9%

SpainTenerife
17.6%

SpainAndalusia
24.8%

Cuba
29.3%

Ecuador
22.5%

(b) Number of examples per geographical variants
in Spanish

Figure 3: Geographical variant label representation in XNLIvar
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C Prompts

Task formulation Prompt
nli-zero Please, answer in one word, with one of the following labels: <entailment>,

<contradiction> or <neutral> Use exactly one of these three labels.

nli-few "Say which is the inference relationship between these two sentences.
Please, answer in one word, with one of the following labels: <entailment>,
<contradiction> or <neutral> Use exactly one of these three labels. Here
you have some examples: Postal Service were to reduce delivery frequency
-> The postal service could deliver less frequently: <entailment>. This
elegant spa town on the edge of the Lac du Bourget has offered cures
for rheumatism and other ailments for centuries -> The town was only
established in the past fifty years: <contradiction>. And while we allow
people to give a kidney to their child, we do not allow them to donate their
heart -> You can’t always donate organs to your child: <neutral>.

qa-zero Are these two sentences entailed, contradicted or undetermined to each
other? Please, answer in one word, with one of the following labels:
<entailment>, <contradiction> or <neutral> Use exactly one of these three
labels.

qa-few Are these two sentences entailed, contradicted or undetermined to each
other? Please, answer in one word, with one of the following labels:
<entailment>, <contradiction> or <neutral> Use exactly one of these three
labels. Here you have some examples: Postal Service were to reduce
delivery frequency -> The postal service could deliver less frequently:
<entailment>. This elegant spa town on the edge of the Lac du Bourget
has offered cures for rheumatism and other ailments for centuries -> The
town was only established in the past fifty years: <contradiction>. And
while we allow people to give a kidney to their child , we do not allow
them to donate their heart -> You can’t always donate organs to your child:
<neutral>.

chain You are an expert linguist and your task is to annotate sentences for the
task of Natural Language Inference. This task consists in determining if a
first sentence (premise) entails, contradicts or does not entail nor contradict
the second sentence (hypothesis). Please, answer in one word, with one
of the following labels: <entailment>, <contradiction> or <neutral> \n
Use exactly one of these three labels \n Here you have a few examples:\n
Premise: Postal Service were to reduce delivery frequency. \n Hypothesis:
The postal service could deliver less frequently. \n Answer: <entailment>
\n Premise: This elegant spa town on the edge of the Lac du Bourget
has offered cures for rheumatism and other ailments for centuries. \n
Hypothesis: The town was only established in the past fifty years. \n
Answer: <contradiction> \n Premise: And while we allow people to give
a kidney to their child , we do not allow them to donate their heart. \n
Hypothesis: You can’t always donate organs to your child. \n Answer:
<neutral>

Table 10: Different task formulation prompts for generative model prompting
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D Basque Monolingual Discriminative Results

Translate-train

XNLIeu XNLIeunative XNLIeuvar

RoBERTa-Euscrawl 82.63 73.43 72.24
BERTeus 78.15 68.81 63.67

Table 11: Accuracy results for Basque monolingual discriminative experiments

E Additional Generative Results

Llama-3.1-Instruct-8B Gemma-2-it-9B

nli-zero nli-few qa-zero qa-few chain nli-zero nli-few qa-zero qa-few chain

XNLIeu 20.30 16.63 09.16 38.50 51.76 55.61 38.66 37.96 44.51 48.88
XNLIeunative 21.36 17.90 07.05 36.24 41.83 61.19 39.94 41.55 49.11 54.43
XNLIeuvar 20.45 13.04 14.33 37.04 46.22 53.47 39.04 36.13 41.72 45.53

(a) Accuracy results with generative LLMs on Basque data.

Llama-3.1-Instruct-8B Gemma-2-it-9B

nli-zero nli-few qa-zero qa-few chain nli-zero nli-few qa-zero qa-few chain

XNLIes 27.96 22.87 16.43 49.28 57.78 64.11 55.57 44.73 57.41 66.83
XNLIeu2esnative 28.34 15.62 23.19 48.79 62.80 69.24 55.72 50.24 59.42 71.82
XNLIesvar 26.73 21.62 19.37 48.35 56.46 67.63 53.14 44.28 55.72 68.92

(b) Accuracy results with generative LLMs on Spanish data.

Table 12: Results with 8B and 9B LLMs.

F Per-dialect Accuracy Results

Model transfer Translate-train Translate-test

Western Central Navarrese Western Central Navarrese Western Central Navarrese

XLM-RoBERTa large 71.25 67.17 71.43 73.75 74.45 71.43 71.67 72.42 74.60
mDeBERTa 62.08 70.90 60.32 66.25 72.59 66.67 69.58 71.40 73.02

Table 13: Accuracy results for discriminative models in Basque dialects
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Model transfer

Cuba Ecuador SpainAndalusia SpainTenerife Uruguay

XLM-RoBERTa large 79.49 78.67 69.70 58.97 82.05
mDeBERTa 76.92 78.67 70.30 58.97 79.49

Translate-train

Cuba Ecuador SpainAndalusia SpainTenerife Uruguay

XLM-RoBERTa large 79.49 84.67 70.91 61.54 82.05
mDeBERTa 73.33 81.33 69.09 53.85 87.18

Translate-test

Cuba Ecuador SpainAndalusia SpainTenerife Uruguay

XLM-RoBERTa large 72.82 76.67 72.12 64.10 76.92
mDeBERTa 69.23 77.33 67.88 62.39 79.49

Table 14: Accuracy results for discriminative modes in Spanish variants

G Spanish Correlation Between Adaptation Types and Accuracy
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Figure 4: Spanish accuracy results and its correlation to types of linguistic adaptations. 1 and 2 have the highest
accuracies, but changes usually involve word changes. For 3 , 4 and 5 , the accuracy decreases respectively, as
variations majorly involve phonetic changes.
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Abstract

In sentences such as John began the book, the
complement noun phrase, lexically denoting an
entity, is interpreted as denoting an event. This
is known in linguistics as complement coercion:
the event associated with the verb is not overtly
expressed but can be recovered from the mean-
ings of other constituents, context and world
knowledge. We investigate whether language
models (LMs) can exploit sentence structure
and compositional meaning to recover plausi-
ble events in complement coercion. For the first
time, we tested different LMs in Norwegian, a
low-resource language with high syntactic vari-
ation in coercion constructions across aspectual
verbs. Results reveal that LMs struggle with re-
trieving plausible events and with ranking them
above less plausible ones. Moreover, we found
that LMs do not exploit the compositional prop-
erties of coercion sentences in their predictions.

1 Introduction

Sentences like John began the book are examples
of complement coercion, originating from a type-
mismatch between the required verb argument and
the observed one (Pustejovsky, 1991, 1995): the
aspectual verb (e.g., begin) semantically requires
an event-denoting argument but is composed with
an entity as its syntactic complement. Although the
event is not overtly expressed, a plausible candidate
can often be recovered by exploiting lexical and
contextual information (Pustejovsky, 1991, 1995;
Lapata and Lascarides, 2003): the sentence above
can be interpreted as meaning John began {reading,
writing, ...} the book.

Complement coercion has drawn attention as
a potential violation of the Fregean principle of
compositionality. Compositionality implies that all
aspects of sentence meaning should derive from the
meanings of the constituent parts and the way they
are combined syntactically (Asher, 2015; Baggio

et al., 2012). The interpretation of various covert el-
ements results from enriched composition: seman-
tic processes that exploit conceptual meaning, dis-
course context and world knowledge (Pustejovsky,
1991, 1995; Jackendoff, 1997; Baggio, 2018).

Language Models (LM) based on the Trans-
former architecture (Vaswani et al., 2017) have
demonstrated remarkable capabilities in a wide
range of NLP tasks, including natural language
understanding. Despite their success, few studies
have focused on enriched composition phenomena
such as complement coercion (Gu, 2022; Ye et al.,
2022). Some studies have investigated LM perfor-
mance viewing complement coercion as an event
retrieval task and demonstrating the challenges of
recovering underlying semantic information from
coercion sentences (Rambelli et al., 2020; Ye et al.,
2022; Gietz and Beekhuizen, 2022; Gu, 2022; Im
and Lee, 2024; Rambelli et al., 2024). However,
most studies have been conducted in English, a
language with low variability in the syntax of co-
ercion constructions. As a consequence, little is
known about the interplay of syntax and semantics
in covert event retrieval in LMs: (how) do ma-
chines exploit compositional properties of coercion
sentences to arrive at plausible interpretations?

The current study makes three contributions.
First, to our knowledge, it is the first study of LMs
on complement coercion that uses a language other
than English (Norwegian) and that evaluates and
compares different LMs (autoencoders and autore-
gressive models). Second, we investigate the inter-
action between different aspectual verbs Katsika
et al. (2012) and post-verbal constituents in canoni-
cal syntactic constructions. Norwegian shows some
variation in how complement coercion is syntac-
tically realized, and therefore allows us to probe
whether LMs are sensitive to syntactic and compo-
sitional semantic properties of these constructions
across aspectual verbs. Finally, Norwegian is cur-
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rently considered a low-resource language (Kum-
mervold et al., 2022; Liu et al., 2024; Samuel et al.,
2025), and we are releasing our evaluation dataset
for complement coercion resolution in Norwegian.
Complement coercion with aspectual verbs is sta-
tistically rare in Norwegian corpora (see below):
recovering implicit events could be challenging for
a ‘data hungry’ technology such as LMs.

2 Related Work

2.1 Complement Coercion in Norwegian

Complement coercion has been studied in several
high-resource languages. Apart from English, we
find studies on German (Rüd and Zarcone, 2011;
Zarcone and Padó, 2011; Zarcone et al., 2012,
2014), French (Godard and Jayez, 1993; Puste-
jovsky and Bouillon, 1995), Dutch (Sweep, 2012),
and Chinese (Hsu and Hsieh, 2013), while there
has been little research on Scandinavian languages.
Spalek (2015) analyzed the cessation verb avs-
lutte (to conclude), comparing Norwegian, English,
Spanish and German. Spalek concluded that coer-
cion is limited to a reduced set of entities that can
be combined with the verb, especially "information-
content entities" (e.g., text) (Spalek, 2015, p. 531).
Spalek and Sæbø (2019) argued that Norwegian
speakers tend to combine dynamic verbs with spe-
cific particles that denote a particular stage of the
event (e.g., å stryke ferdig, to finish ironing).

Radaelli and Baggio (2025) conducted a study
on the Norwegian Colossal Corpus (NCC) (Kum-
mervold et al., 2022), a large set of corpora that
includes approximately 21M documents for a total
of 7B tokens. The study examined a wider class of
aspectual verbs than previous theoretical research:
begynne (to begin), starte (to start), fortsette (to
continue), ende (to end), and avslutte (to conclude).
The authors found that the syntax of complement
coercion in Norwegian can vary according to the
aspectual verb. Initiation verbs are usually com-
bined with PPs introduced by the prepositions på
or med:

(1) Gutten begynte | startet på | med boken.
(The boy began | started [with] the book.)

These combinations appear with higher frequency
in complement coercion sentences compared to
other aspectual verbs. The continuation verb fort-
sette introduces coercion mainly with med-PPs and,
to a lesser extent, directly with nominals:

(2) Gutten fortsatte [med] boken.
(The boy continued [with] the book.)

The cessation verb avslutte prefers direct objects,
while med-prepositional phrases appear less often:

(3) Gutten avlsuttet [med] boken.
(The boy finished [with] the book.)

Not all aspectual verbs can trigger complement
coercion (e.g., the verb ende was excluded), nor do
aspectual verbs significantly differ in occurrence
frequency in coercion constructions.

The corpus analysis confirms the findings of
Spalek (2015) and Spalek and Sæbø (2019): com-
plement coercion occurs with a restricted set of
entity categories. Although a similar trend can be
found also in other languages (e.g., see Verspoor
(1997) for English and Rüd and Zarcone (2011) for
German), Norwegian shows even less variability,
reducing the set of entities primarily to everyday
objects such as text, music, songs, food and drinks.

Considering Pustejovsky’s Generative Lexicon
perspective (Pustejovsky, 1995), the productivity
of coercion can also be limited by the interaction
of syntactic and semantic factors. If, on the one
hand, entities admit either AGENTIVE or TELIC

qualia readings, their combination with preposi-
tions may further reduce the set of plausible event
candidates. The preposition med appears to play a
‘passe-partout’ role, with greater flexibility in event
interpretation, including not only default qualia
readings but also contextual information, if present.
The preposition på, on the other hand, tends to
further constrain interpretations: the corpus data
showed a stronger tendency to express AGENTIVE

interpretations with entities that are created rather
than used. Radaelli and Baggio (2025) also found
that Norwegian speakers prefer to express similar
concepts to complement coercion through a broad
range of phrasal constructions (e.g., å sette i gang,
to begin). The study concluded that complement
coercion is a relatively low-frequency phenomenon,
with around 1500 cases over 80,000 sentences with
aspectual verbs and syntactic constructions com-
patible with coercion.

2.2 LM Approaches to Complement Coercion
Before the LM era, complement coercion interpre-
tation was carried out via either probabilistic (Lap-
ata and Lascarides, 2003; Shutova, 2009; Shutova
et al., 2013) or distributional semantic modeling
(Zarcone et al., 2012, 2013; Chersoni et al., 2017;
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McGregor et al., 2017; Chersoni et al., 2021). In
one of the first studies testing LMs on comple-
ment coercion, Rambelli et al. (2020) evaluated the
events retrieved by pretrained models of the BERT
and the GPT families. They found that LMs per-
formed well, but not significantly better than the
best distributional models.

Ye et al. (2022) argued that Transformer-based
models can learn coercion interpretations via dense
paraphrasing (DP): DP involves the reformulation
of a given coercion sentence in a way that eventive
information is revealed, ambiguity is removed and
the original sentence meaning is preserved. They
found that BERT struggles in interpreting coercion,
but a fine-tuning with explicitly paraphrased sen-
tences improved its performance.

Finally, Gu (2022) investigated the behavior of
GPT-2 on complement coercion by analyzing sur-
prisal estimates. The goal was to understand how
LMs process coercion constructions at the VP. Sig-
nificant surprisal effects were observed at the tar-
get region, aligning with psycholinguistic findings
of increased processing costs at the complement
(McElree et al., 2001; Traxler et al., 2002; Baggio
et al., 2010, 2011, 2016).

3 Experimental Settings

3.1 Task Proposal

In previous research on complement coercion in
LMs, evaluations typically compared a narrow set
of high-likelihood predictions against a predefined
set of gold standard outputs. In contrast, our study
introduces a novel evaluation approach, based on
a ranked prediction distribution of class-specific
verbs, rather than just the most probable outputs:
for every context-neutral sentence1 s belonging
to a set S, a given model m generates a set of
top-k ranked output predictions O = {o1...ok}.
We then evaluate each output with a mean average
precision metric, allowing us to determine not only
whether a model predicts covert events, but also
to what extent LMs consistently predict plausible
event interpretations in their rankings.

The distribution should reflect a re-ranking of
tokens when the model is exposed to coercion sen-
tences, providing evidence of its sensitivity to coer-
cion. In cases where a LM is exposed to a sentence
such as The boy began the book, we expect that the

1Context-neutral, canonical coercion sentences include the
subject, the aspectual verb and its complement, with unmarked
word order and no additional sentence context.

combination of the triplet <subject, aspectual verb,
entity> would result in a re-ranking of candidate
implicit events (see Figure 1): the ranking should
reflect the interaction of the triplet composition,
where plausible verbs (events) are collocated at the
top of the rank as the most likely interpretations.

Instead of using a set of predefined events, our
study will consider any event that meets the syn-
tactic and semantic constraints of complement co-
ercion as correct. According to Piñango and Deo
(2016) and Spalek and Sæbø (2019), the covert
event of a complement coercion sentence should be
telic: combined with the subject and complement,
it should establish a natural endpoint or goal state.

have (STATE)

throw (ACH)

write (ACC)

give (ACH)

read (ACC)

...







⟨Boy, begin [prep], book⟩ =

Figure 1: An example of re-ranking candidate events
when the expressions in the given triplet are composed
in a sentence. The matrix shows output verbs associated
with their Aktionsart class such as state, achievements
(ACH), and accomplishments (ACC).

Given the above requirements, events predicted
by LMs should be evaluated considering their Ak-
tionsart (lexical aspect) class by using Vendler’s
classification system (Vendler, 1967). We identify
the class of accomplishment verbs as our ground
truth in this task, as they denote dynamic and dura-
tive actions with a specific endpoint, aligning with
the telicity criterion by Spalek and Sæbø (2019).
As there is no predefined set of implicit events for
interpreting a coercion sentence, we consider as
compositionally plausible candidates all predicted
verbs that belong to the accomplishment class. In
case a model predicts events weakly associated
with a specific coercion triplet (e.g., begin the book
→ eat, see Lascarides and Copestake 1998), this
does not necessarily indicate low performance: the
output can count as correct, if the retrieved event
is an accomplishment. It is possible to construct
contexts where even apparently deviant events are
plausible, so long as they are accomplishments:
e.g., The goat began {eating} the book.
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3.2 Dataset
We created a new dataset of sentence pairs with (a)
a context-neutral sentence with a coercion triplet
and variable syntactic structure (på-NP, med-NP,
NP) and (b) a sentence prompting event resolution:

(a) Kim {VERB-FIN} {PREP|Ø} {ENTITY-DEF}.

(b) Det som Kim {VERB-FIN} å gjøre, var
å [MASK]. (What Kim {VERB-FIN} to do,
was [MASK].)

Each placeholder in brackets is replaced with the
relevant lexical item. The template encompasses a
combination of the following elements:

• 90 entities ({ENTITY-DEF}) were carefully
selected to represent real artifacts, avoiding
abstract and ambiguous concepts. In addition,
following Piñango and Deo (2016, p. 387),
we used entities that can be semantically in-
terpreted as “incremental theme arguments of
the implicit event”, a crucial element in coer-
cion configurations. We included entities that
never occurred in coercion sentences in the
NCC corpus study, ensuring that the models,
especially those trained exclusively on NCC,
are exposed to sentences not seen during pre-
training. Six distinct entity categories were
used: food, text, clothing, everyday objects,
construction/housing, and entertainment. All
nouns were only used in definite form.

• Four aspectual verbs ({VERB-FIN}), namely
begynne (begin), starte (start), fortsette (con-
tinue), and avslutte (finish) were composed
with each entity. The verb was always pre-
sented in the simple past form (preteritum) in
both sentences in a pair.

• Three syntactic constructions were used
({PREP|Ø}): the complement is either intro-
duced by a PP with the prepositions på or
med followed by the NP denoting an entity,
or only by the latter NP.

• The same subject was used for every sentence,
with a neutral name (Kim) to avoid gender and
other biases that may affect the results.

• In all pairs, the prompt (b) included the
[MASK] token the model has to predict.

A total of 1080 sentence pairs in standard written
Bokmål form were used with each model.

Model # Par. Tr. Data
MBERT CASED/UNCASED 178M 3.3B*
NB-BERT-BASE 178M 7B
NB-BERT-LARGE 355M 7B
NORBERT 111M 1.9B
NORBERT2 125M 15B
NORBERT3-base 123M 25B
NORBERT3-large 353M 25B
NORBERT3-SMALL 40M 25B
NORBERT3-XS 15M 25B
NORBLOOM-7B-SCRATCH 7B 26.7B
NORGPT-369M 369M 25B
NORGPT-3B 3B 25B
NORGPT-3B-CONTINUE 3B 25B
NORLLAMA-3B 3B 26.7B
NORMISTRAL-7B-SCRATCH 7B 26.7B
NORMISTRAL-7B-WARM 7B 26.7B

Table 1: Tested LMs with approximate information on
number of parameters (#Par.) and training data (Tr.
Data). *mBERT was trained on 114 languages.

3.3 Models
We evaluated a total of 17 different pre-trained Nor-
wegian LMs varying in architecture, parameter size
and training data. The models belong to two broad
families: BERT-like autoencoder models, and au-
toregressive models such as GPT-2 (Radford et al.,
2019), LLAMA-2 (Touvron et al., 2023), Mistral
(Jiang et al., 2023) and Bloom (Scao et al., 2023)
(Table 1). All models are available on Hugginface2.

3.4 Baseline Model
To assess event retrieval in complement coercion
by LMs, it is necessary to use a baseline model,
here provided by the NCC, an open-source corpus
used for training most LMs in Norwegian 3. For
each entity in the dataset, we extracted the most
likely verbs (events) associated with the entity. The
extracted verbs were determined on the basis of
the Pointwise Mutual Information (PMI) score, a
metric evaluating the association strength between
two words w1 and w2 (Church and Hanks, 1990):

PMI(w1, w2) = log
P (w1, w2)

P (w1) · P (w2)

In our study, the score was calculated through
the joint probability between each sentence pred-
icate (event) and its object (entity) in the entire

2https://huggingface.co/
3The National Library of Norway, the maintainer of the

NCC corpus, in December 2024 has updated its distribution
policies, limiting access to some subcorpora. This has caused
a decrease in the corpus size from approximately 7B to 4.5B
tokens. For further information, see https://huggingface.
co/datasets/NbAiLab/NCC
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corpus. The PMI score provides a measure of gen-
eral lexical association between verbs and entities.
A comparison with this baseline allows us to under-
stand whether an LM genuinely interprets covert
events based on coercion settings or simply mirrors
statistical co-occurrence patterns observed during
pre-training.

3.5 Evaluation and Annotation
We used two common evaluation metrics. One is
mean average precision (mAP) (see Manning et al.
(2009, from p. 159) and Kotlerman et al. (2010)):

mAP =
1

S

S∑

s=1

AP(s)

It consists of the weighted means of average preci-
sion (AP ) scores across all sentences (S):

AP(q) =
5∑

k=1

P (k) ·∆R(k)

where P is the precision value calculated at the
cut-off rank k and ∆R(k) is the change in recall
(R) from rank k − 1 to k. mAP provides the rank-
ing direction of models when complement coercion
occurs. A high mAP value indicates a model that
mostly considers accomplishment verbs in the pre-
diction list, collocating them at the top, whereas
a low mAP value suggests a failure in prioritizing
accomplishment verbs as completions.

The second metric is the mean top-ranked ac-
curacy (A1) in all sentences, considering only the
most likely prediction in the ranking. This metric
allows us to study what types of verb (events) the
models consider as the most salient ones.

4 Results and Task Discussion

Table 2 shows the performance results of all LMs
in the covert event retrieval task in Norwegian,
with mAP and A1 scores. Model performance
varies according to the interplay of two main fac-
tors: model framework and model size (number of
parameters and training data). The NORBERT3 fam-
ily shows relatively high performance compared
to other BERT-like frameworks, with NORBERT3-
BASE and NORBERT3-LARGE outperforming the
baseline on both measures. Larger LMs outperform
NB-BERT models and the previous generations of
NORBERT models, which showed poorer perfor-
mances, possibly due to less training data available.
Models like NORBERT3-XS performed less well

Model mAP A1
NCC (baseline) 0.59 0.47
NORGPT-369M 0.56 0.54
NORGPT-3B 0.48 0.42
NORGPT-3B-CONTINUE 0.46 0.42
NORLLAMA-3B 0.71 0.67
BERT-BASE-MULTILINGUAL-CASED 0.07 0.00
BERT-BASE-MULTILINGUAL-UNCASED 0.27 0.22
NB-BERT-BASE 0.38 0.33
NB-BERT-LARGE 0.54 0.47
NORBERT 0.25 0.18
NORBERT2 0.44 0.34
NORBERT3-BASE 0.63 0.58
NORBERT3-LARGE 0.60 0.55
NORBERT3-SMALL 0.59 0.55
NORBERT3-XS 0.29 0.16
NORBLOOM-7B-SCRATCH 0.46 0.34
NORMISTRAL-7B-SCRATCH 0.38 0.29
NORMISTRAL-7B-WARM 0.63 0.54

Table 2: Mean average precision (mAP) and top-rank
accuracy (A1) results in the covert event retrieval task
in Norwegian. NORLLAMA-3B is the best performing
model overall.

probably due to their reduced parameter size, de-
spite the same amount of training data.

Almost all GPT-2-based models, as well as
NORBLOOM-7B-SCRATCH and NORMISTRAL-7B-
SCRATCH performed poorly, ranking below the
baseline, despite their size. NORMISTRAL-7B-
WARM outperforms the baseline in both cases, com-
pared to the version trained from scratch: pretrain-
ing on the English vanilla version and successive
pretraining on Norwegian data may have given the
model an advantage, allowing for the transfer of
rich representations from English text. Finally,
NORLLAMA-3B can be considered as the most
capable model among those tested here. Its suc-
cess could be attributed perhaps to its large training
corpus, with more than 25B training tokens in Nor-
wegian and other Scandinavian languages.

Language models generally struggle to perform
the completion task. Overall low mAP scores sug-
gest difficulties in generating plausible accomplish-
ments among high-ranked candidate mask replace-
ments. This is confirmed when cross-analyzing
A1 scores: even the best model, NORLLAMA-3B
fails to reach a 70% level of accuracy, indicating
that non-accomplishments and other implausible
verbs are predicted as candidate interpretations at
the top of the list. Similarly, the top-10 ranked
models achieve an A1 score ranging from 0.42 to
0.58: they have around 50% chance of failing to
rank accomplishments at the top.

We will now turn to an analysis of model per-
formance taking into account both mAP and A1
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NorLlama-3B mAP A1
verb prep

avslutte ø 0.66 0.61
med 0.75 0.69
på 0.64 0.53

begynne ø 0.75 0.72
med 0.79 0.81
på 0.73 0.71

fortsette ø 0.64 0.57
med 0.64 0.56
på 0.59 0.46

starte ø 0.79 0.80
med 0.81 0.83
på 0.76 0.76

Table 3: Mean average precision (mAP) and top-rank ac-
curacy (A1) results for NORLLAMA-3B categorized by
aspectual verbs (begynne, starte, fortsette and avslutte)
and syntactic composition (introduced by prepositions,
på or med, or by a nominal, ø) in coercion sentences.

scores subdivided according to aspectual verbs and
their syntactic structures in coercion sentences. For
the sake of simplicity, we will consider the best
performing model NORLLAMA-3B. The results
are shown in Table 3.

Consistently high mAP scores are found with
initiation verbs. The verb starte shows high mAP
scores reaching 0.81 precision when entity argu-
ments in coercion sentences are introduced by the
preposition med, 0.79 with nominals and 0.76 with
the preposition på. The verb begynne was asso-
ciated with worse performance, while showing a
similar trend as starte. Sentences with entity argu-
ments introduced by med reached 0.79 precision,
0.75 with nominals and 0.73 with på. The two
remaining aspectual verbs showed similar results,
and arguments with med as preposition obtained
higher precision scores. In sentences with fort-
sette, both nominals and med-prepositional phrases
reached the same score (0.64).

A1 scores show a similar trend. The model per-
forms better when coercion sentences are intro-
duced by starte, with 0.83 of A1 accuracy when
the entity NP is introduced by med-PP, 0.80 without
a preposition and 0.76 by på-PP. The verb begynne
also serves as a trigger for complement coercion,
with an A1 score of 0.81 with med-prepositional
phrases, 0.72 with simple nominals and 0.71 with
verb argument phrases introduced by på.

Two key observations are suggested by this anal-

ysis. First, different aspectual verbs are associated
with differences in model performance. Our results
indicate that the model can recover the implicit
meaning more easily with initiation verbs in co-
ercion sentences. This is consistent with the cor-
pus analysis of Radaelli and Baggio (2025), which
showed that among all aspectual verbs, initiation
verbs feature more frequently in coercion sentences.
Second, we only find weak differences in perfor-
mance as a function of the syntax of post-verbal
constituents. This suggests that the type of syn-
tactic structures in complement coercion sentences
plays only a minor role in the model’s process of
recovery of implicit meaning.

4.1 Sentence surprisal
Previous studies (see above) indicated that LMs
struggle to consistently retrieve covert events in
complement coercion sentences. To understand
the reasons behind these prediction difficulties, one
can study the model’s behavior when it is exposed
to complement coercion sentences. We conducted
a further analysis that complements the previous
ranking results by computing surprisal estimates
for coercion sentences. Surprisal is used in NLP
and psycholinguistic studies to quantify effort dur-
ing sentence processing (Hale, 2001; Levy, 2008;
Smith and Levy, 2013; Salicchi et al., 2023; Oh
and Schuler, 2023; Shain et al., 2024):

S(wi) = − log2 P (wi | w1, . . . , wi−1)

Surprisal measures how unexpected a given word
(wi) is, given its left context (w1...wi−1). Higher
surprisal values indicate greater processing diffi-
culty, as upcoming words are less predictable.

We will use surprisal to assess whether models
expect an entity-denoting noun in coercion triples.
Specifically, we will compare surprisal estimates
for complement coercion sentences (e.g., Kim beg-
ynte på boken, Kim began (on) the book) with their
overt counterparts (e.g., Kim leste boken, Kim read
the book). The events were selected considering the
highest PMI scores between each accomplishment
and its associated entity. In total, we examined
2,160 sentences, using the same sentences from the
previous task (1,080 coercion, 1,080 overt) com-
bining all aspectual verbs, all entities, and the same
three different syntactic structures. To compute sur-
prisal estimates, we used log-probabilities provided
by model logits. As coercion and overt sentences
may differ in length, we computed surprisal for
sentences as the mean of each word’s surprisal:
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Smean(s) =
1

N

N∑

i=1

S(wi)

where N is the number of tokens in a sentence s.
Here too, we tested surprisal for NORLLAMA-3B
as a high performance model in this task. For the
calculation of surprisal estimates, we used the tool
minicons on Python. The data were analyzed using
Wilcoxon signed-rank tests to compare the surprisal
values between coercion and overt sentences. We
hypothesized that the model would show higher
surprisal values for coercion sentences than for
overt ones. The results confirmed the hypothesis,
showing a statistical difference in surprisal (W =
367176, p < 0.001). This suggests a tendency of
the model to assign prediction logits with lower
probabilities for coercion sentences.

In order to analyze the extent to which syntac-
tic structure can influence surprisal in coercion
sentences, we compared two regression models.
As a baseline, we ran a model on surprisal using
only sentence type (coercion vs explicit) and se-
quence length as predictors. The second model
also included syntactic structure as a predictor
(with på-PPs, med-PPs and direct nominals as lev-
els). The baseline model (R2 = 0.173) revealed
that coercion sentences significantly increased sur-
prisal. Moreover, sequence length negatively corre-
lated with surprisal, meaning that longer sentences
led to lower surprisal values. The second model
(R2 = 0.181) shows a significant positive trend in
the coercion condition, as the baseline model. On
the other hand, sequence length shows in this case
a positive effect on surprisal. Sentences with med-
prepositional phrases demonstrate lowest surprisal,
while sentences with på exhibit slightly higher sur-
prisal, but still lower than in the nominal condi-
tions. Comparing the variance of the two models
(∆R2 = +0.008), we find small improvements at-
tributable to syntax. Prepositions therefore reduce
surprisal in comparison to sentences with direct
nominals, where med-sentences led to lower sur-
prisal, followed by på (Figure 2).

5 Error Analysis

To study model errors, a relatively straightforward
approach is to examine the overall prediction distri-
bution of events and their Aktionsart. For practical
reasons, the analysis is restricted again to the best
performing model, NORLLAMA-3B. The analysis
revealed the following findings. First, among 5,400

Baseline model Model With Syntax
Coefficient (β) Coefficient (β)

Intercept (Nominals) 9.7983 (p < 0.001) 2.0463 (p < 0.001)
Coercion 0.9429 (p < 0.001) 1.4946 (p < 0.001)
Sequence Length -1.0612 (p < 0.001) 1.3388 (p < 0.001)
Explicit — 0.5517 (p < 0.001)
Med — -2.5418 (p < 0.001)
På — -2.2583 (p < 0.001)

Table 4: Effects of syntax on sentence surprisal.

Figure 2: Surprisal values across syntactic structures.

predictions made in 1,080 coercion sentences (di-
vided by 90 different entities and presented with 4
different aspectual verbs and 3 post-verbal syntac-
tic constructions), the model predicted 68 unique
events. This small set suggests, on the one hand,
that the model tends to predict events by avoiding
many unrelated or random outputs. However, the
low variation of events also suggests a tendency to
reuse the same verbs across many entities.

Second, the distribution of events as predicted
by the model is skewed and follows a Zipfian law,
with the first most frequently predicted events in
the ranking accounting for a substantial proportion
of the total distribution, while the frequency of
verbs ranked at lower positions rapidly decreases.
Table 5 presents the distribution of the first 10 most
predicted events across all coercion instances, in-
cluding both their absolute and relative frequencies
based on the total 5,400 predictions (5 predictions
per instance). The most frequent verbs predicted
by the model are lage (make), followed by sette
(put/set), ta (take), få, and gi (give), which together
amount to almost 67% of the total predictions. The
remaining verbs have lower frequencies with a con-
siderable subset of events that occur only once.
This long-tail behavior further strengthens the hy-
pothesis of a biased tendency of the model towards
a very limited set of events.

Third, based on a close qualitative examination
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Verb Freq. (Rel._freq)

lage (make) 969 (0.18)
sette (put/set) 768 (0.14)
ta (take) 762 (0.14)
få (get/receive) 739 (0.14)
gi (give) 387 (0.07)
skrive (write) 175 (0.03)
spille (play) 155 (0.03)
legge (lay/put down) 113 (0.02)
male (paint) 109 (0.02)
dele (share/divide) 96 (0.02)
gå (go / walk) 96 (0.02)
sy (sew) 94 (0.02)
blande (mix) 84 (0.02)
strikke (knit) 83 (0.02)
synge (sing) 81 (0.02)

Table 5: Top predicted events made by NORLLAMA-3B,
showing both absolute frequency and relative frequency
out of a total of 5,400 model outputs.

of the restricted set of predicted events at the top of
the ranking, we can notice the following patterns.
The most frequently output events are usually non-
accomplishment verbs: the only acceptable accom-
plishment verb is lage, which is the most frequent.
Yet, this verb is polysemous and can be combined
with a wide range of entities, denoting an action of
creating or producing something, e.g., lage pizza
(make pizza), lage skulptur (make a sculpture) and
lage sang (compose a song). In contrast, other fre-
quently predicted events, like ta (take), få (get) and
gi (give), are either implausible in many coercion
instances or typically denote achievements, and are
therefore not acceptable in coercion constructions.

Despite a quite positive performance overall of
NORLLAMA-3B in interpreting coercion items, the
strong presence of semantically inappropriate verbs
in the ranking may be due to their high frequency in
the corpora used during pretraining. Since the task
was designed to constrain the model to retrieve only
infinitival verbs, the prediction of verbs that are not
plausible accomplishments suggests that the model
may rely more on the co-occurrence frequency be-
tween a verb and its nominal object during training,
rather than on the semantic compatibility between
the event and the entity, even in contexts in which a
more compositionally appropriate event would be
expected and could be retrieved.

6 General Discussion and Conclusion

The analyses carried out in the present study clearly
show that complement coercion remains an open
challenge for LMs in low-resource languages such
as Norwegian. We investigated the extent to which
LMs could recover implicit events in complement
coercion sentences. If models recognize these as
coercion constructions, that require event retrieval,
they should be able to distribute verb (event) pre-
dictions in such a way that accomplishments are
ranked as the most probable covert events.

However, the outcomes of the event retrieval task
indicate that LMs still have difficulties recovering
viable implicit events. In particular, A1 scores are
consistently low across models, suggesting a failure
to retrieve potential accomplishment verbs as the
most likely event predictions in the task. Moreover,
the mAP scores confirmed the models’ limitations,
as they fail to systematically and consistently rank
accomplishment verbs higher. Only few models
could outperform the baseline, whose predictions
are based on simple statistical calculations on the
NCC corpus frequency: this is significant, consid-
ering that such models were trained on corpora
3.5 times larger than the baseline. The results also
highlight performance differences across models:

• NORLLAMA-3B outperformed all the models
that were tested here; its success may be due to
its new improved architecture and training op-
timization (e.g., SwiGLU activation function,
Grouped query attention (GQA) mechanism,
rotary positional embeddings), combined with
a large amount of training data.

• On the other hand, even the largest GPT-class
models could not perform the task efficiently.
The traditional autoregressive GPT-2 may lack
an architecture that can capture covert infor-
mation like covert events.

• Even LMs such as NORBLOOM-7B-SCRATCH

and NORMISTRAL-7B-SCRATCH performed
poorly for their size. Their low performance
could be due to training carried out exclusively
on Norwegian data, especially compared to
the best performing NORMISTRAL-7B-WARM

with a pre-training phase that also included
English data.

• The NORBERT3 family, in particular the base
and large versions, could attain moderate per-
formance levels despite their reduced number
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of parameters. The BERT architecture then
seems to be well-suited for learning and stor-
ing world knowledge and relational knowl-
edge between words during pretraining, mak-
ing them effective in cloze tasks (Petroni et al.,
2019; Rogers et al., 2020). In addition, their
customized autoencoder framework, incorpo-
rating the extended MLM pre-training task
(Samuel et al., 2023), may have facilitated
acquisition of syntactic and semantic infor-
mation relevant for the present task. To this
purpose, it should be noted that also in the
complement coercion study of Rambelli et al.
(2020) in English, a bidirectional architecture
(RoBERTa) was the one showing the highest
correlations with human production frequen-
cies for the candidate covert event. However,
vanilla architectures combined with less train-
ing data would drastically reduce performance
as seen in the NB-BERT models.

To better understand how LMs process comple-
ment coercion sentences and investigate the causes
behind their difficulties in event retrieval task, we
compared surprisal estimates between coercion sen-
tences and their overt event counterparts. Higher
surprisal values for complement coercion sentences
suggest that LMs generally find coercion construc-
tions less predictable, which should be expected
given their relative infrequency in Norwegian cor-
pora. However, rare constructions in human lan-
guage can still be interpreted compositionally by
exploiting lexical meaning and syntactic structure,
even when context is minimal or absent (Baggio,
2018, 2021). Overall, our results suggest that many
LMs are largely unable to make productive use of
the available compositional information to generate
accomplishments as plausible event completions
in complement coercion sentences. These results
apply to Norwegian, but may well extend to other
languages with similar characteristics, such as other
Scandinavian or Germanic languages, and to other
constructions infrequent in linguistic corpora.

Language models have been often argued to lack
‘common sense’, which makes them unsuitable as
(general) problem solvers in real-world situations.
Our results show that LMs may also have limited
linguistic common sense, the ability to select and
use all and only relevant (non)linguistic knowledge
to interpret inputs to comprehension and learning
(Lascarides and Copestake, 1998; Piñango and Deo,
2016; Baggio, 2018; Rambelli et al., 2024).

A more detailed analysis of the best performing
model (NORLLAMA-3B) revealed only moderate
variation in performance according to the specific
aspectual verb used. Initiation verbs lead to bet-
ter performance. Based on results of corpus stud-
ies, this may be due to stronger statistical associa-
tions between these aspectual verbs and (particular
classes of) entity-denoting nominals. However, we
could not find clear differences between different
syntactic constructions within the same aspectual
verbs, which suggests that models do not exploit
differences in syntactic structure to recognize these
as coercion constructions and accordingly attempt
the retrieval of plausible accomplishments.

Linear regression models were also employed to
assess whether coercion surprisal estimates were
influenced by the syntactic structures proposed in
the dataset. Results revealed weak differences in
surprisal estimates, especially between coercion
sentences with entity-denoting complements intro-
duced by prepositions or directly by NPs, showing
greater processing difficulties in the latter cases.
This partially aligns with the results presented in
table 3, where nominals led to lower scores, while
med-PPs were associated with better performance.
Furthermore, LM behavior aligns weakly with the
NCC corpus study by Radaelli and Baggio (2025):
the authors found that med-prepositional phrases
occur more frequently in coercion constructions
and allow greater flexibility in event interpretations.

Considering LM’s failure to exploit composi-
tionality (lexical meaning and syntactic structure)
with complement coercion sentences, future work
should explore what other factors can impact LM’s
performance in this type of task. There are at least
two possible research directions. First, an analysis
of the role of linguistic context as a factor in per-
formance improvement: what aspects of sentence
or discourse context can facilitate event retrieval?
Second, an analysis of the extent to which LM’s
performance is dependent on ontology: can event
retrieval be facilitated by specific classes of entities,
as is suggested by theoretical linguistic and corpus
research?
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Abstract

Knowing which words language learners strug-
gle with is crucial for developing personalised
education technologies. In this paper, we advo-
cate for the novel task of “dictionary look-up
prediction” as a means for evaluating the com-
plexity of words in reading tasks. We release
the Dictionary Look-Up development dataset
(DLU-dev) and the Dialogue Dictionary Look-
Up dataset (D-DLU), which is based on chat-
bot dialogues. We demonstrate that dictionary
look-up is a challenging task for LLMs (results
are presented for LLaMA, Gemma, and Long-
former models). We explore finetuning with
the ROC* loss function as a more appropri-
ate loss for this task than the commonly used
Binary Cross Entropy (BCE). We show that a
feature-based model outperforms the LLMs. Fi-
nally, we investigate the transfer between DLU
and the related tasks of Complex Word Identi-
fication (CWI) and Semantic Error Prediction
(SEP), establishing new state-of-the-art results
for SEP.

1 Introduction

When a learner is reading a text, they may en-
counter unfamiliar words. When this happens,
a learner can choose to seek further information
about the word, such as definitions or examples of
use. The event of looking-up a word is an indica-
tion that the word was difficult for the learner in
its textual context. By noting the look-up events of
many learners, we can discover the relative contex-
tual lexical complexity of words for different ability
groups; and by collecting look-up data en masse,
we can build empirical models of the same. Such
models can be used to:

1. Improve readability of texts for specific
learner groups;

2. Predict reading competence of learners; or

*Now at Google DeepMind.

3. Generate proficiency calibrated test items (e.g.
cloze tests).

As a means of evaluating models of contextual
lexical complexity built from look-up data, we in-
troduce the task of dictionary look-up prediction;
that is, the task of predicting which words a learner
will look up when reading a word in context.

We also introduce the first widely available Dic-
tionary Look-Up dataset (DLU). The source of the
DLU data is the publicly accessible Read&Improve
platform,1 where second language (L2) learners en-
gage in a reading-summarisation task. This dataset
captures the words that learners looked up whilst
reading a passage of text. Look-ups are recorded
within their original context, and metadata regard-
ing the learner is also recorded (specifically, their
first language L1, and their estimated language pro-
ficiency on the CEFR2 scale).

With this paper, we release a development por-
tion of this data, DLU-dev, consisting of over
16,000 content word tokens and 630 clicks. The
full dataset consists of >260,000 content word to-
kens and >8,800 lookup events, and is expected to
be released for an open participation shared task.

To evaluate the generalisability of contextual lex-
ical complexity models built from the DLU dataset,
we present a second dataset, the Dialogue Dictio-
nary Look-Up dataset (D-DLU). This dataset is
sourced from a language learning system that al-
lows learners to look up words in generated chatbot
responses (Tyen et al., 2024).

Compared to existing complexity-oriented
datasets, such as complex word identification and
eye-tracking data (e.g. Paetzold and Specia, 2016;
Yimam et al., 2017; Shardlow, 2013; Shardlow
et al., 2020; Berzak et al., 2022), our datasets have
the following benefits:

1https://readandimprove.
englishlanguageitutoring.com/

2The Common European Framework of Reference for Lan-
guages defines levels of language competence (CoE, 2020).
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1. High external validity: It provides be-
havioural patterns of L2 learners engaged in a
naturalistic language learning task.

2. Document-level context: It captures lookup
events that are interdependent across the
length of the document.

3. Learner meta-data: It provides estimated
CEFR levels for all learners and first language
(L1) for ∼33% of learners.

Dictionary Look-up Prediction poses significant
challenges for NLP models. Dictionary lookups
are sparse events that vary widely based on context
and individual knowledge, and are thus extremely
difficult to predict. In response to these challenges,
we argue that F2 and ROC-AUC are appropriate
evaluation metrics that reflect how useful a look-up
prediction model would be for personalised learn-
ing applications.

Formulating Look-up Prediction as a sequence-
to-sequence task, we evaluate fine-tuned LLaMA,
Gemma, and Longformer models (Touvron et al.,
2023; Gemma Team et al., 2024; Beltagy et al.,
2020). During fine-tuning, in addition to a standard
cross-entropy loss function, we also investigate the
ROC* loss function that more directly targets the
ROC-AUC (Yan et al., 2003). We conjecture that
this is a more appropriate metric (see Section 5),
and we find evidence that, in certain conditions,
this ROC* function increases performance.

The goal of our research is to assess the suitabil-
ity of different models for evaluating and aiding
learners of English. Our contributions are as fol-
lows:

1. We release to the research community two
datasets: a) DLU-dev, a dataset of >16,000
content word tokens and 630 clicks; and b) D-
DLU, a set of 51 chatbot dialogues containing
43,000 content word tokens and 72 clicks.

2. We propose a new NLP task, Dictionary
Look-up Prediction, and present a number of
results for a sequence-to-sequence approach
to this task.

3. We are the first to apply ROC* loss to an
NLP task, and find that for certain cases it
seems to outperform BCE loss.3

4. We argue that fine-tuned LLMs are unable
to satisfactorily capture contextual lexical
complexity. Not only do fine-tuned LLMs
fail to outperform a feature-based ensemble
model, but they also fail to generalise to other

3The performance difference is not statistically significant.

related tasks, such as Complex Word Identifi-
cation (CWI) (see Section 2).

We release our data at https://
englishlanguageitutoring.com/.

2 Related Work

The literature on word complexity includes contri-
butions from not only NLP but also psycholinguis-
tics and education (e.g. Bulté and Housen, 2012).
This section focuses on data contributions.
CWI and LCP: Complex Word Identification
(CWI) and Lexical Complexity Prediction (LCP)
are two tasks in which the complexity of a word is
predicted, either in the form of a binary label (CWI)
or a continuous value (LCP). Both CWI and LCP
have been explored in a series of shared tasks and
other publications (Paetzold and Specia, 2016; Yi-
mam et al., 2017; Shardlow, 2013; Shardlow et al.,
2020, 2021; Gooding and Kochmar, 2018; Zaharia
et al., 2022). Neural approaches are prevalent, but
contemporary LLMs (such as GPT-4o, OpenAI
et al., 2024) exhibit little to no benefit over smaller
transformer models, such as RoBERTalarge (see
Smădu et al., 2024).

Existing CWI/LCP datasets have a number of
shortcomings: They rely on annotators, which are
often proficient L1 speakers of the language (but
see Yimam et al., 2017, for the use of L2 speak-
ers). Furthermore, the datasets typically operate
on the word-in-sentence level; but a word that is
difficult at the beginning of a document might be
easy towards the end, when more context has been
established. Thus, CWI and LCP datasets are un-
likely to reflect the specific challenges L2 learners
face when engaging in natural reading exercises.

Among the CWI and LCP datasets, the one for
the 2018 shared task (Yimam et al., 2017, 2018)
is especially interesting, as one of its sources was
WikiNews (in addition to other news sources and
Wikipedia), which forms also the basis for DLU.
We use this dataset for further evaluation in Sec-
tion 8.
Eye-Tracking Datasets: Eye-tracking is another
way of approximating perceived word difficulty.
Similar to the DLU dataset, eye-tracking datasets
are often (but not always) created using reading
tasks (Cop et al., 2017; Luke and Christianson,
2018; Hollenstein et al., 2018, 2020; Schmidtke
et al., 2021; Berzak et al., 2022).

Compared to DLU, however, eye-tracking
datasets are typically less naturalistic because the
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participants are not engaged in the task for the sake
of learning, as is the case for our data, but are re-
cruited for the experiment.

Additionally, eye-tracking datasets do not cap-
ture definition-seeking behaviour, but rather, a wide
variety of cognitive processes. Definition-seeking
is a behaviour aimed distinctly at lexical informa-
tion, while the causes of eye movement are diverse
and therefore harder to interpret.

Word Lists: Researchers and education specialists
have created various word lists graded for diffi-
culty (Negishi et al., 2013; Capel, 2015; Volodina
et al., 2016; Flor et al., 2024). For example, the
English Vocabulary Profile (Capel, 2015) provides
CEFR levels for many definitions (CoE, 2020).

Compared to complexity-graded word lists, our
data is specific to words in context.4 Such contextu-
alisation is useful when selecting e.g. reading tasks
at an appropriate level for a learner.

Word lists cover only a limited vocabulary and
struggle when new senses for a word are introduced.
Furthermore, existing word lists describe a generic
level of difficulty, and do not reflect e.g. how differ-
ent L1s influence how challenging words in an L2
are. As our dataset provides L1 information when
available, it helps address this gap.

Semantic Error Prediction: Since it is based on
a reading and summarisation task, our dataset is
specifically focused on complexity in comprehen-
sion. A comparable production-side dataset is the
Semantic Error Prediction dataset by Strohmaier
and Buttery (2024), which provides information
on which content words learners fail to produce
when writing essays. Like DLU, the SEP dataset is
also based upon behavioural data from L2 learners
engaged in a naturalistic learning task. That being
said, we can expect differences to exist between
production and comprehension, because in the case
of production, learners have a (rough) meaning in
their mind and have to retrieve correct word forms,
while in the case of comprehension, the form is
given by the text and learners have to access the
correct meaning for it (cf. Jiang, 2000). We use the
SEP dataset for evaluation in Section 8.

3 Description of the DLU Dataset

This section describes DLU’s main features.

4For an application of word lists to contextualised uses,
see Aleksandrova and Pouliot (2023).

3.1 Data Source
We use the Read&Improve (R&I) platform as our
data source. This platform allows L2 learners to
engage in the task of reading and summarising an
article to improve their English (see Figure 2 in
Appendix A for a screenshot of the platform in-
terface). Upon submission of the summary, they
receive automated feedback. During reading, learn-
ers can click on words to retrieve definitions and
examples.

The texts used for this task are taken from
WikiNews (available under a Creative Commons
license). Different users might be presented with
the same article to summarise.

3.2 Scope of DLU
Our data shows which content words in a seen doc-
ument have been clicked on to retrieve dictionary
information. That is, for each content word token
of a document, the data specifies whether it has
been clicked on or not by the user. Tokens are con-
sidered content words if they have been tagged as
adjectives, adverbs, nouns, or verbs by the RASP
pipeline used by R&I (Briscoe et al., 2006).

To ensure that the learner has seen all tokens,
only documents for which they have successfully
submitted a summary are included. We also ex-
clude data from users who have clicked less than
five times in total, as this might indicate that they
are unfamiliar with the functionality of clicking
words to look up their dictionary information, or
that they are so proficient as to never require dictio-
nary information.

3.3 Data Selection
Overall, our dataset includes more than 260,000
seen content word tokens, with more than 8,800
clicks on these tokens. We split the DLU dataset
into three parts by document: a train split, a dev
split, and a test split, where the dev and test splits
contain slightly more than 10% of unique docu-
ments. More information on the size of the dataset
and its splits can be found in Table 1.

The dev-split (DLU-dev) is released with this
paper, while the train and test splits are reserved
for a future shared task open to public participation.
All data will be released upon completion of the
shared task.

3.4 User Information
Users likely differ in their look-up patterns both
idiosyncratically and systematically based on their:
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split tot. docs uniq. docs users clicks con. tokens

all 1327 221 663 8858 266011
train 1143 176 616 7822 235786
dev 101 21 90 630 16084
test 83 24 68 406 14141

Table 1: Description of data and splits, including the
number of content tokens. Multiple users might see
the same document, therefore the number of total docu-
ments can diverge from that of unique documents.

A2 B1 B2 C1 C2 UNK sum

all 135 198 126 34 1 169 663
train 123 185 117 33 1 157 616
dev 21 32 17 6 0 14 90
test 13 22 15 5 0 13 68

Table 2: Essay-based estimation of user CEFR levels.

• first language (L1)
• language ability as estimated CEFR level
For the wide range of L1s in DLU-dev, see Ta-

ble 10 in the appendix. The language with most
users is Spanish (93) followed by Italian and Turk-
ish (both 17). For some languages (e.g. Serbian,
Hindi), data is only available for a single user.

Our datasets include two estimates of the learner
CEFR level. One estimate is based on submis-
sions to the associated essay writing platform
Write&Improve (W&I)5 and described in Table 2,
while the other relies on self-reports. While the
self-reports have full coverage (see Table 6), the
essay data are more comparable across users, as it
is based on the same automatic grading system. We
therefore only use essay-based estimates of CEFR-
levels in our experiments, even though both are
included in our data release.

While the automatic scores are likely imperfect,
we believe that they provide a reasonable approxi-
mation of the learner proficiency because they cor-
relate with look-up propensity (see Figure 1). With
only one exception, learners at higher levels tend
to look up a smaller proportion of word tokens.

3.5 Noise and Uncertainty

Look-up events are affected by many idiosyncratic
features, not all of which are captured by our
dataset. Notably, how often a learner has previously
encountered a word will strongly affect whether
they look it up.6 As a result, our dataset leads to

5https://writeandimprove.com/. For W&I essay data,
see Nicholls et al. (2024).

6Research on language acquisition suggests that many en-
counters are needed for even passive knowledge of vocabulary.
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Figure 1: Proportion of content words that were looked
up, for each CEFR-level as estimated using W&I essays.

high aleatoric uncertainty for the models trained on
it (Hüllermeier and Waegeman, 2021).

For many applications, however, perfect predic-
tion of look-ups are not required. Rather, the main
goal is to separate words that are difficult enough
to require a definition, from words that are eas-
ier. With this separation, text readability can be
improved and vocabulary test items can be created.

4 Description of Chatbot Dataset

The chatbot dialogue dataset (D-DLU) is derived
from an earlier experiment by Tyen et al. (2024) us-
ing BlenderBot v1 (Roller et al., 2021). It consists
of two types of dialogue data:

1. A reading condition (D-read), where partici-
pants read self-chats between only the bot.

2. A chat condition (D-chat), in which partici-
pants chat with the bot.

We filtered this dataset manually to remove chats
containing unsafe texts such as insults or inappro-
priate topics, and instances in which the chatbot
behaved erratically, e.g. when the chatbot defined
similar words repeatedly. As a result, we ended up
with a set of 51 chats from the original 80.

A closer look at the data distribution (Table 13)
reveals that the remaining 25 dialogues in D-chat
only contained 5 look-up events. This number is
too low for informative evaluation. While we re-
lease both portions of the dataset, we recommend
only using the D-read split for lookup-prediction.

See Hargis et al. (1988) for some estimates of required repeti-
tions. See Peters and Webb (2018) for how encounters during
TV consumption lead to vocabulary acquisition.
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5 Evaluation Metrics for DLU

Considering data sparsity, noise, and intended ap-
plication areas, we argue that F2 and ROC-AUC
are most appropriate evaluation metrics for DLU.

5.1 F2 and adaptive F2 Metric

Unlike F1, F2 prioritises recall over precision:

Fβ = (1 + β2) · Precision·Recall
β2·Precision+Recall , β = 2

That is, we accept more false positives to avoid
false negatives. In our case, false positives are
predictions of look-up events where no such event
has occurred. However, we expect that learners
do not click on every difficult word, as browsing
dictionary information disrupts the flow of reading.

Furthermore, for many use cases it is acceptable
to wrongly predict that a few words are difficult.
For example, if the goal is to select words for a
cloze test, then adding a small portion of compara-
tively easy gap words to the test will not create a
problem.

Look-up events (and therefore positive labels)
are rare, which might render a decision threshold
of 0.5 too strict. We are instead looking for a met-
ric that is robust to the high sparsity of DLU and
provides more general information about whether
the models are able to separate words that are likely
to be looked up from those that are unlikely to be
looked up.

Therefore, we explore using an adaptive thresh-
old for the F2 metric. That is, we estimate which
value in the inclusive range 0.01 – 0.99 (step size
0.01) leads to the highest F2 score on the train-
ing data and then use the same threshold on the
evaluation data to calculate an adaptive F2 (aF2).

5.2 ROC-AUC Metric

Compared to the F2 metric, the ROC-AUC provides
more direct information on whether the models dis-
tinguish easy from difficult words. The area under
the curve provides this information, because it can
be interpreted as the probability that the model
ranks a randomly chosen positive example higher
than a randomly chosen negative example (Fawcett,
2006, p. 868).

For many applications, using the raw scores
rather than the binary classification is useful. Con-
sider the case of creating a number of test items for
the most difficult words in a text. In such a case,
we are not committed to any particular threshold
at which a score indicates that the token would

be looked up in a dictionary. In contrast to the F-
metrics, the AUC does not rely on any such thresh-
old. Thus, we believe that the AUC metric is well
suited for our purposes. In Section 6.2, we describe
the ROC* loss function, which targets the AUC.

6 DLU Models

This section describes 3 types of DLU models.

6.1 Feature-based Baselines

Frequency Baseline First, we provide a baseline
based on word frequencies using the wordfreq
package (Speer, 2022).7 We use the Zipf frequency
estimate provided by wordfreq, which consists of
a value within the 0 to 10 range.8 We rescale this
value to be between 0 and 1. All together, the score
for a token is calculated as follows:

score(word) = 1− log10(proportion(word))+9
10

Ensemble Baseline We also explore a more com-
plicated feature-based ensemble model using scikit-
learn (Pedregosa et al., 2011), consisting of six
classifiers combined in a soft voting ensemble. The
features of this model include the frequency base-
line and a variety of features pertaining to the word
lemma and the word token’s position in the text.
The exact features are listed in the appendix Ap-
pendix E. Due to reliance on the W&I-estimated
CEFR-level of the learner, we do not report results
of this baseline on D-read, which does not have
this feature.

6.2 Finetuned Models

We fine-tune two models on the DLU train split,
both from Huggingface transformers (Wolf et al.
2020; see also Appendix F):

1. Longformer (Beltagy et al., 2020), which we
choose over other BERT-like models because
we operate on the document-level;

2. LLaMA 3.2 (Touvron et al., 2023), for which
we choose the 1B parameter version due to
compute considerations.

Loss Functions We explore two loss functions. As
is common for binary classification tasks, we use
the Binary Cross Entropy (BCE) loss as the basis

7https://github.com/rspeer/wordfreq, which is
based on the ExquisiteCorpus (https://github.com/
LuminosoInsight/exquisite-corpus).

8While this calculation can reach 10, due to the distribution
of words, the effective range tends to be between 0 and 8. The
package also uses 0 as the default value of words not found
in the word list, even though 0 does not correspond to zero
occurrences due to the Zipfian transformation.
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for our first loss function. To adjust for the label
imbalance, we use a weight for positive cases (wp).
Thus our BCE loss takes the following form:

lBCE = − (wpy log (σ(x)) + (1− y) log (1− σ(x)))

We treat the weight as a hyperparameter to be
decided through search, but the search space is
biased towards higher values as positive cases are
under-represented (see Section F.1).

The second loss function, called ROC*, targets
the ROC-AUC directly. This function was devel-
oped by Yan et al. (2003) and is based on the equiv-
alence between the ROC and the Wilcoxon-Mann-
Whitney statistic. We explore this loss-function
because we take the correct ranking of words as
measured by ROC-AUC to be an excellent metric
reflecting probable use-cases (see Section 5.2).

Let N be the set of scores for non-clicked con-
tent word tokens and C the set of scores for clicked
content word tokens. As the loss function com-
pares between pairs of these two sets, it is useful to
introduce their product: P = N× C

The loss takes the following form (batching is
ignored here for illustration):

lROC* = 1
|P|
∑

(x,y)∈P

{
(x− y + γ)2 : x+ γ > y

0 : otherwise
where γ > 0 is a hyperparameter ensuring that

a sufficiently large distance exists between clicked
and non-clicked cases.9 Thus, we allow for mini-
batch training by storing previously seen scores for
content word tokens and sampling them for com-
parison against scores calculated in the mini-batch.
The size of the samples is treated as a hyperparam-
eter.
Hyperparameter Search We perform a 20-trial
hyperparameter search using Optuna (Akiba et al.,
2019) maximizing ROC-AUC, training on the train
split and evaluating on the dev split. The selected
hyperparameters are in Section F.1.
Data Processing To account for L1 and CEFR
level, we add special tokens for them to the model
and append them at the start of each document.
While the model will see the same document mul-
tiple times with different look-up patterns during
training, these will often differ in either indicated
L1 or CEFR level. For adding the special token, we
merge CEFR levels such that B1 and B2 are rep-
resented as B, and so forth (see Table 7). This ad-
dresses the problem of having relatively few cases

9Our implementation follows the public ROC* repository
(https://github.com/iridiumblue/ROC*). However, sim-
ilar to Yan et al. (2003), we keep γ as a hyperparameter,
instead of deriving it.

for some CEFR levels. Under-represented L1s are
merged into the “unknown” category.

We evaluate also on the chatbot dataset split D-
read. However, the length of 7 chats in particular
pose a problem as the Longformer model we use is
limited to 4096 subtokens. To circumvent this, we
split longer dialogues after reaching this threshold,
which might affect performance on D-read.

Significance Tests We perform permutation signif-
icance tests to see if ROC* trained models achieve
higher AUC compared to BCE trained models.
With 0.05 as the starting p-value, the Bonferroni-
corrected threshold for this paper is 0.0027. To
avoid further lowering of the threshold, we only
perform tests for the aggregated DLU test split.

6.3 Prompting Models

For comparison, we also prompted LLMs on the
dictionary look-up task, specifically the instruction-
tuned versions of Gemma and LLaMA (Gemma
Team et al., 2024; Touvron et al., 2023) (Ap-
pendix F). We use both zeroshot and fewshot
prompting, as described in Appendix G, except
for D-read where we only use zeroshot prompting
due to the challenging document length.

Our prompts return complex words from the text.
To address cases in which word types occur more
than once in the text, we explored two approaches:
1) Predicting only the first occurrence to be looked-
up and 2) predicting look-ups for all occurrences.
We focus on the first option, as learners usually
only need to look up a word once, and we report
the results of the second approach in the appendix.
The overall picture is not affected by this choice.

As our prompting models output binary results,
there is no changeable threshold for an adaptive F2.
Similarly, the AUC is less useful as the score for
each word token is 0 or 1.

7 DLU Results

The results of the baselines as well as the trans-
former models on the DLU test split can be found
in Table 3. We report the results for the coarse-
grained CEFR-levels (A, B, C, and unknown) sep-
arately. Because we release only the dev split of
DLU with this paper, we also report the results on
this split in the appendix (see Table 22).

Due to the sparsity of look-up events and be-
cause the hyperparameter search targets the AUC,
some model settings lead to F1 and F2 values of
0. The aF2 consistently takes a value above 0, but
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A B C unk All D-read

F1 F2 aF2 AUC F1 F2 aF2 AUC F1 F2 aF2 AUC F1 F2 aF2 AUC F1 F2 aF2 AUC F1 F2 aF2 AUC

Gemma-Inst. zeroshot 10.2 14.3 - 55.9 14.2 17.2 - 57.1 15.0 22.3 - 64.4 11.1 16.1 - 58.3 12.8 16.8 - 57.5 2.2 4.6 - 57.4
fewshot 9.7 14.3 - 55.9 13.4 17.2 - 57.1 13.8 22.3 - 65.8 12.3 18.2 - 60.0 12.4 17.1 - 57.8 - - - -

LLaMA-Inst. zeroshot 10.1 17.8 - 59.6 8.3 12.4 - 53.4 6.5 11.6 - 57.8 9.5 16.5 - 60.1 8.8 14.2 - 55.8 1.0 2.4 - 56.1
fewshot 10.3 16.7 - 58.0 9.0 12.5 - 53.8 6.5 11.7 - 57.9 6.0 10.0 - 53.6 8.5 12.9 - 54.8 - - - -

LLaMA ROC* 0.0 0.0 7.2 75.7 0.0 0.0 8.2 65.9 0.0 0.0 0.0 62.1 0.0 0.0 11.2 68.1 0.0 0.0 7.9 67.8 0.0 0.0 3.0 76.7
BCE 11.0 22.2 21.9 72.7 12.4 21.8 19.4 64.9 5.6 11.8 5.8 63.0 8.0 16.7 19.7 69.4 10.4 20.0 18.9 66.2 2.7 5.6 5.2 77.1

Longformer ROC* 14.4 25.6 18.6 78.5 16.0 25.5 21.7 72.4 5.7 11.0 13.4 64.9 12.1 20.7 18.7 77.6 14.0 23.6 20.0 73.9 2.7 5.8 2.8 83.4
BCE 0.0 0.0 12.3 70.9 0.0 0.0 13.2 70.7 0.0 0.0 3.4 60.5 0.0 0.0 8.4 76.6 0.0 0.0 11.6 71.1 0.0 0.0 3.9 74.6

Baseline freq. 8.7 18.9 24.7 75.8 9.6 20.6 23.1 71.4 4.2 9.9 10.8 72.3 5.7 12.9 16.6 72.2 8.1 17.7 21.0 72.5 0.9 2.2 3.3 84.9
ens. 22.2 32.8 31.6 85.9 17.3 26.1 28.0 76.2 12.3 18.8 19.6 81.9 14.2 24.3 23.6 80.4 17.3 26.5 27.4 79.2 - - - -

Table 3: Results on the DLU test split. “aF2” stands for F2 with a adaptive threshold, as discussed in Section 5.

because the threshold is estimated only on the train-
ing data and only for the entire dataset (i.e. not
separately for each CEFR level), the aF2 is some-
times lower than the F2. The impact of the adaptive
threshold is discussed in Appendix J and does not
bear on the general conclusions.

The best finetuned models outperformed the
prompt-based models with the exception of the C
split of data. This split contains data from learners
at the C1 and C2 CEFR-levels, who rarely look up
words (24 in the test split, see Table 9).

The results show that the frequency baseline is
strong, often outperforming other models. The en-
semble baseline is even stronger, outperforming all
other models convincingly with only minor excep-
tion on the C split. Some of the differences are
substantial, e.g. the ensemble baseline achieves an
79.2% AUC on the overall DLU test split, with the
next best model reaching only 73.9%.

Among the transformer models, the Longformer
ROC* model performs best on the test split. We
note, however, that these results do not directly
translate to the dev split of DLU (see Table 22),
suggesting some overfitting. No difference in AUC
scores between ROC* and BCE model is statisti-
cally significant, although the ROC* versions con-
sistently perform better.

The results on the D-read split in D-DLU de-
scribed in Section 4 are also included in Table 3.
As is to be expected for a different data source with
a different distribution, performance is lower. The
highest F2 (5.8%) and aF2 (5.2%) are achieved by
the ROC*-Longformer and BCE-LLaMA model
respectively. The frequency baseline achieves
the highest AUC (84.9%), follow by the ROC*-
Longformer (83.4%).

As described in Section 3, multiple users might
interact with the same document, leading to differ-
ent look-up events. To account for any effects this

might have, we also evaluated on a filtered version
of our dataset so that each document was unique.
See Appendix K, Table 25, and Table 24 for the
results, which show the same overall picture.

8 Evaluation on CWI/SEP

To investigate the degree to which our DLU dataset
captures word difficulty information that is specific
to the dataset’s construction, including the under-
lying reading task, we ask the following question:
Can models transfer DLU knowledge to other tasks
that also attempt to track word complexity? We
address this question by performing additional ex-
periments using the CWI and SEP datasets.

We chose the CWI task because it is the most
widely explored binary task targeting word com-
plexity. However, CWI datasets are usually not
as sparse, often do not provide information on the
document-level, and frequently rely on annotators
proficient in the language, rather than learners.

We also evaluate on the SEP dataset because
it not only targets word complexity, but provides
highly sparse binary learner behaviour data for
longer contexts10; as is the case for DLU prediction.
Furthermore, investigating the transfer to SEP ad-
dresses the question of whether learners struggle to
produce the words that they find difficult enough to
look up during a reading task. We can thus provide
evidence for how similar comprehension difficulty
and production difficulty are.

8.1 Experimental Setup

We train all DLU-finetuned models an additional
time on the CWI and SEP datasets by Yimam et al.
(2017) and Strohmaier and Buttery (2024). For
comparison, we finetune the base models on the

10The SEP dataset is standardly formatted to chunks of one
or more paragraphs.
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CWI and the SEP task without using DLU data, and
provide the frequency baseline. The experimental
procedure follows the same pattern as described
in Section 6, i.e. an initial hyperparameter search
followed by evaluation on the dataset.

Significance Tests We use permutation signifi-
cance tests to see if the models finetuned on both
DLU and CWI or SEP perform better than models
only finetuned on the latter. We perform these tests
for the F1 and AUC metrics because the F1 was
used in previous work and the AUC was targeted
by the hyperparameter search.11

8.2 CWI/SEP Results

We present the CWI results split by data source
(News, Wikipedia, and WikiNews) and in aggre-
gate. For the SEP dataset, we offer the same split
by CEFR level as for DLU.

The CWI results (see Table 4) suggest that the
BCE-Longformer architecture is best suited for
this task when considering F-scores and AUC. The
DLU-finetuned version of the BCE-Longformer
model produces the highest AUC (85.6%) and the
base model the highest F1 (78.5%), but only the
comparison of the F1 is statistically significant. The
only other result significant at the 0.0027 thresh-
old was the difference between the F1 of the base
ROC*-LLaMA (74.3%) and the DLU-finetuned
model (71.1%), which favours the base model.

The SEP results (reported in Table 5) clearly
suggest a strongest model on the F-score metrics:
the BCE-Longformer model finetuned only on SEP.
Among the 6 significant results (see Table 20), only
the difference between the F1-scores of the DLU-
finetuned BCE-LLaMA (7.3%) and the CWI-only
version (4.2%) points towards positive transfer, the
rest pointing in the opposite direction. The overall
best F1 (11.9%) and AUC (71.0%) slightly out-
perform the numbers (11% and 69.8%) previously
reported (Strohmaier and Buttery, 2024).

9 Discussion

Our results show that look-up prediction is a chal-
lenging, but addressable task. Finetuned trans-
former models outperform a frequency baseline,
but fail to beat a feature-based ensemble model.

Similar to the CWI results reported by Smădu
et al. (2024), we find that model size is not the

11We do not run tests for other metrics as this would increase
the number of significance tests, decreasing the Bonferroni-
corrected threshold further.

decisive variable: among the finetuned models,
the ROC*-Longformer model outperformed the
LLaMA models, even though the latter has consid-
erably more parameters (∼149M vs 1B). Similarly,
the prompting models were considerably larger
than the finetuned models and yet performed worse.

The ROC* loss which we explored following
Yan et al. (2003) performed well on DLU for its
target metric, the ROC-AUC. Among the finetuned
neural models, the highest AUC is always produced
by a model using ROC* loss. Thus, we suggest
that the ROC* loss function is of value for tasks
in which the AUC is the correct metric. That
being said, neither on the DLU-dev split nor the
aggregated CWI data is the highest AUC achieved
by a ROC* model. The improvements, thus, appear
dependent on the specific data distribution.

The simple frequency baseline proved competi-
tive on all considered tasks. Even more impressive
was the performance of the feature-based ensemble
model on DLU, which showed a leading perfor-
mance. Even compared to LLMs, feature-based
baselines remain very competitive in the field of
word complexity. On the combined data of DLU,
the highest scores on all four considered metrics
were achieved by the ensemble baseline. In the case
of the English Wikipedia split of the CWI data (Yi-
mam et al., 2017), the F1 of the simple frequency
baseline (73.9%) outperformed every one of the
14 few-shot prompting models reported by Smădu
et al. (2024), where the best one only achieved
70.6%.

These strong baseline results and irrelevance of
model size suggests to us that modelling difficulty
in L2 vocabulary acquisition is not solved by
existing NLP methods. We believe that further
personalisation is required to move forward, and
we see DLU as a major step in this direction.

Furthermore, models will have to be more specif-
ically adapted to the high variance between learners.
Providing information about proficiency level and
first language as special tokens proved insufficient.
To account for the variance between learners, it
might be necessary to adapt the training procedure
or architecture details of the model even further to
information about the learner. With more person-
alised DLU data, it might, for example, be possible
to train layers specialised for certain L1s, CEFR
levels, or other background data.

Looking at the CWI and SEP experiments, the
significant results do not support that knowledge
from finetuning on DLU is transferred to other
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N W WN All

Acc. F1 F2 aF2 AUC Acc. F1 F2 aF2 AUC Acc. F1 F2 aF2 AUC Acc. F1 F2 aF2 AUC

f.-LLaMA ROC* 76.7 73.7 72.4 81.7 84.2 68.8 69.1 64.2 75.0 78.7 72.0 68.2 65.9 76.7 79.4 73.7 71.1 68.6 78.7 81.7
BCE 73.6 75.4 83.1 82.9 82.3 69.7 75.4 78.9 76.5 73.2 68.8 70.5 75.7 74.6 74.9 71.4 74.0 80.0 79.0 78.2

f.-Longformer ROC* 79.7 78.7 80.8 86.6 87.7 72.4 74.9 73.4 84.6 80.7 76.4 74.9 75.3 82.0 84.0 77.2 76.8 77.5 84.8 85.3
BCE 72.3 76.2 87.6 88.2 87.9 68.8 77.8 87.7 87.2 81.0 67.3 73.0 84.5 84.1 84.3 70.1 75.6 86.7 86.8 85.6

LLaMA ROC* 77.4 77.0 80.4 81.9 84.2 69.4 71.8 69.9 73.3 76.5 72.4 71.7 73.6 75.0 78.3 74.3 74.3 76.0 77.9 81.0
BCE 73.9 76.3 85.0 78.6 83.5 68.9 76.3 82.9 70.1 74.3 66.9 70.9 79.3 68.4 76.9 70.8 74.7 82.9 73.7 79.9

Longformer ROC* 79.4 79.1 82.8 85.9 87.3 73.2 75.8 74.6 84.2 81.5 77.2 76.2 77.4 83.1 84.4 77.4 77.5 79.3 84.7 85.3
BCE 77.8 79.1 86.7 85.4 87.6 74.6 79.4 83.3 78.0 81.1 74.9 76.6 83.0 80.3 83.6 76.3 78.5 84.8 82.2 85.1

Baseline freq. 62.2 65.6 73.0 80.7 67.5 66.1 73.9 80.0 86.8 67.3 61.7 67.8 77.7 81.4 66.9 62.9 68.2 76.0 82.3 67.6

Table 4: Prediction results on the 2018 CWI dataset (Yimam et al., 2017). Models with the prefix “f.-” for “finetuned”
have first been finetuned on DLU. “aF2” stands for F2 with a adaptive threshold, see Section 5.

A B C N All

Acc. F1 F2 aF2 AUC Acc. F1 F2 aF2 AUC Acc. F1 F2 aF2 AUC Acc. F1 F2 aF2 AUC Acc. F1 F2 aF2 AUC

f.-LLaMA ROC* 96.3 0.7 0.4 15.3 58.1 97.1 0.0 0.0 15.6 63.9 98.2 1.2 0.8 9.2 59.1 99.4 0.0 0.0 2.9 53.7 97.8 0.5 0.3 11.3 59.4
BCE 88.7 9.2 12.5 13.3 62.2 90.8 10.5 14.6 16.0 65.7 91.9 5.7 9.2 8.7 63.8 93.6 1.2 2.5 2.0 53.4 91.4 7.3 11.1 11.5 63.8

f.-Longformer ROC* 96.5 0.0 0.0 7.4 71.1 97.2 0.0 0.0 8.9 73.4 98.4 0.0 0.0 7.7 69.7 99.4 0.0 0.0 0.0 58.5 98.0 0.0 0.0 7.4 71.0
BCE 96.5 0.0 0.0 15.2 51.1 97.2 0.0 0.0 12.4 54.2 98.4 0.0 0.0 7.5 53.0 99.4 0.0 0.0 2.7 54.9 98.0 0.0 0.0 9.4 52.0

LLaMA ROC* 92.0 8.4 9.6 9.7 59.8 93.4 10.4 12.3 12.1 65.7 95.1 5.6 7.3 6.8 63.1 96.5 1.1 1.9 2.0 53.4 94.4 7.4 9.2 9.1 63.4
BCE 95.3 3.2 2.5 1.8 63.3 96.3 7.4 6.0 3.4 66.2 97.7 1.9 1.6 0.8 63.0 98.9 0.0 0.0 0.0 52.6 97.1 4.2 3.4 2.1 64.7

Longformer ROC* 93.3 11.6 12.3 2.2 67.8 95.2 16.3 16.6 7.2 72.0 96.4 11.0 12.6 2.5 67.8 97.7 2.6 3.7 0.0 61.0 95.8 11.8 13.0 3.9 70.1
BCE 90.0 13.9 18.4 19.8 67.8 92.8 14.2 17.9 19.6 71.1 95.0 9.4 12.5 14.9 68.4 97.6 0.8 1.2 1.7 55.6 94.1 11.9 15.6 17.0 70.5

Baseline freq. 61.3 7.6 15.2 14.4 54.1 59.6 6.5 13.6 12.9 56.3 55.6 3.7 8.3 8.5 54.5 50.4 1.2 2.9 3.2 54.7 56.5 4.4 9.7 9.5 53.3

Table 5: Results on the Semantic Error Prediction (SEP) dataset (Strohmaier and Buttery, 2024). Models with the
prefix “f.-” have first been finetuned on DLU. “aF2” stands for F2 with a adaptive threshold, see Section 5.

tasks. Based on this observation, we conjecture
that different approaches that all ostensibly con-
cern word complexity, in fact track different
phenomena. In particular, for the CWI task the
significant results point in the direction of negative
transfer between DLU and CWI. We take this to
show that the data distribution diverge too strongly.

Part of the distributional differences are, without
doubt, the sparse nature of DLU and the shorter
length of the CWI texts. Another difference, how-
ever, is that the CWI data we used was derived from
proficient speakers of English rather than learners.
Because DLU directly records dictionary usage dur-
ing a naturalistic learning task, it has higher exter-
nal validity. Hence, we speculate that the CWI data
do not sufficiently reflect which words L2 learners
of English struggle with.

In contrast to CWI, we found at least one signifi-
cant result on the aggregated SEP dataset pointing
in the direction of improvement, although with five
other significant result pointing in the opposite di-
rection. Like DLU, SEP is derived from learner
behaviour in a naturalistic task. However, DLU
targets difficulties in comprehending words, while
SEP targets production difficulties, which may ex-

plain the differences.

10 Conclusion

We introduce the dictionary look-up task, which
provides insight into word complexity for the pur-
pose of supporting personalised learning technolo-
gies. We release the Dictionary Look-Up develop-
ment (DLU-dev) dataset. Additionally, we release
a look-up dataset of chatbot dialogues (D-DLU)
for evaluation. We provide results from zero- and
few-shot prompting as well as fine-tuning.

Investigating the transfer from DLU to other
tasks such as complex word identification (CWI)
and semantic error prediction (SEP), we find that
DLU and CWI appear to track different phenom-
ena. For SEP, we set new state-of-the-art results,
but find mixed to negative results on transfer.

The leading performance of a feature-based
model on DLU strongly suggests that further re-
search is required to adequately incorporate infor-
mation about individual learners and their lexical
acquisition into neural models of word complex-
ity. The release of DLU-dev is a major step to-
ward achieving this goal. We release our data at
https://englishlanguageitutoring.com/.
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A Platform

The Read&Improve (R&I) platform and its sis-
ter platform Write&Improve are available free of
charge. Users agree to the sharing of their input
for research purposes. For a screenshot of the R&I
user interface, see Figure 2.

B Limitations

Dictionary look-up events are rare, sparse, and
noisy. While DLU includes more than 8,800 look-
up events among 260,000 content word tokens,
these features of look-up events inherently limit
model performance and some applications. The
additionally released chatbot-dialogue dataset is
smaller, and therefore its usefulness is limited to
evaluation.

Our data is exclusive to English language texts
and the first languages of the learners who per-
formed click actions are unevenly distributed (see
Table 10). The same is true for CEFR levels. Fur-
ther personalisation would require more even data
distribution.

Due to compute restrictions, we focused on mod-
els with comparatively few parameters, although
we do include evaluation on LLMs such as LLaMA-
3.2-1B. Since we and others (Smădu et al., 2024)
found that model size does not appear to predict
model performance well, we believe that this re-
striction poses no major problems. Our focus is on
using publicly available models, ensuring replica-
bility.

C Safety and Privacy Considerations

The information in the DLU data poses few risks.
While we release information about learner L1 and
estimated CEFR-level, personal identification is
practically impossible since this information is very
broad and the lookup patterns themselves are spe-
cific to the platform.

The additional chatbot-dialogue data we release
should be handled with greater care, because it in-
cludes user input and the chatbot model was not
filtered for sensitive content (Tyen et al., 2024). As
described above (see Section 4), we have manually
filtered the dataset and removed critical personal in-
formation about the chat participants, e.g. changing
first names.

D Dataset Description

For the overall description of the DLU dataset,
see Section 3. Further description of CEFR lev-

els and first languages (L1s) across the dataset can
be found in tables 6 to 8 and 10 to 12.

B2 B1 A2 C1 C2 C2+ sum

all 228 242 112 55 17 9 663
train 208 227 108 52 15 6 616
dev 29 44 11 4 1 1 90
test 26 10 11 14 4 3 68

Table 6: Self-reported CEFR levels of users.

A B C UNK sum

all 135 324 35 169 663
train 123 302 34 157 616
dev 21 49 6 14 90
test 13 37 5 13 68

Table 7: CEFR levels for users as estimated by essays
from W&I.

A B C UNK sum

all 270 669 116 272 1327
train 229 577 97 240 1143
dev 23 53 8 17 101
test 18 39 11 15 83

Table 8: CEFR levels as estimated by essays from
W&I across documents by users (i.e. some users and
WikiNews articles appear more than once in this table).

D.1 Format of the Data
The data is formatted as a document-level token-
classification task. Tokenisation follows the RASP
pipeline used by R&I (Briscoe et al., 2006) For
each token a label is provided, with the default
label -100 used for non-content word tokens.

Example
Text Taco Bell restaurants decided Wednesday to remove . . .
Labels 0 0 0 0 0 -100 1 . . .

A 0 label indicates no click, a 1 a click. -100 indicates non-content
word POS. A text is a document, i.e. an entire WikiNews article.

E Ensemble Baseline

The classifiers used for the ensemble model are
(using sklearn class names):

1. RandomForestClassifier
2. GradientBoostingClassifier
3. HistGradientBoostingClassifier
4. MLPClassifier
5. LogisticRegression
6. BaggingClassifier
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Figure 2: Screenshot of Read&Improve platform with information provided by lookup of the word “export”.
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A2 B1 B2 C1 C2 unk sum

all 2102 2540 1638 522 6 2050 8858
train 1882 2295 1424 343 6 1872 7822
dev 143 139 71 155 0 122 630
test 77 106 143 24 0 56 406

Table 9: Look-up events across CEFR levels as esti-
mated by essays from W&I.

ar bg ca cs de en es fa fr hi hu id it ja jv ka ml my ne pt ro ru sr ta te tr ur vi zh unk sum

all 5 1 2 3 2 12 93 2 4 1 1 2 27 1 1 1 1 1 1 14 1 4 1 2 1 27 1 6 7 438 663
train 4 0 2 3 0 10 83 2 4 1 1 2 24 1 0 1 1 1 1 13 1 4 1 1 1 23 1 6 7 417 616
dev 1 0 0 0 1 1 15 0 1 0 0 0 6 1 1 0 0 1 0 2 0 0 0 0 0 4 0 1 3 52 90
test 2 1 0 0 1 3 16 1 0 0 1 0 2 0 0 0 0 1 0 4 0 0 0 1 0 3 0 0 0 32 68

Table 10: Users per L1. For experiments, less frequent
languages are merged into the unknown category (unk).

They were combined using the sklearn
VotingClassifier class, which was set to soft
voting. No systematic hyperparameter tuning was
required, instead we compared a variety of settings
and combinations manually on the dev-set (to
avoid over-fitting) and then applied the best to the
test set.

The used features were:

• The frequency baseline score as described in
Section 6.

• Relative position of the token in the text, de-
fined as the proportion of seen tokens for the
first 1000 tokens.

• Proportion of look-up events by user, calcu-
lated from the training split.

• Length of word in characters.
• CEFR-level as estimated by essays submitted

by the user.
• Count of definitions for the word in the Cam-

bridge Advanced Learner’s Dictionary.
• Proportion of people who did not know the

word type as retrieved from the ratings by
Brysbaert et al. (2014).

For missing values, the average was used. To ad-
dress label imbalance, we upsampled positive cases
to achieve a proportion of 1-to-1. For the addition-
ally added positively labelled data, we added small

ar en es it pt tr vi zh unk sum

all 12 19 169 70 29 48 10 15 955 1327
train 8 14 135 62 23 40 9 12 840 1143
dev 1 2 16 6 2 5 1 3 65 101
test 3 3 18 2 4 3 0 0 50 83

Table 11: L1s across documents seen by users (i.e. some
users and articles appear multiple times in this table).

ar en es it pt tr vi zh unk sum

all 5 12 93 27 14 27 6 7 472 663
train 4 10 83 24 13 23 6 7 446 616
dev 1 1 15 6 2 4 1 3 57 90
test 2 3 16 2 4 3 0 0 38 68

Table 12: L1s across users – less frequent languages
merged into unknown (unk). This merging process is
used for our transformer models.

split chats clicks con. tokens

D-chat 25 5 10027
D-read 26 67 33130

Table 13: Description of data and splits, including the
number of content tokens for chatbot dialogues.

Gaussian noise to the frequency score, proportion
of look-up event by user, the relative position.

F Neural Models

The models used are described in Table 14. We
used the LLaMA 3.1-8B, rather than a LLaMA 3.2
version, because it was closer to the size of the
Gemma model.

model hf-name approach

Longformer allenai/longformer-base-4096 finetuning
LLaMA 3.2 meta-llama/Llama-3.2-1B finetuning
LLaMA Instruct unsloth/Meta-Llama-3.1-8B-Instruct prompting
Gemma unsloth/gemma-2-9b-it prompting

Table 14: Details of models used, including name on
huggingface hub and experimental approach.

F.1 Hyperparameters

The datasets for the different tasks strongly differ
in input length. Both the SEP and DLU dataset
operate on data longer than sentences, but while
DLU consists of WikiNews texts, the SEP consists
of student essays split into chunks of one or more
paragraphs. The 2018 CWI dataset (Yimam et al.,
2017) is on the sentence level, i.e. the inputs are
much shorter than for the other datasets. To work
with these different datasets, we found it necessary
to change the hyperparameter space, in particular
the space for the training batch size.

The hyperparameter spaces as well as the se-
lected hyperparameters are described in tables 15
to 17. For each combination of model and loss
function, we run 20 trials without pruning, where
the searches were performed with Optuna. Addi-
tional settings for Optuna, such as using the log
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space, are noted in the table. The target metric for
maximization was the AUC.

G Prompting

We use two prompt templates, one for zero-shot
and one for few-shot inference. Both prompts in-
struct the LLM to consider a paragraph of text
and the learner’s English CEFR level. The mod-
els are asked to predict which words the learner
is likely unfamiliar with, and return these words
in a JSON format. The zero-shot prompt directly
provides the task instructions and desired output
format, while the few-shot prompt includes three
illustrative examples of different learners’ word
choices in different paragraphs of text.

G.1 Prompts
CLICK_DATA_APPROXIMATION_PROMPT = {’system’: """
# Task Introduction You are an AI assistant now
doing a language test. You will receive a paragraph
of text. you will need to predict based on your
user’s English level what words the user might
click on(The user will click on the words he or
she is not familiar with.

—
# About the user’s english level A1: Can write

personal information (e.g. likes and dislikes,
family, pets) using simple words, phrases and
sentences.

A2: Can write a series of simple phrases and
sentences, linked with words like ’and’, ’but’ and
’because’.

B1: Can write straightforward texts about
familiar topics or simple information and ideas.
Can link sentences into a connected text.

B2: Can write clear, detailed texts on different
subjects. Can use information and arguments from
other sources in their writing.

C1: Can write clear, well-structured, detailed
texts on complex subjects, showing the important
issues, giving examples and writing a conclusion
if appropriate. Can use the correct style of
writing relevant to the target reader.

C2: Can write clear, smoothly flowing, complex
texts in an appropriate and effective style. Can
use a logical structure which helps the reader
find the main points.

—
# Expected Output Your answers should be

formatted in JSON format with following keys and
values: 1. output_tokens: a list of tokens that
you predict the user will click on, each token
should appear only once 2. reason: a short string
explaining your prediction of the tokens

NOTE: please make sure the output tokens are
unique. each token in the list should appear only
once """, ’user’: """

# task detail
The user’s english level is:
{cefr_level}
The paragraph you need to predict on:
{paragraph_text}
The tokens in the paragraph:
{tokens}

Respond only with valid JSON.

—

""" }

CLICK_DATA_APPROXIMATION_FEWSHOT_PROMPT =
{’system’: """ # Task Introduction You are an AI
assistant now doing a language test. You will
receive a paragraph of text. you will need to
predict based on your user’s English level what
words the user might click on(The user will click
on the words he or she is not familiar with.

—

# About the user’s english level

A1: Can write personal information (e.g. likes
and dislikes, family, pets) using simple words,
phrases and sentences.

A2: Can write a series of simple phrases and
sentences, linked with words like ’and’, ’but’ and
’because’.

B1: Can write straightforward texts about
familiar topics or simple information and ideas.
Can link sentences into a connected text.

B2: Can write clear, detailed texts on different
subjects. Can use information and arguments from
other sources in their writing.

C1: Can write clear, well-structured, detailed
texts on complex subjects, showing the important
issues, giving examples and writing a conclusion
if appropriate. Can use the correct style of
writing relevant to the target reader.

C2: Can write clear, smoothly flowing, complex
texts in an appropriate and effective style. Can
use a logical structure which helps the reader
find the main points.

—

# Expected Output Your answers should be
formatted in JSON format with following keys and
values: 1. output_tokens: a list of tokens that
you predict the user will click on, each token
should appear only once

2. reason: a short string explaining your
prediction of the tokens

NOTE: please make sure the output tokens are
unique. each token in the list should appear only
once

—

# Examples Here are some examples from user of
the same english level as the one you are goingto
mimic.

## Example1:

{example1}

## Example2:

{example2}

## Example3:

{example3}

""", ’user’: """

# task detail

The user’s english level is:

{cefr_level}

The paragraph you need to predict on:

{paragraph_text}

The tokens in the paragraph:

{tokens}

Respond only with valid JSON.

—

""" }
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Space Info Longformer (ROC*) Longformer (BCE) LLaMA (ROC*) LLaMA (BCE)

Epochs [1, 30] 25 14 30 14
Learning Rate [10−9, 10−2] log space 3.6 × 10−6 6.7 × 10−5 3.7 × 10−5 2.4 × 10−4

Pos. Weight [0.8, 30] BCE only - 0.81 - 29
γ [0.05, 0.75] ROC* only 0.59 - 0.05 -
Sample Size [300, 10000] ROC*, step size=100 6600 - 300 -
Batch Size (p.D.) [4, 14] step size = 2 12 8 4 12

Table 15: Hyperparameter space and selected hyperparameters for DLU prediction models. We report the per device
batch size. The number of devices was always set to 4.

Space Info Longformer (ROC*) Longformer (BCE) LLaMA (ROC*) LLaMA (BCE)

Models finetuned only on CWI
Epochs [1, 30] 8 11 22 11
Learning Rate [10−9, 10−2] log space 7.0 × 10−5 4.6 × 10−5 1.1 × 10−4 2.3 × 10−5

Pos. Weight [0.8, 30] BCE only - 29.9 - 26.5
γ [0.05, 0.75] ROC* only 0.69 - 0.45 -
Sample size [300, 10000] ROC*, step size=100 3400 - 4200 -
Batch size (p.D.) [8, 80] step size = 2 48 10 50 72

Models finetuned on DLU and then on CWI
Epochs [1, 30] 27 10 26 25
Learning Rate [10−9, 10−2] log space 3.6 × 10−6 5.4 × 10−5 7.2 × 10−5 5.2 × 10−5

Pos. Weight [0.8, 30] BCE only - 23.78 - 15.46
γ [0.05, 0.75] ROC* only 0.66 - 0.23 -
Sample size [300, 10000] ROC*, step size=100 3300 - 3800 -
Batch size (p.D) [8, 80] step size = 2 8 42 16 30

Table 16: Hyperparameter space and selected hyperparameters for CWI prediction models. We report the per device
batch size. The number of devices was always set to 4.

Space Info Longformer (ROC*) Longformer (BCE) LLaMA (ROC*) LLaMA (BCE)

Models finetuned only on SEP task
Epochs [1, 30] 24 10 10 6
Learning Rate [10−9, 10−2] log space 3.1 × 10−5 1.0 × 10−5 8.6 × 10−6 2.3 × 10−5

Pos. Weight [0.8, 30] BCE only - 15.08 - 16.90
γ [0.05, 0.75] ROC* only 0.34 - 0.65 -
Sample size [300, 10000] ROC*, step size=100 2600 - 9100 -
Batch size (p.D.) [4, 44] step size = 2 36 34 38 18

Models finetuned on DLU and then on SEP task
Epochs [1, 30] 17 2 8 3
Learning Rate [10−9, 10−2] log space 9.0 × 10−5 1.8 × 10−4 3.1 × 10−6 2.9 × 10−4

Pos. Weight [0.8, 30] BCE only - 17.99 - 12.33
γ [0.05, 0.75] ROC* only 0.05 - 0.55 -
Sample size [300, 10000] ROC*, step size=100 300 - 4200 -
Batch size (p.D) [4, 44] step size = 2 16 30 40 20

Table 17: Hyperparameter space and selected hyperparameters for SEP prediction models. We report the per device
batch size. The number of devices was always set to 4.

H Significance Tests

We perform a two-sided permutation test
using SciPy (Virtanen et al., 2020). We
set permutation_type=’samples’ and
random_state=’1848’. The number of per-
mutations is left at the default 9999. The test
statistics and associated p-values can be found in
tables tables 18 to 20.

The Bonferroni-correct p-value is 0.0027. We
rounded the digits of the threshold using the floor,
as this makes the significance test more restrictive.

I Processing of CWI

The CWI dataset we used (Yimam et al., 2017,
2018) provides one data row for each labelled word,

Metric Statistic p-Value

Longformer AUC compare 2.8 × 10−2 2.6 × 10−1

LLaMA AUC compare 1.5 × 10−2 5.2 × 10−1

Table 18: Significance tests for DLU. The tests concern
whether using the ROC* vs. the BEC loss changes the
AUC.

even if these words occur in the same sentences. To
reduce training time and make the processing more
similar to DLU, we treated these words as occuring
together during training. For evaluation, we again
made one prediction per input, as in the original
CWI dataset for comparability. This might have
affected our performance negatively, explaining
some of the difference to the results reported by
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Metric Loss Statistic p-Value

Longformer AUC roc 7.8 × 10−5 9.6 × 10−1

Longformer F1 roc 7.5 × 10−3 6.0 × 10−2

Longformer AUC bce 4.9 × 10−3 1.8 × 10−1

Longformer F1 bce 2.8 × 10−2 2.0 × 10−4

LLaMA AUC roc 7.2 × 10−3 1.5 × 10−1

LLaMA F1 roc 3.2 × 10−2 2.0 × 10−4

LLaMA AUC bce 1.6 × 10−2 8.0 × 10−3

LLaMA F1 bce 6.4 × 10−3 2.1 × 10−1

Table 19: Significance tests for CWI task, testing
whether models finetuned on DLU first perform dif-
ferently on F1 or AUC.

Metric Loss Statistic p-Value

Longformer AUC roc 9.2 × 10−3 2.7 × 10−1

Longformer F1 roc 1.1 × 10−1 2.0 × 10−4

Longformer AUC bce 1.8 × 10−1 2.0 × 10−4

Longformer F1 bce 1.1 × 10−1 2.0 × 10−4

LLaMA AUC roc 3.9 × 10−2 4.0 × 10−4

LLaMA F1 roc 6.8 × 10−2 2.0 × 10−4

LLaMA AUC bce 8.1 × 10−3 6.3 × 10−1

LLaMA F1 bce 3.1 × 10−2 2.2 × 10−3

Table 20: Significance tests for SEP task, testing
whether models finetuned on DLU first perform dif-
ferently on F1 or AUC.

Smădu et al. (2024).

J Further Discussion of Results

Using an adaptive threshold for the F2 (aF2) con-
sistently improves the performance of the base-
line further, which is not always the case for the
transformer models. This suggests that the deci-
sion threshold for transformer models is context
dependent and cannot be transferred between splits.
Furthermore, it shows that the simple frequency
baseline can be further improved with simple.

As a result of the different effect of the adap-
tive threshold, the highest F2 value (23.4%) by a
transformer model (Longformer ROC*) is higher
than the aF2 (21%) of the frequency baseline, even
though the baseline achieves the highest aF2.

K Additional Results

In Section 7 we report results on the DLU train
split, but as we release only the dev split with this
paper, we report the results on this split in Table 22.
The training method was the same as for the results
on the test split.

The results might be affected by the same doc-
uments being repeated in the evaluation split (dev
or test) because more than one user interacted with
it. To investigate this effect, we also evaluated on
these splits after removing all but one randomly
selected version of each document, i.e. the look-up

data for one random user per document. The re-
sults are shown in tables 24 and 25. The adaptive
threshold for the aF2 is the same as for the original
evaluation.
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A B C unk All D-read

F1 F2 aF2 AUC F1 F2 aF2 AUC F1 F2 aF2 AUC F1 F2 aF2 AUC F1 F2 aF2 AUC F1 F2 aF2 AUC

Gemma-Inst. zeroshot 10.3 15.1 - 56.5 14.1 18.0 - 57.6 13.4 20.9 - 64.1 9.1 14.3 - 57.3 12.2 17.0 - 57.7 2.2 4.6 - 57.4
fewshot 10.2 16.1 - 57.4 12.5 17.8 - 57.5 12.8 21.9 - 67.2 10.4 16.4 - 59.1 11.7 17.6 - 58.4 - - - -

LLaMA-Inst. zeroshot 8.7 16.4 - 58.6 7.8 12.8 - 53.0 5.3 10.0 - 56.6 6.9 13.0 - 57.2 7.6 13.5 - 55.0 1.0 2.4 - 56.1
fewshot 8.3 15.1 - 56.7 7.6 12.4 - 52.7 4.5 8.9 - 55.5 3.8 7.1 - 49.7 6.7 11.7 - 53.2 - - - -

LLaMA ROC* 0.0 0.0 7.2 75.7 0.0 0.0 8.2 65.9 0.0 0.0 0.0 62.1 0.0 0.0 11.2 68.1 0.0 0.0 7.9 67.8 0.0 0.0 3.0 76.7
BCE 11.0 22.2 21.9 72.7 12.4 21.8 19.4 64.9 5.6 11.8 5.8 63.0 8.0 16.7 19.7 69.4 10.4 20.0 18.9 66.2 2.7 5.6 5.2 77.1

Longformer ROC* 14.4 25.6 18.6 78.5 16.0 25.5 21.7 72.4 5.7 11.0 13.4 64.9 12.1 20.7 18.7 77.6 14.0 23.6 20.0 73.9 2.7 5.8 2.8 83.4
BCE 0.0 0.0 12.3 70.9 0.0 0.0 13.2 70.7 0.0 0.0 3.4 60.5 0.0 0.0 8.4 76.6 0.0 0.0 11.6 71.1 0.0 0.0 3.9 74.6

Baseline freq. 8.7 18.9 24.7 75.8 9.6 20.6 23.1 71.4 4.2 9.9 10.8 72.3 5.7 12.9 16.6 72.2 8.1 17.7 21.0 72.5 0.9 2.2 3.3 84.9
ens. 22.2 32.8 31.6 85.9 17.3 26.1 28.0 76.2 12.3 18.8 19.6 81.9 14.2 24.3 23.6 80.4 17.3 26.5 27.4 79.2 - - - -

Table 21: Prediction results on the DLU test split, but for the prompting model, we take all occurrences of a word
listed by the prompted model to be looked-up. (Results on non-prompting models are unchanged.)

A B C unk All

F1 F2 aF2 AUC F1 F2 aF2 AUC F1 F2 aF2 AUC F1 F2 aF2 AUC F1 F2 aF2 AUC

Gemma-Inst. zeroshot 11.7 14.0 - 54.7 9.9 13.3 - 55.7 12.0 9.5 - 52.2 13.0 15.2 - 55.2 11.2 13.1 - 54.4
fewshot 10.8 12.5 - 53.9 9.4 12.4 - 55.1 9.7 7.5 - 51.5 12.9 18.0 - 56.3 10.6 12.8 - 54.1

LLaMA-Inst. zeroshot 8.9 9.4 - 52.6 9.0 14.3 - 56.6 15.1 16.1 - 51.7 6.1 8.5 - 49.7 9.4 12.6 - 53.4
fewshot 11.2 15.6 - 55.1 6.1 10.4 - 53.1 12.9 12.9 - 51.0 9.1 13.2 - 52.6 8.4 12.4 - 52.7

LLaMA ROC* 0.0 0.0 13.2 71.6 0.0 0.0 7.1 64.8 0.0 0.0 1.6 51.2 0.0 0.0 9.9 68.5 0.0 0.0 7.9 63.3
BCE 15.4 25.4 20.9 69.0 7.8 13.4 10.1 58.2 15.3 14.6 10.9 62.2 13.8 24.2 21.7 67.4 11.8 18.9 15.5 62.1

Longformer ROC* 17.0 25.4 18.0 71.8 10.2 19.1 16.6 69.5 15.0 17.9 10.0 51.5 15.3 23.8 19.9 71.7 12.8 21.0 16.2 65.6
BCE 0.0 0.0 22.0 73.3 0.0 0.0 16.1 71.1 0.0 0.0 9.3 56.8 0.0 0.0 17.8 72.9 0.0 0.0 16.3 68.3

Baseline freq. 9.8 20.6 22.4 63.2 6.5 14.6 17.0 68.3 22.9 39.7 37.7 62.1 11.4 23.8 27.2 69.8 9.7 20.6 22.7 65.7
ens. 14.6 23.3 24.0 69.0 11.3 20.1 19.3 69.3 22.2 23.9 31.0 64.9 21.6 32.9 31.3 76.7 15.0 23.8 24.2 69.0

Table 22: Prediction results on the DLU dev split. “aF2” stands for F2 with a adaptive threshold, as discussed in
Section 5.

A B C unk All

F1 F2 aF2 AUC F1 F2 aF2 AUC F1 F2 aF2 AUC F1 F2 aF2 AUC F1 F2 aF2 AUC

Gemma-Inst. zeroshot 11.9 14.7 - 55.0 8.8 12.1 - 54.9 15.0 12.3 - 53.3 13.5 17.3 - 56.1 11.3 13.8 - 54.6
fewshot 11.2 14.8 - 54.8 8.5 11.9 - 54.7 12.7 10.2 - 52.4 12.4 19.8 - 57.3 10.7 14.3 - 54.6

LLaMA-Inst. zeroshot 10.1 12.4 - 53.6 6.9 12.5 - 55.1 21.4 26.8 - 55.4 6.9 11.1 - 49.5 9.4 14.8 - 54.1
fewshot 10.3 16.0 - 54.9 4.9 9.3 - 51.1 20.1 23.8 - 54.6 8.7 14.5 - 52.0 8.3 13.8 - 52.7

LLaMA ROC* 0.0 0.0 13.2 71.6 0.0 0.0 7.1 64.8 0.0 0.0 1.6 51.2 0.0 0.0 9.9 68.5 0.0 0.0 7.9 63.3
BCE 15.4 25.4 20.9 69.0 7.8 13.4 10.1 58.2 15.3 14.6 10.9 62.2 13.8 24.2 21.7 67.4 11.8 18.9 15.5 62.1

Longformer ROC* 17.0 25.4 18.0 71.8 10.2 19.1 16.6 69.5 15.0 17.9 10.0 51.5 15.3 23.8 19.9 71.7 12.8 21.0 16.2 65.6
BCE 0.0 0.0 22.0 73.3 0.0 0.0 16.1 71.1 0.0 0.0 9.3 56.8 0.0 0.0 17.8 72.9 0.0 0.0 16.3 68.3

Baseline freq. 9.8 20.6 22.4 63.2 6.5 14.6 17.0 68.3 22.9 39.7 37.7 62.1 11.4 23.8 27.2 69.8 9.7 20.6 22.7 65.7
ens. 14.6 23.3 24.0 69.0 11.3 20.1 19.3 69.3 22.2 23.9 31.0 64.9 21.6 32.9 31.3 76.7 15.0 23.8 24.2 69.0

Table 23: Prediction results on the DLU dev split, but for the prompting model, we take all occurrences of a word
listed by the prompted model to be looked-up. (Results on non-prompting models are unchanged.)

A B C unk All

F1 F2 aF2 AUC F1 F2 aF2 AUC F1 F2 aF2 AUC F1 F2 aF2 AUC F1 F2 aF2 AUC

Gemma-Inst. zeroshot 9.6 11.6 - 52.7 15.8 20.3 - 59.2 0.0 0.0 - 47.2 1.7 2.9 - 48.0 9.3 13.0 - 55.1
fewshot 16.1 19.8 - 57.7 14.5 20.6 - 59.7 0.0 0.0 - 46.8 5.3 9.0 - 53.8 11.4 16.6 - 57.7

LLaMA-Inst. zeroshot 11.0 16.9 - 54.7 10.5 18.5 - 58.8 3.0 6.4 - 56.5 4.4 8.4 - 53.1 8.6 15.2 - 57.1
fewshot 9.7 15.7 - 53.1 8.5 12.9 - 53.9 3.3 6.8 - 57.0 0.0 0.0 - 42.5 6.1 10.2 - 52.3

LLaMA ROC* 4.9 3.8 3.8 72.2 21.7 17.9 17.9 70.2 0.0 0.0 0.0 76.2 13.3 15.2 15.2 58.9 14.9 13.1 13.1 69.5
BCE 17.1 24.2 24.2 69.5 17.6 24.2 24.2 67.0 0.0 0.0 0.0 58.8 11.9 22.0 22.0 74.2 14.4 22.1 22.1 68.4

Longformer ROC* 22.5 26.5 26.5 78.8 22.0 29.2 29.2 75.4 5.3 10.0 10.0 62.8 7.2 10.9 10.9 73.2 17.3 23.7 23.7 75.5
BCE 16.1 16.4 16.4 73.0 12.6 12.5 12.5 72.2 0.0 0.0 0.0 72.7 7.0 9.0 9.0 73.6 11.1 12.2 12.2 72.7

Table 24: Prediction results on test split when for each document only one user was randomly selected.
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A B C unk All

F1 F2 aF2 AUC F1 F2 aF2 AUC F1 F2 aF2 AUC F1 F2 aF2 AUC F1 F2 aF2 AUC

Gemma-Inst. zeroshot 7.5 11.2 - 53.7 4.1 5.7 - 50.8 26.2 21.7 - 58.5 0.0 0.0 - 46.6 8.8 11.2 - 53.7
fewshot 6.7 10.4 - 52.9 7.5 10.9 - 54.5 19.2 17.9 - 55.9 0.0 0.0 - 47.7 9.2 12.3 - 54.3

LLaMA-Inst. zeroshot 8.3 14.3 - 56.2 6.3 12.1 - 56.0 14.8 19.4 - 53.2 2.6 6.1 - 59.0 6.9 12.8 - 53.3
fewshot 8.3 15.8 - 58.2 3.7 6.8 - 49.6 22.7 35.3 - 63.1 0.0 0.0 - 41.3 9.3 16.8 - 57.9

LLaMA ROC* 5.7 5.6 5.6 64.7 6.1 5.6 5.6 67.6 0.0 0.0 0.0 50.6 16.7 20.8 20.8 76.2 5.0 4.3 4.3 61.0
BCE 4.5 7.0 7.0 61.8 4.4 6.0 6.0 53.8 7.5 5.7 5.7 54.2 8.0 16.1 16.1 83.7 5.5 7.1 7.1 52.1

Longformer ROC* 17.4 20.0 20.0 71.3 13.3 20.3 20.3 68.5 13.7 15.6 15.6 54.5 10.8 20.4 20.4 70.6 13.7 18.7 18.7 64.9
BCE 13.0 15.0 15.0 71.7 18.0 22.2 22.2 69.6 12.8 12.4 12.4 55.0 15.4 20.0 20.0 72.3 15.3 17.2 17.2 66.6

Table 25: Prediction results on dev split when for each document only one user was randomly selected.
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Abstract

In this paper, we introduce two resources:
(i) G2P+, a tool for converting orthographic
datasets to a consistent phonemic represen-
tation; and (ii) IPA CHILDES, a phonemic
dataset of child-directed and child-produced
speech across 31 languages. Prior tools for
grapheme-to-phoneme conversion result in
phonemic vocabularies that are inconsistent
with established phonemic inventories, an is-
sue which G2P+ addresses by leveraging the
inventories in the Phoible database (Moran and
McCloy, 2019). Using this tool, we augment
CHILDES (MacWhinney and Snow, 1985)
with phonemic transcriptions to produce IPA
CHILDES. This new resource fills several
gaps in existing phonemic datasets, which of-
ten lack multilingual coverage, spontaneous
speech, and a focus on child-directed language.
We demonstrate the utility of this dataset for
phonological research by training phoneme lan-
guage models on 11 languages and probing
them for distinctive features, finding that the
distributional properties of phonemes are suf-
ficient to learn major class and place features
cross-lingually.

phonemetransformers/ipa-childes
(CC BY 4.0)

codebyzeb/g2p-plus (MIT)

1 Introduction

Phonological research can be enriched by
large-scale data-oriented studies that investigate
phoneme function across the globe’s languages.
However, while written text is plentiful and easily
accessible across hundreds of languages, phonemic
data is much more limited in availability. Phone-
mic datasets can be created by employing expert
phoneticians to carefully transcribe speech, but this
is a time-consuming process and completely infea-
sible for creating large datasets. Instead, the typical
approach is to use grapheme-to-phoneme (G2P)

Figure 1: An overview of IPA CHILDES and G2P+,
which are introduced in this paper.

conversion tools, which use statistical rules and
pronunciation dictionaries to convert orthographic
text to a phonemic representation. Open-source
G2P tools have been used to create large and mul-
tilingual phonemic datasets with domains ranging
from telephone conversations to legal proceedings.
However, the fact that these tools are open-sourced
and use a variety of statistical approaches and tran-
scription schemes means that phonemic corpora
vary considerably according to their phonemic vo-
cabularies and level of phonetic detail, making it
difficult to compare findings and incorporate other
linguistic resources into analysis.

There is also a lack of phonemic data for certain
domains, preventing phonological research in these
areas. In particular, we note that it is difficult to
find phonemic data for child-centered speech1 and,

1Child-centered speech is speech occurring within a child’s
environment and includes child-directed and child-produced
utterances.
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in general, spontaneous speech across several lan-
guages. The de-facto repository for child-centered
data is the Child Language Data Exchange System
(CHILDES), which currently contains over 1.4TB
of transcript data in over 40 languages (MacWhin-
ney and Snow, 1985; MacWhinney, 2019). The
impact of CHILDES across clinical and linguis-
tic research has been profound (Ratner, 2024) but
the largely orthographic nature of the data has pre-
vented phonological experimentation.2

We thus identify two major challenges impeding
phonological research. First, the lack of consistent
G2P conversion, which we address by developing
G2P+, a tool for converting orthographic text to
a phonemic representation. G2P+ leverages exist-
ing G2P tools for conversion but carefully maps
the output to established phonemic inventories in
Phoible, a database of cross-linguistic phonological
inventory data. Using Phoible inventories not only
ensures consistency for each language regardless
of the G2P backend used, but the database also
contains phonological feature information, support-
ing fine-grained phonological analysis. Second,
we address the lack of a multilingual phonemic
dataset of child-centered speech by using G2P+ to
convert the majority of the CHILDES database to
phonemes. The resulting dataset, IPA CHILDES,
contains phonemic transcriptions of 31 languages
in CHILDES, totaling 45 million words. We illus-
trate these resources in fig. 1.

We exemplify how to use these resources by
training cross-lingual phoneme language models.
Phoneme LMs have a wide variety of applications
in NLP, including lyric generation (Ding et al.,
2024), text-to-speech (Li et al., 2023), and low-
resource language modeling (Leong and White-
nack, 2022). Developmentally plausible training
corpora also provide a means of studying emergent
phonology, but past work has been limited by the
availability of training and evaluation resources in
languages besides English. Here, after establish-
ing the scaling conditions of phoneme LMs, we
train monolingual models on the 11 largest lan-
guages in IPA CHILDES. Using the fact that G2P+
maintains a correspondence with Phoible during
conversion, we use linear probes to predict an input
phoneme’s phonological features from its contex-
tual embedding. We evaluate this approach against

2CHILDES does contain phonetic transcriptions for some
languages as part of the PhonBank project, but only for a select
few corpora and only for child-produced utterances, impeding
the phonological analysis of child-directed speech.

the phoneme’s feature description in Phoible and
find that the probes consistently correctly predict
the ‘syllabic’ and ‘consonantal’ features, indicat-
ing the broad separation of vowels and consonants
across languages and demonstrating the utility of
phoneme LMs for studying emergent phonology.

These experiments demonstrate the utility of our
tools for phonological analysis. We release G2P+,
IPA CHILDES, and all trained models to support
future work.

2 Related Work

2.1 Phonemic Datasets

Phonemic data is required to investigate a range
of linguistic phenomena. Recently, researchers
have used data-driven approaches to study mor-
phological theories of acquisition (Kirov and Cot-
terell, 2018), explore the role of distributional in-
formation in phonology (Mayer, 2020), calculate
cross-language phonological distance (Eden, 2018)
and simulate early lexicon learning (Goriely et al.,
2023). Despite the benefits of phonemic data, few
such datasets exist.

Written text and audio datasets are far more plen-
tiful than phonemic datasets. Written text, being
widely distributed and easy to collect through prac-
tices such as web-scraping (Bansal et al., 2022),
has steered years of NLP research, ranging from
the parsers trained on the Penn Treebank (Taylor
et al., 2003) to the large language models trained on
billion-word datasets like the Pile (Gao et al., 2020).
Despite the availability of written text, it is often
inappropriate for speech technology and phonolog-
ical research. Instead, since tape recorders became
widely available, researchers have created datasets
of human speech. These now include elicited
speech corpora such as TIMIT, (Garofolo et al.,
1993), FLEURS (Conneau et al., 2023), the MSWC
(Mazumder et al., 2021), GlobalPhone (Schultz,
2002) and CommonVoice (Ardila et al., 2020); au-
dio book corpora such as LibriSpeech (Panayotov
et al., 2015), MLS (Pratap et al., 2020) and the
CMU Wilderness Corpus (Black, 2019); and natu-
ralistic speech corpora such as Switchboard (God-
frey et al., 1992), the Fisher corpus (Cieri et al.,
2004), the British National Corpus (Consortium,
2007), the Buckeye corpus (Pitt et al., 2007), Ba-
bel (Harper, 2011) and VoxLingua107 (Valk and
Alumäe, 2021). Of these datasets, only TIMIT,
MLS and Switchboard include phonemic annota-
tions, limiting their use in phonological analysis.
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Later work augmented these datasets with phone-
mic transcriptions. These include Audio BNC de-
rived from the British National Corpus (Coleman
et al., 2011), LibriLight derived from LibriSpeech
(Kahn et al., 2020), VoxClamantis derived from
the CMU Wilderness Corpus (Salesky et al., 2020),
VoxCommunis derived from CommonVoice (Ahn
and Chodroff, 2022) and IPAPACK derived from
FLEURS and MSWC (Zhu et al., 2024).

These datasets and their phonemically-annotated
successors all vary considerably according to the
language coverage, number of words, domain and
the presence of text-based transcriptions. We pro-
vide a summary of these properties in appendix C.
Our dataset, IPA CHILDES, is the first phonemic
dataset for child-centered speech and the first mul-
tilingual phonemic dataset for spontaneous speech.

2.2 Grapheme to Phoneme Conversion

Ideally, phonemic transcriptions of speech would
originate from expert human annotators, but such
annotation is incredibly slow. For instance, it was
estimated that it would take 120 person-years to
transcribe and align the 1200 hours of speech in
the Audio BNC corpus (Coleman et al., 2011). Of
the phonemic datasets described above, only the
smallest, TIMIT, was fully transcribed by human
experts, at a rate of only 100 sentences per week
(Zue and Seneff, 1996; Lamel et al., 1989). Switch-
board also provides human-annotated phonemic
transcriptions but only for 5,000 utterances (Green-
berg et al., 1996).

In practice, phonemic transcriptions are pro-
duced using G2P. In the simplest case, this involves
the use of pronunciation dictionaries such as the
Carnegie Mellon University (CMU) Pronouncing
Dictionary3 or the English Pronouncing Dictionary
(Jones, 2011). These were used to create the phone-
mic transcriptions for the Buckeye Corpus, Audio
BNC and Babel, but pronunciation dictionaries are
limited by the items included in the dictionary and
so may fail to convert part-words, interruptions or
rare proper nouns, which frequently occur in spon-
taneous speech. More sophisticated G2P methods
combine pronunciation dictionaries with statistical
models. These systems have been developed for
many languages using rules or finite-state transduc-
ers to generalize to unseen words (Mortensen et al.,
2018; Hasegawa-Johnson et al., 2020; Bernard and
Titeux, 2021). Other G2P systems have applied

3
http://www.speech.cs.cmu.edu/cgi-bin/cmudict

Figure 2: Venn diagram of the inventories produced by
phonemizer, epitran and G2P+ compared to Phoible
inventory 2269 for French.

neural networks to automatically learn these rules
and generalize to new languages (Novak et al.,
2016; Zhu et al., 2022).

As G2P systems operate only from text, they
may fail to capture accents and the variation found
in natural speech (see appendix A for a discus-
sion). Nevertheless, G2P systems provide a useful
method for producing phonemic transcriptions at
scale, and were used to produce the transcriptions
for LibriSpeech, VoxClamantis and IPAPACK. The
fact that transcription errors may occur is often
acknowledged as a limitation, but rarely are the
outputs of different G2P systems compared to each
other or to established inventories. For instance,
epitran and phonemizer, two popular tools de-
scribed in section 3.1, produce very different inven-
tories for French, as demonstrated in fig. 2.

In this work, we leverage existing statistical G2P
tools, validate their outputs using maps to Phoible
inventories, and use our resulting tool to produce
phonemic transcriptions for the utterances in the
CHILDES database.

2.3 Phoneme LMs and Child-Centered Data

In this work, we illustrate one use of our dataset by
training small monolingual LMs on 11 languages
and examining the representations they learn for
individual phonemes.

Training models on such little data (here, only
500 thousand words) may be considered atypical
in the modern NLP landscape, but questions of de-
velopmental plausibility have led to an increased
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interest in pretraining with limited data. For in-
stance, the BabyLM workshop series challenges
participants to train smaller models on data that is
limited by both scale, 10–100 million words, and
by domain, with the pre-training corpus including
data from CHILDES, among other child-centered
corpora (Warstadt et al., 2023; Hu et al., 2024b).
Such limitations have led to the development of
new architectures (Georges Gabriel Charpentier
and Samuel, 2023; Charpentier and Samuel, 2024),
motivated cognitively-inspired pre-training strate-
gies (Huebner et al., 2021; Diehl Martinez et al.,
2023) and allowed for gaining insights into human
learning (Yedetore et al., 2023). The majority of
this work has centered on English. Exceptions in-
clude Capone et al. (2024); Shen et al. (2024), who
train Italian monolingual and bilingual models, re-
spectively, Yadavalli et al. (2023) who use data
from five language in CHILDES to explore sec-
ond language acquisition theories (but only train an
English LM) and Salhan et al. (2024), who use age-
ordered data from four languages in CHILDES to
explore fine-grained curricula inspired by language
acquisition.

However, these BabyLMs are typically trained
on orthographic text, limiting their ability to be
studied at the phonological level, and generally
use subword tokens, which do not generally cor-
respond to cognitively plausible units (Beinborn
and Pinter, 2023) limiting their value for psycholin-
guistic research (Giulianelli et al., 2024). Bunzeck
et al. (2024) and Goriely et al. (2024) both estab-
lish phoneme-based training of BabyLMs (where
tokens consist of individual phonemes, with word
boundaries removed) but only train on English
text. Here, we use IPA CHILDES to demon-
strate phoneme-based training for 11 languages and
leverage the fact that G2P+ maintains a correspon-
dence to Phoible in order to probe our BabyLMs
for knowledge of distinctive features.

3 G2P+

We introduce G2P+ as a tool for converting datasets
from an orthographic representation to a phonemic
representation. It operates either as a python library
or as a command-line program; the user selects one
of four backends and the language to use for con-
version. Each backend supports a different set of
languages as described in section 3.1. The recom-
mended backends for each of the languages in IPA
CHILDES are given in appendix B and example

usage of the tool is given in appendix D.
Each line of orthographic text is converted to

phonemes, represented using the International Pho-
netic Alphabet (IPA). Regardless of the backend
selected, the representation is consistent, with
phonemes separated by whitespace (for convenient
tokenization) and unique delimiters used to sep-
arate words and utterances (see appendix E for
details).

The output representation is also consistent in
terms of the set of phonemes types produced, us-
ing folding, as described in section 3.2. Without
folding, each backend produces a different set of
phonemes (as demonstrated in fig. 2) which may
not align with established phoneme inventories.
Our folding maps not only ensure the output is con-
sistent regardless of the backend chosen, but also
makes it easy to leverage information in Phoible in
analysis, as demonstrated in section 5.2.

3.1 G2P Backends

In order to support a wide variety of languages,
we implement wrappers around four backend G2P
tools:

phonemizer: Phonemizer (Bernard and Titeux,
2021) is a python library for G2P in various lan-
guages based on eSpeak

4, an open-source speech
synthesizer which supports over one hundred lan-
guages and accents (Dunn and Vitolins, 2022).

epitran: Epitran (Mortensen et al., 2018) sup-
ports the automatic grapheme-to-phoneme conver-
sion of text across many languages, accents and
scripts, with a particular focus on low-resource lan-
guages. For the majority of the 92 languages sup-
ported,5 it uses greedily-interpreted grapheme-to-
phoneme maps augmented with context-sensitive
pre-processor and post-processor rewrite rules.

pinyin-to-ipa: Pinyin-to-ipa (Taubert, 2024)
is a python library for converting Mandarin written
in pinyin to IPA using a few contextual grapheme-
to-phoneme maps. The phoneme inventory is based
on the phonology of Mandarin as described by (Lin,
2007) and (Duanmu, 2007) and tone markers are
attached to the vowel of the syllable, rather than the

4For Japanese text written in Romanji, as is the case in
CHILDES, we use phonemizer with the the Segments backend
(Forkel et al., 2019).

5For English, Epitran uses the Flite Speech Sythesis Sys-
tem (Black and Lenzo, 2001) and for Simplified and Tra-
ditional Chinese it uses the CC-CEDict dictionary (https:
//cc-cedict.org).
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end of the syllable. The tool only converts individ-
ual pinyin syllables, so our wrapper first splits the
input into syllables before using the tool to convert
each syllable to IPA.

pingyam: Pingyam6 is a table storing conversion
information between the various romanization sys-
tems of Cantonese (including IPA) based on data
from the Open Cantonese Dictionary.7 Our wrap-
per converts from the Jyutping system to IPA by
first splitting the input text into syllables before
using the table to convert each syllable to IPA. For
consistency with pinyin-to-ipa, we move tone
markers to the vowel of each syllable.

Although pinyin-to-ipa and pingyam only
support one Chinese language each, we in-
clude them as backends because epitran and
phonemizer have relatively poor G2P quality for
these languages. This has prevented Chinese lan-
guages from being included in previous cross-
lingual phonemic datasets (Ahn and Chodroff,
2022) and has led to them being disregarded in
cross-lingual analysis (Pimentel et al., 2020). We
hope that by including these backends, we address
this gap. We also combine tone markers with their
preceding phoneme to create a unique token (e.g.,
a
Ă
£ is a single token, not two). We thus treat tone

markers as phonological features rather than as in-
dividual phonemes, similar to how diphthongs are
unique phonemes. However, this decision is still
debatable and does lead to a comparatively larger
phonemic vocabulary, so we provide an option to
disable this merging (see appendix D).

3.2 Phoneme inventory validation
In order to validate the set of phonemes produced
by each choice of backend and language, we com-
pare the output to the phoneme inventories for that
language listed in Phoible, a database containing
phoneme inventories extracted from source docu-
ments and tertiary databases for 2186 distinct lan-
guages (Moran and McCloy, 2019).

Phoible also contains typological data and
phonological feature information for each
phoneme, a useful resource for phonological
analysis. As there are often multiple inventories
in Phoible for each language, we choose the
inventory that best matches the output phoneme of
all backends that supports that language, according
to the number of phoneme types, the number of

6
https://github.com/kfcd/pingyam

7
https://www.kaifangcidian.com/han/yue/

consonants, the number of vowels and the number
of diphthongs.

Once the best inventory has been found, we use a
process called folding to align the output phoneme
set with the inventory and correct errors in the out-
put. This is achieved a manually-crafted look-up
table (a folding map) which is applied to the output
of the G2P wrapper. These maps are primarily used
to solve surface-level errors, instances where the
G2P tool outputs a specific Unicode string for a
specific phoneme but the inventory lists a differ-
ent string. For example, the phonemizer backend
with the ja language code (Japanese) outputs the
tied characters “ts as one of the phonemes, but the
Japanese inventory lists ts instead. These errors can
be solved with a simple one-to-one mapping. These
mappings will not affect the information-theoretic
properties of the output but do allow the output
symbols to be matched with entries in Phoible.

Besides these surface-level errors, other tran-
scription errors can also be solved with folding
maps. For example, the epitran backend for Ser-
bian always outputs d Z as two phonemes instead
of the single phoneme dZ, which can also be solved
with a single mapping. The construction of the
folding maps and these additional error types are
discussed further in appendix F.

3.3 Qualitative Analysis

In fig. 2, we compare the matching Phoible in-
ventory for French to the output of G2P+ (using
phonemizer as a backend) and the outputs pro-
duced by phonemizer and epitran when applied
to the French section of CHILDES. The outputs of
phonemizer and epitran both differ considerably
from the inventory and from each other whereas
the G2P+ only fails to produce a single phoneme, 4,
and produces two additional phonemes dZ and tS,
which we allow as they come from loanwords such
as “pizza” and “sandwich”.

4 IPA CHILDES

IPA CHILDES contains 45 million words of
monolingual child-centered speech for 31 lan-
guages. The data is sorted by child age in order to
support curriculum learning experiments, such as
in the work of Huebner et al. (2021), and we also
provide an ‘is_child’ feature to allow for filtering
child or adult utterances.

In order to create the dataset, we first download
all monolingual and non-SLI corpora in CHILDES.
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CHILDES has 48 languages but only 31 are sup-
ported by a backend in G2P+ (either because the
language is not supported, or because they have
been transcribed using an irregular script). For
languages supported by multiple backends, we pro-
duce a sample transcription using each backend
and carefully examine the output. The ‘best-fitting’
backend (the one that produces a phonemic vocab-
ulary closest to one of the inventories in Phoible) is
selected and is the backend for which we produce
a folding map, as described in section 3.2. Having
selected the best backend, we use G2P+ to convert
all orthographic utterances for each language to a
phonemic representation, producing a CSV con-
taining the original representation, the phonemic
representation as well as additional data stored in
CHILDES (such as target child age, morpheme
count, part of speech information, and the IDs of
each utterance, transcript, corpus and collection).

An illustration of the dataset is given in fig. 1
and a description of each language section is given
in appendix B, detailing the matching Phoible
inventory and CHILDES section for each lan-
guage. Note that English is divided into British
English (EnglishUK) and North American En-
glish (EnglishNA) to mirror the split present in
CHILDES and Portuguese is also split into Euro-
pean and Brazilian varieties, following previous
work (Caines et al., 2019; Goriely et al., 2023). For
these splits, we use different phonemizer accents.
Data is not uniformly distributed across languages.
EnglishNA is the most represented, with close to
10 million words, and Farsi is the least represented,
with only 43 thousand words. We discuss limita-
tions of the dataset in appendix A.

5 Cross-Lingual Phoneme LMs

Phoneme LMs trained on developmentally plausi-
ble corpora allow for the testing of phonological
representations but recent work has only explored
English models trained on 10 – 100 million words
(see section 2.3). Here, we establish the size re-
quirements for models trained on data available in
IPA CHILDES and then demonstrate how models
trained on the 11 largest languages in our dataset
can be used to explore emergent phonology.

Each of our models are auto-regressive, trained
to predict phonemes in a sequence. This is similar
to how standard auto-regressive models are trained,
except that each token represents a single phoneme,
rather than a word or subword. We refer to the suite

of models as “cross-lingual” as each individual
model is monolingual, only trained on data from a
single language. This is in contrast to “multilingual”
models that are trained on multiple languages at
once.

5.1 Size Requirements of Phoneme LMs

We use the BabySLM benchmark (Lavechin et al.,
2023) to evaluate syntactic and phonological knowl-
edge. The syntactic score is calculated using a pref-
erence task over pairs of grammatical and ungram-
matical sentences across six syntactic phenomena
commonly seen in naturalistic speech. For example,
models should assign D @ g U d k I t i (“the good
kitty”) a higher likelihood than D @ k I t i g U d
(“the kitty good”). The lexical score is similarly cal-
culated using minimal pairs of words and pseudo-
words, such as ô u: l @ ô z (“rulers”) compared to
the pseudo-word m u: k @ ô z (“mukers”). Lavechin
et al. (2023) demonstrated that an LSTM model
trained on 1.2 million words from Providence (one
of the corpora in CHILDES) achieved a lexical
score of 75.2 and a syntactic score of 55.18. Goriely
et al. (2024) later achieved lexical and syntactic
scores of 87.8 and 83.9 when training a larger
transformer-based model on the 100-million-word
BabyLM challenge dataset (Hu et al., 2024a).

Here, we use IPA CHILDES and BabySLM
to establish the scaling laws of phoneme LMs in
terms of data size and model size. We subsam-
ple the EnglishNA portion of the dataset, remove
word boundaries and child-produced utterances and
train a suite of GPT-2 models ranging from 400
thousand to 19 million non-embedding parame-
ters. To prevent overfitting, we train three models
for each combination of model size and data size
using dropouts of 0.1, 0.3 and 0.5, selecting the
model with the lowest perplexity for each. Model
parameters, training configurations and scripts are
provided in appendix G.

The scaling graphs for the lexical and syntactic
scores are given in fig. 3. For every model size,
performance increases with more training data but
for a particular data size the largest model is not
always the best. For instance, the second smallest
model is the best choice for the lexical task if only
300 thousand tokens of data are available, likely
due to larger models overfitting with a sample this
small (even with high dropout). It is also clear that

8Chance performance for both BabySLM scores is 50 and
100 indicates perfect performance
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Figure 3: BabySLM lexical score (left) and syntactic score (right) achieved by a phoneme-based GPT-2 model
trained on the EnglishNA portion of IPA CHILDES across model sizes and subsample sizes.

although small models with very little data seem
to acquire phonological knowledge (as measured
by the lexical score), much more data is required
to achieve syntactic scores past 60, in line with the
results of Lavechin et al. (2023) and Goriely et al.
(2024). The best model parameters for each score
and data size are given in appendix H.

5.2 Probing for Phonological Features

As the phonemic utterances in IPA CHILDES
maintain a correspondence with Phoible, we can
use the distinctive feature information in Phoible
to probe cross-lingual phoneme LMs for phonolog-
ical knowledge.

We select the 11 largest languages in the dataset
and train a GPT-2 model on each, subsampling
500 thousand words9 and using the best-fitting
model for this data size according to the previous
experiment (the 5-million-parameter model with
a dropout of 0.3). The training configuration re-
mains the same (see appendix G). These models
allow us to compute contextual embeddings c(x)
for phonemes.

We then look up the distinctive features of each
phoneme in each language using the matching in-
ventories in Phoible (see table 1). We find the set
of features for which, in all 11 languages, there are
at least 4 phonemes that exhibit the feature and 4
that do not. For each feature f , we train a linear
probe pf to predict that feature from the contex-
tual embeddings c(x) of phonemes. Each probe is
trained with an equal number of positive and neg-
ative examples and is evaluated using leave-one-
group-out cross-validation (i.e for each phoneme x
in the phoneme inventory V , the probe is trained on
the contextual embeddings of all other phonemes

9As the number of phonemes per word varies across
these languages, we actually subsample 1.8 million tokens
(phonemes) for each language, which is roughly 500 thousand
words.

Figure 4: Accuracy of the phonological distinctive fea-
ture probe across 11 languages in IPA CHILDES and
9 distinctive features from Phoible.

{c(y)∣y ∈ V \ {x}}, then evaluated by predict-
ing the feature from contextual embeddings of the
left-out phoneme pf(c(x)), and the final score is a
macro-average across all phonemes x ∈ V ).

The results of each probe are provided in fig. 4.
The majority of the probes achieve accuracies sig-
nificantly10 higher than chance (50%), indicating
that the models learn representations that encode
distinctive features. While the scores for each fea-
ture are broadly consistent across languages, some
notable differences emerge. For example, nearly
all feature probes achieve statistically significant re-
sults in Mandarin, whereas only two do so in Span-
ish. This disparity can be partly attributed to the
number of unique phonemes in each language. Be-
cause we treat each combination of vowel and tone
as a distinct phoneme, Mandarin has 99 phoneme
types, compared to just 24 in Spanish. The smaller
phoneme inventory in Spanish greatly reduces n for
each probe, making it more challenging to obtain

10Statistical significance was assessed using a binomial test,
where the null hypothesis assumes a probability of success
p0 = 0.5 and the number of trials n is equal to the number
of phonemes tested by the probe. A result was considered
significant if the computed p-value was less than 0.05.
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Figure 5: Average silhouette scores when using each
distinctive feature to cluster contextual embeddings of
the phonemes in each language.

statistically significant results.
In all 11 languages, the highest result is achieved

by the probe for the ‘syllabic’ feature which gen-
erally11 separates vowels from consonants. As
these models only learn to predict phonemes and
have no concept of how each phoneme is pro-
nounced, the fact that this separation is learned
clearly indicates that vowels and consonants pro-
vide a strong distributional signal across languages.
The consonantal feature similarly separates vow-
els from consonants12 and is learned by a probe
in every language. However, not every feature
can be learned by these probes. For instance,
the delayedRelease feature, which distinguishes
stops from affricates, is not learned by any probe.
Our models do not encode the rate of phoneme de-
livery, so it is unsurprising that a feature that relates
to the temporal properties of phonemes is difficult
to probe.

Distributional Phoneme Clusters
To better understand why the probes capture certain
phonological features, we examine whether contex-
tual embeddings cluster according to these features.
For each language, we sample 50 contextual em-
beddings per phoneme and label them with their
associated phonological features. For each label-
ing, we then compute the silhouette score for each
embedding — a metric ranging from –1 to 1, where
higher values indicate that an embedding is more
similar to others in its assigned cluster than to those

11In some languages there are also syllabic consonants,
which like vowels can act as the nucleus of a syllable.

12This feature indicates an audible constriction of the vocal
tract, separating obstruents, nasals, liquids, and trills from
vowels, glides and laryngeal segments (Gussenhoven and Ja-
cobs, 2017).

in neighboring clusters (Rousseeuw, 1987). Aver-
aging these scores across all embeddings allows us
to compare how well different features cluster the
phoneme representations, as shown in fig. 5.

The scores are all relatively close to zero, likely
due to the curse of dimensionality — our embed-
dings have 256 dimensions, far exceeding the num-
ber of distinct phonemes in each language. Despite
this, the results are consistent with the probe find-
ings: the syllabic feature yields the highest cluster-
ing quality.

We further visualize this clustering using den-
drograms, created by averaging the contextual em-
beddings for each phoneme and applying an incre-
mental clustering algorithm. Figure 6 shows ex-
amples for Japanese and French, with the syllabic
feature marked for each phoneme. In both cases,
vowels are almost entirely separated from conso-
nants, with one notable exception: n in Japanese.
We also observe some alignment with traditional
phoneme groupings (e.g., b and p), though overall
the dendrograms diverge from standard phonologi-
cal classifications. This suggests that the distribu-
tional behavior of phonemes in context may not
neatly align with their articulatory or categorical
properties.

6 Discussion

IPA CHILDES addresses several limitations of
past datasets, as the first large multilingual cor-
pus of child-centered phonemic speech. In this
study we demonstrate how this data can be used
to train phoneme LMs, but this dataset could also
support information-theoretic studies of language
processing and acquisition, which have previously
based their calculations on word types (Piantadosi
et al., 2011; Dautriche et al., 2017a; Pimentel et al.,
2020) or orthographic text (Mahowald et al., 2013;
Dautriche et al., 2017b; Futrell et al., 2020), often
citing a lack of phonemic data as a limiting fac-
tor. The child-centered domain of our dataset could
also be beneficial for studying the ‘Goldilocks’ hy-
pothesis (Kidd et al., 2014) and the properties of
‘Parentese’ (Ramírez-Esparza et al., 2017). We pro-
vide an example of an experiment investigating the
later in appendix I, where we compute the average
information of utterances directed to children aged
0–6 across 10 languages and find a general trend
of increasing informative content.

Our G2P+ tool also provides new avenues for
linguistic analysis by ensuring that phonemes pro-
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(a) Japanese (b) French

Figure 6: Similarity of the contextual embeddings for each phoneme learned by the Japanese and French phoneme
LMs. Similarities are computed using Euclidean distance considering the average of 50 contextual embeddings for
each phoneme and linkages are created using the incremental algorithm. The ‘syllabic’ distinctive feature is marked
below each phoneme.

duced for each language are consistent with estab-
lished inventories in Phoible. This not only ad-
dresses transcription errors, but also allows for the
use of distinctive feature information provided by
Phoible in analysis. We demonstrate this by train-
ing linear probes to extract distinctive features from
the contextual embeddings of phonemes learned
by our monolingual models. We find that certain
features (e.g. consonantal) emerge solely from
the distributional properties across all 11 languages,
while others (e.g. delayedRelease) do not.

Our resources could also support the training
of self-supervised speech models (e.g. Hsu et al.,
2021). These models are trained directly on au-
dio and lag behind phoneme or text-based models,
often requiring several orders of magnitude more
data to learn semantic representations (Cuervo and
Marxer, 2024), but recent work has found that fine-
tuning on phoneme classification can reduce this
gap (Feng et al., 2023; Poli et al., 2024). Our work
is closely related to recent efforts in low-resource
cross-lingual language modeling — for example,
the Goldfish suite of monolingual models spanning
350 languages, some trained on as little as 5MB of
orthographic text (Chang et al., 2024). IPA is also
a more universal representation than orthographic
text, which varies considerably across languages,
with multilingual IPA models proving to be effec-
tive for force-alignment (Zhu et al., 2024) and zero-
shot cross-lingual NER (Sohn et al., 2024). In this
study we only train monolingual models, but future
work could extend this to the multilingual setting.

7 Conclusion

This work introduces G2P+ and IPA CHILDES,
two new resources for phonological research. G2P+
improves open-source G2P tools by ensuring

phonemic vocabularies align with the established
inventories in the Phoible database. Using this tool,
we create IPA CHILDES by converting the ortho-
graphic transcriptions in CHILDES into phonemic
representations, resulting in a large corpus of child-
centered spontaneous speech across 31 languages.

We demonstrate the utility of these resources for
phonological analysis using phoneme LMs by ex-
tending prior work to the cross-lingual setting. Our
results establish the corpus size requirements for
phoneme LMs trained on developmentally plausi-
ble corpora and we show that models trained on
11 languages effectively implicitely encode distinc-
tive features. These findings support the role of
phoneme LMs in studying emergent phonology.
We anticipate that G2P+ and IPA CHILDES will
enable a wide range of future studies in linguistics
and NLP, particularly in phonological acquisition,
cross-linguistic analysis, and speech processing.
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A Limitations

We consider the following limitations of our work.

Phonemes as a representation of speech: While
phonemic data more closely represents how words
are pronounced compared to orthographic text (the
degree of this difference varies between languages),
phonemes are still abstract symbolic units which
do not contain many of the detailed and contin-
uous features of speech, such as prosody. They
also abstract away from phones, which are detailed
realizations of phonemes, representing the physi-
cal sound produced rather than a language-specific
meaningful unit. When comparing modalities that
may be close to the sensory signal available to in-
fants for developmentally plausible language mod-
eling, some researchers consider phonemic data to
be as implausible as orthographic data (Lavechin
et al., 2023) and instead create language models
that can be trained directly on audio (Kamper et al.,
2017; Nguyen et al., 2020; Hsu et al., 2021; Dunbar
et al., 2021). Nevertheless, phonemes still provide
a useful unit of analysis and are necessary for cer-
tain linguistic theories and information-theoretic
calculations. While phones could offer another use-
ful representation, they are even harder to source
than phonemes.

G2P conversion inaccuracies: Despite improv-
ing G2P conversion by mapping to inventories in
the Phoible database, there are still limitations
with G2P+. Firstly, our method integrates exist-
ing G2P tools, which may vary in quality between
languages. When converting each language in
CHILDES, we selected the most appropriate back-
end for each language, in particular adding two
backends to support G2P for Mandarin and Can-
tonese, but the quality may still vary. Many of the
G2P tools for certain languages convert words in-
dividually, so we do not capture vowel reduction,
allophonic variation or other differences found in
natural speech. We also use a single accent for
each language, losing inter-speaker variability. The
phonemizer backend supports multiple accents for
certain languages (here we use a different accent
for EnglishNA and EnglishUK) and future work
could try to maintain accent differences during
grapheme-to-phoneme conversion, but this would
require speaker information or audio, as was done
during the creation of Audio BNC (Coleman et al.,
2012). Finally, we note that G2P methods may not
produce correct transcriptions for child-produced

utterances, which are often corrected by the tran-
scriber, especially for young infants. Initially we in-
tended to distribute IPA CHILDES without child-
produced utterances (and in this study only train
models with the child-directed utterances) but as
they might be useful in future research, we instead
note this limitation.

Phoible inventories: Although the Phoible
database collects established phonemic inventories
and provides distinctive feature vectors, there are
still often multiple phoneme inventories for a sin-
gle language. This the exact phonemic inventory
for a particular language is still a matter of debate
among expert phonologists. When creating folding
maps we choose the ‘best-fitting’ inventory to map
to, as detailed in table 1, but we acknowledge that
these inventories may not be exact.

Phoneme LMs: We train phoneme LMs on 11
languages from IPA CHILDES but the specific
architecture we use is based on our scaling ex-
periment for the EnglishNA model. Although we
do not directly compare these LMs, we note the
possibility that other parameters may have better
suited the non-English languages. We were only
able to conduct the scaling experiments for English
due to the lack of phonological benchmarks for
other languages but we hope that the release of IPA
CHILDES facilitates further work in multilingual
phonological evaluation of phoneme LMs.

Languages: Although our dataset is multilingual,
there are still limitations in terms of language cov-
erage. The languages are predominantly European
and Asian, with no languages indigenous to the
Americas, Australia or Africa. English is also
still the dominant language of the dataset and the
Farsi section is very small, only containing 43 thou-
sand words. In creating this dataset, we were lim-
ited by the languages available in CHILDES. The
languages in CHILDES we were not able to con-
vert were Greek, Arabic, Hebrew, Thai, Georgian,
Tamil, Taiwanese, Jamaican, Sesotho, Berber, Cree
and Slovenian and Russian due to missing G2P
backends or unsupported orthographies.

B Breakdown of IPA CHILDES

IPA CHILDES contains transcriptions of child-
centered speech for 31 languages. Details of each
language section are provided in table 1.
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Language CHILDES Collection Backend Inventory ID Words Phonemes % Child

EnglishNA EnglishNA (49) phonemizer 2175 9,993,744 30,986,218 36
EnglishUK EnglishUK (16) phonemizer 2252 7,147,541 21,589,842 39
German German (10) epitran 2398 5,825,166 21,442,576 44
Japanese Japanese (11) phonemizer 2196 2,970,674 11,985,729 44
Indonesian EastAsian/Indonesian (1) epitran 1690 2,347,642 9,370,983 34
French French (15) phonemizer 2269 2,973,318 8,203,649 40
Spanish Spanish (18) epitran 164 2,183,992 7,742,550 46
Mandarin Chinese/Mandarin (16) pinyin_to_ipa 2457 2,264,518 6,605,913 39
Dutch DutchAfricaans/Dutch (5) phonemizer 2405 1,475,174 4,786,803 35
Polish Slavic/Polish (2) phonemizer 1046 1,042,841 4,361,797 63
Serbian Slavic/Serbian (1) epitran 2499 1,052,337 3,841,600 29
Estonian Other/Estonian (9) phonemizer 2181 843,189 3,429,228 45
Welsh Celtic/Welsh (2) phonemizer 2406 666,350 1,939,286 69
Cantonese Chinese/Cantonese (2) pingyam 2309 777,997 1,864,771 34
Swedish Scandinavian/Swedish (3) phonemizer 1150 581,451 1,782,692 45
PortuguesePt Romance/Portuguese (4) phonemizer 2206 499,522 1,538,408 39
Korean EastAsian/Korean (3) phonemizer 423 263,030 1,345,276 37
Italian Romance/Italian (5) phonemizer 1145 352,861 1,309,489 39
Croatian Slavic/Croatian (1) epitran 1139 305,112 1,109,696 39
Catalan Romance/Catalan (6) phonemizer 2555 319,726 1,084,594 36
Icelandic Scandinavian/Icelandic (2) phonemizer 2568 279,939 1,057,235 35
Basque Other/Basque (2) phonemizer 2161 230,500 942,725 49
Hungarian Other/Hungarian (3) epitran 2191 237,062 918,002 48
Danish Scandinavian/Danish (1) phonemizer 2265 275,170 824,314 42
Norwegian Scandinavian/Norwegian (2) phonemizer 499 227,856 729,649 43
PortugueseBr Romance/Portuguese (2) phonemizer 2207 174,845 577,865 44
Romanian Romanian (3) phonemizer 2443 152,465 537,669 43
Turkish Other/Turkish (2) phonemizer 2217 79,404 421,129 51
Irish Celtic/Irish (2) phonemizer 2521 105,867 338,425 34
Quechua Other/Quechua (2) phonemizer 104 46,848 281,478 40
Farsi Other/Farsi (2) phonemizer 516 43,432 178,523 40

Table 1: A breakdown of each language available in IPA CHILDES. The bracketed number in the CHILDES
Collection column refers to the number of corpora downloaded from that collection. The Backend, Lang Code
and Phoneme Inventory columns refer to the G2P+ configuration used to convert utterances for that language to
phonemes and the Phoible inventory used for that language in folding. The Words and Phonemes columns refer to
the number of words and tokens in each subset and % Child refers to the percentage of the data that is spoken by a
child.

C Dataset comparison

In section 2.1 we discuss previous phonemic
datasets in relation to IPA CHILDES. We provide
a full comparison of these datasets in table 2.

D G2P+ Usage

G2P+ is a python library that can be used as an
API or as a command-line tool in order to con-
vert orthographic text to a phonemic representation.
The tool allows the user to select the backend and
language code to use for G2P with text provided
through filepaths or standard input. Additional op-
tions include --keep_word_boundaries to output
a dedicated WORD_BOUNDARY token between words
and --uncorrected to skip the folding process
and output the phonemes exactly as produced by
the backend tool. Each backend also supports in-
dividual options. For instance, --split-tones
outputs tones as individual tokens instead of merg-

ing them with the syllabic phoneme for our two
Chinese language backends. See the repository’s
README.txt for further details.

E Phoneme Stream Representation

In order to ensure that phonemes are output using a
consistent representation, we define the phoneme
stream representation as follows:

• Each phoneme is represented using the Inter-
national Phonetic Alphabet (IPA).

• Each phoneme is separated by a space.

• Word boundaries and utterance boundaries are
represented using unique symbols.

IPA is used to represent each phoneme due to be-
ing the most widely used and comprehensive pho-
netic alphabet. It is important to separate phonemes
by spaces because IPA symbols may be represented
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Dataset Modality Scale (words) Domain Languages

The Pile (Gao et al., 2020) Orth 100B† Web-scraped written text English only
GlobalPhone (Schultz, 2002) Orth, Phon, Audio 5M† Read speech 22
CommonVoice (Ardila et al., 2020) Orth, Audio 30M† Read speech 38
VoxCommunis (Ahn and Chodroff, 2022) Orth, Phon, Audio 23M† Read speech 40
CMU Wilderness (Black, 2019) Orth, Audio 170M† Read speech 699
VoxClamantis (Salesky et al., 2020) Orth, Audio, Phon 152M† Read speech 635
TIMIT (Garofolo et al., 1993) Orth, Phon, Audio 40k Read speech English only
FLEURS (Conneau et al., 2023) Orth, Audio 15M† Read speech 102
MSWC (Mazumder et al., 2021) Orth, Audio 20M Read speech 102
IPAPACK (Zhu et al., 2024) Orth, Phon 15M† Read speech 115
LibriSpeech (Panayotov et al., 2015) Orth, Audio 10M† Audio books English only
Libri-Light (Kahn et al., 2020) Orth,* Phon,* Audio 700M† Audio books English only
MLS (Pratap et al., 2020) Orth,* Phon,* Audio 600M† Audio books 8
Switchboard (Godfrey et al., 1992) Orth, Phon, Audio 3M† Telephone conversations English only
Fisher (Cieri et al., 2004) Orth, Audio 12M† Telephone conversations English only
Buckeye (Pitt et al., 2005) Orth, Phon, Audio 300k Spontaneous speech English only
British National Corpus (Consortium, 2007) Orth, Audio 100M Written & spontaneous speech English only
Audio BNC (Coleman et al., 2012) Orth, Phon, Audio 7M Spontaneous speech English only
VoxLingua107 (Valk and Alumäe, 2021) Audio 80M Spontaneous speech 107
Babel (Harper, 2011) Orth, Audio 60M Telephone conversations 25
CHILDES (MacWhinney and Snow, 1985) Orth 59M Child-centered speech 45
BabyLM (Choshen et al., 2024) Orth 100M Speech and text** English only

IPA CHILDES Orth, Phon 45M Child-centered speech 31

Table 2: A comparative summary of the datasets discussed in section 2.1. The datasets are described in terms of their
modality, scale, domain and languages. IPA CHILDES is the first multilingual phonemic dataset of spontaneous
speech and the first phonemic dataset of child-centered speech.
†Word counts estimated from the size in bytes or the hours of audio in the dataset, using a heuristic based on the size
of Switchboard of 5 bytes per word and 12,000 words per hour.
*Libri-Light and MLS only have orthographic and phonemic transcriptions for 10 hours of audio per language..
**BabyLM contains a mix of speech and text data from a mix of adult-directed and child-directed sources, only 29% is
child-directed speech.

using multiple Unicode characters. For instance,
the word “enjoy” can be transcribed in IPA as End-
ZOI which uses six characters but only contains four
phonemes, since dZ is a single consonant and OI
is a diphthong. By instead representing the word
as E n dZ OI, it is much easier to split the word
into individual phonemes by using whitespace as
a delimiter. Similarly, word boundaries and utter-
ance boundaries are represented using the unique
symbols WORD_BOUNDARY and UTT_BOUNDARY.

F Folding Maps

Folding maps are primarily used to make surface-
level adjustments, but they can also be used to solve
several other error types in order to create a better
alignment with a Phoible inventory. These errors
are detailed in table 3.

The many-to-one mappings and those that split
or merge tokens may alter the number of output
tokens or types. Since such a mapping will change
the information-theoretic properties of the output,

it is important that they are linguistically motivated
and carefully implemented.

In order to construct the folding map for each
backend-language pair, we run G2P+ on ortho-
graphic text for that language and compare the
output set of phonemes PO to the phonemes in
the closest inventory in Phoible PI . We call the
set of phonemes present in PO but not PI the “un-
known phonemes” UK where UK = PO \ PI and
the set of phonemes present in PI but not PO the
“unseen phonemes” US where US = PI \ PO. We
then construct the folding map as follows:

1. Find pairs (k, s) ∈ UK × US that differ ac-
cording to an accent or diacritic and obviously
represent the same phoneme (determined by
ruling out alternatives or examining where k
is produced in the output). Create a one-to-
one mapping k ∶ s for each such pair, e.g. t :
th.

2. Find pairs (k, s) ∈ UK×US that clearly repre-
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Error type Consequence Example

One-to-one: The backend uses one symbol for a
phoneme but the inventory lists a different symbol
for that phoneme.

The one-to-one mapping does not change
the number of types or tokens in the output.

phonemizer with language code sv (Swedish) out-
puts n but the matching inventory uses n”.

Many-to-one: The backend produces two different
phonemes that should only map to a single phoneme
in the inventory.

The many-to-one mapping reduces the
number of phoneme types.

phonemizer with language code pt (Portuguese) out-
puts both ô and r but the matching inventory only lists
K.

Consonant merging: The backend outputs two sym-
bols for a consonant that should be written as a single
phoneme.

The mapping merges the pair of conso-
nants, reducing the number of phoneme
tokens produced.

epitran with language code srp-Latn (Serbian)
outputs the sequence d Z but these are should be
written as a single phoneme dZ.

Vowel merging: The backend outputs a pair of vow-
els as separate phonemes but they are typically anal-
ysed as a single diphthong.

The mapping merges the pair of vowels,
reducing the number of phoneme tokens
produced.

pingyam with language code cantonese outputs the
sequence o u but these are should be treated as a
diphthong ou.

Vowel splitting: The backend outputs a diphthong
that is not listed in the inventory and should be split
into individual phonemes.

The mapping splits the pair of vowels, in-
creasing the number of phoneme tokens
produced.

phonemizer with language code en-us (North Amer-
ican English) outputs aIU as a single phoneme but
this should be aI U.

Phoneme duplication: The backend outputs dupli-
cate phonemes to represent long vowels or conso-
nants or because of an error.

The mapping replaces the pair of phonemes
with just one, reducing the number of
phoneme tokens.

phonemizer with language code et (Estonian) out-
puts d d but should output the long consonant d:.

Diacritic error: The backend incorrectly outputs the
diacritic as a separate symbol instead of attaching it
to the phoneme.

The mapping may change the number of
phoneme types or tokens.

phonemizer with language code ko (Korean) out-
puts the diacritic for aspiration as h instead of h so
sequences kh and ph are mapped to kh and ph.

Orthographic error: Due to an invalid symbol in the
orthographic text, the backend outputs an incorrect
phoneme.

The contextual mapping changes the fre-
quency statistics for the resulting phoneme,
possibly reducing the number of phoneme
types.

epitran with language code hun-Latn (Hungarian)
outputs ô when the orthographic letter ő is incorrectly
written as ô and so the phoneme is mapped to ø:.

Table 3: A list of errors that can occur during grapheme-to-phoneme conversion that can be fixed with a folding
map but that may change the information-theoretic properties of the output.

sent the same phoneme (determined as above)
but may use entirely different symbols, possi-
bly due to an alternative transcription scheme.
Create a one-to-one mapping for each pair,
e.g. a : æ.

3. For remaining items k ∈ UK , determine
whether these result from one of the other
errors in table 3. Carefully examine instances
where k is produced in the output and create
a suitable mapping k ∶ p for some p ∈ PI to
solve the error (the mapping may need to be
contextual or include several characters, e.g.
Ä : @ ô or U O : w O).

4. For remaining items s ∈ US , determine
whether these result from one of the other
errors in table 3. Carefully examine instances
where s should be produced in the output and
create a suitable mapping k ∶ s for some
k ∈ PO to solve the error (the mapping may
need to be contextual or include several char-
acters).

5. Examine the output for cases of phoneme
duplication and other errors that may not con-
tain phonemes in UK or US but could still
be solved with the phoneme map and create
suitable mappings.

The goal is for UK = {} = US or equivalently
PI = PO, i.e the set of phonemes produced by
the tool perfectly aligns with the phoneme inven-
tory in Phoible. This is not always possible, of-
ten there are a few remaining phonemes in UK

and/or US . This can occur when no obvious map-
pings could be found in steps 1–4 above. For
example, the epitran backend for German does
not produce the phoneme Z (it is “unseen”) and
none of the unknown phonemes seem to be a good
match. Another possibility is that the output set
of phonemes PO may not align well with any of
the Phoible phoneme inventories and so the clos-
est match may not include some of the unknown
phonemes k ∈ UK despite being valid phonemes
for that language and listed in other inventories.
For example, the epitran backend for German
produce the phonemes x and 5 which are not listed
in the matching inventory but are listed in other
established inventories for German. In other cases,
the unknown phonemes may come from loan words
(e.g. ts for “pizza” in Portuguese). Finally, there
are some cases where the output considerably dis-
agrees with all of the Phoible inventories but is a
valid phonemic analysis of the language according
to other sources.

See section 3.3 for an example of using G2P+
for French, using the phonemizer backend with a
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folding map to approach Phoible inventory 2269.

G Implementation Details

We conduct our experiments using the PyTorch
framework (Paszke et al., 2019) and the
Transformers library (Wolf et al., 2020).

G.1 Hardware Details
We use a server with one NVIDIA A100 80GB
PCIe GPU, 32 CPUs, and 32 GB of RAM for all
experiments. Below, we report a subset of the out-
put of the lscpu command:

Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical,

48 bits virtual
Byte Order: Little Endian
CPU(s): 32
On-line CPU(s) list: 0-31
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R)

Silver 4210R CPU
@ 2.40GHz

CPU family: 6
Model: 85
Thread(s) per core: 1
Core(s) per socket: 1
Socket(s): 8
Stepping: 7
BogoMIPS: 4800.11

G.2 Model Parameters and Training
Procedure

Parameter Value

Max Example Length 128
Learning Rate 0.001
Optimizer AdamW
Scheduler Type Linear
Max Steps 200k
Warm-up Steps 60k
Per Device Batch Size 32

Table 4: Hyperparameter settings for training the GPT-2
architecture. Where values are not reported, they may
be assumed to be default values.

We describe training parameters in table 4 and
model sizes in table 5. Following the conventions
of the Pythia suite of models (Biderman et al.,
2023), we report the number of non-embedding
parameters. Unlike their suite, where models are
named according to the number of parameters, we
name our models according to the number of non-
embedding parameters. This is because we use the
same architecture for multiple languages, each of
which has a different vocabulary size according

Model Size Layers Heads Embd Inner

400k 2 4 128 512
600k 3 4 128 512
800k 4 4 128 512
1M 6 4 128 512
5M 6 8 256 1024
19M 6 8 512 2048
25M 8 8 512 2048
85M 12 12 768 3072

Table 5: GPT-2 model sizes used in the size requirement
experiment. Where values are not reported, they may
be assumed to be default values.

to the number of phoneme types in that language,
which alters the total number of parameters. Our
1M, 19M and 85M models are equivalent to Pythia-
14M, Pythia-70M and Pythia-160M, respectively.
Our training scripts are available here.

Data is prepared into batches by first tokeniz-
ing the entire dataset, combining all tokens into
one long vector, and then splitting the vector into
chunks of 128 tokens. Only the very last example
is padded, if required. At each step during train-
ing, random chunks are selected and combined into
batches.

Checkpoints are taken every 20,000 steps dur-
ing training. At each checkpoint, the perplexity is
evaluated on the held-back evaluation set, and at
the end of training the checkpoint with the lowest
perplexity is returned as the best model. For the
smallest models, many of the best models were
from the very first checkpoint, since due to the
small training dataset and small model, the model
had already fit the data by this point.

In our size requirement experiment (see sec-
tion 5.1), we train each model in table 5 using
a dropout of 0.1, 0.3 and 0.5 on each subset size of
the EnglishNA portion of IPA CHILDES.

H Best Phoneme LM Parameters Across
Data Scales

Following the size experiment in section 5.1, we
report the model size and dropout values that
achieved the highest BabySLM scores for each
subsample size of the EnglishNA portion of IPA
CHILDES in table 6.

I Average Information Density of
Phonemized Child-Directed Speech
Increases with Age Cross-Lingually

The phonemic representation of the utterances in
our dataset open up new avenues for exploring
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Data Size BabySLM Lexical BabySLM Syntactic
(words) Model Size Dropout Score Model Size Dropout Score

80k 600k 0.3 65.8 400k 0.5 52.6
180k 800k 0.3 69.3 5M 0.5 52.3
500k 5M 0.3 72.9 5M 0.3 54.3
800k 19M 0.5 74.2 19M 0.1 54.9
1.8M 5M 0.3 77.4 19M 0.1 55.6
5M 19M 0.1 80.3 5M 0.3 58.3

Table 6: Best model sizes and dropout values for the BabySLM Lexical and Syntactic scores for each subset size of
the EnglishNA corpus of IPA CHILDES.

Figure 7: Average information of child-directed utter-
ances in CHILDES

the phonotactic properties of languages and the
information-theoretic properties of child-directed
speech.

Here, we demonstrate one information-theoretic
experiment, comparing the average information
content of child-directed utterances to the age of the
child being spoken to (this information is also avail-
able in CHILDES and is preserved in our dataset).
We group child ages in years (0-12 months, 12-24
months, etc.) and calculate the average information
content of a sample of child-directed utterances
using a unigram language model. The information
IU of each utterance consisting of a sequence of
phonemes p1, p2, . . . , pn is given by

IU = −
n

∑
i=0

log2P (pi),
where P (pi) is the probability of phoneme pi

given by its frequency in the data. We plot the
average information of utterances in each age cat-
egory for the largest 10 languages in the dataset
in fig. 7. We find that across all 10 languages the
average information of utterances increases with
the age of the child, indicating that speakers of ‘Par-
entese’ may adjust the complexity of their speech
according to the learner’s age.
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Abstract

Language models provide a key framework for
studying linguistic theories based on predic-
tion, but phonological analysis using large lan-
guage models (LLMs) is difficult; there are few
phonological benchmarks beyond English and
the standard input representation used in LLMs
(subwords of graphemes) is not suitable for an-
alyzing the representation of phonemes. In this
work, we demonstrate how word segmentation
can be used as a phonological probing task, al-
lowing us to study the representations learned
by phoneme-based language models trained
on child-directed speech across 31 languages.
Following computational models of word seg-
mentation, we present unsupervised methods
for extracting word boundaries from a trained
model using the observation that prediction-
error peaks at the start of words. We also use
linear probes to identify that these models im-
plicitly track word boundaries, even when they
do not appear in training. This cross-lingual
work corroborates statistical learning theories
of acquisition and empirically motivates new
methods for training subword tokenizers.
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1 Introduction

Small models trained on developmentally plausible
data have led to numerous advancements across
pre-training strategies, architectures and tools for
linguistic analysis (Hu et al., 2024). Yet most of
this work involves training on English orthographic
data with subword tokenization, restricting the abil-
ity to study phonological representations and word
learning. A few recent studies have demonstrated
that these so-called “BabyLMs” can be trained on
individual phonemes (Goriely et al., 2024; Bunzeck
et al., 2024), supporting phoneme-based phono-
logical analysis. However, the majority of this

Figure 1: Three strategies for unsupervised word seg-
mentation using cues extracted from an auto-regressive
language model trained to predict phonemes.

work continues to center on English, in part due
to the lack of phonological benchmarks for other
languages.

In this work, we explore the phonological capa-
bilities of phoneme-based BabyLMs across 31 lan-
guages using the word segmentation task. Follow-
ing computational models of word segmentation
studies in the acquisition literature, we investigate
models by assessing their ability to correctly place
word boundaries in a sequence of phonemes when
word boundaries are not provided during training.
Successful segmentation indicates implicit phono-
logical knowledge and when performed zero-shot
on developmentally plausible data, contributes to
statistical learning theories of language acquisition.

In some of the earliest sequential models, it was
noted that prediction-error (the degree to which
the model struggles to predict the next token) of-
ten corresponded with word boundaries (Elman,
1990). Using this observation, we identify four
word boundary cues that can be extracted from
trained models and three unsupervised strategies
for placing boundaries using these cues, as illus-
trated in fig. 1. We additionally follow the super-
vised approach of Hahn and Baroni (2019), training
linear probes on final layer embeddings to deter-
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mine if word boundaries are implicitly tracked in
order to improve phoneme prediction.

We train phoneme-based BabyLMs on the
phonemic transcriptions of child-centered speech
comprising the IPA CHILDES dataset (Goriely
and Buttery, 2025). We find that these models
implicitly encode word boundaries across all 31
languages and identify two factors that may pro-
vide useful priors depending on the language: the
length of words and the distribution of phonemes
at the end of words.

We discuss the validity of orthographic word
boundaries as gold labels and note the similari-
ties between our results and recent work that uses
byte-level prediction entropy to improve the tok-
enization step in large language model (LLM) pre-
training (Pagnoni et al., 2024). We conclude that
this framework not only supports the study of dis-
tributional phonology and acquisition, but could
also have implications for improving the efficiency
and robustness of LLMs.

Finally, we release our code and pre-trained mod-
els to facilitate future work.

2 Related Work and Motivations

Since their inception, language models have been
used to study the structures of language and explore
mechanisms that humans may use to learn them.

Early “connectionist” language models were
trained on sequences of letters or phonemes, of-
ten using developmentally plausible data in order
to explore theories of word learning and phonology
(Seidenberg and McClelland, 1989; Norris, 1994;
Coltheart et al., 2001). Modern large language
models (LLMs) are still probed for grammatical
information, but standard benchmarks are gener-
ally based on higher-order structures: syntax and
semantics rather than morphology and phonology.
This is due to LLM design being optimized for
downstream tasks, not linguistic analysis. For in-
stance, LLMs are typically trained on graphemic
text using subword tokens. While this represen-
tation is practical for large-scale training, these
tokens are not very cognitively plausible (Beinborn
and Pinter, 2023), are less effective than character-
based tokens for learning word structure (Bunzeck
and Zarrieß, 2025) and cannot be used to explore
representations of phonological units. Additionally,
modern LLMs are inappropriate for theories of ac-
quisition, due to the scales of data they are trained
on (Warstadt et al., 2023).

Here, we are interested in evaluating models
that train directly on individual phonemes, with-
out word boundaries. When trained on individual
words, phoneme LMs have been used to study the
acquisition of morphological rules (Kirov and Cot-
terell, 2018) and compare phonotactic complexity
across languages (Pimentel et al., 2020). When
trained on running text, phoneme LMs have been
used for text-to-speech (Li et al., 2023) and lyric
generation (Ding et al., 2024). When compared
to grapheme-based models on standard linguis-
tic benchmarks, phoneme models slightly under-
perform (Nguyen et al., 2022; Bunzeck et al., 2024)
but this could be attributed to pre-processing, punc-
tuation and the fact that LLM architectures and
evaluation sets have been optimized for written
text (Goriely et al., 2024). Despite the benefits of
phoneme-based training, phonological evaluation
is limited, and few phoneme LMs exist beyond En-
glish. Goriely and Buttery (2025) trained phoneme
LMs on child-directed speech across 11 languages,
but were only able to use an English benchmark for
studying how phonological and syntactic knowl-
edge scales in phoneme LMs.

In this work, we propose the word segmentation
task as a language-independent method for prob-
ing the representations learned by phoneme LMs.
Below, we summarize past approaches for inves-
tigating the phonological capabilities of language
models. We then give historical background on the
word segmentation task. Finally, we discuss past
examples of word segmentation being used as a
probing task.

2.1 Phonological Evaluation of LLMs

While many studies have explored the represen-
tations learned by phoneme LMs trained on indi-
vidual words, there are very few benchmarks for
phoneme LMs trained on running text.

One method for testing phonology is to use mini-
mal pairs of words and pseudowords as a lexical de-
cision task. One benchmark that uses this approach
is BabySLM (Lavechin et al., 2023), which pro-
vides a lexical decision metric for phoneme LMs
or speech LMs (which learn directly from audio)
using a vocabulary based on child-directed speech.
Bunzeck et al. (2025) use a similar approach in
order to compare grapheme LMs to phoneme LMs.
They also use two probing tasks to examine the
representations of sentences; age prediction and
rhyme prediction.
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PhonologyBench (Suvarna et al., 2024) is a
benchmark that uses prompts to test chat-based En-
glish LLMs. However, by using prompts, they treat
phonology as an emergent ability tested through
metalinguistic judgment, an evaluation strategy
which Hu and Levy (2023) argues is inferior to
using quantities directly derived from a model’s
representations.

These benchmarks also only test English mod-
els, in part due to the lack of phoneme LMs in
other languages, but also due to a lack of resources
for constructing phonological tasks. For example,
pseudowords are typically generated using wuggy
(Keuleers and Brysbaert, 2010), which only sup-
ports three languages for phonetic pseudoword gen-
eration. An example of language-independent eval-
uation of phoneme LMs is the phonetic feature
probe used in Goriely and Buttery (2025), which
only requires feature vectors for each IPA symbol.
The word segmentation task requires no language-
specific data, only utterances labeled with word
boundaries.

2.2 Computational Models of Segmentation

Unlike in written text, where lexical units are sepa-
rated by spaces and punctuation, spoken communi-
cation consists of continuous utterances with no
clear demarcation of words (see, e.g. Cole and
Jakimik, 1980). Somehow, without a lexicon to
consult, children are able to segment speech into
words and phrasal units by the age of six months
(Jusczyk, 1999). How children learn to segment
words and bootstrap their lexicon is known in psy-
cholinguistics as the word segmentation problem,
and statistical learning experiments have estab-
lished a wide variety of statistical cues which chil-
dren may use to segment speech (Cutler and Carter,
1987; Gleitman et al., 1988; Jusczyk et al., 1993;
Saffran et al., 1996b; Jusczyk et al., 1999a; Suomi
et al., 1997).

Particularly influential were the experiments of
Saffran et al. (1996a), who established that 8-
month-old children use distributional information
to segment speech, specifically noting that low con-
ditional probability between two adjacent sylla-
bles often indicated a word boundary. These ex-
periments inspired the development of computa-
tional models proposing cognitively plausible learn-
ing mechanisms for word segmentation, most of
which are based on the principle that units within
words are far more predictable than units across

word boundaries (Harris, 1955). Many models
draw on Brent (1999), who use unigram statis-
tics to segment speech, with later models using
higher-order n-grams (Venkataraman, 2001), in-
corporating phonological constraints (Blanchard
et al., 2010) or leveraging prior distributions over
word frequencies and phonological shapes (Gold-
water et al., 2009). Other models explicitly calcu-
late several statistical cues at each potential word
boundary and combine cues using a majority vot-
ing framework (Çöltekin and Nerbonne, 2014; Çöl-
tekin, 2017; Goriely et al., 2023). Each cue pro-
vides a signal over the utterance (as illustrated in
fig. 1) with peaks in each cue indicating a potential
boundary.

Peaks in predictability can also be observed in
neural language models. In the foundational work
of Elman (1990), a simple recurrent network (SRN)
is trained to predict letters in an unsegmented se-
quence (one of the first examples of auto-regressive
language modeling). Elman observes that the
prediction-error increases at the onset of each new
word, concluding that “there is information in the
signal that could serve as a cue to the boundaries
of linguistic units which must be learned”.

Christiansen et al. (1998) later used an SRN to
segment speech by using the probability of an ut-
terance boundary, rather than prediction-error, to
place word boundaries. This followed previous
work suggesting that children could use utterance
boundaries to bootstrap their lexicon (Aslin et al.,
1996) and is a cue used in the models of Çöltekin
and Nerbonne (2014); Goriely et al. (2023).

In this study, we combine ideas from past com-
putational models for word segmentation. Rather
than explicitly calculate n-gram statistics, our cues
are based on prediction-error and utterance bound-
ary probability extracted from LLMs trained on
the next-phoneme prediction task. As these cues
are based on the language model’s prediction of
phonemes, successful segmentation indicates that
implicit phonological knowledge of word-like units
in these models.

While our experimental setup draws on previous
computational work in word segmentation, we do
not claim that our phoneme-level language models
simulate child language acquisition (see section 6).
Rather, we use the segmentation task — with
phoneme-level input — as a diagnostic tool that al-
lows us to characterize the cross-linguistic distribu-
tional structure of speech sounds and test whether
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language models naturally cluster sequences into
units that coincide with our notion of word-hood.
Although our findings may support aspects of sta-
tistical learning theories, we acknowledge the limi-
tations of using phoneme-based representations in
appendix A.

2.3 Probing for Word Boundaries

Previous work has explored the representations of
word boundaries in LLMs. Sanabria et al. (2021)
explored methods for extracting word boundaries
from attention weights in an LSTM, finding that
attention had limited value for segmentation. Hahn
and Baroni (2019) trained character-level RNNs
and LSTMs without word boundaries, finding that
individual activations correlated with word bound-
aries and that a linear probe trained on all activa-
tions also identified boundaries. They claimed that
removing word boundaries resulted in a ‘near tab-
ula rasa’ training paradigm but trained on billions
of graphemic words Wikipedia, which is not de-
velopmentally plausible. Here, we use this probe
on the final layer of phoneme LMs trained on de-
velopmentally plausible data, a more ‘tabula rasa’
paradigm.

Other studies have verified Elman’s observations
that prediction-error corresponds with word bound-
aries. For instance, Al-Rfou et al. (2019) train a
64-layer character-level transformer and in qualita-
tive analysis note that three measures of prediction-
error sharply increase at the start of words. How-
ever, their model is trained on graphemic text from
Wikipedia without removing the word boundaries
and they do not explicitly use these measures to
evaluate word segmentation performance. Here,
we use their three measures to propose an unsuper-
vised word segmentation algorithm using phoneme
LMs trained without word boundaries.

3 Word Segmentation Task

We use the word segmentation task as a zero-shot
method for studying the phonological properties of
language models trained on phoneme sequences.
Given a list of utterances, each of which con-
sists of a non-delimited phoneme sequence, the
task is to produce a segmentation of each utter-
ance by using an unsupervised method for placing
word boundaries. For instance, given the utterance
“what do you see”, represented phonemically as
w2tdu:yu:si:, successful segmentation would re-
turn w2t du: yu: si:, as demonstrated in fig. 1.

Note that phonemes are individual tokens (e.g. u:
is a single token, not two) and, crucially, word
boundaries are removed during training, although
utterance boundaries are present.

Our method for unsupervised word segmenta-
tion is based on the observation made by Elman
(1990), that cues for word boundaries can be ex-
tracted from a sequence prediction model. Given
a language model that at each position i provides
the probability of a phoneme x given a context
x1 . . . xi−1, we extract the following four cues at
each potential boundary position:

• Entropy: The entropy (in bits) across the proba-
bilities for all items in the vocabulary.

• Loss: The cross-entropy loss (bits) calculated
as the negative log probability of the subsequent
phoneme pi.

• Rank: The rank of xi in the list of possible to-
kens at position i sorted by likelihood.

• Utterance Boundary Probability (UBP): The
probability assigned to the utterance boundary
token.

The first three cues are put forward by Al-Rfou
et al. (2019), where they are used to qualitatively
examine the error rate of their character-based lan-
guage model. Our use of these cues for word seg-
mentation is novel. The fourth cue, UBP, relates
to the model of Christiansen et al. (1998), who
found that the prediction of the utterance boundary
marker in a SRN increased at word boundaries. All
four cues are utilized in the segmentation models
of Çöltekin and Nerbonne (2014); Goriely et al.
(2023) but rather than being explicitly calculated
using n-gram frequencies, we calculate them using
the probability distribution produced by a language
model.

For each of these cues, we have three methods
for placing word boundaries. The first is to iden-
tify peaks in each cue: placing word boundaries
whenever the cue’s value is higher at position i
than at position i − 1 or i + 1 in the sequence. The
second is to learn a single threshold value, placing
word boundaries when the cue exceeds it. The third
combines both strategies, placing word boundaries
when the relative increase of the cue’s value from
position i − 1 to i exceeds a learned threshold. We
call these the peak, threshold and relative strate-
gies, respectively, as illustrated in fig. 1. We ac-
knowledge that the threshold and relative strategies

525



Suite Size Model Parameters Tokens (words) Languages

Tiny 400k 100k (~20k) 31
Small 600k 700k (~180k) 17

Medium 5M 1.8M (~500k) 11
Large 19M 18M (~5M) 1

Table 1: The model size in number of (non-embedding)
parameters and data size used for each suite of models.
Languages are sub-sampled according to the token count
for consistency, as word length varies across languages.

are not fully unsupervised, using a single learned
parameter.

Finally, in order to explore whether word bound-
ary information is present in the model’s representa-
tions, we follow Hahn and Baroni (2019) and train
a linear probe to predict word boundaries from the
final layer embeddings. We implement their ‘bal-
anced’ probe, training on embeddings taken from
an equal number of word-final and word-internal
positions, and ensure that no words in the training
set are contained in the test set.

4 Experimental Setup

We train a suite of GPT-2 models on each of the 31
languages in the IPA CHILDES corpus. As the
size of each subset varies considerably,1 for a fair
comparison we must subsample our training data
to the size of the smallest subset and use a very
small model to prevent over-fitting. In order to
explore the use of larger models and more training
data, we train four suites of models, each using a
different sample size and model size, setting model
parameters according to the scaling experiments
of Goriely and Buttery (2025). These suites are
detailed in table 1 with parameter configurations
and training parameters given in appendix B. The
smallest model (only 2 layers) is trained on 100k
tokens from all 31 languages, and the largest model
(6 layers) is trained on 18M tokens of English.

For the linear probes, we follow Hahn and Ba-
roni (2019) and report accuracy. They claim that
chance performance is 50% due to the balanced
training data, but our results suggest otherwise. In
order to evaluate our unsupervised strategies, we
follow past work (see section 2.2) compute the F1
score of boundary placement, excluding boundaries
placed at the start and end of utterances (as these
are ‘free’ from the utterance boundaries).

1The North American English section contains 10M words
but Farsi only contains 40k.

5 Results

We present the results of the word boundary probe
in fig. 2 and the maximum boundary F1 scores of
our unsupervised segmentation strategies in fig. 3.
The individual scores for each combination of lan-
guage, suite size, boundary cue and segmentation
strategy are provided in appendix C.

Overall, both the word boundary probe and the
unsupervised strategies successfully identify word
boundaries — all probes achieve accuracies sig-
nificantly higher than the untrained baseline, as
do the unsupervised strategies (see appendix D
for details on significance tests). The probe ac-
curacies show that models implicitly track word
boundaries in their contextual embeddings, sug-
gesting that they are learning phonological rules to
aid in next-phoneme prediction. The unsupervised
segmentation results indicate that word boundaries
can be extracted through prediction across many
languages, corroborating previous statistical learn-
ing results about the role of distributional cues in
language acquisition.

Below, we analyze these results in more detail.

180k words are sufficient for learning word
boundaries. We note that across all languages,
the accuracy of the word boundary probes increases
from the Tiny suite to the Small suite (where mod-
els are trained on about 180k words, as seen in
table 1), but improvements are minimal for mod-
els in the larger suites. This also occurs with the
unsupervised approach, despite receiving several
orders of magnitude more training data and train-
ing with many more parameters. We conclude that
180k words is sufficient for a model to learn word-
like units in our framework, but other models may
require more or less data.

Utterance boundaries are better predictors of
word boundaries than prediction-error. Fig-
ure 3 provides the maximum boundary F1 score
achieved for each model in each suite across the
four boundary cues and three segmentation strate-
gies, for a total of 12 combinations. In table 2
we summarize the cue and strategy combinations
that achieved these scores. The UBP cue is the
most effective in each suite, out-performing the
three cues based on prediction-error, and the rela-
tive strategy out-performs the other two strategies.
For reference, we give the best combinations for
each language in appendix C. Generally, the best
cue stays consistent across suites for a particular
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Figure 2: Accuracy scores for the word boundary probe trained on the contextual embeddings of phonemes across
models in each suite. Training and test instances are balanced and each word used for training embeddings is
removed from the test set. Probe results for each untrained model in the Tiny suite are included as a baseline.

Figure 3: Boundary placement F1 scores achieved using the unsupervised segmentation strategies across models in
each suite. For each score, we report the maximum across the 4 cues and 3 segmentation strategies. The Untrained
row give the maximum scores achieved by each model in the Tiny suite before training.

Cue & Strategy Tiny Small Medium Large

UBP (threshold) 3 2 1 -
UBP (relative) 3 6 4 -
UBP (peak) 11 4 3 1
Entropy (threshold) 1 - 1 -
Entropy (relative) - 4 2 -
Entropy (peak) - 1 - -
Loss (relative) 9 - - -
Rank (relative) 3 - - -
Rank (peak) 1 - - -

Table 2: Counts of the word boundary cues and segmen-
tation strategies that achieved the highest F1 scores in
each suite.

language (e.g. Entropy is the best cue for Italian),
but this is not always the case, and the best strategy
also varies.

The peak segmentation strategy fails to cap-
ture subsequent boundaries. We compare the
four segmentation cues using the peak strategy seg-
ment utterances from the EnglishNA section of
IPA CHILDES in fig. 4. We identify two fail-
ure modes for this strategy. The first is that since
two peaks cannot directly follow one another, sub-
sequent boundaries cannot both be successfully

placed. In this example, the h in “help” is incor-
rectly placed by all four cues. A second failure case
is that the relative size of peaks is not considered;
three cues incorrectly place a boundary within the
word “fingers” due to a very small peak at @. The
threshold and relative segmentation strategies ad-
dress both of these issues but for English the peak
strategy is still best overall.

Italian has a strong prior for learning word
boundaries. Hahn and Baroni (2019) claim that
since the probes are trained on balanced examples,
chance accuracy should be 50%. However, we find
that the probes trained on completely untrained
models (see fig. 2) achieve accuracies ranging from
51% for French up to 68% for Italian. This is be-
cause the balancing procedure does not account
for the fact that phonemes have different probabil-
ity distributions depending on their position within
words. For example, in fig. 5 we find that at the end
of Italian words, a small number of phonemes have
particularly high frequencies (the vowels 5, o, e
and i end 84% of words) whereas the distribution of
French word-final phonemes is not as skewed. This
skewed distribution provides a useful prior for the
Italian probe, which can achieve high accuracies
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Figure 4: Per-phoneme boundary probability, entropy, loss and rank assigned by the Medium English model for the
sequence of utterances “can I help you by opening your fingers”, “there”, “you got it”. Spaces indicate utterance
boundaries, vertical lines indicate gold word boundaries and phonemes are marked as green if they are correctly
identified as word boundaries using the peak strategy or if they follow an utterance boundary (red otherwise).

Figure 5: Relative frequencies of phonemes appearing
in word-final positions and all other positions for Italian
(top) and French (bottom).

by relying on these phoneme frequencies (the only
signal available when using embeddings from an
unsupervised model). To measure the relative ben-
efit of each prior, we can compute the normalized
entropy of the word-final phoneme distributions in
each language,

Hnorm =
H(P )
Hmax

=
∑n

i=1 pi logi pi

log2(n) ,

which ranges from 0 (deterministic distribution)

to 1 (uniform distribution). We find that not only
do Italian and French have the lowest and highest
normalized entropies with 0.51 and 0.84, respec-
tively, but in general, this normalized entropy has a
high negative correlation with probe accuracy for
the untrained models (Pearson ρ = −0.69). This
correlation is still present for the Tiny suite (Pear-
son ρ = −0.52) but is not significant for the Small
and Medium suites, indicating that although the
word-final phoneme distribution prior is useful, the
embeddings do still encode information about word
boundaries that the probes can detect.

Word length is a confounding factor for unsu-
pervised segmentation. Just as with the probes,
using our unsupervised methods on untrained mod-
els can reveal confounding factors, as shown in
fig. 3. The F1 scores for the untrained models
range from 20 for Quechua up to 55 for Cantonese.
For 25 of the 31 languages, this score comes from
the UBP cue with the relative strategy; since the
probability of an utterance boundary from an un-
trained model will randomly vary over the phoneme
sequence, boundary placement using the relative
strategy essentially places boundaries randomly,
which can still yield relatively high F1 scores if
words are short. This seems to be the case here;
Quechua has the highest average word length in
IPA CHILDES and Cantonese has the lowest, with
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6.2 and 2.4 phonemes per word, respectively. Gen-
erally, we find that word length has a high neg-
ative correlation with the F1 scores with Pearson
ρ = −0.94,−0.71,−0.79,−0.42 for the Untrained,
Tiny, Small and Medium suites, respectively (al-
though the final correlation is not significant).

This confounding factor means that we cannot
easily compare word segmentation scores between
languages, only scores for each language across
suite sizes. Compared to the untrained models,
the unsupervised word segmentation strategy still
achieves significantly higher F1 scores for every
language, demonstrating that distributional infor-
mation is a useful cue for bootstrapping a lexicon.

6 Discussion

In this work, we train BabyLMs on phonemic tran-
scriptions of 31 languages in IPA CHILDES and
explore the word segmentation task as a method
for probing these models for phonological knowl-
edge. Our results indicate that prediction-error and
utterance boundary probability can be used as cues
for unsupervised word segmentation. Our study
is the first to use prediction-error extracted from
LLMs for unsupervised word segmentation, extend-
ing previous work that explicitly calculated these
cues using n-gram models (Çöltekin and Nerbonne,
2014; Çöltekin, 2017; Goriely et al., 2023). We
also update previous neural models of word recog-
nition (Elman, 1990; Christiansen et al., 1998) by
using modern architectures and evaluating cross-
lingually. We now turn to the broader implications
of our findings.

Statistical learning. Viewing our models as sta-
tistical learners, we find that no single cue or strat-
egy consistently yields the best segmentation per-
formance across different model sizes and lan-
guages. This is perhaps unsurprising, as many
of the cues are highly interrelated (for example,
entropy and surprisal often correlate) and all seg-
mentation strategies are grounded in the same un-
derlying principle: identifying boundaries at points
of high prediction uncertainty. It is this general
principle, rather than any specific cue or strategy,
that proves sufficient for segmenting utterances
into word-like units. Nevertheless, most cues and
strategies perform reasonably well on their own.
Previous segmentation models have explored com-
bining multiple distributional cues through unsu-
pervised majority voting (Çöltekin, 2017; Goriely
et al., 2023), an approach that could be fruitfully

applied to the cues investigated here in future work.

Cross-lingual comparison. Comparing models
across languages is a challenge. Our study is the
first cross-lingual study using the word segmenta-
tion task to compare 31 languages, but we identify
two confounding factors that inhibit cross-lingual
comparison. Firstly, we find that the distribution
of phonemes in word-final slots provides a prior
not previously accounted for in studies that probed
contextual embeddings for word boundary informa-
tion. Secondly, we find that word length provides
a prior for the unsupervised strategies, since ran-
domly placing boundaries yields a higher F1 score
when words are shorter, which has not previously
been accounted for in cross-lingual word segmenta-
tion studies. Nevertheless, both the probes and the
unsupervised strategies achieve significant scores
for all 31 languages, indicating the importance
of the distributional cue for learning to segment
speech in any language. These findings also high-
light the importance of accounting for frequency
information as a prior when training probes or com-
paring models trained on different datasets.

Simulating acquisition. Our results focus on the
performance of our models at the end of training,
whereas past work has compared the learning dy-
namics of phoneme-based models to developmen-
tal patterns observed in human acquisition (Kirov
and Cotterell, 2018). Although our findings indi-
cate the utility of the distributional cue for iden-
tifying word-like units, we do not claim that our
models simulate language acquisition. In particu-
lar, given recent advances in models that operate
directly on raw audio, the use of phoneme-level rep-
resentations may be insufficient for capturing the
full complexity of language learning, as discussed
in appendix A.

Rather, we use this framework to investigate
the distributional patterns of phonemes across lan-
guages and whether language models trained to
predict upcoming phonemes implicitly track mean-
ingful sub-sequences that align with words. While
many computational models of word segmenta-
tion treat segmentation as a necessary precursor
for language understanding, this assumption has
been questioned. For example, Baayen et al. (2016)
show that a tri-phone model, operating on unseg-
mented utterances can make predictions consis-
tent with infants’ sensitivity to linguistic structure.
Likewise, recent phoneme-level language models
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perform well on both linguistic benchmarks and
downstream tasks without explicit segmentation
(Goriely et al., 2024) — although our results sug-
gest that some degree of implicit segmentation may
be occurring to enhance these models’ predictive
performance.

Word boundaries as gold labels. Throughout
this work, we have used word boundaries from or-
thographic text as the gold labels for evaluation, but
these boundaries may not correspond with lexical
units in speech. In early stages of acquisition, chil-
dren may treat both predictable multi-word phrases
as single lexical units (MacWhinney, 1978) and
unsupervised word segmentation strategies may be
segmenting morphemes, rather than words (Fleck,
2008). From an information-theoretic angle, word
boundaries may only exist to optimize the trade-off
between syntax and morphology across languages
(Koplenig et al., 2017; Mosteiro and Blasi, 2025)
and in general, what exactly defines a ‘word’ is
still up for debate (Dixon and Aikhenvald, 2003;
Haspelmath, 2023).

Unsupervised segmentation for tokenization.
Instead of evaluating against word boundaries,
we can treat our cues as graded measures of co-
occurrence statistics, as noted by Elman (1990).
This idea can be leveraged to improve the tokeniza-
tion step in modern LLM pre-training. Instead of
forming subwords by merging frequently occur-
ring byte pairs, token sequences that are highly
predictable can be combined. Pagnoni et al. (2024)
apply this concept to a “token-free” model, where
bytes are joined into ‘patches’ according to the
entropy of the probability distribution for each
byte (probabilities are computed using a byte-level
LLM). They use two constraints for merging bytes
which exactly correspond to our threshold and rela-
tive segmentation strategies, but only use entropy
as a cue. In our experiments, entropy was less ef-
fective than utterance boundary probability (UBP)
for unsupervised word segmentation and in an ini-
tial investigation (see appendix E) we found that
creating a subword tokenizer using both cues im-
proves the linguistic abilities of models trained on
phonemes compared to regular BPE and that the
UBP cue is more effective than entropy. This cre-
ates a parallel between word segmentation research
and practical applications for tokenization in NLP
and we encourage further work in this area.

7 Conclusion

Phoneme-level language models trained on devel-
opmentally plausible corpora are a valuable tool
for studying cross-lingual phonology and theories
of acquisition. In this study, we demonstrate how
the word segmentation task can be used to probe
these models for phonological knowledge and in-
troduce novel unsupervised methods leveraging
prediction-error and utterance boundary probability
to identify words. Our findings show that models
trained on 31 languages can all detect word bound-
aries; however, cross-linguistic comparisons are
influenced by confounding factors such as word
length and word-final phoneme distribution. These
factors, while positing challenges, also offer new
avenues for understanding the role of distributional
cues in language processing cross-lingually. Fi-
nally, we explore the connection between word
segmentation and information-driven tokenization
schemes, highlighting how this research can in-
form and improve practical applications in natural
language processing.
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A Limitations

We acknowledge the following limitations of our
work.

Limitations of phonemic data: Using phonemic
data for the word segmentation task is the typical
framework for exploring relevant acquisition the-
ories. However, the phonemic transcriptions in
IPA CHILDES do have limitations. Having been
generated using grapheme-to-phoneme (G2P) con-
version, they may have been subject to conversion
error, and the original transcriptions may also con-
tain errors. The G2P process also removes natural
variation in speech, such as accents and allophonic
variation. The symbolic nature of phonemes may
also be an unrealistic starting point for acquisi-
tion; it is unclear if infants have access to phonetic
categories at this stage of acquisition (Feldman
et al., 2021; McMurray, 2022). Researchers who
advocate for using language models as cognitive
models argue that the training data should be as de-
velopmentally plausible as possible (Dupoux, 2018;
Warstadt and Bowman, 2022), and that phonemes
may be as implausible as text for simulating early
acquisition (Lavechin et al., 2023).

From this perspective, a more appropriate frame-
work is to learn segmentation directly from raw au-
dio, as pursued in the Zero Resource Speech Chal-
lenge (Nguyen et al., 2020; Dunbar et al., 2021).
Audio-based models naturally incorporate prosodic
cues, which play a key role in language acquisi-
tion (Cutler and Carter, 1987; Jusczyk et al., 1993,
1999b). Unsupervised models have demonstrated
the ability to perform statistical learning directly
from raw speech (Lavechin et al., 2022; de Seyssel
et al., 2023), and have found that the resulting units
tend to be shorter than phonemes, consistent with
early perceptual categories (Schatz et al., 2021).
While such models show promising signs of early
phonetic learning and perform well on word-level
tasks, they currently require significantly more data
to match the performance of text-based models
(Lavechin et al., 2023). Moreover, training on
curated audiobook datasets gives these models a
considerable advantage over learning from noisier,
long-form audio that better resembles real-world
input—but ongoing work is making such realistic
simulations increasingly viable (Lavechin et al.,
2024).

Distribution of languages: When training mod-
els cross-lingually, we were limited by the scale

of each language partition of the IPA CHILDES
dataset. The dataset has a very skewed distribu-
tion: the EnglishNA section contains 18M words
but the Farsi section only contains 43k words. We
addressed this skew by training four suites of mod-
els in order to provide a cross-lingual compari-
son while also exploring how segmentation perfor-
mance increased in scale for the languages with
more data available.

Language coverage: To the best of our knowl-
edge, our work is the most cross-lingual explo-
ration word segmentation to date, but is still limited
in language coverage: the languages we compare
are predominantly European and Asian, with no
languages indigenous to the Americas, Australia
or Africa. Word segmentation of languages that
are more globally distributed should be explored in
future work.

B Implementation Details

We conduct our experiments using the PyTorch
framework (Paszke et al., 2019) and the
Transformers library (Wolf et al., 2020).

B.1 Hardware Details

We use a server with one NVIDIA A100 80GB
PCIe GPU, 32 CPUs, and 32 GB of RAM for all
experiments. Below, we report a subset of the out-
put of the lscpu command:

Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical,

48 bits virtual
Byte Order: Little Endian
CPU(s): 32
On-line CPU(s) list: 0-31
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R)

Silver 4210R CPU
@ 2.40GHz

CPU family: 6
Model: 85
Thread(s) per core: 1
Core(s) per socket: 1
Socket(s): 8
Stepping: 7
BogoMIPS: 4800.11

B.2 Model Parameters and Training
Procedure

We describe the model and training parameters in
table 3. The model parameters were chosen accord-
ing to the scaling experiments of Goriely and But-
tery (2025), who trained a suite of GPT-2 models
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Parameter Tiny Small Medium Large

Layers 2 3 6 6
Heads 4 4 8 8
Dropout 0.3 0.3 0.3 0.1
Embedding Size 128 128 256 512
Inner Size 512 512 1024 2048

Max Example Length 128
Learning Rate 0.001
Optimizer AdamW
Scheduler Type Linear
Max Steps 200k
Warm-up Steps 60k
Per Device Batch Size 32

Table 3: Hyperparameter settings for training the GPT-2
architecture in each suite. Vocabulary size varies accord-
ing to the language, but all other parameters are constant
across experiments. Where values are not reported, they
may be assumed to be default values.

for different subsets of the English section of IPA
CHILDES and used the lexical score in BabySLM
(Lavechin et al., 2023) to determine the best param-
eters. We note that since these parameters were op-
timised for English, there may be better parameters
for the other languages, but differences in perplex-
ity between languages were generally larger than
the differences in perplexity between models in the
scaling experiments we reference.

Data is prepared into batches by first tokeniz-
ing the entire dataset, combining all tokens into
one long vector, and then splitting the vector into
chunks of 128 tokens. Only the very last example
is padded, if required. At each step during train-
ing, random chunks are selected and combined into
batches.

Checkpoints are taken every 20,000 steps dur-
ing training. At each checkpoint, the perplexity is
evaluated on the held-back evaluation set, and at
the end of training the checkpoint with the lowest
perplexity is returned as the best model. For the
Tiny suite, many of the best models were from the
very first checkpoint, since due to the small training
dataset and small model, the model had already fit
the data by this point.

C Full Word Segmentation Results

All boundary placement F1 scores for the Tiny,
Small, Medium and Large suites are given in fig. 6,
fig. 7, fig. 8 and fig. 9, respectively. The best com-
bination of cue and segmentation strategy for each
language is given in table 4.

D Significance Tests

All word boundary probes for a particular language
are trained and tested on the same evaluation set.
We compute significance between two probes using
McNemar’s Test (McNemar, 1947) over the pre-
dicted word boundaries for the evaluation set, with
a significance threshold of p < 0.05. The same pro-
cedure is used when comparing the unsupervised
methods.

E Using Word Segmentation Cues for
Subword Tokenization

We briefly explore the use of our unsupervised
word boundary cues to create a subword tokenizer.
Typically, the vocabularies for these tokenizers are
generated using methods like Byte-Pair Encoding
(Sennrich et al., 2016), where the vocabulary ini-
tially consists of each individual byte, and pairs of
bytes that frequently co-occur in a training dataset
are ‘merged’ into a new token, with this process
repeated until a fixed vocabulary size is reached.
We use the same principle, but base merges on the
word boundary cues from a language model trained
on the dataset.

Our method is as follows:

1. We take a trained phoneme-level LM and com-
pute either the UBP cue or the entropy cue at
every position in the a given dataset.

2. We initialize our vocabulary V to match the
vocabulary of the phoneme LM (so it contains
every phoneme plus the utterance boundary
token).

3. For every pair of tokens xi, xj ∈ V that co-
occur in the dataset, we compute the score
for that pair by finding the average value of
the word boundary cue at the position of the
second token in the pair (e.g. for the pair D,E,
we find the value of the cue at every position
where E appears after D and return the aver-
age).

4. We find the pair with the lowest score, create a
new token Vi+Vj , add it to the vocabulary and
apply the merge to every token in the dataset.
The cue’s value at the newly merged token
is set to be the sum of the cue’s value of the
two tokens before the merging occurs. For
the entropy cue this follows from the chain
rule and for the UBP cue this results in the
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Figure 6: Boundary placement F1 scores achieved by the models in the Tiny suite for each cue and segmentation
strategy, with the highest score for each language highlighted.

Figure 7: Boundary placement F1 scores achieved by the models in the Small suite for each cue and segmentation
strategy, with the highest score for each language highlighted.
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Figure 8: Boundary placement F1 scores achieved by the models in the Medium suite for each cue and segmentation
strategy, with the highest score for each language highlighted.

Figure 9: Boundary placement F1 scores achieved by the models in the Large suite for each cue and segmentation
strategy, with the highest score for each language highlighted.
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Language 100k 700k 2M 18M

Basque Loss (relative)
Cantonese UBP (relative) UBP (threshold)
Catalan Loss (relative)
Croatian Rank (peak)
Danish UBP (peak)
Dutch UBP (peak) Entropy (relative) Entropy (relative)
EnglishNA UBP (peak) UBP (peak) UBP (peak) UBP (peak)
EnglishUK UBP (peak) UBP (peak) UBP (peak)
Estonian UBP (peak) UBP (relative) UBP (relative)
Farsi Loss (relative)
French UBP (peak) UBP (peak) UBP (peak)
German UBP (peak) Entropy (relative) Entropy (relative)
Hungarian UBP (peak)
Icelandic UBP (peak)
Indonesian Loss (relative) UBP (relative) UBP (relative)
Irish Loss (relative)
Italian Entropy (threshold) Entropy (relative)
Japanese UBP (relative) UBP (relative) UBP (relative)
Korean Rank (relative) Entropy (relative)
Mandarin UBP (threshold) UBP (relative) UBP (threshold)
Norwegian UBP (peak)
Polish Loss (relative) UBP (relative)
PortugueseBr UBP (relative)
PortuguesePt UBP (threshold) UBP (threshold)
Quechua UBP (threshold)
Romanian Loss (relative)
Serbian Rank (relative) UBP (relative) UBP (relative)
Spanish Rank (relative) Entropy (peak) Entropy (threshold)
Swedish UBP (peak) UBP (peak)
Turkish Loss (relative)
Welsh Loss (relative)

Table 4: Best combination of boundary cue and segmentation strategy for each language and each suite.

probability that either original token was an
utterance boundary.

5. We repeat (2)-(3), adding new tokens and ap-
plying merges until a fixed vocabulary size is
reached.

Conceptually, creating merges using minimum
average entropy will join highly predictable tokens
together and result in tokens with comparable infor-
mation and a uniformly dense signal that the model
can learn from. Creating merges using the mini-
mum average probability of an utterance boundary
is similar, but instead tokens are joined according
to the model’s certainty that they do not cross an
utterance boundary.

In order to test this method, we use the phoneme-
level LM trained by Goriely et al. (2024) on
a phonemized version of the 100-million word
BabyLM dataset (Choshen et al., 2024) and train
subword tokenizers using a phonemized version of
the 10-million word BabyLM dataset. We create
two tokenizers with a vocabulary size of 16k using
the UBP cue and the entropy cue. We compare
these to the BPE tokenizer trained by Goriely et al.

(2024) on the same dataset, which also has a vocab-
ulary size of 16k. Note that all three tokenizers are
trained on a dataset without word boundaries, so it
is possible for tokens to span word boundaries.

Goriely et al. (2024) trained a large model us-
ing their BPE tokenizer on the 100-million word
BabyLM dataset and evaluated their results on two
linguistic benchmarks, BLIMP (Warstadt et al.,
2020) and BabySLM (Lavechin et al., 2023). We
train and evaluate a model using the same proce-
dure but replace their tokenizer for ours.

The results of this experiment are provided in
table 5. We find that our two tokenizers improve
all three scores compared to the BPE tbut instead
okenizer with the UBP cue leading to a particu-
larly large improvement for the BabySLM syntac-
tic score.

Our method is similar to Pagnoni et al. (2024),
who calculate the entropy cue over bytes using
a small byte-level LLM, and use either a global
constraint (corresponding to our threshold segmen-
tation strategy) or a monotonic constraint (corre-
sponding to our relative segmentation strategy) in
order to group bytes into latent ‘patches’. These
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BPE 71.7 74.7 71.2
Entropy 72.7 77.6 81.3
UBP 72.6 85.6 84.4

Table 5: BLIMP and BabySLM scores achieved by
a GPT-2 model trained on the BabyLM dataset. We
compare BPE to our subword method, where merges
are assigned using either entropy or UBP as a cue. BPE
results are taken from Goriely et al. (2024).

patches are then fed into the main model, a large
transformer, and the encoded patches are ‘un-
patched’ and fed back into the byte-level LLM
to predict the next byte. Future work should inves-
tigate whether their method is improved by using
the cues explored in this study. When training with
word boundaries, the prediction of the space char-
acter (or other word boundary characters) could
also be used to group bytes.
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Abstract

Recent work has investigated whether extant
neural language models (LMs) have an inbuilt
inductive bias towards the acquisition of at-
tested typologically-frequent grammatical pat-
terns as opposed to infrequent, unattested, or
impossible patterns using artificial languages
(White and Cotterell, 2021; Kuribayashi et al.,
2024). The use of artificial languages facili-
tates isolation of specific grammatical proper-
ties from other factors such as lexical or real-
world knowledge, but also risks oversimplifica-
tion of the problem.

In this paper, we examine the use of Gener-
alized Categorial Grammars (GCGs) (Wood,
2014) as a general framework to create artificial
languages with a wider range of attested word
order patterns, including those where the sub-
ject intervenes between verb and object (VSO,
OSV) and unbounded dependencies in object
relative clauses. In our experiments, we ex-
emplify our approach by extending White and
Cotterell (2021) and report some significant
differences from existing results.

1 Introduction

Attested natural languages (NLs) often have dif-
ferent grammatical properties, such as different
word orders, so it is reasonable to ask whether neu-
ral language models (LMs) have inductive biases
towards specific properties, including different pat-
terns of word order. There are thousands of NLs
which differ along multiple semi-independent lex-
ical and grammatical dimensions, so it is difficult
to isolate specific properties to evaluate LMs’ in-
ductive biases using natural data (Mielke et al.,
2019). To remedy this, artificial languages (ALs)
have been used in order to create more controlled
experiments. Researchers have designed ALs
of varying complexities, ranging from lexically-
simple but syntactically-complex formal languages,
such as the irreducibly context-free Dyck lan-

guages or irreducibly indexed (mildly context-
sensitive) languages such as cross-serial dependen-
cies (anbn(cn)) (Hewitt et al., 2020), to putatively
impossible languages based on permutations of En-
glish examples (Kallini et al., 2024).

White and Cotterell (2021) prioritise control of
word order in their research. They generate ALs us-
ing a Probabilistic Context Free Grammar (PCFG),
and use 6 parameters to reorder words and phrases
to create 64 ALs with the same lexicon, with the
aim of determining whether LMs exhibit an induc-
tive bias towards specific orders. The same dataset
of ALs is used by Kuribayashi et al. (2024) to ex-
plore a wider range of neural LMs. However, the
use of a PCFG precludes the handling of (mildly)
context-sensitive NL constructions and does not
support a fully general account of unbounded filler-
gap dependencies (Steedman, 1996). Furthermore,
the use of a VP constituent in the base PCFG means
Verb-Subject-Object (VSO) and OSV base orders
cannot be represented in the languages created by
White and Cotterell (2021).

We create a larger set of ALs that can be used
to further test LMs for word order inductive biases
covering a wider range of word orders. Specifically,
we cover VSO and OSV orders, which represent
approximately 8% of attested NLs according to
typologists (Dryer and Haspelmath, 2013). Fur-
thermore, we develop an extensible approach to
defining ALs that supports the inclusion of mildly
context-sensitive (indexed language) constructions,
such as cross-serial dependencies, and a general ap-
proach to unbounded filler-gap dependencies. We
introduce object relative clauses as one exemplar
of an unbounded dependency into our extended
dataset of ALs. We empirically test LMs on our
artificial languages and find significant differences
in results compared to existing studies (White and
Cotterell, 2021; Kuribayashi et al., 2024), for ex-
ample, a clearer preference of Transformers for
subject-before-verb word orders. This suggests
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that using more complex, but arguably naturalistic
ALs leads to rather different conclusions about the
inductive bias of neural LMs

2 Background

2.1 Artificial languages

One line of research has used ALs to evaluate
LMs capacity to learn ALs at different levels of
the Chomsky hierarchy. Someya et al. (2024) use
ALs to determine whether LMs can learn the prop-
erties of regular, context-free, and context-sensitive
languages, such as nested and long-distance de-
pendencies, and cross-serial dependencies. They
find that LSTMs (Hochreiter and Schmidhuber,
1997), Stack-RNNs (Joulin and Mikolov, 2015),
and Transformers (Vaswani et al., 2017) struggle to
learn nested, long-distance, and cross-serial depen-
dencies, but successfully learn regular languages.
Other context-free languages, such as Dyck lan-
guages, and mildly context-sensitive languages,
like anbncn, have been used to test recurrent LM
learning and generalization to longer sequences
(Suzgun et al., 2019; Weiss et al., 2018; El-Naggar
et al.) as well as establishing a correspondence
between the different LM models and the levels
of the Chomsky hierarchy (Delétang et al., 2023).
One limitation of this research is that the ALs used
diverge from NLs by using minimal vocabulary,
many levels of nested dependencies, and so forth.

In another line of research, Chomsky et al.
(2023) argued that neural LMs can learn both possi-
ble and impossible human languages, so cannot dis-
tinguish between them. Kallini et al. (2024) empir-
ically address this claim, by developing putatively
impossible AL variants by permutation and modi-
fication of an English dataset, following Ravfogel
et al. (2019). They find that GPT-2 models struggle
to learn the impossible languages, contradicting
Chomsky’s claim. However, it is difficult to de-
termine precisely what makes the impossible ALs
harder to learn because of the multi-dimensional
nature of the altered English input.

White and Cotterell (2021) take inspiration from
Ravfogel et al. (2019) but use ALs generated by
a PCFG to examine the inductive biases of LMs
towards different word orders. They use six param-
eters (‘switches’) which invert the order of daughter
categories within distinct CF productions to deter-
mine the structure of their sentences, and evaluate
LSTM and Transformer models on the ALs gen-
erated by the PCFGs defined by each distinct set-

ting of these parameters. Extending this research,
Kuribayashi et al. (2024) evaluate the performance
of further cognitively-motivated LMs on the same
ALs. However, as a consequence of the use of
PCFGs containing a VP constituent, the ALs used
by White and Cotterell (2021) and Kuribayashi
et al. (2024) do not generate Verb-Subject-Object
(VSO) or Object-Subject-Verb (OSV) word orders.
In this paper, we generate a wider set of ALs using
GCGs and replicate the experiments of Kuribayashi
et al. (2024) on this new dataset. Our approach to
controlled AL generation is, in principle, expres-
sive enough to generate all attested NL construc-
tions documented by linguists to date, so provides
a general framework to support further AL-based
investigation of neural LMs. In this paper, we ex-
emplify this by also extending White and Cotterell
(2021) dataset to include object relative clauses.

2.2 Categorial Grammar
Classic Categorial Grammar (CG) is a formalism
which aims to represent NL syntax isomorphically
with compositional semantics (Ajdukiewicz, 1935;
Bar-Hillel, 1953). We focus on the syntactic gen-
erative properties of extensions to classical CG in
this paper. The components of a CG are a lexicon
pairing words with basic or functor categories, and
a small set of rules defining how functor categories
combine with basic categories syntactically and se-
mantically. The "slash" notation is often used to in-
dicate the direction of the arguments relative to the
resulting category. For example, X/Y is a functor
category looking for an argument basic category Y
to the right to create result category X . In classical
CG, there are just two rules forward functional ap-
plication (a) or backward functional application
(b), shown below.

(a) X/Y Y ⇒ X

(b) Y X\Y ⇒ X

In English, a transitive verb like "met" is a functor
category (S\NP )/NP . The derivation shown be-
low for "Kim met Sandy" shows both forward and
backward application.

Kim met Sandy

NP (S\NP)/NP NP
>

S\NP
<

S
Most if not all of the variation between languages is
captured by variation in the set of lexical categories
assigned to words.
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CG is equivalent to a binary-branching context-free
grammar. There are extensions and generalizations
of CG, such as Combinatory Categorial Grammar
(CCG), (Steedman, 1996), which we refer to gener-
ically as Generalized Categorial Grammars (GCGs)
(Wood, 2014). In CCG and GCGs, additional oper-
ations can be used to combine categories.

One such operation is coordination, where 2
constituents of the same category separated by con-
junction can be combined into a single constituent
of the same type,

X CONJ X ⇒ X

Coordination (Φ) is shown in the derivation below.

Kim and Sandy met Felix

NP CONJ NP (S\NP)/NP NP
<Φ>

NP
>

S\NP
<

S
Forward composition and backward composi-

tion operations are utilized in CCG, where adjacent
functions are composed. We show the rules of for-
ward (a) and backward (b) composition below.

(a) X/Y Y/Z ⇒ X/Z

(b) Y \Z X\Y ⇒ X\Z
Composition (B) is shown in the derivation below.

the elf on the shelf laughed

NP (NP\NP)/NP NP S\NP
>

NP\NP
<B

S\NP
<

S
Permutation is included in our GCG as a more

computationally tractable alternative to type raising
in CCG. We use the version from Briscoe (1997,
2000), which allows for a cyclic permutation of
the functor arguments without changing their di-
rectionality. The definition of permutation is as
follows:

(X|Y1)...|Yn ⇒ (X|Yn)|Y1
Permutation (P) is shown in the derivation below.

Kim met Sandy

NP (S\NP)/NP NP
<P>

(S/NP)\NP
<

S/NP
>

S

We develop our ALs from a GCG utilizing these
rules of application, coordination, composition,
and permutation.

3 Dataset

As a first case study employing our GCG to create
ALs, we mostly reproduce the dataset of White
and Cotterell (2021) using GCG but also add some
novel word order constructions. Specifically, we
adapt the parameters defined by White and Cot-
terell (2021) to create a GCG for each of the 64
AL configurations they define. We then created
lexicons for SOV and VOS languages to create an
additional 32 ALs for VSO and OSV languages.
We also extend each AL with object relative clauses
as an exemplar of a potentially unbounded depen-
dency (‘filler-gap’) construction.

3.1 The Lexicon

We define lexical syntactic categories, e.g., NP, first,
as listed in Table 1, and then define a set of lexicons.
We use a set of mostly English words that is of the
same size and has the same categories as White
and Cotterell (2021), including singular and plural
nouns, and past and present tense verbs, but we
ignore subject-verb number agreement, in our ini-
tial, simple setting. In addition, following White
and Cotterell (2021), we avoid lexical ambiguity,
and thus each word in the lexicon is assigned to ex-
actly one category. Following White and Cotterell
(2021), we use subject and object markers in all the
artificial languages.

3.2 Dataset Generation

Dataset generation involves several steps:

1. Determining the GCG categories: We
set a GCG lexical syntactic category (e.g.,
SCOMP\S) for each of word types (e.g., COMP),
as shown in Table 1. These GCG categories
are parameterized by seven word order param-
eters shown in Table 2. For example, if the S
parameter in Table 2 is set to 0 (head-final),
the GCG syntactic type of VI (walked) should
be S\NPSUBJ as follows:

Kim ga walked

NP NPSUBJ\NP S\NPSUBJ
<

NPSUBJ
<

S
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Category GCG syntactic type Example

NP (Noun Phrase) NP Kim ga kissed Sandy o
SUBJ (Subject Marker) NPSUBJ\NP Kim ga kissed Sandy o
OBJ (Object Marker) NPSUBJ\NP Kim ga kissed Sandy o
ADJ (Adjective) NP|NP red car ga ran
VT (Transitive Verb) (S|NPSUBJ)|NPOBJ Kim ga kissed Sandy o
VI (Intransitive Verb) S|NPSUBJ red car ga ran
VCOMP (Complementary Verb) (S|NPSUBJ)|SCOMP Kim ga believed that Sandy ga lied
COMP (Verb Complement) SCOMP|S Kim ga believed that Sandy ga lied
CONJ (Conjunction) var\var/var Kim and Sandy ga ate
PREP (Preposition) (NP|NP)|NP elf on shelf ga laughed
REL (Relativizer) (NPSUBJ|NPSUBJ)|(S|NPOBJ) man ga whom I ga met laughed

Table 1: Lexical syntactic categories used in our artificial grammar. The bars “|” in the GCG lexical categories
indicate either forward- or back-slash, which is controlled by word order parameters in Table 2. The examples in the
English grammar are also shown, where the word(s) belonging to the category being described are shown in bold.

Param. Description 0 (head-final) 1 (head-initial)

S Order of subject
and verb

VI→ S\NPSUBJ
VT→ (S\NPSUBJ)|NPOBJ
VCOMP→ (S\NPSUBJ)|SCOMP

VI→ S/NPSUBJ
VT→ (S/NPSUBJ)|NPOBJ
VCOMP→ (S/NPSUBJ)|SCOMP

VP Order of object
and verb

VT→ (S|NPSUBJ)\NPOBJ
VCOMP→ (S|NPSUBJ)\SCOMP
REL→ (NPSUBJ|NPSUBJ)|(S\NPOBJ)

VT→ (S|NPSUBJ)/NPOBJ
VCOMP→ (S|NPSUBJ)/SCOMP
REL→ (NPSUBJ|NPSUBJ)|(S/NPOBJ)

O Order of subject
and object

Restriction to make an S precede O as canon-
ical word order

Restriction to make an O precede S as canon-
ical word order

COMP Position of com-
plementizer

COMP→ SCOMP\S COMP→ SCOMP/S

PP Postposition or
preposition

PREP→ (NP\NP)/NP PREP→ (NP/NP)\NP

ADJ Order of adjec-
tive and noun

ADJ→ NP/NP ADJ→ NP\NP

REL Position of rela-
tivizer

REL→ (NPSUBJ/NPSUBJ)\(S|NPOBJ) REL→ (NPSUBJ\NPSUBJ)/(S|NPOBJ)

Table 2: Word order parameters and their associated GCG categories. “A→B” indicates A|B (A is expanded to B)
in the GCG derivation.

In contrast, if S is set to 1 (head-initial), the
possible word order will be like:

walked Kim ga

S/NPSUBJ NP NPSUBJ\NP
<

NPSUBJ
<

S

Different ALs are generated by different com-
binations of the seven word-order parameters,
which control the directionalities in the lexical
categories, resulting in different word orders
(Table 2).

2. Generating the grammars: We use the seven
binary parameters (Table 2) to generate our
96 grammars based on GCG. The parameters,
except for O, are the same as White and Cot-
terell (2021), and the O parameter biases the

S-O order (as a part of postprocessing). This
is needed because the permutation operation
for the VT will eliminate the bias regarding the
order of S and O, so to align the experimen-
tal settings with White and Cotterell (2021),
we add this parameter. The O parameter is
set to either 0 or 1 only when the subject and
object are positioned on the same side of a
(transitive) verb (SOV, OSV, VSO, VOS); oth-
erwise, the O parameter is automatically deter-
mined by the first two parameters of S and VP
(SVO and OVS). This process results in 96
grammars – less than the mathematically pos-
sible combinations of seven binary parameters
(27=128). Each language is associated with
a specific combination of parameter assign-
ments and denoted, for example, as 0001111
(S=0, VP=0, O=0, COMP=1, PP=1, ADJ=1,
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ADJ NP SUBJ REL NP SUBJ VT VI CONJ VI
NP/NP NP NPSUBJ\NP (NPSUBJ\NPSUBJ)/(S/NPOBJ) NP NPSUBJ\NP (S\NPSUBJ)/NPOBJ S\NPSUBJ X\X/X S\NPSUBJ

>
NP

< < <Φ>
NPSUBJ NPSUBJ S\NPSUBJ

<P>
(S/NPOBJ)\NPSUBJ

<
S/NPOBJ

>
NPSUBJ\NPSUBJ

<B
S\NPSUBJ

<
S

Figure 1: Example of a template and its derivation. The sentence structure is like “Tall man whom she met walked
and talked.” The word categories shown in black (e.g., SUBJ) correspond to a single lexical item (e.g., ga). The
remaining categories in blue have several candidates of lexical items, and these are uniformly sampled from the
predefined dictionary.

Algorithm 1 Template Generation Algorithm
Require: Set of word categories C, 96 parsers [p1, · · · , p96]

Initialize empty dictionary V alidTemplates
for length = 3 to 10 do

for each sequence of c ∈ Clength do ▷ Generate all
word category sequences

if c matches heuristics then
skip ▷ Exclude immediately invalid templates

end if
for each parser pi in 96 parsers do

if pi successfully parses c then
Add c to V alidTemplates[i] ▷ Select

grammatically valid templates
end if

end for
end for

end for
return V alidTemplates

REL=1).

3. Template Generation: To cover all possi-
ble valid syntactic structures in each of our 96
ALs, we first enumerate all possible sequences
of word categories (e.g., “NP ADJ VT CONJ
REL...”), up to length 10, in a brute-force
manner. We then parse these sequences with a
GCG parser with the corresponding grammar
configuration.1 Word category sequences, and
by extension, sentences created from them,
are considered grammatically valid if we ob-
tain at least one derivation resulting in S based
on the GCG parser. An example of a valid tem-
plate is shown in Figure 1. This template gen-
eration is summarized in Algorithm 1. Note
that in order to make this process more effi-
cient, we apply some heuristics (detailed in
Appendix A.1) to eliminate templates that can-
not result in a valid sentence.

1We adapt the NLTK CCGChartParser (Bird et al., 2009),
removing type raising and adding the permutation operation
as defined by Briscoe (1997, 2000), and use this to parse our
templates.

Algorithm 2 Generating Sentences from Templates
Input: Valid templates T , dictionary D mapping word
category c ∈ C to lexical items Vc = D[c]
Output: Set of grammatical sentences S
S ← ∅
for each template t ∈ T do

for 0 to 500 do
s← dummy string of length |t|
for each category ci in t = [c1, · · · , cn] do

Randomly sample wi ∼ D[ci] (uniform distri-
bution)

s[i] = wi

end for
if s /∈ S then

Add s to S
end if

end for
end for
return S

4. Sentence Generation: Once we have our tem-
plates for each of the 96 grammars, we gen-
erate 500 sentences for each template in each
grammar by random sampling of the lexicon.
We ensure that all of the generated sentences
are unique by removing duplicate sentences
when they occur. This is shown in Algorithm
2.

5. Sampling from the Datasets: Similarly to
the dataset size per grammar as White and
Cotterell (2021), we randomly sample 50K
sentences from the datasets generated for each
grammar. We also ensure that all sampled
sentences are distinct. These datasets are the
ones that we use in our experiments.

4 Experiments

4.1 Settings
We evaluate the same models as White and Cot-
terell (2021), which are the LSTM (Hochreiter and
Schmidhuber, 1997) and Transformer (Vaswani
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(c) Early-stop

Figure 2: PPLs over 96 grammars. The blue and orange box plots correspond to Transformer and LSTM, respectively.
The bars in the graph show the percentage of world languages for each grammar (blue) and word order group, e.g.,
SOV (gray).

et al., 2017) models. We evaluate perplexity (PPL)
over the sentences of the different word orders and
investigate the inductive biases that models may
have towards specific word order configurations.
For each of our 96 languages, similarly to Kurib-
ayashi et al. (2024), the 50K sentences are divided
across 5 runs. In each run, the 10K sequences
are divided into train/dev/test split with a ratio of
8:1:1. Different random seeds are used in each run.
We will basically follow the experimental settings
in White and Cotterell (2021) and Kuribayashi et al.
(2024) but also extend some analyses focusing on
learning dynamics across different training epochs,
rather than focusing only on a specific epoch (10
epochs in Kuribayashi et al. (2024)) or the end of
learning based on specific criteria (early stopping
with patience of 5 in White and Cotterell (2021)).

4.2 Results

What kind of language is harder to learn? Fol-
lowing White and Cotterell (2021); Kuribayashi
et al. (2024), we show the PPL distribution across
96 grammars in Figure 2. The distributions at 5
epochs (Figure 2a), 10 epochs (Figure 2b), and
the end of training based on early-stopping (con-
sistently longer than 10 epochs; Figure 2c) are re-
ported. Comparing our early-stopping results with
those reported in White and Cotterell (2021) with
the same stopping criteria, we replicate a high-level
trend that Transformers exhibit more PPL varia-
tions than LSTMs. At the same time, we observe
a somewhat clearer preference of Transformers to-
ward head-final word orders (grammars with many
0s) than reported in White and Cotterell (2021).

We also observe a dynamic change in word or-
der preference during training. Specifically, at the
earlier training phase (5 epochs; Figure 2a), the
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Figure 3: The PPL trajectories for different S-O-V word orders and models (measured on validation data in the
early-stopping setting). The y-axis is logarithmic. For better visibility of the preference transition, we cut off large
PPLs (y-axis) in the first few epochs and results after the 18th epoch (x-axis), but there is almost no PPL difference
across different word order conditions in these epochs.
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Figure 4: Correlations between PPL and typological
distributions, which are measured in each epoch dur-
ing training (on validation data in the early-stopping
setting). The correlations from five runs are averaged.
To highlight that a negative correlation is expected, the
y-axis is inverted.

PPL tends to be lower in head-initial languages
(grammars with many 1s) or more neutral than
in the latter phase (early-stopping), which indi-
cates that head-initial languages can be more ef-
ficiently learned at first, and then head-final lan-
guages outperforms ultimately. Comparing these
dynamic preference changes (head-initial→head-
final) with the diachronic word order changes in the
world’s languages, our results, interestingly, con-
trast with the common view that natural languages
have evolved from head-final (SOV) to more neu-
tral (SVO) or head-initial (VSO/VOS) ones (Gell-
Mann and Ruhlen, 2011). Figure 3 further summa-
rizes this dynamic change in word order preference.

Typological (mis)alignment The percentage of
world languages for each grammar and word or-

der group is superimposed on Figure 2 (blue and
gray bars). To calculate these typological distri-
butions, we basically adopted the statistics used
in Kuribayashi et al. (2024) and enriched them
by integrating the S-O order statistics from Dryer
and Haspelmath (2013) and complementizer po-
sition statistics from Skirgård et al. (2023). The
two distributions of PPLs and word order frequen-
cies are compared using Pearson correlation coeffi-
cients, following Kuribayashi et al. (2024). After
5 epochs, the correlation between PPLs and typo-
logical distributions was 0.40 (p<0.05) and 0.25
(p<0.05) for LSTM and Transformer, respectively.
The positive correlation indicates that the worse
the PPL is, the more frequent the word order is in
the world, contrasting with the common claim that
natural language is optimized toward better pre-
dictability (Gibson et al., 2019; Hahn et al., 2020).
After further training in the early-stopping setting,
the correlation scores decreased to 0.05 (not sig-
nificant) and −0.33 (p<0.05) for LSTM and Trans-
former, respectively. These dynamics are shown
in Figure 4, where the correlation between typo-
logical distributions and PPL distributions for each
training epoch is reported. There is a general trend
that stable results (i.e., not changing suddenly in
adjacent epochs) and better typological correlations
are obtained at the later phase of training, but the
typological alignment of the LSTM ultimately de-
creased and lost word order preferences as shown
in Figure 2c.

Regression analysis Figure 5 shows quantitative
statistics on which word order parameters are asso-
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Figure 5: Coefficients of word order parameters (and their interactions) estimated by the regression models to
predict PPL from word order parameters

ciated with the PPL differences. Similarly to White
and Cotterell (2021), we train a regression model
to predict PPLs from word order parameters and
their interaction terms.2 Positive coefficients for
a single word-order parameter (diagonal elements
of matrices in Figure 5) indicate that head-initial
assignment leads to worse PPLs. Positive coeffi-
cients for interaction terms indicate that the consis-
tent head-directionality between the two parame-
ters leads to worse PPLs, and these are expected
to be negative if the common patterns of consis-

2We used the statsmodels package (Seabold and Perktold,
2010). The formulation is PPL ∼ SV*OV + SV*SO + SV*COMP
+ SV*PP + SV*ADJ + SV*REL + OV*SO + OV*COMP + OV*PP
+ OV*ADJ + OV*REL + SO*COMP + SO*PP + SO*ADJ +
SO*REL + COMP*PP + COMP*ADJ + COMP*REL + PP*ADJ +
PP*REL + ADJ*REL, where each parameter is a binary factor
with dummy coding (head-final as 0 and head-initial as 1),
and X*Y represents to both main effects of X and Y and their
interaction effect of X:Y. We normalized PPL scores with
min-max scaling. In contrast to White and Cotterell (2021),
we did not include the sentence-level random effect because
our dataset does not have strict alignment between sentences
across different grammars.

tent head-directionalities in natural language are
from learners’ biases. The coefficients for inter-
action terms are frequently positive; thus Trans-
formers and LSTMs do not exhibit inductive biases
toward typologically plausible, consistent head-
directionality, which is consistent with the results
in White and Cotterell (2021).

The coefficient matrices also suggest that both
training setting differences (e.g., Figures 5a vs. 5b)
and model architecture differences (e.g., Figures 5a
vs. 5c) had an impact on the results. As for the REL
parameter, where our inclusion of object relative
clauses may impact results, we did not observe pre-
viously reported trends, for example, a relatively
large positive interaction between OV and REL re-
ported in White and Cotterell (2021) disappeared.

4.3 Discussion

There are several possible reasons that could ex-
plain the differences between our findings and
those of White and Cotterell (2021) and Kurib-
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ayashi et al. (2024). One reason may be that the
GCG-generated datasets are potentially more com-
plex than the PCFG-generated datasets used by
White and Cotterell (2021) and Kuribayashi et al.
(2024). Our datasets include some long-distance
dependencies, and in some cases, as a result of
permutation, more flexible word orders. Another
source of the difference is the addition of 32 gram-
mars (VSO and OSV), which were not included
in previous studies. At the same time, we sim-
plified the grammar to omit subject-verb number
agreement in this study; thus, the impact of adding
such strict agreement rules should be considered in
future work.

The dynamic change of word order preference
over training epochs emphasizes the effect of in-
ductive biases from training hyperparameters (e.g.,
training length) beyond model architectures. We
have reported experiments only using specific
LSTM and Transformer LMs (see Appendix B), but
as an orthogonal endeavor to refining ALs, testing
a more diverse set of models, including syntactic
LMs (Kuribayashi et al., 2024) and more compre-
hensive exploration of model configurations (e.g.,
layer numbers, parameter sizes), should yield fur-
ther insights.

5 Conclusions

In this paper, we extend the work of White and
Cotterell (2021) and create a broader set of ALs
to evaluate the inductive biases of LMs towards
different word orders. This includes the OSV and
VSO word orders that were not represented in previ-
ous works (White and Cotterell, 2021; Kuribayashi
et al., 2024) and permits the inclusion of construc-
tions, which can represent more complex or flexible
structures and orders, including longer distance de-
pendencies. We evaluate LSTM and Transformer
learning of our ALs and calculate perplexity. We
find that the models prefer head initial languages,
which contrasts with the findings obtained in pre-
vious work. This is intriguing and raises questions
that we intend to address and explore further in
future work.

We intend to investigate the effects of different
training settings and paradigms, on the learning
of different language configurations. We also in-
tend to investigate and explore how the models
generalize beyond the training data, e.g., to longer
sequences. We also intend to investigate and under-
stand model learning and behavior when exposed

to different types of long-distance dependencies,
such as nested dependencies and cross-serial depen-
dencies, as they occur in NLs. The lexicon we use
here disregards verb tenses and number agreement.
In future work, we plan to extend our lexicon to
contain more detail about the specific features of
words and, in general, inject more realistic proper-
ties into our ALs.

Limitations

In this work, we use artificial languages to evaluate
our LMs’ inductive biases. Artificial languages,
though controlled, often do not reflect many of the
properties and complexities of natural languages,
such as subject-verb agreement, lexical ambigu-
ity, and long-distance dependencies. We do not
currently distinguish between nouns of different
pluralities or verbs of different tenses in our lexi-
con. More critically, the meaning of sentences in
our artificial language is nonsensical in the sense
that terminal lexical symbols are randomly sam-
pled, while natural language will have selectional
preferences (Hopkins, 2022), or more generally,
grounding to events/propositions in the real world.
Although our study is a step in the direction of re-
solving such limitations with GCG, in the future,
we plan to extend our lexicon and grammar, includ-
ing crosslingual perspectives (Xu et al., 2025; Yang
et al., 2025), to include more detail and more re-
alistic properties of natural language step-by-step.
There is also room to explore the design of typo-
logically impossible/implausible features (Hunter,
2025). Our artificial languages go beyond context-
free, and allow us to evaluate the different types of
longer-distance dependencies, which we have not
explored in detail in this work, but plan to address
in the future.

Such future work should also include more in-
depth ablations on what kind of additional complex-
ity, compared to the existing PCFG data, affected
the results. The evaluation framework also has
room to be extended; for example, we can evalu-
ate the compositional generalization of LMs using
out-of-domain, longer sequences in evaluation. It
will also be fruitful to integrate the perspective of
interpretability research to answer how and why
LMs struggle with specific word order languages
internally.

From an engineering perspective, our dataset
generation pipeline can be improved. We first gen-
erated possible word sequences in a brute-force

548



manner, and then these were filtered with some
heuristic rules and a CCG parser. This brute-
force process will limit generation of a corpus with
longer sentence lengths, and should be replaced
with a more efficient method.

Lastly, while the training paradigms we use in
this work are very commonly used, our tested LMs
are limited with respect to, e.g., their parameter
size, types, and training procedures. In the future,
we would like to develop a better understanding of
the learning dynamics and explore LM learning of
our ALs using different learning paradigms.
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A Dataset Details

A.1 Heuristics Used in Template Generation
In order to make the template generation process
more efficient, we apply some heuristics to elim-
inate templates that would not result in valid sen-
tences in any of our artificial languages. We elimi-
nate templates with the following properties:

1. Shorter than 3 words (the shortest valid sen-
tence in all grammars is 3 words),

2. Starting with a conjunction,

3. Ending with a conjunction,

4. Containing 2 consecutive conjunctions,

5. Containing 2 consecutive prepositions,

6. Starting with subject or object markers,

7. The total number of subject and object mark-
ers is greater than the number of NPs,

8. A complementizer appears in the template
without a complement verb.

A.2 Restrictions Applied to Parser
In order to parse our templates and assign them
to the suitable languages, we adapt the NLTK
CCGChartParser (Bird et al., 2009) by disabling
type raising, which is included in Combinatory
Categorial Grammar (CCG) (Steedman, 1996) and
implement and integrate the permutation operation
as defined by Briscoe (1997, 2000), which is in-
cluded in Generalized Categorial Grammar (GCG)
(Wood, 2014). We disallow crossed composition
and restrict the composition operations in the parser
to forward and backward composition.

In the NLTK CCGChartParser, restrictions can
be applied to prevent composition, crossing, and
substitution by adding ",","." or "_", respectively,
before the argument when defining the grammar.
When we implement permutation, we introduce an
additional character "@" that prevents permutation
from being applied.

When defining our grammars, we restrict per-
mutation to categories with S functors only, i.e.,
verbs. Additionally, in order to restrict the subject
and object markers to only combine with NP, we
restrict composition when defining the NPSUBJ and
NPOBJ categories in the grammar.

Using GCGs to create our artificial languages
can allow for flexible word orders as a result of

Figure 6: Histogram showing the distribution of the
number of templates in the 96 artificial languages

permutation. This would result in OSV sentences
being present in SOV datasets, VSO sentences be-
ing present in VOS datasets and vice versa. We
inhibit permutation when parsing templates into
OSV, SOV, VOS and OVS languages, except in the
sentences where a REL category is present. This
way, there is a clearer distinction between these
languages.

A.3 Dataset Statistics
We calculate statistics for our 96 artificial lan-
guages and the templates from which we gener-
ate the sentences to provide more insight into the
properties of the datasets.

We calculate the average sequence length for the
templates and sentences used in evaluation, and
they are both approximately 9.42 words long. We
count the number of sequences in each template
and plot the distribution of them in Figure 6. The
smallest and largest template files consist of 875
and 1195 template sequences, respectively. We
calculate the average template size as 1022.75 se-
quences.

We show the number of overlapped sentences
and overlapped templates, and the percentage of
overlapped sentences and templates in Figures
7,8,9, and 10. As shown in the heatmaps, there
is some overlap in the templates for the different
languages (Figures 9 and 10). However, there is
negligible overlap between the datasets used for
experiments (Figures 7 and 8).

B Model Details

Hyperparameters of the Transformer and LSTM
LMs are shown in Table 3, which is the same
as Kuribayashi et al. (2024). Models are trained
with the Fairseq (Ott et al., 2019) toolkit.
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Fairseq
model

share-decoder-input-output-embed True
embed_dim 128
ffn_embed_dim 512
layers 2
heads 2
dropout 0.3
attention_dropout 0.1
#params. 462K

Optimizer
algorithm AdamW
learning rates 5e-4
betas (0.9, 0.98)
weight decay 0.01
clip norm 0.0

Learning rate scheduler type inverse_sqrt
warmup updates 400
warmup init learning rate 1e-7

Training batch size 512 tokens
sample-break-mode none
epochs 10

(a) Transformer.

Fairseq
model

share-decoder-input-output-embed True
embed_dim 128
hiden_size 512
layers 2
dropout 0.1
#params. 3,547K

Optimizer
algorithm AdamW
learning rates 5e-4
betas (0.9, 0.98)
weight decay 0.01
clip norm 0.0

Learning rate scheduler type inverse_sqrt
warmup updates 400
warmup init learning rate 1e-7

Training batch size 512 tokens
sample-break-mode none
epochs 10

(b) LSTM.

Table 3: Model hyperparameters
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Figure 7: Heatmap showing the number of overlapping elements in the datasets for the 96 artificial languages we
use in experiments.
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Figure 8: Heatmap showing the percentage of overlapping elements in the datasets for the 96 artificial languages we
use in experiments.
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Figure 9: Heatmap showing the number of overlapping elements in the template datasets for the 96 artificial
languages.
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Figure 10: Heatmap showing the percentage of overlapping elements in the template datasets for the 96 artificial
languages.
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Abstract

This study investigates how well discriminative
transformers generalize in Natural Language
Inference (NLI) tasks. We specifically focus on
a well-studied bias in this task: the tendency
of models to rely on superficial features and
dataset biases rather than a true understanding
of language. We argue that the performance
differences observed between training and anal-
ysis datasets do not necessarily indicate a lack
of knowledge within the model. Instead, the
gap often points to a misalignment between the
decision boundaries of the classifier head and
the representations learned by the encoder for
the analysis samples. By investigating the rep-
resentation space of NLI models across differ-
ent analysis datasets, we demonstrate that even
when the accuracy is nearly random in some
settings, still samples from opposing classes re-
main almost perfectly linearly separable in the
encoder’s representation space. This suggests
that, although the classifier head may fail on
analysis data, the encoder still generalizes and
encodes representations that allow for effective
discrimination between NLI classes.

1 Introduction

With the rise of pre-trained language models
(PLMs), NLI models have surpassed human perfor-
mance on several benchmarks. However, this raises
questions about whether these models truly under-
stand the NLI task or merely exploit shortcuts and
superficial patterns to achieve high accuracy with-
out genuine linguistic comprehension. To address
these concerns, researchers have developed analy-
sis and controlled datasets to expose the limitations
of NLI models, revealing their reliance on spurious
correlations rather than deep linguistic understand-
ing (McCoy et al., 2019; Ravichander et al., 2019;
Naik et al., 2018a). For example, models often
struggle with numerical reasoning or generalize
poorly to adversarial datasets like HANS (McCoy
et al., 2019). However, does evaluating a model

solely based on its predicted labels provide a com-
plete picture of what it has learned? If a model
performs poorly on an out-of-distribution (OOD)
dataset, can we conclusively argue that it lacks the
essential knowledge for the task? Prior work chal-
lenges these assumptions. Studies show that clas-
sifier accuracy can be highly sensitive to decision
thresholds (Yaghoobzadeh et al., 2021; Zhao et al.,
2021a), and representation-space analyses reveal
rich task-relevant structures even when classifier
predictions fail (Marks and Tegmark, 2024; Amini
and Ciaramita, 2023). This highlights that the rep-
resentation space contains a meaningful structure
beyond what accuracy captures. Similar findings
exist in computer vision, where models trained on
digit recognition datasets—even with some labels
withheld—still cluster unseen categories meaning-
fully (Dyballa et al., 2024).

This paper revisits the generalization of NLI
models on OOD datasets1: Does poor performance
on OOD datasets truly indicate a lack of knowl-
edge, or is it a symptom of misalignment between
the encoder’s representations and the classifier’s
decision boundaries? Our findings reveal that the
latter could also be true in some settings. We ana-
lyze the representation space of NLI models (Sec-
tion 3), focusing on linear separability (LS) across
OOD datasets. The encoder representations ex-
hibit strong LS for all datasets—even those where
classifier accuracy is poor. For instance, on the
Stress Test Numerical subset, the encoder represen-
tations show near-perfect LS (>96%), despite the
classifier head achieving only 42% accuracy. This
stark contrast suggests that the encoder captures
task-relevant knowledge that the classifier fails to
exploit. In Section 4, we further examine whether
LS can serve as a reliable indicator of a model’s
knowledge in NLI, exploring encoder’s behavior

1In this paper, we use OOD and analysis datasets inter-
changeably.
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across different scenarios.

2 NLI Task and Analysis Datasets

NLI task requires determining the logical relation-
ship between two input sentences: the premise and
the hypothesis. The goal is to classify whether
the hypothesis entails the premise, contradicts it,
or is neutral (neither entailing nor contradicting).
The Stanford Natural Language Inference (Bow-
man et al., 2015, SNLI) and Multi-Genre Natural
Language Inference (Williams et al., 2018, MNLI)
dataset are among the most widely used bench-
marks for this task. Although fine-tuned PLMs
achieve high performance on these benchmarks,
their performance on analysis datasets suggests
that these high results do not necessarily indicate
a deep understanding of the task. In this section,
we introduce the analysis datasets we selected for
this study. These datasets are among the most pop-
ular and relatively large evaluation benchmarks for
NLI, each designed to target different aspects of
linguistic knowledge.

2.1 SICK
Sentences Involving Compositional Knowledge
(Marelli et al., 2014, SICK) is a benchmark dataset
designed for evaluating compositional distribu-
tional semantics models. Comprising over 10,000
pairs of sentences labeled as entailment, contradic-
tion, or neutral, SICK serves as a benchmark for
evaluating models’ ability to handle compositional
meaning and inference (see examples in Appendix
Table 6).

2.2 HANS
The Heuristic Analysis for NLI Systems (McCoy
et al., 2019, HANS) is a synthetic dataset created
to expose the reliance of NLI models on the over-
lap heuristic. It features premise-hypothesis pairs
where all words in the hypothesis appear within the
premise. The dataset is divided into three heuristic
categories based on word overlap patterns: lex-
ical overlap, subsequence, and constituent. For
each category, half of the examples align with the
heuristic and are labeled as “Entailment,” while the
other half contradict the heuristic and are labeled
as “Non-Entailment.” Some examples from this
dataset are provided in Appendix Table 5. NLI
models often incorrectly classify samples that con-
tradict the heuristic as “Entailment,” demonstrating
their reliance on superficial cues rather than true
sentence understanding.

2.3 Stress Test

The Stress Test (ST) (Naik et al., 2018b) was de-
signed to uncover weaknesses in models fine-tuned
on the MNLI dataset by analyzing their perfor-
mance on challenging validation samples. It identi-
fies key linguistic phenomena, such as word over-
lap, negation, length mismatch, antonyms, spelling
errors, and numerical reasoning, that frequently
caused models to make errors.

To create subsets targeting these phenomena,
specific strategies were applied: for word over-
lap (ST-WO) and negation (ST-N), phrases like
“and true is true” and “and false is not true” were
appended to the hypotheses. For length mismatch
(ST-LM), the phrase “and true is true” was repeated
five times at the end of the premises. Numerical
reasoning (ST-NU) was crafted using premises ex-
tracted from the AQuA-RAT dataset, paired with
generated hypotheses (see examples Appendix Ta-
ble 7).2 Except for ST-LM, model performance
was significantly lower on these subsets compared
to the standard validation set, with particularly poor
accuracy on ST-N, where results approached ran-
dom chance.

3 Representation Space and Linear
Separability

Discriminative transformers are composed of two
key components: the encoder, which typically uses
a pre-trained language model, and the classifier
head, which is usually a shallow multi-layer per-
ceptron (MLP). In classification tasks, the [CLS]
token, representing the entire input sequence, is
passed to the classifier head to generate the final
prediction. Since the [CLS] token encodes all the
input information and serves as the primary fea-
ture for classification, our investigation centers on
understanding its representation within the model.

3.1 Experimental Setup

Baseline models. We explore the representation
space produced by the [CLS] token across three
models: RoBERTa (Liu et al., 2019b), BERT (De-
vlin et al., 2019), and DistilBERT (Sanh et al.,
2020). For consistency, we employ the base ver-
sions of all models. While BERT has been the focal
point in most analytical works, our study extends
this analysis to RoBERTa, known for its robust-

2We dismiss anatomy subset because it contains samples
of only one class.
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Dataset DistilBERT BERT RoBERTa

MNLI-m 82.1±0.2 84.3±0.4 87.5±0.1
MNLI-mm 82.2±0.2 84.4±0.5 87.4±0.2

SICK 54.4±0.6 56.4±0.8 57.5±0.5

HANS+ 97.3±0.8 97.7±1.2 98.7±0.1
HANS− 9.6±2.7 32.4±5.5 50.1±2.0

ST-NU 35.1±1.5 42.6±1.7 59.5±2.9
ST-LM 80.1±0.2 82.3±0.3 85.2±0.2
ST-N 54.6±1.0 56.0±0.3 57.1±0.7
ST-WO 60.1±1.3 59.0±1.3 63.0±2.7

Table 1: Accuracy of the three baseline models on NLI
analysis datasets SICK, HANS, and Stress Test (ST-X),
as well as the standard validation sets MNLI matched
(-m) and MNLI mismatched (-mm), reported for five
runs.

ness, and DistilBERT, a more lightweight alterna-
tive with less capacity to gain knowledge.3

Datasets. We fine-tune the baseline models on
the MNLI and SNLI datasets. Then, we exam-
ine the [CLS] token generated by these models for
analysis datasets mentioned in Section 2. Since
the training datasets have three labels (entailment,
contradiction, and neutral), while HANS only
has two (entailment and non-entailment), we map
both contradiction and neutral predictions to non-
entailment and leave entailment unchanged.

Fine-tuning. Each fine-tuning run consists of
training the models for 5 epochs with a learning
rate of 2 × 10−5, a batch size of 32, the AdamW
optimizer, and a learning rate decay of 0.02.

Dimension reduction. To gain a deeper under-
standing of the representation space in classifica-
tion, we visualized it by plotting the representations.
Since the embedding space is high-dimensional
(768 for base models), we applied Principal Com-
ponent Analysis (PCA) to reduce the dimension-
ality to three, allowing for a clearer visualization.
The reduced space captures approximately 77% of
the total variance, with each remaining component
contributing less than 2%, as shown in Figure 8 in
the Appendix. Therefore, this three-dimensional
representation provides a reasonable approxima-
tion of the original high-dimensional space.

3We also checked BERT-large, and the LS remains strong
despite poor accuracy.

3.2 Representation Space Visualization

The average performance of all baselines models
are reported in Table 1 for MNLI and in Table 8 (in
the Appendix) for SNLI. Consistent with the pur-
pose of the HANS dataset, the table confirms that
all models tend to classify HANS samples as en-
tailment, achieving near-perfect results on HANS+
but very poor performance on HANS−, which indi-
cates a strong reliance on overlap heuristics. For the
Stress Test dataset, the results for the ST-NU sub-
set are particularly poor, with performance close
to random chance for DistilBERT, suggesting that
these models struggle to infer anything meaningful
from mathematical or equation-based samples.

Figure 1 illustrates the representation space of
one trial from each model. Given that HANS has
the largest sample size (30000) compared to the
other datasets, we find it clearer to visualize its rep-
resentation in relation to the other analysis datasets.
As a result, all visualizations are for HANS un-
less otherwise specified. To match the number of
HANS samples, we selected 30K MNLI (train)
samples and plotted the 3D space for all 60K data
points.4

All the models show distinct regions within
the representational space, with each region cor-
responding to one class of MNLI. This structure
enables the classifier head to achieve linear separa-
tion. The representational space can be visualized
as a three-petaled flower, with each petal represent-
ing one of the three classes.

For the HANS dataset, however, the data is po-
sitioned beneath these petals. If the model’s ac-
curacy (trained on MNLI) on HANS matched its
performance on MNLI, we would expect the data
points to be similarly organized into distinct petals.
Instead, the majority of the HANS data is con-
centrated in the (blue) petal corresponding to the
entailment label, which cause the poor accuracy
presented in Table 1.

But the interesting point is that despite the clus-
tering of HANS data in the entailment region, the
orange and yellow points—representing entailment
and non-entailment labels, respectively—are still
clearly separated. This suggests that although the
HANS data is incorrectly categorized according to
the standard regions determined by the classifier
head, the opposite labels remain well-separated in

4Given the challenges of displaying 3D images, we provide
2D views from different angles to offer a clearer understanding
of the 3D representation space.
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Figure 1: 3D visualization of the [CLS] token representation space for the MNLI (in-distribution, ID) and HANS
(OOD) datasets, generated by the three baseline models. Colors indicate the gold labels. In all baseline models,
the orange and yellow points (representing the two classes of HANS) are clearly distinguishable. The 3D spaces
are visualized from two different perspectives (class 1: Entailment, class 2: Neutral, and class 3: Contradiction).
Despite encoder’s positioning of the OOD samples towards ID1, they are internally separated for their two classes
(OOD1, and OOD2,3), as particularly visible from the BERT visualization (middle, top).

the representational space. For additional clarity,
see Figure 2, which compares model outputs (la-
bels given by the classifier head) (2b) with the gold
labels (2a) of HANS.

3.3 Linear Separability (LS)

To evaluate whether the encoder’s [CLS] embed-
dings admit linear separability between classes,
we formalize the problem as follows. Let hi ∈ Rd

denote the last layer hidden state of the [CLS] to-
ken for the i-th input sample, and yi ∈ {1, . . . ,K}
its corresponding class label. We assess whether
there exists a linear decision boundary that sep-
arates classes in the embedding space. This re-
duces to solving for parameters W ∈ RK×d and
b ∈ RK such that ŷi = argmaxk (Whi + b)
achieves minimal cross-entropy loss over N sam-
ples:

L(W,b) = − 1

N

N∑

i=1

K∑

k=1

I[yi = k]

log

(
exp(Wkhi + bk)∑K
j=1 exp(Wjhi + bj)

)
, (1)

where I[·] is the indicator function. High accuracy
on held-out data implies the existence of a hyper-
plane Wkh+ bk = Wk′h+ bk′ separating classes
k and k′.

3.4 LS Results

Table 2 quantifies the degree of LS for all analysis
datasets across the baseline models fine-tuned on
MNLI and SNLI. For comparison, we also present
the results of a random experiment, where the la-
bels of the [CLS] token are shuffled randomly, and
decision boundaries are then computed (in paren-
theses). It is important to note that, in higher-
dimensional spaces and when the dataset size is
small, the accuracy of purely random data can ex-
ceed the expected accuracy (50% for two classes
and 33% for three classes).

Universal Linear Separability (LS) All mod-
els achieve high LS scores (77–98% for models
fine-tuned on MNLI), confirming that learned rep-
resentations inherently encode task-relevant fea-
tures rather than relying on superficial patterns.
This is particularly evident in HANS, where LS
exceeds 90% (e.g., BERT: 95.6%). Despite the
high degree of overlap between entailment and non-
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MNLI SNLI

Dataset DistilBERT BERT RoBERTa DistilBERT BERT RoBERTa

MNLI 80.1±0.2 (48.2) 82.4±0.1 (48.0) 86.4±0.3 (47.7) 70.3±0.2 (48.5) 74.6±0.3 (48.4) 79.4±0.3 (48.5)

SNLI 77.8±1.2 (49.0) 82.0±1.2 (48.8) 85.6±0.2 (48.1) 85.6±0.5 (48.7) 88.2±0.6 (48.9) 89.3±0.8 (49.0)

SICK 84.4±0.8 (59.7) 87.4±0.8 (60.0) 89.4±0.6 (59.5) 86.6±1.5 (59.9) 87.8±0.8 (59.9) 89.7±0.5 (59.8)

HANS 91.1±0.5 (56.1) 95.6±0.7 (56.2) 95.4±0.7 (55.9) 88.4±0.8 (56.0) 93.9±0.6 (56.3) 95.6±0.4 (56.1)

ST-LM 77.7±0.2 (48.0) 80.3±0.2 (47.7) 84.3±0.3 (47.5) 69.0±0.3 (48.6) 72.7±0.2 (48.6) 77.2±0.3 (48.1)

ST-N 77.6±0.5 (48.3) 80.1±0.3 (47.9) 84.0±0.3 (47.3) 67.5±0.3 (48.0) 71.6±0.7 (48.3) 76.1±0.5 (47.7)

ST-WO 78.4±0.1 (48.0) 80.9±0.3 (48.0) 84.8±0.3 (47.5) 69.0±0.3 (48.3) 72.8±0.5 (48.6) 77.5±0.5 (48.5)

ST-NU 96.3±0.4 (51.5) 97.4±0.6 (51.5) 98.4±0.9 (50.3) 94.2±1.3 (51.5) 96.3±0.6 (51.6) 98.4±0.2 (51.7)

Table 2: Results of linear separability for analysis datasets, based on models fine-tuned on MNLI and SNLI. The
linear separability is the accuracy of linear boundaries reported for the evaluation set of HANS, the mismatched
subsets of the ST datasets (ST-X), and MNLI, as well as the validation sets of SICK and SNLI. The numbers in
parentheses represent results from random experiments.

(a) Gold Labels

(b) Predicted Labels

Figure 2: A comparison of (a) the scatter of [CLS]
tokens for two HANS classes in space and (b) how a fine-
tuned BERT model classifies them into three classes,
with MNLI data included for reference.

entailment data points in HANS, the models do not
treat them as identical—contrary to what accuracy
in Table 1 suggests. For ST-LM, ST-N, ST-WO,
and SICK, LS is slightly less pronounced com-
pared to HANS. The most striking result comes
from ST-NU (numerical reasoning), where all base-
line models achieve over 95% LS. Although the
classifier head’s poor accuracy suggests that mod-
els struggle with numerical reasoning, the high LS
indicates that they effectively capture the necessary
information for this task.

Accuracy Paradox While classifier head accu-
racy suggests that ST-NU and HANS are difficult,
and ST-WO and ST-N are easier, the representation
space reveals the opposite. ST-WO and ST-N are
as challenging as the MNLI validation set, while
ST-NU and HANS are much easier. Notebly, ST-
WO, ST-LN, and ST-LM, which are derived from
the MNLI validation set with some modifications,
exhibit LS values similar to MNLI itself. This is an
interesting finding, as it suggests that these subsets,
being structurally similar to MNLI, pose compa-
rable challenges for the model. Since they are as
difficult as MNLI, their LS does not exceed MNLI
accuracy or reach the high LS values observed in
easier datasets like HANS, SICK, and ST-NU.

4 LS as Evidence of Encoder Knowledge

In the previous section, we observed that despite
the NLI model’s poor accuracy on the analytical
dataset, their encoder’s outputs remain nearly lin-
early separable. In this section we argue that low
accuracy does not necessarily indicate a lack of
NLI or linguistic knowledge. Instead, our results
highlight a misalignment between the encoder’s
learned representations and the classifier head’s
decision boundaries.

4.1 LS and Training Dynamics

In traditional machine learning, feature engineer-
ing was guided by domain experts who carefully
crafted features based on their deep understanding
of the task. These features were designed to effec-
tively differentiate between classes, making them
easy to separate with a simple MLP. In contrast,
transformer models delegate this responsibility to
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Model MNLI H+ H- HANS

BERTFull 84.7±0.2 97.7±1.2 32.4±5.5 65.0±2.6
BERTBalanced 81.6±0.4 79.1±3.5 48.8±3.4 63.9±1.2

Table 3: Comparison of BERT model accuracy when
fine-tuned on the full MNLI dataset (with 392K sam-
ples) and the balanced dataset (with 235K samples).
The mean accuracy is reported over 5 different seeds.

the encoder, which is tasked with generating mean-
ingful representations from raw input data. The
classifier head, on the other hand, merely maps
these representations to labels without any inher-
ent understanding of the task itself. If a model
truly grasps the underlying task, this understanding
should be reflected in the features produced by the
encoder. The fact that the encoder can generate
linearly separable features, even for datasets that
differ significantly from the training data, suggests
that it has captured genuine, task-relevant knowl-
edge. Moreover, we demonstrate that this LS is
not just an artifact of the model’s representation
but also correlates with its process of acquiring
knowledge during training. By varying the amount
of training data and limiting the number of update
steps, we explored the relationship between task
understanding (as reflected by standard validation
set accuracy) and LS of analysis dataset, with the
following findings:

• Effect of Training Data Size: Fine-tuning
BERT on varying proportions of the MNLI
dataset (from 5% to 100%) revealed a clear
trend, as the amount of training data increased,
LS improved for both the MNLI validation set
and the HANS dataset (Figure 3).

• Effect of Training Iterations: Similarly,
tracking the model’s performance on the full
dataset at 500-step intervals (Figure 9 in the
Appendix) showed that as validation accuracy
increased, the LS of analysis datasets also im-
proved.

These findings suggest that as the model refines its
understanding of the NLI task, it simultaneously
enhances its ability to produce clearer and more dis-
tinguishable representations, reinforcing the con-
nection between knowledge acquisition and LS.

4.2 Re-evaluating the Lexical Overlap Bias in
NLI Models

One common argument against NLI models achiev-
ing true linguistic mastery is their poor perfor-

Figure 3: LS of the HANS and MNLI (matched)
datasets for BERT fine-tuned on different percentages
of the MNLI dataset, along with model accuracy. The
consistent rise in LS alongside accuracy shows that im-
proved LS is not incidental but emerges as the model
learns the task more deeply with more data; reflecting
the accumulation of generalized, task-relevant knowl-
edge in the encoder.

mance on heuristic-based datasets. This is often
cited as evidence that these models rely on short-
cuts in the training data rather than acquiring gen-
uine linguistic knowledge. HANS, as a prominent
example of such datasets, is frequently used to
support this claim due to its design, which specif-
ically targets lexical overlap heuristics. Since we
argue that the model does acquire sufficient lin-
guistic knowledge, we challenge this assumption
by conducting an experiment to remove the poten-
tial influence of lexical overlap bias and examine
whether the model’s performance improves.

To explore this, we calculated the overlap per-
centage for all training examples and grouped them
into 100 bins, each representing a 1% range (e.g.,
[88, 89) overlap). Within each bin, we ensured
an equal distribution of examples across all three
labels by selecting a balanced number of samples
from the least frequent label. This process elim-
inated label imbalance across different levels of
lexical overlap, as shown in Figure 4. Using this
balanced dataset, we fine-tuned a BERT model for
five epochs, with results reported in Table 3. While
accuracy on HANS− improved, this came at the
cost of decreased accuracy on HANS+, leading to
an overall drop in HANS performance compared
to the model trained on the full MNLI dataset. Fig-
ure 5 visualizes the representation space of the
[CLS] tokens from the model trained on the bal-
anced dataset. The HANS representations remain
largely clustered together within the entailment re-
gion, rather than forming distinct groups. If the
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Figure 4: Histograms of label frequency across different overlap percentages, before and after balancing the dataset.
The original experiment used 100 bins, but for the sake of space, we present both histograms with 10 bins.

Figure 5: Visualization of the [CLS] representation
space for BERT fine-tuned on the blended MNLI dataset.
Colors indicate the gold labels.

overlap heuristic was the primary cause of the bias,
balancing the dataset should have improved the
results.

4.3 Effect of Random Seed on Performance

Prior works (McCoy et al., 2020; Zhou et al., 2020)
have reported that models trained on standard NLI
datasets exhibit consistent in-domain (ID) valida-
tion performance across different random seeds,
yet their performance on challenge datasets (OOD
cases) such as HANS fluctuates significantly. In
some subsets of HANS, accuracy varies between
0% and 66% depending on the seed. As shown in
Table 1, accuracy variance is large for HANS and
ST-NU, whereas the MNLI validation set shows al-
most no variance. Notably, these results are based
on only five random seeds; increasing the number
of trials would likely reveal even greater variance.

Based on these results, prior work suggests that
while the model consistently learns patterns that
perform well on the validation set, its generaliza-
tion to OOD or adversarial cases is unstable. How-
ever, a closer analysis points to an alternative ex-
planation. The encoder, which encodes linguistic
knowledge, exhibits a high degree of consistency
across random seeds. Its representations maintain
LS even for adversarial inputs, regardless of ini-

Trial HANS Accuracy Linear Separability

High-performing 67.6 95.5
Low-performing 52.8 95.0

Table 4: Comparison of HANS accuracy and LS for a
high-performing and a low-performing trials.

tialization. In Table 4 we compare the accuracy
and LS of two BERT models with two different ini-
tial seeds, one with very poor HANS performance
and one with very strong performance, yet their en-
coder representations remain distinguishable in the
same way. This suggests that the encoder reliably
captures task-relevant linguistic features which are
preserved across seeds.

Instead, the classifier head—a shallow, randomly
initialized MLP—is highly sensitive to weight ini-
tialization. Different random seeds result in di-
vergent decision boundaries within the encoder’s
representation space. While these boundaries work
well for ID validation data (MNLI), they fail to
generalize to OOD datasets like HANS. This is
because the classifier is primarily optimized for
MNLI’s feature distribution, which does not nec-
essarily align with the structure of adversarial or
OOD samples.

Thus, rather than instability arising from dif-
ferences in learned knowledge, it stems from the
classifier’s inconsistent mapping of the encoder’s
representations, leading to poor generalization be-
yond the training domain.

5 Discussion

We have shown that despite the poor and unstable
performance of NLI models on OOD datasets, the
encoder representations of these datasets remain
consistently and highly discriminative with respect
to class labels. This suggests that the model ac-
quires core linguistic knowledge relevant to the
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NLI task that generalizes beyond the training dis-
tribution. If this were not the case, it would be
unclear why the encoder organizes unseen data in
a way that permits linear separation. Notably, this
behavior does not universally occur for all types
of OOD data; it stands in contrast to tasks such as
paraphrase detection, where the encoder often fails
to produce similarly structured representations.

For example, QQP is a standard benchmark for
paraphrase detection, while PAWS (Zhang et al.,
2019) was introduced to challenge models that rely
on shallow heuristics such as word overlap. A
BERT model fine-tuned on QQP performs poorly
on PAWS, misclassifying most examples as para-
phrases, despite nearly half being non-paraphrases.
In this case, LS is close to random—61.4% com-
pared to 57.2%—and the PAWS examples appear
scattered within the QQP duplicate region in the
representation space, as shown in Figure 6.

As discussed in Section 4.3, one potential ex-
planation for why encoder representations can be
discriminative for OOD datasets despite low accu-
racy is that, from the perspective of the PLM, the
MNLI dataset occupies a distinct and well-defined
region in the representation space, whereas ana-
lytical datasets reside elsewhere (Figure 7). Dur-
ing fine-tuning, the encoder and classifier head are
updated jointly to establish decision boundaries.
However, this optimization process focuses only
on MNLI training examples, which are explicitly
supervised. As a result, the encoder is shaped to
structure MNLI data effectively while ignoring how
these changes affect other parts of the space. Since
OOD data are not included during training, mis-
alignments in those regions incur no penalty, lead-
ing to reduced generalization performance.

It is important to emphasize that the LS values
we report are not the result of any additional train-
ing. Rather, they reflect the decision boundaries al-
ready present in the representation space after fine-
tuning. This distinction is critical, as it rules out
multitask learning as a source of the observed pat-
terns. In multitask learning, the encoder is jointly
trained on multiple objectives, encouraging knowl-
edge sharing across tasks. In our setting, however,
the encoder is fine-tuned solely on MNLI, and the
analysis datasets are never seen during training. We
simply train a linear classifier on frozen represen-
tations using cross-entropy loss, thereby probing
the task-relevant structure already encoded by the
model.

Figure 6: Representational space of the [CLS] token
generated by the BERT model fine-tuned on the QQP
dataset.

Figure 7: Visualization of the [CLS] representation of
the MNLI training set and HANS from the perspective
of pre-trained BERT.

6 Related Work

6.1 Probing Knowledge

Probing the representation space of PLMs has been
central to understanding the knowledge they en-
code. Early studies analyzed layer-wise represen-
tations to identify where syntactic and semantic
information is captured, revealing a hierarchical or-
ganization of linguistic features (Liu et al., 2019a;
Jawahar et al., 2019; Tenney et al., 2019). Follow-
up work examined attention mechanisms, showing
that specific attention heads specialize in tasks such
as coreference and syntax (Clark et al., 2019; Voita
et al., 2019). Other approaches explored the ge-
ometry of the representation space, finding that
upper layers tend to produce more context-specific,
anisotropic embeddings (Ethayarajh, 2019). While
initial work focused on static PLMs, later studies
investigated how fine-tuning alters representations,
showing that core structural properties often remain
stable despite task-specific adaptations (Merchant
et al., 2020; Zhou and Srikumar, 2022).

6.2 Discrepancies Between Final Predictions
and Model Representations

Yaghoobzadeh et al. (2021) showed that adjust-
ing the classification threshold for HANS data can
significantly impact BERT’s accuracy. This phe-
nomenon is not exclusive to encoder models, gen-
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erative models also exhibit discrepancies between
what they learn and what their final outputs imply.
Zhao et al. (2021b) highlighted a similar issue in
generative models, showing that the structure of
a prompt can influence the threshold required for
classification tasks such as sentiment analysis. By
calibrating models with a null input, they achieved
more reliable results. Amini and Ciaramita (2023)
argue that the sensitivity of encoder-decoder model
to instruction phrasing stems from the constraint
that models must verbalize their predictions. By
bypassing the decoding step and directly probing
the encoder representations, they achieved more
stable and improved results. Marks and Tegmark
(2024). Furthermore, Marks and Tegmark (2024)
found that LLMs encode the truth or falsehood of
factual statements in a linear manner, despite their
tendency to generate incorrect information.

6.3 Instability in OOD Generalization

Models that appear stable and performant on stan-
dard ID test sets often exhibit significant variability
when evaluated on OOD datasets (McCoy et al.,
2020; Zhou et al., 2020), raising concerns about
their generalization capabilities. Similarly, Zhao
et al. (2021b) demonstrated that even powerful gen-
erative models like GPT-3 suffer from notable in-
stability in few-shot learning scenarios. This in-
stability has been attributed to several factors, in-
cluding catastrophic forgetting during fine-tuning
(Lee et al., 2020), limited size and diversity of
available datasets (Dodge et al., 2020), and opti-
mization difficulties such as vanishing gradients
in deeper architectures (Mosbach et al., 2021). In
addition to these architectural and data-related chal-
lenges, the structure of prompts and the order in
which training examples are presented have also
been shown to significantly influence performance
in few-shot settings (Zhao et al., 2021b), highlight-
ing the sensitivity of model behavior to seemingly
minor variations in input.

7 Conclusion

In this paper, we revisited the performance of fine-
tuned PLMs on challenging NLI datasets. Our
experiments revealed that, despite poor classifier
accuracy, the encoder’s representation space of-
ten demonstrates clear linear separability between
classes. This suggests that the models possess rel-
evant task-specific knowledge, but there is a mis-
alignment between the classifier’s decision bound-

aries and the knowledge embedded in the encoder’s
representations. While we proposed some hypothe-
ses for this misalignment, further in-depth investi-
gation is required, which we leave for future work.

8 Limitations

One limitation of this study is that the analysis
was limited to three pretrained language mod-
els—DistilBERT, BERT, and RoBERTa. While
these models are widely used, they do not repre-
sent the full spectrum of transformer-based mod-
els, and therefore, the findings may not be fully
generalizable to newer or more specialized mod-
els. Additionally, this study does not provide a
direct solution for improving classification accu-
racy. Although we demonstrate the existence of lin-
ear boundaries, determining the optimal decision
boundaries for each dataset still requires access to
the full dataset, which may not be efficient or fea-
sible for OOD datasets. Furthermore, relying on
linear separability as a proxy for model knowledge
may oversimplify the complexity of how models
truly understand the nuances of inference. There
is room for further exploration using alternative
probing techniques to assess and deepen our under-
standing of model comprehension.
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Figure 9: Linear separability (LS) of the analysis datasets along with the accuracy of BERT reported at every 500
optimization steps.

Heuristic Hypothesis Premise Label

Lexical Overlap
The banker near the judge saw the actor. The banker saw the actor. E
The lawyer was advised by the actor. The actor advised the lawyer. E

Subsequence

The doctors visited the lawyer. The lawyer visited the doctors. N
The judge by the actor stopped the banker. The banker stopped the actor. N
The artist and the student called the judge. The student called the judge. E
Angry tourists helped the lawyer. Tourists helped the lawyer. E
The judges heard the actors resigned. The judges heard the actors. N
The senator near the lawyer danced. The lawyer danced. N

Constituent

Before the actor slept, the senator ran. The actor slept. E
The lawyer knew that the judges shouted. The judges shouted. E
If the actor slept, the judge saw the artist. The actor slept. N
The lawyers resigned, or the artist slept. The artist slept. N

Table 5: Examples from the HANS dataset, where E represents the entailment label and N represents the non-
entailment label.
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Premise Hypothesis Label
A woman is painting a man’s face Makeup is being put on the man

by the woman
Entailment

The women are singing and danc-
ing

The persons are singing and danc-
ing

Entailment

A group of kids is playing in a
yard and an old man is standing
in the background

A group of boys in a yard is play-
ing and a man is standing in the
background

Neutral

A black, red, white and pink
dress is being worn by a woman

A woman is taking off a cloak,
which is very large, and revealing
extravagant apparel

Neutral

Two large persons are sitting on a
park bench and they have a bottle
of soda between them

Two large persons are standing
near a park bench and they have
nothing between them

Contradiction

A man is playing a violin There is no man playing a violin Contradiction

Table 6: Examples from the SICK dataset.

Subset Premise Hypothesis Label

LM
The chain wielder smiled at her and true
is true and true is true and true is true
and true is true and true is true.

The chain wielder was friends with the
woman.

Neutral

The two programs are currently housed
in buildings about a block apart and true
is true and true is true and true is true
and true is true and true is true

The two buildings are on opposite sides
of the city.

Contradiction

oh i did and i laughed real hard when
i took it in for the two thousand mile
checkup and uh and true is true and true
is true and true is true and true is true
and true is true

I had a good laugh when I took it for the
two thousand mile checkup.

Entailment

WO
I can’t do any jumping up and down be-
cause it makes it hurt.

The pain is too much after jumping, it
needs surgery and true is true.

Neutral

Both professors soon realized that creat-
ing a new language was not an easy task.

Professors realized it was easy to make
a new language and true is true.

Contradiction

Well that’s good that’s great. That is not bad, it is actually pretty good
and true is true.

Entailment

N
They did this to us. The practical joke was played on them

and false is not true.
Neutral

No, Dave Hanson, you were too impor-
tant to us for that.

Yes, Dave Man, you are not important
to us and false is not true.

Contradiction

Then he sobered. He had sobered up and false is not true. Entailment

NU
Jose joined him less than 6 months later,
investing Rs.

Jose joined him 2 months later, investing
Rs.

Neutral

On every Adidas shoe the restaurant
makes a profit of $ 10 while on every
Puma shoe it makes a profit of $ 8

On every Adidas shoe the restaurant
makes a profit of $ more than 10 while
on every Puma shoe it makes a profit of
$ 8

Contradiction

A train leaves Delhi at 9 a.m. A train leaves Delhi at more than 3 a.m. Entailment

Table 7: Examples from different subsets of the stress test dataset.
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Dataset DistilBERT BERT RoBERTa

SNLI 89.3±0.1 90.9±0.3 91.8±0.1

SICK 53.5±1.0 56.6±0.3 57.1±0.4

HAN 52.9±0.6 58.9±1.1 66.6±1.0

ST-NU 35.3±0.7 37.8±4.6 38.1±2.1
ST-LM 65.1±0.7 70.6±0.6 76.6±0.2
ST-N 45.8±2.3 51.4±2.5 63.4±1.6
ST-WO 56.7±3.6 59.2±2.6 69.8±1.8

Table 8: Accuracy of SNLI fine-tuned models on NLI
analysis datasets, SICK, HANS, and Stress Test (ST)
alongside the standard validation sets of SNLI.
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Abstract

This paper presents a novel task, detecting
Spatial Relation Markers (SRMs, like English
in the bag), across languages, alongside a
model for this task, RUIMTE . Using a mas-
sively parallel corpus of Bible translations, the
model is evaluated against existing and baseline
models on the basis of a novel evaluation set.
The model presents high quality SRM extrac-
tion, and an accurate identification of situations
where language have zero-marked SRMs.

1 Introduction

Massively parallel corpora, where the same source
text has been translated into many different lan-
guages, form a unique opportunity to compare
how the languages of the world express the same
message, allowing for both fine-grained (utterance
level) and large-scale comparisons (Mayer and
Cysouw, 2012; Wälchli, 2014; Levshina, 2016; As-
gari and Schütze, 2017; Liu et al., 2023). While
earlier studies (e.g. Wälchli, 2014) applied manual
extraction procedures, automated methods for re-
trieving the translation-equivalent markers across
languages, at the level of parallel utterance tokens,
are necessary to study crosslinguistic variation at
scale. Substantial progress has been made in de-
veloping such methods (e.g. Wälchli, 2014; Asgari
and Schütze, 2017; Liu et al., 2023; Beekhuizen
et al., 2024). However, to date, none of these meth-
ods has undergone substantial intrinsic evaluation.

Here, I consider the typologically interesting and
well-studied domain of spatial relation marking (i.e.
prepositions like in the cup and onto the moun-
tain in English and their translation equivalents;
Levinson et al., 2003; Feist, 2008; Viechnicki et al.,
2024). This domain can be expected to be chal-
lenging for automated extraction procedures due to
the great degree of crosslinguistic variation in how
languages divide up spatial relational meanings
(Levinson et al., 2003; Feist, 2008; Viechnicki et al.,

doculect example SRM(s)

English On their heads were something . . . on
Indonesian . . . dan di atas kepala mereka . . . di, atas
Quechua . . . kansapa umankunapi kurimanta -pi
German . . . und auf ihren köpfen wie . . . auf
Kilivila . . . leikatububulaisi paila kabilia

opwanetasi eisikamsi . . .
o-

Mixtec . . . saá ná’a ña kánóo sini ñii ñii . . . ∅
Nigerian
Pidgin

. . . war wetin dey dia head bi like gold ∅

Table 1: Equivalent Spatial Relation Markers in Rev. 7:9

2024), the diversity of means of expression (as af-
fixes or adpositions), and the extensive presence of
zero marking of the spatial relation – marginally
present in English expressions like I’m _ home and
I’m going _ home, but prevalent in many other lan-
guages (Stolz et al., 2014; Haspelmath, 2019).

This paper presents five contributions, with Ma-
terials at https://github.com/dnrb/ruimte.

• a dataset for evaluating the extraction of spa-
tial relation markers (SRMs) in 18 languages;

• the formulation of two novel tasks for assess-
ing the extraction quality (1) of the SRMs
themselves, and (2) of the identification of the
absence of any SRM;

• a novel model, RUIMTE , for extracting SRMs
from a massively parallel corpus;

• an evaluation of it against comparable models;
• a brief demonstration of downstream insight

of these results for the typology of spatial re-
lation marking.

2 Data and seed set

For typological coverage, I used a corpus of Bible
translations. As the Parallel Bible Corpus (Mayer
and Cysouw, 2014) is not publicly available, Bible
translations were downloaded through the API
of faithcomesbyhearing.com (N=1, 367), and
from aboriginalbibles.org.au (N=14). Given
translation availability, only New Testament data
were used. Each unique translation (identified with
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the language’s 3-character ISO-939 code followed
by a 3-character identifier) was considered one
‘doculect’.1 Under copyright agreements, trans-
lations cannot be reproduced but the materials con-
tain a list of doculects.

To the best of my knowledge, there are no lan-
guages with spatial relation markers (SRMs) that
are not polysemous with non-spatial (temporal and
metaphorical/abstract) meanings, and as such no
surface form of a (set of) markers can be used as a
‘clean’ seed to the extraction procedure. Instead, I
manually created a seed set of exclusively spatial
usages of English prepositions, as follows:

All prepositional phrases with nominal comple-
ments and one of the prepositions in, on, at, to, onto,
into, from, out, off were identified in the World
English Bible (ENGWEB) translation using the
SpaCy dependency parser (Honnibal and Montani,
2017), and subsequently manually annotated for
whether (1) whether they involved a spatial relation,
(2) the dynamicity of the relation: static (‘Loca-
tive’), dynamic towards a Ground (‘Allative’) or
dynamic away from a ground (‘Ablative’; using
the terminology of Haspelmath, 2019), (3) the spa-
tial relation, using the finest-grained categories of
Levinson et al. (2003), and (4) the ground type,
or the semantic class of the ground, using distinc-
tions made in Haspelmath (2019) alongside sev-
eral bottom-up identified categories. Examples are
given in Appendix A.

3 Extraction methods

The task at hand is to extract, given a spatial re-
lation marker (SRM) token in one doculect, all
and only the translation equivalent SRMs in other
doculects. Table 1 exemplifies the challenge: some
languages have adpositions (English, German),
others affixal SRMs (Kilivila, Quechua). Many
doculects use one SRM, but Indonesian uses two,
and Mixtec and Nigerian Pidgin use no explicit
SRM in this example. In this section, I define
several components of a model addressing this ex-
traction problem. The critical components of the
pipeline are: (1) morphological segmentation, (2)
an alignment/extraction heuristic, and (3) the post-
processing of allomorphy and complex SRMs.

1I adapt the term ‘doculect’ (Cysouw and Good, 2013)
in order to reflect the fact that one ‘language’ (i.e., an ISO-
939 code) may have multiple translations, each representing
one ‘documented variety’, and to stress the somewhat tenuous
relation between the documentation of a language through a
text with potentially culturally foreign content that is often
created (to a large extent) by a non-native speaker.

3.1 Morphological segmentation
Given that SRMs can be affixal, the extraction pro-
cedure should be able to consider affixes as candi-
date extractions. Some extraction procedures (e.g.
Liu et al., 2023) already consider sub-word strings,
but others might require the space-bound words
to be further segmented into the stems and bound
morphemes prior to extraction. Given that for the
majority of the 1,381 doculects in the corpus no off-
the-shelf morphological segmentation procedure is
available, we will have to rely on unsupervised seg-
mentation procedures that can be trained on the
parallel Bible corpus itself. Here, I consider three
unsupervised models.

MORFESSOR (Virpioja et al., 2013), first, can be
trained on wordlists derived from the Bible corpus.
Word frequencies affect the likelihood of segmen-
tation in the model – I used the three suggested
transformations of word frequency: the type model
assigns a frequency of 1 to each type, log-token
the log-transformed token frequency and token the
token frequency. As MORFESSOR does not provide
a distinction between stems and affixes, FLATCAT

(Grönroos et al., 2014) was applied to determine
the morphological status of the segments.

Second, MORSEL (Lignos, 2010) is a precision-
oriented unsupervised procedure based on a best-
first heuristic processing the space of possible mor-
phological transforms. Like MORFESSOR, it relies
on word lists and frequencies. I used the two pre-
defined parameter settings Aggressive and Con-
servative, differing only in their approach to the
detection of stem compounds.

Finally, VORM (Beekhuizen, 2025), is an unsu-
pervised model that leverages translations to con-
strain the search space of morphological transforms
and follows the intuition of MORSEL in making a
best-first pass through the hypothesized morpholog-
ical transforms. The minimal number of instances
of a morphological transform was set to N = 10.

3.2 Extraction procedures
The second component of the pipeline is the ex-
traction procedure itself. I will introduce the novel
model, after which I present comparison models.

3.2.1 The RUIMTE extraction model
The Ground nouns and their translations form rel-
atively easily identified anchors of spatial relation
marking, with SRMs expected to occur close by.
The RUIMTE (‘Retrieval of Unique Instances of
Markers of Topological Essence’) model leverages
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Figure 1: Exemplification of the RUIMTE model: main steps and postprocessing

this fact to identify SRMs, using intuitions similar
to the noun-case extraction model of Weissweiler
et al. (2022), namely that the overrepresentation
inside the window of a target noun is a cue for ex-
traction. Figure 1 provides an example, to follow
along with the description of the steps below.

In Step 1 of the procedure, translations of all
Ground nouns are extracted with an adapted for-
ward pass of the Liu et al. (2023) method. This
procedure determines, for a seed noun type n, the
character string smax in the target language with the
strongest statistical association to n, based on their
co-occurrence frequency across Bible verses. More
precisely, let U be the set of verses containing n, V
the set of verses whose translation contains a char-
acter string s, and A the set of all utterances for
which translations are available. The association
between n and s is then defined as the negative log
probability of a one-tailed Fisher Exact test over
the following 2× 2 table:

|U ∧ V | |U \ V |
|V \ U | |A \ (U ∨ V )|

Two constraints on smax eliminate spurious asso-
ciations, namely that |U ∧ V | > 0.10 × |U | and
|U ∧ V | > 0.10 × |V |. Next, any space-bound
strings in the translations of utterances in U con-
taining smax are extracted as translation-equivalent
ground noun tokens (TEGNs) of n, and the utter-
ances in |U ∧ V | are removed from U , A, and V .
The procedure is repeated until no more valid can-
didates can be extracted.

Step 2, next, determines SRM candidates. For

each seed item, all target language words in a 3-
word window around each of the item’s TEGN
tokens (including the TEGN token) are retrieved
and morphologically segmented using a morpho-
logical model. Each segment, combined with its
position (whether it occurs before the TEGN, after
it, or is part of it), forms a candidate SRM. Keeping
track of the position is informative for the model,
as adpositions typically occur on one side of the
head noun. Given the extracted candidate SRMs,
we then calculate the association of each candidate
SRM type to the full set or a subset of the seed
items. The association score of a candidate SRM
is defined as the maximal negative log probability
of a one-tailed Fisher Exact test applied to the fol-
lowing 2× 2 table, maximizing Ux from the set of
U and any Uf used:

|Ux ∧ C| |N ∧ C|
|Ux ∧D| |N ∧D|

where:
• U is the set of verses containing a seed item,
• Uf is the set of verses containing seed items

with a specific annotated feature value or com-
bination of feature-values,

• N is the set of verses containing any seed
noun in a non-prepositional (and therefore al-
most certainly non-locative) context,

• C is the set of verses whose translation con-
tains the candidate SRM,

• D is the set of verses whose translation does
not contain the candidate SRM.

We can define Uf variably. First, the spatial re-
lation itself (‘rel’) can be used, defining three
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nodes in the taxonomy of Levinson et al. (2003):
Ucontainment (annotated instances of ‘IN-2D’ and
‘IN-3D’), Usupport (instances of ‘ON’, ‘ON-TOP’,
and ‘ATTACHMENT’), and Ucolocation (instances
of ‘COLOCATION’). This allows us to find associ-
ations with SRMs that are exclusively used for one
but not the other relation, effectively introducing
a prior from the typological literature on what lan-
guages frequently do. Another such prior comes
from the dynamicity (‘dtc’) of the spatial relation,
defining three seed sets Ustatic, Ugoal, and Usource (cf.
Haspelmath, 2019). A third option is to combine
them (‘dtc&rel’). Fourth, we can use no Ufs (‘all’),
and finally, we can use the English prepositions
(‘prp’) as an easily accessible seed type. We call
these five settings the seed types.

SRMs with scores < − log 1e−6 are omitted.
The resulting set still contains spurious markers. To
remove these, Step 3 implements a backtranslation
filter that eliminates candidate target SRMs that
are more strongly associated with frequently co-
occurring context words of the seed SRMs (e.g. go
in the context of go into their house). To do so,
the forward-pass of the Liu et al. model is ap-
plied to each seed language word occurring with
a frequency ≥ 10 in a 3-word window around any
seed item noun (excluding the prepositions). This
procedure gives us a statistical association score
between the seed language word and the candidate
SRMs that is comparable to the association score
retrieved in the previous step. If a context word has
a stronger association with a candidate SRM than
the seed, that candidate SRM is deleted, as it is
more likely a translation of a frequent context word
of a spatial relation marker in the seed language.

Finally, Step 4 takes one seed item token at a
time, and finds the TEGN token whose candidate
SRMs are most strongly associated with the Uf of
the seed item. This ensures the correct extraction
for sentences with multiple seed SRMs (e.g. the
second sentence in Figure 1. A further constraint
imposed is that only the highest-ranked affix is
extracted, as spatial relations are not expected to be
expressed through multiple affixes the same noun.

3.2.2 CONCEPTUALIZER

A first comparable model is the procedure of Liu
et al. (2023), CONCEPTUALIZER, which, given a
set of seed utterances in which a particular marker
occurs, iteratively finds the substrings in a target
language that are statistically most strongly asso-
ciated with that set of seed utterances. As with

the RUIMTE model, we can use various Uf inde-
pendently as seeds and concatenate the results. In
particular, I define the same five seed types as for
RUIMTE. I further used the parameter settings cited
in the paper (‘original’) as well as a loosening of
some of the stricter settings (‘bare’: allowing up to
30 iterations, and only considering target-language
substrings occurring in ≥ 0.1% of Uf).

3.2.3 Alignment-based baseline models
Both the CONCEPTUALIZER and RUIMTE models
are designed for the task of marker extraction in
massively parallel corpora. As informed baseline
models, I consider models based on unsupervised
word alignment. Word alignment models allow
us to create a bigraph between the seed language
utterances and the (morphologically segmented)
target language utterances. Extracting all aligned
segments (words and affixes) to the seed SRMs
can be expected to perform reasonably well as an
extraction procedure. I apply two alignment proce-
dures, EFLOMAL (Östling and Tiedemann, 2016)
and FASTALIGN (Dyer et al., 2013), to the bitext be-
tween the seed language and each target language,
retrieving any alignment to seed item prepositions.

As in previous models, we can vary the seed
types, replacing the tokens of seed item preposi-
tions in the bitext by a string identifying their fea-
ture representation. Similarly, we vary the mor-
phological segmentation procedure used to pre-
process the target language. Two final model pa-
rameters for aligner-based extraction procedures
are symmetrization heuristics and a frequency fil-
ter (as proposed by Liu et al., 2023). Alongside
the seed-to-target alignments (‘fwd’) and target-
to-seed alignments (‘rev’), we can consider their
union and intersection, as well as three sym-
metrization heuristics that add and remove further
alignments, namely ‘diag-grow’, ‘diag-grow-final’
and ‘diag-grow-final-and’ (implemented in atools
Dyer et al., 2013). For the frequency filter, I con-
sider no filter (‘> 0’), an expected frequency of an
extracted SRM given a seed type of more than 1
(‘> 1’), or of more than 1% of the size of the set
of seed types it was aligned to (‘> 1%’).

3.3 Postprocessing

Two postprocessing steps were found to improve
extraction quality on the development doculects
(see Section 4.2). They are modular steps that
can be applied to the outputs of any of the extrac-
tion procedures defined above. First, many lan-
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guages display allopmorphy, either in their adpo-
sitions (German in, im, ins, ‘in’) or affixes (Turk-
ish -da/de/ta/te ‘locative case’). I define a simple
heuristic to automatically merge these:

An agenda is initialized with all extracted SRMs
per doculect ranked by frequency. Starting with
the most frequent SRM, all remaining SRMs
in the agenda are considered in turn, merging
them with the current target SRM and its already-
merged other SRMs if either they are formally near-
identical (i.e., string identity after stripping diacrit-
ics and ignoring whether it is an affix vs. an adpo-
sition and preposition vs. postposition) or if they
are formally possible allomorphs (i.e., having a low
string edit distance) and have functionally similar
patterns. Such allomorphs are then removed from
the ranked list and the next marker is considered.
At the end, all instances of allomorphs are replaced
by the most frequent allomorph.

For the ‘functional similarity’ constraint, we
consider per SRM (or cluster of already merged
SRMs) which feature-value combination (from
among whichever features are used in the seed type
for that language; defaulting to both dynamicity
and relation if the seed type was ‘all’ or ‘prp’)
leads to the greatest Information Gain in classi-
fying whether a seed item is translated with that
SRM (of: one SRM from that SRM cluster) or not.
If the values overlap for at least one feature (i.e.,
one SRM has ‘containment’ and ‘colocation’ for
‘relation’ as its feature-values optimally discrimi-
nating it, while the other has just ‘containment’)
and do not contrast (i.e., the same two SRMs do not
have non-overlapping values for the other feature,
‘dynamicity’ – e.g., ‘static’ for the first SRM and
‘goal’ for the latter), the two SRMs are considered
functionally similar.

Second, complex adpositions were identified
through layering: first, the set of SRMs that (1)
minimally overlap with each other w.r.t. the TEGNs
they occur with and (2) jointly cover the largest
set of tokens is extracted as Layer-1, after which
the procedure is repeated on the remaining mark-
ers to find a possible Layer-2. Affixal markers
are eliminated from the second layer, as (obliga-
tory) locative case marking should take place on the
layer with the greatest coverage, and any affixes
found on Layer 2 in the development doculects
were false positives. Any unlayered markers are
eliminated. Note that this step may aid in quality
but was initially conceived for analytic purposes.
Many languages have complex adpositions (e.g.,

Indonesian in Table 1) and being able to determine
which adpositions form a paradigm is an important
step in characterizing SRM systems.

4 Experimental set-up

4.1 Preprocessing

As not all Bibles come in Roman script, and as
several morphological models depend on ASCII
encoding, I transduced the text with an isomorphic
mapping into ASCII for each doculect that at least
partially used Roman characters (e.g. Vietnamese),
and applied unidecode to transliterate the unicode
characters into ASCII in other cases (e.g. Persian).

4.2 Annotation

Comparably little structured evaluation on the ex-
traction of translation equivalent linguistic ele-
ments from massively parallel corpora has been
carried out. Here, I introduce a dataset of 180 seed
items for which I manually extracted (using gram-
mars and dictionaries, alongside Google Translate)
the SRMs in each of a typologically diverse set of
18 doculects. The 180 items were randomly sam-
pled by selecting 60 seed items of each dynamicity
value (locative, allative, ablative).

Zero coding was decided as follows: if no trans-
lation of the ground noun was found, the category
‘noTEGN’ was assigned. If the verbal predicate
entailed the relation between the subject and the
ground noun (like enter or ascend), or if some
other non-spatial relation (commitatives like with
and partitives like of are common) was marked,
‘nonSpatialRelation’ was assigned. Finally, if there
was a translation-equivalent ground noun and a spa-
tial relation to some verbal or nominal head that
did not entail the relation, but no overt marking,
‘trueZero’ was assigned.

Table 5 in Appendix C presents the doculects,
along with their top-3 markers and their proportion
of zeros (both nonSpatialRelation and trueZero). I
split the data into a development set of the top 9
doculects and a test set of the last 9, further only
considering the even items of the development set
when developing and tuning the various models.

4.3 Evaluation procedure

With these data, we can define an evaluation proce-
dure. I formulate the extraction of SRMs and the
correct identification of zero marking as separate
tasks, given the interest in the typological literature
in zero marking.
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SRM extraction is a multi-class classification
problem (multiple SRNs may simultaneously ap-
ply). Moreover, the strings in the extracted data
may not match the annotated data exactly, due to
variation in extraction and allomorphy. The pro-
posed metric of evaluation is able to work with
these constraints. First, given a set of extracted
SRMs E = {e1, e2, . . . , en} and a set of annotated
SRMs A = {a1, a2, . . . , an}, each defining a set of
seed tokens U(x), where x is an SRM from A or E,
we find the injective mapping M between A and
E that maximizes the model’s extraction accuracy,
by maximizing the sum of the cardinalities of the
intersections of U(ai) and U(M(ai)), or: the seed
items in which ai occurs resp. the seed items in
which some ej in E, mapped to by M(ai) occurs.

With this mapping, we can determine, for each ai
mapping to some ej = M(ai), how many True Pos-
itives (|U(ai) ∩ U(ej)|), False Positives (|U(ej) \
U(ai)|) and False Negatives (|U(ai) \ U(ej)|) it
has, and sum those across all ai → M(ai) map-
pings. The token count of any unmapped annotated
items is added to the False Negatives, while un-
mapped extracted items are added to the False Pos-
itives. This allows us to define, for each doculect,
the Precision, Recall, and F1-score.

For the evaluation of zero extraction Precision,
Recall, and F1-score were defined as usual for a
binary categorization problem. Predictions of ze-
ros were compared against annotated cases, and
counted as correct if ‘trueZero’ or ‘nonSpatialRela-
tion’ was annotated; instances of ‘noTEGN’ were
left out of consideration.

5 Results

5.1 Basic pipelines

I first consider the basic pipelines without postpro-
cessing. The two alignment procedures have fur-
ther hyperparameters like alignment symmetriza-
tion and frequency filtering that multiply out to a
large number (1730) of unique models. The Mate-
rials present a full spreadsheet with performance
per doculect for each unique model.

To narrow down the scope I consider only model
components that perform substantially better than
others; Figure 4 in Appendix D presents these
comparisons. I only keep models that use (if ap-
plicable) the ‘forward’ symmetrization heuristic
(which provides a good balance on the perfor-
mance on both SRM extraction and zero extrac-
tion), and a frequency filter of ≥ 1%, which per-

forms better than the other two filters on both tasks.
The MORFESSOR ‘token’ and ‘logtoken’ mod-
els never performed as well as the ‘type’ model
and were eliminated from consideration; similarly,
using no morphological segmentation performed
consistently worse. Between the alignment mod-
els, FASTALIGN had consistently lower scores than
EFLOMAL and was not considered further.

Table 2 presents the performance of the remain-
ing models on both SRM extraction (left columns)
and zero extraction (right columns), reporting F1-
scores averaged over 18 doculects or over the 5
‘zero doculects’, i.e., doculects with ≥ 10% ze-
ros. The best-performing model on both tasks
(F1 = 66.4 for SRM extraction and F1 = 77.4
for zero extraction) is the RUIMTE model us-
ing MORSEL-Aggressive. Notably, the optimal
seed differs between the tasks: English preposi-
tions (‘prp’) are optimal for SRM extraction while
seeding on any spatial relation (‘all’) works better
for zero extraction, due to the lower numbers of
spurious markers extracted in the latter case. The
VORM morphological model performs almost as
well on both tasks at F1 = 66.1 resp. F1 = 77.2.

5.2 Effects of post-processing
Next, I assess the effect of the postprocessing
steps, merging and layering, on the extraction of
SRMs and zeros, considering the same models as
in the last section. Table 3 presents the results, nar-
rowing the seed types down to only ‘all’ and ‘prp’
as no optimal performances were found among the
semantic-feature based seed types. We find that in
particular the merging step has a positive influence
on extraction. The best SRM-extraction models,
i.e., VORM with a ‘dtc’ or ‘prp’ seed and using
the merging step (F1 = 70.6 resp. F1 = 69.6),
outperform the counterpart without merging (the
‘basic’ model) (F1 = 66.1 resp. F1 = 64.2) by
> 4 points. Layering, however, does not appear to
have the anticipated impact, with scores similar or
somewhat lower than the basic model.

5.3 Performance analysis
What models by and large get right, are the most
frequent SRMs per doculect, for which the sta-
tistical association is unequivocally strong. The
remainder of this section considers where varia-
tion between the models was found and what the
varying performance could be attributed to.

Looking at individual doculects might lead to
insight in the variation. Figure 2 presents the Preci-
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SRM extraction Zero extraction
aligner; morphological model all dtc dtc&rel prp rel all dtc dtc&rel prp rel

CONCEPTUALIZER-bare 17.4 17.2 16.5 16.7 17.3 33.3 36.7 33.7 30.7 32.1
CONCEPTUALIZER-original 10.2 14.9 17.3 17.6 12.8 44.2 43.2 44.2 41.3 44.7
EFLOMAL; MORFESSOR-type 48.7 53.6 53.5 49.7 49.3 48.9 48.0 48.9 56.4 48.2
EFLOMAL; MORSEL-agg. 50.9 55.5 55.3 52.2 51.6 45.5 49.3 46.3 51.8 49.7
EFLOMAL; MORSEL-con. 50.1 54.3 54.4 50.4 50.6 45.1 47.6 49.7 53.6 47.4
EFLOMAL; VORM 49.7 55.2 55.4 50.5 51.5 42.3 44.4 45.2 50.7 45.8
RUIMTE; MORFESSOR-type 57.8 60.2 60.1 60.6 59.1 76.9 69.4 67.4 70.4 74.4
RUIMTE; MORSEL-agg. 62.5 65.0 65.2 66.4 62.6 77.4 65.0 64.1 66.8 72.4
RUIMTE; MORSEL-con. 61.6 64.1 64.4 65.8 63.0 76.3 65.6 64.9 67.6 72.5
RUIMTE; VORM 63.6 64.2 64.3 66.1 63.2 77.2 67.2 65.2 70.4 73.0

Table 2: Basic models. Mean F1-scores for SRM extraction (left) and zero extraction (right) per combination of
aligner and morphological model (rows) and seed type (columns) for the best-performing model components.

SRM extraction Zero extraction
morphological model; seed basic merge layer both basic merge layer both

MORFESSOR-type; seed = all 57.8 58.4 55.1 55.7 76.9 76.9 75.8 75.8
MORFESSOR-type; seed = prp 60.6 61.5 59.8 59.3 70.4 70.4 71.1 70.1
MORSEL-aggressive; seed = all 62.5 64.7 58.4 60.6 77.4 77.4 75.9 75.9
MORSEL-aggressive; seed = prp 66.4 69.4 65.2 65.5 66.8 66.8 70.3 66.6
MORSEL-conservative; seed = all 61.6 63.9 58.1 60.4 76.3 76.3 75.7 75.7
MORSEL-conservative; seed = prp 65.8 68.1 64.9 64.9 67.6 67.6 71.0 67.4
VORM; seed = all 63.6 65.0 61.8 63.3 77.2 77.2 76.6 76.6
VORM; seed = prp 66.1 70.6 65.7 69.0 70.4 70.4 71.0 71.6

Table 3: Postprocessing steps. Mean F1-scores for SRM extraction (left) and zero extraction (right) per combination
of aligner and morphological model (rows) and combination of postprocessing steps (columns).

sion and Recall, per doculect, for a select number
of models: the best-performing CONCEPTUALIZER,
FASTALIGN, and EFLOMAL models (prior to post-
processing) alongside the top-7 best performing
RUIMTE models. For SRM extraction, the results
for 5 illustrative doculects are shown in Figure 2
with the full set in Figure 5 in Appendix E. There
are two types of doculects: those where the two
alignment-based models (EFLOMAL and FASTAL-
IGN) perform more like RUIMTE and those where
they perform more like CONCEPTUALIZER.

This distinction seems to line up with the mor-
phological expression of the SRMs: affixal SRMs,
like in Cree and Kilivila, are not as well extracted
with alignment-based extraction as with RUIMTE,
while for doculects with primarily adpositional
SRMs, like German and Vietnamese, the differ-
ences between alignment-based models and the
RUIMTE are smaller. It is possible that he increased
space of possible alignments for morphologically

complex doculects decreases the alignment qual-
ity. This explanation is supported by the finding
that the most-frequent SRM in Cree, -ihk, is in
alignment-based models aligned to the seed item in
only a subset of the cases for which it is annotated,
suppressing the Recall. Moreover, 20+ unique non-
spatial markers are (spuriously) aligned to the seed
items, suppressing the Precision.

For zero marking (See Figure 6 in App. E),
we notice, first, that the RUIMTE-based mod-
els achieve near-perfect Recall across the 5 zero-
marking doculects, meaning that most annotated
zeros are indeed extracted as zeros. The challenge,
however, is Precision, i.e. : the model detecting a
zero SRM where there is a non-zero SRM present.
This effect is particularly strong for Bambara and
Somali. For both, Precision is poor due to the
high degree of polysemy of the SRMs (as noun
classifiers in the former and highly general verbal
particles in the latter) which leads to their spurious
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Figure 2: Precision and Recall on SRM extraction in 9 select models (see text) for 5 doculects.

presence in windows where the true marker is zero.

Considering doculects that show low perfor-
mance, we find Mixtec, Finnish, and Malayalam,
all with F1 < 70 in any model. Weak performance
for Mixtec can be attributed to the doculect’s fre-
quent use of zero marking. Lower-frequency prepo-
sitions (sata, nandoso, ndaa) did not reach the sig-
nificance threshold of Step 2, and several spurious
markers were instead extracted where zeros should
be predicted. For Finnish and Malayalam, the mor-
phological complexity might lead to an increased
number of missegmented cases. Further, allomor-
phy (for Finnish) presents challenges. While allo-
morphy is generally resolved correctly, some non-
allomorphs that are formally and functionally sim-
ilar, such as -lla/-llä ‘adessive’ and -lle ‘allative’,
tend to be merged erroneously. For Malayalam,
a final challenge consists of its stacked locative
cases, which the model cannot extract given the
‘one-affix’ constraint.

When considering the doculects for which the
model performs well (F1 > 80 on the top model,
i.e., German, Indonesian, Dutch, Vietnamese, and
Bambara), we find that the most common SRMs
are correctly identified in a vast majority of cases
(often well over 90%). Three sources of remaining
errors can be identified. First, there are instances
where the target-language SRM falls outside of the
3-word window around the Translation-Equivalent
Seed Noun and is thus not extracted. Second, the
3-word window may contain spurious, but more
strongly associated markers (e.g., when two adposi-
tional phrases occur closeby to each other). Third,
we find cases of failure to extract SRMs when they
are either of low frequency or have a more frequent
homonymous meaning (e.g. Dutch te ‘to, at’ is also

the infinitive marker, like English to). In both sce-
narios, the association score with the seed SRMs
in Step 2 is suppressed, leading to non-extraction.

5.4 Discussion

Reasonably good performance was achieved on
the tasks of extracting SRMs and zeros across 18
doculects. Components of the best performing
models included the novel RUIMTE extraction pro-
cedure and Precision-oriented morphological seg-
mentation (MORSEL and the novel VORM model),
as well as using the English prepositions as seed
items. The latter was particularly surprising, given
that most doculects do not encode spatial relations
exactly along the lines of English SRMs.

Among the extraction procedures, CONCEPTU-
ALIZER performed remarkably poorly, in contrast
with its compelling performance as reported by Liu
et al. (2023), as well as its reliability as a compo-
nent in the RUIMTE model for extracting TEGNs.
This suggests that CONCEPTUALIZER works well
for lexical, open-class items, but not so much for
more closed-class ones. Nonetheless, its compo-
nents and general intuitions (regarding the use of
co-occurrence statistics) translate well to this do-
main and form the engine of the RUIMTE model.
Furthermore, Precision-oriented segmentation pro-
cedures such as MORSEL and VORM outperform
the MORFESSOR baseline substantially for SRM
extraction, suggesting that oversegmentation is
harmful to the extraction, likely because it intro-
duces noisy candidate SRMs.

6 Applications

To study potential use for typology, I briefly ex-
plore the best-performing model, RUIMTE +VORM,
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Figure 3: Exponential PCA space

with ‘prp’ seed type and merging. Markers in 1161
doculects were extracted. All seed items for which
> 66.7% of doculects had no TEGN and subse-
quently all doculects for which > 66.7% of the
seed items had no TEGN were eliminated, leaving
a 1966× 912 (tokens by doculects) table.

These extractions allow us to compare doculects
on a token level. The main axes of crosslinguistic
variation can be visualized with dimensionality re-
duction, here using Exponential PCA (Collins et al.,
2001). Figure 3 shows 6 different colour codings of
the same space, with each marker representing one
seed item: the top three panels display the three an-
notated features – dynamicity, relation, and ground
type. Notably, the values of all three features are
reasonably separable in the 2-dimensional PCA
space, meaning that there are doculects drawing
SRM contrasts on the basis of each of these fea-
tures. Indeed, we see some of those patterns play
out in the two doculects in the right panels: while
the English prepositions align with all three fea-
tures, Indonesian neatly splits out dynamicity and
relation between two sets (layers) of prepositions.

Second, these data allow us to assess typologi-
cal claims concerning zero marking. Based on a
survey of grammars, Stolz et al. (2014) conclude
that zero marking is crosslinguistically more com-
mon in locatives and allatives than in ablatives.
My data supports this finding. Per item, the pro-
portion of zero-extractions across doculects was
calculated. Aggregating those proportions, we find
that the median locative item has zero marking
in 34% (IQR: 27-41%) of doculects, the median

allative in 31% (IQR: 25-38%), and the median ab-
lative in 25% (IQR: 20-34%), with the differences
between each pair significant (independent t-test;
P < .001). It further suggests that locatives may
be more commonly zero-marked than the allatives.
While a fuller considerations is beyond the scope
of this paper, these initial explorations demonstrate
the potential for the typology of SRMs.

7 Conclusion

This paper introduces a novel procedure for ex-
tracting Spatial Relation Markers (SRMs) across
languages, and evaluates it on a novel dataset. The
method is shown to have good potential for answer-
ing typological questions about SRMs.

Interestingly, the components of my pipeline, as
well as others working on similar tasks (Wälchli,
2014; Weissweiler et al., 2022; Liu et al., 2023), are
mostly using simple statistics and best-first extrac-
tion procedures, rather than more complex Machine
Learning techniques (e.g., seq2seq models) using
global optimization. This is not a coincidence: the
size of the data, combined with the nature of the
hypothesis space (the number of SRMs – 0, 1, or
2; affixes vs. adpositions), makes extraction proce-
dures that explicitly constrain the search space on
priorly motivated grounds more successful.

This paper intends to contribute to the growing
body of work on computational semantic typology
with this paper, by introducing more rigorous eval-
uation techniques, providing annotated seed and
evaluation data, and suggesting novel ways that
spatial relation markers can be extracted.
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Limitations

The work presented here was run on a corpus of
Bible translations. The question whether the same
methodology works well on other parallel corpora
in different genres and dealing with different topics
has not been positively answered, thus potentially
constituting a limitation of the method that future
work would have to settle.
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A Seed annotation methods

The basis of the features used throughout this pa-
per involves a token-level manual annotation of
several dimensions of the spatial relation. While
manual (semantic) annotation is admittedly prone
to challengeable decisions and reductively frames
the spatial relations as mutually exclusive, the pa-
per hopefully demonstrates that it leads to useful
and interpretable results.

The decision procedure for annotating the ‘Rela-
tion’ feature was based on the finest-grained foci
(relations) of Levinson et al. (2003):

• ‘Containment’ was assigned if the boundaries
of the Ground could be conceptualized as re-
stricting the movement of the Figure in two
(‘In-2D’; in a boat, into his ear) or three (‘In-
3D’; in his house, into the prison) dimensions;

• ‘Support’ was assigned if either the Figure
was higher than the Ground and not touching
it (‘Over’; [hang s/t] above his head) or if the
surface contact with the Ground could be con-
ceptualized as restricting the movement of the
Figure – specifically, the relation annotated
was:

– ‘On-Top’ if contact was with the high-
est vertical region of the Ground (on the
housetop, [put s/t] on his head);

– ‘Attachment’ if contact was with a non-
vertical region of the Ground and was
maintained mechanically through an ex-
ternal source of Force (pinning, adhesion,
clamping; on the stake; [sew s/t] on a gar-
ment),

– ‘On’ otherwise (on the throne, [pour s/t]
on his face)

• ‘Under’ was annotated if English uses under
(under his feet, [take s/o] under her wing). Be-
ing a very small category, Under was excluded
from the analysis.

• the residual category ‘At3’ breaks down into
‘Near’ relations, assigned whenever English
uses near, at or by and no Figure-Ground con-
tact is entailed (e.g., at the fire, [let s/o down]
by the wall), and ‘Colocation’ otherwise. No-
tably, Colocation contains all cases where the
Ground denotes a ‘place’, a (named) symbol-
ically defined region (at Jerusalem, in Judea,

to the country, in heaven), following Van Lan-
gendonck (2007) in considering their dimen-
sionalities as irrelevant.

For the Dynamicity feature, ‘Allative’ was as-
signed whenever a (caused) motion predicate was
present with a preposition marking a Ground that
is a Goal of the motion predicate (to, in(to), on(to)),
‘Ablative’ if there was a (caused) motion predicate
with a Source-marking preposition (from, out of,
off of ), and ‘Static’ otherwise.

For types of Grounds (‘Ground Type’), I de-
veloped a categorization schema based on obser-
vations that Places, Named Places, and Human
Grounds are occasionally marked differently from
regular object-denoting Grounds (Stolz et al., 2017;
Haspelmath, 2019), the existence of aquatic adposi-
tions (Levinson et al., 2003), and that the mobility
of the Ground affects the lexical choice (Klavan
et al., 2015), as well as a bottom-up categorization
of prevalent ground types in the corpus, distinguish-
ing:

• Places: a region that is not easily conceptu-
alized as a ‘thing’ but rather as inherently
a ‘location’ of something else (to the place,
in heaven), including Toponyms (in Asia,
to Mount Sinai) and Buildings – an Object
with unique relevance to humans as shelter,
dwelling (in the temple, into the house);

• Object: a bound, countable physical, natural
or artificial, entity (to the ship, in his hand);

• Human (bring him to the high priest)

B The intuition of the VORM
segmentation model

The VORM model (‘Vertaling Ondersteunt Rede-
lijke Morfologie’; Dutch for ‘Translations support
reasonable morphology’) is an unsupervised mor-
phological segmentation procedure. Here, I present
the intuition briefly; for a complete treatment see
Beekhuizen (2025). Like MORSEL, VORM first
finds recurrent character string transformations be-
tween pairs of words and makes a best-first pass
through the word list to obtain derivations based on
such transformations. However, only those pairs
of words are inspected for the presence of poten-
tial transformations that are translation equivalents
of the same word in a reference language (here:
the seed translation ENGWEB). Distributional se-
mantic information has long been used to bootstrap
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doculect Turkish Finnish
word sofradakiler polveutuu
meaning ‘them at the table’ ‘descends’
gold sofra -da -ki -ler polvi -ua -tuu

MORFESSOR-type sofrada -kiler polveutu -u
MORFESSOR-logtok. sofrada -kiler polve -utuu
MORFESSOR-token sofrada -kiler polveutuu
MORSEL-aggressive sofradakiler polveutu -u
MORSEL-cons. sofradakiler polveutu -u
VORM sofra -da -ki -ler polvi -i/ea -a/utuu

Table 4: Examples of the morphological models

morphological segmentation (Schone and Jurafsky,
2000; Narasimhan et al., 2015), but the proposal
here is that translation is similarly a strong signal
to constrain the unsupervised learning of morpho-
logical segmentation, as has been argued for other
tasks, like PoS tagging (Eskander et al., 2020).

While this initial step provides a high-precision
inventory of (sequences of) morphological trans-
formations, many morphologically related words
do not map onto the same translation equivalent in
other languages and are as such not yet linked to
each other. In a second step, all possible derivations
of all words are generated, on the basis of the set
of transformation sequences found in the first step.
An agenda with all words is initialized, after which
a best-first procedure finds the stem that has the
largest morphological family size (i.e., occurs in
the candidate derivations of the most words). The
modeled words are removed from the agenda and
the procedure is repeated until the agenda is empty.

Table 4 presents examples for the morphological
extraction procedure applied to two words from
Turkish and Finnish and compares it to the other
models.

C Information on the annotated doculects

See Table 5.

D Model component comparison

See Figure 4 for an aggregated comparison of the
model components.

E Doculect-level performance analysis

Figures 5 and 6 present the Precision and Recall
per doculect, for all doculects on both tasks.
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name (iso); affiliation macroarea most common three markers % zeros

Plains Cree (CRKWCV) Algic, North-America -ihk (141) oci (39) isi (10) 7.3
German (DEUD05) Indo-European, Eurasia in (51) aus (34) auf (32) 1.2
Finnish (FINELC) Finno-Ugric, Eurasia -an (51) -sta (46) -ssa (24) 6.1
Indonesian (INDNTV) Austronesian, Oceania di (61) dari (52) ke (40) 3.9
Kilivila (KIJPNG) Austronesian, Oceania o- (67) wa (33) metoya (29) 28.5
Mixtec (MIMTBN) Mixe-Zoque, North-Am. noo (33) ini (7) ndaa (2) 62.0
Nigerian Pidgin (PCMTSC) Creole, Africa for (47), from (47) inside (7) 26.2
Somali (SOMSIM) Afro-Asiatic, Africa ku (59) ka (52) soo (35) 17.9
Turkish (TURBLI) Turkic, Eurasia -ya (57) -dan (53) -da (51) 3.4

Bambara (BAMLSB) Mande, Africa la (63) bo (41) kono (26) 23.2
Basque (EUSNLT) isolate, Eurasia -an (61) -tik (58) -ra (49) 1.7
Malayalam (MALNIB) Dravidian, Eurasia -il (101) -kku (34) ninnu (32) 10.1
Dutch (NLDDSV) Indo-European, Eurasia in (43) uit (34) op (31) 0.0
Persian (PESTPV) Indo-European, Eurasia az (49) bah (40) dar (38) 9.0
San Martín Quechua (QVSTBL) Quechuan, South-Am. -pi (77), -manta (41), -man (29) 0.0
Rundi (RUNBSB) Niger-Congo, Africa mu (83) i (35) ku (25) 9.5
Spanish (SPABDA) Indo-European, Eurasia en (59) de (44) a (34) 6.7
Vietnamese (VIELHG) Austroasiatic, Eurasia tu (35) trên (19) o (18) 9.0

Table 5: The 18 annotated doculects. The top nine are development doculects; bottom nine test doculects

Figure 4: Comparison of model components (columns) on the performance (F-score, averaged across 18 doculects)
of SRM extraction (top row) and zero extraction (bottom row).
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Figure 5: Precision and Recall on SRM extraction per doculect for the best models per aligner and the top-7 models
of RUIMTE

Figure 6: Precision and Recall on zero-marker extraction per zero-marking doculect for the best models per aligner
and the top-7 models of RUIMTE.
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Abstract

Recent research has increasingly focused on the
extent to which large language models (LLMs)
exhibit human-like behavior. In this study,
we investigate whether the mental lexicon in
LLMs resembles that of humans in terms of
lexical organization. Using a word associa-
tion task—a direct and widely used method
for probing word meaning and relationships in
the human mind—we evaluated the lexical rep-
resentations of GPT-4 and Llama-3.1. Our find-
ings reveal that LLMs closely emulate human
mental lexicons in capturing semantic related-
ness but exhibit notable differences in other
properties, such as association frequency and
dominant lexical patterns (e.g., top associates).
Specifically, LLM lexicons demonstrate greater
clustering and reduced diversity compared to
the human lexicon, with KL divergence anal-
ysis confirming significant deviations in word
association patterns. Additionally, LLMs fail
to fully capture word association response pat-
terns in different demographic human groups.
Among the models, GPT-4 consistently exhib-
ited a slightly higher degree of human-likeness
than Llama-3.1. This study highlights both the
potential and limitations of LLMs in replicat-
ing human mental lexicons, offering valuable
insights for applications in natural language
processing and cognitive science research in-
volving LLMs.

1 Introduction

Large language models (LLMs) have made sig-
nificant progress in capturing complex linguistic
patterns through self-supervised learning on vast
corpora (Brown et al., 2020). Nevertheless, the
question remains whether these models merely ap-
proximate language based on surface regularities or
if they meaningfully align with the deeper cognitive
mechanisms underlying human language process-
ing (Cai et al., 2024; Chomsky et al., 2023). Inves-
tigating their internal lexical organization—what

psycholinguists call the “mental lexicon”—can
shed light on whether LLMs’ representations go
beyond statistical pattern matching to reflect how
humans store and retrieve word meanings.

In this study, we examine whether two leading
LLMs (at the time of testing, GPT-4o and Llama-
3.1) replicate essential properties of the human
mental lexicon by leveraging a classic psycholin-
guistic paradigm: the word association task. By
systematically comparing LLM-generated word as-
sociations to large-scale human data from the Small
World of Words (SWOW) project (De Deyne et al.,
2019), we explore how closely lexical organization
in LLMs resembles that in humans. In addition,
we investigate whether LLMs can accurately repro-
duce the lexical characteristics unique to different
demographic groups when instructed to generate
text from these perspectives.

1.1 The Mental Lexicon and Word
Association

The mental lexicon is commonly understood as
a highly structured, internal system that stores
and organizes word-related information, thereby
facilitating language comprehension and produc-
tion (Aitchison, 2012). It encompasses numer-
ous properties of words—including their semantic
content, phonological and orthographic represen-
tations, syntactic roles, morphological forms, and
frequency of use (Jarema and Libben, 2007). Schol-
ars often describe the mental lexicon as a network-
like structure, wherein words are interconnected
through semantic, phonological, and collocational
links (Monakhov and Diessel, 2024; Vitevitch et al.,
2014). These networks enable rapid retrieval of
lexical information and guide the flow of language
processing. Although the mental lexicon cannot
be directly observed, a variety of empirical stud-
ies—ranging from lexical decision tasks (Balota
and Chumbley, 1984) and priming paradigms (Fer-
rand and New, 2003) to analyses of speech errors
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(Stemberger, 1982)—offer converging evidence for
its functional organization. Moreover, its structure
likely emerges from distributed neural processes
underlying language (Jarema and Libben, 2007).

A cornerstone method for probing these lexi-
cal connections is the word association task, in
which participants list the first words that come
to mind given a cue (Rodd et al., 2016; Nelson
et al., 2004; Szalay and Deese, 2024). By having
participants produce the first word(s) that come to
mind, this paradigm helps to reveal associative con-
nections within the mental lexicon (De Deyne and
Storms, 2008; Ufimtseva et al., 2020). To capture
a richer and more diverse perspective on word re-
lationships, large-scale studies such as the Small
World of Words (SWOW) project (De Deyne et al.,
2013) employ a multiple-response format in which
participants generate three different associative re-
sponses for each cue. By assembling extensive
datasets from participants of various demographic
backgrounds, SWOW enables in-depth investiga-
tions of individual and demographic differences
in lexical organization (De Deyne et al., 2019).
When aggregated across many individuals, these
data yield large-scale semantic networks that ro-
bustly predict behavioral measures such as lexical
decision, naming reaction time, and human-rated
word relationships beyond the influence of straight-
forward lexical statistics like word frequency (Bar-
ber et al., 2013; De Deyne et al., 2019; Li et al.,
2024). The SWOW norm has proven robust across
multiple languages, leading to the construction of
mental lexicons for Dutch (De Deyne et al., 2013),
English (De Deyne et al., 2019), Mandarin Chinese
(Li et al., 2024), and Rioplatense Spanish (Cabana
et al., 2024), among others.

1.2 Exploring the Black Box of LLMs Using
Behavioral Experimentation

Recent advancements in natural language process-
ing (NLP) benchmarks—including SuperGLUE
(Wang et al., 2019) and BIG-bench (Srivastava
et al., 2022)—have demonstrated that LLMs ex-
cel in tasks such as translation, question answering,
cloze tests, textual entailment, and diverse forms
of reasoning (Wang, 2018; Srivastava et al., 2022).
While these accomplishments highlight the models’
versatility and the human-like character of their
outputs, they do not clarify whether the underly-
ing processes genuinely resemble human language
comprehension or merely represent sophisticated
pattern matching (Chomsky et al., 2023; Piantadosi,

2023; Futrell and Mahowald, 2025).
One promising way to bridge this gap is by

leveraging behavioral experiments as downstream
tasks to evaluate LLMs. These experiments have
been instrumental in modeling the cognitive mech-
anisms that shape human behavior. When adapted
for LLMs, they provide a framework to examine
whether these models display cognitive patterns
comparable to those found in humans. By compar-
ing LLM performance against human responses in
well-designed experiments, researchers can gain
valuable insights into the language capabilities of
these systems. For instance, various psycholinguis-
tic methodologies (e.g., priming) have been em-
ployed to explore whether LLMs exhibit language
processing patterns akin to human cognition (e.g.,
Ettinger, 2020; Prasad, 2019; Sinclair et al., 2022).

Several recent studies have applied this method-
ology to illuminate LLMs’ capabilities. Cai et al.
(2024) subjected LLMs to a variety of psycholin-
guistic tasks, finding that the models success-
fully replicated numerous human-like language
processes: forming sound-based associations for
unfamiliar words, displaying priming effects in am-
biguous word or sentence retrieval, interpreting
implausible sentences adaptively, overlooking mi-
nor semantic errors, and generating bridging in-
ferences. These models also adjusted causality
interpretations in response to verb semantics and
tailored language retrieval based on the interlocu-
tor’s role. Extending this line of research, Duan
et al. (2024b) devised a benchmark to quantify how
closely LLMs mirror human language use in phe-
nomena like priming and adaptive sentence inter-
pretation, showing that models such as Llama-3.1
and GPT-4o achieve appreciable levels of human-
likeness. Hu et al. (2024) likewise demonstrated
that LLMs can replicate human intuitive judgments
on diverse grammatical structures.

Despite these promising parallels, researchers
have identified key divergences from human cog-
nition. Qiu et al. (2023) reported that LLMs en-
counter difficulties in pragmatic reasoning, while
Cai et al. (2024) highlighted issues such as a fail-
ure to prefer shorter words for less informative
content and an inability to optimally use context to
resolve syntactic ambiguities. Likewise, Dentella
et al. (2023) noted that LLMs fall short of humans
in accuracy and consistency of grammatical judg-
ments.

Taken together, behavioural experimentation has
deepened our understanding of LLMs’ language

587



processing abilities and underscored both their
human-like traits and their limitations. The mixed
results highlight the importance of continued re-
search aimed at refining our grasp of these models’
strengths and shortcomings, particularly through
systematic examinations of foundational aspects of
language cognition, such as lexical organization.

1.3 Exploring the Mental Lexicon in LLMs
Using Word Association

Since LLMs are trained on vast amounts of text
data but lack embodied sensory experience, an in-
triguing question arises: can they understand word
relationships purely through textual associations,
or is there a crucial role for non-linguistic sensory
experience in forming a rich, human-like mental
lexicon? Unlike humans, who accumulate word as-
sociations through multisensory interactions with
the world, LLMs can only infer relationships from
the patterns present in the text they are trained on.
This raises the central challenge of whether LLMs
can approximate the depth of human lexical orga-
nization without shared lived experiences.

A well-established approach for probing lexical
structure is the word association paradigm (Ku-
mar et al., 2021), which offers a window into
the associative networks underlying lexical ac-
cess. The Small World of Words–English (SWOW-
EN) corpus (De Deyne et al., 2019), comprising
over 12,000 cue words and responses from ap-
proximately 80,000 participants, serves as a robust
benchmark for such comparisons. Recent stud-
ies by Abramski et al. (2024, 2025) adapted this
paradigm to LLMs such as Llama 3, Claude Haiku,
and Mistral, generating large-scale word associa-
tion datasets. Their work investigated lexical diver-
sity, concreteness effects, and bias patterns, and
evaluated model-derived semantic networks via
priming simulations. Vintar et al. (2024) explored
word associations in multilingual and monolingual
LLMs (e.g., mT5, SloT5) for Slovene and English,
focusing primarily on lexical overlap with human
data and categorizing response types

While our study adopts a similar SWOW-style
elicitation method, our analytic focus diverges in
important ways. We evaluate the extent to which
LLMs capture core psycholinguistic dimensions
of the mental lexicon—semantic relatedness, as-
sociative frequency, lexical entropy, and network
clustering—and assess their alignment with human
data. We also use KL divergence to quantify dis-
tributional differences. Beyond structural compar-

isons, we further examine whether LLMs reflect
sociolinguistic variability observed in human lex-
ical representations. Specifically, we test whether
model responses vary systematically across demo-
graphic groups, including education level, gender,
and age, based on significant sociolinguistic diver-
gence patterns reported in prior work (Garimella
et al., 2016, 2017). By integrating structural and
sociocognitive perspectives, our study provides a
comprehensive assessment of the extent to which
LLMs approximate both the organization and vari-
ability of the human mental lexicon.

Building on these open questions, the current
study examines:

1. To what extent does the mental lexicon in
LLMs resemble that of humans in terms of their
associative structure and organization?

2. How do different LLM architectures and train-
ing approaches influence the human-likeness of
their mental lexicon?

3.To what extent does the mental lexicon of
LLMs capture demographic variability, akin to the
way human word associations vary across factors
such as age, cultural background, and personal ex-
perience?

To address these questions, we adapted the
SWOW-EN word association paradigm for LLMs,
using identical cue words and controlling for demo-
graphic factors wherever possible. We then mod-
eled each LLM’s mental lexicon, with a focus on
association frequency, semantic relationships, net-
work properties (such as clustering coefficients),
and vocabulary diversity. Our comparisons ex-
tended across different LLMs (e.g., GPT-4o and
Llama-3.1), as well as between LLMs and human
participants. We also examined how demographic
aspects might be encoded or omitted in their asso-
ciative structures.

2 Method

2.1 Models and Human Data

Two state-of-the-art transformer-based language
models (at the time of testing) were employed for
data collection: GPT-4o, developed by OpenAI,
and Llama 3.1-70b-instruct, developed by Meta.
For simplicity, these models are referred to as GPT
and Llama, respectively, throughout this paper. Hu-
man responses were drawn from the SWOW-EN
dataset (SWOW-EN.R100.20180827.csv). Only
trials contributed by native English speakers were
retained, thereby excluding data from non-native

588



speakers. Trials included in the analysis aligned
precisely with those replicated in the model experi-
ments.

2.2 Stimuli and Procedure
A total of 12,281 cue words from the SWOW-EN
project (De Deyne et al., 2019) served as stimuli.
1 In the original SWOW-EN dataset, thousands
of participants each provided responses to 14–18
of these cue words, resulting in over one million
trials.

LLM data were collected in two experiments:
one using GPT-4o and the other using Llama-3.1.
Each experiment encompassed 1,061,729 trials,
mirroring the number of trials from native English
speakers in the SWOW-EN dataset. In the exper-
iments, each trial consisted of a single cue word
embedded in an instruction prompt (e.g. ...You will
receive a cue word. Write the first word that comes
to mind...The cue word is...), accompanied by a sys-
tem prompt specifying the demographic informa-
tion corresponding to a trial from the SWOW-EN
dataset (i.e., educational level, age, gender, English
dialect, and location) (e.g. You are 33 years old.
You are a female...). This demographically targeted
prompting strategy was designed, on one hand, to
closely mimic human experimentation and, on the
other hand, to provide demographic cues for explor-
ing the potential influence of demographic factors
on LLM responses, akin to the variability observed
in human language processing. Full example of
prompt and response are provided in Appendix B.

All model responses were collected using the
R MacBehaviour package (Duan et al., 2024a),
a toolkit designed to facilitate behavioral exper-
iments on LLMs. Each trial was run as a discrete
chat session containing only one cue word to avoid
memory effects, and the package automatically
recorded all responses. The default temperature
settings for each model were retained: temperature
= 1 for GPT-4o and temperature = 0.6 for Llama-
3.1.

2.3 Data Preprocessing
Preprocessing steps were performed for both LLM-
derived and human-derived responses. Each partic-
ipant—human or model—provided three responses
per cue word, labeled R1, R2, and R3 according to
their order. Any additional responses beyond the
first three were truncated, and missing responses

1We excluded the cue “none” from the original 12,282-cue
list due to its potential to confound analyses.

were coded as NA. Cue words that were not recog-
nized (prompting the model to respond with “un-
known word”) were also coded as NA. Responses
in non-ASCII characters and duplicates within the
same cue word were removed.

Further cleaning was conducted using the
SWOW-EN preprocessing script (preprocess-
Data.R). This script removed repeated responses
for specific cue words, corrected inconsistencies in
missing responses (for example, NA coded in R2
but not in R3), and standardized spelling variations.

2.4 Data Analysis
Following data collection and preprocessing,
we obtained three datasets—Human, GPT, and
Llama—each containing the same cue words, up
to three associated responses per cue, and demo-
graphic information. Multiple metrics were com-
puted to assess how closely model outputs aligned
with human data. These metrics capture distinct yet
interrelated key aspects of lexical representation,
including word prominence, semantic organization,
network topology, and lexical diversity.

Association Frequency. Association frequency,
defined as the number of times a word appears as
an associate (De Deyne et al., 2019). This measure
reflects a word’s prominence in the mental lexicon
and predicts reaction time (RT) in tasks such as
lexical decision, naming, and semantic judgment.
We conducted three analyses: (1) correlating asso-
ciation frequencies across datasets, (2) examining
correlations between association frequencies and
RTs (Balota et al., 2007; Pexman et al., 2017), us-
ing both Pearson correlations and partial correla-
tions that controlled for word frequency (English
SUBTLEX-US (Brysbaert and New, 2009)), and
(3) comparing the top 100 most frequent associates
across datasets to evaluate overlap and relative lex-
ical prominence.

Semantic Relatedness. We computed seman-
tic relatedness using a random-walk algorithm
applied to cue–associate networks derived from
word association data (De Deyne et al., 2016,
2019). Random-walk values for the human dataset
were obtained from SWOW-EN, while those for
GPT and Llama were generated using the original
SWOW-EN script (graphRandomWalk.R). Note
that semantic relatedness, as measured in this con-
text, encompasses not only taxonomic similarity
(e.g., car–automobile) but also broader associative
relationships, including functional, thematic, or-
thographic (e.g., favor–flavor), and collocational
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links (e.g., duty–free) (De Deyne et al., 2019). Be-
cause word association networks naturally encode
this diverse range of connections, the resulting
random-walk scores reflect the associative struc-
ture of the mental lexicon beyond pure similarity.
To assess the extent to which model-based related-
ness aligns with human intuitions, we conducted
two analyses: (1) correlating random-walk scores
across datasets, and (2) comparing random-walk
values with human judgments of semantic similar-
ity from benchmark datasets including MEN (Bruni
et al., 2012), MTURK-771 (Halawi et al., 2012),
and SimLex-999 (Hill et al., 2015). While these
benchmarks specifically target similarity, previous
work has shown that random-walk relatedness cor-
relates strongly with human similarity judgments
(De Deyne et al., 2019), making them a useful point
of comparison.

Network Attributes. Network science of-
fers a systematic framework for analyzing struc-
tural properties across diverse domains (Barabási,
2013; Lewis, 2011), including semantic networks
(Steyvers and Tenenbaum, 2005). The cluster-
ing coefficient is a key metric within this frame-
work, indicating how tightly interconnected the
neighbors of a given node are (Newman, 2003;
Saramäki et al., 2007). In semantic networks,
higher clustering coefficients signify denser inter-
connections among words, resulting in community-
like structures (Palla et al., 2005), as illustrated by
Figure 1. In this study, cue–response data were
transformed into a weighted directed graph using
the igraph package in R, creating edges for every
cue–response pair. The local clustering coefficient
for each node was then computed using the stan-
dard formula:

C(v) =
2× ei

ki(ki − 1)

where ei represents the number of edges among
neighbors of node i, and ki denotes the degree of
node i. The distributions of clustering coefficients
were compared across human, GPT and Llama net-
works to assess similarities and differences in struc-
tural connectivity.

Vocabulary Diversity. Vocabulary diversity
gauges the breadth and variety of words pro-
duced, reflecting linguistic adaptability and flex-
ibility (Malvern et al., 2004; Laufer and Nation,
1995). To assess this property, we calculated as-
sociation entropy for each cue word to evaluate
variability in word associations. Shannon entropy

Figure 1: Examples of high and low clustering coeffi-
cients. “Family” (left) demonstrates a high clustering
coefficient, reflecting dense interconnections among its
neighbors, whereas “time” (right) has a low coefficient,
indicating sparse connections. Although both words
share the same number of immediate neighbors (degree),
their internal connectivity differs markedly.

H was computed as:

H(X) = −
n∑

i=1

p(xi) log2 p(xi)

where p(xi) is the proportion of a particular word
i among all responses to a given cue. Higher en-
tropy values reflected a greater spread of responses,
whereas lower entropy indicated stronger consen-
sus. These entropy distributions were then com-
pared across the human data and each LLM dataset.
Furthermore, we analyzed demographic variability
by incorporating demographic factors (e.g., educa-
tion level, gender) into entropy calculations. We
examined interaction effects between demographic
levels and groups (human, GPT, Llama) to deter-
mine whether demographic factors influence asso-
ciation variability similarly in humans and LLMs
or exhibit distinct patterns.

2.5 KL Divergence
In addition to the aforementioned metrics, we com-
puted Kullback–Leibler (KL) divergence to assess
the degree of divergence between human-generated
and model-generated word association distribu-
tions. KL divergence quantifies how much one
probability distribution P differs from a reference
distribution Q, with lower values indicating greater
similarity. It is defined as:

KL(P∥Q) =
∑

i

P (i) log
P (i)

Q(i)

In all calculations, we defined the human-
generated distribution as P and the model-
generated distribution (GPT or Llama) as Q, i.e.,
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Figure 2: Pearson correlations of association frequencies with lexical decision, naming, and semantic decision RTs.
Pink and gray bars depict partial correlations controlling for word frequency (SUBTLEX-US). Freq.R123 is defined
as the number of times being an associate, regardless of cue(s), across all associates (R1, R2, and R3) collected in
the experiment. For readability, RTs were z-transformed and log-transformed and then shifted to positive values
by adding the minimal z-score, while association frequencies were log-transformed after adding a constant of 1.
The key finding is that model-derived correlations were significantly weaker than human-derived ones, as indicated
by Steiger’s Z test (p < 0.001 for most comparisons, except for the partial correlation between Llama and human
association frequency-RT correlations, where p = 0.03). Significance levels: *: p < 0.05; **: p < 0.01; ***:
p < 0.001.

we computed KL(Human∥Model). This direction
reflects the information loss incurred when using
model outputs to approximate the human mental
lexicon—a standard approach in cognitive model-
ing. For each cue word, relative-frequency-based
probability distributions were derived separately
from the Human, GPT, and Llama datasets, and KL
divergence was computed accordingly.

3 Results

3.1 Association Frequency

Both GPT and Llama exhibited substantial correla-
tions with human association frequencies, though
GPT’s association frequency correlated more
closely with human data compared to Llama’s,
a difference confirmed by Steiger’s Z test (Z =
21.43, p < 0.001). See Figure 7 in Appendix C for
detail illustration.

Despite the overall correlation among datasets,
model-human misalignment emerged when assess-
ing the relationship between association frequency
and lexical processing speeds (lexical decision,
naming, and semantic decision RTs). Human as-
sociation frequencies showed the strongest corre-
lations with RT data. While both GPT and Llama
significantly predicted RTs, their correlations were
consistently weaker than those observed for human
data (Figure 2 and Table 1 in Appendix C). The

results suggest that while LLM-derived association
frequencies capture aspects of lexical processing,
they remain less predictive than human-derived
frequencies. Partial correlation analyses control-
ling for word frequency yielded a similar conclu-
sion. While human association frequency contin-
ued to show notable correlations with RTs, GPT
and Llama each accounted for less variance once
word frequency was taken into account (refer to
Figure 2 and Table 2 in Appendix C for statistical
details).

A comparison of the top 100 words by associa-
tion frequency (Figure 3 and Figure 4; see Figure 8
Appendix C for Llama’s) revealed both overlap and
divergence. Words such as “water” and “money”
appeared prominently in all lexicons, whereas “sex”
was more prominent among humans and “com-
puter” among LLMs. Overall, GPT shared 54% of
its top 100 list with humans, compared to Llama’s
43%, suggesting that GPT’s core associations more
closely mirrored human lexical prominence.

3.2 Semantic Relatedness

Random-walk relatedness scores computed using
all three associates (R1, R2, R3) revealed that
both GPT and Llama correlated strongly with hu-
man data, with GPT showing a significantly higher
alignment (Z = 489.38, p < 0.001). See Figure 9
in Appendix C for detailed illustrations.
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Figure 3: Top 100 words ranked by association fre-
quency in Human.

Figure 4: Top 100 words ranked by association fre-
quency in GPT.

In the benchmark comparison between model-
based relatedness and human semantic similar-
ity judgments, GPT exhibited consistently strong
alignment with human responses. According to
Steiger’s Z test (p > 0.05), there was no significant
difference between GPT’s correlations and those of
human random-walk scores across all three bench-
marks (MEN, MTurk, and SimLex-999). Llama
matched human performance on SimLex-999 alone
(see Figure 5). These results suggest that both mod-
els—especially GPT—are capable of producing
human-like semantic relatedness representations.

3.3 Network Attributes

A linear mixed-effects (LME) model revealed that
both GPT and Llama exhibited significantly higher
clustering coefficients than humans (β = 0.043,
t = 36.08, p < 0.001; β = 0.047, t = 35.93,
p < 0.001). When comparing the models, Llama’s
clustering coefficient was significantly higher than
GPT’s (β = 0.004, t = 2.58, p = 0.01). See
also Figure 10 in Appendix C. These findings sug-
gest that LLM-based semantic networks are more
densely interconnected than human networks, with
Llama showing the highest degree of local cluster-
ing.

3.4 Vocabulary Diversity

An LME analysis showed that both GPT (β =
−2.863, t = −497.6, p < 0.001) and Llama (β =
−2.913, t = −506.3, p < 0.001) had significantly
lower association entropy compared to humans,
indicating reduced lexical diversity. Furthermore,
Llama exhibited lower entropy than GPT (β =
−0.050, t = −8.674, p < 0.001); see Figure 11 in
Appendix C.

3.5 KL Divergence

The KL divergence analysis revealed notable
differences between human word associa-
tions and those generated by GPT and Llama.
The average KL divergence—computed as
KL(Human∥Model)—was 11.09 for GPT and
12.46 for Llama, both indicating substantial
deviation from the human distribution. A t-test
comparing these values yielded a significant
difference (t = −49.04, p < .001), suggesting
that GPT’s word association distributions more
closely resemble human responses than those of
Llama.

3.6 Examining Demographic Variability in
LLM Mental Lexicon

A demographic analysis using association entropy
and linear regression revealed significant interac-
tions between education level and source group
(Human, GPT, or Llama). While models captured
general education-related entropy trends (with a
visually similar pattern for age in Figure 13, Ap-
pendix C), they diverged from human patterns,
particularly among higher education groups (Fig-
ure 6). In human data, bachelor’s degrees ex-
hibited significantly higher entropy than master’s
(β = 0.136, p < 0.001), a difference absent in
GPT and Llama (GPT: β = −0.025, p = 0.960;
Llama: β = 0.005, p > 0.999). Llama also
failed to replicate entropy differences between high
school and bachelor’s (β = −0.022, p > 0.999)
or master’s degrees (β = −0.017, p > 0.999),
compared to humans (high school vs bachelor:
β = −0.311, p < 0.001; high school vs mas-
ter: β = −0.174, p < 0.001). GPT captured these
differences with slightly smaller effect sizes for the
high school-bachelor comparison (β = −0.046,
p = 0.030). These findings suggest that while
models capture broad demographic-related entropy
trends (and align with human data in some aspects,
such as gender variability; see Figure 12 in Ap-
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Figure 5: Pearson correlations and 95% confidence intervals between random-walk relatedness scores and direct
semantic similarity ratings from MEN, MTurk, and SimLex999. *: p < 0.05; **: p < 0.01.

Figure 6: Entropy differences in association for educa-
tion groups across Human, GPT, and Llama datasets.
**: p < 0.01; ***: p < 0.001.

pendix C), they exhibit limited capacity for captur-
ing fine-grained differences, particularly in educa-
tional entropy. Llama deviates more from human
patterns in educational contexts than GPT does.

4 Discussion

Our study provides mixed findings regarding the
human-likeness of LLMs in replicating the men-
tal lexicon, with semantic relatedness emerging
as the most consistent parallel to human perfor-
mance. This aligns with Abramski et al. (2025),
who noted comparable semantic priming effects
in both human and model-based networks, high-
lighting human-like features in LLMs’ semantic
associations. While association frequency analysis
suggests LLMs capture some aspects of human-like
prominence in word associations, they primarily
encode straightforward lexical statistics like word

frequency, rather than deeper cognitive associa-
tions.

A significant divergence was observed in the
higher clustering coefficient and lower lexical diver-
sity of LLM-based semantic networks compared to
human counterparts. Additionally, KL divergence
analysis revealed discrepancies between human
and model-generated word associations, indicat-
ing that while LLMs replicate certain human-like
semantic relations, they lack the depth and range
of human mental lexicons. This may be due to the
absence of embodied sensory experience during
model training, which limits their ability to fully
capture the complexities of human language cogni-
tion.

Our comparison of GPT and Llama highlighted
consistent patterns, with GPT generally displaying
stronger human-like qualities. This suggests that
variations in training strategies and data sources
may significantly influence model performance, un-
derscoring the impact of model architecture and
training choices on LLM behavior.

Our findings also carry implications for the use
of LLMs as surrogate participants in cognitive sci-
ence research, a notion gaining traction in recent
studies (e.g. Duan et al., 2024a; Qin et al., 2024).
While LLMs offer a cost-effective alternative for
semantic-relatedness studies, their discrepancies
with human mental lexicons caution against overre-
liance on them as surrogates. Issues such as the mis-
representation of social identities, raised by Wang
et al. (2025), are particularly relevant here, as our
results suggest LLMs fail to fully capture demo-
graphic variability and diversity accurately, at least
in terms of word association. This reinforces con-
cerns that LLMs may oversimplify or misrepresent
human experiences, especially in studies involving
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identity and diversity. This concern is further com-
pounded by the growing reliance on synthetic data
in model training (del Rio-Chanona et al., 2024;
Shumailov et al., 2024), which may lead to even
less spontaneous and more constrained language
representations, thereby limiting LLMs’ ability to
reflect nuanced human variability.

A key interpretive challenge is whether the ob-
served demographic insensitivity stems from inher-
ent limitations in model representations or from in-
sufficiently strong persona conditioning. Findings
by Hu and Collier (2024) suggest that even struc-
tured demographic prompting typically explains
less than 10% of the variance in human responses
across subjective NLP tasks. This modest effect im-
plies that LLMs may require more detailed and con-
textually grounded persona descriptions to mean-
ingfully reflect individual-level variation. Thus,
our findings likely reflect both limited model re-
sponsiveness to demographic cues and the inade-
quacy of surface-level prompts in shaping behav-
iorally distinct outputs. Future work should ex-
plore more effective strategies for enhancing demo-
graphic control and further delineate the conditions
under which persona prompting can elicit inter-
pretable variation aligned with human diversity.

A key methodological consideration concerns
our reliance on prompting, rather than directly ex-
tracting conditional probabilities from the model’s
output distribution or other internal representations.
While prompting provides an intuitive and human-
aligned interface that mirrors task formats com-
monly used in psycholinguistic research, it may
introduce a layer of metalinguistic reasoning that
obscures the model’s underlying semantic repre-
sentations. Recent work by Hu and Levy (2023)
highlights this limitation, arguing that prompting re-
quires models to interpret linguistic input, thereby
testing metalinguistic judgment rather than directly
revealing internal representations. To explore the
feasibility of probability-based evaluation, we con-
ducted preliminary analyses using log-probabilities
sampled directly from the model. However, a
substantial proportion of high-probability outputs
consisted of subword tokens (e.g., "un", "ther"),
complicating alignment with human lexical data
and introducing nontrivial post-processing assump-
tions for reconstructing full-word responses. Given
these practical constraints, we adopted prompt-
ing to ensure interpretability and consistency with
behavioral baselines. Nonetheless, we acknowl-
edge that this approach may limit access to deeper

representational signals within the model. Future
work should consider hybrid frameworks that inte-
grate prompting with direct probability-based mea-
sures, enabling a more comprehensive assessment
of model–human alignment under varying input
modalities.

5 Conclusion

In conclusion, while LLMs demonstrate some
human-like properties in their mental lexicons, they
fail to fully replicate the complexity of human se-
mantic networks. The observed discrepancies in
lexical diversity and network structure reveal fun-
damental differences between human and machine
cognition. As LLMs continue to evolve, further
research is essential to refine these models to bet-
ter capture the nuanced, multimodal nature of hu-
man language. Caution is also needed when using
LLMs as substitutes for human participants, par-
ticularly in studies involving social identity and
linguistic diversity.
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kučera and francis: A critical evaluation of current
word frequency norms and the introduction of a new
and improved word frequency measure for american
english. Behavior research methods, 41(4):977–990.

Álvaro Cabana, Camila Zugarramurdi, Juan C Valle-
Lisboa, and Simon De Deyne. 2024. The" small
world of words" free association norms for rio-
platense spanish. Behavior Research Methods,
56(2):968–985.

Zhenguang Cai, Xufeng Duan, David Haslett, Shuqi
Wang, and Martin Pickering. 2024. Do large lan-
guage models resemble humans in language use? In
Proceedings of the Workshop on Cognitive Modeling
and Computational Linguistics, pages 37–56.

Noam Chomsky, Ian Roberts, and Jeffrey Watumull.
2023. Noam chomsky: The false promise of chatgpt.
The New York Times, 8.

Simon De Deyne, Daniel J Navarro, and Gert Storms.
2013. Better explanations of lexical and semantic
cognition using networks derived from continued
rather than single-word associations. Behavior re-
search methods, 45:480–498.

Simon De Deyne, Danielle J Navarro, Amy Perfors,
Marc Brysbaert, and Gert Storms. 2019. The “small
world of words” english word association norms for
over 12,000 cue words. Behavior research methods,
51:987–1006.

Simon De Deyne, Amy Perfors, and Daniel J Navarro.
2016. Predicting human similarity judgments with
distributional models: The value of word associa-
tions. In Proceedings of COLING 2016, the 26th
international conference on computational linguis-
tics: Technical papers, pages 1861–1870.

Simon De Deyne and Gert Storms. 2008. Word associ-
ations: Network and semantic properties. Behavior
research methods, 40(1):213–231.

R Maria del Rio-Chanona, Nadzeya Laurentsyeva, and
Johannes Wachs. 2024. Large language models re-
duce public knowledge sharing on online q&a plat-
forms. PNAS nexus, 3(9):pgae400.

Vittoria Dentella, Fritz Günther, and Evelina Leivada.
2023. Systematic testing of three language mod-
els reveals low language accuracy, absence of re-
sponse stability, and a yes-response bias. Pro-
ceedings of the National Academy of Sciences,
120(51):e2309583120.

Xufeng Duan, Shixuan Li, and Zhenguang G Cai. 2024a.
Macbehaviour: An r package for behavioural experi-
mentation on large language models. Behavior Re-
search Methods, 57(1):19.

Xufeng Duan, Bei Xiao, Xuemei Tang, and Zhen-
guang G Cai. 2024b. Hlb: Benchmarking llms’
humanlikeness in language use. arXiv preprint
arXiv:2409.15890.

Allyson Ettinger. 2020. What bert is not: Lessons from
a new suite of psycholinguistic diagnostics for lan-
guage models. Transactions of the Association for
Computational Linguistics, 8:34–48.

Ludovic Ferrand and Boris New. 2003. Semantic and
associative priming in the mental lexicon. Mental
lexicon: Some words to talk about words, pages 25–
43.

Richard Futrell and Kyle Mahowald. 2025. How linguis-
tics learned to stop worrying and love the language
models. arXiv preprint arXiv:2501.17047.

Aparna Garimella, Carmen Banea, and Rada Mihalcea.
2017. Demographic-aware word associations. In
Proceedings of the 2017 conference on empirical

595



methods in natural language processing, pages 2285–
2295.

Aparna Garimella, Rada Mihalcea, and James Pen-
nebaker. 2016. Identifying cross-cultural differences
in word usage. In Proceedings of COLING 2016,
the 26th international conference on computational
linguistics: Technical Papers, pages 674–683.

Guy Halawi, Gideon Dror, Evgeniy Gabrilovich, and
Yehuda Koren. 2012. Large-scale learning of word re-
latedness with constraints. In Proceedings of the 18th
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 1406–1414.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-
tics, 41(4):665–695.

Jennifer Hu and Roger Levy. 2023. Prompting is not
a substitute for probability measurements in large
language models. arXiv preprint arXiv:2305.13264.

Jennifer Hu, Kyle Mahowald, Gary Lupyan, Anna
Ivanova, and Roger Levy. 2024. Language mod-
els align with human judgments on key grammatical
constructions. Proceedings of the National Academy
of Sciences, 121(36):e2400917121.

Tiancheng Hu and Nigel Collier. 2024. Quantifying
the persona effect in llm simulations. arXiv preprint
arXiv:2402.10811.

Gonia Jarema and Gary Libben. 2007. The mental lexi-
con: core perspectives, volume 1. Elsevier Amster-
dam.

Abhilasha A Kumar, Mark Steyvers, and David A
Balota. 2021. Semantic memory search and retrieval
in a novel cooperative word game: A comparison of
associative and distributional semantic models. Cog-
nitive Science, 45(10):e13053.

Batia Laufer and Paul Nation. 1995. Vocabulary size
and use: Lexical richness in l2 written production.
Applied linguistics, 16(3):307–322.

Ted G Lewis. 2011. Network science: Theory and
applications. John Wiley & Sons.

Bing Li, Ziyi Ding, Simon De Deyne, and Qing Cai.
2024. A large-scale database of mandarin chinese
word associations from the small world of words
project. Behavior Research Methods, 57(1):34.

David Malvern, Brian Richards, Ngoni Chipere, and
Pilar Durán. 2004. Lexical diversity and language
development. Springer.

Sergei Monakhov and Holger Diessel. 2024. Complex
words as shortest paths in the network of lexical
knowledge. Cognitive Science, 48(11):e70005.

Douglas L Nelson, Cathy L McEvoy, and Thomas A
Schreiber. 2004. The university of south florida free
association, rhyme, and word fragment norms. Be-
havior Research Methods, Instruments, & Computers,
36(3):402–407.

Mark EJ Newman. 2003. The structure and function of
complex networks. SIAM review, 45(2):167–256.

Gergely Palla, Imre Derényi, Illés Farkas, and Tamás
Vicsek. 2005. Uncovering the overlapping commu-
nity structure of complex networks in nature and
society. nature, 435(7043):814–818.

Penny M Pexman, Alison Heard, Ellen Lloyd, and
Melvin J Yap. 2017. The calgary semantic decision
project: concrete/abstract decision data for 10,000
english words. Behavior research methods, 49:407–
417.

Steven T Piantadosi. 2023. Modern language models
refute chomsky’s approach to language. From field-
work to linguistic theory: A tribute to Dan Everett,
pages 353–414.

G Prasad. 2019. Using priming to uncover the organiza-
tion of syntactic representations in neural language
models. arXiv preprint arXiv:1909.10579.

Xin Qin, Mingpeng Huang, and Jie Ding. 2024. Aiturk:
Using chatgpt for social science research. Available
at SSRN 4922861.

Zhuang Qiu, Xufeng Duan, and Zhenguang Garry Cai.
2023. Pragmatic implicature processing in chatgpt.

Jennifer M Rodd, Zhenguang G Cai, Hannah N Betts,
Betsy Hanby, Catherine Hutchinson, and Aviva Adler.
2016. The impact of recent and long-term experience
on access to word meanings: Evidence from large-
scale internet-based experiments. Journal of Memory
and Language, 87:16–37.

Jari Saramäki, Mikko Kivelä, Jukka-Pekka Onnela,
Kimmo Kaski, and Janos Kertesz. 2007. Gener-
alizations of the clustering coefficient to weighted
complex networks. Physical Review E—Statistical,
Nonlinear, and Soft Matter Physics, 75(2):027105.

Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Nicolas
Papernot, Ross Anderson, and Yarin Gal. 2024. Ai
models collapse when trained on recursively gener-
ated data. Nature, 631(8022):755–759.

Arabella Sinclair, Jaap Jumelet, Willem Zuidema, and
Raquel Fernández. 2022. Structural persistence in
language models: Priming as a window into abstract
language representations. Transactions of the Associ-
ation for Computational Linguistics, 10:1031–1050.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta,
Adrià Garriga-Alonso, et al. 2022. Beyond the
imitation game: Quantifying and extrapolating the
capabilities of language models. arXiv preprint
arXiv:2206.04615.

596



Joseph Paul Stemberger. 1982. The nature of segments
in the lexicon: Evidence from speech errors. Lingua,
56(3-4):235–259.

Mark Steyvers and Joshua B Tenenbaum. 2005. The
large-scale structure of semantic networks: Statistical
analyses and a model of semantic growth. Cognitive
science, 29(1):41–78.

Lorand B Szalay and James Deese. 2024. Subjective
meaning and culture: An assessment through word
associations. Taylor & Francis.

Natalia V Ufimtseva et al. 2020. Association-verbal net-
work as a model of the linguistic picture of the world.
European Proceedings of Social and Behavioural
Sciences.

Špela Vintar, Mojca Brglez, and Aleš Žagar. 2024. How
human-like are word associations in generative mod-
els? an experiment in slovene. In Proceedings of
the Workshop on Cognitive Aspects of the Lexicon@
LREC-COLING 2024, pages 42–48.

Michael S Vitevitch, Rutherford Goldstein, Cynthia SQ
Siew, and Nichol Castro. 2014. Using complex net-
works to understand the mental lexicon. In Yearbook
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A Appendix A: Limitations

This study uses a psycholinguistic method (word
association) to explore the mental lexicon of LLMs
and the extent to which it resembles that of humans.
A more comprehensive understanding of LLM lex-
ical organization could involve additional metrics,
such as network attributes that capture both local
and global properties. Furthermore, a philosoph-
ical or theoretical grasp of an LLM’s human-like
capabilities in language understanding, production,
and acquisition necessitates broader examination
frameworks and careful analysis of internal mecha-
nisms.

Our significant finding is that the divergence be-
tween LLM and human mental lexicons in terms of
lexical diversity may be partly constrained by tech-
nical factors, such as the temperature parameter
used to ensure consistent output. In addition, dur-
ing model training, “meta-controls” are added to
regulate content generation (e.g., overly vulgar con-
tent), which is crucial for safe use but objectively
limits word association divergence. This might
explain why certain words prominent in human
mental lexicons, such as “sex,” are less so in LLMs
according to our results. Some immediate associ-
ations might have been restricted based on these
factors. Nonetheless, we believe these factors do
not account for all divergences and likely represent
only a small portion influencing our results.

Further limitations arise from the demographic
variability analysis where certain groups—like
those with “no formal education,” “elementary
school,” or specific accents—had limited data. This
reduced sample size weakens statistical compar-
isons and underscores the need for more balanced
datasets reflecting diverse human profiles. Addi-
tionally, filtering for native English speakers led to
an imbalanced word association dataset with 63 to
100 valid trials per cue (M = 86, SD = 6.55). Al-
though both human and model groups faced similar
testing conditions, future research would benefit
from more evenly distributed data to enhance re-
liability and detail. Despite these constraints, our
findings offer preliminary insights into how LLMs
resemble and differ from human mental lexicons
and suggest promising avenues for further investi-
gation.

B Appendix B Sample Prompts and
Response

System Prompt: You are 33 years old. You are
a female. You are a native speaker of English who
grew up in Australia.

Prompt: On average, an adult knows about
40,000 words, but what do these words mean to
people? You can help scientists understand how
meaning is organized in our mental dictionary by
playing the game of word associations. This game
is easy: Just give the first three words that come to
mind.

Instructions: You will receive a cue word. Write
the first word that comes to mind when reading this
word. If you don’t know this word, write ’unknown
word’. Then write a second and third word, or write
’unknown word’ if you can’t think of any.

Please respond in the following format: [FIRST
WORD; SECOND WORD; THIRD WORD].
Please don’t ask any questions or give any other
information.

The cue word is: although
Response: but; however; yet
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C Appendix C Supplementary Figures
and Tables for Results

Figure 7: Correlation of association frequencies among
Humans, GPT, and Llama. For readability, values were
log1p-transformed (adding 1 before taking the natural
logarithm). The upper triangle displays Pearson corre-
lation heatmaps, the lower triangle shows scatter plots
with fitted regression lines, and the diagonal provides
histograms of Freq.R123 distributions. (Freq.R123 is
defined as the number of times being an associate, re-
gardless of cue(s), across all associates (R1, R2, and
R3) collected in the experiment). ***: p < 0.001.

Figure 8: Top 100 words ranked by association fre-
quency in Llama.

Figure 9: Pearson correlation coefficients for random-
walk measures based on all associates (R1, R2, R3) from
the Human, GPT, and Llama datasets. ***: p < 0.001.

Figure 10: Clustering coefficients in the semantic net-
works of Human, GPT, and Llama. **: p < 0.01; ***:
p < 0.001.
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Table 1: Pearson and partial correlations between association frequency and lexical processing RTs, along with
Steiger’s Z tests comparing model correlations and human correlations. Significance in Steiger’s Z tests indicates
misalignment with human association frequency–RT correlation size.

Pearson correlation Steiger’s Z test Partial correlation Steiger’s Z test

r p N Z p r p N Z p

Lexical decision
Human 0.54 <0.001 11,928 – – 0.27 <0.001 11,928 – –
GPT 0.39 <0.001 11,928 21.18 <0.001 0.18 <0.001 11,928 18.99 <0.001
Llama 0.33 <0.001 11,928 27.10 <0.001 0.13 <0.001 11,928 12.48 <0.001

Naming
Human 0.39 <0.001 11,968 – – 0.18 <0.001 11,968 – –
GPT 0.25 <0.001 11,968 12.96 <0.001 0.08 <0.001 11,968 7.35 <0.001
Llama 0.22 <0.001 11,968 16.07 <0.001 0.05 <0.001 11,968 9.34 <0.001

Semantic decision
Human 0.31 <0.001 3,932 – – 0.19 <0.001 3,932 – –
GPT 0.17 <0.001 3,932 7.27 <0.001 0.05 0.002 3,932 6.54 <0.001
Llama 0.25 <0.001 3,932 3.82 <0.001 0.15 <0.001 3,932 2.19 0.03

Table 2: Pearson correlation and Steiger’s Z test results for random walk measures between Human, GPT, and
Llama on MEN, MTurk, and SimLex999 benchmarks.

Pearson correlation Steiger’s Z test

Benchmark Model r p Z p

MEN Human 0.80 <0.001 – –
GPT 0.79 <0.001 1.80 0.07
Llama 0.77 <0.001 3.15 0.002

MTurk Human 0.77 <0.001 – –
GPT 0.77 <0.001 0.39 0.70
Llama 0.71 <0.001 2.06 0.04

SimLex-999 Human 0.66 <0.001 – –
GPT 0.67 <0.001 0.13 0.90
Llama 0.66 <0.001 1.08 0.27

Figure 11: Entropy values for cue words across Human,
GPT, and Llama data. ***: p < 0.001.

Figure 12: Entropy differences in association for gender
groups across Human, GPT, and Llama datasets. ***:
p < 0.001.
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Figure 13: Entropy differences in association for age groups across Human, GPT, and Llama datasets.
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Abstract

This paper introduces VORM, an unsupervised
morphological segmentation system, leverag-
ing translation data to infer highly accurate
morphological transformations, including less-
frequently modeled processes such as infixa-
tion and reduplication. The system is evaluated
on standard benchmark data and a novel, ty-
pologically diverse, dataset of 37 languages.
Model performance is competitive and some-
times superior on canonical segmentation, but
more limited on surface segmentation.

1 Introduction

While supervised neural models achieve near-
ceiling performance on morphological segmenta-
tion (Batsuren et al., 2022), unsupervised systems
leave ample room for improvement, despite recent
progress (Virpioja et al., 2013; Narasimhan et al.,
2015; Eskander et al., 2020; Xu et al., 2020). Super-
vised techniques can furthermore only be used for
several dozen languages, whereas corpus data and
word lists are available for many more. Progress on
unsupervised learning is thus desirable to improve
the cross-linguistic scope of morphological seg-
mentation. The downstream benefit of morphologi-
cal segmentation for training language models has
been debated (Sälevä and Lignos, 2023), but mor-
phological segmentation has further applications
in comparative linguistics: for instance, to study
patterns in massively parallel corpora (Liu et al.,
2023), or to support semi-automated interlinear-
glossing methods (McMillan-Major, 2020).

Contribution #1 of this paper is an unsupervised
morphological segmentation system that leverages
parallel translation data and best-first heuristics in-
spired by Lignos (2010) to constrain the hypothesis
space. This allows it to accurately infer a broader
array of morphological processes (infixation, redu-
plication). The system outperforms, for metrics
that reflect canonical than surface segmentation,

state-of-the-art unsupervised morphological mod-
els for many languages.

With those linguistic goals in mind, evaluation
on a more diverse set of languages is further desir-
able. Existing benchmark datasets reflect only a
small part of the diversity in morphological typol-
ogy, with notable absences of extremely common
processes like reduplication (Todd et al., 2022).
Furthermore, all languages come from the Eurasian
continent, thus reflecting an areally narrow set of
languages. Contribution #2 of this paper is to
present a method of using a corpus of interlinearly-
glossed fieldwork data in 37 typologically and are-
ally more diverse languages (Seifart et al., 2024) to
generate (both supervised and unsupervised) train-
ing data as well as evaluation data with a repro-
ducible training/development/test split.

Materials for the project are at https://github.
com/dnrb/vorm. After further introducing the
backgrounds to this work (§2), I will introduce the
novel system (§3) and the cross-linguistic data (§4).
The experimentation will be set out in §5, with its
empirical results in §6.

2 Background

2.1 Unsupervised morphological segmentation

The Morfessor model (Virpioja et al., 2013) forms
a baseline for unsupervised morphological segmen-
tation. It leverages word-internal statistical patterns
of character sequences, leading to surface segmen-
tations of the input string. A recent, linguistically
inspired, model that similarly leads to surface seg-
mentations is Eskander et al. (2020)’s MorphA-
Gram, which trains Adaptor Grammars (Johnson
et al., 2006) on surface strings, representing seg-
mentation as a context-free grammar parsing prob-
lem.

Other unsupervised models leverage the insight
that morphological processes do not merely carve
up a surface string, but transform base forms into
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derived forms, that are often not just superstrings
of the base form – transforming believe into
believing requires dropping the e.1 Modeling
such processes accurately would allow us to repre-
sent the canonical segmentation (Kann et al., 2016)
of a surface string, i.e., recognizing that believe
in the (surface segmented form) believ+ing con-
tains the same canonical morpheme as believe+s.

An early exponent of this class of models is
Morsel (Lignos, 2010), which uses a best-first
heuristic that maximizes the data coverage of the
inferred transformations, leading to derivations con-
sisting of chains of transformations. A similar
model pair, leveraging more global optimization
over the search space of transformations, is Mor-
phochains (Narasimhan et al., 2015) and Morpho-
forests (Luo et al., 2017). Like Morphoforests,
ParaMA2 (Xu et al., 2020) explicitly considers
paradigms, groups of transformations that co-occur
as a further building block to their model, on top of
using the idea that transformations form chains.

Here, I adopt many of the premises of the cited
works: heuristic search, constrained by using word
pairs and paradigms, and representing morphologi-
cal processes as transformations.

2.2 Leveraging translations
Parallel translation data has, in several domains,
been proven to help guide (otherwise) unsupervised
models towards the right regions of the hypothe-
sis space. Most pertinently, Rice et al. (2024) use
translations of a target language to a reference lan-
guage to provide an additional semantic signal in a
supervised system, in similar ways to Narasimhan
et al. (2015) and Schone and Jurafsky (2001), to
determine morphological segmentation: formally
overlapping words in the target language translat-
ing to the same or semantically similar words in
the reference language are thus more likely to be
segmented similarly.

Beyond morphology, translation data has been
used to project structure of a better-resourced ref-
erence language to a target language – examples
are PoS tagging and grammatical structure (Jo-
hannsen et al., 2016). Word-sense disambiguation
has been shown to benefit from using translation
data, given that distinct senses often translate dif-
ferently (Apidianaki, 2008; Hauer and Kondrak,
2023). Shared between all cases is the idea that a
reference language provides insight in the latent

1Character strings are represented throughout with the
typewriter font.

structure (semantic distinctions, grammatical rela-
tions, shared morphological material) of the tar-
get language, either through the projection of that
structure or through the variation in the patterns of
translation themselves. My approach leverages this
latter type of signal.

2.3 Morphological typology
When we approach unsupervised morphological
segmentation as a task of being able to induce
for any language the (canonical or superficial)
morphological segments without having access to
the correct segments to train on, it is paramount
to consider the variation in morphological pro-
cesses across languages. A typologically-oriented
overview of morphology is Haspelmath and Sims
(2010), who draw on the distinction between free
morphemes (which can occur as a word by them-
selves) and bound morphemes (which cannot) to
list the following basic processes:

First, affixation involves concatenating bound
morphemes to a free morpheme, such as believe
+ -ing. This includes infixation, whereby a bound
morpheme is located inside the free morpheme –
such as the Tagalog ‘agent trigger’ morpheme -um-
forming s-um-alat ‘wrote’ out of salat ‘write’.
Next, compounding involves concatenating two or
more free morphemes, like boathouse from boat
and house. Third, reduplication means reproduc-
ing a part of a free morpheme on either end of
that morpheme – marginal in English (e.g., house
house ‘a real house’), but widely productive in
other languages, e.g. duhp ‘dive’→ du-duhp ‘be
diving’ (Ponapean). Fourth, base modification in-
volves changing the string ‘inside of’ the free mor-
pheme, e.g. English ablaut (gave as the past tense
of give) or stem-internal gemination as the mor-
phological causative in Standard Arabic (waqafa
‘stop (intransitive)’→ waqqafa ‘stop (transitive)’).
Finally, in conversion the form is unaltered but
the grammatical category changes, e.g., English
hammer can be used as a noun or verb.

Given this diversity, the focus on non-
reduplicative affixation alone is narrow. Redupli-
cation is, for instance, extremely common: over
80% of languages have some form of it (Rubino,
2013). A smaller set of languages has stem-internal
modifications such as ablaut or tone change (Bickel
and Nichols, 2013) – Yu (2007) finds infixation in
111 languages from 26 language families.

Surface segmentation models such as Morfessor
and MorphAGram inherently rule out infixation
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wr ct m

cảm $danke$ danke
cảm fuehl bauchgefuehl ehrgefuehl fuehl

fuehle fuehlen fuehlst fuehlt
fuehlte fuehlten gefuehl
gefuehle gefuehlen gefuehllos
(40 more)

Table 1: Examples of extracted morphological families.
Orthography follows the Morphochallenge 2010 format.

and base modification, and typically do not iden-
tify reduplication as distinct from regular affixa-
tion (but see Todd et al., 2022). Most models of
canonical segmentation do not consider processes
of reduplication and base modification, with no-
table exceptions being ParaMA2 (Xu et al., 2020).
The present work develops this line of research.

3 The VORM model

The proposed model, VORM (‘Vertaling Onderste-
unt Redelijke Morfologie’ – Dutch for ‘Translation
supports reasonable morphology’) is a heuristic
system that leverages translation equivalency in a
reference corpus to find an initial set of morpho-
logical transformations, which it then applies more
broadly. The model consists of three steps: De-
termining potential morphological families [S1],
which guide the learning of productive morpho-
logical transformations [S2]. Next, the learned
transformations are applied beyond the potential
morphological families by propagating the inferred
transformations to the full vocabulary [S3]. Figure
1 presents a simplified illustration of the model to
follow along with the technical introduction.

3.1 S1: Determining morphological families

One common challenge in unsupervised systems
that use word pairs (Narasimhan et al., 2015; Xu
et al., 2020) is to avoid oversegmentation. Re-
current phonotactic or orthographic patterns may
lead to the induction of spurious transformations.
Narasimhan et al. (2015) use distributional seman-
tic information to nudge the model away from un-
related pairs and towards related pairs, building
on the insight of Schone and Jurafsky (2001) that
distributional semantic representations are often
similar for morphological variants. Here, I propose
to use another way to constrain the comparison,
namely bitexts and word alignments.

The general procedure is as follows: we con-
sider a bitext B of translations between a target

language t and a reference language r, defined
as B = [⟨u1r , u1t ⟩, ⟨u2r , u2t ⟩, . . . ⟨unr , unt ⟩], mean-
ing that B consists of an ordered list of paired
translation-equivalent utterances ⟨ur, ut⟩. Let fur-
ther the utterances u1l . . . u

n
l for a language l be

made up of words from some vocabulary Vl.
The goal is to retrieve sets of word types in t that

are likely morphologically related to each other, to
feed into the next step. We call such a set a ‘mor-
phological family’ (cf. Nagy et al., 1989), denoted
m ∈M , where M is a set of morphological fami-
lies. Several functions could be defined mapping
the bitext B onto a set of morphological families
M . Word alignment models are a sensible candi-
date, except for the fact that morphologically rich
target languages have a long tail of morphologically
complex words which risk not getting accurately
aligned, as indeed found by Beekhuizen (2025).

Instead, I use here the forward step of the Con-
ceptualizer model of Liu et al. (2023), which, given
a seed word wr in the reference language r, iter-
atively finds character substrings [c1t , c

2
t , . . . c

n
t ] of

words in t whose distribution across the utterances
in B is statistically most strongly associated with
the distribution of wr. Each such substring ct de-
fines a morphological family m as all word types
w1
t , w

2
t , . . . w

n
t that (1) contain ct as a substring,

and (2) occur in an utterance uit whose aligned
counterpart in r, uir, contains the seed word wr.

Table 1 presents examples of morphological fam-
ilies, using the seed language (Vietnamese) and cor-
pora introduced below. Vietnamese cảm ‘feel’ has
two ct: $danke$ ($ = word boundary) and fuehl.
The morphological family of $danke$ definition-
ally only contains danke itself, whereas fuehl
matches many (related) words in the bitext in which
it co-occurs with cảm. Figure 1a presents a mor-
phological family found for an English-to-Dutch
mapping, used here as our guiding example.

3.2 S2: Learning productive transformations
The morphological families are next used to learn
productive transformations in Step 2. This proce-
dure closely follows Morsel (Lignos, 2010). This
step starts with initializing a set F of candidate
transformations f1, f2, . . . , fn. The procedure iter-
ates over all m ∈ M . For each m, each possible
pair ⟨wi

t, w
j
t ⟩ in m is considered. All transforma-

tions from a set of allowed transformations Fall that
transform wi

t into wj
t are added to F .

Fall is defined to represent the typological diver-
sity of morphological processes. The following are
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(a) Step 1: Determining morphological families. (b) Step 2: Retrieving all possible pairwise transformations.

(c) Step 2: Best-first pass determining derivations. (d) Step 3: Expanding the transformations.

Figure 1: Simplified illustration of the 3 steps of VORM, given English (reference) and Dutch (target).

the allowed types of transformations on the right
edge of the string (mirrored transformations are
defined for the left edge):
Suffixation: add characters to the right edge of
wi
t so that the result is wj

t . For instance: belief–
beliefs is modeled by -s suffixation;
Suffixation with assimilation: remove 1 or 2 char-
acters from the right edge of wi

t and then add any
string of characters to the (new) right edge, so that
the result is wj

t : believe–believing is modeled
by -e/ing suffixation;
Full right reduplication; a string of length n on
the right edge of wi

t is suffixed to wi
t to form wj

t :
The Fanbyak pair ini–inini ‘to shoot’ is mod-
eled by full right reduplication of ∼ni (with tildes
representing reduplication);
Partial-V right reduplication; all strings of one
or more vowels2 in wi

t and wj
t are replaced by a

wildcard symbol @, forming the new strings wi′
t and

wj′
t . Next, a string s of the length n on the right

edge of wi′
t is suffixed to wi′

t to form wj′
t : Gorwaa

guus–guusas are modeled this way, reduplicating
the final consonant s, preceded by a.
Partial-C right reduplication; all strings of one
or more consonants in wi

t and wj
t are replaced by

the rightmost consonant in the string, forming the
new strings wi′

t and wj′
t . Next, a string s of the

length n on the right edge of wi′
t is suffixed to wi′

t

to form wj′
t . Partial-C left reduplication is more

2Vowels are characters that, when stripped of diacritics,
are one of {a,e,i,o,u,y}. Any other character is a consonant.

common: Pangasinan (Rubino, 2001) transforms
plato ‘plate’ into paplato ‘plates’ by taking the
leftmost single consonant and vowel of a string and
adding them to the left edge of that string.

Right infixation; for a pair of words wi
t and wj

t ,
removing a string si of length n from an anchor a in
wi
t results in a new string wi′

t , and removing a string
sj of length m from the same anchor a in wj

t results
in a string wj′

t . If wi′
t is identical to wj′

t , the pair
of words is modeled by a-anchored right infixation.
Anchors are structural positions in the orthographic
string constraining where the infix is combined
(Yu, 2007), and I use 4 here: before vs. after the
last consonant cluster, and before vs. after the last
vowel cluster. English give-gave are modeled by
replacing si = i for sj = a, given that wi′

t =wj′
t =gve,

anchored on a = before-last-consonant-cluster.

Figure 1b illustrates the set of transformations
(labels on the directed edges) for the guiding ex-
ample: the morphological family $va reflects two
‘real’ lemmas: vang ‘catch [someone]’ and vat
‘catch [a disease]’. Not ‘knowing’ this, the model
tries all possible transformations (as defined below)
between any pair of word forms, such as -te suffix-
ation between vat and vatte, but also (incorrectly)
ng-infixation between vat and vangt.

Next, a best-first heuristic extracts a set of pro-
ductive transformations Fp ⊆ F . The intuition
here is that a productive morphological transforma-
tion is one that models many word pairs. Let P be
the set of all word pairs ⟨wi

t, w
j
t ⟩ such that there
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is at least one morphological family m for which
wi
t ∈ m∧wj

t ∈ m, and Pf all such word pairs mod-
eled by a transformation f . We then define the best
transformation fbest = argmaxf |Pf |.3 Once fbest
is found, the word pairs in Pfbest are removed from
P , as are all other word pairs whose second word
is modeled by fbest. The procedure is repeated until
|Pfbest | < θf , where θf is a pre-set threshold.

Figure 1c illustrates a possible resulting state
in our example: common suffixes like -t and -en
are extracted to form derivations between vang
and vangt or vangen, while transformations with
fewer instances, such as -t/ngen modeling the
transformation from vat to vangen, are eliminated
at this stage.

The derivations found through the best-first
heuristic afford two sources of constraints on the
application of Fp in the full vocabulary in the next
Step. First, derivations form chains: bookings
may have been derived from booking with -s suf-
fixation, after which booking was derived from
book through -ing suffixation. We denote the
chain or derivation d as ⟨-ing, -s⟩, and we collect
all attested chains of transformations. Secondly,
chains co-occur with other chains – this can simi-
larly help prevent oversegmentation in ways set out
below. For now, we define a pair of chains of trans-
formations di, dj to co-occur if there is at least one
base form that both models some wi through di and
some other wj through dj .

An additional procedure allows us to find com-
pounds, using the morphological families. We do
so by inferring a set of compound templates, strings
of n elements. The template consists of n− 1 fixed
elements, and a blank spot where another word
wt ∈ Vt can go. We find the set of reliable com-
pound templates by iterating over all m ∈ M .
For each word w ∈ m, we find all of its exhaus-
tive splits wi, wj for which wi ∈ Vt ∧ wj ∈ Vt

and wi ∈ m ∨ wj ∈ m. The latter constraint
provides evidence that this is indeed a compound.
For example, bauchgefuehl in Table 1 yields two
potential compound patterns ⟨bauch + ⟩ and
⟨ + gefuehl⟩, as both bauch ‘belly’ ∈ Vf and
gefuehl ∈ Vf , with the latter moreover being part
of m as well (as can be seen in the table). If a pair
wi, wj is found that forms a reliable compound
template, we recursively apply the procedure to
each element of the pair to see if further splits can

3Ties are broken first by morphological type, where the
ordering given above is followed, then by affix length (longer
affixes are preferred).

be found. The count of the reliable compound
templates is tracked across M , and all reliable com-
pound templates with a frequency of θc or greater
are kept to constrain compounding in Step 3.

3.3 S3: Propagation to the full word list
The derivations obtained in Step 2 are typically ac-
curate, but only capture a small part of a language’s
vocabulary. First, not all morphologically related
words in the bitext are found in the same morpho-
logical family m (such as Dutch gevangen, the
past participle of vang in Figure 1d), but perhaps
more importantly, we would like the unsupervised
model to be able to generalize beyond the bitext
itself. As such, Step 3 models the propagation of
the productive transformations Fp, constrained by
the set of chains and chain co-occurrences, to a
wordlist L, where L may consist of all words in B,
or some external source.

First, for each word w ∈ L, all transformations
chains that can apply to it are extracted and added
to a set of potential analyses A(w) of w. A chain
d = ⟨f1, f2, . . . , fn⟩ is applicable to a word w if,
for every transformation f , a new string w′ can be
derived by removing the string added by f from
the previously derived string w, where new strings
do not have to be in Vt. The resulting new string
after successfully applying d to w is denoted s for
stem, and is added to a list of potential stems S.

Every stem s ∈ S now defines a set of words
D(s) = {wi, . . . , wn}, each of which derives s
through the application of a chain d. However,
some s with very large D(s) did not reflect coher-
ent morphologically related groups of words. For
that reason, we impose a further constraint, such
that every derivational chain d modeling the rela-
tion between a word w ∈ D(s) and s has to be
found to co-occur, as defined in Step 2, with the
derivational chains of at least half the other words
in D(s). If this is not the case, the word whose
derivation co-occurs with the fewest derivations
of the other words of D(s) is removed from D(s).
This procedure is repeated until the set consists of
one member, or the derivations of all words in D(s)
co-occur with at least half the other words in D(s).

The central mechanism of this step is a best first
pass, similar to Step 2, except the model now iter-
atively finds the stem sbest that models the largest
D(s) (with ties broken by stem length, preferring
shorter stems). Once found, all words in D(sbest)
are removed from D(s′) for all stems s′ ∈ S, and
a new sbest is determined. Figure 1d illustrates: the
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words vatten and gevangen are not part of the
morphological family but can be modeled with pro-
ductive transforms that form attested chains from
words that are in the morphological family.

After this pass is done, compounds are extracted
over all extracted sbest by applying the reliable
compound templates from Step 2. If the substring
s filling the blank is a word in Vt, compounding
applies, and the new derivation has more than one
stem (potentially each with their own derivations).

4 DORECO-MORPH: crosslinguistic data

The representational potential of VORM, includ-
ing reduplication and infixation, exceeds the set of
morphological phenomena present in the datasets
typically used. Reduplication and infixation are
absent from widely used benchmark sets such
as Morphochallenge 2010 (Kurimo et al., 2010).
A corpus that can be fill this gap is DoReCo
(https://doreco.huma-num.fr/; Seifart et al.,
2024), consisting of collections of transcribed field-
work materials in 52 languages. Much of these
materials have interlinear glosses, exemplified in
Table 3, where for each word, the morphological
analysis is given. Such data allow us to derive a
list of words with their morphological analyses,
which in turn can be used to train (un)supervised
morphological segmentation systems and evaluate
them.

The Supplemental Materials for this paper con-
tain a script for deterministically transforming the
corpus data into a dataset in the same format
as the Morphochallenge data, with word types
linked to their canonical and surface segmenta-
tion(s). In particular, the unique words (the w
layer in Table 3) are linked to all their morpho-
logical analyses, represented as combinations of
the morphemes (m) and the glosses (g). An
analysis of Savosavo ghavilighue would thus
be: ‘ghavi:paddle -li:3SG.M.O -ghu:NMLZ
=e:EMPH’. Some preprocessing to normalize or-
thography and glossing was applied.

These data can be readily used for computational
morphology (and perhaps other tasks such as inter-
linear gloss induction, cf. McMillan-Major, 2020).
The script also generates a train/development/test
split over the data to facilitate experimentation.
While the derived data cannot be published un-
der the corpus licence, their generation is exactly
reproducible. The datasets used, along with rele-
vant statistics on the derived data, are presented in

Table 2 in the Appendices. This table also gives
the citation for each individual language, required
as part of the user agreement of the corpus.

Morphological profiles of the 37 languages are
presented in Appendix A (alongside similar pro-
files for the MC10 and MC22 data, for compari-
son). The average number of morphemes ranges be-
tween 1.17 and 3.26 per language in the DORECO-
MORPH dataset, representing a broad variety of
morphological complexity. Moreover, for all lan-
guages, there is at least some difference between
the canonical forms and the surface strings (cf. Fig-
ure 5), suggesting that more than the mere place-
ment of surface string boundaries is necessary to
adequately represent the morphological structure
of most languages. While little evidence of (the
annotation of) infixation or base modification was
found among the languages, reduplication is exten-
sively represented in the corpus: a majority (22/37)
of languages display some form of reduplication,
with some languages having over 10% of their word
types display reduplication. This underscores the
point of Todd et al. (2022) that being able to repre-
sent reduplication is necessary for a truly multilin-
gual unsupervised morphological model.

5 Evaluation

Evaluation data First, VORM is compared with
other models on two benchmarks: Morphochal-
lenge 2010 (MC10; Kurimo et al., 2010), with gold
data for English, Finnish, Turkish, and German
canonical and surface (for all but German) segmen-
tation, and the SIGMORPHON 2022 task on sur-
face segmentation (SGM22; Batsuren et al., 2022)
for eight languages. Next, we consider the novel
DORECO-MORPH dataset of 37 languages.
Evaluation metrics The standard metrics were
applied. First, EMMA-2 (Virpioja et al., 2011)
measures the precision and recall between the gold
(canonical) segmentation and the predicted segmen-
tation by inferring mappings between gold and pre-
dicted morpheme labels that optimize Precision
and Recall, thus solving the problem of poten-
tially differing morpheme labels. It is applied to
both datasets with canonical forms: MC10 and
DORECO-MORPH. Second, Boundary Precision
and Recall (BPR; Batsuren et al., 2022) measures
the F1 score of the proportion of predicted bound-
aries found in the gold data (precision) and con-
versely the proportion of gold data boundaries pre-
dicted (recall) for all datasets. While commonly
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language (glottocode; family; area; reference) language (glottocode; family; area; reference)

Yali (apah1238; Nuclear Trans New Guinea; PNS; Riesberg, 2024) Nisvai (nisv1234; Austronesian; PNS; Aznar, 2024)
Arapaho (arap1274; Algic; NAM; Cowell, 2024) N——ng (nngg1234; Tuu; AFR; Güldemann et al., 2024)
Baı̈nounk Gubëeher (bain1259; Atlantic-Congo; AFR; Cobbinah, 2024) Northern Kurdish (nort2641; Indo-European; ERS; Haig et al., 2024)
Beja (beja1238; Afro-Asiatic; AFR; Vanhove, 2024) Northern Alta (nort2875; Austronesian; PNS; Garcia-Laguia, 2024)
Bora (bora1263; Boran; SAM; Seifart, 2024) Fanbyak (orko1234; Austronesian; PNS; Franjieh, 2024)
Cabécar (cabe1245; Chibchan; NAM; Quesada et al., 2024) Pnar (pnar1238; Austroasiatic; ERS; Ring, 2024)
Cashinahua (cash1254; Pano-Tacanan; SAM; Reiter, 2024) Daakie (port1286; Austronesian; PNS; Krifka, 2024)
Dolgan (dolg1241; Turkic; ERS; Däbritz et al., 2024) Ruuli (ruul1235; Atlantic-Congo; AFR; Witzlack-Makarevich et al., 2024)
Evenki (even1259; Tungusic; ERS; Kazakevich and Klyachko, 2024) Sanzhi Dargwa (sanz1248; Nakh-Daghestanian; ERS; Forker and Schiborr, 2024)
Goemai (goem1240; Afro-Asiatic; AFR; Hellwig, 2024) Savosavo (savo1255; Isolate; PNS; Wegener, 2024)
Gorwaa (goro1270; Afro-Asiatic; AFR; Harvey, 2024) Nafsan (sout2856; Austronesian; PNS; Thieberger, 2024)
Hoocak (hoch1243; Siouan; NAM; Hartmann, 2024) Sümi (sumi1235; Sino-Tibetan; ERS; Teo, 2024)
Jahai (jeha1242; Austroasiatic; ERS; Burenhult, 2024) Tabasaran (taba1259; Nakh-Daghestanian; ERS; Bogomolova et al., 2024)
Jejuan (jeju1234; Koreanic; ERS; Kim, 2024) Teop (teop1238; Austronesian; PNS; Mosel, 2024)
Kakabe (kaka1265; Mande; AFR; Vydrina, 2024) Texistepec Popoluca (texi1237; Mixe-Zoque; NAM; Wichmann, 2024)
Kamas (kama1351; Uralic; ERS; Gusev et al., 2024) Mojeño Trinitario (trin1278; Arawakan; SAM; Rose, 2024)
Komnzo (komn1238; Yam; PNS; Döhler, 2024) Urum (urum1249; Turkic; ERS; Skopeteas et al., 2024)
Movima (movi1243; Isolate; SAM; Haude, 2024) Vera’a (vera1241; Austronesian; PNS; Schnell, 2024)
Dalabon (ngal1292; Gunwinyguan; AUS; Ponsonnet, 2024)

Table 2: Languages in the DORECO-MORPH dataset. The macroareas are: PNS = Papunesia, NAM = North
America, SAM = South America, AFR = Africa, ERS = Eurasia, AUS = Australia.

w melo bo lo ghavilighue.
m melo bo lo ghavi -li -ghu =e
g tuna go 3SG.M paddle -3SG.M.O

-NMLZ =EMPH
f “he went and fished bonito with it.”

Table 3: Interlinear Gloss; Savosavo (Wegener, 2024)

used, it is a less linguistically insightful metric, as
(per Figure 5) non-identity between the canonical
morphemes and the surface string is crosslinguisti-
cally extremely common.
Training data The bitexts used for MC10 and
SGM22 were (up to) a million words of bitext from
Opus2018 (Lison and Tiedemann, 2016) subtitles
from www.opensubtitles.org/. Vietnamese was
chosen as the reference language as it has little
morphology. Bitexts for German and Turkish were
orthographically normalized with the test data. For
the DORECO-MORPH experiment, bitexts were
generated from the corpora, using the w and f lay-
ers (cf. Table 3). Free translations were mostly in
English, with some in Malay, Spanish, and others.
Comparison models For the MC10 and SGM22,
I compare VORM against published results, but
add Morfessor2 (Virpioja et al., 2013) to the lat-
ter as an unsupervised baseline. For DORECO-
MORPH, I run Morfessor2, ParaMA2 (Xu et al.,
2020), and MorphAGram (Eskander et al., 2020)
(in the language-independent setting) as unsuper-
vised models, and Chipmunk (Cotterell et al.,
2015), as a supervised model. The unsupervised
models were trained on the full wordlists, and Chip-
munk on the training split (48% of the data), and

were tested on the test split (40% of the data).
Tuning Models were tuned on each dataset in-
dividually, using the standard splits of MC10 and
SGM22, and the proposed split (12% of the data of
each language) for DORECO-MORPH. To better un-
derstand the performance of the VORM model, an
ablation experiment was furthermore run, leaving
out Step 1 (‘-S1’) by instead having one single mor-
phological family containing all vocabulary items,
not extracting compounds (‘-C’), and leaving out
Step 3 (‘-S3’). As the optimal hyperparameters for
these settings may differ from the unablated ver-
sion of VORM, tuning was done on each individual
ablation variant. Details and results (hyperparame-
ter settings and accuracy metrics) of the tuning for
all models and ablation variants can be found in
Appendix B. Below, I will report test data results on
the best-tuned model per model/ablation variant.

6 Results

6.1 Results by dataset

MorphoChallenge 2010 results. Table 4 presents
the results for MC10. First, we focus on the metric
for canonical segmentation, EMMA-2. Across the
four languages, VORM has the highest average F1

score at 90.0. For the individual languages, we
find that VORM presents a substantial improvement
over MorphAGram and Morfessor for Finnish, Ger-
man, and Turkish, but not for English, where Mor-
phAGram outperforms VORM. Considering the
ablation steps, we find that for some languages
not using the translation equivalences in Step 1
(‘-S1’) or not finding compounds (‘-C’) improves
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EMMA-2 BPR
morf AG VORM -C -S1 -S3 morf AG VORM -C -S1 -S3

English 85.9 88.7 84.1 84.1 91.2 56.6 75.2 80.0 54.0 52.9 43.1 40.6
Finnish 73.4 77.7 94.9 95.0 92.9 46.4 62.8 71.1 24.8 23.6 25.1 40.6
German 80.9 85.9 93.7 93.9 93.2 41.3 n/a
Turkish 61.3 69.3 87.3 86.0 78.9 28.3 64.6 78.9 24.2 23.3 23.2 19.0

avg. 75.3 80.4 90.0 89.7 89.0 43.1 67.5 76.7 34.3 33.3 30.5 24.1

Table 4: Model comparison on the development sets for Morphochallenge 2010 [MC10], comparing Morfessor
(Morf) and the best MorphAGram (AG) model against VORM with ablation variants, on EMMA-2 and BPR F1

scores. The best result per language and per metric is boldfaced.

DeepSPIN-3 morf VORM -C S1 S3

Czech 93.84 28.71 28.18 27.12 25.75 6.34
English 93.63 49.90 41.85 33.17 40.63 10.80
French 95.73 23.63 20.33 21.67 20.31 3.99
Hungarian 98.72 34.47 34.43 33.67 32.44 32.44
Italian 97.43 11.84 11.35 12.50 11.40 2.39
Latin 99.39 17.77 12.92 13.25 12.98 4.10
Russian 99.35 11.46 15.60 18.56 14.42 0.65
Spanish 99.04 9.23 17.99 19.06 17.96 1.25

avg. 97.29 23.38 20.82 20.67 20.07 7.41

Table 5: Model comparison on the tests sets for the
SIGMORPHON 2022 challenge comparing DeepSPIN-
3 (supervised) and Morfessor2 against VORM and its
ablation variants on the Batsuren et al. (2022) evaluation
measure. The best unsupervised result per language is
boldfaced; the best result overall underlined.

the quality of the model, suggesting that further
development of these components might be neces-
sary. Removing the extension to the full vocabulary
(‘-S3’) is, however, consistently detrimental.

On the surface segmentation measure of BPR,
VORM is substantially outperformed by Morfessor
and MorphAGram. This effect may be due to the
differences between the metrics: EMMA-2 favours
canonical morpheme identity, but does not penal-
ize allomorphy, which is indistinguishable from
undersegmentation to the model. The same under-
segmentation leads to extremely low (often single
digit) recall scores on the BPR measure for VORM.

SIGMORPHON 2022 results. For the SGM22,
only surface segmentation is considered, using the
metric provided by the task. The results are pre-
sented in Table 5. While no unsupervised model
performs even close to the supervised models (here,
the best-performing supervised model DeepSPIN-
3, Peters and Martins, 2022, is given as a reference
point), VORM without compounding (‘-C’) occa-
sionally outranks Morfessor2 in its performance.
This further underscores the previous observation
that VORM does not excel in surface segmentation.

DORECO-MORPH. Finally, Table 6 present the
aggregated results for VORM and comparison mod-
els over the 37 DORECO-MORPH languages, with
Table 15 in the appendices presenting the EMMA-
2 scores per language. For the EMMA-2 scores,
unablated VORM outperforms the other unsuper-
vised models for 20/37 languages (32 if considering
the ablated variants). MorphAGram is the optimal
model for 1 language. Considering average model
performance, we find VORM outperforming other
unsupervised models by a substantial margin, com-
ing within a 2% range of the supervised Chipmunk
model. Notably, the language VORM performs
worst on still reaches an EMMA-2 score of 78.0,
while Chipmunk only scores 69.9 on its worst case
– with Morfessor also performing robustly at 77.1.
In the ablation experiment, we find that the effects
of leaving out compounding (‘-C’) are negligible,
and that not having Step 1 in many cases improves
performance (indeed, the worst case without Step 1
is slightly better than the worst case of unablated
VORM). Omitting Step 3 (‘-S3’) in all cases leads
to a substantial drop in performance.

For surface segmentation (BPR), however, the
performance is more mixed: here, Chipmunk is
the best overall model with a large margin, with
ParaMA2 being the best model for 15 languages,
and VORM for 21. Notably, leaving out Step 3 here
frequently leads to an improvement for VORM, ow-
ing perhaps to the fact that these are small datasets
for which the complete vocabulary is captured in
Step 1 (as opposed to the MC10 data, where the
corpus data only contained a subset of the test data),
and that as such extension beyond the morpholog-
ical families leads to more Precision errors than
improvement of Recall.

6.2 Discussion

On the whole, the results suggest that VORM is a
competitive model of canonical segmentation. On

609



EMMA-2 BPR
chip morf para AG vorm -S1 -C -S3 chip morf para AG vorm -S1 -C -S3

max? 4 1 20 11 1 1 15 5 1 15
avg. 91.4 86.1 80.3 84.6 89.9 88.6 89.9 69.1 86.9 56.9 57.0 34.3 58.8 46.6 58.2 60.4
worst 69.9 77.1 69.7 71.3 78.0 78.3 78.0 35.3 65.6 31.0 35.7 13.3 32.9 29.4 32.7 29.6

Table 6: Aggregated EMMA-2 & BPR F1 scores for the DORECO-MORPH dataset for [chip]munk (supervised),
[Morf]essor2, [Para]MA2 , Morph[AG]ram, and VORM with its ablation variants. Best unsupervised results in bold;
best overall results underlined.

word babarak vivirigĕm
gold ba∼:RED∼ bara:long -k:TAM1 vi∼:RED∼ virigĕ:rush -m:TAM1

chip babarak vivirig + ĕm
morf2 babara + k vivi + rig + ĕm
para babara + -k vi rig + -vi- + -em
AG babara + k vivi + rig + ĕm

vorm ba∼ + bara + -k vi∼ + virigĕ + -m

Table 7: Examples of reduplication in Vera’a (Schnell,
2024) and their analysis across models. Underscores
mark the infix slot; tildes mark reduplicative affixes.

morphologically complex languages like Finnish
and Turkish, its improvement over other unsuper-
vised models is substantial. The ablation experi-
ments paint a complicated picture of what leads
to these results – the addition of a compounding
component, and the ‘narrowing’ of the hypothe-
sis space through the use of morphological fami-
lies in Step 1 have only a small, and sometimes
even a negative, effect. The Precision-oriented fo-
cus of the compounding component may lead to
limited extraction of compounds. Step 1 may be
redundant with the filtering mechanisms of Step
2: when all words are compared with each other,
low-frequency transforms will be eliminated by
the frequency threshold, and frequent, but spurious,
transforms may be weeded out by being pre-empted
by a more frequent transform in the best-first pass.
However, for some languages (Turkish in MC10,
several DORECO-MORPH languages), the omis-
sion of Step 1 does come at a cost, suggesting that
narrowing by translation equivalence is not always
redundant.

On surface segmentation VORM does not per-
form as competitively. This can be attributed to
the lower Recall the model achieves here, and its
focus on canonical segmentation leading to vari-
able boundaries on the surface string. Importantly,
this contrast suggests that canonical and surface
segmentation are substantially different tasks.

The examples in Table 7 demonstrate the
model’s capacity to analyze reduplication. We see
that only VORM analyses the forms correctly, both

in its surface segmentations as well as in its canoni-
cal analysis, i.e., recognizing ba∼ and vi∼ as redu-
plicative morphemes. Other models either under-
segment the left edge of the words, or missegment
the word (paraMA, Morfessor).

None of our languages has productive base mod-
ification processes, but German has some, in nomi-
nal plurals and past tense. Given the low type fre-
quency of such Ablaut processes, the tuned model
did not learn these patterns, but a model with a
lower θf = 30, did analyze huehnerbesitzer
‘chicken owner’ correctly as hu hn + -e- + -er +
besitz + -er and geldbetraege ‘sums of money’
as geldbetra g -e- + -e.

7 Conclusion

This paper introduces VORM, a novel unsupervised
morphological segmentation system, which uses
translation-equivalency to narrow down the set of
word pairs on which the inferred morphological
transformations are based. Aside from affixation,
the model can represent base-modifying transfor-
mations and reduplication. Generalizing models
are induces through a pair of heuristic, best-first
processes. In doing so, the model stands in a tradi-
tion of unsupervised morphological segmentation
that does not consider very large parts of the hy-
pothesis space (Lignos, 2010; Xu et al., 2020) in
order to maintain high precision.

Further exploration on the DORECO-MORPH

dataset could identify more specific modeling chal-
lenges by breaking down the full dataset into lin-
guistically interesting subsets (cases with redupli-
cation, cases where the canonical form deviates
substantially from the surface form through assimi-
lation processes, etc.). Through such exploration,
and more detailed analysis of model performance
on different challenges, the landscape of what un-
supervised learners have to contend with might
become more clear. With this paper, I hope to have
made a first move in that direction.
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Mikko Kurimo, Sami Virpioja, Ville Turunen, and
Krista Lagus. 2010. Morpho challenge 2005-2010:
Evaluations and results. In Proceedings of the 11th
Meeting of the ACL Special Interest Group on Com-
putational Morphology and Phonology, pages 87–
95, Uppsala, Sweden. Association for Computational
Linguistics.

Constantine Lignos. 2010. Learning from unseen data.
In Proceedings of the Morpho Challenge 2010 Work-
shop, pages 35–38, Helsinki, Finland. Aalto Univer-
sity School of Science and Technology.

Pierre Lison and Jörg Tiedemann. 2016. OpenSub-
titles2016: Extracting large parallel corpora from
movie and TV subtitles. In Proceedings of the Tenth
International Conference on Language Resources
and Evaluation (LREC‘16), pages 923–929, Portorož,
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Nick Thieberger. 2024. Nafsan (south efate) doreco
dataset. In Frank Seifart, Ludger Paschen, and
Matthew Stave, editors, Language Documentation
Reference Corpus (DoReCo) 2.0. Laboratoire Dy-
namique Du Langage (UMR5596, CNRS & Univer-
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A Morphological profiles of the languages

A.1 Number of morphemes
The number of morphemes, as given in the gold
standard datasets is presented in Figures 2 (for
DORECO-MORPH), 3 (for MC10) and 4 (for
MC22).

A.2 Number of insertions and deletions
Only for the DORECO-MORPH data do we have
both the surface forms and the canonical forms; for
MC10, despite canonical morphemes being given,
the inflectional morphemes are mostly given in a
featural notation (‘+PL’, ‘+SUP’) and as such a
canonical string of phonological/orthographic seg-
ments cannot be faithfully extracted. For MC22,
only suface string segmentations are given.

The difference between the surface form and
the canonical form was calculated by running a
Wagner-Fisher algorithm (see Navarro, 2001, for
the complexity of authorship attribution of this al-
gorithm) on the two strings to compute the path of
maximal string overlap, allowing only for character
insertion and deletion operations. Any insertions
(the canonical form has more characters than the
surface form; e.g., believing for believe + -ing)
and deletions (the surface form has more characters
than the canonical form; e.g., barring for bar +
-ing) were counted.

Figure 5 presents the number of insertions and
deletion going from the surface form to the canoni-
cal form.

A.3 Prevalence of morpheme types
Per language, it was determined heuristically
whether a morpheme was free, reduplicative and
bound, or affixal and bound. Reduplicative mor-
phemes are consistently tagged with a tilde (‘∼’)
on their left or right edge in the DORECO-MORPH

data (and are absent from the MC10 data). Affixal
morphemes are marked with capitalized glosses
in DORECO-MORPH and either a grammatical
feature-style notation starting with ‘+’ (e.g., ‘+PL’)
or a grammatical category marking as ‘p’ (prefix)
or ‘s’ (suffix) in the MC10 data. Morpheme types
are undefined for the MC22 data.

Figure 6 presents the counts for the DORECO-
MORPH data, while Figure 7 presents the counts
for the MC10 data.
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Figure 2: Histogram of the number of morphemes in the DORECO-MORPH data.
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Figure 3: Histogram of the number of morphemes in the MC10 data.

Figure 4: Histogram of the number of morphemes in the MC22 data.
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Figure 5: Heatmap of the number of insertions (rows) and deletions (columns) going from the surface form to the
canonical form in the DORECO-MORPH data (darker means more instances).
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Figure 6: Histogram of the combinations of three morphological types in the lexical items of the DORECO-MORPH
languages. ‘base’ = morphologically symplex, ‘a’ = affixation; ‘r’ = reduplication; ‘c’ = compounding
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Figure 7: Histogram of the combinations of three morphological types in the lexical items of the DORECO-MORPH
languages. ‘base’ = morphologically symplex, ‘a’ = affixation; ‘r’ = reduplication; ‘c’ = compounding
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B Tuning experiments

The model was tuned on the development split
(12% of the data for each language) in the
DORECO-MORPH data, the training split for MC10
and the development split for SGM22. For each
task, and for each metric (EMMA-2 or BPR), the
best-performing set of hyperparameters of each
model (and of each ablation variant of the VORM

model) was selected.

B.1 DORECO-MORPH data

For VORM, the free parameters θf ∈
{3, 5, 10, 20} (minimum number of word
pairs modeled by a transformation in Step 2)
and θc ∈ {1, 5, 10, 20} (minimum number of
compound template occurrences for it to be used
in Step 3) using a grid search over the values. The
ablation over model components (-CMPD: no
compounding, -S1: no Step 1, i.e. comparing all
of the vocabulary in Step 2, -S3: no Step 3) was
done simultaneously, as optimal values for θf and
θc can be expected to vary across ablation steps.

Tuning scores are given in Table 8. As the op-
timal parameter settings do not line up across the
two measures, the parameter setting with the high-
est average across the two scores was selected per
ablation setting. In the main text, we report on
θf = 20, θc = 1 for no ablation and -CMPD,
θf = 20, θc = 20, for -S1, and θf = 3, θc = 1
for -S3.

For Morfessor, the model was tuned on the
three ways of using token counts (token counts
or: ‘token’, no counts or: ‘type’, and ‘log-counts’).
Scores are given in Table 9. Log-counts is on aver-
age the best-performing setting.

For ParaMA (Xu et al., 2020), I varied the mini-
mum stem length (∈ {1, 3}) and whether the model

ablation θc θf EMMA-2 BPR

1 3 90.48 42.48
1 5 90.60 46.57
1 10 89.62 51.51
1 20 85.73 56.62
5 3 90.63 42.43
5 5 90.80 46.47
5 10 89.78 51.37
5 20 85.82 56.42

10 3 90.65 42.43
10 5 90.83 46.46
10 10 89.80 51.25
10 20 85.86 56.29
20 3 90.65 42.43
20 5 90.83 46.46
20 10 89.80 51.22
20 20 85.88 56.15

-CMPD n/a 3 90.65 42.43
-CMPD n/a 5 90.83 46.46
-CMPD n/a 10 89.80 51.22
-CMPD n/a 20 85.88 56.09

-S1 1 3 87.25 30.02
-S1 1 5 87.88 30.21
-S1 1 10 88.52 33.21
-S1 1 20 88.71 40.80
-S1 5 3 87.42 30.03
-S1 5 5 88.53 30.24
-S1 5 10 89.39 33.23
-S1 5 20 89.21 40.70
-S1 10 3 87.42 30.03
-S1 10 5 88.53 30.24
-S1 10 10 89.69 33.25
-S1 10 20 89.52 40.63
-S1 20 3 87.42 30.03
-S1 20 5 88.53 30.24
-S1 20 10 89.69 33.25
-S1 20 20 89.77 40.52

-S3 1 3 76.71 59.74
-S3 1 5 76.48 59.53
-S3 1 10 76.17 59.06
-S3 1 20 75.55 58.42
-S3 5 3 76.70 59.70
-S3 5 5 76.48 59.45
-S3 5 10 76.17 59.00
-S3 5 20 75.55 58.39
-S3 10 3 76.70 59.69
-S3 10 5 76.47 59.45
-S3 10 10 76.16 58.93
-S3 10 20 75.56 58.33
-S3 20 3 76.70 59.69
-S3 20 5 76.47 59.44
-S3 20 10 76.17 58.92
-S3 20 20 75.55 58.27

Table 8: Average EMMA-2 and BPR scores on
DORECO-MORPH tuning data for the VORM model.
Best model scores per ablation (none, -CMPD, -S1, -S3)
boldfaced, best overall score (per metric) underlined.
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parameters EMMA-2 BPR

token 86.6 51.5
type 85.6 33.2
log-counts 88.2 48.4

Table 9: Average EMMA-2 and BPR scores on
DORECO-MORPH tuning data for the Morfessor model.
Best model scores boldfaced

parameters EMMA-2 BPR

−compound, min stem ≥ 1 78.7 41.5
+compound, min stem ≥ 1 78.7 41.5
−compound, min stem ≥ 3 83.3 53.5
+compound, min stem ≥ 3 83.3 53.5

Table 10: Average EMMA-2 and BPR scores on
DORECO-MORPH tuning data for the ParaMA model.
Best model scores boldfaced

parameters EMMA-2 BPR

default 86.7 23.1
reported 86.1 22.2
vaguer-G 85.8 22.4
sharper-G 86.2 22.1

Table 11: Average EMMA-2 and BPR scores on
DORECO-MORPH tuning data for the MorphAGram
model. Best model scores boldfaced

tried to find compounds. Table 10 presents the re-
sults. Compounding and a minimal stem length of
≥ 3 leads to the best setting on both metrics.

For MorphAGram (Eskander et al., 2020), the
primary two settings were the model defaults and
the reported values (in which the Gamma param-
eters of the py-cfg model (Johnson et al., 2006)
were set to pyb-gamma-s = 10 and pyb-gamma-
c = 0.1. As these parameters were found to be
effective before, tuning was undertaken in both di-
rections, resetting them to the default (‘vaguer-G’:
pyb-gamma-s= 1 and pyb-gamma-c= 1) and mak-
ing them more extreme (as suggested in the py-cfg
documentation: ‘sharper-G’: pyb-gamma-s= 100
and pyb-gamma-c= 0.01). No tuning of the Alpha
and Beta parameters of the py-cfg model was done
as the optimal tuned in the paper was the default.
Table 11 presents the results; the default setting
was consistently the optimal one.

For Chipmunk, no parameters were found that
would lead to differences in model performance.

B.2 MC10
For the MC10 data, only novel results were gen-
erated for VORM, with the other results being
cited from other papers. The free parameters
θf ∈ {30, 60, 100} (minimum number of word
pairs modeled by a transformation in Step 2) and
θc ∈ {10, 30, 60} (minimum number of com-
pound template occurrences for it to be used in
Step 3) were tuned using a grid search over the
values. As with the DORECO-MORPH data, the
ablation variants were tuned separately. The re-
sults are given in Table 12. The best average
parameter settings used for the test phase were
θf = 100, θc = 10 for no-ablation, both metrics,
θf = 100 for -C, θf = 100, θc = 100 for -S1,
EMMA-2, and θf = 100, θc = 30 for -S1, BPR,
and finally θf = 30, θc = 100 for -S3, EMMA and
θf = 60, θc = 100 for -S3, BPR.

B.3 MC22
For the MC22 data, the free parameters of VORM
θf ∈ {30, 60, 100} (minimum number of word
pairs modeled by a transformation in Step 2) and
θc ∈ {10, 30, 100} (minimum number of com-
pound template occurrences for it to be used in
Step 3) were tuned using a grid search over the
values. The results are given in Table 13. For
EMMA-2, values of θf = 100, θc = 100 were
found to be on average optimal for the no-ablation
variant, -S1 and -C, and θf = 30, θc = 100 for the
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EMMA-2 BPR
ablation θc θf eng fin ger tur avg. eng fin tur avg.

10 30 92.93 96.17 95.77 90.48 93.84 42.34 26.09 23.40 30.61
10 60 92.59 96.26 95.37 92.84 94.26 53.11 26.95 22.45 34.17
10 100 92.22 96.27 94.46 94.16 94.28 55.87 25.60 24.05 35.17
30 30 92.93 96.17 95.77 90.48 93.84 42.34 26.09 23.40 30.61
30 60 92.59 96.26 95.37 92.84 94.26 53.11 26.95 22.45 34.17
30 100 92.22 96.27 94.46 94.16 94.28 55.87 25.60 24.05 35.17
100 30 92.93 96.17 95.77 90.48 93.84 42.34 26.09 23.40 30.61
100 60 92.59 96.26 95.37 92.84 94.26 53.11 26.95 22.45 34.17
100 100 92.18 96.28 94.47 94.21 94.28 55.87 25.60 24.05 35.17

-C n/a 30 92.97 96.26 95.86 90.46 93.89 42.05 25.49 23.21 30.25
-C n/a 60 92.62 96.26 95.41 92.81 94.28 52.32 26.14 21.98 33.48
-C n/a 100 92.20 96.36 94.49 94.11 94.29 54.90 24.66 23.30 34.29

-S1 10 30 93.87 90.09 91.93 82.60 89.62 34.69 25.55 20.27 26.84
-S1 10 60 94.29 94.14 93.55 87.01 92.25 38.83 24.50 21.05 28.13
-S1 10 100 92.90 95.37 95.13 90.31 93.43 43.78 25.65 23.23 30.89
-S1 30 30 93.87 90.09 91.93 82.60 89.62 34.69 25.55 20.27 26.84
-S1 30 60 94.29 94.14 93.55 87.01 92.25 38.83 24.50 21.05 28.13
-S1 30 100 92.90 95.37 95.13 90.31 93.43 43.78 25.65 23.23 30.89
-S1 100 30 93.87 90.09 91.93 82.60 89.62 34.69 25.55 20.27 26.84
-S1 100 60 92.88 94.14 93.55 87.01 91.90 39.23 24.50 21.05 28.26
-S1 100 100 92.89 95.65 95.24 90.16 93.48 43.78 25.62 23.34 24.48

-S3 10 30 73.40 58.59 53.77 43.00 57.19 39.94 14.73 21.05 25.24
-S3 10 60 73.36 58.58 53.77 42.97 57.17 39.69 14.72 21.39 25.27
-S3 10 100 73.07 58.58 53.76 43.02 57.11 39.24 14.37 21.12 24.91
-S3 30 30 73.40 58.59 53.77 43.00 57.19 39.94 14.73 21.05 25.24
-S3 30 60 73.36 58.58 53.77 42.97 57.17 39.69 14.72 21.39 25.27
-S3 30 100 73.07 58.58 53.76 43.02 57.11 39.24 14.37 21.12 24.91
-S3 100 30 73.40 58.59 53.77 43.00 57.19 39.94 14.73 21.05 25.24
-S3 100 60 73.36 58.58 53.77 42.97 57.17 39.69 14.72 21.39 25.27
-S3 100 100 73.11 58.50 53.76 43.15 57.13 39.24 14.37 21.06 24.89

Table 12: EMMA-2 and BPR scores on MC10 tuning data for the VORM model. Best model scores per ablation
variant and per metric boldfaced
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-S3 variant. For BPR, θf = 100, θc = 100 was
found to be the optimal setting for no-ablation and
-C, and θf = 100, θc = 30 for -S1 and -S3.

For Morfessor, the model was again tuned on
the three ways of using token counts (token counts
or: ‘token’, no counts or: ‘type’, and ‘log-counts’).
Scores are given in Tables 14. Across languages,
the ‘type’ setting performed the best.
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ablation θc θf ces eng fra hun ita lat rus spa avg.

10 30 27.68 33.61 21.65 35.21 12.44 13.22 18.95 19.14 22.74
10 60 30.93 35.49 20.78 34.10 12.47 12.67 16.30 18.08 22.60
10 100 28.18 41.85 20.33 34.43 11.35 12.92 15.60 17.99 22.83
30 30 27.68 33.61 21.65 35.21 12.44 13.22 18.95 19.14 22.74
30 60 30.93 35.49 20.78 34.10 12.47 12.67 16.30 18.08 22.60
30 100 28.18 41.85 20.33 34.43 11.35 12.92 15.60 17.99 22.83
100 30 27.68 33.61 21.65 35.21 12.44 13.22 18.95 19.14 22.74
100 60 30.93 35.49 20.78 34.10 12.47 12.67 16.30 18.08 22.60
100 100 28.18 41.85 20.33 32.44 11.35 12.92 15.60 17.99 22.58

-CMPD n/a 30 27.12 33.17 21.67 33.67 12.50 13.25 18.56 19.06 22.38
-CMPD n/a 60 28.86 34.24 20.73 32.34 12.48 12.72 15.20 17.95 21.82
-CMPD n/a 100 25.32 40.62 20.34 31.77 10.50 12.89 14.42 17.96 21.73

-S1 10 30 21.55 30.41 17.12 34.06 16.70 26.67 13.19 13.19 21.61
-S1 10 60 22.92 29.22 16.74 34.67 16.19 23.42 14.82 17.37 21.92
-S1 10 100 24.77 28.24 17.07 34.97 16.53 19.51 17.34 16.05 21.81
-S1 30 30 21.55 30.41 17.12 34.06 16.70 26.67 13.19 13.19 21.61
-S1 30 60 22.92 29.22 16.74 34.67 16.19 23.42 14.82 17.37 21.92
-S1 30 100 24.77 28.24 17.07 34.97 16.53 19.51 17.34 16.05 21.81
-S1 100 30 21.55 30.41 17.12 34.06 16.70 26.67 13.19 13.19 21.61
-S1 100 60 22.92 29.22 16.74 34.67 16.19 23.42 14.82 17.37 21.92
-S1 100 100 25.75 40.63 20.31 32.44 11.40 12.98 14.42 17.96 21.99

-S3 10 30 6.50 10.91 4.05 2.70 2.42 4.10 0.68 1.27 4.08
-S3 10 60 6.45 10.85 4.02 2.69 2.40 4.09 0.67 1.26 4.05
-S3 10 100 6.34 10.80 3.99 2.67 2.39 4.10 0.65 1.25 4.02
-S3 30 30 6.50 10.91 4.05 2.70 2.42 4.10 0.68 1.27 4.08
-S3 30 60 6.45 10.85 4.02 2.69 2.40 4.09 0.67 1.26 4.05
-S3 30 100 6.34 10.80 3.99 2.67 2.39 4.10 0.65 1.25 4.02
-S3 100 30 6.50 10.91 4.05 2.70 2.42 4.10 0.68 1.27 4.08
-S3 100 60 6.45 10.85 4.02 2.69 2.40 4.09 0.67 1.26 4.05
-S3 100 100 6.34 10.80 3.99 32.44 2.39 4.10 0.65 1.25 7.75

Table 13: BPR scores on MC22 tuning data for the VORM model. Best model scores per language and per ablation
boldfaced.

ces eng fra hun ita lat rus avg.

morflogtoken 14.79 46.75 23.59 35.03 12.14 17.70 12.34 23.19
morftoken 10.37 40.52 20.94 34.13 11.23 17.68 10.60 20.78
morftype 28.71 49.90 23.63 34.47 11.84 17.77 11.46 25.39

Table 14: BPR scores on MC22 tuning data for Morfessor. Best model scores boldfaced
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C Further quantitative breakdown of
results

This Appendix supplements section 6 with the re-
sults broken down along several axes.

• Table 15 displays the results on the DORECO-
MORPH dataset, broken down per language.

625



chip morf para AG vorm S1 -C S3

apah1238 90.2 85.8 83.8 80.3 86.6 88.9 86.6 69.0
arap1274 92.9 90.4 70.2 90.6 93.8 90.8 93.8 64.1
bain1259 95.8 77.1 80.3 93.1 92.6 93.8 92.6 53.1
beja1238 89.8 85.0 80.9 89.7 95.0 95.2 95.0 50.8
bora1263 87.3 80.4 67.3 87.2 93.5 94.3 93.5 35.4
cabe1245 94.2 82.6 82.7 77.0 92.5 89.5 92.5 82.5
cash1254 95.0 87.0 81.9 88.1 91.6 91.9 91.6 65.9
dolg1241 95.9 87.2 81.6 88.6 92.2 92.2 92.2 65.9
even1259 69.9 81.5 81.4 79.4 84.8 85.9 84.8 72.2
goem1240 95.5 90.7 84.2 80.5 94.3 87.3 94.3 88.4
goro1270 82.6 82.0 79.4 80.7 88.1 87.6 88.1 71.8
hoch1243 90.4 89.0 79.0 87.1 90.6 86.4 90.6 60.2
jeha1242 93.4 92.8 90.0 85.4 91.7 91.5 91.7 87.1
jeju1234 93.8 86.4 82.0 86.5 90.7 91.0 90.7 65.7
kaka1265 82.7 83.6 82.5 80.0 87.7 88.6 87.7 73.2
kama1351 95.3 90.7 87.5 91.6 95.5 95.3 95.5 68.8
komn1238 92.5 86.7 78.8 91.8 93.5 93.6 93.5 57.7
movi1243 89.8 86.2 76.1 85.1 89.2 87.0 89.2 62.6
ngal1292 94.8 89.2 67.9 87.7 83.6 78.3 83.6 60.5
nisv1234 94.7 89.4 85.7 87.2 90.3 90.1 90.3 75.9
nngg1234 91.6 89.5 80.5 71.3 87.3 82.9 87.3 87.8
nort2641 93.6 85.3 85.5 84.5 91.1 91.0 91.1 79.9
nort2875 86.8 84.2 79.6 84.7 89.8 89.0 89.8 69.0
orko1234 88.9 84.5 78.2 76.2 86.7 82.2 86.7 86.1
pnar1238 95.1 90.4 84.1 85.9 91.3 89.9 91.3 73.4
port1286 90.3 84.8 83.6 73.9 90.0 84.9 90.0 89.9
ruul1235 91.9 86.8 74.0 87.8 90.7 90.1 90.7 53.1
sanz1248 94.4 86.3 76.3 85.1 78.0 80.2 78.0 63.7
savo1255 90.9 88.3 83.8 88.4 90.7 90.5 90.7 70.0
sout2856 92.7 89.1 84.7 84.3 89.3 87.6 89.3 77.8
sumi1235 94.2 87.0 85.1 86.6 92.1 93.7 92.1 57.8
taba1259 91.8 82.5 81.3 86.4 88.2 83.0 88.2 64.6
teop1238 89.5 84.1 77.2 74.0 84.3 81.8 84.3 86.0
texi1237 92.2 80.0 76.2 85.5 87.9 85.8 87.9 62.9
trin1278 96.7 85.4 73.0 91.1 90.0 90.1 90.0 50.5
urum1249 95.8 89.3 86.1 86.4 92.1 92.4 92.1 69.1

Table 15: EMMA-2 results for the DoReCo dataset for Chipmunk (supervised), Morfessor, ParaMA2, MorphAGram,
and Vorm (with ablation variants).
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Abstract

Analogy-making lies at the heart of human cog-
nition. Adults solve analogies such as horse
belongs to stable like chicken belongs to . . . ?
by mapping relations (kept in) and answering
chicken coop. In contrast, young children of-
ten use association, e.g., answering egg. This
paper investigates whether large language mod-
els (LLMs) solve verbal analogies in A:B::C:?
form using associations, similar to what chil-
dren do. We use verbal analogies extracted
from an online learning environment, where
14,006 7-12 year-olds from the Netherlands
solved 872 analogies in Dutch. The eight tested
LLMs performed at or above the level of chil-
dren, with some models approaching adult per-
formance estimates. However, when we control
for solving by association this picture changes.
We conclude that the LLMs we tested rely heav-
ily on association like young children do. How-
ever, LLMs make different errors than children,
and association doesn’t fully explain their supe-
rior performance on this children’s verbal anal-
ogy task. Future work will investigate whether
LLMs associations and errors are more similar
to adult relational reasoning.

1 Introduction

Analogy-making, using what you know about one
thing to infer knowledge about a new, somehow
related instance, lies at the heart of human intelli-
gence and creativity and forms the core of educa-
tional practice (Gentner, 1988; Hofstadter, 1997;
Holyoak, 2012). Given how important analog-
ical reasoning is to learning and generalization,
much research has focused on how this seemingly
unique human ability emerges, develops, and can
be improved (Goswami, 1991; Sternberg and Nigro,
1980; Stevenson and Hickendorff, 2018) as well as
emulated in machines (Gentner and Forbus, 2011;
Mitchell, 2021). Recently, large language models
(LLMs), such as GPT-3 (Brown et al., 2020), have
demonstrated surprisingly good performance in ver-

Figure 1: How well does each LLM perform? We see
that when prompted with A:B::C:? many LLMs out-
perform children. However, LLMs can also solve most
items by association, evidenced by correctly solving
analogies when only prompted with C:?.

bal analogy solving (e.g., table is to legs as tree
is to . . . ? chair, leaves, branches or roots?) (Lu
et al., 2022; Webb et al., 2023). The question then
arises how LLMs solve these analogies. Is it simi-
lar to adult humans using relational mapping? Or
perhaps more similar to the associative processes
children tend to use?

Earlier work shows that language models largely
rely on semantic similarity between analogy terms
to solve analogies (Rogers et al., 2020; Ushio et al.,
2021b), which would indicate solving by associa-
tion. In this paper we investigate whether LLMs
use association or analogy to solve a set of Dutch
verbal analogies. First, we examine how LLM per-
formance compares to children and find that the
best models outperform 12-year-olds, approaching
adult performance estimates. Second, we exam-
ine whether LLM performance is influenced by the
same item characteristics that affect children’s anal-
ogy solving, where results confirmed that this is
indeed the case, especially for lower performing
models. Third, through a series of prompting ex-
periments we show that these LLMs appear to use
association to solve a large proportion of analogies.
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Fourth, we compare error patterns of children with
LLMs and find that LLMs are far more similar to
each other (and those of similar architecture and
size) than to children.

This paper contributes to the study of analogical
reasoning in LLMs in three ways: (1) it is the first
to directly compare LLM verbal analogy solving
performance to that of children; (2) we use exper-
iments to tap into whether LLMs solve analogies
using association like young children; and (3) we
use Dutch rather than English language items and
examine performance in multilingual LLMs.

2 Theoretical Background

2.1 The Analogical Reasoning Process

Although there are different cognitive models of
analogical reasoning—varying in the order of pro-
cessing steps and whether these occur sequentially
or in parallel—there is a general consensus on
which processes are involved. Taking the exam-
ple of “body is to feet as tree is to . . . ?” (or more
abstractly, A:B::C:?), the basic analogy informa-
tion processing steps are generally considered to be:
(1) encoding relevant information about the base
(A:B) and target (C) domains; (2) searching and
retrieving relationships and similarities between
the analogy elements in the base domain, A and B
(e.g., “stands on” for body and feet); (3) aligning
the base and target domains ("body and tree are
things that stand") and mapping the mostly likely
relationship between A and B, to the target domain,
C, to come up with D; and (4) evaluating the valid-
ity of the predicted solution (Gentner and Hoyos,
2017; Sternberg, 1977; Thibaut and French, 2016).

2.2 Factors Affecting People’s Verbal Analogy
Solving

The basic analogy solving steps are consistently
found in people from about 12 years and up
(Thibaut and French, 2016). When adults make
mistakes there are three main factors that lead to
errors: (1) the relation type (causal is more difficult
than categorical), (2) a large conceptual distance
between analogy base and target domains, and (3)
salient distractors amongst the multiple-choice op-
tions (Jones et al., 2022).

Type of Relation Jones et al. (2022) grouped
analogical relations into three types: categori-
cal, causal and compositional. They found that
adults perform better on categorical analogies (e.g.,

tarantula:spider::bee:insect) than causal (e.g., frac-
ture:cast::incision:scar) or compositional (e.g., fin-
gernail:finger::knee:leg) analogies. Children’s per-
formance follows a similar pattern, assuming suf-
ficient domain knowledge is in place (e.g., Stern-
berg and Nigro, 1980; Goswami and Brown, 1990;
Alexander and Kulikowisch, 1991).

Conceptual Distance Between Base and Target
Domains The greater the distance between an
analogy base and target domain the more diffi-
cult the analogy is for adults and children to solve
(Jones et al., 2022; Thibaut and French, 2016). For
example, bowl:dish::spoon:silverware is easier for
people to solve than wrench:tool::sad:mood.

Distractor Salience People are sometimes lured
to choose a distracting incorrect response in mul-
tiple choice verbal analogies, and are most easily
distracted by answer options that have a strong
semantic association with the C term (Kucwaj
et al., 2022). Jones et al. (2022) defines distrac-
tor salience as the relation between C:D relative
to each of the C:D’, where D’ represents each dis-
tractor option. Distractor salience is high, when
the semantic similarity between C and one of the
incorrect answers D’ is greater than the seman-
tic similarity between C and the correct answer D.
High distractor salience leads to lower performance
in adults (Ichien et al., 2020; Jones et al., 2022) and
this is even more apparent in children (Richland
et al., 2006; Thibaut and French, 2016).

2.3 Analogical Reasoning Development

Children’s verbal analogical reasoning improves
with age, where a gradual shift occurs around 4-
8 years of age from reasoning based on surface
similarities and associations to reasoning based on
(abstract) relations (Gentner, 1988; Stevenson and
Hickendorff, 2018; Gentile et al., 1977). For ex-
ample, if we ask a four-year-old “horse belongs to
stable like chicken belongs to . . . ?” they may use
association and reply “egg”, relying on the strong
connection between the words chicken and egg
to solve the problem. In contrast, older children
and adults will likely give the intended relational
response “chicken coop”, using the underlying re-
lation structure to solve the analogy.

However, even when children can solve these
analogies, two main factors that seem to affect the
transition from associative to relational reasoning
are increased domain knowledge (Goswami and
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Brown, 1990; Gentner, 1988; Alexander and Ku-
likowisch, 1991) and improved executive functions
(working memory and inhibition control; Doumas
et al., 2018; Thibaut and French, 2016).

Children tend to fail in analogy solving if they
are unfamiliar with the elements or relations in the
analogy (Gentner and Hoyos, 2017; Goswami and
Brown, 1990; Goddu et al., 2020). If children are
shown to possess the required domain knowledge
and are provided clear instructions on how to solve
the task then they can successfully solve verbal
analogies (in the form of pictures) as early as 3-
years-old (Goswami, 1991; Goddu et al., 2020).

However, even when children can solve these
analogies, evidence from scene analogy problems
(Richland et al., 2006) and eye-tracking studies
(Thibaut and French, 2016) shows that children up
to 8 years-old tend to focus first on the C term when
solving analogies, sometimes ignoring A and B al-
together (Thibaut and French, 2016). This appears
to be related to limited working memory capac-
ity (Richland et al., 2006; Stevenson et al., 2013;
Stevenson, 2017) and limits in inhibition- and exec-
utive control (Thibaut and French, 2016; Doumas
et al., 2018). Performance improves when interven-
tions are used that support children’s processing
capacities (Stevenson and Hickendorff, 2018) and
when children are forced to focus first on the A:B
pair (Glady et al., 2017).

2.4 Verbal Analogy Solving in LLMs

The extent to which LLMs can solve analogies is a
subject of debate. Most of this work has focused on
comparing models in terms of overall accuracy on
benchmarks such as the Bigger Analogy Test Set
(BATS; Mikolov et al., 2013b) and verbal analo-
gies from the Scholastic Assessment doTest (SAT;
Turney et al., 2003) and investigating the types
of relations they can solve (e.g., syntactic versus
semantic). More importantly, when LLMs demon-
strate analogy solving abilities, it is unclear how
they achieved these solutions (e.g., Webb et al.,
2023), whether this is through relational reasoning
or another process, such as the associative strategy
often employed by young children.

Word embeddings Over a decade ago, Mikolov
et al. (2013b) published their seminal paper
showing that pre-trained word embeddings (e.g.,
Word2Vec Mikolov et al., 2013a) could be used
to solve verbal analogies in the form of A:B::C:?
using vector arithmetic, the most famous ex-

ample being: embed(king) − embed(man) +
embed(woman) ≈ embed(queen), where
embed represents the word embedding obtained
from the pre-trained neural network. This mile-
stone was tempered by Gladkova et al. (2016),
who made clear that this method was limited in
the breadth of relations that it could process. For
example, the capitol-country relation was solved
quite successfully, but others such as animal-sound
and part-whole, were solved less successfully.

Transformer language models With the rise of
the Transformer architecture, featuring language
models such as BERT (Devlin et al., 2018), ver-
bal analogy solving remained a challenge. Ear-
lier work transferred the verbal analogy datasets,
such as the BATS to the sentence level, and
showed that BERT-based models and GPT-2 (Rad-
ford et al., 2019) performed at a similar level to
GloVe (Pennington et al., 2014), a word embed-
ding model, on analogies containing relations such
as capitol-country and male–female pairs (Zhu and
de Melo, 2020). More recently, Czinczoll et al.
(2022) developed a dataset containing scientific
and metaphor analogies (SCAN). Here there was
a clear advantage of transformer models over anal-
ogy solving with word embeddings, where GPT-2,
BERT and M-BERT outperformed GloVe on the
analogy items containing metaphors such as ca-
reer:mountain::success:ascent. Also, Petersen and
van der Plas (2023) showed that by changing the
training objective of LLMs to maximize relational
similarity, LLM performance improves. Yet, the
general conclusion remained that verbal analogy
solving is more challenging for LLMs than people.

People versus LLMs in analogy solving Recent
research has shown that LLMs can solve verbal
analogies with similar accuracy to people. For ex-
ample, Ushio et al. (2021b) showed that LLMs such
as GPT-2 and RoBERTa generally perform well on
analogies designed for 4th to 10th graders (9-16
year-olds). Also, Webb et al. (2023) concluded that
GPT-3 and GPT-4 generally perform around the
same level as adults on two verbal analogy datasets.

Item factors affecting LLM verbal analogy solv-
ing There has been some research on the effect of
relationship type on LLM’s verbal analogy solving
performance. Ushio et al. (2021a) showed that fine-
tuned RoBERTa models performed slightly better
on categorical relations (hypernymns) than compo-
sitional ones (meronymns). And Webb et al. (2023)
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found that categorical relations in the SAT verbal
analogies were easier for GPT-3 than composi-
tional (function) relations and also that categori-
cal relations were easier than both compositional
and causal relations on the items from Jones et al.
(2022). Similarly, Linford et al. (2022) found that
categorical relations were easier for BERT mod-
els than causal relations, although performance on
both was far lower than for human adults.

Similarly to people, LLMs have more difficulty
as the conceptual distance between the domains
in the analogy increases. For example, the LLMs
in Czinczoll et al. (2022) performed better on the
BATS analogies than on their SCAN dataset com-
prising scientific and metaphor based analogies,
where the semantic distance between the base and
target domains was greater. In addition the scien-
tific analogies were solved better by LLMs than
those based on metaphors, which was explained by
there being a clearer correspondence between base
and target domains in scientific analogies. Also,
Webb et al. (2023), used the items from Jones et al.
(2022) to investigate whether, like in people, a near
conceptual distance between the base and target
domains made analogies easier to solve for GPT-3
than far analogies; this was indeed the case. Inter-
estingly,do humans outperformed GPT-3 on the
far analogies.

There is less research on the effect of distractor
salience on LLM analogy solving. In Petersen and
van der Plas (2023) their best performing trained
model appeared unaffected by low versus high dis-
tractor salience. In Musker et al. (2024), analogy
tasks presented in an in-context-learning setting
with interleaved distractors affected LLMs more
than human adults. We expect that salient distrac-
tors, i.e. multiple-choice options that are seman-
tically more similar to the analogy terms than the
correct response, will have a greater chance of be-
ing "selected" by the LLMs.

3 Research Questions

In this study, with pre-registered hypotheses and
methods, we examine how 8 multilingual LLMs
solve 872 verbal analogies, also solved by 14,006
in an online learning environment.

RQ1: How well do LLMs perform compared
to children ages 7-12 in verbal analogy solving?
We expected recent LLMs to solve the analogies
with similar accuracy to older children (12-year-
olds) as this is similar to adult performance (hy-

pothesis 1; Webb et al., 2023; Ushio et al., 2021a).

RQ2: Which item characteristics influence chil-
dren’s and LLM performance on verbal analo-
gies? We expected the pattern of results found in
adults also to be found in children and in LLMs. A
growing strand of work shows that children, from a
very young age, are remarkably sensitive to distri-
butional regularities in their input and are adept at
learning from this type of information (e.g., Saffran
et al., 1996; Bresnan, 2007; Clark, 2014). Given
the similarity (albeit to a limited extent) to how
LLMs extract and track information from their in-
put, we investigate whether the two learners are
affected by shared item characteristics. First, we
expect performance on categorical relations to be
better than compositional and causal relations for
both children (Sternberg and Nigro, 1980, hypothe-
sis 2a1) and LLMs (Webb et al., 2023, hypothesis
2a2). Second, we expect analogies with a near con-
ceptual distance between A:B to be easier than far
analogies for children (Thibaut and French (2016);
Hypothesis 2b1) and LLMs (Czinczoll et al., 2022;
Webb et al., 2023, hypothesis 2b2). Third, we ex-
pect higher distractor salience to lead to more errors
in children (Thibaut and French, 2016, hypothesis
2c1) and LLMs (Ushio et al., 2021b, hypothesis
2c2).

RQ3: Do LLMs choose associative or analogical
solutions? We investigate this through a series
of experiments comparing LLM performance on
alternative formulations of the verbal analogies,
where we control for associative responses.

4 Methods

LLM data and code and a selection of the chil-
dren’s data is publicly available. The full dataset
is available upon request from Prowise Learn, the
company that provided the children’s data on the
verbal analogies dataset.

4.1 Prowise Learn’s Verbal Analogies Game

Prowise Learn is an online adaptive learning envi-
ronment for elementary school children.

Verbal analogies is one of the games on the plat-
form (see Appendix A for a screenshot of the game).
The analogies are presented as text in "A:B::C:?"
format, and the children must choose among five
answer options, all five of which are semantically
associated with C. For more information see Ap-
pendix A.
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Data Collection with Children For this study,
we extracted information on 14,006 7-12 year-old’s
(M = 10.73, SD = 1.15 years) performance on 872
verbal analogies from the Prowise Learn database.
We applied three selection criteria when extracting
the children’s data (on June 19, 2021): (1) children
solved at least 20 items to ensure stable ability
estimates, (2) children had last played the game on
or after September 1st 2020, the start of the school
year and 4 months after the launch of the game,
when item difficulty estimates were verified to have
small standard errors and (3) children were ages 7-
12 to avoid confounds in performance (i.e., younger
children most likely did not have sufficient reading
abilities and older children had most likely repeated
a grade). This data collection was approved by the
University of Amsterdam’s Ethics Review Board
with id FMG-3037.

Data Collection with Adults To provide an esti-
mate of adult-level performance on this children’s
verbal analogy task, we collected data from 120
Dutch-speaking adults (M = 29.20, SD = 9.96
years) through Prolific’s academic participant re-
cruitment system. Each person solved 30 analogies
presented in a similar format to those of children,
with the aim of having each item solved by 4 adults
to estimate item-level performance. Also, to test
to what extent adults solve analogies by associa-
tion we administered 30 additional items in C-only
format (see 7.1 for a description). We applied two
inclusion criteria before analyzing the adults’ data.
First, we included adults that solved >=50% of
items correctly (i.e., achieved at least average chil-
dren’s performance), which led to 3 participants
being excluded. Second, we included adults who
explicitly stated that they did not use AI-tools to
solve the analogies (1 person excluded). This data
collection was approved by the University of Ams-
terdam’s Ethics Review Board with id FMG-3105.

Item Selection The game contained three types
of verbal reasoning problems; verbal analogies was
one of them. From the initial set of 872 verbal
analogies, we checked all items that were outliers
(>1.5 SD) on the item difficulty scale and removed
17 items that were judged by two independent raters
to contain errors (e.g., multiple correct solutions,
requiring domain knowledge likely unfamiliar to
children). This resulted in 855 items for data anal-
ysis.

4.2 Item characteristics
Relation Type Relationship type refers to how
the A and B term are related. This relationship is
applied to the C-term to find D. Table 2 provides a
selected overview of relation types in the analogy
task1. For analyses related to RQ2 we selected 302
items that fall into the following three categories
defined by Jones et al. (2022):

• Categorical: one of the A:B terms defines the
category and the other word is an example of
this category. For example, “yellow” is part
of the category “color”.

• Causal: one of the A:B terms is the cause and
the other is the effect. For example, “stum-
bling” will result in “falling”.

• Compositional: one of the A:B terms is part
of the other term. For example, “leaf” is part
of a “tree”.

Conceptual Distance Between Base and Target
Domains We used three vector-based language
models2 to compute the semantic distance (1 - co-
sine similarity) between the A:B and the C:D pair.
We used the mean value over the three vector-based
models as the selected category for each item for
analysis.

Distractor Salience Distractor salience was mea-
sured by the cosine similarity between C and D
minus the cosine similarity between C and each in-
correct answer D’. We used the same three vector-
based models from Section 4.2 to compute the co-
sine distances between embeddings for C and each
of the five D’s. Then we determined distractor
salience per item for each vector model and used
the mean value for analysis.

4.3 Analogy completion with LLMs
Pretrained Language Models We studied how
8 transformer-based multilingual LLMs solved the
same set of verbal analogies as the children.

Two of the LLMs are BERT-based masked lan-
guage models. RobBERT (Delobelle et al., 2020)
was pretrained on Dutch data only, and a multi-
lingual variant XLM-V (Liang et al., 2023) was

1These labels were chosen and annotated by the Prowise
Learn item developers.

2Word2Vec trained by CLIPS on different Dutch corpora
(Tulkens et al., 2016), Word2Vec trained by the Nordic Lan-
guage Processing Laboratory on the CoNLL17 corpus (Kutu-
zov et al., 2017), and FastText trained on Common Crawl and
Wikipedia (Grave et al., 2018).
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trained on 116 languages.3 Identical to BERT (De-
vlin et al., 2018), both models contain 12 layers
with 12 attention heads each.

The other LLMs are autoregressive transformer-
decoder based language models. The open-source
models we use are Aya and Command-R, both
accessed through the Cohere API. The proprietary
models we use are Anthropic’s Claude Sonnet-
3.5, Google’s Gemini-2.0-flash, and Open AI’s
GPT-3 and GPT-4o, each accessed through the
API provided by the respective company.

Analogy completion We wanted to mimic the
way the children solved the analogies in the best
way possible. This was especially important be-
cause we investigate whether an associative re-
sponse is more likely in the presence of a correct
response. Therefore, we prompted the generative
LLMs with the full analogy and asked them to
choose from the five response options. For exam-
ple, "tripping is to falling as picking up is to ?
Choose clean, junk, mess, room, or thrift store."
The response options were presented in random
order.

However, this method was not possible to im-
plement for the BERT-based models. Therefore,
for the RobBERT and XLM-V models we used
the masked language model approach and fed the
models ‘A is to B, as C is to D’, replacing D with
each possible multiple-choice solution. The D op-
tion with the highest probability for the completion
was considered the selected response.

5 Results RQ1: How well do LLMs
perform compared to children?

Figure 1 shows performance per model on the
872 items. We see that all tested models,
both BERT-based and autoregressive transformer-
decoder based language models, perform at or
above the level of children on the multiple choice
question verbal analogy task. Children already at
the age of 7 perform higher than chance level (gray
dashed line), with Aya , Command-R , GPT-3 ,
RobBERT and XLM-V around the same level as
12 years old, whereas Claude , Gemini and GPT-
4o outperform all children and other models, and
perform at the level of adults on this task.

We analyzed how many of the items LLMs
could solve by word association and report their

3We found XLM-V to be more suitable than mBERT or
XLM-R as it suffers less from overtokenization in Dutch and
thus covers more of our test words.

performance on the C:? task (Experiment 1, see
also 7). Results show that for the autoregressive
transformer-decoder based models, word associa-
tion can explain most of their success, but also in
other models a large portion of items can be solved
solely by association (Figure 1, blue portion of the
bars). See 7 for further details and conclusions.

6 Results RQ2: Which item factors
influence analogy solving?

For RQ2, we tested the effects of solver (children,
LLMs) and/or item characteristics on accuracy. 9
logistic regression models (one per each solver
type) predicted the performance on each item by
relation type, semantic distance between base and
target domains and distractor salience. We also
included by-item intercepts as random effects.

Relation Type Logistic regression analyses of
children’s performance revealed significant effect
of relation type (beta = −0.49, z = −2.20, p <
0.05) such that compositional items were easier
than causal items for children to solve, follow-
ing a similar pattern previously found in adults
(Jones et al., 2022). Relation type did not sig-
nificantly influence performance in most models
with the exception of Gemini that performed bet-
ter on items with compositional than categorical
relations (β = −0.9, z = −658.5, p < 0.001),
and on items with compositional than causal rela-
tions (β = −0.19, z = −144.4, p < 0.001). Rob-
BERT showed similar significant effect of com-
positional versus categorical relation items (β =
−0.64, z = −2.58, p < 0.001). GPT-3 , however,
performed better on categorical than compositional
items (β = 0.45, z = 2.06, p < 0.05).

Semantic Distance between Base and Target Do-
mains Logistic regression of children’s perfor-
mance revealed a significant effect of the seman-
tic distance between the base and target domains.
Items with shorter distance were easier for chil-
dren to solve (β = −0.54, t = −4.05, p < 0.001).
A similar pattern was observed in most LLMs in-
cluding Aya (β = −1.79, z = −2.16, p < 0.05),
Command-R (β = −3.07, z = −3.90, p <
0.001),Gemini (β = −6.23, z = −4536.2, p <
0.001), GPT-4o (β = −2.84, z = −2.67, p <
0.01), GPT-3 (β = −2.64, z = −3.31, p < 0.001),
RobBERT (β = −− 4.15, z = −4.38, p < 0.001)
and XLM-V (β = −5.13, z = −4.67, p < 0.001).
Only Claude showed no significant effect of se-
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Figure 2: Near analogies are often easier to solve than
far analogies for both children and LLMs. Note: for pur-
pose of clarity, in the plot we binned semantic distance
into near and far categories, where near is < median se-
mantic distance and far is >= median semantic distance.

mantic distance on performance (p = 0.95)(see
Figure 2).

Distractor Salience As can be seen in Fig-
ure 3, items with lower distractor salience were
significantly easier to solve than those with
high distractor salience for children (beta =
−2.65, z = −4.33, p < 0.001) and most
LLMs including Aya (beta = −2.76, z =
−4.07, p < 0.001), Command-R (beta =
−2.63, z = −4.31, p < 0.001), Gemini (beta =
−1.81, z = −1322.5, p < 0.001), GPT-4o
(beta = −1.99, z = −2.61, p < 0.01), GPT-3
(beta = −3.39, z = −4.99, p < 0.001), Rob-
BERT (beta = −2.69, z = −3.94, p < 0.001) and
XLM-V (beta = −2.64, z = −3.63, p < 0.001).
Only Claude showed no significant effect of dis-
tractor salience on performance (p = 0.89).

7 Results RQ3: Do LLMs choose
associative or analogical solutions?

We investigated whether LLMs choose analogical
solutions to verbal analogies, after explicitly testing
and controlling for associative responses.

7.1 Experiment 1: C:?

In experiment 1, we prompt the LLMs (and adult
participants) with only the C-term, e.g., "C is to
[MASK]". If these are solved by association as

Figure 3: Analogies with low distractor salience are
easier to solve than those with high distractor salience
for both children and LLMs. Note: for purpose of
clarity, in the plot we binned distractor salience into low
and high categories, where low is < median distractor
salience and high is >= median distractor salience.

Figure 4: Near analogies are still easier than far analo-
gies, when we control for associative responses (i.e.,
when filtering out the correctly solved C:? items for
each model).

we expect, then LLMs should still be able to solve
a substantial portion of analogies purely by asso-
ciation with C (Ushio et al., 2021b; Poliak et al.,
2018); hypothesis 3a). This was indeed the case as
can be seen in Table 1, where the generative LLMs
solve up to 62% of items without being given A:B.
Notably, adults also solved 57% of items with the
C-only prompt, where there was 49-71% overlap
between models and adults in which items could
be solved by association.

7.2 Experiment 2: A:B::C:? for selected items

We removed items that each model solved correctly
with C:? and reevaluated their performance along
the same item factors from RQ2. This was done to
test the factors affecting the models’ performance
on items that were not solved by word association
alone. We ran logistic mixed effects models pre-
dicting the performance of each LLM by the three
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Exp 0 A:B::C:? Exp 1 C:? Exp 2 filtered A:B::C:?
LLMs LLMs LLMs Children

7-yrs 8-yrs 9-yrs 10-yrs 11-yrs 12-yrs
model N items Acc (SD) Acc (SD) N items Acc (SD) M (SD) M (SD) M (SD) M (SD) M (SD) M (SD)

Aya 855 .67 (.47) .49 (.50) 435 .54 (.50) .21 (.37) .25 (.38) .30 (.38) .35 (.38) .42 (.39) .49 (.39)
Command-R 855 .57 (.50) .42 (.49) 494 .50 (.50) .23 (.39) .28 (.39) .34 (.39) .39 (.39) .47 (.38) .53 (.39)
Claude 855 .86 (.34) .60 (.49) 343 .80 (.40) .15 (.32) .19 (.33) .25 (.34) .30 (.35) .37 (.36) .44 (.36)
Gemini 855 .84 (.36) .62 (.48) 321 .73 (.45) .10 (.27) .14 (.28) .19 (.29) .25 (.31) .33 (.33) .40 (.35)
GPT-4o 855 .85 (.36) .58 (.49) 359 .76 (.43) .15 (.32) .19 (.33) .24 (.34) .30 (.35) .37 (.36) .44 (.37)
GPT-3 855 .55 (.36) .31 (.49) 359 .47(.50) .24 (.39) .27 (.40) .33 (.39) .38 (.39) .45 (.39) .52 (.38)
RobBERT 680 .56 (.50) .29 (.45) 484 .51 (.50) .25 (.40) .30 (.40) .35 (.40) .40 (.39) .48 (.39) .54 (.38)
XLM-V 622 .59 (.49) .28 (.45) 447 .51 (.50) .24 (.39) .28 (.39) .34 (.39) .41 (.39) .48 (.38) .55 (.38)

Table 1: LLM Performance on Experiment 0 (original set of A:B::C:? items), Experiments 1 (C:?) and 2 (selection
of A:B::C:? after filtering out correct C:? items by each model). Children’s mean proportion correct (by age group)
on the same selection of items per LLM from Experiment 2.

Figure 5: Analogies with low distractor salience are
still easier for LLMs, when we control for associative
responses.

item characteristics we tested (relation type, seman-
tic distance between base and target domains and
distractor salience) on the selected items after filter-
ing out items that were also solved by association
only for each model 4. The models also included
by-item intercepts as random effects. Results show
that LLMs’ performance is still affected by the se-
mantic distance between the base and the target
words (see 4) and by distractor salience (see 5).
The only exceptions were for GPT-4o and XLM-V
, where there were no longer significant effects of
distractor salience (p = 0.43 and p = 0.22, respec-
tively), and for Gemini where there were no signif-
icant effects of both semantic distance (p = 0.57)
and distractor salience (p = 0.88) (see Appendix
C for the full report of results).

Table 1 shows an overview of model versus chil-
dren’s performance where all items solved correctly
with the C:? prompt had been filtered out. We see
that BERT-based models solve nearly 30% of analo-

4This means that the set of A:B::C: selected items, as well
as their total number, differ across models.

gies correctly when prompted with only "C:?", so
without any information about the relation A:B
to be mapped. The autoregressive transformer-
decoder models solved even greater portions cor-
rectly (40−60%) with the C-only prompt. Notably,
for the youngest children in our dataset, 7-8-year
olds, performance dropped to below chance level
on the filtered items sets.

7.3 RQ4: Do LLMs choose the same
distractors as children do?

In this exploratory analysis we compared LLM er-
rors to those of children and pilot data from adults.
For each of the tested models, we looked at the
subset of items it answered incorrectly and com-
pared the distractor it chose to the one chosen by
most children and piloted adults. We computed
Cohen’s Kappa coefficient (Cohen, 1960) to test
the agreement of distractor choice between each
pair of models and between each model and the
children (see Figure 6). As can be expected, the
Bert-based models, RobBERT and XLM-V , show
similar error patterns, while having low agreement
with the autoregressive transformer-decoder mod-
els. Notably, neither type of model architecture
nor adult pilot data showed similar error patterns
to those of children. These results suggest that
the high performance of LLMs in this task is not
driven by the same process as children. However,
top-performing models -Gemini and GPT-4o - had
similar error patterns to small sample of adults.

8 Discussion

The main goal of this paper was to investigate
whether LLMs rely on association to solve ver-
bal analogies, similar to young children. Direct
performance comparisons showed that some LLMs
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Figure 6: Inter-solver agreement in distractor choice
measured using Cohen’s Kappa. Values closer to 1
indicate higher agreement. LLMs and children show
different error patterns in solving verbal analogies.

perform at the level of 12-year-olds, while top-
performing models surpass children and reach
adult-level performance. All LLMs appeared to
rely heavily on association, though they made dif-
ferent errors than children, and association alone
doesn’t fully explain their superior performance on
this children’s analogy task.

To examine whether LLMs are influenced by the
same analogy item characteristics as children, we
tested the effects of distractor salience, semantic
distance between base and target domains, and re-
lation type. Both distractor salience and semantic
distance affected LLM performance similarly to
children, especially in smaller models. These ef-
fects persisted even when association didn’t fully
account for the reasoning. Relation type, however,
did not influence most LLMs in the same way it
does children.

A notable finding was that LLMs solved
28%–62% of analogies when prompted with only
"C:?", without any information about the relation
A:B to be mapped. This experimental manipula-
tion is similar to Ushio et al. (2021b) who found
that RoBERTa and BERT only dropped 10 to 15
percentage points in accuracy, still achieving accu-
racies of 30% or higher on the SAT analogies. In
our case, LLMs also dropped around 10 percentage
points after filtering out items solved correctly with
C:? only. Interestingly, 7-8 year-olds performance
often dropped to below chance level on the filtered
item sets, which is what was expected as associa-
tion is the most utilized strategy in this age-group

(see Table 1; Thibaut and French (2016); Stevenson
and Hickendorff (2018)). A small sample of adults
tested on same items also solved 56% of the items
when prompted with the C term only.

Our error analysis provides further insight into
the similarities in verbal analogical reasoning be-
tween children and LLMs. While LLMs exhibit
comparable error patterns—particularly among
models with the same architecture—their mistakes
only loosely align with those made by children.
This suggests that there are differences in the way
LLMs and children solve verbal analogies. We col-
lected pilot data to examine whether LLM error
patterns better coincided with adults to determine
whether LLMs resemble more advanced human
reasoning or rely on fundamentally different pro-
cesses. Preliminary results show that the errors
of top-performing LLMs, Gemini and GPT-4o -
but not Claude , are somewhat similar to those of
adults. However, each separate item was solved by
only four adults, so future work must determine the
reliability of these results.

Our study relies on behavioral methods to eval-
uate the model’s performance on analogy tasks,
which, while comparable to the methods used to
investigate analogical reasoning in humans, do not
allow us to draw definitive conclusions about the
underlying mechanisms the model uses to solve
these items. In future work, we intend to address
this gap by employing mechanistic interpretabil-
ity techniques—such as visualizing attention pat-
terns—to more directly investigate the process by
which LLMs solve analogies.

9 Conclusion

In sum, LLMs perform at or above the level of
children on our verbal analogical reasoning task.
While word association plays a significant role in
LLMs’ success, they are able to solve analogies
also when this strategy is absent. While LLMs
share some similarity to children in the factors that
affect performance, the errors they make suggest
a different mechanism. Future work can contrast
adult-like relational mapping with other possible
mechanisms children have been postulated to use
such as relational priming (Leech et al., 2008) or
partial analogical reasoning (Stevenson and Hick-
endorff, 2018) to further examine how LLMs solve
verbal analogies.
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Figure 7: Example analogy "lawyer : defending ::
teacher : educating"

A Prowise Learn Verbal Analogies Data

Prowise Learn games are adaptive, so that children
solve items that are neither too difficult nor too
easy, presenting children with items that they have
a 65-85% chance of solving correctly, using re-
sponse time to improve ability estimates (Klinken-
berg et al., 2011). Each time a child solves an item
his/her ability score on the game is updated accord-
ing to an algorithm similar to the adaptive ELO
rating system used for chess players (for details see
Klinkenberg et al., 2011). At the same time the
item’s difficulty level is adapted according to the
same algorithm. In this way item difficulty is on
the same scale as the children’s ability, and, as such
item difficulties can be used to study children’s
abilities (see van der Ven et al., 2015; Gierasim-
czuk et al., 2013, for examples in math and logical
reasoning). The ELO algorithm is based on the
one-parameter logistic function from item response
theory where we estimate the probability a child
will solve an item correctly given the child’s ability
score θ and the item’s difficulty level β as shown
in Equation 1.

P (X = 1|θ, β) = e(θ−β)

1 + e(θ−β)
(1)

Information extracted per item The following
information was extracted per item: question text,
answer options, item difficulty rating, standard er-
ror of item difficulty rating, type of analogy rela-
tion, number of times the item was solved, propor-
tion of times each response option was selected.

B Effect of Relation Type on Children’s
and LLMs’ Performance

B.1 Examples for each Relation Type

See Table 2.
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Prowise Learn relations N relations∗ example
action-result 36 causal parasol : shadow :: sun : warmth
cause-effect 11 causal falling : broken :: heating : hot
problem-solution 6 causal noisy : earplugs :: illness : medicine
same category 28 categorical lion : tiger :: dog : wolf
classification 51 categorical lego : toys :: sock : clothes
item-characteristic 45 compositional skyscraper : high :: lead : heavy
object-function 34 compositional pan : cooking :: pen : writing
part-whole 51 compositional gate : city :: door : house
share characteristic 25 compositional giant : mountain :: dwarf : mouse

Table 2: ∗ Mapping of selected relations in verbal analogies game to those examined in Jones et al. (2022).

C Results for item characteristics on
items not solved by word association

Results from Aya show effect of semantic
distance(beta = −3.94, z = −3.22, p < 0.01)
and distractor salience (beta = −3.23, z =
−3.34, p < 0.001). Results from linear model
of Command-R show effect of semantic distance
(beta = −4.14, z = −3.97, p < 0.001) and dis-
tractor salience (beta = −3.31, z = −3.99, p <
0.001). No significant effect of semantic dis-
tance and distractor salience was found for Claude
(p = 0.27 and p = 0.73, respectively). No sig-
nificant effect of semantic distance and distractor
salience was found for Gemini (p = 0.57 and
p = 0.88, respectively). A significant effect of
semantic distance was found for GPT-4o (beta =
−3.73, z = −2.55, p < 0.05) but no significant ef-
fect of distractor salience (p = 0.43). Results from
GPT-3 show effect of distractor salience(beta =
−2.90, z = −3.97, p < 0.001) with no signifi-
cant effect of semantic distance(p = 0.12). Re-
sults from linear model of RobBERT show ef-
fect of semantic distance(beta = −4.28, z =
−4.08, p < 0.001) and distractor salience (beta =
−1.86, z = −2.37, p < 0.05). A significant ef-
fect of semantic distance was found for XLM-V
(beta = −5.01, z = −3.96, p < 0.001) but no
significant effect of distractor salience (p = 0.22).

Figure 8: In children (as with adults) compositional
relations are easier than causal. Pattern in LLM perfor-
mance differs per model.
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Alacam, Özge, 216
Alishahi, Afra, 126
Amsili, Pascal, 312

Baggio, Giosuè, 469
Bavaresco, Anna, 141
Beekhuizen, Barend, 571, 602
Bengoetxea, Jaione, 452
Briscoe, Ted, 540
Bunzeck, Bastian, 169
Buttery, Paula, 481, 502, 522

Cai, Zhenguang, 586
Candito, Marie, 312
Carvalho, Danilo, 12
Chandak, Yashashree, 201
Cheng, Chung Shing, 1
Cheng, Tsz Chung, 1
Chersoni, Emmanuele, 469
Choenni, Rochelle, 627
Chong, Cheuk Hei, 1
Chou, Hsin-Yu, 30
Cong, Jason, 268
Conlan, Owen, 233

Daelemans, Walter, 68
De Bruyne, Luna, 68
De Souza, Sydelle, 291
Debnath, Alok, 233
Delbari, Zahra, 557
Deng, Yunhan, 47
Doshi, Arham Vinit, 348
Doumas, Leonidas A. A., 291
Duan, Xufeng, 586
Duran, Daniel, 169

El-Naggar, Nadine, 540
Eshuijs, Leon, 105

Fernández, Raquel, 141
Fokkens, Antske, 105
Freitas, Andre, 12

Gamallo, Pablo, 419
Garcia, Marcos, 419
Garg, Amanmeet, 187

Gevers, Ine, 68
Goldman, Omer, 251
Gonzalez-Dios, Itziar, 452
Goriely, Zebulon, 502, 522
Graham, Yvette, 233
gu, Hongyi, 481
Gupta, Advay, 201

Hasan, Mohammad Rashedul, 334
Haslett, David A., 586
Hayat, Ahatsham, 334
Hsieh, Cho-Jui, 268
Hsieh, Shu-Kai, 30

Ishii, Taiga, 437

Jahan, Labiba, 348
Johnson, Tamar, 627
Junker, Simeon, 216

Kennedy, Mary, 377
Keshales, Dorin, 251
Khan, Bilal, 334
Kletz, David, 312
Krishnaswamy, Nikhil, 323
Kuribayashi, Tatsuki, 540

Lai, Kenneth, 323
Lam, Eugene, 1
Lau, Chaak-ming, 1
Lenci, Alessandro, 469
Li, Ying, 47
Lihaoran, Lihaoran, 47

Marez, Victor De, 68
Martinez, Helen, 334
Matsuzaki, Takuya, 397
Miyao, Yusuke, 437
Mollica, Francis, 291

Nath, Abhijnan, 323
Ngo, Hoang, 81
Nguyen, Dat Quoc, 81
Nguyen, Thi-Nhung, 81
Nicholls, Diane, 481
Nosaka, Ryota, 397

Obiso, Timothy, 323

640



Oseki, Yohei, 93, 407

Pavel, Hamza Reza, 348
Pavlick, Ellie, 156
Phung, Dinh, 81
Pilehvar, Mohammad Taher, 557
Pouw, Charlotte, 126
Prakriya, Neha, 268
Pustejovsky, James, 323

Radaelli, Matteo, 469

Schneider, Nathan, 365
Scivetti, Wesley, 365
Shen, Siqi, 187
Shutova, Ekaterina, 627
Sieker, Judith, 216
Someya, Taiga, 93
Sreekumar, Vishnu, 201
Stevenson, Claire E, 627
Strohmaier, David, 481
Sugimoto, Yushi, 407
Sun, Chen, 156
Sunny, Amal, 201
Suri, Rishi, 348

Temerko, Anna, 419
ter Veen, Mathilde, 627
Tsarfaty, Reut, 251

Tseng, Yu-Hsiang, 30
Tyen, Gladys, 481

van der Maas, Han, 627
Vegner, Ivan, 291
Vu, Thuy-Trang, 81

Wang, Baoxun, 47
Wang, Shihan, 105
Wang, Wenqing, 47
Wu, Bowen, 47

Xiao, Bei, 586

Yanaka, Hitomi, 93
Yat, Wong Chun, 1
Yen, Jui-Nan, 268
Yoshida, Ryo, 93, 407
Yu, Hoi On, 1
Yu, Jingsong, 47
Yuan, Zheng, 481
Yun, Tian, 156

Zarrieß, Sina, 169, 216
Zhang, Jia, 348
Zhang, Yingji, 12
Zuidema, Willem, 126

641


	Title page
	Sponsors
	Copyright
	Introduction
	Organizing Committee
	Program Committee
	Table of Contents
	Program
	HKCanto-Eval: A Benchmark for Evaluating Cantonese Language Understanding and Cultural Comprehension in LLMs
	Quasi-symbolic Semantic Geometry over Transformer-based Variational AutoEncoder
	LawToken: a single token worth more than its constituents
	Interpersonal Memory Matters: A New Task for Proactive Dialogue Utilizing Conversational History
	WinoWhat: A Parallel Corpus of Paraphrased WinoGrande Sentences with Common Sense Categorization
	Planning for Success: Exploring LLM Long-term Planning Capabilities in Table Understanding
	Derivational Probing: Unveiling the Layer-wise Derivation of Syntactic Structures in Neural Language Models
	Short-circuiting Shortcuts: Mechanistic Investigation of Shortcuts in Text Classification
	A Linguistically Motivated Analysis of Intonational Phrasing in Text-to-Speech Systems: Revealing Gaps in Syntactic Sensitivity
	Experiential Semantic Information and Brain Alignment: Are Multimodal Models Better than Language Models?
	What is an Abstract Reasoner? Revisiting Experiments and Arguments about Large Language Models
	Do Construction Distributions Shape Formal Language Learning In German BabyLMs?
	Adapting Large Language Models for Movie Domain with Narrative Understanding Tasks
	From Stories to Statistics: Methodological Biases in LLM-Based Narrative Flow Quantification
	Components of Creativity: Language Model-based Predictors for Clustering and Switching in Verbal Fluency
	An Appraisal Theoretic Approach to Modelling Affect Flow in Conversation Corpora
	Principal Parts Detection for Computational Morphology: Task, Models and Benchmark
	Accelerating Large Language Model Pretraining via LFR Pedagogy: Learn, Focus, and Review
	What does memory retrieval leave on the table? Modelling the Cost of Semi-Compositionality with MINERVA2 and sBERT
	Polarity inversion operators in PLM
	Dynamic Epistemic Friction in Dialogue
	A Three-Tier LLM Framework for Forecasting Student Engagement from Qualitative Longitudinal Data
	Bridging the Socioeconomic Gap in Education: A Hybrid AI and Human Annotation Approach
	Construction Identification and Disambiguation Using BERT: A Case Study of NPN
	Evidence of Generative Syntax in LLMs
	Timestep Embeddings Trigger Collapse in Diffusion Text Generation
	Investigating Psychometric Predictive Power of Syntactic Attention
	A Continuous Approach to Metaphorically Motivated Regular Polysemy in Language Models
	Is Incremental Structure Prediction Process Universal across Languages?: Revisiting Parsing Strategy through Speculation
	Lost in Variation? Evaluating NLI Performance in Basque and Spanish Geographical Variants
	Compositionality and Event Retrieval in Complement Coercion: A Study of Language Models in a Low-resource Setting
	DLU: Dictionary Look-Up Data and Prediction
	IPA CHILDES & G2P+: Feature-Rich Resources for Cross-Lingual Phonology and Phonemic Language Modeling
	BabyLM's First Words: Word Segmentation as a Phonological Probing Task
	GCG-Based Artificial Languages for Evaluating Inductive Biases of Neural Language Models
	Beyond Accuracy: Revisiting Out-of-Distribution Generalization in NLI Models
	Spatial relation marking across languages: extraction, evaluation, analysis
	Human-likeness of LLMs in the Mental Lexicon
	Vorm: Translations and a constrained hypothesis space support unsupervised morphological segmentation across languages
	Do large language models solve verbal analogies like children do?

