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Introduction

This year marks the 20th edition of the Workshop on Innovative Use of NLP for Building Educational
Applications. As in previous years, we are happy to welcome a plethora of work on various aspects and
types of educational applications — from traditionally popular tasks around language learning to novel
applications related to teaching math and programming languages. This year, we have also extended BEA
to a 2-day event, which allowed us to accept more valuable work from our authors: in total, we received a
record number of 169 submissions, and from these, we have accepted 12 papers as talks and 63 as poster
and demo presentations, for an overall acceptance rate of 44 percent. As in previous years, we have put
the main emphasis on the high quality of research when selecting the papers to be accepted, but we also
hope that we have managed to bring together a diverse program. One aspect in which BEA continues to
excel is the range of languages that are covered by the work submitted and presented at our workshop: this
year, accepted papers feature work on educational applications developed for Arabic, English, Estonian,
Finnish, Germanic languages, Indian languages, Italian, Romanian, Russian, and Spanish.

In addition to the diverse oral, poster and demo presentations, this year, Kostiantyn Omelianchuk from
Grammarly will give a keynote on How LLMs Are Reshaping GEC: Training, Evaluation, and Task
Framing. BEA 2025 will also incude, for the first time, a half-day tutorial on LLMs for Education:
Understanding the Needs of Stakeholders, Current Capabilities and the Path Forward. Finally, BEA
2025 has hosted a shared task on Pedagogical Ability Assessment of Al-powered Tutors, which attracted
a large number of participants, and the program includes an oral presentation on the shared task from the
organizers as well as extended poster sessions for shared tasks participants presenting their systems.
Last but not least, we would like to thank everyone who has been involved in organizing the BEA work-
shop this year. We are particularly grateful to our sponsors who keep providing their support to BEA: this
year, our sponsors include Cambridge University Press & Assessment, Duolingo English Test, Grammar-
ly, National Board of Medical Examiners, SiglQ.ai, and Squirrel Ai Learning.

BEA 2025 Organizing Committee
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Keynote Talk
How LLMs Are Reshaping GEC: Training, Evaluation, and
Task Framing

Kostiantyn Omelianchuk
Grammarly

Abstract: This keynote will explore the evolving role of Large Language Models (LLMs) in training and
evaluating Grammatical Error Correction (GEC) systems, using Grammarly as a case study. It will cover
the shift from primarily using human-annotated corpora to semi-synthetic data generation approaches,
examining its impact on model training, evaluation practices, and overall task definition. Key topics
include task definition challenges, trade-offs between data types, observed biases in models, and recent
advances in LLM-based evaluation techniques. The talk will also explore scalable approaches for multi-
lingual GEC and outline implications for future research.

Bio: Kostiantyn Omelianchuk is an Applied Research Scientist and Area Tech Lead at Grammarly, whe-
re he works on practical applications of NLP, with a primary interest in Grammatical Error Correction
(GEC). He has over nine years of experience in the field and has co-authored several papers, including
GECToR: Grammatical Error Correction — Tag, Not Rewrite, a widely used approach in the GEC com-
munity. His research explores edit-based modeling, the use of large language models for text correction
and simplification, and the transition from human-annotated to synthetic data for training and evalua-
tion. His recent work focuses on multilingual GEC, LLM-based evaluation methods, and synthetic data
generation.
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Motivation and Objectives: Recent advancements
in Large Language Models (LLMs) have opened
unprecedented opportunities in education but the
current development goals of LLMs stand in con-
trast to the requirements of educational applica-
tions. This tutorial aims to bridge the gap be-
tween two major communities: Natural Language
Processing (NLP) researchers and Artificial Intel-
ligence in Education (AIED) practitioners. Our
objectives are: (1) to help NLP researchers under-
stand the requirements and challenges of education,
enabling them to develop LLMs that align with
educational needs, and (2) to enable educators and
AIED practitioners to gain a deeper understand-
ing of the capabilities and limitations of current
NLP technologies , fostering effective integration
of LLMs in educational contexts. By facilitating
cross-disciplinary dialog, we aim to uncover the
potential of LLLMs in education.

First, we identify several critical challenges:
LLMs must be aligned to complement established
pedagogical theories and educational practices, in-
corporating principles such as scaffolding (Macina
et al., 2023b; Sonkar et al., 2024a) or Socratic ques-
tioning (Shridhar et al., 2022), effective feedback
mechanisms (Daheim et al., 2024), and cognitive
load management (Settles and Meeder, 2016). This
ensures that Al systems enhance rather than un-
dermine learning processes. We emphasize that
LLMs need to be integrated with existing AIED
technologies, including knowledge tracing models
and intelligent tutoring systems (ITS). As high-
lighted by UNESCO (Miao and Cukurova, 2024),
we also need to explore human-Al collaboration to
preserve human agency while leveraging the bene-
fits of LLMs. The use of LLMs also raises ethical
concerns about data privacy and security and fair-
ness for students, necessitating robust safeguards.
Finally, Al literacy among educators, students, and
policymakers is important for ensuring that stake-
holders understand their potential and limitations.

1

1 Tutorial Overview and Structure

1. LLMs meet AIED (60 min)
Intro to LLMs (20 min)

Learning science, AIED foundations (20 min)
Misalignment b/w LLMs & AIED (20 min)

2. Case Studies & Coffee Break (120 min)
Intelligent Tutoring Systems (30 min)
Coffee break (30 min)

Automated feedback & assessment (20 min)
Content (e.g. problem) generation (20 min)
Student modeling and adaptivity (20 min)

3. Closing Discussion (30 min)
LLM development for education
Human, ethical and societal aspects
Closing remarks

We will begin with an introduction of key LLM
technologies and AIED usecases, focussing on the
needs of stakeholders in education, such as peda-
gogy, and opportunities to harness LLMs for ed-
ucation applications. Then, we will outline how
these needs stand in contrast with current LLM
development which instead focusses on solving
correctness. Afterwards, we will delve into a series
of case studies that highlight how LLMs can be
adapted for: (1) robust, personalized, and scalable
conversational tutoring systems; (2) adaptive and
personalized content generation of educational ma-
terial, lesson plans, and assessments; (3) grading
and delivery of detailed and personalized feedback
on student work. We will examine the current ca-
pabilities of LLLMs in these domains, discussing
recent research findings and practical applications.
The tutorial will interweave the applications with
critical challenges such as pedagogical alignment,
ethical considerations, and human factors in Al-
assisted education. We finally conclude with a
discussion of LLM development for education that
emphasizes human, ethical, and societal aspects.
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2 LLMs Meet AIED

LLM Training & AIED Requirements LLMs
offer significant potential in education but require
careful tuning to align with pedagogical goals.
For instance, LLMs tend to provide direct an-
swers instead of scaffolding learning which can
hinder learning (Macina et al., 2023b; Sonkar et al.,
2024a). We will first discuss how LLMs are
trained using supervised fine-Tuning (SFT) (Wei
et al., 2022), instruction tuning, and reinforcement-
learning-based optimization methods (Ziegler et al.,
2019; Rafailov et al., 2023). Connected to this, we
also highlight the shortcomings of current bench-
marks (Hendrycks et al., 2020; Cobbe et al., 2021;
Hendrycks et al., 2021) that are used to evaluate
LLMs, mainly for solving accuracy. Evaluation of
AIED systems is different from this, as pedagog-
ical factors play a large role and have dominated
the development of educational systems (Graesser
et al., 2005). We highlight these educational needs
from different perspectives and show how LLM
development goals do not align to them. For exam-
ple, students require space to think and learn, also
by making mistakes (Macina et al., 2023a; Sonkar
et al., 2024a), and teachers require flexible student
simulations (Markel et al., 2023).

Human Factors & Ethical Considerations: In-
tegrating LLLMs into educational contexts brings
several human-centered challenges that must be
addressed to ensure effective and ethical use. For
example, teachers are often not included in the de-
velopment loop (Shankar et al., 2024), but gain-
ing their trust, also through model explainabil-
ity (Cortez et al., 2024) is important. We will dis-
cuss how instructors can be included effectively,
for example, to decide, when and which NLP mod-
els to use or which inputs to give to the models. We
will also discuss how they can modify the generated
outcomes as needed (Lu et al., 2023) and prompt
architectures to provide responses to MCQs based
on student simulations (Lu and Wang, 2024).

The application of LLMs in schools also raises
ethical considerations related to attribution, plagia-
rism, and the potential for Al-generated content to
be presented as original work. To address these is-
sues, universities and educational authorities must
strengthen and enforce academic integrity policies
while educating students about responsible Al use.
Promoting awareness and developing guidelines is
essential in maintaining the integrity of academic
work in the age of GenAl (Okaiyeto et al., 2023).

3 LLMs for Educational Applications

3.1 Intelligent Tutoring Systems (ITSs)

ITSs have long been the focus of AIED develop-
ments including systems such as AutoTutor-based
(Nye et al., 2014), example-tracing tutors (Aleven
et al., 2009) or Cognitive tutor (Anderson et al.,
1997). However, they require extensive human
authoring. While LLMs hold great promise to over-
come this and enable applications like student tutor-
ing (Chen et al., 2024) or teacher training (Gregor-
cic et al., 2024; Markel et al., 2023). Yet, they still
face limitations, such as generating factually incor-
rect responses or not offering sufficient pedagogy
(Sonkar et al., 2023).

In this tutorial, we will cover a range of works
that attempt to alleviate these shortcomings, for
example, such that use LLMs within structured
dialogs (Schmucker et al., 2024; Pal Chowdhury
et al., 2024), data-driven approaches to adding scaf-
folding capabilities (Macina et al., 2023a; Sonkar
et al., 2023; Jurenka and et al., 2024), and mitigat-
ing hallucinations by adding intermediate reason-
ing steps for prompted LLMs (Wang et al., 2024b;
Daheim et al., 2024). As large amounts of dialog
tutoring data can be hard to collect, we will also dis-
cuss synthetic data creation methods (Wang et al.,
2024a; Chevalier et al., 2024).

Finally, we will touch upon evaluation protocols
that, ideally, should include relevant stakeholders
and evaluate learning effectiveness. Such studies
include using LLMs in real classrooms, for exam-
ple, for computer science (Nie et al., 2024) or math
education (Cheng et al., 2024), or using LLMs as
student simulations to evaluate the effectiveness
of automatic dialog tutors (Macina et al., 2023a).
Such student simulations can also be effective for
teacher training (Gregorcic et al., 2024; Wang and
Demszky, 2023) and training teaching assistants
(Markel et al., 2023).

3.2 Automated Feedback and Assessment

Hint and Feedback mechanisms play an important
role in determining learning outcomes. We will
discuss studies that show both the potential and
limitations of LLMs in generating quality feedback.
(McNichols et al., 2024) show fine-tuned LLMs
have limited generalization capabilities. Contrarily,
(Dai et al., 2024) find GPT-4 outperforms human in-
structors in important aspects of effective feedback
dimensions such as feeding-up, feeding-forward,
and process level. However, student dynamics are



complex; (Nazaretsky et al., 2024) highlights a
preference for human-generated feedback when
students know its source. We will discuss solutions
to overcome these challenges such as reinforcement
learning (Scarlatos et al., 2024) and LLM-based
student simulation models (Phung et al., 2024).

Another important aspect of feedback is its emo-
tional and motivational impact on students. We will
discuss the importance of affective feedback (Li
et al., 2024a; Baral et al., 2023). We will also
explore how LLMs can be used to provide not
just cognitive but also emotional support, offer-
ing praise (Thomas et al., 2023) and addressing
negative self-talk (Thomas et al., 2024). Addition-
ally, we will touch on ongoing efforts to integrate
Al-driven emotional assessment in educational set-
tings (Vistorte et al., 2024) to create empathetic
learning environments.

Finally, we’ll shift our focus to automatic as-
sessment. We will review their performance in Au-
tomated Short/Long Answer Grading (Kortemeyer,
2023a; Sonkar et al., 2024b) and Automated Essay
Grading (AEG) (Mizumoto and Eguchi, 2023), ref-
erencing open-source benchmarks (Ruseti et al.,
2024; Dzikovska et al., 2013; Blanchard et al.,
2013) for these tasks. Next we will summarize
some findings on the real-world deployment of
LLMs for grading, which show promise despite
certain limitations. We will start with studies on
math grading (Morris et al., 2024; Gandolfi, 2024)
including those which involve handwritten recog-
nition (Liu et al., 2024a). We will also expand
the analysis to other subjects like physics (Korte-
meyer, 2023b), computer science (Nilsson and Tu-
vstedt, 2023), and biology (Mackey et al., 2023) to
highlight their capabilities and limitation across do-
mains. We will also explore hybrid grading strate-
gies that incorporate human oversight to enhance
reliability (Kaya and Cicekli, 2024).

3.3 Educational Content Generation

LLM-generated content serves teachers (e.g., for
curating lessons and exercises) and students (e.g.,
for writing essays and problem-solving). We will
examine studies that use controllable generation
to adapt LLMs to diverse learners based on diffi-
culty, grade level, and readability score (Rooein
et al., 2023; Kew et al., 2023). We will also discuss
LLMs in controlled content generation, focusing
on readability scores (Imperial and Tayyar Mad-
abushi, 2023) and novel prompting techniques for
difficulty assessment (Rooein et al., 2024).

We will also explore strategies to control and
align generated questions with students’ abilities,
expert requirements, and question taxonomies like
Bloom’s (Elkins et al., 2024; Hwang et al., 2023).
We will mention studies on improving adaptability
in question generation (Scaria et al., 2024; Wang
et al., 2022) and cover methods like PFQS (Li
and Zhang, 2024) for improved control by gen-
erating answer outlines before question genera-
tion. Evaluation of generated educational ques-
tions typically involves expert assessments (Scaria
et al., 2024; Biancini et al., 2024), while tools like
SQUET (Moore et al., 2024) offer automated qual-
ity evaluation. However, challenges remain, as
studies show GPT models underperforming in eval-
uating the pedagogical quality of generated ques-
tions (Bulathwela et al., 2023).

Finally, we will also discuss multimodal and mul-
tilingual LLMs in education — research has demon-
strated the effectiveness of multimodal learning
in enhancing educational outcomes, e.g., in sci-
ence (Bewersdorff et al., 2024). These findings
are supported by learning theories emphasizing the
cognitive benefits of integrating multiple modes of
information, such as combining multimodal repre-
sentations like text and images (Mayer, 2024).

3.4 Adaptivity and Personalization

In this section, we will discuss personalized learn-
ing’s potential to address diverse student needs,
based on educational theories emphasizing tai-
lored learning experiences. We discuss knowl-
edge space theory (Doignon and Falmagne, 1985),
Vygotsky’s Zone of Proximal Development (Vy-
gotsky, 1978), and Ebbinghaus’s memory model
(Ebbinghaus, 1913), which have influenced appli-
cations like Duolingo’s spaced repetition (Settles
and Meeder, 2016) and ETS’s assessments (Carl-
son and von Davier, 2017). We then introduce
Knowledge Tracing (KT) techniques, from basic
Rasch models (Rasch, 1960) and Item Response
Theory (IRT) (Lord, 1980) to advanced Bayesian
Knowledge Tracing (Corbett and Anderson, 1994)
and Deep Knowledge Tracing (Piech et al., 2015).

Traditionally, KT models have focused on ques-
tion IDs rather than textual content due to dataset
limitations. However, the attention mechanism is
well-suited for sequence modeling tasks like knowl-
edge tracing. We will cover models such as MC-
QStudentBert (Parsa Neshaei et al., 2024), AKT
(Ghosh et al., 2020), SAKT (Pandey and Karypis,
2019), Dtransformer (Yin et al., 2023), and SAINT



(Choi et al., 2020), which leverage attention mech-
anisms to capture complex relationships between
knowledge components and student interactions.
The emergence of datasets with auxiliary informa-
tion, like XES3G5M (Liu et al., 2024b), has facili-
tated the application of pre-trained LLMs in KT, as
explored in works like (Lee et al., 2024).

LLMs have also expanded the scope of KT by
enabling adaptive exercise generation (Cui and
Sachan, 2023; Srivastava and Goodman, 2021) and
domain-specific modifications to transformer archi-
tecture, e.g. SparseKT (Huang et al., 2023) which
models student behaviors like forgetting (Im et al.,
2023). LLMs have also been used in student sim-
ulation models like OKT (Liu et al., 2022), which
predicts actual student textual responses. Despite
these advances, challenges remain, such as LLMs’
limited context windows which hinder capturing
long-range learning trajectories (Li et al., 2024b).

4 Vision and Path Forward

Al in education offers significant opportunities but
requires careful technical, ethical, regulatory, and
pedagogical consideration. Requirements include
balancing technology with human agency, inclu-
sion, and diversity (Miao and Cukurova, 2024),
addressing privacy (Baraniuk, 2024; Leitner et al.,
2019; O’Hara and Straus, 2022) and transparency
(Holmes et al., 2022), promoting Al literacy (Su
et al., 2023; Su and Yang, 2023), but also develop-
ing LLMs that meet pedagogical goals. We aim to
build a common ground between various stakehold-
ers, namely policymakers, educators, developers,
and researchers, which can form a basis for human-
centered Al development in education.

5 Diversity & Inclusion considerations

Our tutorial aims to bring together NLP, LS and
AIED researchers as well as practitioners. The
tutorial is designed to be understandable to an au-
dience with a range of backgrounds. Our group
of presenters is made up of diverse backgrounds,
seniority-levels, genders, and affiliations.

6 About the Speakers

Sankalan Pal Chowdhury is a second year PhD
student in the ETH-EPFL Joint Doctoral Pro-
gram for Learning Science, advised by Mrinmaya
Sachan and Tanja Kiser. His research focuses on
improving tutoring abilities of LLMs. His work
has been published in EMNLP, TACL and L@S.

Nico Daheim is a third year ELLIS PhD student
advised by Iryna Gurevych and Mrinmaya Sachan.
He works on making LLMs equitable dialog tutors
that provide studentes with personalized opportu-
nities to learn. His works have been published at
EMNLP, NAACL, EACL, ICLR and ICML.
Ekaterina Kochmar is an Assistant Professor at
the NLP Department at MBZUALI, where she con-
ducts research at the intersection of Al, NLP, and
ITSs. She is the current President of SIGEDU and
has been involved in organizing BEA since 2013.
Jakub Macina is a fourth year PhD at ETH ad-
vised by Mrinmaya Sachan and Manu Kapur. His
research focuses on understanding and improving
generative models’ reasoning and pedagogical ca-
pabilities. His work has been published in venues
such as ACL, EMNLP, and RecSys.

Donya Rooein is a Postdoc at Bocconi University;
her work revolves around leveraging NLP for Edu-
cation. She explores the synergy between machine
learning, linguistics, and practitioner insights to
enhance education systems. Her work has been
published in different ML, NLP, and AIED venues,
including NAACL, WWW, and EdMedia.
Mrinmaya Sachan is an Assistant Professor at
ETH Zurich, focusing on NLP and its interface
with Education. His group has published rele-
vant research on the challenges of Pedagogy and
LLMs, Educational Chatbots and Tutors, Student
Modeling and Assessment across various NLP and
Education-focused venues.

Shashank Sonkar is a final-year PhD student at
Rice University advised by Richard G. Baraniuk.
His work focuses on pedagogical alignment of
LLMs, learner modeling, and intelligent assess-
ment. His work has been published in EMNLP,
COLING, AIED, EDM, and LAK.

7 Type of Tutorial & Target Audience

The tutorial will be introductory and present re-
search from the fields of NLP, AIED and learning
sciences. We will discuss seminal as well as re-
cent papers to build a common ground for partic-
ipants. Therefore, we welcome participants from
any of these backgrounds. While it is helpful to
have knowledge of either NLP / ML or learning
sciences, it is not a requirement. The tutorial will
be self-contained and welcomes an estimated 50-
100 attendees based on recent BEA iterations. We
will recommend the attendees a small reading list
comprising of papers listed in the appendix.
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Abstract

This study examines the lexical and syntactic
interventions of human and LLM proofread-
ing aimed at improving overall intelligibility in
identical second language writings, and evalu-
ates the consistency of outcomes across three
LLMs (ChatGPT-40, Llama3.1-8b, Deepseek-
r1-8b). Findings show that both human and
LLM proofreading enhance bigram lexical fea-
tures, which may contribute to better coherence
and contextual connectedness between adjacent
words. However, LLM proofreading exhibits a
more generative approach, extensively rework-
ing vocabulary and sentence structures, such
as employing more diverse and sophisticated
vocabulary and incorporating a greater number
of adjective modifiers in noun phrases. The
proofreading outcomes are highly consistent in
major lexical and syntactic features across the
three models.

1 Introduction

The use of generative large language models
(LLMs) in second language (L2) writing has gained
popularity for providing real-time feedback on vo-
cabulary, grammar, and style (e.g., Han et al., 2024;
Meyer et al., 2024). These models offer immediate
corrective suggestions, enhancing the precision and
quality of L2 writing—a role once largely filled by
human editors with expertise. As LLMs increas-
ingly replace or supplement human intervention,
questions arise about their impact on L2 writings.
While previous studies have concentrated on gen-
eral error correction through LLM proofreading
(e.g., Heintz et al., 2022; Su et al., 2023; Wu et al.,
2023; Katinskaia and Yangarber, 2024), recent stud-
ies have shown that LLMs do not consistently out-
perform state-of-the-art supervised grammatical er-
ror correction models on minimal-edit benchmarks,
often producing more fluency-oriented rewrites in-
stead (Davis et al., 2024). This tendency stems in

*Contributed equally to the study.
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part from the fact that LLMs, by default, generate
transformative fluency corrections rather than mini-
mal edits when processing ungrammatical text (e.g.,
Coyne et al., 2023; Fang et al., 2023; Loem et al.,
2023). However, little research has examined how
this generative rewriting behavior affects broader
lexical and syntactic characteristics of L2 writing
compared to human proofreading, especially when
the proofreading goal extends beyond grammatical
accuracy to overall intelligibility. Moreover, it re-
mains unclear whether different LLMs yield consis-
tent proofreading outcomes. This study addresses
these gaps by posing three guiding questions: (1)
What are the similarities and differences in lexical
features between human proofreading and LLM
proofreading of L2 writings? (2) What are the
similarities and differences in syntactic features be-
tween human proofreading and LLM proofreading
of L2 writings? (3) Do three different LLMs pro-
vide consistent proofreading outcomes in terms of
lexical and syntactic features in L2 writing?

Our findings show that while both human and
LLM proofreading enhance lexical and syntactic
features, LLMs are more likely to make more ex-
tensive lexical and syntactic edits. By quantifying
these changes through a range of lexical and syntac-
tic indices, we reveal that LLMs favor more gener-
ative rewrites, which may improve fluency but risk
altering nuance or inflating perceived proficiency.

2 Background

2.1 Proofreading in L2 writing

Proofreading is a complex issue in writing research,
particularly for L2 writers, as it involves varying
scopes of interventions. Traditional definitions of
proofreading often restrict it to surface-level error
correction that focuses on resolving orthographic
and grammatical errors without altering content
(Carduner, 2007; Hyatt et al., 2017). However, re-
search shows that professional human proofreaders
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occasionally restructure content to improve the log-
ical flow of ideas and make the writing easier to
understand (Salter-Dvorak, 2019). Noting these
varying practices in proofreading, Harwood et al.
(2009, p. 167) provided a quite general definition
of proofreading as “[any] third-party interventions
(entailing written alteration) on assessed work in
progress.”

Previous studies have shown that human proof-
reading displays variability not just in scope, but
also in quality. Harwood (2018) found that 14
proofreaders made between 113 and 472 changes
to the same L2 learner essay, with some interven-
tions improving clarity and others introducing new
errors, leading to inconsistent quality. Similarly,
Shafto (2015) argued that proofreading is a highly
attention-dependent task, meaning that symptoms
such as tiredness can heavily impact human proof-
readers’ ability to detect and correct ungrammatical
and unnatural expressions.

The debate surrounding the adequacy of L2
proofreading is also characterized by varying per-
spectives from stakeholders (i.e., students, faculty,
researchers). While L2 students often seek proof-
reading services to improve their grades or enhance
their writing skills, some faculty view such assis-
tance as a form of academic dishonesty (Salter-
Dvorak, 2019; Turner, 2011). Despite these diver-
gent opinions, there is a general consensus that
proofreaders can significantly enhance language
accuracy and clarity in L2 writing, provided that
the original authorial voice is maintained (Turner,
2024; Warschauer et al., 2023; Zou and Huang,
2024).

2.2 LLMs in L2 writing and proofreading

While automated written corrective feedback has
been present in L2 classrooms for over a decade
(cf. Wilson et al., 2014), recent research is now
exploring how LLM assistants can be incorporated
into holistic writing workflows (Zhao, 2024). Re-
searchers examine the integration of the LLM in
prewriting (Xiao, 2024) and postwriting stages
(Osawa, 2024), as well as its role in fostering
metacognitive skills through iterative revisions that
include editing and proofreading (Su et al., 2023;
Warschauer et al., 2023; Zou and Huang, 2024).
Among these LLM integrations, several studies
have highlighted the capabilities of LLM proof-
reading (or more broadly, editing). For instance,
Su et al. (2023) found that ChatGPT effectively
assessed grammar, clarified meaning, and sug-
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gested lexical and syntactic refinements. Similarly,
Yan and Zhang (2024) observed that ChatGPT
identified and corrected a range of linguistic er-
rors—including lexical (e.g., word choice, idioms),
grammatical (e.g., verb tense, articles), structural
(e.g., run-on or fragmented sentences), mechani-
cal (e.g., spelling, punctuation), and stylistic (e.g.,
formality) aspects.

Few studies have compared LLM proofread-
ing directly to human revisions. For instance,
Heintz et al. (2022) compared outputs edited by
LLMs with those revised by human editors using
sentences written by non-native English speakers.
They found that while Wordvice AI' achieved near-
human accuracy (77%) in correcting grammar and
spelling errors, it lagged behind human editors in
areas like vocabulary refinement and fluency ad-
justments. Similarly, Jiang et al. (2023) analyzed
2,197 T-units? and 1,410 sentences from weekly
writing samples of 41 Chinese students in an online
high school language program at a U.S. university.
They found that ChatGPT-4 achieved high preci-
sion (88%) in correcting errors at the T-unit level
(in comparison to human judgments), but some-
times overcorrected valid sentences or misinter-
preted context-dependent issues, such as ambigu-
ous word order and culturally embedded idiom:s.

2.3 Summary of findings and research gaps

To briefly summarize, previous research has demon-
strated that proofreading in L2 writing is highly
variable in both scope and quality, with interven-
tions ranging from surface-level corrections to con-
tent restructuring. Recently, LLMs have been
shown to offer performance comparable to, or even
surpassing, that of human editors in L2 writing
proofreading, although they exhibit limitations in
context-sensitive judgment and cultural awareness.

Despite these insights, still little is known about
the fine-grained linguistic interventions that could
be made by LLMs compared to human proofread-
ers. Additionally, existing research has focused
primarily on grammatical error detection and cor-
rection, overlooking broader language use. For
example, although LLMs may facilitate vocabulary
expansion, it remains unclear how their sugges-
tions differ from those of human proofreaders, and
detailed syntactic changes remain underexplored.

1https ://wordvice.ai/proofreading

2A T-unit is often defined as the minimal grammatical unit,
comprising a single independent clause plus any subordinate
clauses or dependent phrases attached to it (Lu, 2010).


https://wordvice.ai/proofreading

Moreover, most studies have examined only one
type of LLM, leaving open the question of whether
these linguistic changes are specific to one model
or generalizable across other LLMs.

3 Methods

3.1 Dataset

This study utilizes the ICNALE Edited Essays
dataset, one of the publicly available corpora within
the International Corpus Network of Asian Learn-
ers of English (ICNALE) project (Ishikawa, 2018,
2021). The dataset comprises 656 essays written by
328 L2 learners and their edited versions produced
by professional native English-speaking proofread-
ers.

The L2 participants were college students learn-
ing English in ten regional contexts: Japan (JPN),
Korea (KOR), China (CHN), Taiwan (TWN),
Indonesia (IDN), Thailand (THA), Hong Kong
(HKG), the Philippines (PHL), Pakistan (PAK), and
Singapore (SIN). Each participant wrote two argu-
mentative essays in response to the prompts: (1)
“It is important for college students to have a part-
time job” and (2) “Smoking should be completely
banned at all restaurants”.

3.1.1 Rationale for dataset selection and
representativeness

The ICNALE dataset was chosen for three main
reasons. First, it provides paired original and pro-
fessionally proofread versions, allowing for direct
comparison with LLM-generated outputs. Second,
it includes explicit L2 proficiency labels, facili-
tating stratified analyses across proficiency levels.
Last, it offers balanced regional coverage across
ten Asian countries or regions (see Table 1). How-
ever, we acknowledge that broad generalizations
to other genres or demographic groups (e.g., narra-
tive writing, younger learners) must be made with
caution.

3.1.2 Proficiency band

All participants were classified into four L2 pro-
ficiency bands (linked to the Common European
Framework of Reference for Languages) based on
their recent scores in standardized English tests
(e.g., TOEFL, TOEIC) or their performance in a
standard receptive vocabulary test’ (Nation and

3The vocabulary test consists of 50 multiple-choice items
designed to measure vocabulary knowledge within the 1,000—
5,000 word range. A typical item (from the 4,000-word level)
presents a short sentence containing a target word and asks
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Beglar, 2007). Table 1 shows the proficiency distri-
bution of each regional learner group.

Region A2 0 BI_1 Bl 2 B20 Total

JPN 10 10 10 10 40
KOR 10 10 10 10 40
CHN 10 10 10 10 40
TWN 10 10 10 10 40
IDN 10 10 10 3 33
THA 10 10 10 2 32
HKG - 10 10 10 30
PHL - 10 10 10 30
PAK - 10 10 3 23
SIN - - 10 10 20
Total 60 90 100 78 328

Table 1: Distribution of participants by region and profi-
ciency

3.1.3 Proofreading process and proofreader
profiles

The ICNALE project recruited five experienced
proofreaders with strong academic backgrounds
and extensive experience in editing scholarly work.
Their profiles are summarized in Table 2.

ID Age Sex Degree Experience (years) L1 English
A 28  Female BA 3 Canadian
B 32 Female MS 5 Australian
C 27  Female BS 3 American
D 38 Female BS 10 British
E 31 Female PhD 2 Australian

Table 2: Profiles of proofreaders in the ICNALE project

As documented in the ICNALE project, the pro-
fessional proofreaders were tasked with editing er-
rors and inappropriate wording to ensure that each
essay became fully intelligible (Ishikawa, 2021,
p. 496). No standardized rubric or adjudication
mechanism was imposed at the original corpus
compilation stage. All revisions were performed
in MS Word using the Track Changes function,
which allowed every edit, addition, or deletion to
be recorded.

A calibration study in which all five proofread-
ers revised the same eight essays revealed substan-
tial variability in editing behavior (cf. Ishikawa,
2018, p. 122). The number of edited word tokens
ranged from 40.00 to 59.63—a difference of 19.63
tokens, or 40.97% of the average. Ishikawa (2021)
attributed this variation to the inherent subjectivity
of human editing, shaped by individual judgments
of intelligibility.

test-takers to select the most appropriate definition.



Prompt: You are a professional

proofreader and a native
speaker of English. Edit any
errors or inappropriate wording
noticed in learner essays so
that they are fully intelligible.

Figure 1: Overview of the experiment

3.2 LLM selection and prompt design

Figure 1 outlines the experiment. First, to compare
the human proofreading in the ICNALE project
with LLM proofreading, we selected three text-
generating LLMs: GPT-40 (used in ChatGPT, ac-
cessed via OpenAl’s API; Achiam et al., 2023,
hence we called them Chatgpt-40), Llama3.1-8b
(Touvron et al., 2023), and Deepseek-ri-8b (Guo
et al., 2025). ChatGPT-40 was chosen due to its
widespread accessibility, although its underlying
parameter count and architecture remain propri-
etary. In contrast, both Llama3.1-8b and Deepseek-
r1-8b are open models with 8 billion parameters
that are lightweight enough for local installations,
with Deepseek-r1-8b being a distilled version of
Llama3.1-8b.

Each model was tasked with reading the origi-
nal L2 writings and generating a proofread version
based solely on a standardized prompt, with no ac-
cess to additional learner information. The exact
prompt used was as follows: “You are a profes-
sional proofreader and a native speaker of English.
Edit any errors or inappropriate wording noticed in
learner essays so that they are fully intelligible. Re-
turn only the final edited version of the essay. Do
not include any explanations, comments, reason-
ing, or additional thoughts in your response.” This
prompt was designed to align with the instructions
given to ICNALE proofreaders—“They were asked
to edit any error or inappropriate wording noticed
in learner essays so that they could be fully intelli-
gible. They were also required not to ‘rewrite’ the
original texts, that is, not to add new content or to
alter organization” (Ishikawa, 2021, p. 496)—en-
suring consistency with the human proofreading
protocol for fair comparison.
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3.3 Lexical and syntactic analyses

The proofread-and-generated texts, along with the
learner and edited texts in the ICNALE dataset,
were processed to extract lexical and syntactic
features using the source codes of publicly avail-
able NLP tools: TAALED (cf. Kyle et al., 2024),
TAALES (cf. Kyle et al., 2018) and TAASSC (cf.
Kyle and Crossley, 2018). We measured lexical and
syntactic aspects of the learner and proofread es-
says based on the concept of linguistic complexity,
which provides a descriptive-analytic framework
for L2 production (Bulté and Housen, 2012; Bulté
et al., 2024).

3.3.1 Lexical features

Lexical features were evaluated in terms of two
aspects: diversity and sophistication. Lexical diver-
sity indices reflect vocabulary variation and repeti-
tion, with higher scores indicating a broader vocab-
ulary range and fewer repetitions. In this study, we
employ common measures such as the number of
unique words and the moving-average type-token
ratio—the latter mitigating the impact of text length
on traditional lexical diversity measures (Kyle et al.,
2024).

Lexical sophistication indices, on the other hand,
focus on measuring the use of advanced words
(Laufer and Nation, 1995; Meara and Bell, 2001).
They are typically assessed based on relative word
frequency, semantic concreteness, and domain or
register distinctiveness, with less frequent, less con-
crete, and more domain-specific words generally
considered more sophisticated (Kyle et al., 2018).
We also incorporate the concept of ngram sophisti-
cation by analyzing associations and dependency
relations within bigrams (Kyle and Eguchi, 2021).



3.3.2 Syntactic features

Syntactic features can be examined from multiple
perspectives. Traditional approaches, such as mea-
suring the average length of T-units, focus on the
overall length of syntactic structures and operate
under the assumption that longer units generally
indicate greater complexity (Lu, 2010, 2011).

In contrast, fine-grained syntactic complexity
indices (Kyle and Crossley, 2018) provide a more
nuanced analysis by capturing specific structural
characteristics rather than relying on surface-level
measures like sentence length. These indices are
often categorized into clausal-level (e.g., nominal
subjects per clause), phrasal-level (e.g., dependents
per nominal, including adjectives and prepositions),
and morphosyntactic-level features (e.g., use of
past tense).

To the best of our knowledge, there is no con-
sensus on which fine-grained indices reliably cap-
ture syntactic complexity as perceived by human
judges. Nevertheless, L2 writing studies suggest
that higher-proficiency learners (identified by hu-
man ratings) tend to use more elaborated noun
phrases (e.g., Biber et al., 2011).

3.4 Statistical methods

3.4.1 Evaluating linguistic features across
groups

Prior to statistical analyses, we confirmed that the
five groups of texts (i.e., original [ORIG], human-
proofread [EDIT], and the three LLM-proofread
versions) were largely comparable in length.* This
comparability, with the exception of Deepseek-r1-
8b, indicates that subsequent improvements in lex-
ical and syntactic domains are not simply due to
different text lengths.

We calculated a range of 49 lexical and 143 syn-
tactic indices from every text in the five groups
and identified features showing significant between-
group variance in two stages. First, we conducted
visual inspection of box plots to exclude the in-
dices with a great number of outliers, little indi-
vidual variance, and/or unnoticeable mean differ-
ences. Second, we applied a linear mixed-effects
model to each index, using Group (e.g., ORIG,
EDIT, ChatGPT-40) as a categorical fixed effect
with ORIG as the baseline. Proficiency was in-
cluded as a fixed effect that interacted with Group,

“The differences in the number of word tokens relative
to the original text were: EDIT: —1.02, ChatGPT-40: +6.13,

stk

Llama3.1-8b: —3.38, and Deepseek-r1-8b: —15.11"".
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and Participants were included as a random ef-
fect. We retained only those models that converged
successfully to ensure reliable estimates. From
these convergent models, we focused primarily on
the main effect of the proofreading mode, while
also examining whether any observed mode effects
were moderated by Proficiency. These procedures
yielded six lexical and nine syntactic indices. De-
tailed descriptions of each index are provided in
Appendix A.

For each of these indices, we reported the re-
sults of four pairwise comparisons, between ORIG
and human or LLM proofreading, from the linear
mixed-effects models. To avoid a Type I error due
to multiple comparisons, we applied a Bonferroni
adjustment to the alpha level, reducing it from .05
to .0125.

3.4.2 Evaluating consistency across LLMs

The linear mixed-effects analyses informed us
that the cross-model evaluation should exclude
five more syntactic features, which showed multi-
collinearity or overlapping metrics. For the rest ten
features,’ we calculated the standardized z-scores
so that each metric contributed equally to a com-
posite measure of overall lexical and syntactic com-
plexity.

Next, we restructured the data so that each
row represented an essay and each column con-
tained the composite score derived from the out-
put of a different model, treating these composite
scores as “ratings” of the same essay. We then
calculated the Pearson correlation coefficients be-
tween the ratings for every pair of models’ proof-
read output and computed Cronbach’s alpha (Cron-
bach, 1951) across these scores to assess their
overall consistency. All datasets and code used
for this analysis are available in the supplemen-
tary repository: https://osf.io/mhtpg/?view_
only=13ce0959a80e4d498b6761abal197bc83.

4 Results

4.1 Lexical features

Table 3 summarizes the analysis of the selected
lexical sophistication and diversity features. First,
all proofreading modes, including human editing,
led to significantly higher bigram mutual informa-
tion (raw_bg_MTI) scores. This finding suggests that

SLexical features: mattr, b_concreteness, mcd, usf,
cw_lemma_freq_log, and raw_bg_MI; Syntactic features:
nonfinite_prop, amod_dep, nominalization, and be_mv.


https://osf.io/mhtpg/?view_only=13ce0959a80e4d498b6761aba197bc83
https://osf.io/mhtpg/?view_only=13ce0959a80e4d498b6761aba197bc83

Index EDIT ChatGPT-40 Llama3.1-8b  Deepseek-r1-8b
raw_bg_MI +0.35/1.80""  40.65/3.30""  +40.62/3.17°"  +0.60/3.03""
usf -1.37/0.15 9.21/0.99"  -848/0.91™"  -12.09/1.30™"
b_concreteness +0.00/0.02 -0.15/0.83""  -0.12/0.67" 02171117
cw_lemma_freq_log  -0.02/0.03 -0.30/0.54™  -0.26/047"  -0.37/0.67
mattr +0.01/0.18  +0.07/2.20""  +0.08/2.63"  +0.10/3.41™"
ntypes +0.63/0.05 +19.98/1.68™" +16.68/1.40™" +16.80/1.417"

Table 3: Lexical features compared; For each index, two numbers are shown: the value on the left indicates
the unstandardized main effect coefficient, while the value on the right (following the backslash) represents the
standardized coefficient, calculated as the ratio of the coefficient to the residual standard deviation of the dependent
variable; Significance vs. ORIG is marked (xp < 0.0125, % * p < 0.0025, * % xp < 0.00025); negative values are
red and positive values are blue; interaction effects are omitted.

4.0

Figure 2: raw_bg_MI compared across ORIG, EDIT,
and LLM-proofread texts by proficiency

both human and LLM proofreading improved the
lexical sophistication in terms of the coherence or
contextual connectedness of adjacent words. How-
ever, LLM proofreading substantially increased
raw_bg_MI to the extent that differences between
lower and higher proficiency levels became less
distinguishable (Figure 2).

In contrast, only the LLM-proofread texts
showed significant changes in additional lexical
sophistication measures, including a shift toward
more contextually distinctive words (usf), less
concrete words (b_concreteness), and lower-
frequency content words (cw_lemma_freq_log).
Human proofreading, by comparison, did not pro-
duce significant differences in these measures.

As for lexical diversity, significant improve-
ments were observed only in the LLM-proofread
texts, with increases in metrics such as mattr (Fig-
ure 3) and ntypes, indicating a broader range of
vocabulary use.
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Figure 3: mattr compared across ORIG, EDIT, and
LLM-proofread texts by proficiency

4.2 Syntactic features

Table 4 summarizes the analysis of the selected
syntactic features. Regarding the mean length of
T-units (mltu), neither human nor LLM proofread-
ing produced a consistent pattern: human proof-
reading (EDIT) and ChatGPT-40 tended to reduce
T-unit length, while Llama3.1-8b and Deepseek-
r1-8b tended to increase it, suggesting no uniform
effect on the length of minimal grammatical units.

At the clause level, all LLM-proofread texts
showed a significant increase in the total number
of clauses (all_clauses) compared to the origi-
nal learner essays, with Deepseek-r1-8b exhibit-
ing the largest effect. Moreover, LLM-proofread
texts contained a higher proportion of nonfinite
clauses (nonfinite_prop), whereas human edit-
ing resulted in a slight reduction in this index.

At the phrase level, LLM proofreading increased
the number of noun phrases (np), along with a
rise in noun phrase dependencies (np_deps). This



Index EDIT ChatGPT-40 Llama3.1-8b Deepseek-r1-8b
mltu -115.49/0.31 -105.73/0.28 +44.26/0.12 +118.42/0.31
“all_clauses  +15.55/0.10 +133.76/0.847"  +99.12/0.62" ~ +179.00/1.12""
nonfinite_prop  -1.33/0.29 +2.01/0.44™" +2.63/0.57 +5.52/1.20"
‘np 21.30/0.08  +91.96/0.36™  +41.27/0.16  +194.91/0.76""
np_deps -35.03/0.08 +79.21/0.17 +91.91/0.20 +217.81/047
amod_dep +17.547/0.01  +137.65/0.75" +127.4470.70™" +204.54/1.12""
“nominalization +58.127/0.40" +152.04/1.057 +102.85/0.717"  +213.63/1.47°"
be_mv +10.37/0.12  -56.53/0.63"" -41.60/0.47" -84.02/0.94™
past_tense -15.80/0.29 -17.38/0.32 -17.7710.32 -19.31/0.35™

Table 4: Syntactic features compared; Interpretation of the table follows the same conventions described in Table 3
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Figure 4: amod_dep compared across ORIG, EDIT, and
LLM-proofread texts by proficiency

suggests that LLM proofreading not only added
more noun phrases but also enriched their internal
structure. In particular, the marked increase in
adjective modifier dependencies (amod_dep; e.g.,
“various jobs”) suggests that LLM outputs favor
more descriptive noun phrases (Figure 4).

At the morphological-syntactic level, both hu-
man and LLM proofreading showed significant
increases in nominalization, but the increases
were more pronounced in the LLM outputs (Fig-
ure 5). In contrast, the non-auxiliary use of the
main verb “be” declined significantly under LLM
proofreading, while human proofreading showed
only a slight increase (be_mv). Additionally, all
proofreading modes consistently reduced the use
of past tense (past_tense).

4.3 Cross-model consistency

Based on the features that demonstrated meaning-
ful group differences—and after removing indices
with multicollinearity and conceptual overlap—we
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Figure 5: nominalization compared across ORIG,
EDIT, and LLM-proofread texts by proficiency

Pair Lexical Syntax
ChatGPT-40 — Llama3.1-8b 0.70 0.62
ChatGPT-40 — Deepseek-r1-8b 0.60 0.53
Llama3.1-8b — Deepseek-r1-8b  0.56 0.65

Table 5: Pairwise Pearson correlations for lexical and
syntactic features across LLMs

selected ten lexical or syntactic features. The com-
posite lexical and syntactic scores exhibit strong
internal consistency across the LLMs, with Cron-
bach’s alpha values of 0.83 and 0.81, respectively.

Table 5 presents the pairwise Pearson correla-
tions among the three LLM proofreading models.
For lexical features, ChatGPT-40 and Llama3.1-8b
correlate at 0.70, while Deepseek-r1-8b correlates
at 0.60 with ChatGPT-40 and 0.56 with Llama3.1-
8b. For syntactic features, the corresponding cor-
relations are 0.62, 0.53, and 0.65. These findings
suggest that, despite minor variations, particularly
with Deepseek-r1-8b, the LLMs tended to modify



vocabulary and syntactic structures in a relatively
consistent manner when proofreading L2 writings,
as measured by our selected indices.

5 Discussions

We compared the lexical and syntactic features of
original L2 writings with those of texts that were
proofread by human and LLMs. We also evalu-
ated the consistency of LLM proofreading across
different models.

Lexical features We found significant increases
in bigram association strength, a ngram-level index
of lexical sophistication, across all the proofread-
ing modes. However, only LLM-proofread texts
demonstrated notable changes in both word-level
sophistication and diversity. Together, these results
suggest that while both human and LLM proofread-
ing improved the natural sequence of vocabulary—
thus, enhancing the intelligibility of L2 writings—
LLM proofreading provided an additional boost in
lexical diversity and sophistication. In fact, this
boost sometimes reduced or even eliminated typi-
cal differences between proficiency levels. Given
that lexical sophistication and diversity are impor-
tant constructs when evaluating L2 writing profi-
ciency (Kyle et al., 2018, 2021), texts produced
using LLLM proofreading may obscure learners’
true writing abilities and artificially inflate their
advanced language skills, ultimately undermining
accurate assessment and long-term development.
We also observed that LLMs often replaced re-
peated words with alternative expressions—even
when such changes are unwarranted—calling for
caution. For example, “I often can smell” became
“I often catch a whiff”, altering the intended mean-
ing. Consequently, L2 writers using LLM proof-
reading should be mindful of unintended shifts in
meaning or style and double-check suggested edits.

Syntactic features Compared with the marked
lexical shifts, syntactic edits were subtler but
still distinct pattern of edits. First, both human
and LLM proofreading consistently reduced past-
tense verbs, favoring present or neutral tense—a
pattern often associated with factual, persuasive
prose (Burrough-Boenisch, 2003; Fang and Maglio,
2024).

However, LLMs made more extensive structural
modifications, including a higher proportion of non-
finite clauses (e.g., “Because the company that need
worker will ask the job experiences” — “Compa-
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nies looking to hire often require prior work experi-
ence”’) and a marked increase in adjective modifier
dependencies (e.g., “become the social problem”
— “become a significant social problem”). They
also introduced more nominalizations (e.g., “we
should...” — “(our) primary responsibility”) and
reduced the non-auxiliary use of the main verb “be”
(e.g., “is not the first" — “should not take prece-
dence”).

Meanwhile, although the increase in overall
noun complexity following LLM proofreading was
not statistically robust (dp_deps), the gains were
primarily driven by the insertion of adjective modi-
fiers rather than by broader grammatical restructur-
ing. For example, the structural complexity of noun
phrases involving prepositional phrases (e.g., “dis-
advantages of works™) or coordination (e.g., “ad-
vantages and disadvantages”) remained largely un-
changed.

Cross-model consistency We found that the
three LLMs exhibit generally consistent proofread-
ing performance in terms of the major lexical and
syntactic features. We speculate that this consis-
tency arises from fundamental similarities in how
they are trained and optimized for language gener-
ation tasks. Consequently, while different LLMs
may produce distinct outputs, their overall patterns
of lexical enhancement and syntactic restructuring
remain comparable.

6 Conclusions

Our study shows that while both human and LLM
proofreading improve lexical and syntactic features
in L2 writing, LLMs typically implement more
generative edits, reworking vocabulary and sen-
tence structures to a greater extent. Although these
changes may enhance clarity and style, they risk
overshadowing the original meaning or authorial
voice and potentially inflate apparent language pro-
ficiency.

This finding has important implications for L2
writing practice. Acknowledging the great simi-
larities in proofreading outcomes across different
LLMs, more attention should be given to the ques-
tion of “how to use LLM-proofreading effectively”
rather than “what LLM to use for proofreading.”
This key question can be addressed in reference to
the observations that we have reported above, such
as non-mandatory lexical substitution and exces-
sive syntactic restructuring. Being aware of these
tendencies in LLM-proofreading, L2 writers can



better maintain control over their writing process
while strategically making use of LLMs for linguis-
tic improvements.

Limitations

This study has several limitations. First, the same
proofreading directive may be interpreted differ-
ently by human and LLM proofreaders, potentially
affecting the nature and extent of the modifications.

Second, the analysis lacks qualitative compar-
isons between original and edited texts, which
could reveal subtler aspects of the revisions. As
one reviewer noted, LLM-proofread essays may
appear more sophisticated but sometimes sacrifice
coherence or introduce unintended nuances, mak-
ing them harder to read. A more systematic quali-
tative analysis (ideally supported by human percep-
tion data comparing human- and LLM-proofread
texts) would clarify whether LLM edits genuinely
improve writing quality or simply enhance surface-
level features.

Third, the task effects and proficiency-level
constraints limit generalizability: our analysis fo-
cused solely on argumentative writing by Asian
university-level students who already possess a cer-
tain level of L2 English proficiency. Consequently,
these findings may not extend to other types of writ-
ing or to L2 groups with different backgrounds.
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A Descriptions of the selected indices

Index

Description

Lexical indices

ntypes
mattr
b_concreteness

usf

cw_lemma_freqg_log

raw_bg_MI

Counts the number of unique words, taking into account their part-of-speech.
Computes the type-token ratio over a 50-word sliding window.

Uses psycholinguistic norms to assess word concreteness across categories
based on large-scale ratings, indicating how tangible or abstract a word is
perceived to be (Brysbaert et al., 2014).

Measures the number of distinct stimuli that elicit a target word in a word
association experiment; lower USF scores suggest the use of words that are
more contextually distinct (Nelson et al., 1998).

Represents the logarithm of lemma frequencies for content words, computed
with reference to an English web corpus (Schifer and Bildhauer, 2012).
Calculates raw bigram mutual Information to quantify the strength of asso-
ciation between consecutive words, with higher values indicating a stronger
collocational relationship; this is measured against an English web corpus.

Syntactic indices

mltu

all_clauses
nonfinite_prop

np
np_deps
amod_dep

nominalization

be_mv

past_tense

Measures the average length of T-units, where a T-unit is defined as a main
clause plus any subordinate clause(s) attached to it.

Counts the total number of clauses in the text (normed by 10,000 words).
Computes the proportion of nonfinite clauses (e.g., gerunds, infinitives) relative
to the total number of clauses.

Counts the total number of noun phrases, highlighting the nominal complexity
within sentence structures (normed by 10,000 words).

Counts the number of internal dependencies within noun phrases (e.g., adjec-
tives, prepositions, coordinations) (normed by 10,000 words).

Measures the frequency of adjective modifier dependencies (normed by 10,000
words).

Counts the frequency of nominalizations (i.e., words that convert verbs or
adjectives into noun forms) identified by tokens containing predefined suffixes
such as -al, -ness, among others (normed by 10,000 words).

Measures the frequency of the verb “be” when used as a main verb (excluding
its auxiliary function) (normed by 10,000 words).

Measures the frequency of past tense verbs (normed by 10,000 words).
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Abstract

The rapid advancement of Large Language
Models (LLMs) has transformed various do-
mains, particularly computer science (CS) ed-
ucation. These models exhibit remarkable ca-
pabilities in code-related tasks and problem-
solving, raising questions about their poten-
tial and limitations in advanced CS contexts.
This study presents a novel bilingual (En-
glish—-Romanian) multimodal (text and image)
dataset of multiple-choice questions derived
from a high-level computer science compe-
tition. A particularity of our dataset is that
the problems are conceived such that some of
them are easier solved using reasoning on pa-
per, while for others writing code is more ef-
ficient. We systematically evaluate State of
The Art LLMs on this dataset, analyzing their
performance on theoretical programming tasks.
Our findings reveal the strengths and limita-
tions of current LLMs, including the influence
of language choice (English vs. Romanian),
providing insights into their applicability in
CS education and competition settings. We
also address critical ethical considerations sur-
rounding educational integrity and the fairness
of assessments in the context of LLM usage.
These discussions aim to inform future educa-
tional practices and policies. To support fur-
ther research, our dataset will be made publicly
available in both English and Romanian. Addi-
tionally, we release an educational application
tailored for Romanian students, enabling them
to self-assess using the dataset in an interactive
and practice-oriented environment.

1 Introduction

In recent years, LLMs have demonstrated revolu-
tionary potential in natural language processing
and code generation, enabling applications such
as automated code writing systems and algorith-
mic problem-solving (Raihan et al., 2024; Rasheed
et al., 2025). For instance, models like GPT-03
exhibit remarkable proficiency in code generation
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and problem-solving (OpenAl et al., 2025), yet
their deployment in high-stakes domains remains
constrained by efficiency and reliability challenges.

In the educational domain, LLMs exhibit consid-
erable promise for enabling personalized learning
and automating feedback; however, their capacity
to manage complex, competition-level program-
ming challenges—particularly in bilingual or non-
English contexts—remains underexplored, with
emerging critiques questioning their reliability in
high-stakes scenarios, such as mathematical reason-
ing. Recent analyses, such as (Petrov et al., 2025;
Mirzadeh et al., 2024; Hendrycks et al., 2021)
reveal that LLMs frequently produce plausible-
sounding but logically flawed solutions, raising
concerns about their suitability for rigorous assess-
ments. While benchmarks like HumanEval (Chen
et al., 2021; Yu et al., 2024) and MBPP (Austin
et al., 2021) evaluate general coding proficiency,
they often neglect pedagogical dynamics, such as
adaptive scaffolding for learners or ethical align-
ment with institutional values. Furthermore, stud-
ies caution that deploying LLMs in multilingual
environments amplifies risks of semantic misinter-
pretation and cultural misalignment, necessitating
rigorous scrutiny of their pedagogical robustness.
(Rystrgm et al., 2025; Marchisio et al., 2024)

Our work aims to address this gap by conduct-
ing a rigorous evaluation of LLMs using a bilin-
gual dataset, thus shedding light on their strengths,
weaknesses, and the nuances of language-specific
performance. Our dataset is uniquely comprised
of multiple-choice questions that were originally
administered as part of a pre-university exam for
prospective students. This setting not only sim-
ulates a high-stakes assessment environment, but
also provides rich insights into the performance of
LLMs on tasks that require both theoretical knowl-
edge and practical application. Our approach al-
lows us to identify key strengths and limitations
of state-of-the-art LLMs, highlighting scenarios

Proceedings of the 20th Workshop on Innovative Use of NLP for Building Educational Applications, pages 24-37
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where additional context either bolsters perfor-
mance or introduces redundancy and inefficiency.
By dissecting performance variations across lan-
guages and problem types, we provide a nuanced
understanding of how LLMs navigate complex edu-
cational assessments, such as those encountered in
advanced computer science competitions and early
university admissions. Moreover, our study raises
important ethical considerations, as the use of au-
tomated assessments in educational settings must
balance technological innovation with fairness and
academic integrity.

Finally, to encourage further exploration and
replication, the bilingual dataset! developed
through this work will be made publicly available,
offering a valuable resource for future research
in both educational technology and competitive
programming evaluation and an educational appli-
cation” tailored for Romanian students, enabling
them to self-assess using the dataset in an interac-
tive and practice-oriented environment.

Main Contributions

The main contributions of our work can be summa-
rized as follows:

* We introduce a novel multimodal and bilin-
gual dataset comprising Romanian and En-
glish. The dataset includes 100 multiple-
choice questions, all enriched with exten-
sive solutions in Romanian. This paper fo-
cuses specifically on benchmarking LLLM per-
formance on the Multiple Choice Question
(MCQ) portion, including its multimodal as-
pects; the programming problems are pro-
vided as part of the dataset release for com-
pleteness and future research but are not eval-
vated here. We consider the evaluation of
complex coding problems a distinct challenge
requiring separate methodologies.

Our dataset is uniquely designed so that
multiple-choice problems can be solved
through either mathematical and algorithmic
reasoning or by generating executable Python
code. Crucially, the benchmark tasks the
LLMs with autonomously determining the
most suitable approach—producing either di-
rect answers or executable Python code.

1https://huggingface.co/datasets/EHollower/
MateInfoUB
2https://mateinfo-ub.github.io/
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* We provide an open-source educational ap-
plication enabling students to interactively
attempt and practice all problems included in
our dataset, thereby facilitating practical en-
gagement and learning.

Related Work

The evaluation of LLMs for code generation has
advanced significantly, supported by benchmarks
that measure functional correctness and problem-
solving capability. Seminal datasets such as Hu-
manEval (Chen et al., 2021; Yu et al., 2024) and
MBPP (Mostly Basic Python Problems) (Austin
et al., 2021) have become standard, focusing on
generating standalone code from English-language
prompts (Paul et al., 2024). While effective for as-
sessing basic coding abilities, these benchmarks of-
ten emphasize isolated tasks, neglecting integrated
reasoning, debugging, and pedagogical scaffolding
(Fujisawa et al., 2024; Zhang et al., 2024). They
also overlook ethical alignment (Abdulhai et al.,
2024), which is critical in educational deployments.

Recent datasets attempt to address these gaps.
APPS (Hendrycks et al., 2021) and CodeContests
(Quan et al., 2025) introduce complex algorithmic
problems from competitive programming, pushing
models toward more advanced problem-solving.
However, these datasets are monolingual and in-
sufficiently capture linguistic diversity (Marchisio
et al., 2024), despite growing evidence that non-
English prompts introduce semantic errors and cul-
tural misalignment (Rystrgm et al., 2025).

In educational contexts, systems for automated
feedback (Sarsa et al., 2022) and personalized tu-
toring (Wu and Hu, 2023; Petrov et al., 2025) rarely
engage with high-stakes scenarios such as program-
ming competitions or university admissions. This
leads to concerns about fairness (Mouselinos et al.,
2023), academic integrity (Huang et al., 2025), and
linguistic exclusion (Gao et al., 2024).

Multilingual benchmarks like DS-1000 (Lai
et al., 2022) and MultiPL-E (Cassano et al., 2022)
broaden the scope but primarily target English pro-
gramming tasks rather than bilingual educational
assessments. Studies reveal that language choice
affects problem comprehension (Moumoula et al.,
2025), with LLMs showing systematic bias in non-
English settings and often generating plausible yet
logically flawed responses (Petrov et al., 2025;
Mirzadeh et al., 2024). As a result, emerging frame-
works call for pairing benchmarks with fairness
audits (Du et al., 2025) and cultural robustness


https://huggingface.co/datasets/EHollower/MateInfoUB
https://huggingface.co/datasets/EHollower/MateInfoUB
https://mateinfo-ub.github.io/

evaluations (Rystrgm et al., 2025).

Several recent benchmarks have expanded be-
yond single-turn code generation to include interac-
tion and feedback mechanisms. MINT introduces
multi-turn tool use and natural language feedback
(Wang et al., 2024), while InterCode and AppWorld
emphasize coding with execution feedback and
app-driven interaction (Yang et al., 2023; Trivedi
et al., 2024). SciCode curates scientific comput-
ing tasks (Tian et al., 2024), and XCODEEVAL
targets multilingual, multitask code understanding
and generation (Khan et al., 2023). However, these
benchmarks largely isolate competencies: tool use
is decoupled from theoretical reasoning, and scien-
tific or multilingual problems are rarely embedded
in pedagogically structured tasks.

Unlike existing benchmarks that focus on iso-
lated coding tasks, our dataset integrates theoret-
ical understanding with practical implementation
through hybrid problem formats. Each item in the
dataset focuses on one or more core competencies:
code synthesis, mathematical reasoning, and algo-
rithmic thinking. This flexible format mirrors the
diversity of real-world computer science assess-
ments and addresses the "theoretical blind spots"
highlighted by (Chan et al., 2024), where language
models struggle when reasoning is detached from
implementation. By evaluating symbolic manipu-
lation alongside executable code generation, our
dataset offers a more comprehensive measure of
educational readiness.

2 Data Collection and Examples

The problem set used in our study is derived from
MatelnfoUB, an annual computer science contest
specifically aimed at 12th-grade students. This
contest also functions as an admission exam for the
Faculty of Mathematics and Computer Science at
the University of Bucharest. The competition is
structured into two phases:

* Phase 1: An online round consisting of chal-
lenging multiple-choice questions. Students
have access to a programming environment,
but are restricted to using only publicly avail-
able resources. The use of forums, messen-
gers, or Large Language Models (LLMs) is
strictly prohibited.

Phase 2: A live programming contest mod-
eled after the International Olympiad in Infor-
matics (IOI) format, featuring four program-
ming problems. Students’ solutions can earn
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partial points based on correctness and effi-
ciency.

Our work exclusively focuses on the first phase
of the contest, and our dataset is obtained directly
from the contest organizers in Romanian, currently
also available online . Extensive solutions accom-
panying each problem, manually written by the
authors and by undergraduate students as part of
their academic practice (practicd) at the university
are also available for reference and further research.

Some tasks are accompanied by an image con-
taining a code snippet, a diagram, a graph or similar.
For those tasks, we augment the statement with a
clear textual description of the image’s content.

Our final dataset is composed of the problems
with statements and multiple choice answers in
Romanian, as well as their direct translation in En-
glish. The translations are generated automatically,
by using Gemini 2.0 Flash with very strict instruc-
tions enforcing a verbatim translation. The english
translations are then manually checked for correct-
ness.

In the following, we provide two examples that
illustrate the characteristics of the dataset.

Example: Multimodal Problem Requiring
Visual Analysis

Figure 1 presents a typical multiple-choice ques-
tion from our dataset. The problem requires de-
termining the number of distinct Minimum Span-
ning Trees (MSTs) present in the provided graph.
Problems of this nature are challenging for LLMs,
as solutions depend significantly on visual inter-
pretation and structural observation of the graph.
Previous studies have noted similar limitations in
visual reasoning tasks performed by LLMs (Liu
et al., 2023).

Figure 2 presents another multiple choice ques-
tion from our dataset. Given a map that illustrates
a river with two banks and four islands linked by
eight bridges, the task asks for the minimum num-
ber of additional bridges that must be built so that
a tourist can cross each bridge exactly once. Prob-
lems of this nature are challenging for LLMs be-
cause they require integrating visual-spatial rea-
soning with graph-theoretical concepts, such as
identifying Eulerian paths, which are not explicitly
stated, but must be inferred from the structure of
the image or diagram.

3https://mateinfo-ub.github.io/#/toate-datele
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APM-uri (usor, 2 puncte)

Cati arbori partiali de cost minim are urmatorul graf?

Raspuns

e Os O7 O3 O9

Figure 1: Example multiple-choice problem requir-
ing visual analysis (in Romanian); English translation:
"AMP-uri (easy, 2 points); How many minimum span-
ning trees does the following graph have?"

Koningsberg (easy, 2 points)

The adjacent map is given.

The map represents a river (blue), two banks and four islands (green),
as well as eight bridges (black).

What is the minimum number of bridges that need to be built so that
a tourist can cross all bridges exactly once?

Careful: the tourist can start his route wherever he wants (on a bank
or on an island) and can also finish the route wherever he wants.

Answer

o0 O1 0O2 O3 0O4

Figure 2: Example multiple-choice problem requiring
visual analysis (in English).

3 Benchmarking

In this section, we present a comprehensive
overview of our benchmarking strategy designed to
evaluate various aspects of Large Language Models
(LLMs) performance on our bilingual, multimodal
dataset. The benchmarking aims to highlight differ-
ences in performance across multiple dimensions,
including language, presentation modality, avail-
ability of multiple-choice options, and problem-
solving approaches.
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3.1 Methodology

Our evaluation is based on state-of-the-art LLM
models from various vendors, namely gemini-2.0-
flash and gemini-2.5-pro-exp-03-25 from Google
Al Studio, mistral-large-latest (April 2025)
from Mistral Al, and meta-llama/Llama-3.3-
70B-Instruct-Turbo-Free, deepseek-ai/DeepSeek-
R1 and deepseek-ai/DeepSeek-V3 from To-
gether Al (Together Al, 2025)

We use the models via the exposed API, starting
a new chat instance for each task. We provide the
models with the task’s statement and the multiple-
choice answers. We then instruct the models to
provide reasoning steps, followed by either an an-
swer or a Python script that computes the answer.

For minimizing benchmarking frictions, we
clearly provide the models with the expected output
format, which resembles XML. While very forgiv-
ing, in some instances, the models fail to adhere to
it (if, for instance, their answer exceeds the API’s
length limit). In such situations, we consider the
models’ answers incorrect.

3.2 Evaluation Baseline

We evaluate the accuracy of our models on the orig-
inal tasks. Due to the multiple choice nature of the
tasks, verifying the correctness of the models’ solu-
tions is trivial. We run each model on each problem
3 times, for minimizing the randomness caused by
the LLMs’ seed selection. We chose to use the
models’ default API settings (i.e., without forcing
temperature to 0) to reflect typical usage and ob-
tain realistic levels of correctness, confidence, and
creativity, as would be experienced by a standard
user.

3.3 AI vs. Human Contestants

As our dataset comes from real contests, we com-
pare the performance of the models with the results
obtained during the 2021, 2022, 2023, and 2024
editions of the contest. We evaluated the models by
measuring their percentile scores compared to the
results of the students who qualified for the final
stage of the contest.

3.4 Original Romanian Baseline vs. English
Translations

LLMs have been notoriously bad at reasoning in
languages other than English. By comparing our
baseline benchmark with the performance of LLMs
on English translations of the statements, we gain



insights about the model’s effectiveness in a lan-
guage typically underrepresented in NLP research,
as opposed to English.

A comparative analysis of English and Roma-
nian benchmarks highlights language-specific chal-
lenges and differences in LLM capabilities between
languages.

3.5 Original Multiple-Choice vs. No
Multiple-Choice Variants

We investigate how the presence or absence of mul-
tiple choice answer options affects LLM perfor-
mance. By removing the multiple-choice frame-
work, we challenge the models’ capability to gen-
erate answers without guidance from predefined
options.

3.6 Chain-of-Thought vs. Direct Answer

In our benchmarks, when prompting the models
for an answer, we ask the models to provide a de-
tailed description of the solution. The models thus
respond with reasoning steps to solve the task, fol-
lowed by the answer.

We measure how the performance of the models
is impacted by the absence of the reasoning steps,
by prompting the models to directly output the
answer, without justifying it.

3.7 Answer-only vs. Hybrid Approach

Finally, we conduct experiments to compare LLM’s
performance across two different reasoning strate-
gies:

* Hybrid approach: The model autonomously
chooses whether to solve the problem via code
generation or direct reasoning (our baseline).

* Think-only: The model is restricted to pro-
viding direct theoretical or conceptual so-
lutions, without the possibility of running
python code.

We do not consider the third option (forcing the
model to produce python code), as we experimen-
tally see the model can write a trivial script printing
a hard-coded answer, making the experiment unin-
teresting.

4 Results

In this section, we present the findings of our bench-
marking evaluations.
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Overall, our analyses suggest significant varia-
tions in LLMs performance across different scenar-
10s.

We acknowledge that the outreach of bench-
marks might be limited by the size relatively small
of our dataset, but our measurements suggest the
following trends:

* Language Comparison: Our measurements
indicate various differences in model accu-
racy and problem-solving capabilities when
problems are presented in Romanian versus
English, with some models benefiting from a
verbatim translation of the statements to En-
glish, a language they are more familiar with,
while and others perform better when exposed
to the original statements.

Multiple-choice Contexts: We observe that
the availability of multiple-choice options
slightly improves model accuracy compared
to scenarios where these options are not pro-
vided.

Reasoning Strategies: Benchmarks indicate
a promising performance of hybrid strategies,
where models autonomously select between
code generation and direct reasoning, outper-
forming exclusive reasoning approaches.

Human Performance Comparison: Com-
paring the performance of models with the
performance of high school students taking
part in the contest, we find that newer models
consistently outperform most students.

Breadth of Capabilities: Models demon-
strate a broader range of problem-solving
skills than originally anticipated, effectively
addressing a very diverse set of exercises. In
particular, of the 100 exercises in our dataset,
all but three were solved by at least one model,
highlighting their versatility and adaptability
to different types of problems.

Detailed findings from each of our experiments
are discussed in the following sections.

4.1 Baseline and comparison with human
rankings

We find models quite capable, with newer models
capable of solving most tasks. On average, mod-
els achieve a difficulty-weighted accuracy of 52%



(easy problems are worth 2 points, medium prob-
lems 3 points, and hard problems 5 points). A
complete breakdown of the accuracy of the models
is available in Table 1.

Model Easy (%) Medium (%) Hard (%)
Gemini 2.5 Exp 96.7 85.6 76.7
Gemini 2.0 Flash 71.3 60.0 35.0
Llama 3.3 70B 51.3 31.1 18.3
DeepSeek R1 54.0 34.4 21.7
DeepSeek V3 72.0 63.3 30.0
Mistral Large 62.0 43.3 31.7

Table 1: Performance metrics for different models
across difficulty levels in Romanian (larger is better).

One can see that Gemini 2.5, a reasoning-
focused model, outperforms all others, including
DeepSeek RI1. However, upon closer examination,
we found that DeepSeek RI frequently produces
answers that exceed the API’s maximum response
length, leading to truncation and, consequently, in-
correct outputs.

In some cases, such as when attempting to manu-
ally solve complex counting problems, the model’s
output becomes excessively long. We consider it
most appropriate to adhere to the API vendor’s con-
figured maximum response length and treat trun-
cated or incomplete answers as incorrect.

As we have data on the scores obtained by stu-
dents qualified in the 2021, 2022, 2023 and 2024
editions of the contest, we can compute the per-
centile (i.e. the percentage of students doing better
than the model) of the qualified students. The re-
sults are available in Table 2.

Model 2021 2022 2023 2024
DeepSeek V3 38.22 27.12 26.15 9.95
Gemini 2.5 Exp 0.64 1.69 0.51 0.00
Gemini 2.0 Flash ~ 50.96 55.93 56.41 1.05
Llama 3.3 70B 100.00 100.00 100.00 100.00
DeepSeek R1 100.00 100.00 79.49 100.00
Mistral Large 100.00 92.09 85.64 9.95

Table 2: Average percentiles of models compared to real
students across different years (smaller is better).

Models show a constant improvement over the
years, which we theorize can be explained by a
combination of the following hypotheses:

* Older contests have more ad-hoc problems,
which models tend to struggle with.

* Starting in 2022, the UK stopped its financial
support for EU students, including Romania.
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Thus, many students exploring alternative op-
portunities took part in the contest. As alter-
native abroad universities grew in popularity
among high school students, interest in the
contest could have decreased.

The student participating in the contest in
2022, 2023 and 2024 were the most impacted
by the Covid-19 remote studying mandates
during early high school.

We strongly believe that our dataset is not tainted
(i.e., that models were not trained on it). While
the statements were publicly available before we
started our research, we are the first to compile
a dataset that maps these problems to their corre-
sponding answers.

In other words, while it is plausible that model
training corpora may have included the raw state-
ments, the solutions could not have been included,
since all tasks are original, and our dataset is the
first to pair them with verified multiple-choice an-
SWersS.

4.2 Original language vs. English translation

Our experiments show that most models perform
better on the Romanian version of the questions
than on the English one. This gap likely arises
from two factors. First, our English statements are
verbatim translations of the original Romanian text,
which can lose nuance and clarity and introduce
artifacts (translationese) that impair model under-
standing.

Second, since the raw Romanian problems were
publicly available before our work, it is plausi-
ble that models encountered those during training,
whereas our English translations are novel; thus,
they effectively function as a partial unseen valida-
tion set. We therefore consider the benchmark bilin-
gual, while acknowledging that translation quality
and prior exposure may both contribute to the ob-
served performance drop.

The DeepSeek family of models sees a 10% gain
in accuracy when solving the English variant, sug-
gesting reduced multilingual abilities of the mod-
els.

The results of the experiment are available in
Table 3.

4.3 Multiple-choice options provided vs. not
provided

We observe a slight decline in performance when
the multiple choice variants are not provided, which
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Figure 3: Performance of models when the multiple choice options are provided vs when they are not.

Model English (%) Romanian (%) Model Easy Medium Hard Average
DeepSeek V3 0.61 0.55 With Reasoning
Gemini 2.5 Exp 0.84 086 DeepSeek V3 070  0.63 041  0.58
Gemini 2.0 Flash 0.50 0.55 ..
Gemini 2.5 Exp 0.96 0.85 0.74 0.85
Llama 3.3 70B 0.33 0.34 .
Gemini 2.0 Flash 0.68 0.56 0.35 0.53
DeepSeek R1 0.52 0.37
Mistral Large 0.43 0.46 Llama 3.3 70B 0.50 0.33 0.16 0.33
DeepSeek R1 0.65 0.43 0.26 0.45
Overall Average 0.54 0.52 Mistral Large 0.61 0.44 0.28 0.45
) Overall Average 0.53
Table 3: Average scores for models across different — -
languages. Without Reasoning
DeepSeek V3 0.73 0.54 0.48 0.58
Gemini 2.5 Exp 0.95 0.81 0.79 0.85
: : > : : Gemini 2.0 Flash 0.56 0.50 0.11 0.39
aligns Wlth the contests demgn goals of making Llama 3.3 70B 0.53 0.97 0.19 0.33
the variants unhelpful for solving the tasks. Con- DeepSeek R1 0.28 0.12 0.00 0.13
sidering that models tend to guess an answer and Mistral Large 0.48 0.35 0.15 0.33
hallucinate a justification when they cannot solve Overall Average 0.43

the task, we believe that the difference is caused
by models having a higher chance of guessing the
correct answer. The results can be seen in Figure 3.

4.4 Chain-of-Thought vs. Direct Answer

We observe a slight decline in performance when
models are only prompted for the answer, as op-
posed to first providing a justification, or reasoning.
While we expect reasoning models like Gemini 2.5
Exp and DeepSeek-R1 to be invariant to the change
(due to their own reasoning process), DeepSeek-
R1I’s internal chain-of-thought reasoning increases
in length, which causes some of its answers to be
truncated and invalidated. The full results are avail-
able in Table 4.
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Table 4: Comparison of average scores with and without
reasoning for various models.

4.5 Answer-only vs. Hybrid Approach

In Figure 4, we can see the distribution of python
answers and direct answers, when the models can
choose unconstrained how to provide an answer for
a given task (i.e., models can freely pick between
providing a direct answer and providing a python
code).

When Python is no longer allowed, the models
perform unexpectedly worse, as more than half of
their answers rely on executing Python code. We



Average number of answers with and without Python by Problem Difficulty for Each LLM

Average answers per contest

Difficulty
mmm Easy difficulty, with Python
Easy difficulty, no Python
mmm Medium difficulty, with Python
Medium difficulty, no Python
W Hard difficulty, with Python
Hard difficulty, no Python

Figure 4: Percentage of direct answers vs python answers when the models are given the choice between the two.
Columns are scaled the number of tasks of each difficulty (10 easy, 6 medium, 4 hard).

run the experiment on a subset of the models, and
the results are available in Table 5.

Model Easy Medium Hard
Python Code Allowed
DeepSeek V3 0.70 0.63 0.41
Gemini 2.0 Flash 0.68 0.56 0.35
Python Code Not Allowed
DeepSeek V3 0.65 0.48 0.28
Gemini 2.0 Flash 0.59 0.43 0.20

Table 5: Comparison of average scores for DeepSeek
V3 and Gemini 2.0 Flash with and without Python code.

4.6 Discussion of Benchmark Results

Our findings have two key implications for
computer-science education. First, assessments
should combine tool-enabled tasks with those re-
quiring scaffolding and manual reasoning to accu-
rately gauge student mastery. Second, instructors
and contest organizers should monitor for anoma-
lous solution patterns—such as perfectly formatted
code or implausibly high confidence scores—to
detect unauthorized LLM use.

We also provide descriptive plots covering the
experiments contained in our research. They are
available in Appendix B.
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S Application

In parallel with our experiments, and inspired by
our dataset, we develop a web-based application,
which can be used as a training ground of students
looking to compete in the contest.

The application is freely accessible online * and,
among others, allows students to:

e Preview the statements of all editions of the
contest.

 Simulate an edition of the contest.
* Automatically grade their attempt.

The application is implemented in React, and is
hosted on Github Pages. Due to its limited func-
tionalities, it does not require any kind of dynamic
backend, and all of its assets, including statements,
solutions, and images, can be packaged statically,
making deployment easier.

Screenshots of the application and a description
of its functionalities are available in the Appendix
A.

6 Future Work

Several avenues for further research are highlighted
by our preliminary findings and current limitations.
Key directions include:

*https://mateinfo-ub.github.io/
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* Expanded Benchmarking: Conducting ex-
tensive experiments involving additional com-
petitive programming datasets (potentially us-
ing cross-validation) and further expanding
multilingual analyses. This could also involve
analyzing model performance over varying
levels of intrinsic problem complexity.

Live Contest-Based Evaluation: Introduc-
ing the second phase featuring a plethora of
programming contests modeled after the In-
ternational Olympiad in Informatics (IOI),
with multiple problems graded on partial cor-
rectness and efficiency. This would enable
a deeper analysis of LLMs’ algorithmic rea-
soning and problem-solving capabilities in a
structured, task-oriented environment.

Fine-Tuning and Contextual Support: In-
vestigating the impact of fine-tuning LLMs on
domain-specific data, leveraging RAG meth-
ods, or exploring the effect of providing in-
cremental contextual hints or scaffolding to
guide model reasoning.

Model Efficiency and Scalability: Exploring
methods to optimize model inference times
and computational efficiency for real-world
educational deployment.

Enhanced Ethical Solutions: Developing
and evaluating robust technological and ed-
ucational solutions that address challenges of
academic integrity related to the use of LLM.

Pursuing these directions can deepen the under-
standing of LLM capabilities and limitations, con-
tributing to their sustainable and ethical integration
in education.

Limitations

Although our study provides valuable insights into
Large Language Models’ (LLMs) performance on
bilingual educational assessments, several limita-
tions must be acknowledged.

First, although our dataset features a diverse set
of problems from a high-stakes computer science
competition, the scope remains limited to the Ro-
manian educational context. Generalization of our
findings to other linguistic or educational settings
may require additional validation.

Second, our dataset and benchmarks currently
focus primarily on the immediate accuracy of LLM-
generated solutions. Future work should explore
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complementary evaluation metrics, including effi-
ciency, robustness to variations in problem presen-
tations, and detailed error analyses, which would
provide deeper insights into model performance
and reliability in educational contexts.

Lastly, our benchmarking has not explored the
impact of methods such as retrieval-augmented gen-
eration (RAG) or fine-tuning of LLMs. Future work
incorporating these approaches could reveal further
improvements in performance and greater adapt-
ability to specific educational tasks and datasets.

Ethical Considerations

A central motivation for this study is assessing
the current capabilities of Large Language Mod-
els (LLMs) due to significant ethical challenges
posed by their increasing accessibility during on-
line assessments, particularly in competitive con-
texts such as MateInfoUB. Our benchmarking ex-
plicitly aims to identify tasks and problem struc-
tures that LLMs struggle to solve reliably. The
insights gained allow educators and contest orga-
nizers to structure future contests in a way that
mitigates unfair advantages gained through unau-
thorized LLM use.

Although our current findings suggest it remains
possible to maintain fairness in online competi-
tions for now by emphasizing problems that LLMs
find challenging, this strategy will likely become
less effective as LLLM capabilities rapidly improve.
Therefore, it is increasingly important for educa-
tional institutions and competition organizers to
proactively adopt technical solutions designed to
uphold academic integrity. Such solutions could
include software capable of capturing contestant
screens, monitoring interactions, and verifying par-
ticipant authenticity. Additionally, educational ef-
forts should emphasize ethical awareness and re-
sponsible technology use, preparing students to
navigate the evolving landscape of educational as-
sessments responsibly.

At the same time, we acknowledge that releasing
a dataset modeled after real pre-university exams in-
troduces the risk of misuse, particularly fine-tuning
LLMs to artificially boost exam performance with-
out genuine understanding. Our benchmark is in-
tended for controlled research and diagnostic eval-
uation, not as training material for high-stakes test-
ing. Responsible use requires avoiding practices
that could compromise the integrity and fairness of
educational assessments.
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A Online Training Platform

In the image 5 one can see the user interface of the application during a simulation of the 2022 edition of
the contest, and the image 6 shows the user interface after the contest’s timer ends or the user manually
stops it.

While simple, the application contains all the necessary features for an exam-like environment:

¢ A timer.

* A menu with all of the problems of the contest, ordered by difficulty and color-coded based on the
answer provided (blue during the contest and green / red afterwards).

* A problem viewer, where users can read the statements and provide answers.

mateinfo-ub.github.io
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Figure 5: Screenshot of the web application while solving a contest.
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Figure 6: Screenshot of the web application correcting an attempt.

In addition to the simulation page, the application contains pages with the pdf statements, exactly as
they were during the corresponding exams, and links to useful resources.
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B Experiment Plots
In this section, we present visualizations of our experimental results.

Average Accuracy by Problem Difficulty for Each LLM
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Figure 7: Accuracy of the unconstrained Python and direct answers of the models.

In Figure 7, we plot the accuracy of the models when providing an answer as Python code or as a direct
answer. As the models can freely choose how to answer, we can see some interesting trends. For example,
on hard problems, models are significantly more likely to get the right answer when providing Python
code.

In Figure 8, we plot the percentile of the models when comparing their score with the scores of students
advancing to the next phase of the contest, by year. For instance, Gemini 2.5 Exp ranks first for 3 out of
the 4 years, while Llama 3.3 ranks last all years.

Models' percentile compared to students

Percentage of students with lower score during the contest

0.00%
0.00%
0.00%
0.00%
0.00%
0.00%

Figure 8: Percentage of students with a lower score than the models, by year.
Figure 9 plots the accuracy of models by language. Except for DeepSeek-R1, models tend to achieve a

higher score in Romanian, the original language of the tasks.
When prevented to
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Figure 9: Performance of the models by language
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Figure 10: Performance of the models when they are allowed to produce Python code and when they have to provide
the answer directly.
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Abstract

Automatic Short Answer Grading (ASAG)
refers to automated scoring of open-ended tex-
tual responses to specific questions, both in
natural language form. In this paper, we pro-
pose a method to tackle this task in a setting
where annotated data is unavailable. Crucially,
our method is competitive with the state-of-the-
art while being lighter and interpretable. We
crafted a unique dataset containing a highly
diverse set of questions and a small amount
of answers to these questions; making it more
challenging compared to previous tasks. Our
method uses weak labels generated from other
methods proven to be effective in this task,
which are then used to train a white-box (lin-
ear) regression based on a few interpretable
features. The latter are extracted expert fea-
tures and learned representations that are in-
terpretable per se and aligned with manual la-
beling. We show the potential of our method
by evaluating it on a small annotated portion
of the dataset, and demonstrate that its abil-
ity compares with that of strong baselines and
state-of-the-art methods, comprising an LLM
that in contrast to our method comes with a
high computational price and an opaque rea-
soning process. We further validate our model
on a public Automatic Essay Scoring dataset
in English, and obtained competitive results
compared to other unsupervised baselines, out-
performing the LLM. To gain further insights
of our method, we conducted an interpretability
analysis revealing sparse weights in our linear
regression model, and alignment between our
features and human ratings.'

1 Introduction

Applications of Large Language Models (LLMs)
are emerging in the field of education and have

Code available at furrutiav/unasages-bea2025
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taken complementary roles to those of teachers
(Jeon and Lee, 2023). For instance, LLMs have
been used, with mixed results, to train teachers to
learn new strategies (Wang and Demszky, 2023).
One aspect of education that can greatly benefit of
automation is that of grading or scoring (Lan et al.,
2024). Such automation could greatly improve the
flexibility of teaching and target on the fly specific
educational shortcomings of students.

In this work, we focus on two of these au-
tomations: (i) Automatic Short Answer Grad-
ing (ASAG) and (ii) Automatic Essay Scoring
(AES); both instances of automated scoring for
open-ended questions. More specifically, ASAG
focuses on grading short, open-ended responses.
These responses are typically a few sentences to a
paragraph long and are often fact-based, requiring
concise answers. In contrast, AES evaluates longer,
more complex pieces of writing, which typically
contain an introduction, body, and conclusion, and
involve argumentation, analysis, and critical think-
ing. AES is one of the earliest research problems
in natural language processing (Page, 1966, 1967).

One crucial aspect of automated grading on
open-ended questions is the ability to interpret the
grade. The machine learning community has prior-
itized increasing explainability in models, leading
to the emergence of Explainable Al. This area fo-
cuses on building tools to understand the decisions
made by learning models (Gunning et al., 2019;
Arrieta et al., 2020; Fel et al., 2022), or even advo-
cates for the sole use of white-box models (Rudin,
2019). However, white-box models typically dis-
play poorer performances compared with black-
box ones (Loyola-Gonzalez, 2019). Thus, in line
with the explainable trend, recent methods have
focused on developing novel tools to increase the
performance of white-box models, sometimes up
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Figure 1: Full process. Phase 1, Generation of Weak Labels using Unsupervised methods: Signal Clustering (Chen
et al., 2010a) or through an LLM (Jiang et al., 2023b). Phase 2, domain Expert Features (EFs) extraction and
Natural Language Learned Features (NLLFs) obtained from answers to Binary Subtask Questions (BSQs) (Urrutia
et al., 2023). Phase 3, feature selection, interpretable model training and analysis.

to that of black-box models (Urrutia et al., 2023).

Finally, most studies rely on supervised learn-
ing with annotated datasets (Takano and Ichikawa,
2022; Bonthu et al., 2023; Zhang et al., 2022),
where a few items are associated to many anno-
tations. A situation that is barely encountered in
real-life scenarios. Moreover, only a few works
in this area focus on non-English language (Latif
et al., 2024). The majority of them are restrained
to English, and none of them in (Latin-American)
Spanish.

Motivation and Contributions. In this work, we
tackle the issues raised above in a single framework
(see Figure 1). First, we propose a method that al-
lows us to reach high performance in ASAG and
AES tasks in an unsupervised way. Second, we
show the potential of our model to create inter-
pretable white-box predictions based on sparse fea-
tures, in a setting where strong generalization abil-
ities are required because of highly diverse ques-
tions with a few answers.

Therefore our contributions are as follows: (i)
we present a novel Non-English language dataset
that is particularly challenging for ASAG systems,
as it involves many questions with few answers,
(ii) we propose a novel framework that unifies un-
supervised and supervised methods into a single
ASAG/AES system. In particular, we use weak
labels from opaque unsupervised methods for su-
pervised learning in white-box models, (iii) we
propose a way to maximize the impact of the best-
labeled training examples by weighting the loss
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function regarding the degree of consensus between
each weak label, (iv) we compare our method with
strong ASAG and AES baselines on two distinct
datasets of different languages, and show that our
method significantly outperforms previous white-
box models, and falls barely short to LLM-based
ASAG or to SOTA AES, (v) we run a thorough
analysis on the AES dataset to demonstrate the
interpretability of our method by: looking at our
model’s sparse weights, comparing it with SOTA
using their integrated gradients but also showing
our features are aligned with humans scores.

2 Related Work

In the context of ASAG, several methods have been
proposed. Recent work has focused on generating
understandable scoring by decomposing items (i.e.,
questions and responses to math problems) into
rubrics whose validity can be inferred with lan-
guage models (Hellman et al., 2023). Similar work
have focused on directly fine-tuning pre-trained
language models for ASAG (Takano and Ichikawa,
2022; Bonthu et al., 2023; Zhang et al., 2022), or
training language models only based on student re-
sponses (Steimel and Riordan, 2020). Some works
developed a hybrid ASAG system that evaluates an-
swers to mathematical questions based on determin-
istic methods and the quality of explanations using
text-based scoring methods (Cahill et al., 2020).
Note that many semi-supervised (Brooks et al.,
2014; Weegar and Idestam-almquist, 2024; Basu
et al., 2013) or similarity-based methods (Bexte



et al., 2023) allow to use less labels, but they still
need some of them.

In the context of AES, Taghipour and Ng (2016)
were pioneers in training neural networks for AES,
using a CNN-LSTM on the Automated Student As-
sessment Prize (ASAP; Hamner et al. 2012) dataset.
Even though supervised models remain the most
efficient (Yang et al., 2020), unsupervised methods
like the one we are proposing show promising re-
sults. For instance, AESPrompt (Tao et al., 2022)
obtains competitive results in one-shot essay scor-
ing using continuous prompt learning. Wang et al.
(2023) created a fully unsupervised approach using
heuristic signals learning as a proxy task, as ulti-
mate goal to train a BERT-based essay scorer, and
obtained state-of-the-art performances on ASAP.
Recent works have focused on the ability of LLMs
to automatically score the proficiency of written
essays on ASAP (Mansour et al., 2024; Lee et al.,
2024). Stahl et al. (2024) even proposed prompt-
ing strategies for joint essay scoring and feedback
generation to gain more interpretability.

Regarding general explanability, techniques that
could be used for ASAG and AES such as Chain-
of-Thought (CoT) (Wei et al., 2022) can provide
a superficial level of explanation but are prone
to structural biases in the text that put in ques-
tion their fidelity (Turpin et al., 2023; Paul et al.,
2024). Moreover, these techniques are fragile as
pre-trained language models show lack of robust-
ness on adversarial or unusual writing (Lottridge
et al., 2023). Importantly, these writing types are
often present in the answers of young children like
in the ASAG dataset of this study.

3 Methods

The task of automatically assigning scores to short
answers/essays involves finding a model M that
assigns a score g; between 1 and Sy, to each pair
of question/answer or instruction/essay. First, we
use unsupervised methods to create weak labels.
Second, we represent every document using inter-
pretable features. Third, we select features and
train a non-negative linear regression model on the
weak labels, using a special loss to maximize the
weak labels quality. We show the model is both
white-box, sparse and interpretable.

Weak-supervision We propose to train an unsu-
pervised model M by leveraging high-level heuris-
tic signals, or weak labels. Our method (see Figure
1, Phase 1) involves utilizing two distinct signals:
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(i) scores derived from the unsupervised Signal
Clustering method (SC; Chen et al. 2010b, see be-
low) and (ii) scores obtained from an LLM using
zero-shot in-context learning. For a given question-
answer/instruction-essay pair (g;, a;), we denote
as Z; the signal of the answer with SC or LLM;
the LLM-based signal. To weakly-supervise the
training of M, we use y; = Z; or y; = LLM; in
order to minimize the loss function £(7;, y;).

Signal Clustering (or Z-score) Based on Chen
et al. (2010a), this method is simple yet allows
for surprisingly good results in unsupervised au-
tomatic essay scoring. Basically, it initialize each
essay score with a simple value, and then iteratively
propagates the scores to other samples in the same
cluster. For their essay scoring task, the authors
of the original paper used the number of unique
terms in the answer as the initial score. It uses the
following inductive formula:

ZiO :
Sit = ZSimij “Zi(t-1)

J#i

Sit = N Dopti Skt

Ot

Initial score for the ¢-th answer,

Zit

where S;; is the score for the ¢-th answer at step
t, Sim;; is the similarity between the i-th answer
and the j-th answer, and Z;; is the Z-score of the
i-th with oy the standard deviation of S; at step .
We call Z; the Z-score of the i-th answer at final
step. We update Z; until convergence.

Interpretable Features Following the work of
Urrutia et al. (2023), we incorporated a set of
expert-derived features (EF) coming from expert
domain knowledge, and also high-level explainable
features such as Natural Language Learned Fea-
tures (NLLF; Urrutia et al. 2023). NLLFs encode
answers to simpler-than-the-task binary questions,
called Binary Subtask Questions (BSQs), into a
human-readable feature vector. It allows the model
to represent each sample as a vector of probabilities
on other interpretable simpler sub-tasks, like "Is
the answer written clearly and concisely?". More
details are available in (Urrutia et al., 2023) and
in Appendix B. We also use the concatenation of
both type of features (EF+NLLF). For EF, we use
in ASAG/AES a list of 36/14 hand-crafted features,
to describe the answers to math questions/essays
(Table 6/7 in Appendix). Figure 1 shows the feature



Question

Don Antonio bought 3 boxes of cereal at $673
each. The seller charged him $2100. Is what they
charged him correct? Explain in your own words.

Answers Score
If Don Antonio bought 3 boxes, it’s fine. {2,3}
No, because he should be charged less. {4, 3}
It’s not wrong, I got 2019. {6,7}

Figure 2: Examples of a Question, Answers and Scores from our ASAG dataset. Translated from Spanish.

extraction in Phase 2, with an example of BSQ and
the NLLF vector for an essay.

Interpretable Model: Linear Regression We
trained a linear regression on two types of weak
labels (see Figure 1, Phase 3).

Signal Filtering We propose a method to maxi-
mize the impact of well-labeled examples through
the weighting of the loss function with respect to
the degree of consensus among weak labels (see
Figure 1, Phase 3). Basically, we compute linear
weights utilizing the difference between the pre-
dicted scores generated by the LLLM and the ones
derived from the Signal Clustering method, both of
which obtained in a unsupervised way. For a given
question-answer pair (g;, a;) and weak-label y; €
{Z;,LLM,}, the weighted loss is wit - £ (9, vi),
where:

w;
A
Smin

Smax -

Feature Selection In order to keep our model
interpretable, we used two tricks (see Figure 1,
Phase 3). First, we only chose BSQs formulation
that were positively correlated with the score of the
student? i.e., describing events that were seen as
positive by the teacher. Second, we forced the lin-
ear regression model to learn only positive weights
(Slawski and Hein, 2013) as they are applied on
features that are positives w.r.t. the score. Section
5 shows that this setting allows for sparsity in the
parameters space of the linear regression model.

4 Experiment and Results

4.1 Datasets and Evaluation Metrics

We ran experiments on two distinct tasks using two
datasets in different languages. The first set of ex-
periments (Section 4.1.1) tackles ASAG in Spanish
while the second set of experiments (Section 4.1.2)
tackles AES in English.

Zusing weak labels
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Task Genre Avg. Length Score Range # Essays

1 350 2-12 1783
2 PER 350 1-6 1800
3 150 0-3 1726
4 150 0-3 1772
5 SDE 150 0-4 1805
6 150 0-4 1800
7 250 0-30 1569
8 NAR 650 0-60 723

Table 1: Properties of the different tasks in the AES
dataset called ASAP. Genre: PER (persuasive), SDE
(source-dependent), NAR (narrative).

4.1.1 Automatic Short Answer Grading in
Spanish
The dataset comprises written answers from fourth-
grade students to mathematics questions. The
question-answers pairs were collected using the
online e-learning platform Conectaldeas, which is
currently deployed and use by teachers and stu-
dents in Chile. Its data was already used in past
scientific studies (Urrutia Vargas and Araya, 2023;
Urrutia and Araya, 2023). It encompasses a total of
63,612 answers to 1,248 unique questions collected
across two academic years. The answers were ob-
tained from a total of 3,463 fourth-grade students,
with 231 for the 2017 period and 3,232 for the 2022
period. The answers have on average a total of 50
characters. Each question has on average a total of
52 answers per question for 2022 and 30 for 2017.
The data are annotated based on the scoring of
answers for one academic year (2017). Answers
from the unlabeled academic year are utilized to
train automatic systems, while those from the la-
beled academic year serve as a test set for evalu-
ating the performance of these systems. Annota-
tion was conducted by two elementary mathematics
teachers, assigning scores ranging from 1 to 7 (i.e.,
from insufficient to excellent). Only the scores
from one teacher were utilized as the ground-truth,
while the scores from the other teacher were uti-
lized to analyze human performance, in this sense
we can make a model that predicts the grading be-
havior of one teacher. We calculate the agreement
between their scores and obtained a Correlation of



Method Weak Signal Signal Filt. Text EF NLLF EF + NLLF

Length None - 2734 - - -

Jaccard Sim. None 2758 -

Cosine Sim. None .3759 -
LF 5112 -

ULRA EF 4264 -
EF+LF 4218 -

Z-score None 5104 -

LLM None 5727 -

LLM-CoT None - 4778 - - -
Z-score X 4937 3853 .5096

Linear Regression LLM-based signal X 4815 3538 4312
Z-score v 5018 .3899 5450
LLM-based signal v - 4974 3712 4791
Z-score X .5220 - - -
LLM-based signal X .5085 -

BERT Z-score v .5280 -
LLM-based signal 4 .5430 -

Human None 7568 -

Table 2: Results of the ASAG models using Pearson correlation: the cheap baselines using similarity, the ULRAs
using different weak linguistics signals, the Z-score and LLM predictions, and our weakly supervised models. For
the weakly supervised models, the linear model utilizes all combinations of two feature sets (EF and NLLF), while

the BERT model is trained on text data.

.76. Figure 2 shows an example of the dataset.

4.1.2 Automatic Essay Scoring in English

We ran experiments using the Automated Student
Assessment Prize’ (ASAP) dataset (Hamner et al.,
2012). This dataset has been widely used in several
AES studies (Xie et al., 2022; Jiang et al., 2023b;
Muangkammuen and Fukumoto, 2020; Mansour
et al., 2024; Mathias and Bhattacharyya, 2018). For
instance, it has been used by Wang et al. (2023) to
assess the ULRA model for an usupervised AES
task. It is composed of 12,978 essays divided into
8 different sets. Each of the sets corresponds to a
specific essay task or prompt, which can be seen
as domain. The tasks are of different genres: per-
suasive, source-dependent response, and narrative.
The statistics of the dataset is shown in Table 1.
As a validation metrics, we report Quadratic
Weighted Kappa (QWK) in order to compare the
different models, generally utilized to measure the
agreement between groundtruth scores and pre-
dicted scores on this dataset and in AES research.

4.2 Baselines

Dummy Baseline We use a regression model
based on the answer length in terms of number of
characters.

Similarity Measures We calculate the similar-
ity between the question and the answer to assess

3https ://www.kaggle.com/c/asap-aes
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its correctness based on the shared information be-
tween them.We use two methods: Jaccard Similar-
ity on sparse embeddings (Bag-of-Words; (Harris,
1954)), and cosine similarity with dense vectors ob-
tained from the [CLS] token of a multilingual Sen-
tence Transformer (Reimers and Gurevych, 2019).

Signal Clustering (Z-score) Based on Chen
et al., we use answer length as the initial scoring
and assessed answer similarity based on the shared
terms between two answers.

Mixtral We used a recent LLM to address the
task in a zero-shot format (Jiang et al., 2023a),
using a simple prompt containing the definition of
the task. More details in Appendix C.

ULRA We implemented the unsupervised ULRA
method of Wang et al. (2023) which showed state-
of-the-art results on Automated Essay Scoring,
which is close to ASAG. This model consists of
using multiple quality signals obtained from heuris-
tics as the pseudo-groundtruth, and then training
a neural model by learning from the aggregation
of these signals. The idea is that the final score
should depend on an aggregation of these simple
signals. For the ASAG task, we adapt the method
translating the original Linguistic Features (LF) to
Spanish, and by using our own Expert Features
(EF) as pseudo-groundtruth. For the AES task, we
utilized the LF from the original paper on the same
task. Note that ULRA was also considered as a


https://www.kaggle.com/c/asap-aes

Method Weak Signal Signal Filt.  Text EF NLLF EF +NLLF

Length None - 3893 - - -

Jaccard Sim. None -.1821

Cosine Sim. None .0237

ULRA (Wang et al., 2023) LF .6423

Z-score (Chen et al., 2010b) None .5809

LLM (Jiang et al., 2023a) None 5119

LLM-CoT (Wei et al., 2022) None 4152

MTS' (Lee et al., 2024) None - 550 - - -
Z-Score X 5528  .6083 .6141

Linear Regression LLM-based signal X 5762 5720 .6385
Z-score v 5603  .6123 .6255
LLM-based signal v - 5797 5814 .6451
Z-Score X 5728 - - -
LLM-based signal X 4418

BERT Z-score v 5764
LLM-based signal 4 4781

AES-Prompt’ (one-shot)

(Tao et al., l;022) None 639

RZ-BERTT (supervised)

(Yang et al., 2520) None T4

Human None 7384

Table 3: Results of the models on the AES task using the average of the QWK over the different essay tasks. We
report the cheap baselines using similarity, ULRAs using different weak linguistics signals, the Z-score and LLM
predictions, and our weakly supervised models. Human scores were re-calculated here. ¥ From original papers.

weak label generation method, but did not generate
favorable results.

Weakly supervised BERT We evaluated differ-
ent BERT models (Devlin et al., 2019) with a re-
gression head on top of the [CLS] vector to pre-
dict the weak signals. For the ASAG task, we
used BETO, a Spanish BERT transformer (Caiiete
et al., 2023). For the AES task, we used an English
BERT.*

Multi-trait Specialization We compare with the
work of Lee et al. (2024), who proposed an unsu-
pervised method using LL.Ms to predict the quality
of essays in a zero-shot way. Their method learns
to decompose the writing proficiency into distinct
traits, as some are known to be useful for judg-
ing global essay quality (Ke and Ng, 2019) such
as Position and Thesis Clarity, Organization and
Structure or Supporting Details and Evidence.

4.3 Experimental Protocol

The transformers library (Wolf et al., 2019)
was used to access the pre-trained model and to
train our models. We used BETO as backbone
for NLLF generation, and the 4-bit version of
Mixtral-8x7b> as LLM. The linear regressions
were trained using scikit-learn (Pedregosa et al.,
2012). We standardized every features before the

4bert—base-cased, bert-base-spanish-wwm-cased
Smistralai/Mixtral-8x7B-Instruct-vo.1
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logistic regression. For the ASAG task, Pearson
correlation measured the correlation between pre-
dicted scores from automatic models and ground-
truth scores from one teacher. We evaluated our
model on the 1,315 manually annotated examples.
For the AES task, we randomly split the data into a
training, a validation and a test sets following the
proportion 60/20/20 like Wang et al. (2023).

4.4 Results
4.4.1 Results on ASAG

Table 2 shows the results of the different baselines
and models. It is notable that naive baselines like
a linear regression using the answer length can
reach a correlation of .27, and are surpassed by
similarity between answer and question using a
sentence-bert. Best machine results (.57) are ob-
tained with an LLM, surprisingly without using the
CoT mechanism, but still far away from human
performances (.75). All our weakly supervised ap-
proaches benefit from the Signal Filtering method.
Adding NLLF to our method helps when using Z-
value or the LLM output as weak label, allowing to
reach a score close to the one of the LLM, but with
an interpretable white-box algorithm (contrary to
BERT). ULRA methods, using general and/or do-
main expert features, tend to display lower scores
when compared with Signal Clustering and remain-
ing methods in this task. Finally, the scores of the
BERT model trained with the weak-labels are im-
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Polysyllabic Grade Level (SMOG)

Familiar Word Difficulty (DC)

Number of characters

Number of determiner words

The essay has a clear and logical organization

The essay takes a clear position on whether or not to remove offensive
materials from libraries

8. The essay provides a thorough analysis or explanation

9. The essay uses logical reasoning to support its position on censorship
10. The essay does not fail in supporting its opinion, summarizing
effectively, telling a coherent story, or presenting clear information

NoupwNe

Number of difficult words

Number of complex words

Number of adjective words

Number of commas

Number of sentences

The essay avoids restating the conclusion without providing additional
insights or analysis

7. The essay demonstrates a clear understanding of the text
8. The essay uses this information accurately and relevantly
9. The essay connects ideas in a meaningful way

10. The essay clarifies concepts beyond the literal meaning
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Figure 3: Highest coefficients of the Linear Regression with Signal Filtering using EF+NLLF on AES tasks 2 and 4.
The box represents the 95% confidence interval. Biases are respectively of 3.37 and 1.35 for tasks 2 and 4.

proved when applying Signal Filtering, with the
best one of .543 using an LLM-based signal as
weak labels.

4.4.2 Results on AES

Table 3 shows the results of the different baselines
and models on the AES task. Simple baselines
achieve a moderate correlation (e.g., .4785 when us-
ing the answer length), while basic similarity mea-
sures, such as Jaccard and Cosine, perform poorly,
with negative or near-zero correlations. Among
the models, our method achieves the highest score
(.645), outperforming other methods such as ULRA
(.642), Z-score (.581), and LLLM (.512), though all
falling short of human-level performance (.738).
Interestingly, the LLM with a CoT approach per-
forms worse than the standard LLM, with a cor-
relation of only .415, which is unexpected given
the reported success of CoT in other contexts, spe-
cially for a task such as essay scoring in English.
Notably, all of our weakly supervised models bene-
fit significantly from the Signal Filtering method.
Furthermore, adding the NLLF mechanism further
enhances performance. Indeed, combining LL.M-
based labels, Signal Filtering, and NLLF reaches
reaches the highest performance, outperforming
prompt engineering baselines such as MTS or AES-
Prompt. Finally, the BERT models trained with the
weak-labels display lower scores (highest BERT
score of .577 using Z-score and Signal Filtering).
As a way to cross-check our results, existing works
assessed the capacity of various LLMs on this tasks
and dataset (Mansour et al., 2024; Lee et al., 2024).
The performances we obtained (QWK of 0.51), are
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in line with the ones reported in Lee et al. (2024)°,
but higher than the ones reported in Mansour et al.
(2024).

5 Analysis

EF NLLF

1. L 6.
2.1 L 7.4
3.7 e Zero Ref. 8.7
4. ® ® Coef. 9. Coef.

o o
5. ° (95% CI) 10. 4 (95% CI)

0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6

1. Proportion of alphabetic characters that are vowels
2. Number of tokens that do not contain numbers

3. Exist a number in the answer

4. Proportion of vowels in the answer

5. Maximum number of consecutive non- vowel characters
in a token

6. The answer is written in a way that can be easily
understood

7. The answer explains why a character is wrong

8. The answer is correctly written in numerical format
9. The answer shows a correct calculation of a
quantity

10. The answer correctly identifies the value

Figure 4: Highest coefficients of the Linear Regression
with Signal Filtering using EF+NLLF features (Table 9).
The box represents the 95% confidence interval. Bias is
4.65.

ASAG Coefficients Our best linear model uses a

combination of only 6 coefficients: 4 hand-crafted

features (EF) and 2 natural language learned fea-

tures (NLLF). Figure 4 shows, from the most rel-

evant features, that correct answers require a bal-

anced use of vowels’ (Features 1 and 5) or numbers
60.48 with a Mistral-7b-instruct

"Words with a balanced vowel-consonant structure, like
the CVCVC pattern, are easier for children to process



Essay Prompt and Scores

Essay Prompt 2:

Write a persuasive essay to a
newspaper reflecting your vies on
censorship in libraries. Do you
believe that certain materials,
such as books, music, movies,

magazines, etc., should be removed

from the shelves if they are found
offensive? Support your position

with convincing arguments from your

own experience, observations,
and/or reading.

Reference scores:

Range: [1, 6]

IG for ULRA
Essay (Text) 1

WEALLD|ON'TTH|[IN/KOFANY THING WH/EN YOU R CH IL
DREN CHECKO UT B O/OK SFROM THE L IB RA RIES|. B UT ON
THE O TH|ER H AN D|, WED|O/NO TWANT YOU R CH IL DR EN GE
TT ING HOL D TO THE CENS ORS HIP OF BAD BO/OK, MO VIE
,, M US IC/ORMA GA ZIN ES|. PARE NT D ON ' T WA NT TO CO ME
HOM E AN THE RE CH[IL D L EA RN/A NE WW OR D F RO M THE NE
WBOOKORMOVIEHE]/SHE[]USTCH EC KE D O[UT F RO
M THE[L[IB/ARYY,/ORR EA DI NGAMA GAZIN E F ROM THE L IB
ARY .IT MI G HT MA KE S YOU RICH IL DREN|AT TI TU DE CH AN|GE
P[UT TING BAD/IN FL E UN [§5ON|YOU RKID BECA USEOFAT
RI/P'TO THE L IB ARY . SO THE/RE F OR THE CH/IE DREN/SH O U
LD/H/AV/E A SEC TI ON W H ER/E THE Y P|IC K O UT THE/RE|B/O OK
ANDTHEYSHO ULD N 'TB E AB LE TO CH EC|K O [UT THE CE NS
OR/S/HIPB /O OK|. W E NE|ED| TO/MA KE| S|UR E O [¥l3l CH IL DR EN
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0.0
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1. Number of wordtype

2. The essay has a clear and
logical organization

3. The essay takes a clear
position on whether or not to
remove offensive materials
from libraries

Predicted scores:

B E/M ORE/CO N VI NC|EB|AB O|[3§§ T H IS/TO/BIC|.

4. The essay provides a thorough
analysis or explanation

ULRA: 2.1 Our: 2.0

5. Polysyllabic Grade Level

-1.00 -0.75 —-0.50 —0.25

0.00
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0.25 050 0.75 1.00 6. Familiar Word Difficulty (DC)

Integrated Gradient Intensity

Essay Prompt 4:

Write a response that explains why
the author concludes the story with
this paragraph. In your response,
include details and examples from
the story that support your ideas.

Reference scores:

Range: [0, 3]

Predicted scores:
ULRA: 1.9 Our: 2.0

Essay (Text) 2

The author ended the story with the of Saleng vow ing
to re take the test in the spring , because he wanted to show
that the g eese and the hi bis cus plant represent a sort of

re birth or revival to Sa eng . He wanted to end the story T T T T T
on a positive note . Springis/an arch ot yal season . It is
a season of birth and growing . Sa eng saw the hi bi§ cus
after she the first test . It {60k her to her memories
back in Vietnam , which comfort ed here she believes|that maybe
when she|sees [l plant fl hing and she g eese returning
, she|will experience that same revival again .

0.2

0.0

0.24
(0.37) (0.33) (0.21)

022 0.14 0.06

(0.09)

-0.02

-0.29 (1.00)

1. 2. 3. 4. 5.

1. The essay avoids restating the
conclusion without providing additional
insights or analysis

2. The essay demonstrates a clear
understanding of the text

3. Number of difficult words

4. Number of complex words

5. Number of adjective words

Figure 5: IG feature attribution examples from our method and ULRA on tasks 2 and 4 of the AES dataset.

(Feature 2, 3). In addition, NLLFs address common
questions in which students are asked to explain if
a character is making or not the right choice (Feat.
7) or just if the answer is clear (Feat. 6).

AES Coefficients Figure 3 show the coefficients
of two of the eights linear regression models trained
using NLLF+EF, respectively on tasks 2 and 4, per-
suasive and source-dependent genre, respectively.
Most features have coefficients equal to zero, mak-
ing the linear regression model very sparse, and
leaving six usable features for each of the two mod-
els: 3 EF and 3 NLLF for the task 2, and 4 EF
and 2 NLLF for the task 4. For the persuasive task,
NLLFs are about argumentative techniques of the
writer, whether or not it takes strongly position, and
the structure of the essay.

AES IG Interpretability We claim that our sys-
tem is white-box, but also interpretable. To back
up our claim, we compare the two best perform-
ing models with a classical interpretation technique
using Integrated Gradients (IG; Sundararajan et al.
2017) in order to attribute a score to each input
feature. Figure 5 shows examples of feature attribu-
tion comparing our method and ULRAS. Whereas
(Jiménez Gonzdlez and Garcia, 1995; Brame, 1974) and help
recognize proper words like a measure of coherence (Urru-
tia Vargas and Araya, 2023).

8For the linear regression, the integrated gradient is simply
the product between the feature and its weight.
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the attribution from the IG is complex to analyze
in ULRA, our method offers two interesting advan-
tages: (1) it is simple to interpret as it has only a
few parameters which are all described in natural
language, (ii) it identifies whether essays offer clear
analyses or lack clear stances.

AES Human Interpretability We designed two
experiments to manually validate our claim that
NLLF values are coherent with humans judgments.
First, we manually annotated 171 examples w.r.t
the BSQ labels, in order to estimate the perfor-
mances of the LLM and the NLLF Generator
(NLLFG) in the subtasks. We find that both the
LLM and the NLLFG obtain satisfying accuracies
of .89 and .84, in concordance with the analysis of
Urrutia et al. (2023). Second, for each BSQ, we
selected pairs of examples based on deciles in the
normalized distribution of the BSQ NLLF values.
Each pair came from examples separated either by
high (9 bins), medium (5 bins), or low (1 bin) dis-
tances in the distribution. We asked a human to
annotate for each pair of examples, the one with
highest NLLF value and the bin distance between
the examples of the pair. This rendered a 6-class
ordinal problem with 171 pairs. We obtained an
accuracy of .44 (random is .16), an accuracy with
a tolerance of 1 (Gaudette and Japkowicz, 2009) of
.77 (random is .44) and a Krippendorff (2013)’s «



of 0.63 (random is 0). More details in Appendix F.

6 Conclusion and Future Work

In unsupervised ASAG of young students to diverse
open ended questions in Spanish, and unsupervised
AES in English, SoTA LLM-based methods are
still far away from human performances. More-
over, the models trained in answer scores made
with LLMs can be approximated by much simpler
and interpretable models. Weak supervision on
LLM labels but also on target values that are way
simpler including Signal Clustering is a potential
avenue of research for white-box model using sev-
eral types of interpretable features such as the com-
bination of linguistic-based expert-domain ones
and compositionality-based learned ones. Future
work should focus on more intensive search on the
prompt space, as well as involve supervised learn-
ing (and not only weakly supervised learning) and
out-of-distribution question analysis. Regarding
the interpretability, the integrated gradients could
be back-propagated up to the tokens in order to vi-
sualize the impact of each of them on each NLLF.

Limitations

Our work has been put in use in Spanish for a very
specific type of questions that are from math ex-
ams, and in English essay with a higher quality of
the text content. It would be interesting to try it
in a multilingual setting, using multilingual LLMs.
Future works would also imply weakly supervised
multi-task learning, and more advanced prompt
engineering such as the one of Lee et al. (2024),
that allows for decomposing an essay into multiple
traits to better score it using an LLM. Finally, it
would be interesting to use manually crafted BSQs
using the annotation guidelines instead of gener-
ating them, in order to see if it will improve the
quality of the final model.
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A ASAG Dataset Statistics

We present a summary of the dataset in Table 4,
including the total number of students, different
questions and student answers. We added the aver-
age number of answers per question for each year.

Year #Students #Questions #Answers Avg. #Ans. per Question

2022 3,232 1,204 62,297 ~ 52
2017 231 44 1,315 ~ 30
Total 3,463 63,612

Table 4: Summary of students, total questions, total
answers, and average answers per question across years.

B Features

B.1 EF

We manually designed linguistic features, detailed
in Table 6, aimed at capturing structural, mor-
phological, and statistical properties of student re-
sponses for ASAG task in Chilean Spanish. Given
the unique characteristics of children’s writing in
a mathematical context, we categorize EF into six
groups: morphological features, which analyze the
presence of numbers, digit counts, and the ratio of
numerical to non-numerical tokens, essential for
evaluating arithmetic-based responses; syntactic
features, focusing on tokenization, negation length,
and the distribution of non-numeric tokens, which
help assess the sentence structure typical of early
learners; lexical features, which measure charac-
ter frequencies to detect common patterns in chil-
dren’s spelling and word usage in Chilean Spanish;
structural features, capturing answer length, re-
peated character sequences, and vowel/consonant
distributions, which are indicative of fluency and
coherence; punctuation features, which count and
analyze punctuation marks, distinguishing between
mathematical symbols (e.g., decimal points, equa-
tion signs) and non-mathematical punctuation that
might indicate explanatory attempts; and phonolog-
ical features, assessing vowel proportions relative
to alphabetic characters to identify phonetic sim-
plifications or spelling mistakes common in young
learners.

For example, the phonological feature measur-
ing the proportion of alphabetic characters that are
vowels (Feature 1) distinguishes between responses
like A1 (0.33) and A2 (0.52) to the same ques-
tion, with A2 being more phonetically fluent (see
Table 5). Similarly, syntactic complexity can be
estimated through the number of tokens without
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digits (Feature 2), where a detailed explanation (12
tokens, A2) correlates with a higher score than a
brief response (2 tokens, Al). Morphological traits
such as the binary presence of a number (Feature 3)
allow us to capture relevant numerical grounding in
an answer; for instance, A2 includes a number and
scores higher. Phonological depth is further cap-
tured by vowel density (Feature 4), where answers
with higher vowel proportion (0.31) exhibit better
coherence than sparse ones (0.25). Finally, struc-
tural complexity, such as the maximum number of
consecutive non-vowel characters in a token (Fea-
ture 5), helps detect unnatural or noisy tokens, e.g.
A1 has a high value (5) due to “Hkflg”, suggest-
ing incoherence, compared to A2’s more natural
phrasing (value of 2).

B.2 NLLF

Following the method outlined in Urrutia et al.,
we utilize a selected roughly 12% subset of the
train-set to generate the NLLF. We ask to a Mix-
tral to generate a diverse pool of Binary Subtask
Questions (BSQ) for our ASAG/AES task. A mem-
ber of our research team manually removes irrele-
vant BSQ. We chose 12 binary questions through
automatic selection via Agglomerative Clustering,
taking the centroid. We automatically answer the
selected binary questions on the portion of the train-
set with the same LLM to teach a Spanish/English
BERT model in answering to all the selected binary
questions. We generated a total of 24 features from
the sigmoid of the logits of the trained BERT to pro-
vide Yes or No answers to the 12 binary questions
(Table 6), i.e. two features per binary question.

C LLM

We used a simple prompt containing the definition
of the task. For the AES task, initially, we use an
unspecified prompt to score answers, yet observed
a tendency for the model to assign notably low
scores to answers containing kid misspelling errors.
Subsequently, we refined our prompt specifying
“not penalize for spelling mistakes and focus on
the intended meaning conveyed by the student’s
answer”. This adjustment yielded enhancements in
the performance of the LLM.

D ULRA as Weak Signal

In the AES dataset, the LLM performances are out-
performed by the ones obtained using the ULRA
method, which is unsupervised but also black-box.



Feature Question (Q) and Answer (A1-A2) Feature Value Score
Proportion of al- Q: SiJose multiplica 150 veces 1 ;Cual seria su resultado? Explica - -
phabetic characters
that are vowels
Al: 150x1 es 51 (Low vowel ratio)  0.33 3.0
A2: serfa 150 porque 150 veces 1 serfa 150 (Higher vowel ratio)  0.52 7.0
Number of tokens  Q: José compré 4 cajas de leche a $245 cada una. El vendedor le cobréen - -
without numbers total $950. ;Esté correcto lo que le cobré el vendedor? Explica.
Al: estd bien (short, lacks analysis) 2 2.0
A2: estd mal la respuesta es 980 se multiplica 245 x4 y el resultado es 980 12 7.0
(detailed reasoning)
Exist a number in  Q: Paulina tiene 16 lapices para repartir entre 4 amigas. Su mamd le dicea - -
the answer Paulina que le va a dar 5 l4pices a cada amiga. ;jEs correcto lo que le dice su
mama?
A1: no es mal porque no (no number) 0 3.0
A2: la mama estd mal porque son 4 ldpices para cada amiga (includes 1 7.0
number)
Proportion of vow-  Q: Una manzana pesa 0,35 g, otra 0,251 g y la dltima 0,51 g. ;Cudanto pesan - -
els in the answer entre las tres?
Al: 150x1 es 51 (low vowel ratio) 0.25 4.0
A2: sumo todas las manzanas es 1,111. y sumé 0,35 mds 0,251 mas 0,51y  0.31 7.0
me dio ese resultado (more fluent)
Max. consecutive Q: ;Cudl es el resultado de 501x2? Comenta cémo resolviste el ejercicioy - -
non-vowel charac- explica qué es la multiplicacién.
ters
Al: Hkflg (noisy token) 5 1.0
A2: es 1002, lo resolvi con sumas y la multiplicacién es una suma repetida 2 7.0

(coherent)

Table 5: Examples of five expert features with their feature values for question/answer pairs in the ASAG task in
Chilean Spanish (examples presented in their original language, Spanish).

For these reasons, we propose an additional experi-
ments where we train a logistic regression model
on our interpretable vector of expert and natural
language learned representations, using the scores
from ULRA as a weak label. The results are shown
in Table 8. We can see that the use of a more ac-
curate weak signal does not allow to improve the
global performances.

E Prompt used for Zero-shot ICL with
LLM

Figure 6 is the prompt used for ASAG dataset. The
model is guided to assign grades while disregard-
ing spelling errors and focusing on the content of
the student’s response. Figure 7 is the prompt used
for Task 1 and Task 3-8 of the AES dataset, where
the range of possible scores is task-specific and
highlighted in blue, where [[MIN]] is the mini-
mum score and [[MAX]] the maximum. Figure 8
presents the prompt for Task 2 of the AES dataset,
which is the only task differing from the other eight
tasks in its focus on grading according to Writing
Applications. Throughout all figures, the orange
text represents the model’s initial response.
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Instruction and Model answer

You are a teacher who assigns grades
(between 1 and 7) to fourth grade students’
answers to open-ended math questions. Do
not discount for spelling or grammatical
errors. Focus on what the student is trying
to say with his or her answer. Indicate the
grade after the prefix ’Score:’

Got it. Give me a question between <Q></Q>
and an answer between <A></A>. Then ask me
"What is the score for the answer to the
question?’. I will then give you the note
after the prefix ’Score:’

Follow-up instruction

Question: <Q> [[Q]] </Q> Answer: <A> [[A]]
</A> What is the score for the answer to
the question?

Figure 6: Prompt used for Zero-shot ICL with LLM on
the ASAG dataset. Translated from Spanish. the orange
text represents a model’s initial response.



Feature Name Type of Feature
Exist a number in the answer EF (Morphological)
Number of digits in the answer EF (Morphological)
Number of numerical values in the answer EF (Morphological)
The answer is composed of digits EF (Morphological)
The answer is NaN (Not a Number) EF (Morphological)
Proportion of digit characters in the answer EF (Morphological)
Number of tokens in the answer EF (Syntactic)
Number of tokens that do not contain numbers EF (Syntactic)
Ratio of non-numeric tokens to the total number of tokens EF (Syntactic)
Ratio of punctuation marks to the total number of tokens EF (Syntactic)
Ratio of vowels to the total number of tokens EF (Syntactic)
Length of the negation of the answer EF (Syntactic)
Frequency of character °’x’ in the answer EF (Lexical)
Frequency of character "y’ in the answer EF (Lexical)
Frequency of character g’ in the answer EF (Lexical)
Frequency of character *h’ in the answer EF (Lexical)
Frequency of character ’j’ in the answer EF (Lexical)
Frequency of character °k’ in the answer EF (Lexical)
Frequency of character *w’ in the answer EF (Lexical)
Frequency of character ’fi’ in the answer EF (Lexical)
Number of characters in the answer EF (Structural)
Length of the longest number in the answer EF (Structural)
Length of the longest sequence of repeated characters EF (Structural)
Maximum number of consecutive vowels in a token EF (Structural)
Maximum number of consecutive non-vowel characters in a token EF (Structural)

Number of punctuation marks in the answer

Number of mathematical punctuation marks in the answer
Proportion of punctuation characters in the answer

Proportion of non-mathematical punctuation characters

Proportion of punctuation and digit characters in the answer
Proportion of non-digit and non-mathematical punctuation characters

EF (Punctuation)
EF (Punctuation)
EF (Punctuation)
EF (Punctuation)
EF (Punctuation)
EF (Punctuation)

Proportion of alphabetic characters that are vowels EF (Phonological)
Proportion of vowels in the answer EF (Phonological)
The answer shows a correct calculation of a quantity NLLF
The answer does not show a correct calculation of a quantity NLLF
The answer explains why a character is wrong NLLF
The answer does not explain why a character is wrong NLLF
The answer is free of conceptual errors NLLF
The answer contains conceptual errors NLLF
The answer shows a correct understanding of the question NLLF
The answer does not show a correct understanding of the question NLLF
The answer correctly indicates a quantity NLLF
The answer does not correctly indicate a quantity NLLF
The answer is written in a way that can be easily understood NLLF
The answer is not written in a way that can be easily understood NLLF
The answer is written clearly and concisely NLLF
The answer is not written clearly and concisely NLLF
The answer is correctly written in numerical format NLLF
The answer is not correctly written in numerical format NLLF
The answer is accompanied by an explanation NLLF
The answer is not accompanied by an explanation NLLF
The answer is complete and does not lack any relevant information NLLF
The answer is incomplete or lacks relevant information NLLF
The answer addresses the question NLLF
The answer does not address the question NLLF
The answer correctly identifies the value NLLF
The answer does not correctly identify the value NLLF

Table 6: Expert features (EF) and Natural Language Learned Features (NLLF) for the ASAG task Everything was

translated from Spanish.
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Feature Name

Code

Long-Word Ratio RIX
Polysyllabic Grade Level SMOG
Complex Word Grade Level GF
Familiar Word Difficulty DC
Number of sentences S
Number of adjective words 1
Number of unique words uw
Number of preposition / subordinating - conjunction words IN
Number of long words Lw
Number of determiner words DT
Number of difficult words DW
Number of complex words Ccw
Number of noun words NN
Number of commas CO
Number of wordtype WT
Number of non-basic words NBW
Number of words W
Number of characters CH
Number of adverb words RB
Table 7: Linguistic Features from Wang et al. (2023) for the AES task.
Method SF Text EF NLLF EF+NLLF
ULRA - .6423 - - -
LR X - 5712 .6041 .6227
v - 5707 .6035 .6193
Table 8: Results of the Logistic Regression model using
the scores of ULRA as a target during the weakly super- Instruction and Model answer
vised learning. SF is Signal Filtering. You are a teacher who assigns grades

Instruction and Model answer

You are a teacher who assigns grades
(between [[MIN]] and [[MAXJ]]) to essays
from students ranging in grade levels from
Grade 7 to Grade 10. You will help me break
down the ’assign grade to student essay’
task. To do this, I will give you a sample
essay along with the assignment. Indicates
the score after the prefix ’Score:’.

Got it. Give me a question between <A></A>
and an essay between <E></E>. Then ask me
"What is the score for the essay?’. I will
then give you the score after the prefix
’Score:’.

Follow-up instruction

Assignment: <A> [[A]] </A> Essay: <E> [[E]]
</E> What is the score for the essay?

Figure 7: Prompt used for Zero-shot ICL with LLM on
the Task 1 and Tasks 3 to 8 of the AES dataset. The
blue text highlights the range of values specific to each
task, while the orange text represents a model’s initial
response.
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(between 1 and 6) to essays from students
ranging in grade levels from Grade 7 to
Grade 10. You will help me break down the
’assign grade to student essay according to
Writing Applications’ task. To do this, I
will give you a sample essay along with the
assignment. Indicates the score after the
prefix ’Score:’.

Got it. Give me a question between <A></A>
and an essay between <E></E>. Then ask me
’According to Writing Applications, what is
the score for the essay?’. I will then give
you the score after the prefix ’Score:’.

Follow-up instruction

Assignment: <A> [[A]] </A> Essay: <E> [[E]]
</E> According to Writing Applications,
what is the score for the essay?

Figure 8: Prompt used for Zero-shot ICL with LLM
on the Task 2 of the AES dataset. The orange text
represents a model’s initial response.



Feature Name Coef. Std. err. [0.025 0.975]
Intercept 4.65 0.01 4.64 4.67
The answer is correctly written in numerical format 0.00 0.00 0.00 0.00
The answer is written in a way that can be easily understood 0.50 0.01 0.47 0.52
The answer shows a correct calculation of a quantity 0.00 0.00 0.00 0.00
The answer correctly identifies the value 0.00 0.00 0.00 0.00
The answer shows a correct understanding of the question 0.00 0.00 0.00 0.00
The answer explains why a character is wrong 0.12 0.01 0.10 0.13
The answer is accompanied by an explanation 0.00 0.01 0.00 0.03
Exist a number in the answer 0.27 0.01 0.24 0.30
Frequency of character g’ in the answer 0.00 0.00 0.00 0.00
Frequency of character h’ in the answer 0.00 0.00 0.00 0.00
Frequency of character °k’ in the answer 0.00 0.00 0.00 0.00
Frequency of character *w’ in the answer 0.00 0.00 0.00 0.00
Frequency of character °x’ in the answer 0.03 0.01 0.02 0.04
Frequency of character "y’ in the answer 0.11 0.02 0.07 0.14
Number of characters of the answer 0.14 0.12 0.00 0.35
Number of tokens in answer 0.00 0.00 0.00 0.00
Length of the negation of the answer 0.00 0.06 0.00 0.21
Length of the longest number in the answer 0.11 0.01 0.08 0.13
Maximum number of consecutive non- vowel characters in a token 0.15 0.01 0.12 0.17
Number of digits in the answer 0.00 0.00 0.00 0.00
Number of mathematical punctuation marks in the answer 0.00 0.01 0.00 0.02
Number of tokens that do not contain numbers 0.35 0.18 0.00 0.59
Number of numerical values in the answer 0.00 0.00 0.00 0.00
Number of tokens in the answer 0.00 0.00 0.00 0.00
Proportion of alphabetic characters that are vowels 0.43 0.04 0.35 0.52
Proportion of punctuation characters in the answer 0.00 0.00 0.00 0.00
Proportion of punctuation and non- vowel characters in the answer 0.14 0.01 0.10 0.16
Proportion of vowels in the answer 0.21 0.05 0.10 0.30
Ratio of non-numeric tokens to the total number of tokens 0.00 0.02 0.00 0.05
Ratio of punctuation marks to the total number of tokens 0.00 0.00 0.00 0.00

Table 9: Coefficients of the Linear Regression with Signal Filtering using EF+NLLF features in the ASAG dataset.
[0.025,0.975] refers to the 95% confidence interval of the coefficient.

F Human validation of the NLLFs

F.1 NLLFG Classifiers

Here we analyze how accurate were the NLLF gen-
erated by the BERT-like model, and also the weak
labels by the LLM. We took 190 examples from
the validation set used to train the NLLFG of the
ASAP task, and asked an expert to manually label
them regarding the labels of a BSQ. More precisely,
we manually annotated 10 examples sampled uni-
formly per BSQ having non-zero weights in the lin-
ear regressions (approximately 2-3 BSQs per essay
set) across 8 essay sets. We compare the labeling
of the expert with the outputs of the NLLFG and
LLM models, using classical classification metrics
such as precision, recall and F1-score.

The results for both the models are available in
Table 10. The LLM obtained a better F1-score
than the smaller transformer model, which was
expected. It is interesting to note that the accuracy
of the NLLFG model is 0.78, close to the ones of
the LLM (0.86). The macro F1-scores are more
divergent as the LLM reaches 0.84 and the NLLFG
0.74, which is still better than random.

53

Model Label Prec. Rec. F1 Acc.
. Yes 91 88 89

Mixtral No 76 2 79 86
Yes 90 78 84

NLLFG No 57 76 65 8

Table 10: Performance of NLLFG and Mixtral on a
manually annotated set of 190 examples. The dataset
consists of 10 uniformly selected examples per BSQ
(approximately 2-3 BSQs per essay set) across 8 essay
sets.

F.2 NLLFs Before the Linear Regression

We designed another experiment to assess the re-
liability of the NLLF with respect to human an-
notation, showing pairs of examples to a human,
and asking which should have the highest value in
NLLF and what is the distance in values between
the examples of the pair. As the NLLF are normal-
ized before the linear regression, hence each score
depends on the whole group and becomes relatives
to the other examples (the best has a highly positive
score and the worst has a highly negative score).

Pairs of examples with various distances in-
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Figure 9: Metrics between the human annotation and the real values of the NLLFs, for the AES task.
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Figure 10: Examples were picked from bins with high,
medium and low distance between each others. For
a pair of examples, the annotator has to find which
example has the highest value, and what is the distance
between the examples.

between the examples were randomly selected re-
garding their places in the distributions: pairs from
the first and last deciles of the distribution, pairs
from the 3rd and 8th, and pairs from the 5th and
6th. We ask a human to tell for each pair, which
example is the highest in the distribution, and how
large is the distance between them. It gave us a
classification problem with 6 ordinal classes: First-
High (1H), First-Medium (1M), First-Low (1L),
Second-Low (2L), Second-Medium (2M), Second-
High (2H).

We focused on the 19 BSQs having non-zero
weights in the linear regressions, and randomly
selected 3 examples of High, Medium and Low
distances between the pairs, which gave us a total
of 171 pairs to annotate coming from 6 classes.
Figure 10 shows the bins of the examples from the
different categories.

The results overall are shown in Figure 9, with
the confusion matrix and the We report a Krippen-
dorff (2013)’s alpha of 0.63, an Accuracy of 0.43
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Method Weak Signal Signal Filt.  Text EF NLLF EF + NLLF
Length None - 0.0015 - -
Jaccard Sim. None - -0.1335
Jaccard Sim. None - 0.3170
LF - 0.4562
ULRA EF - 0.3713
EF+LF - 0.3902
Z-score None - 0.4346
LLM None - 0.5629
LLM-CoT None - 0.4631 - - -
Z-score X - 0.4472  0.3627 0.4167
Linear Regression LLM-based signal X 04212 0.2984 0.3772
= Z-score v 0.4471  0.3435 0.4915
LLM-based signal v - 0.3682  0.2925 0.4115
Z-score X 0.3965 - - -
LLM-based signal X 0.3867
BERT Z-score v 0.2451
LLM-based signal v 0.3848

Human None 0.7403

Table 11: Results on ASAG using the QWK

(random is 0.17) and an accuracy with a tolerance
of 1 (Gaudette and Japkowicz, 2009) of 0.77 (ran-
dom is 0.44). This shows that human rank the ex-
amples in an order similar to the ones of the NLLF
values 77% of the time using a tolerance of 1 in the
ordinal classification.

G Others

Table 11 shows the results on the ASAG dataset
using QWK. The results are very similar: LLM is
better than our method, which is itself better than
ULRA.
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Abstract

Multiple-Choice Tasks are one of the most com-
mon types of assessment item, due to their fea-
ture of being easy to automatically and objec-
tively grade. A key component of Multiple-
Choice Tasks are distractors —i.e., the wrong
answer options — since poor distractors affect
the overall quality of the item: e.g., if they are
obviously wrong, they are never selected. Thus,
previous research has focused extensively on
techniques for automatically generating distrac-
tors, which can be especially helpful in settings
where large pools of questions are desirable or
needed. However, there is no agreement within
the community about the techniques that are
most suited to evaluate generated distractors,
and the ones used in the literature are some-
times not aligned with how distractors perform
in real exams. In this review paper, we per-
form a comprehensive study of the approaches
which are used in the literature for evaluating
generated distractors, propose a taxonomy to
categorise them, discuss if and how they are
aligned with distractors performance in exam
settings, and what are the differences for differ-
ent question types and educational domains.

1 Introduction

Multiple-Choice Tasks are a very popular form of
students’ assessment, due to their standardised for-
mat: they are easy to (automatically) grade and they
remove subjectivity from the scoring process, and
can thus be used to quickly and efficiently assess
large numbers of students, in both high-stakes and
low-stakes settings. A challenging step of curating
high-quality Multiple-Choice Tasks — also referred
to as Multiple-Choice Questions (MCQs) — is the
generation of distractors, i.e., the incorrect options.
Indeed, high-quality distractors must satisfy sev-
eral properties (see §2.3), such as being incorrect
but plausible, and consistent with the context but
objectively wrong. The generation of high qual-
ity distractors has been shown to be challenging
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even for human experts (Shin et al., 2019), and
to target this issue and generate large quantities
of distractors (which are needed for large pools
of questions) recent research has explored many
approaches to automatically generate distractors,
as discussed in two recent surveys (Awalurahman
and Budi, 2024; Alhazmi et al., 2024). According
to the assessment and testing literature (Nunnally
and Bernstein, 1994), the most reliable approach
to evaluate distractors is pretesting: new MCQs
are shown to students in exam settings, and their
response patterns are used to assess the distractors.
Unfortunately, pretesting is unfeasible when auto-
matically generating large numbers of distractors
and undesirable in some settings, e.g., due to exam
security concerns (Ha et al., 2019); thus, automat-
ically generated distractors are most commonly
evaluated with static approaches or with manual
evaluation. However, the best techniques to au-
tomatically evaluate generated distractors are not
commonly agreed across the community and the
ones used in practice are rarely aligned with the
performance of distractors in real exam settings.
Hence, in this paper, i) we perform a comprehen-
sive review of the approaches used in the literature
for automated distractor evaluation, ii) we propose
a new taxonomy to categorise them, iii) we discuss
which ones are the most aligned with pedagogi-
cal theory and with the performance of distractors
in real exam settings (also focusing on different
educational domain and question types), and iv)
provide some guidelines for future research.

2 Related Work

2.1 Distractor Generation

Two very recent surveys provide a good overview
of approaches to distractor generation and the
trends in the literature (Awalurahman and Budi,
2024; Alhazmi et al., 2024). Similarly to many
other domains, distractor generation has seen a
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rapid shift in recent years: the majority of ap-
proaches are now based on (large) language models,
in contrast with research pre-transformers which
was primarily based on traditional machine learn-
ing. We refer to the two survey papers mentioned
above for a detailed description of the different
techniques used in distractor generation.

2.2 Distractor Evaluation

The task of distractor evaluation is much less stud-
ied than distractor generation, even though it is be-
coming increasingly relevant: indeed, with modern
generative models it is very easy to experiment with
different prompts and generate a large set of distrac-
tors, and it is thus crucial to have ways to automat-
ically and reliably evaluate them. Unfortunately,
neither of the survey papers mentioned above fo-
cused sufficiently on the techniques and metrics
which are used to automatically evaluate distrac-
tors. Considering fully automated metrics, Alhazmi
et al. (2024) only mention ranking-based (Pre-
cision, Recall, F1-score, Mean Reciprocal Rank
(MRR), Normalized Discounted Cumulative Gain
(NDCG), and Mean Average Precision (MAP)) and
n-gram metrics (BLUE, ROUGE, and METEOR),
while Awalurahman and Budi (2024) only men-
tions BLEU, ROUGE and METEOR. While these
are all metrics that are indeed used in the litera-
ture, this list leaves out many others, which are
very relevant and potentially more aligned with the
performance of distractors in exam settings.

Few papers have distractor evaluation as main
focus, proposing automated approaches for the
task. Pho et al. (2015) work on distractors that are
Named Entities in a knowledge graph, and propose
an approach to evaluate them based on the syntac-
tic and semantic relation between the distractors
and the correct answer, and their relatedness in the
graph. Ghanem and Fyshe (2023) generate “bad
distractors” and train a model to estimate whether a
given distractor is good or bad. Finally, Raina et al.
(2023) propose an ensemble of three metrics which
are meant to measure the incorrectness, plausibility,
and diversity of distractors.

2.3 About Good Distractors

The educational literature is rich in recommenda-
tions and guidelines on how to create good distrac-
tors for MCQs. Ideally, these guidelines should be
implemented within the models for automated dis-
tractor generation and evaluation, but our literature
review suggests that in many cases the approaches
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used for evaluating automatically generated distrac-
tors in the NLP and Al for Education communities
are somewhat disconnected from them. It is im-
portant to note that there are differences between
educational domains — e.g., guidelines for lan-
guage learning and mathematics cannot be exactly
the same — but there are many common aspects.
Distractors that are too easy fail to assess students’
true understanding, while those that are too difficult
or misleading can cause confusion and frustration;
thus, distractors should be plausible, but objectively
unacceptable (Yeung et al., 2019). Potentially, dis-
tractors should try to capture the common errors
and misconceptions of students (Lee et al., 2016;
Scarlatos et al., 2024), which enables targeted inter-
ventions. Also, distractors should be independent
from one another, otherwise one or more could
be excluded with logical reasoning, thus hinder-
ing the quality of the question. Distractors should
be semantically and grammatically coherent with
the context (Ghanem and Fyshe, 2023; Gao et al.,
2019), and similar in length, style, and grammatical
form to the correct answer (Pho et al., 2015). In
language pedagogy literature, there is the recom-
mendation that the target word and the distractors
belong to the same word class (Heaton, 1988), ide-
ally being “false synonyms” (Goodrich, 1977).

3 Taxonomy

Figure 1 presents the taxonomy we propose to cate-
gorise approaches from the previous literature. We
group the different approaches based on the type
of information that they use for evaluation. Dy-
namic approaches are based on learners’ answers,
and static approaches leverage only the textual
information from the distractors (and potentially
the correct answer, the question, and the reading
passage). Dynamic approaches (§4), and specifi-
cally Traditional Distractor Analysis, can be seen
as the gold standard, since they are based on stu-
dents’ responses and are an actual measurement
of how distractors perform in exam settings; they
can be further divided into approaches based on
real students and the ones based on responses from
Question Answering (QA) models. On the other
hand, static approaches (§5) can be seen as an al-
ternative to dynamic ones, as they can be used
when it is unfeasible to obtain students’ responses.
Static approaches can be further divided into three
groups: i) comparative approaches evaluate gener-
ated distractors by comparing them to some refer-



Manual Evaluation
DE #
Automated Evaluation —

— Dynamic §4 —

L— Static §5

— Traditional Distractor Analysis §4.1

Based on Al models §4.2

Others §4.3

String Matching
Comparative §5.1 Hybrid
Stand-alone §5.2 Semantic Similarity

Learned §5.3

Figure 1: The taxonomy we propose to categorize the different approaches for Distractor Evaluation (DE).

ence ones, which are considered as gold standard,
ii) stand-alone approaches consist in computing
some measures of similarity between distractors
and between distractors and the correct answer,
and iii) learned approaches are machine learning
models trained to predict the quality of generated
distractors. From a practical point of view, there
are notable similarities between distractor gener-
ation evaluation and difficulty estimation. In dif-
ficulty estimation, the gold standard is difficulty
from pretesting — e.g., from Item Response The-
ory (Hambleton and Swaminathan, 2013) — but
approaches have been proposed for difficulty esti-
mation from text for when students’ responses are
not available (Benedetto et al., 2022).

Previous approaches are described in Sections 4
and 5, and Table 1 provides an overview of all the
papers we discuss in this survey, grouped according
to the proposed taxonomy. The table also shows
the educational domain which each paper worked
on, whether manual evaluation is used in addition
to automated evaluation metrics, and whether dis-
tractors are evaluated individually or as a set.

4 Dynamic Approaches

Dynamic approaches to distractor analysis use stu-
dents’ responses to measure how well distractors
perform in exams. They can be further divided into
traditional distractor analysis §4.1 and Al-based
dynamic approaches §4.2, depending on whether
human or virtual students’ responses are used.
Traditional distractor analysis is most commonly
used in the Education and Assessment literature:
it studies how distractors perform in real exams,
observing the response patterns of human students,
and can thus be considered the optimal approach
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to distractor evaluation. When it is unfeasible to
use traditional distractor analysis due to cost, time
constraints, or concerns about safety, Al-based dy-
namic approaches can be used. These are based on
same techniques, but use the responses of QA mod-
els as a proxy for the responses from real students.
Similar to difficulty estimation tasks, which are
ideally performed via pretesting with real learners,
research explored the possibility of using machine
learning and Al to simulate it (Benedetto et al.,
2022; AlKhuzaey et al., 2021). This includes the
setting of virtual pretesting, which became more
popular in recent years (Park et al., 2024; Uto et al.,
2024, Benedetto et al., 2024).

Previous research also experimented with some
approaches based on the responses of human learn-
ers but different from the ones used in traditional
distractor analysis; they will be discussed in §4.3.

4.1 Traditional Distractor Analysis

Traditional distractor analysis is based on studying
how often distractors are selected, and which is
the (average) skill level of the learners selecting
different distractors. Again, these metrics are based
on how distractors perform in real exam settings,
thus can be considered as the optimal ones.
Distractors that are never (or rarely) selected by
students are poor distractors (Nunnally and Bern-
stein, 1994); the rule of thumb mentioned in several
papers is that each distractor should be selected by
at least 5% of the students (Haladyna and Down-
ing, 1993), with the exception of very easy MCQs,
which are correctly answered by more than 90% of
the students (Gierl et al., 2017). Only three articles
evaluate automatically generated distractors using
the frequency with which participants select each
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of them: (Aldabe and Maritxalar, 2010; Zhang and
VanLehn, 2021; Lee et al., 2016).

Another indication of distractor quality from the
Education literature is the difference between the
number of students selecting each distractor and
the number of students selecting the correct answer:
if a distractor is chosen more often than the cor-
rect answer, this is probably an indication of poor
instructions or a misleading question (Nunnally
and Bernstein, 1994). We did not find any paper
evaluating generated distractors with this metric.

Lastly, since a good distractor is one that is se-
lected by students who perform poorly and ignored
by those who perform well (Gronlund, 1968), dis-
tractors that are selected by students that are (on
average) of higher skill level than the students se-
lecting the correct choice are poor distractors. We
found only two papers using this factor to evaluate
automatically generated distractors: Mitkov and Ha
(2003) and Lee et al. (2025) divide students into
a group of highly skilled students and a group of
beginners, and label distractors that are selected by
more students in the upper group than by students
in the lower group as poor distractors.

4.2 Al-based Dynamic Approaches

Fundamentally, these use measurements similar
to the ones from traditional distractor analysis, but
based on the responses from QA models rather than
human learners. Using machine learning models
as a proxy of students, they should be validated
accordingly. This is rarely done in the literature.

Chung et al. (2020) make the assumption that
poor distractors will reduce the difficulty of the
MCQ task for a QA model, thus use accuracy as
an indicator of distractor quality, by comparing dis-
tractors generated with different models: the higher
the accuracy, the worse the quality of the distrac-
tors. Similarly, Offerijns et al. (2020) study how
the accuracy of a QA model changes when using
manually-curated distractors rather than automati-
cally generated ones: they observe that results are
similar, thus claim that the generated distractors
are on-par with the human-curated ones.

Guo et al. (2024) use the generated distractors
to augment a dataset, which is then used to train
a QA model. The quality of generated distractors
is evaluated by measuring the QA accuracy on a
separate test set: a better performance on the test
set would indicate that the generated distractors
were effective for training the model, and thus they
are good distractors.
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4.3 Others

Some papers use human responses for distractor
evaluation, but in a setting different from traditional
distractor analysis. Kalpakchi and Boye (2021) re-
cruit participants on a crowd-sourcing platform and
ask them to answer reading comprehension MCQs
without providing them with reading passages. The
authors claim that this approach can evaluate the
plausibility of distractors by measuring how often
they are selected. Luo et al. (2024) compare the
response accuracy of three students on questions
with distractors generated with different models,
and claim that lower accuracy in responding to a
question would indicate that there were better dis-
tractors. Yoshimi et al. (2023) evaluate distractors
by measuring how the response accuracy of human
annotators changes when using the original com-
pared to generated distractors, aiming to make the
accuracy as close as possible in the two settings.
This is similar to the approach by Offerijns et al.
(2020) but using humans rather than QA models.

S Static Approaches

Static approaches evaluate distractors using only
the content of the items, without considering learn-
ers’ responses. Importantly, most of these ap-
proaches are not aligned per se with how distrac-
tors would perform in real exam settings, thus they
should be validated (but often are not, in previous
literature). They can be divided into Comparative,
Stand-alone, and Learned approaches.

5.1 Comparative

Comparative approaches are based on a compar-
ison between generated distractors and the refer-
ence ones available in the test dataset: this assumes
that these reference distractors are of good quality
and are the only distractors of good quality for a
question. In other words, any generated distrac-
tor which is different from the reference ones is
massively penalised. Both assumptions are some-
what problematic for distractor evaluation: experi-
mental datasets often do not contain high-quality
pretested questions (particularly the publicly avail-
able ones), and it might happen that other distrac-
tors are as effective, if not better, than the ones in
the datasets. This disadvantage comes from the
fact that most comparative approaches were not
originally thought of for distractor evaluation, but
rather for Machine Translation, and thus have fun-
damental issues when it comes to distractor eval-



uation (Rodriguez-Torrealba et al. (2022); Taslim-
ipoor et al. (2024), inter alia). However, even with
these major shortcomings, they are by far most
commonly used approaches to evaluate new dis-
tractor generation models, due to their popularity
and ease of implementation.

5.1.1 String Matching

String matching is the single most frequently used
approach for distractor evaluation in the literature.
Most papers used BLEU (Papineni et al., 2002)
and/or ROUGE (Lin, 2004) to compare the gen-
erated distractors with reference ones in the ex-
perimental datasets (see Table 2 for the list of all
papers). Other common metrics are Precision, Re-
call, F1-score, MRR, and NDCG (the list of papers
is shown in Table 3). Notably, this distinction is
also due to the fact that papers in the two tables
mostly work on different types of questions: pa-
pers in 2 mainly work with reading comprehension
questions with longer text answers, while papers in
3 mainly work with either cloze items or science
tests with single word or named entity answers.

B

c

Paper ROUGE
(Gao et al., 2019)

(Zhou et al., 2019)

(Chung et al., 2020)

(Qiu et al., 2020)

(Maurya and Desarkar, 2020)
(Offerijns et al., 2020)
(Rodriguez-Torrealba et al., 2022)
(Xie et al., 2022)

(Qu et al., 2023)

(Login, 2024)

(Zhou and Li, 2024)

(Qu et al., 2024)
(De-Fitero-Dominguez et al., 2024)
(Luo et al., 2024)

(Lin et al., 2024)

(Taslimipoor et al., 2024)

(Wang et al., 2025)
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Table 2: List of papers using BLEU and/or ROUGE.

Other papers evaluated generated distractors us-
ing metrics based on string matching, but different
from the metrics mentioned above. Liang et al.
(2018) and Bitew et al. (2022) use Mean Aver-
age Precision, Luo et al. (2024) use Accuracy, and
Kalpakchi and Boye (2021) measures the fraction
of MCQs for which at least one generated distractor
matches one of the reference ones.

McNichols et al. (2023); Feng et al. (2024); Fer-
nandez et al. (2024), and McNichols et al. (2024)
(all working on maths questions) define and use
three alignment-based metrics: i) partial match
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F1

Paper

(Liang et al., 2018)
(Kalpakchi and Boye, 2021)
(Ren and Zhu, 2021)
(Bitew et al., 2022)
(Chiang et al., 2022)
(Panda et al., 2022)
(Wang et al., 2023)
(Yoshimi et al., 2023)
(Dutulescu et al., 2024)
(Yu et al., 2024)

X X X X MRR
X X X NDCG

XX X X X Recall

X
X

MK XX X X X | Precision|

TR ) X X

>

X

Table 3: List of papers using Precision, Recall, F1 score,
Mean Reciprocal Rank, or NDCG for evaluation.

evaluates whether at least one of the generated dis-
tractors matches one of the reference ones, ii) exact
match evaluates whether all the generated distrac-
tors match the reference ones, and iii) proportional
match measures the proportion of generated dis-
tractors which match the reference ones. In addi-
tion to these three metrics, Scarlatos et al. (2024)
define weighted proportional, which is a reinterpre-
tation of the proportional match: it re-weights each
“match” in the proportional metric giving more im-
portance to reference distractors which are most
commonly selected by students. Notably, consid-
ering all the evaluation metrics based on string
matching, this weighted proportional is the only
one which explicitly takes into consideration how
well distractors perform in real exams.

5.1.2 Semantic Similarity

Several articles evaluate generated distractors by
measuring their semantic similarity to the reference
ones, using diverse techniques for capturing the se-
mantic meaning of distractors and their distance
from the reference ones. While this is arguably
more reliable than string matching, it still relies
entirely on the quality of distractors in the exper-
imental dataset. The most common approach is
BERTScore (Zhang et al., 2019), which is used
by Login (2024); Qu et al. (2024, 2023) to com-
pute the similarity between generated distractors
and the reference ones. Other embedding tech-
niques are used in other articles: Ren and Zhu
(2021) use Word2Vec (Mikolov et al., 2013), Mau-
rya and Desarkar (2020) use BERT (Devlin et al.,
2019) embeddings, and more recently Taslimipoor
et al. (2024) apply Sentence-BERT (Reimers and
Gurevych, 2019) to compute similarity. Notably,
no one of these papers give weights to how differ-
ent reference distractors perform in real exams.



5.1.3 Hybrid lexical-semantic

As a middle-ground between the purely lexical
string matching approach described in §5.1 and
the semantic embeddings from §5.1.2, some pa-
pers used METEOR (Banerjee and Lavie, 2005)
for evaluating the similarity between generated and
reference distractors. Specifically, it was used by
Login (2024); Zhou and Li (2024); Maurya and De-
sarkar (2020); Xie et al. (2022); Lin et al. (2024).
This has the same limitations as the approaches
described above, as it relies entirely on the quality
of the reference distractors, and implies that those
are the only good distractors for a given question.

5.2 Stand-alone Approaches

Stand-alone approaches are all the evaluation tech-
niques which are based on textual information only
and do not rely on reference distractors. As such,
they are meant to detect high-quality distractors
even when these do not match some reference ones,
and are not susceptible to low-quality distractors in
the reference data. Most of these evaluation metrics
are meant to capture the plausibility and diversity
requirements of good distractors.

5.2.1 Estimating plausibility

Pho et al. (2015) focus on the relatedness be-
tween the distractors and the correct answer op-
tion, primarily working on questions whose re-
sponses are named entities. The semantic similarity
is then measured looking at the distance between
the named entities of each distractor and the correct
answer option in a taxonomy of named entities.

Plausibility is modelled as the cosine similarity
between each generated distractor and the correct
answer option in (Rodriguez-Torrealba et al., 2022;
De-Fitero-Dominguez et al., 2024). The authors
state that higher similarity to the correct answer
option means better distractors and use such ap-
proach for evaluating the distractors. Still, they
do not study the correlation between the results
obtained with their evaluation metric and an evalu-
ation based on students’ responses, thus this metric
might reward distractors which are too close to the
correct answer, and thus low quality.

A different take on plausibility is taken by Raina
et al. (2023): they define plausibility as the sum of
the confidence scores of a multiclass QA model for
each of the distractors. This approach assumes that
the confidence of a MCQA model is a good proxy
of the confidence of real students, and evaluates this
assumption by using a dataset which provides sta-
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tistical information about how often distractors in
the dataset are selected by real students (Mullooly
et al., 2023); this is one of few works validating the
metrics used for distractor evaluation.

5.2.2 [Estimating diversity

More papers focused on studying the diversity of
generated distractors, using Pairwise-BLEU, Dis-
tinct (Li et al., 2016), or other techniques. Pairwise-
BLEU is used by Qu et al. (2023) and Wang et al.
(2025), while Distinct is used by Qu et al. (2024)
and Qu et al. (2023). Two different approaches are
used by Raina et al. (2023), who use the BERT
Equivalence Metric (BEM) (Bulian et al., 2022),
and Taslimipoor et al. (2024), who use Sentence-
BERT to measure the semantic similarity between
different generated distractors. In all these papers
the authors claim that high diversity is desirable,
hence similarity between distractors should be low.

5.2.3 Others

Kalpakchi and Boye (2021) propose a set of eval-
uation metrics, including several stand-alone ap-
proaches different from all the approaches used
by other papers. Most of them are filters which
could actually be implemented within a DG model
itself, and include measures such as 1) the fraction
of MCQs with two or more generated distractors
which are equal, ii) the fraction of MCQs for which
generated distractor match the correct answer, and
others (we refer to the paper for the full list).

5.3 Learned Approaches

Learned evaluation metrics are machine learning
models — with different architectures — specifically
trained to evaluate the quality of generated distrac-
tors. Several approaches have been used in the
literature, and they try to capture different charac-
teristics that good distractors are expected to have.
Notably, these approaches are on average the most
recent of all the papers surveyed.

The first learned metric to evaluate generated
distractors was proposed by Ghanem and Fyshe
(2023), which is one of the few papers exclusively
focusing on the evaluation of generated distractors.
The proposed approach consists in automatically
generating bad distractors, and training a model
to estimate whether a distractor is good or bad (i.e.
binary classification); the metric is validated with
manual evaluation. A similar approach is used by
Raina et al. (2023) and Qu et al. (2024). In the first
paper, a model is trained to distinguish between



the correct answer option and the distractors, in
a binary classification setting; the probability that
such trained model assigns to each distractor (more
specifically, 1 — P) indicates how incorrect each
distractor is. ! In the latter, an Alberta model is
trained to predict whether a given distractor is a
correct answer to the corresponding question, and
return a classification score in the range [0, 100];
the authors refer to this as faithful score.

Three papers focused on learned approaches to
estimate the plausibility of generated distractors.
In two of them (McNichols et al., 2023; Feng et al.,
2024) the authors, who define plausibility as the
likelihood of a distractor being selected by real
students, compute it by training a BERT-based ma-
chine learning model on real students’ responses
to predict the fraction of students selecting each
distractor. The trained model assigns a probability
score to each distractor, and these scores are then
combined in two ways: i) by summing the selection
probability of all distractors, and ii) by computing
the entropy among them (to make sure that all are
selected with reasonable frequency by students).
In the third (Lee et al., 2025), the authors train a
pairwise ranker to select, given a pair of distractors,
the more plausible. Ground truth plausibility is es-
timated from students’ responses, thus this metric
is aligned distractor performance in exam settings.

Finally, in one paper which performs distractor
generation via reinforcement learning from pref-
erence feedback (Wang et al., 2025), the authors
leverage the same reward model that was used in
training during the reinforcement learning phase to
then evaluate the generated distractors.

6 Discussion

6.1 Alignment with exam performance

Considering all the evaluation approaches de-
scribed above, the only ones which are by definition
aligned with how distractors perform in real exam
settings are the techniques from traditional distrac-
tor analysis (§4.1), since they evaluate distractors
based on the responses of real students. We ar-
gue that these approaches should be used whenever
possible. Unfortunately, in most cases, that is not
feasible, and some alternative approaches have to
be used. In all these cases, it is important to validate
the evaluation approach to ensure that they align
with the exam performance of distractors, but this

!The metric is validated using student response data from
a publicly available dataset (Mullooly et al., 2023).
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is rarely done in the literature. The main reason for
this is that most of the publicly available datasets —
e.g., RACE (Lai et al., 2017), SQuAD (Rajpurkar
et al., 2016), or the MCQ dataset by Ren and Zhu
(2021) — do not provide such information, thus it
is impossible to properly validate the evaluation
metrics on them and all evaluations are built upon
weak foundations. One notable exception is the
Cambridge MCQ Reading Dataset (Mullooly et al.,
2023), which contains an indication of how often
distractors are selected by students in real exam
settings: the dataset contains both good and bad
distractors, and can thus be used to validate differ-
ent evaluation metrics. Similarly, private datasets,
such as the Eedi dataset used by Scarlatos et al.
(2024) and others, likely contain statistics about
students’ responses, and thus provide the informa-
tion needed to validate the evaluation metrics (as
it is done for the weighted proportional metric de-
scribed in §5.1.1). However, they are inaccessible
for the wider research community.

6.2 Evaluating individual distractors and
distractor sets

The taxonomy proposed in §3 categorises evalua-
tion metrics based on the information used for eval-
uating generated distractors. However, another rel-
evant dimension to consider is whether evaluation
metrics work on individual distractors or distrac-
tors as a set of options. Indeed, distractors should
ideally be evaluated with both, since they capture
different aspects in relation to designing a good
question item. The number of papers that evaluate
distractors individually is an overwhelming major-
ity in the literature, and only few use metrics that
consider distractors as a set, as shown in Table 1.
All the comparative approaches in §5.1 focus
on evaluating individual distractors. While this is
very relevant, as it can help detect distractors which
are too close to or too far from the correct answer
option, it is a suboptimal evaluation. Indeed, in real
exam settings distractors are shown to students in a
set of (usually) four items (one being correct), and
distractor evaluation metrics should also consider
the similarity and differences between the distrac-
tors — thus evaluating sets of distractors. Notably,
even considering the papers which perform a man-
ual evaluation of the distractors, these are evaluated
individually (e.g., annotators are asked to classify
each of them as acceptable or not acceptable (al-
though out of the main scope of this survey paper,
we include an analysis of manual evaluation in the



appendix §A). From our analysis, a total of 15 pa-
pers (out of the 40 doing automated evaluation) use
automated metrics that evaluate distractors as a set
rather than as individual items.

6.3 Educational domains and question types

In the context of distractor generation and evalu-
ation for MCQs, question types and educational
domains play a crucial role in designing effective
evaluation metrics. These factors influence the
characteristics of distractors and the criteria used
to assess their quality. The subject or educational
domain influences the complexity, language, and
knowledge required for distractor evaluation. For
instance, in science and mathematics, evaluation
metrics should check for scientific validity or in
language learning, like in reading comprehension
questions, evaluation should assess linguistic simi-
larity and conceptual relevance. These aspects of
evaluation have not been investigated explicitly in
the literature, however we can see that for exam-
ple almost all papers experimenting with the RACE
dataset for reading comprehension, evaluate distrac-
tors using metrics from machine translation (see
Table 2) while most distractor generations in the
domain of science (Liang et al., 2018; Ren and Zhu,
2021; Bitew et al., 2022; Dutulescu et al., 2024) or
with Cloze-style questions (where answers and dis-
tractors are single words or named entities) (Chiang
et al., 2022; Panda et al., 2022; Wang et al., 2023;
Yoshimi et al., 2023; Yu et al., 2024) are mainly
evaluated using ranking based statistical measures
(see Table 3).

6.4 About manual evaluation

Although not discussed in this survey, since our
focus is on automated metrics which could be used
in an automated generation and evaluation pipeline,
manual evaluation is still used by the majority of
papers (see Appendix A), sometimes in addition
to the automated metrics and in other cases as the
single evaluation approach. Annotators are domain
experts, or the authors themselves, or recruited
from crowd-sourcing platform — thus leading to
annotations of varying reliability.

7 Conclusions

In this survey paper we have performed a compre-
hensive study of the metrics and techniques which
are used to automatically evaluate generated dis-
tractors in the context of Multiple-Choice Tasks,
and have proposed a taxonomy to categorise them.
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We have seen that there is not a commonly agreed
metric in the literature, and different authors and re-
search groups tend to use different evaluation tech-
niques. Most importantly, the metrics which are
most commonly used in the literature (e.g., BLEU
and ROUGE) are sub-optimal and arguably not
aligned with how distractors actually perform in
exams: indeed, they evaluate newly generated dis-
tractors by comparing them with some reference
ones assuming that the references are i) of high
quality and ii) the only distractors of high quality
that can be created for the given question. Both
assumptions are very strong, and not really sup-
ported by previous research, especially for publicly
available datasets such as RACE (which is one of
the most commonly used datasets).

Ideally, distractors should be evaluated with Tra-
ditional Distractor Analysis (i.e., with real learn-
ers) but, when this is not possible, the evaluation
metrics used in its place should aim at being more
aligned with how distractors perform in real exam
settings and with the requirements that good dis-
tractors are expected to satisfy (according to vast
literature from Education and Assessment), such
as being consistent and coherent with the question
and the correct option, and being plausible enough
to distract learners. This highlights the need for
validating the evaluation metrics which are used in
distractor generation and evaluation settings and
developing new, more aligned, ones. The develop-
ment of such metrics should also take into consider-
ation the differences between different educational
domains, as the requirement might be different de-
pending on the specific application scenario.

Limitations

When collecting the papers to review, we have per-
formed several searches and used snow-balling to
collect all the relevant publications which we could
find. However, there is always a possibility that we
might have missed some relevant research works.
Also, we have highlighted the limitations of the cur-
rent approaches to distractor evaluation, and this
survey paper serves as motivation to focus more on
the evaluation of distractors but, at this stage, we
do not have an alternative approach to propose that
might target these issues (yet).
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A On Manual Evaluation

Even though manual evaluation is not scalable to
large amounts of distractors and cannot be used in
a fully-automated content generation pipeline, it is
still the most commonly used approach to evaluated
distractors in distractor generation papers. From
our analysis, a total of 23 papers out of 40 use man-
ual evaluation in addition to automated evaluation;
in addition to these, we also find 9 papers where
the manual annotation is the only evaluation that is
performed.

There are not commonly agreed guidelines on
how to evaluate the distractors manually, and differ-
ent papers follow different approaches and provide
different labels, in some cases limiting the anno-
tation to good and bad distractors, and in some
other cases ranking on a Likert scale (e.g., from
1 to 5) some aspects of the distractors. In general,
we observe that the annotators are either asked
to provide an overall evaluation of the distractors
(i.e., whether they are good distractors), or evaluate
them according to the following aspects: plausibil-
ity (also referred to as distracting ability), fluency,
coherence with the text (also referred to as valid-
ity), diversity (between the generated distractors),
and being related to students’ misconceptions. No-
tably, only two papers explicitly ask annotators to
evaluate the diversity of the generated distractors
— thus evaluating them as a set — and most of the
papers perform an evaluation of individual distrac-
tors. Table 4 provides an overview of which of
these aspects are considered in the different papers
which perform manual evaluation of distractors.
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Abstract

This paper investigates the potentials of Large
Language Models (LLMs) as adaptive tutors
in the context of second-language learning. In
particular, we evaluate whether system prompt-
ing can reliably constrain LLMs to generate
only text appropriate to the student’s compe-
tence level. We simulate full teacher-student
dialogues in Spanish using instruction-tuned,
open-source LLMs ranging in size from 7B
to 12B parameters. Dialogues are generated
by having an LLM alternate between tutor and
student roles with separate chat histories. The
output from the tutor model is then used to eval-
uate the effectiveness of CEFR-based prompt-
ing to control text difficulty across three profi-
ciency levels (A1, B1, C1). Our findings sug-
gest that while system prompting can be used
to constrain model outputs, prompting alone is
too brittle for sustained, long-term interactional
contexts - a phenomenon we term alignment
drift. Our results provide insights into the fea-
sibility of LLMs for personalized, proficiency-
aligned adaptive tutors and provide a scalable
method for low-cost evaluation of model per-
formance without human participants.

1 Introduction

The popularization of large language models
(LLMs), particularly through the emergence of
user-friendly interfaces such as ChatGPT, has led
many stakeholders across society to consider how
to use such technology effectively and safely to
facilitate access to knowledge and education (Yan
et al., 2024). Language education has not been im-
mune to this hype, and with seemingly good cause,
since LLMs show potential across a range of areas
where they might enhance language learning.

One such area is their inherent inferactivity. In-
teractive feedback is widely regarded as an im-
portant factor in second-language (L2) learning
(Loewen and Sato, 2018). For L2 learners far re-
moved from their target language community, op-
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portunities for such interaction can be rare. With
LLMs, though, learners appear to now have the
opportunity to engage with a "speaker"” of the tar-
get language freely and at their own pace (Kohnke
et al., 2023). Other potential benefits include per-
sonalized teaching (Klimova et al., 2024) and re-
duced L2 anxiety (Hayashi and Sato, 2024).

These ideas build on decades of research on in-
telligent tutoring systems and computer-assisted
learning (Psotka et al., 1992; Slavyj et al., 2015). In
contrast to earlier rule-based approaches (D’Mello
and Graesser, 2023), appropriately implemented
LLMs may offer a more adaptable and effective
solution. However, current use of LLMs in lan-
guage learning mostly relies on general-purpose
tools like ChatGPT, where learners are encouraged
to acquire "prompt-engineering" skills to get the
most out of their Al language tutor (Hwang et al.,
2024). It remains unclear exactly how effective and
appropriate this approach is for creating successful
language tutoring technology.

This paper takes steps to address this problem by
examining whether, and to what extent, the com-
plexity of LLM outputs can be constrained through
prompting based on the Common European Frame-
work of Reference for Languages (CEFR). We find
that, while prompting may initially constrain LLM
outputs in Spanish, these effects diminish over time.
We refer to this as alignment drift, arguing that
system prompting may prove to be too unstable for
sustained, longer interactions.

2 Related Work

2.1 Exploring the Use of LLMs as Language
Tutors

While a growing body of work considers LLMs
as interactive language tutors (Kohnke et al., 2023;
Lin, 2024; Kostka and Toncelli, 2023), empirical re-
search is limited, and many questions remain unan-
swered (Han, 2024). Nevertheless, the few stud-
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ies that have been conducted so far offer promis-
ing results on the benefits of using LLMs as lan-
guage tutors, particularly in L2 English learning
(Tyen et al., 2022, 2024; Zhang and Huang, 2024).
Among other findings, Tyen et al. (2024) reported
that users enjoyed interacting with LLMs more
than plain reading and responded well to adaptive
difficulty in interactions. Adaptive cognitive tutors
hence have the potential to contribute positively to
motivation, a psychological process increasingly
viewed as crucial to L2 learning outcomes (Dornyei
and Ryan, 2015).

2.2 Assessing L2 Proficiency with CEFR

Defining what it means to be "proficient" in an
additional language is not a trivial task, with nu-
merous definitions proposed (Park et al., 2022). Of
these, the CEFR is particularly well known. Since
its introduction in 2001, the framework has been
highly influential in assessing L2 proficiency. Un-
like previous approaches with a strong focus on
grammatical competency, the CEFR emphasizes
social and communicative competences (Leclercq
and Edmonds, 2014).

The CEFR comprises a six-level scale (A1, A2,
B1, B2, C1, C2) with Al as the beginner level
and C2 as the most advanced. Several official
ways have been developed to represent these profi-
ciency levels, each with language-agnostic descrip-
tions (Council of Europe, 2025a). For instance,
the CEFR Global scale offers a concise, three- to
four-sentence summary of each level, designed as a
holistic overview to facilitate communication with
non-specialist users. However, its creators acknowl-
edge that it is "desirable" to present the CEFR
levels in "different ways for different purposes."
(Council of Europe, 2025b). The Self-assessment
grid, which provides separate definitions for skills
like speaking and writing at each level, has little
to no focus on grammatical content (Council of
Europe, 2025d).

2.3 Adapting Text Difficulty with LLMs

The potential for LLMs to produce simpler text
for improved accessibility has not gone unnoticed
(Freyer et al., 2024). Indeed, the CEFR framework
has been used alongside LLMs to simplify learn-
ing materials in French (Jamet et al., 2024); and
for a range of purposes in English, such as general
writing (Uchida, 2025) and simplifying or writ-
ing stories (Malik et al., 2024; Imperial and Tay-
yar Madabushi, 2023). Alfter (2024) also attempted
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to generate CEFR-aligned vocabulary lists using
LLMs across five languages, including Spanish and
French, but found performance issues outside of
English.

Common to these studies is the use of prompt-
ing. Notably, Malik et al. (2024) demonstrated
that GPT-4 made fewer errors generating stories
at the desired proficiency level as the detail about
CEFR increased in the prompts. In contrast, Alfter
(2024) found that using numeric levels from O to 4
was more effective than explicitly mentioning the
CEFR, although the prompts had no description of
the levels.

Beyond prompting, other approaches include
fine-tuning (Malik et al., 2024) or experimentation
with decoding strategies. For example, Tyen et al.
(2022) experimented with different decoding strate-
gies for constraining LLM text difficulty to CEFR
levels, using a classifier fine-tuned on Cambridge
English exam sentences (Xia et al., 2016), to select
the best LLM-generated sentence for the user. A
similar approach was used by Glandorf and Meur-
ers (2024), focusing on grammatical constructs for
different CEFR levels in English.

We identify some gaps in the literature. Firstly,
most studies focus on English, with only a few
exceptions (Jamet et al., 2024; Alfter, 2024). More-
over, aside from Tyen et al. (2022, 2024), all stud-
ies focus on single generations rather than longer
chats. This paper thus contributes to the literature
by addressing chat-based scenarios in an additional
language, Spanish.

2.4 Simulating Dialogues with LLMs

One challenge when evaluating LLM performance
in chat-based scenarios is the cost of human par-
ticipants, particularly during initial testing. Tyen
et al. (2022) addressed this by using "self-chatting",
where the model interacts with itself, although no
further specification was provided. More broadly,
dialogue simulation using LLMs have emerged
with the purpose of refining chatbots with the
generated data (Sekulic et al., 2024; Tamoyan
et al., 2024). Specific teacher-student dialogue
simulation remains under-explored, although some
work exists such as simulating Q/A scenarios (Ab-
basiantaeb et al., 2024).

In this paper, we therefore simulate teacher-
student interactions using LLLMs in order to de-
termine the robustness of CEFR-based prompting
for constraining text difficulty in Spanish. To our
knowledge, this study is the first to simulate both



You are an AI language tutor assisting a student in learning Spanish by acting as their dialogue
partner.

The student is learning Spanish at A1 level in the Common European Framework of Reference (CEFR)
which means that the user is at a beginner level of Spanish.

As an AI tutor, your instructions are:

1. Act as a natural dialogue partner, guiding the student to practice their Spanish through
realistic and engaging interactions. This means asking the student questions in a natural manner.

2. Limit your grammar and vocabulary to Al-level Spanish (beginner level)

3. If the student makes mistakes, you should correct their-;;;;;E;s and explain them in detail.

4. Keep everything in Spanish.

Remember to keep the conversation at a language 1level appropriate for a beginner learner of
Spanish. Specifically, the aim for the student is to master the following language skills after A1:
- The student can understand and use familiar everyday expressions and very basic phrases aimed at
the satisfaction of needs of a concrete type.

- The student can introduce him/herself and others and can ask and answer questions about personal
details such as where he/she lives, people he/she knows and things he/she has.

- The student can interact in a simple way provided the other person talks slowly and clearly and

CEFR
Global scale

is prepared to help.

Figure 1: System prompt provided to each tutor LLM for level Al. Level-specific words are underlined in red and
replaced for B1 and C1 (see Appendix A.3). The list in curly brackets is from the CEFR Global Scale (Council of

Europe, 2025b).

the teacher and student perspectives through sys-
tem prompts in the context of language learning.

3 Experimental Design

Data generation (Section 3) and analysis (Sections
4 & 5) were carried out in Python (v3.12.3), with
the exception of running linear mixed effects mod-
els in R (v4.4.3). All code and the dataset is avail-
able on the GitHub repositories:

e Generation: INTERACT-LLM/Interact-LLM
(Version tag: v1.0.3-alignment-drift)

* Dataset & Analysis:
INTERACT-LLM/alignment-drift-11lms

3.1 Model Selection and Implementation

We choose to focus on smaller, state-of-the-art
open-source LLMs in the range 7B to 12B. With
the exception of Mistral, their official reports
mention multilingual capabilities. All models are
instruction-tuned for chatting:

* Llama-3.1-8B-Instruct by Meta (Grattafiori
et al., 2024)

* Gemma-3-12B-IT by Google (Gemma Team
et al., 2025)

e Mistral-7B-v0.3-Instruct by Mistral Al
(Jiang et al., 2024)

* Qwen-2.5-7B-Instruct by Alibaba Cloud
(Qwen Team et al., 2025)
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For convenience, we refer to the models simply
as Llama, Gemma, Mistral, and Qwen. For details
about the inference, including the hyperparameters,
see Appendix A.1.

3.2 Teacher-Student Dialogue Simulation

We simulated a language tutoring scenario by de-
ploying an LLM with separate chat histories as
both the "tutor" and "student". Current LLM sys-
tems are stateless (Yu et al., 2025), with the entire
chat history being processed by the model during
each interaction. This allowed us to instantiate a
single LLM object, and then interchange the chat
history, maintaining one history for the student and
another for the tutor (see the graphical overview in
Appendix A.2).

We ran simulations for three different system
prompts, designed to instruct the LLM to match
its responses to the proficiency level of a begin-
ner (Al), intermediate (B1), and advanced (C1)
Spanish language learner.! Across the three lev-
els, the dialogue began with a fixed initial message,
"Hola",? sent by the "student". By standardizing
the initial message, we eliminated variability in the
student LL.M responses which could influence the
tutor LLM’s output. This enabled a direct compari-
son of how the system prompt impacted the tutor
LLM’s first message across levels.

!See Section 3.3 for details on how the system prompts
were defined.

2Tyen et al. (2022) also begin all chats with a "Hello".


https://github.com/INTERACT-LLM/Interact-LLM/tree/v1.0.3-alignment-drift/src/scripts/alignment_drift
https://github.com/INTERACT-LLM/Interact-LLM/tree/v1.0.3-alignment-drift/src/scripts/alignment_drift
https://github.com/INTERACT-LLM/alignment-drift-llms

Despite being instructed to "keep everything in
Spanish" (Figure 1), a number of models generated
non-Spanish text.®> For instance, Gemma and L1ama
tended to include English content. This happened
primarily for the A1 level, where they sometimes
provided English translations in parentheses along-
side their Spanish sentences. Also, Qwen occasion-
ally switched mid-generation to Mandarin Chinese.
To avoid confounding our analysis, we applied a
simple language detection algorithm to the tutor
LLM’s outputs using the Python library lingua.* If
English or Mandarin was detected in any sentence,
we re-generated the tutor LLM’s response before
continuing the dialogue.

A total of 30 dialogues were simulated for each
of the three system prompts per LLM, resulting in
90 dialogues for each LLM and 360 overall. Each
dialogue consisted of nine turns.

3.3 System Prompts

We created custom system prompts in English for
the tutor LLM. These prompts differed only in key,
level-specific phrasing. Along with terms such
as "beginner," "intermediate,”" and "advanced," an
additional description of a learner’s abilities at the
particular level was provided, taken from the CEFR
Global scale (see Section 2.2). Figure 1 shows
the system prompt for Al with the level-specific
wording highlighted (prompts for B1 and C1 can
be viewed in Appendix A.3).

The system prompt for the student LLM was
kept relatively simple as it was beyond the scope
of this study to optimize it:

You are a student learning Spanish, re-
sponding to a teacher who is facilitating
a natural dialogue with you.

4 Metrics

We extracted various metrics to examine the in-
fluence of different system prompts on the tutor
LLM’s outputs.

4.1 Traditional Readability Metrics

We computed three readability metrics for Span-
ish using Textstat.> Recent applications of these
metrics primarily focus on healthcare (Rao et al.,
2024) or the financial sector (Moreno and Casasola,
2016; Losada, 2022), but their English counterparts

3We also discuss this in a subsection of the Limitations.
*https://github.com/pemistahl/lingua-py
Shttps://textstat.org/
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have traditionally been used to assess L2 reading
complexity (Greenfield, 2004). We therefore draw
on these studies to justify our use of Spanish read-
ability metrics in this context.

Fernandez Huerta (Fernandez Huerta, 1959)
and Szigriszt-Pazos (Szigriszt Pazos, 2001) are
Spanish adaptations of the Flesch Reading Ease
(Flesch, 1948) score, measuring readability based
on syllables per word and words per sentence, with
Spanish-specific weightings.® Unsurprisingly, the
two metrics are highly correlated (Melén-Izco et al.,
2021), but there are conflicting claims about which
one is most widely used (Moreno and Casasola,
2016; San Norberto et al., 2014). Both are com-
monly reported together, as is the case in this paper.

Gutiérrez de Polini is a metric specifically cre-
ated for Spanish (Gutiérrez de Polini, 1972). Un-
like the previous two metrics, it does not rely on
syllables, but instead considers the number of char-
acters per word and words per sentence (Vasquez-
Rodriguez et al., 2022).

All three metrics produce lower scores for more
difficult texts and higher scores for easier texts. For
detailed tables showing the interpretation of the
scores, see Appendix A.4.

4.2 Structural Complexity

We computed additional structural features using
the TextDescriptives Python library (Hansen et al.,
2023), applied with the Spanish spaCy (Honnibal
et al., 2020) model es_core_news_md.’

The Mean Dependency Distance (MDD) is a
measure of syntactical complexity commonly used
to capture language processing difficulty in both L1
and L2 research (Gao and Sun, 2024). It represents
a sentence-level average of dependency distance,
which measures the linear distance between a word
and its syntactic head. TextDescriptives follows the
definition by Oya (2011) to compute the MDD.8

We extract Text Length of each message, oper-
ationalized as the token count, as it is included in
the definition of the C1 level in the CEFR Global
scale (i.e., the student can understand "a wide range
of demanding, longer texts" (Council of Europe,

®Note that the formula for Ferndndez Huerta is said to
be reported incorrectly on many websites (Fernandez, 2017).
Losada (2022) reports the correct one which is implemented
by Textstat.

"https://github.com/explosion/spacy-
models/releases/tag/es_core_news_md-3.8.0

$More information can be found in the documentation for
the TextDescriptives package: https://hlasse.github.io/
TextDescriptives/dependencydistance.html


https://github.com/pemistahl/lingua-py
https://textstat.org/
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