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Abstract
The correlation between reading times and sur-
prisal is well known in psycholinguistics and is
easy to observe. There is also a correlation be-
tween reading times and structural integration,
which is, however, harder to detect (Gibson,
2000). This correlation has been studied us-
ing parsing models whose outputs are linked to
reading times. In this paper, we study the rele-
vance of memory-based effects in reading times
and how to predict them using neural language
models. We find that integration costs signif-
icantly improve surprisal-based reading time
prediction. Inspired by Timkey and Linzen
(2023), we design a small-scale autoregressive
transformer language model in which attention
heads are supervised by dependency relations.
We compare this model to a standard variant by
checking how well each model’s outputs cor-
relate with human reading times and find that
predicted attention scores can be effectively
used as proxies for syntactic integration costs
to predict self-paced reading times.

1 Introduction

Recently, there has been increased interest in eval-
uating language models (LMs) regarding their psy-
cholinguistic plausibility, particularly in relation
to two important approaches to human sentence
processing: expectation-based (Hale, 2001; Levy,
2008) and memory-based theories (Gibson, 2000).

Expectation-based theories postulate that sur-
prisal is a good indicator of human reading times
(RTs), and that surprisal can be modelled with a
language model. A strong correlation between sur-
prisal and RTs was confirmed using state-of-the-art
transformer-based LMs (Wilcox et al., 2023). In
contrast, memory-based theories such as cue-based
retrieval (Van Dyke and Lewis, 2003) explain diffi-
culties in processing with the limitations of infor-
mation encoding and retrieval in human working
memory. In particular, Dependency Locality The-
ory (DLT) proposes that when processing a token,

longer syntactic dependencies cause higher integra-
tion costs (i.e. the online cognitive cost required to
integrate the token into the structure built so far),
thus longer reading times (Gibson, 2000).

Against this backdrop, efforts are made to unify
these approaches by constructing LMs that jointly
operationalise both paradigms and generate theory-
driven predictions aligned with human data. For
example, Ryu and Lewis (2021) show that self-
attention can be seen as cue-based retrieval. In-
spired by that, Timkey and Linzen (2023) propose
a unified cognitive model by training an LM with
only one attention head. They observe that their
model tends to attend to syntactically close tokens,
resembling expected memory effects, but they do
not leverage the attention patterns of their model
for reading time predictions.

Linguists have produced a vast collection of
work pertaining to the structures underlying lan-
guage. If these theories are indeed indicative of
the human cognitive process, incremental parsers
such as the attach-juxtapose parser (Yang and Deng,
2020; Ezquerro et al., 2024) and the PLTAG parser
(Demberg et al., 2013) should allow us to extract
measures that we could link to human RTs. How-
ever, these models do not predict next token prob-
abilities. Given the significance of the correlation
between surprisal and RTs, we are interested in
models that combine incremental parsing and next
token prediction.

This paper approaches the question of how sur-
prisal and structural integration costs contribute
to RT predictions in two ways. We first train an
LM only towards next word prediction. This LM
provides surprisal, i.e. expectation-based RT pre-
dictors. We then (i) compare RT prediction based
on surprisal only with RT predictions based on
both surprisal and structural integration cost. We
do so by obtaining surprisal from the LM and
the structural costs from parsed dependency data.
We observe that structural integration costs im-
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prove RT prediction, which leads us to (ii) de-
vise a dependency enhanced LM that outputs both
expectation-based and memory-based processing
features, which we compare in the same fashion.
Again, we observe that RT predictions are im-
proved. Finally, comparing the contributions of
surprisal and structural integration costs provided
in (i) and (ii), we note that the syntax-enhanced LM
has a better fit to self-paced reading times while
surprisal from a vanilla LM combined with parsed
data is better for eye-tracking data.

In Sections 2–3, we outline our research ques-
tions and discuss related work. We follow with an
investigation of natural data to establish the signif-
icance of memory-based reading time predictors
(see (i) above). Finally, in Section 5 we present
our dependency-enhanced neural network and in-
vestigate how well the combination of expectation-
based and memory-based features from our model
predicts reading times (see (ii) above).

2 Methodology

Research questions We aim to answer the fol-
lowing questions: [Q1] Does syntactic integration
cost reflect properties of human sentence process-
ing that are not explained by surprisal? [Q2] Can a
syntax-informed language model better capture fea-
tures of human sentence processing than a vanilla
model, both with respect to expectation-based and
memory-based costs?

We hypothesise [H1] that using syntactic integra-
tion cost improves RT predictions over a model that
only includes surprisal and [H2] that small-scale
transformers trained to attend to syntactic gover-
nors or dependents better reflect human language
processing than their unconstrained counterparts.

Proposal To answer [Q1], we estimate the joint
predictive power of surprisal and a memory-based
integration cost on eye-tracking and on self-paced
reading time data. The structural integration cost is
in this case obtained from parse trees based on an
off-the-shelf parser (silver parses). We confirm that
both expectation-based and memory-based theories
give rise to significant predictors for RTs and that
including both aspects in a linear mixed effects
model significantly improves RT predictions over
including only the expectation-based predictor.

Answering [Q2] is not easy since the inner work-
ings of a typical transformer model are widely dis-
tributed across different layers and attention heads
with millions of parameters. Large transformer

LMs are not only hard to interpret but also tend
to underestimate processing difficulties (Oh and
Schuler, 2022; Hu et al., 2025). Therefore, we de-
sign a small-scale transformer whose internals are
easy to interpret and to supervise.

Given this idea, we propose to use a language
model that utilises syntactic structure explicitly for
its next token prediction mechanism. More con-
cretely, we use a 2-head transformer-based model
and train one of its heads to attend to the syntactic
governor of the input token whenever it is accessi-
ble (i.e. to the left) and the other to attend to its syn-
tactic dependents when they are accessible. This
implements a form of incremental parsing. Now
we measure structural integration costs based on
our model, and show that the joint predictive power
of structural cost and surprisal with respect to read-
ing times is significantly larger than the one of only
surprisal (from the same model). Finally, we com-
pare the predictive power that the two measures
from our syntax-enhanced model together provide
with the predictive power that surprisal from a
language modelling-only variant of the architec-
ture yields. We establish that our syntax-informed
model captures human sentence processing on self-
paced reading times better and on eye-tracking data
worse than a vanilla model.

We make our code publicly available.1

3 Related work

It is well known that reading times correlate
with surprisal (Shain et al., 2024). But besides
frequency-based theories there are also memory-
based theories like Dependency Locality Theory
(Gibson, 2000) that establish the contribution of
structural effects on reading times. In this paper, we
are interested in predicting these effects in reading
times. Structural effects can be predicted using syn-
tactic language model parsers (Hale, 2001; Roark,
2001; Hale et al., 2018). Here we take advantage
of a relation between attention matrices used in
transformer models and attention matrices used in
graph-based parsers (Dozat and Manning, 2016)
to propose an integration of graph-based parsing
into a language model for which we can explicitly
add a supervisable structural bias. By doing this,
we are close to the recent proposal of Timkey and
Linzen (2023) who explored the use of small-sized
transformer language models that remain easy to
interpret. Our implementation can be seen as a

1https://github.com/filemon11/MITransformer
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stricter version of their retrieval-based approach
where the number of previous tokens to retrieve is
minimised and queries/keys are implicitly condi-
tioned to encode syntactic governors/dependents.

Recent work aims to bridge expectation-based
and memory-based accounts of language process-
ing by proposing unified models that constrain con-
textual representations used in prediction. Notably,
Futrell et al. (2020) and Hahn et al. (2022) develop
frameworks that formalise the trade-offs between
memory limitations and predictive efficiency, while
Kuribayashi et al. (2022) show that minimising
transformer context access generally improves RT
predictions. Yet, they also find that for specific
syntactic constructions, not strictly determined by
dependency length, longer contexts are necessary.
They suggest including syntactic biases into con-
text access - a direction our work addresses.

This work also features a form of multitask learn-
ing. Collobert and Weston (2008) pioneered the
inclusion of several objectives into neural NLP
models to improve generalisation and efficiency.
More recently, LM architectures like the trans-
former have been adapted, with approaches such as
MT-DNN (Liu et al., 2019) that combine a shared
encoder with task-specific output layers. Compared
to those approaches, where the precise effect on a
model’s internal representations remains unclear,
our parsing objective has an easily interpretable
effect, in that it directly induces patterns in the
attention weights of a transformer.

4 Can we observe (structural) effects in
reading time data?

First, we investigate the interplay of expectation-
based and memory-based theories with respect to
human reading times in natural data. In general, it
is unclear how they relate to each other. It is pos-
sible that tokens with higher integration costs and
long-range dependencies are generally rarer, and
thus naturally more surprising to the reader. Indeed,
Demberg and Keller (2008) find evidence for ef-
fects driven by integration costs only for nouns.
Thus, we need to establish to what degree RT
phenomena are exclusively explicable by costs in-
curred through memory effects in online processing
and not by predictive effects to be able to reason-
ably judge the contribution of our joint model.

Therefore, we fit linear models to predict reading
times from surprisal and dependency-based costs
calculated on silver parses. We observe that both

Peter bought a car from Abigail
1a. 0 0 0 0 0 1
1b. 1 1 0 1 0 1
2. 0 1 0 2 0 4

nsubj

obj

det

obl

case

Figure 1: An example dependency parse. Structural
integration costs are obtained by summing the linking
costs in row 1a. and the establishment costs in row 1b.
Costs assigned by leftmost connection distance (LCD)
can be found in row 2.

theories’ contributions are significant and that in-
cluding memory-based costs in a model that con-
tains surprisal as a predictor significantly improves
model fit. This leads us to believe that finding
candidates for memory-based metrics in neural lan-
guage models might allow us to build models that
better reflect human processing behaviour.

4.1 Data
We utilise the University College London (UCL)
corpus of sentences from English narrative sources
that comes with both self-paced reading times and
eye-tracking data (Frank et al., 2013). It features
361 sentences with an average length of 13.7 words.
Self-paced reading times (SPR) were provided by
117 participants while eye-tracking measures were
collected from 43 subjects. Regarding the eye-
tracking data, we use first fixation duration (FFD),
which is the duration of the very first fixation on
a word, gaze duration (GD), the summed duration
of all fixations on a word before the fixation of
any other word, and go-past time (GPT), being the
total time spent from first entering a word until
moving past it to the right, including any regres-
sions back to earlier text. We include FFD, GD
and GPT because we expect to attribute differences
in our metrics’ ability to predict these measures to
regressions or to re-fixations.

For training our model, we generate silver de-
pendency parses using the state-of-the-art spaCy
English transformer pipeline.2

4.2 Method
Our main predictors are surprisal and structural
integration cost. We calculate surprisal using a
small-scale LM consisting of an LSTM and a trans-
former layer with two heads (see Section 5.1 for

2https://spacy.io/models/en#en_core_web_trf
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more information about the model). We calculate
structural integration costs in the following way,
similar to Demberg and Keller (2008) and close
to the formulation by Gibson (2000): For a given
content word (noun or verb), we compute the num-
ber of intervening content words between it and
its leftmost preceding governor/dependent that is
also a content word (0 if none is available), and we
add an establishment cost of 1. Non-content words
receive a cost of 0. See Figure 1 for an example.

Additionally, we test a modified version of struc-
tural integration cost which we call leftmost connec-
tion distance (LCD). This metric does not ignore
non-content words. For each token, it simply yields
the distance to its leftmost governor/dependent. If
no governor/dependent to the left exists, LCD is 0.
This is motivated by Demberg and Keller (2008)’s
suggestion that there might be structural phenom-
ena for words where DLT does not predict a cost.
Additionally, in contrast to the canonical structural
cost, this metric is directly extractable from self-
attention matrices as we will discuss in Section 5.3.
Figure 1 also contains an example for LCD.

We investigate the correlation between these
predictors and human reading times using linear
mixed-effects models. Word frequency and word
length are included as baseline predictors and ran-
dom intercepts are included for the participants.

Since processing slowdown is often delayed in
RT data (Ehrlich and Rayner, 1983), we add shifted
versions of our predictors. For a given S, the
amount of spillover, for each word, we not only
use the values assigned to this word, but also those
of the S previous ones. We decide on S by first
fitting a control model to the data without spillover,
and then fitting a second model using the same
predictors plus a shifted version of the variables.
If the latter is a significantly better fit to the data,
we choose it, otherwise we stick with the control
model. As long as we get significant improvements,
we repeat this procedure – up to S = 2 in order to
avoid losing too much data. Since it generally turns
out to be best, we report results for S = 2, except
when noted otherwise. The test model uniquely
adds the metric of interest (e.g. surprisal) and its
spillover versions to the baseline.3

3We will report the following codes: *** highly significant,
** very significant, * significant, . marginally significant. Fur-
thermore, we provide the coefficient estimate (detailed results
in Appendix C), ∆LogLik, i.e. the change in log-likelihood
after adding the predictor of interest to the model (higher
= better) and ∆AIC, i.e. the Akaike Information Criterion
(lower = better). The latter two are averaged by the number of

coef ∆LogLik ∆AIC p-value
standard surprisal

SPR 0.22 1.38e-5 -4.10e-6 .
FFD 2.00 1.03e-3 -1.94e-3 ***
GD 2.85 1.03e-3 -1.95e-3 ***
GPT 3.32 1.31e-3 -2.50e-3 ***

GPT2 surprisal
SPR 0.30 1.71e-4 -3.18e-4 ***
FFD 1.34 1.47e-3 -2.82e-3 ***
GD 2.13 1.40e-3 -2.67e-3 ***
GPT 3.41 2.01e-3 -3.91e-3 ***

structural
SPR -0.14 1.28e-5 -2.13e-6 .
FFD 0.94 2.32e-4 -3.45e-4 ***
GD 1.30 2.12e-4 -3.05e-4 ***
GPT 0.07 1.56e-4 -1.93e-4 **

leftmost connection distance
SPR 0.60 5.22e-5 -8.09e-5 ***
FFD -2.03 4.76e-4 -8.33e-4 ***
GD -1.93 3.45e-4 -5.71e-4 ***
GPT -3.42 6.21e-4 -1.12e-3 ***

Table 1: Improvements in mixed linear effects model fit
when including one of four predictors: surprisal from
our small LM, GPT2 surprisal, structural cost computed
on silver parses and LCD computed on silver parses.

4.3 Results

Our results for the predictive power of surprisal,
structural integration cost and LCD can be found in
Table 1. For comparison with previous research, we
also included results for surprisal from the small-
est GPT2 model (Radford et al., 2019). We can
see that the contribution of surprisal from our base-
line model is highly significant for all of the eye-
tracking measurements but only marginally sig-
nificant for self-paced reading times. Self-paced
reading times might be noisier and more strategic
since participants cannot return to previous mate-
rial, which can wash out some of surprisal’s predic-
tive power. As expected considering the small size
of our model, it performs worse than GPT2, with
the difference being most notable for self-paced
reading times.

Structural integration shows the same pattern.
We expected to see more significant results for GPT
than for FFD because it includes regressions to the
left which we thought to correspond to integration
of preceding material. However, the result is con-
trary, which might be caused by integration cost
being entangled with early lexical access or lexical
expectations which are believed to manifest more
strongly in FFD than in GPT (Conklin et al., 2018).
We did not make a hypothesis about GD because it
was included post-hoc in response to a review.

observations included (50568).

55



Previous research has found a facilitative effect
at long dependencies, (among others Konieczny
and Döring, 2003; Demberg and Keller, 2008;
Rathi, 2021), questioning the explanations pro-
vided by DLT. However, we find positive effects for
eye-tracking and a small negative effect for SPR
times. The coefficient seems to decrease when re-
gressions to previous elements are included (1.30
for GD vs. 0.07 for GPT). Possibly, correlation
with surprisal acts as a confounder. However, while
further investigations showed a high Pearson cor-
relation of 0.4 between surprisal and structural in-
tegration, correlations between FFD/GD and sur-
prisal are only marginally higher than for GPT and
surprisal (see Table 8 in Appendix C).

Results for LCD are highly significant for all
four dependent variables with ∆AIC ranging from
-8.09e-5 for SPR to -1.12e-3 for GPT. This is notice-
ably better than the canonical structural cost and
might indicate that non-content words influence
memory-based costs both in terms of calculating
the distance function and as cost-carrying words
themselves. It is also possible that the class of con-
tent words should contain additional categories of
words that we left out, e.g. adjectives.

For the coefficient, here we find inverted re-
sults with the sign being negative for eye-tracking
and positive for SPR. Interestingly, higher coeffi-
cients for surprisal seem to coincide with lower
coefficients for LCD. Possibly eye movements re-
flect a more shallow form of good-enough process-
ing (Ferreira et al., 2002), as suggested by Kurib-
ayashi et al. (2022), more strongly influenced by
frequency effects, while SPR might be more strate-
gic as noted above, due to the inaccessibility of pre-
ceding information and more influenced by struc-
tural integration. The stronger anti-locality effect
for LCD where surprisal is most predictive would
then be explicable by a frequency-based account,
i.e. the accumulation of probabilistic evidence, for
instance, before clause final verbs (Levy, 2008).

Due to the more significant results LCD provides
and our ability to extract it from our LM, we stick
with it for the remainder of the paper.

Naturally, the question arises of how LCD and
surprisal behave with respect to each other and
whether we can disentangle their effects. The Pear-
son correlation between surprisal and this measure
is lower than for structural integration cost (0.19),
so it seems less likely that we observe frequency
effects. This may also be partly explained by the
fact that in contrast to structural cost, LCD takes

spill coef ∆LogLik ∆AIC p-value
leftmost connection distance over standard surprisal

0 SPR 0.54 3.64e-5 -6.61e-5 ***
FFD -2.27 2.37e-4 -4.44e-4 ***
GD -4.52 7.20e-4 -1.41e-3 ***
GPT -5.07 6.67e-4 -1.31e-3 ***

1 SPR 0.70 7.48e-5 -1.35e-4 ***
FFD -1.58 3.13e-4 -5.57e-4 ***
GD -2.55 4.35e-4 -8.02e-4 ***
GPT -4.23 9.67e-4 -1.85e-3 ***

2 SPR 0.62 5.46e-5 -8.58e-5 ***
FFD -1.92 4.04e-4 -6.90e-4 ***
GD -1.79 3.11e-4 -5.03e-4 ***
GPT -3.19 5.34e-4 -9.49e-4 ***

Table 2: Results of including LCD cost in a linear mixed
effects model with surprisal as part of the control.

into account non-content words, which generally
feature significantly lower surprisal than content
words (see Figure 6 in the Appendix).

We check whether including LCD in a linear
mixed model that contains surprisal as well as our
baseline predictors significantly improves the fit.
Table 2 shows detailed results, including values for
spillover 0, 1 and 2. Again, the selection process
established a window of 2 as most relevant.

We can see that structural effects are highly
significant across all dependent variables and all
spillover window sizes. For SPR and GPT ∆AIC
is strongest with -1.35e-4 and -1.85e-3 respectively
at spillover 1 while for FFD it is best at spillover
2 with -6.90e-4 and for GD at spillover 0 with -
1.41e-3. The trend of a negative sign for SPR and a
positive sign for eye-tracking data still holds. Thus,
it is unlikely that this phenomenon can be fully
explained by a frequency-based account.

These observations suggest that we can answer
[Q1] by confirming [H1]: syntactic integration
costs impact processing in a measurable and sus-
tained way that is not fully captured by surprisal.

5 Can a syntax-informed model better
capture human processing?

5.1 Models
In order to address question [Q2] of whether a
syntax-informed language model better captures
features of human sentence processing, we design
two small-scale language models. The first model
(called standard) serves as our baseline and is
trained for next token prediction while the second
model (called supervised) receives an additional
incremental dependency parsing objective. More
concretely, in our syntax-enhanced model, depen-
dency edges are represented via the attention each

56



token pays to the items that precede it. To this
end, we train one attention head so that each to-
ken attends to its governor if its on the left, and
one attention head so that each token attends to
all of its dependents on the left. The model is
trained in a multitask fashion, where the loss is
a weighted average of a language modelling loss
LossLM (cross-entropy) and two syntactic losses
Losssyn = (Lossgov + Lossdep)/2 (binary cross-
entropy) given in Equation 1.

Loss = α LossLM + (1− α) Losssyn (1)

The optimal weight for language modelling and
parsing is non-trivial to select and is therefore de-
termined through hyperparameter optimisation, as
are learning rate, dimensionality and regularisation
strengths. For the standard model, we select hy-
perparameters that minimise perplexity and for the
supervised model, we select hyperparameters that
maximise unlabelled attachment score (UAS), that
is, the percentage of tokens assigned the correct
governor. For the loss-term α in the supervised
setting, the search yields an optimal value of 0.05
which is heavily leaning towards parsing. Addi-
tional information on the hyperparameter search
and the resulting parameters can be found in Sec-
tion B of the appendix. The final models are both
trained for 10 epochs.

Our models are based on the transformer ar-
chitecture. They are causal, meaning that atten-
tion heads are constrained to tokens in the left
context by masking. See Vaswani et al. (2017)
for a detailed introduction to transformers. The
schemes for positional encodings and the language
modelling head correspond to the GPT architec-
ture (Radford et al., 2018). Following Timkey
and Linzen (2023), we contextualise our embed-
dings using a unidirectional LSTM (Hochreiter and
Schmidhuber, 1997) before providing them to the
transformer module.

5.2 Data
In the following, we explain our choice of datasets
and the pre-processing for training and evaluation.

Training and LM evaluation We use the pre-
processed Wikitext-103-v1 dataset4 for training our
models. It consists of over 100 million tokens from
Wikipedia. Here, we also use the spaCy trf model
to generate silver dependencies, as outlined in 4.1.

4https://huggingface.co/datasets/Salesforce/
wikitext

Before parsing Wikitext and training the model we
convert the data to lowercase and apply additional
modifications outlined in Section A of the appendix.
Finally, we tokenise the dataset on the word-level.

Psycholinguistic evaluation In order to investi-
gate the psycholinguistic plausibility of our models,
we again use the UCL corpus (cf. Section 4.1). We
treat these sentences as our stimulus and are aware
that their domain differs from Wikitext. However,
we do not regard this as problematic since we are
only interested in comparing the psycholinguistic
properties of our models against each other.

5.3 Evaluation

In the next section, we evaluate our models in three
respects: (a) language modelling, (b) dependency
parsing, and (c) correlation between model mea-
sures and human reading times. In the following,
we explain our methods of evaluation and how they
are used to answer [Q2].

Language modelling We evaluate language mod-
elling capabilities using perplexity.

Dependency parsing The two attention heads
together provide a score for each possible de-
pendency in the sentence. We decode these
scores as a directed maximum spanning tree using
Chu–Liu/Edmonds’ algorithm (Chu and Liu, 1965;
Edmonds, 1967). Then, we evaluate the predic-
tion by computing UAS. Furthermore, we report
the entropy of the probability distributions over
preceding tokens provided by the attention heads
averaged by all tokens.

Psycholinguistic plausibility We restrict this
analysis exclusively to measures provided by the
LM: (i) surprisal and (ii) the attention patterns of
our model which we use to compute a prediction
for leftmost connection distance (PLCD). This is
done by identifying the token with the maximum
weight assigned per attention head and then taking
the one closest to the beginning of the sentence. If
both heads connect to one of two special tokens
called “root” and “dummy” (representing a lack of
left connections), we manually assign a cost of 0.
An example can be found in Figure 2.

5.4 Model comparisons

5.4.1 General performance
Measures of the language modelling performance
of our standard and our syntax-enhanced model
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the council clerk is pam mcinnis .
a. 0 1 1 0 0 2 3
b. 0 0 2 1 0 2 3

Figure 2: First row: governor matrix; second row: de-
pendent matrix; first column: prediction; second col-
umn: silver adjacency matrices. a. cost predicted by our
supervised model; b. cost measured on the silver parse.

on the training, development, and test splits of the
Wikitext dataset can be found in Table 3. With a
value of 46.75 on the test split, the perplexity of
our standard model is considerably lower than the
mean perplexity of 61.8 Timkey and Linzen (2023)
report for their base model. This is probably due to
our model having a dimensionality of 886, while
their model comes with a width of just 256.

The perplexity of our supervised model on the
test set amounts to 58.88 which is noticeably higher
than the standard model, likely caused by the
strong focus on dependency parsing (cf. Section
5.1). Structuring the attention mechanism, used to
compute the output embeddings of the transformer
layer, along dependency arcs might undervalue the
role of certain types of preceding context neces-
sary for next token prediction, for instance, when
a token should be most probable that is not di-
rectly connected with the current item or any of the
retrieved directly syntactically connected content.
Another possibility might be that reaching good
performance for both parsing and language mod-
elling would necessitate a larger model, as hyper-
parameter optimisation for the supervised model
resulted in roughly half the number of parameters
than for the standard model (104M vs. 219M). It
is also possible that we would have needed more
training data and/or longer training to support both

model split PPL UAS attn entropy
gov dep

standard train 28.46 1.16 1.10
dev 44.81 1.23 1.15
test 46.75 1.21 1.15

supervised train 42.85 0.92 0.06 0.05
dev 57.13 0.87 0.08 0.06
test 58.88 0.87 0.08 0.06

CBR-RNN test 61.8
GPT2 train 105.00 1.14

dev 95.97 1.21
test 98.68 1.21

Table 3: General evaluation of our language models on
the Wikitext corpus. PPL = perplexity, UAS = unla-
belled attachment score. CBR-RNN (α=0, reported by
Timkey and Linzen (2023)) and GPT2 with sentence-
based PPL on the raw Wikitext corpus are included for
comparison. Note that results for GPT2 are not directly
comparable because of the different tokenisation scheme
and CBR-RNN neither due to PPL being chunk-based.

tasks. At least the latter is unlikely since we have
reached convergence (see Appendix B).

For parsing, the supervised model reaches an
UAS of 0.87. Note that this is measured against
silver data generated by an off-the-shelf parser – al-
beit a performant one, with an UAS of 0.95 (Honni-
bal et al.) on the development set of the OntoNotes
5.0 corpus (Weischedel et al., 2013). Finally, atten-
tion is on average much more narrowly distributed
in the supervised model (0.08 governor head en-
tropy, 0.06 dependent head) than in the standard
model (1.21, 1.15). As an entropy of 0 would cor-
respond to a one-hot vector, this confirms that our
training scheme has optimised the model to retrieve
information from a minimal number of preceding
tokens.

The significance of surprisal and leftmost con-
nection distance extracted from attention patterns
of our supervised model (PLCD) for reading time
predictions can be found in Table 4. Surprisal sig-
nificantly improves prediction across all reading
time measures, with large gains in FFD, GD and
GPT. The benefit for SPR is weaker, but still highly
significant. This is noteworthy since the predic-
tive power of surprisal from the standard model
was only marginally significant for SPR (cf. Ta-
ble 1). On the other hand, for the eye tracking
measures ∆AIC is lower using standard model sur-
prisal. Overall, despite heavily modifying the at-
tention architecture and yielding an increase in per-
plexity, surprisal, as a measure of word predictabil-
ity, is still a strong predictor of reading difficulty.
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coef ∆LogLik ∆AIC p-value
supervised surprisal

SPR 0.38 4.69e-5 -7.04e-5 ***
FFD 2.67 5.16e-4 -9.12e-4 ***
GD 3.17 4.93e-4 -8.68e-4 ***
GPT 3.78 6.15e-4 -1.11e-3 ***

predicted leftmost connection distance
SPR 0.40 2.01e-5 -1.67e-5 *
FFD -0.41 1.69e-4 -2.20e-4 **
GD 0.07 1.15e-4 -1.12e-4 **
GPT -1.26 2.80e-4 -4.42e-4 ***

Table 4: Improvements in mixed linear effects model fit
when including surprisal or PLCD extracted from our
supervised model.

5.4.2 Psycholinguistic performance

The predictive power of PLCD is significant for
the four metrics, ranging from -1.67e-5 (SPR) to
-4.42e-4 (GPT) ∆AIC. While being less significant
than the distance extracted from the silver data as
we have reported in Table 1, we have to remind the
reader that expectation-based and memory-based
effects are entangled in this test, so that greater
predictive power of one of the syntactic costs could
also be due to correlation with surprisal.

It has to be noted that the estimated coefficients
for PLCD on eye-tracking exhibit less than half of
the magnitude of the tree-extracted predictor (cf.
Table 1). The coefficient for GD even turns out to
be positive (0.07). Either this is a result of lower
quality syntactic information due to our weaker
parsing score or a consequence of the probabilistic,
incremental parsing process.

Next, we estimate the improvement that PLCD
provides over a model that only includes surprisal
as a fixed effect (Table 5). The predicted distance
to the leftmost governor/dependent adds signifi-
cant explanatory power beyond surprisal with all
spillover window sizes except for spillover 2 and
GD. For SPR, ∆AIC is lowest for spillover 1 while
for FFD, GD and GPT it is lowest for spillover 0
and increases strongly at window size 2, still yield-
ing significant/very significant results. Thus, the
predictive power of memory cost decreases when
preceding surprisals (and other predictors) are in-
cluded. Overall, results for spillover 2 are signifi-
cant for most measures and using both surprisal and
PLCD should improve reading time predictions.

Finally, to answer [Q2], we determine the pre-
dictive power of surprisal and memory-based costs
compared to the linear mixed-effects control model.
Results can be found in Table 6. Combining sur-
prisal and PLCD from our supervised model beats

spill coef ∆LogLik ∆AIC p-value
predicted leftmost connection distance

over supervised surprisal
0 SPR 0.45 2.32e-5 -3.97e-5 ***

FFD -1.93 1.59e-4 -2.87e-4 ***
GD -3.78 4.53e-4 -8.77e-4 ***
GPT -4.75 5.32-4 -1.03e-3 ***

1 SPR 0.57 4.92e-5 -8.40e-5 ***
FFD -1.18 1.67e-4 -2.66e-4 ***
GD -1.19 1.51e-4 -2.34e-4 ***
GPT -2.84 5.94e-4 -1.12e-3 ***

2 SPR 0.46 2.66e-5 -2.97e-5 **
FFD -0.24 1.01e-4 -8.22e-5 *
GD 0.26 6.79e-5 -1.70e-5 .
GPT -0.98 1.69e-4 -2.19e-4 **

Table 5: Results of including PLCD from our supervised
model in a linear mixed effects model with surprisal as
part of the baseline.

standard model surprisal paired with structural cost
from silver parses for self-paced reading times
slightly (∆AIC -1.00e-4 vs. ∆AIC -8.99e-5) but
yields roughly a third of the ∆AIC for eye-tracking
measurements. All results are highly significant.

Comparing with the predictions we could extract
from the standard model (only surprisal, cf. Table
1), we can establish that we achieved highly sig-
nificant results for self-paced reading times where
standard surprisal was only marginally significant.
However, for eye-tracking, the fit is better using
surprisal from the unrestricted model. Therefore,
we can confirm [H2] in part: A syntax-informed
model seems to better reflect human processing
for self-paced reading data than surprisal from a
vanilla language model, whereas the opposite is
true for eye-tracking data.

6 Conclusion

Summary The contribution of this paper is
twofold. First, we have shown that RT predictions
significantly improve when considering not only
surprisal (obtained from a standard generative LM),
i.e. expectation-based measures, but also structural
integration costs obtained from parse trees using
an off-the-shelf parser. This confirms insights from
the psycholinguistic literature (e.g. Gibson, 2000)
at a larger scale, i.e. on a corpus annotated with
reading times. However, the direction of the effect
seems to depend on the type of measurements.

Building on this, our second contribution con-
sists of a proposal for a syntax-enhanced genera-
tive LM that produces not only next word predic-
tions (and thereby surprisal) but also predictions of
dependency edges to the left, which can serve to
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coef1 coef2 ∆LogLik ∆AIC p-value
standard surprisal + leftmost connection distance

SPR 0.21 0.62 6.84e-5 -8.99e-5 ***
FFD 2.16 -1.92 1.43e-3 -2.63e-3 ***
GD 3.02 -1.79 1.34e-3 -2.45e-3 ***
GPT 3.51 -3.19 1.84e-3 -3.45e-3 ***

supervised surprisal +
predicted leftmost connection distance

SPR 0.41 0.46 7.35e-5 -1.00e-4 ***
FFD 2.57 -0.24 6.16e-4 -9.94e-4 ***
GD 3.12 0.26 5.61e-4 -8.85e-4 ***
GPT 3.57 -0.98 7.84e-4 -1.33e-3 ***

Table 6: Effect of including both (P)LCD and (super-
vised) surprisal in a linear mixed effects model.

compute syntactic integration costs. Even though
the quality of the parse trees is below that of the
off-the-shelf parser (partly because of the strict
incrementality of the parser), the additional struc-
tural predictions, when quantified as integration
costs, increase the predictive power of the model
concerning reading times compared to using just
surprisal values from the same model. In other
words, we implemented an incremental model that
yields expectation-based and memory-based RT
predictors, similar to what we observed as relevant
in the experiments for our first contribution.

Discussion We have found that the RT measure-
ments we used are quite different in nature: In
regards to eye-tracking, we could observe that the
predictive power of (predicted) leftmost connec-
tion distance is higher for GPT than for FFD and
GD, throughout the experiments. This indicates
that part of the memory-based processing effect
might express itself through regressions to pre-
ceding words. For SPR, the role of memory ef-
fects is harder to analyse, which might have to do
with the stronger level of spillover effects generally
found in this paradigm (Frank et al., 2013; Witzel
et al., 2012), leading to a diffuse distribution of
expectation-based and memory-based costs.

For eye-tracking, our joint predictive model falls
short of the improvements provided by standard
surprisal and syntactic cost extracted from silver
parses. We think that this is due to the fact that
surprisal from the syntax-enhanced model alone al-
ready exhibited a worse fit to the data than surprisal
from the vanilla model. Thus, the contributions of
integration cost could not compensate for the lower
baseline. Here, we see potential in designing an
architecture with better language modelling capa-
bilities while maintaining the syntactic objective.

As to the estimated coefficients of the memory-

effect, our results are mixed. The finding of anti-
locality effects for eye-tracking is in agreement
with previous research (e.g. Konieczny and Döring,
2003; Demberg and Keller, 2008; Rathi, 2021).
However, the fact that we can still see significant
anti-locality contributions even if we include sur-
prisal does not point towards a frequency-based
explanation. Possibly, our observations support the
theory of dynamic recruitment of additional pro-
cessing resources, as proposed by Just and Varma
(2007), where increased costs occur at the start of
embedded constructions due to the activation of
additional cognitive resources and facilitation oc-
curs at the end, where the reader still has temporary
access to those capacities. Assuming SPR to reflect
a more strategic processing, it might be possible
that these resources are in a state of more constant
activation, so that anti-locality effects cannot be
observed. In the end, the question would remain
whether the positive coefficient for SPR hints to
true locality effects as predicted by DLT.

Concerning the dependency enhanced LM, as
mentioned, strict (left-to-right) incrementality de-
creases parsing accuracy. When it comes to pre-
dicting human processing, this is probably an ad-
vantage. Compared to structural costs derived from
gold or near-gold parses, incrementally predicted
structural costs can be expected to be more predic-
tive of reading times since they probably reflect un-
certainty of the parser in situations that can only be
disambiguated through right context. However, we
do not claim that the parser implemented in this pa-
per is cognitively plausible. It has been argued (for
instance by Demberg et al., 2013) that for a parser
to be psycholinguistically plausible, the parser not
only has to be incremental but also predictive (i.e.
predicting upcoming words and structure) and con-
nected (i.e. the syntactic contribution of a new word
has to be immediately integrated into the already
built prefix tree). However, our dependency en-
hanced LM does not predict a connected graph at
each step. (For parsing accuracy evaluation, a tree
is constructed in a post-processing step.) Further-
more, while our model predicts the next word, it
does not make any prediction about the upcoming
structure.
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setting standard supervised
goal PPL UAS
trials 65 65
optimal value 43.68 0.88
drop resid 0.219 0.597
drop ff 0.026 0.454
drop embd 0.083 0.133
drop lstm 0.305 0.211
n embd 886 464
d ff factor 7 4
alpha 0.05
lr 1.21e-3 4.13e-4
parameters 219,113,116 104,334,112

Table 7: Results of hyperparameter optimisation for the
standard and for the supervised model.

Appendices
A Data preprocessing

For our neural language models, we preprocess the
datasets in the following way:

1. Lowercase the text.

2. Remove titles (starting with "=").

3. Remove lines with more than 4 white space-
separated tokens.

4. Replace "@-@" with "-", " @,@ " with ","
and " @.@ " with ".". These symbols were ar-
tificially introduced into the Wikitext corpus.

5. Replace numbers by <num>. The heuristic is
checking if a token consists only of numerals
after removing all dots, commas and hyphens
in it.

Furthermore, we remove all sentences with less
than 5 words and, additionally for training, all sen-
tences with more than 40 words.

B Optimisation and training

Hyperparameter optimisation We perform hy-
perparameter optimisation separately for the stan-
dard model and for the supervised model. The
results of this process can be found in Table 7. We
started the optimisation with seed 1895 and incre-
mented it for each training round. Note that we
round the optimal hyperparameters in Table 7. We
also used these rounded values for the full training.
For the full training, we use seed 1895.

Computational resources Training was per-
formed using four H100 GPUs with a batch size of
512 on the RWTH Aachen CLAIX cluster.

FFD GD GPT struct surpr
GD 0.90
GPT 0.59 0.63
struct 0.16 0.17 0.11
surpr 0.22 0.24 0.16 0.40
LCD 0.06 0.07 0.04 0.61 0.19

Table 8: Correlations between FFD, GD, GPT, structural
integration cost, surprisal from our standard model and
LCD.

SPR struct surpr
struct 0.00
surpr 0.02 0.35
LCD 0.00 0.66 0.16

Table 9: Correlations between SPR, structural integra-
tion cost, surprisal from our standard model and LCD.

Training You can find plots of language mod-
elling loss on the Wikitext train and development
split during the training of our supervised model
in Figure 3. Language modelling loss and parsing
loss during the training of our supervised model is
given in Figures 4 and 5. We chose the model snap-
shot with the best performance on the validation
split.

C Psycholinguistic evaluation

We include correlations between the metrics used in
Experiment 1 as well as a plot showing the average
surprisal per POS tag (Tables 8, 9 and Figure 6).
Furthermore, we include detailed results including
all estimated coefficients for the linear mixed-effect
models fitted in our experiments in Tables 10 to 21.
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Figure 3: Development of language modelling loss on the train and on the development set during the training
process of the standard model. The rightmost value corresponds to epoch 10.
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Figure 4: Development of language modelling loss on the train and on the development set during the training
process of the supervised model. The rightmost value corresponds to epoch 10.
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Figure 5: Development of parsing loss on the train and on the development set during the training process of the
supervised model. The rightmost value corresponds to epoch 10.
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Figure 6: Average surprisal of our standard model by
POS tags. We use the POS tags provided by the spaCy
pipeline and reduce the number of distinct sets by merg-
ing.
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effect coef Std. Error t-value
standard surprisal

SPR intercept 272.15 5.23 52.02
frequency0 0.06 0.21 0.28
frequency1 -2.10 0.22 -9.76
frequency2 -0.95 0.21 -4.55
length0 0.64 0.18 3.58
length1 1.08 0.18 6.00
length2 0.62 0.18 3.52
surprisal0 0.22 0.17 1.26
surprisal1 0.36 0.18 2.07
surprisal2 -0.00 0.17 -0.02

FFD intercept 117.78 4.18 28.19
frequency0 -11.79 0.73 -16.15
frequency1 3.23 0.74 4.34
frequency2 -1.80 0.72 -2.50
length0 25.83 0.62 41.53
length1 -9.43 0.62 -15.23
length2 1.71 0.61 2.78
surprisal0 2.00 0.61 3.27
surprisal1 5.40 0.62 8.75
surprisal2 -1.18 0.60 -1.94

GD intercept 128.44 5.00 25.67
frequency0 -13.31 0.81 -16.43
frequency1 2.87 0.83 3.48
frequency2 -2.67 0.80 -3.34
length0 31.88 0.69 46.16
length1 -11.39 0.69 -16.57
length2 1.97 0.68 2.90
surprisal0 2.85 0.68 4.21
surprisal1 5.63 0.69 8.20
surprisal2 -1.47 0.67 -2.18

GPT intercept 139.36 5.01 27.82
frequency0 -13.15 0.94 -14.04
frequency1 4.08 0.95 4.27
frequency2 -2.82 0.92 -3.05
length0 34.23 0.80 42.90
length1 -13.71 0.79 -17.26
length2 0.36 0.78 0.46
surprisal0 3.32 0.78 4.23
surprisal1 7.52 0.79 9.49
surprisal2 -0.75 0.78 -0.97

Table 10: Detailed results for fitting a mixed linear
effects model including surprisal from a small vanilla
LM as a fixed effect, as well as our baseline predictors.
Shifted predictors for spillover window sizes 1 and 2
are also included.

effect coef Std. Error t-value
structural

SPR intercept 272.15 5.23 52.02
frequency0 -0.14 0.19 -0.72
frequency1 -2.43 0.20 -12.9
frequency2 -0.99 0.19 -5.18
length0 0.66 0.18 3.71
length1 1.15 0.18 6.43
length2 0.66 0.18 3.74
structural0 -0.14 0.14 -1.00
structural1 -0.30 0.14 -2.14
structural2 -0.16 0.14 -1.15

FFD intercept 117.79 4.18 28.20
frequency0 -12.77 0.70 -18.36
frequency1 -1.40 0.70 -2.01
frequency2 -0.70 0.68 -1.02
length0 26.02 0.62 41.97
length1 -8.65 0.61 -14.11
length2 1.88 0.61 3.08
structural0 0.94 0.52 1.79
structural1 -2.17 0.52 -4.21
structural2 0.66 0.51 1.29

GD intercept 128.45 5.00 25.68
frequency0 -14.64 0.77 -18.95
frequency1 -1.85 0.77 -2.40
frequency2 -1.27 0.76 -1.67
length0 32.21 0.69 46.79
length1 -10.50 0.68 -15.42
length2 2.08 0.68 3.07
structural0 1.30 0.58 2.23
structural1 -2.00 0.57 -3.50
structural2 1.02 0.57 1.79

GPT intercept 139.36 5.01 27.84
frequency0 -15.57 0.89 -17.44
frequency1 -1.89 0.89 -2.12
frequency2 -1.66 0.88 -1.89
length0 34.58 0.80 43.47
length1 -12.47 0.79 -15.85
length2 0.73 0.78 0.94
structural0 0.07 0.67 0.11
structural1 -2.32 0.66 -3.51
structural2 1.18 0.66 1.79

Table 11: Detailed results for fitting a mixed linear
effects model including structural integration cost as a
fixed effect, as well as our baseline predictors. Shifted
predictors for spillover window sizes 1 and 2 are also
included.
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effect coef Std. Error t-value
leftmost connection distance

SPR intercept 272.15 5.23 52.02
frequency0 0.03 0.19 0.16
frequency1 -2.36 0.19 -12.55
frequency2 -1.00 0.18 -5.54
length0 0.66 0.18 3.67
length1 1.12 0.18 6.21
length2 0.56 0.18 3.15
LCD0 0.60 0.13 4.78
LCD1 0.08 0.13 0.67
LCD2 0.26 0.13 2.09

FFD intercept 117.79 4.18 28.20
frequency0 -13.61 0.65 -20.97
frequency1 -0.62 0.65 -0.95
frequency2 -0.86 0.62 -1.39
length0 25.99 0.62 41.83
length1 -8.28 0.61 -13.52
length2 1.98 0.61 3.25
LCD0 -2.03 0.45 -4.54
LCD1 -2.13 0.45 -4.73
LCD2 1.16 0.45 2.55

GD intercept 128.45 5.00 25.68
frequency0 -15.74 0.72 -21.83
frequency1 -1.11 0.72 -1.55
frequency2 -1.59 0.69 -2.31
length0 32.28 0.69 46.77
length1 -10.08 0.68 -14.83
length2 2.09 0.68 3.08
LCD0 -1.93 0.50 -3.88
LCD1 -1.43 0.50 -2.86
LCD2 1.79 0.50 3.55

GPT intercept 139.36 5.01 27.83
frequency0 -16.24 0.83 -19.50
frequency1 -1.28 0.83 -1.54
frequency2 -2.03 0.79 -2.56
length0 34.57 0.80 43.35
length1 -12.04 0.79 -15.33
length2 0.81 0.78 1.04
LCD0 -3.42 0.57 -5.95
LCD1 -2.64 0.58 -4.57
LCD2 1.64 0.58 2.82

Table 12: Detailed results for fitting a mixed linear
effects model including leftmost connection distance as
a fixed effect, as well as our baseline predictors. Shifted
predictors for spillover window sizes 1 and 2 are also
included.

spill effect coef Std. Error t-value
leftmost connection distance and standard surprisal

0 SPR intercept 272.35 5.25 51.87
frequency0 0.91 0.19 4.66
length0 0.36 0.17 2.16
surprisal0 0.77 0.16 4.83
LCD0 0.54 0.12 4.69

FFD intercept 122.29 4.74 25.78
frequency0 -13.09 0.67 -19.32
length0 26.91 0.57 47.42
surprisal0 0.47 0.56 0.83
LCD0 -2.27 0.40 -5.64

GD intercept 137.17 5.73 23.94
frequency0 -15.54 0.78 -20.04
length0 34.84 0.65 53.64
surprisal0 3.23 0.64 5.03
LCD0 -4.52 0.46 -9.83

GPT intercept 150.56 5.88 25.62
frequency0 -16.57 0.90 -18.37
length0 38.38 0.76 50.80
surprisal0 3.56 0.75 4.78
LCD0 -5.07 0.54 -9.47

Table 13: Detailed results for fitting a mixed linear
effects model including surprisal from a small vanilla
LM and leftmost connection distance as fixed effects, as
well as our baseline predictors, without any spillover.

spill effect coef Std. Error t-value
leftmost connection distance and standard surprisal

1 SPR intercept 271.92 5.25 51.75
frequency0 0.24 0.20 1.15
frequency1 -1.58 0.20 -7.80
length0 0.54 0.17 3.14
length1 1.14 0.17 6.61
surprisal0 0.12 0.17 0.71
surprisal1 0.40 0.17 2.38
LCD0 0.70 0.12 5.81
LCD1 0.33 0.12 2.71

FFD intercept 121.82 4.40 27.71
frequency0 -11.74 0.72 -16.36
frequency1 3.79 0.69 5.49
length0 25.07 0.59 42.59
length1 -9.27 0.58 -15.89
surprisal0 1.20 0.59 2.05
surprisal1 5.46 0.58 9.48
LCD0 -1.58 0.42 -3.78
LCD1 -1.98 0.43 -4.59

GD intercept 135.35 5.29 25.60
frequency0 -13.39 0.82 -16.39
frequency1 3.08 0.79 3.92
length0 31.65 0.67 47.22
length1 -13.10 0.66 -19.72
surprisal0 3.77 0.67 5.63
surprisal1 5.82 0.66 8.87
LCD0 -2.55 0.48 -5.36
LCD1 -2.23 0.49 -4.53

GPT intercept 148.67 5.40 27.53
frequency0 -14.43 0.96 -15.07
frequency1 2.66 0.92 2.89
length0 34.05 0.79 43.36
length1 -15.11 0.78 -19.42
surprisal0 4.29 0.78 5.47
surprisal1 7.60 0.77 9.90
LCD0 -4.23 0.56 -7.59
LCD1 -4.10 0.58 -7.12

Table 14: Detailed results for fitting a mixed linear
effects model including surprisal from a small vanilla
LM and leftmost connection distance as fixed effects, as
well as our baseline predictors, with a spillover window
of 1.
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spill effect coef Std. Error t-value
leftmost connection distance and standard surprisal

2 SPR intercept 272.15 5.23 52.02
frequency0 0.19 0.21 0.88
frequency1 -2.11 0.22 -9.65
frequency2 -0.93 0.21 -4.42
length0 0.63 0.18 3.49
length1 1.05 0.18 5.82
length2 0.54 0.18 3.01
surprisal0 0.21 0.17 1.25
surprisal1 0.38 0.18 2.16
surprisal2 0.09 0.17 0.50
LCD0 0.62 0.13 4.90
LCD1 0.09 0.13 0.75
LCD2 0.27 0.13 2.12

FFD intercept 117.78 4.18 28.18
frequency0 -11.94 0.75 -15.92
frequency1 2.45 0.76 3.22
frequency2 -1.49 0.72 -2.05
length0 25.80 0.63 41.29
length1 -9.20 0.62 -14.84
length2 1.92 0.61 3.12
surprisal0 2.16 0.61 3.52
surprisal1 5.09 0.62 8.20
surprisal2 -1.28 0.61 -2.09
LCD0 -1.92 0.45 -4.28
LCD1 -1.84 0.45 -4.06
LCD2 1.22 0.46 2.65

GD intercept 128.44 5.00 25.67
frequency0 -13.51 0.83 -16.21
frequency1 2.09 0.85 2.48
frequency2 -2.27 0.80 -2.81
length0 31.99 0.69 46.09
length1 -11.16 0.69 -16.21
length2 2.03 0.68 2.98
surprisal0 3.02 0.68 4.44
surprisal1 5.40 0.69 7.83
surprisal2 -1.39 0.68 -2.04
LCD0 -1.79 0.50 -3.59
LCD1 -1.14 0.50 -2.27
LCD2 1.88 0.51 3.70

GPT intercept 139.36 5.01 27.81
frequency0 -13.58 0.96 -14.12
frequency1 3.04 0.98 3.11
frequency2 -2.35 0.93 -2.53
length0 34.25 0.80 42.72
length1 -13.36 0.80 -16.80
length2 0.62 0.79 0.78
surprisal0 3.51 0.79 4.46
surprisal1 7.13 0.80 8.95
surprisal2 -0.90 0.79 -1.14
LCD0 -3.19 0.58 -5.53
LCD1 -2.21 0.58 -3.79
LCD2 1.84 0.59 3.13

Table 15: Detailed results for fitting a mixed linear
effects model including surprisal from a small vanilla
LM and leftmost connection distance as fixed effects, as
well as our baseline predictors, with a spillover window
of 2.

effect coef Std. Error t-value
supervised surprisal

SPR intercept 272.52 5.26 51.80
frequency0 0.88 0.29 3.02
frequency1 -1.89 0.29 -6.47
frequency2 -1.01 0.27 -3.76
length0 1.05 0.24 4.35
length1 0.74 0.24 3.09
length2 0.50 0.23 2.19
surprisal0 0.38 0.21 1.83
surprisal1 0.96 0.22 4.33
surprisal2 0.10 0.20 0.47

FFD intercept 117.87 4.22 27.92
frequency0 -12.62 1.01 -12.47
frequency1 4.78 1.00 4.79
frequency2 0.97 0.91 1.07
length0 25.56 0.85 30.11
length1 -8.41 0.83 -10.19
length2 3.40 0.81 4.18
surprisal0 2.67 0.76 3.53
surprisal1 4.70 0.80 5.87
surprisal2 -0.47 0.69 -0.68

GD intercept 128.69 5.10 25.22
frequency0 -14.24 1.13 -12.64
frequency1 5.61 1.11 5.05
frequency2 1.06 1.01 1.04
length0 31.91 0.95 33.76
length1 -9.96 0.92 -10.84
length2 4.02 0.90 4.44
surprisal0 3.17 0.84 3.76
surprisal1 4.92 0.89 5.52
surprisal2 -0.61 0.77 -0.80

GPT intercept 138.75 5.04 27.54
frequency0 -14.85 1.29 -11.53
frequency1 6.25 1.27 4.92
frequency2 1.43 1.16 1.24
length0 33.30 1.081 30.81
length1 -12.56 1.05 -11.95
length2 3.07 1.03 2.96
surprisal0 3.78 0.96 3.92
surprisal1 6.43 1.02 6.32
surprisal2 0.20 0.88 0.23

Table 16: Detailed results for fitting a mixed linear
effects model including surprisal from our supervised
model as a fixed effect, as well as our baseline predictors.
Shifted predictors for spillover window sizes 1 and 2
are also included.
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effect coef Std. Error t-value
predicted leftmost connection distance

SPR intercept 272.49 5.26 51.79
frequency0 0.71 0.27 2.61
frequency1 -2.55 0.26 -9.85
frequency2 -1.12 0.24 -4.59
length0 1.13 0.24 4.69
length1 0.87 0.24 3.65
length2 0.52 0.23 2.28
PLCD0 0.40 0.15 2.63
PLCD1 0.04 0.15 0.25
PLCD2 0.28 0.16 1.74

FFD intercept 118.26 4.22 28.01
frequency0 -14.59 0.92 -15.82
frequency1 2.07 0.88 2.35
frequency2 1.31 0.84 1.56
length0 25.71 0.85 30.41
length1 -7.46 0.82 -9.16
length2 3.72 0.80 4.63
PLCD0 -0.41 0.55 -0.75
PLCD1 -2.15 0.54 -4.01
PLCD2 -0.00 0.62 -0.01

GD intercept 129.00 5.10 25.28
frequency0 -16.40 1.03 -15.97
frequency1 2.75 0.98 2.80
frequency2 1.44 0.94 1.53
length0 32.14 0.94 34.15
length1 -8.92 0.91 -9.84
length2 4.31 0.89 4.82
PLCD0 0.07 0.61 0.11
PLCD1 -2.04 0.60 -3.41
PLCD2 0.14 0.70 0.20

GPT intercept 139.48 5.04 27.68
frequency0 -17.75 1.17 -15.12
frequency1 2.59 1.12 2.31
frequency2 1.56 1.07 1.46
length0 33.47 1.08 31.10
length1 -11.28 1.04 -10.88
length2 3.70 1.02 3.62
PLCD0 -1.26 0.69 -1.82
PLCD1 -3.29 0.68 -4.81
PLCD2 -0.38 0.79 -0.48

Table 17: Detailed results for fitting a mixed linear
effects model including leftmost connection distance
predicted by our supervised model as a fixed effect, as
well as our baseline predictors. Shifted predictors for
spillover window sizes 1 and 2 are also included.

spill effect coef Std. Error t-value
predicted leftmost connection distance

and supervised surprisal
0 SPR intercept 272.52 5.29 51.56

frequency0 1.29 0.21 6.08
length0 0.67 0.18 3.66
surprisal0 0.62 0.16 3.81
PLCD0 0.45 0.12 3.75

FFD intercept 122.11 4.78 25.56
frequency0 -14.65 0.72 -20.39
length0 23.63 0.62 38.25
surprisal0 1.44 0.56 2.56
PLCD0 -1.93 0.42 -4.61

GD intercept 136.99 5.89 23.26
frequency0 -17.51 0.83 -20.97
length0 31.51 0.72 43.89
surprisal0 3.87 0.65 5.92
PLCD0 -3.78 0.49 -7.80

GPT intercept 149.92 6.03 24.86
frequency0 -18.61 0.97 -19.23
length0 34.27 0.83 41.19
surprisal0 4.13 0.76 5.45
PLCD0 -4.75 0.56 -8.45

Table 18: Detailed results for fitting a mixed linear
effects model including surprisal from our supervised
model and predicted leftmost connection distance as
fixed effects, as well as our baseline predictors, without
any spillover.
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spill effect coef Std. Error t-value
predicted leftmost connection distance

and supervised surprisal
1 SPR intercept 272.15 5.28 51.50

frequency0 0.83 0.26 3.22
frequency1 -1.65 0.23 -7.08
length0 0.88 0.21 4.19
length1 1.11 0.20 5.56
surprisal0 0.34 0.19 1.74
surprisal1 0.44 0.18 2.48
PLCD0 0.57 0.13 4.47
PLCD1 0.36 0.14 2.56

FFD intercept 121.99 4.50 27.11
frequency0 -14.18 0.87 -16.33
frequency1 4.65 0.77 6.03
length0 24.50 0.70 34.90
length1 -7.20 0.68 -10.66
surprisal0 1.66 0.68 2.43
surprisal1 4.63 0.59 7.81
PLCD0 -1.18 0.45 -2.66
PLCD1 -1.63 0.50 -3.25

GD intercept 134.31 5.35 25.09
frequency0 -15.86 0.98 -16.19
frequency1 3.93 0.87 4.51
length0 31.05 0.79 39.20
length1 -9.82 0.76 -12.87
surprisal0 3.16 0.77 4.11
surprisal1 4.83 0.67 7.21
PLCD0 -1.19 0.50 -2.37
PLCD1 -1.82 0.57 -3.22

GPT intercept 147.92 5.45 27.15
frequency0 -16.95 1.15 -14.68
frequency1 3.27 1.03 3.19
length0 33.44 0.93 35.81
length1 -12.64 0.90 -14.06
surprisal0 4.26 0.91 4.71
surprisal1 6.00 0.79 7.61
PLCD0 -2.84 0.59 -4.79
PLCD1 -4.21 0.67 -6.32

Table 19: Detailed results for fitting a mixed linear
effects model including surprisal from our supervised
model and predicted leftmost connection distance as
fixed effects, as well as our baseline predictors, with a
spillover window of 1.

spill effect coef Std. Error t-value
predicted leftmost connection distance

and supervised surprisal
2 SPR intercept 272.44 5.26 51.78

frequency0 1.02 0.30 3.44
frequency1 -1.93 0.29 -6.59
frequency2 -0.99 0.27 -3.69
length0 1.06 0.24 4.40
length1 0.70 0.24 2.94
length2 0.45 0.23 1.97
surprisal0 0.41 0.21 1.97
surprisal1 1.01 0.22 4.55
surprisal2 0.18 0.20 0.90
LCD0 0.46 0.15 2.96
LCD1 0.11 0.15 0.73
LCD2 0.33 0.16 2.01

FFD intercept 118.07 4.22 27.95
frequency0 -12.68 1.03 -12.35
frequency1 4.44 1.01 4.41
frequency2 0.96 0.91 1.06
length0 25.51 0.85 30.01
length1 -8.32 0.83 -10.07
length2 3.52 0.82 4.31
surprisal0 2.57 0.76 3.39
surprisal1 4.37 0.81 5.40
surprisal2 -0.63 0.70 -0.89
PLCD0 -0.24 0.55 -0.45
PLCD1 -1.70 0.54 -3.13
PLCD2 0.21 0.63 0.34

GD intercept 128.78 5.10 25.23
frequency0 -14.14 1.14 -12.36
frequency1 5.25 1.12 4.69
frequency2 1.06 1.01 1.05
length0 31.88 0.95 33.70
length1 -9.88 0.92 -10.75
length2 4.09 0.91 4.51
surprisal0 3.12 0.84 3.70
surprisal1 4.66 0.90 5.18
surprisal2 -0.65 0.78 -0.83
PLCD0 0.26 0.61 0.43
PLCD1 -1.54 0.60 -2.55
PLCD2 0.38 0.70 0.54

GPT intercept 139.20 5.04 27.61
frequency0 -15.15 1.31 -11.59
frequency1 5.81 1.28 4.53
frequency2 1.41 1.16 1.22
length0 33.17 1.08 30.67
length1 -12.39 1.05 -11.78
length2 3.30 1.04 3.18
surprisal0 3.57 0.97 3.69
surprisal1 5.86 1.03 5.70
surprisal2 -0.19 8.96 -0.21
PLCD0 -0.98 0.70 -1.41
PLCD1 -2.64 0.69 -3.82
PLCD2 0.00 0.80 0.000

Table 20: Detailed results for fitting a mixed linear
effects model including surprisal from our supervised
model and predicted leftmost connection distance as
fixed effects, as well as our baseline predictors, with a
spillover window of 2.
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effect coef Std. Error t-value
GPT2 surprisal

SPR intercept 272.15 5.23 52.01
frequency0 0.15 0.20 0.75
frequency1 -1.91 0.20 -9.42
frequency2 -0.45 0.19 -2.37
length0 0.67 0.18 3.72
length1 1.00 0.18 5.60
length2 0.41 0.18 2.30
surprisal0 0.30 0.15 2.05
surprisal1 0.82 0.15 5.36
surprisal2 1.13 0.15 7.77

FFD intercept 117.78 4.18 28.18
frequency0 -11.94 0.68 -17.47
frequency1 3.62 0.71 5.08
frequency2 -0.13 0.65 -0.20
length0 26.03 0.62 41.68
length1 -9.43 0.62 -15.28
length2 1.20 0.61 1.95
surprisal0 1.34 0.54 2.49
surprisal1 6.54 0.56 11.61
surprisal2 1.69 0.51 3.29

GD intercept 128.44 5.01 25.66
frequency0 -13.58 0.76 -17.91
frequency1 3.33 0.79 4.22
frequency2 -0.88 0.72 -1.21
length0 32.05 0.69 46.22
length1 -11.39 0.69 -16.61
length2 1.41 0.68 2.07
LCD0 2.13 0.60 3.55
LCD1 6.86 0.63 10.96
LCD2 1.58 0.57 2.77

GPT intercept 139.36 5.013 27.80
frequency0 -12.92 0.88 -14.75
frequency1 4.62 0.91 5.06
frequency2 -1.13 0.83 -1.36
length0 34.33 0.80 42.87
length1 -13.91 0.79 -17.57
length2 -0.28 0.79 -0.36
LCD0 3.41 0.69 4.93
LCD1 9.30 0.72 12.87
LCD2 2.24 0.66 3.40

Table 21: Detailed results for fitting a mixed linear
effects model including surprisal predicted by GPT2 as
a fixed effect, as well as our baseline predictors. Shifted
predictors for spillover window sizes 1 and 2 are also
included.
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