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Message from the General Chair

Welcome to the 2024 meeting of the North American Association for Computational Linguistics! This
year, the conference is in Mexico City. NAACL was actually already planned for Mexico City in 2021,
but due to the pandemic the entire conference was moved online. This year, finally, we get to go!
So it is my sincere pleasure to welcome you to Mexico City, whether in person or virtually. Having the
conference in Mexico City is a good opportunity to emphasize that NAACL is our flagship conference for
ACL members not only in North America but also in Central and South America, even though NAACL
has been bearing “North” in its name. At this year’s conference, we have a theme to match, with a theme
track on the Languages of Latin America to showcase the linguistic diversity of the region.

This year, we decided, along with EACL and ACL, to rely fully on ACL Rolling Review (ARR) for
conference submissions. It has been exciting and impressive to see, up close, the amount of work that
went into making the process run smoothly. Many thanks to the ARR editors in chief, in particular
Thamar Solorio and Mausam, for developing innovations for the reviewing process to keep pace with
our growing community. Many thanks to the program chairs of all three conferences, for dealing with
all the detail troubles as they arose. A big thank you also to the OpenReview team, in particular Andrew
McCallum, Melissa Bok and Harold Rubio, for adding improvements to the platform specifically for
ACL and for working tirelessly with us to handle whatever came up. And an extra big thank you to Ryan
Cotterell, who has been building the software that we use to publish from ARR and who worked with
the OpenReview team to design the platform improvements, and to the ACL board, in particular Iryna
Gurevych, for putting money into making OpenReview/ARR publishing better.

The opportunity to present at NAACL should not depend on a researcher’s travel budget, or their family
status. This is why it is so important to make virtual participation at NAACL as good an experience as
possible — but we want to also provide a good experience for in-person participants. As a community, we
are still working out the best way to do that. This year at NAACL, we are trying out a big virtual poster
session ahead of the conference, with the hope that this will make make for a lively and interactive expe-
rience. At the same time, we are reducing virtual oral presentations, which seem to be particularly tricky
to make to work well. A big thanks to the NAACL program chairs and to Luciana Benotti for all their
ideas and work to improve the virtual experience. And participants, virtual as well as in-person: Please
let us know what worked for you and what didn’t, so we can continue to improve hybrid conferences.

I have been lucky to work with many amazing people. Without their insight, dedication and patience,
and without the many hours of work they put in, NAACL would not have been possible. A huge thank
you to the program chairs Helena Gomez, Kevin Duh, and Steven Bethard — you are the best!

And special thanks to Jenn Rachford, the ACL business manager, who has dealt with room assignments,
local arrangements in Mexico City, and so many details of conference planning. We couldn’t have done
it without your support and guidance.

And many thanks also to. ..
* The workshop chairs Niranjan Balasubramanian, Malihe Alikhani, and Alexis Palmer
* The tutorial chairs Rui Zhang, Nathan Schneider and Snigdha Chaturvedi
* The demo chairs Nazneen Rajani, Kai-Wei Chang and Annie Lee
* The industry track chairs Avi Sil, Yi Yang, Anoop Kumar, and Aida Davani

* The student workshop chairs Trista Cao, Isabel Papadimitriou and Anaelia Ovalle, and their faculty
advisors Marcos Zampieri, Frank Ferraro and Swabha Swayamdipta

The publication chairs Ryan Cotterell, Maarten Sap and Lifu Huang



* The website chairs Vered Shwartz and Xinya Du

* The publicity and social media chairs Ximena Gutierrez-Vasques, Samuel Gonzélez-Lopez and
Najoung Kim

* The diversity and inclusion chairs Ziyu Yao, Gemma Bel Enguix and Maria Pacheco
* The sponsorship chairs Ivan Meza and Mohit Iyyer
* The student volunteers chairs Lucy Lu Wang and Liang Huang

* The ethics chairs Cissi Alm, Diana Galvan Sosa, Anjalie Field, Ameeta Agrawal, Daniel Fried,
Mark Yatskar, Maria Antoniak, and Alane Suhr

¢ The handbook chair Luke Gessler

* The reproducibility chairs Ghazaleh Kazeminejad, Koustuv Sinha, Peter Jansen, Pastor Lopez, and
Tan Magnusson

* The best paper committee chairs Isabelle Augenstein and Manuel Montes-y-Gémez

¢ The local chair Hiram Calvo

Many thanks also to the chairs of the previous year’s conferences, who were always ready to help and
share their experience, and to the members of the ACL and NAACL Executive Committees for their
support, feedback and advice, especially Iryna Gurevych, Emily Bender, and Graham Neubig.

Finally, I would like to thank all authors, invited speakers and panelists, area chairs and reviewers, the
volunteers organizing and chairing sessions, and all attendees, in-person and virtual. Thank you for
helping us make NAACL 2024 come to life.

Welcome and hope you all enjoy the conference!

Katrin Erk
The University of Texas at Austin
NAACL 2024 General Chair
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Message from the Program Chairs

Hi, Welcome to the 2024 Annual Conference of the North American Association for Computational
Linguistics! NAACL 2024 is a hybrid conference, and we are excited to have attendees and presenters
join us both in person in Mexico City and online from all over the world. We are especially thrilled to
hold the conference in Mexico City, which was originally planned for NAACL 2021 before COVID-19
required the transition to a virtual meeting. This will be the first NAACL conference in Latin America,
and we hope this will contribute to a tradition of broadening access and participation in the greater region.

Special Theme: Languages of Latin America Languages are the heart and soul of cultural identity
and communication, and nowhere is this more evident than in the vibrant tapestry of Latin America and
the Caribbean. With a rich linguistic diversity that spans Spanish, Portuguese, and numerous indigenous
languages, the region offers a unique challenge and opportunity for natural language processing resear-
chers. For NAACL 2024, we invited submissions to the special theme track on “Languages of Latin
America”. This track was dedicated to taking stock of past research and developments in the field of
natural language processing for languages of Latin America and the Caribbean while charting the cour-
se for future investigations. We received 19 submissions to the special theme, of which 10 have been
accepted to appear at the conference.

Review Process NAACL 2024 implemented a two stage review process, where submissions were first
sent to ACL Rolling Review (ARR) for reviews by reviewers and for meta-reviews by area chairs, and
then sent to a separate NAACL 2024 commitment site for recommendations by senior area chairs and
final acceptance decisions by program chairs.

For the ARR submission part of the process, NAACL program chairs coordinated with EACL 2024 and
ACL 2024 program chairs to ensure a smooth revise-and-resubmit cycle across the three conferences.
We also coordinated across conferences to recruit thousands of new reviewers and hundreds of new area
chairs to ARR, resulting in 7344 reviewers and 870 ACs in the 2023 December ARR cycle to which most
NAACL 2024 papers were submitted. Overall, the ARR process went mostly smoothly, successfully
delivering three reviews and a meta-review for all 2604 papers submitted. Several of the suggestions that
NAACL 2024 program chairs collected for improving the process (e.g., better OpenReview integration
of the responsible NLP checklist) have already been adopted by ARR for future cycles.

For the NAACL commitment part of the process, NAACL program chairs recruited 73 senior area chairs
for the 25 research areas defined by ARR. Senior area chairs made acceptance recommendations for
1140 committed papers based on the papers, reviews, and meta-reviews, and program chairs finalized the
recommendations into acceptance decisions.

Acceptance Rate The acceptance rate calculation follows precedent set by previous conferences that
also go through ARR, e.g. NAACL 2022, EACL 2024. The calculation takes into account the multi-stage
process of ARR where a paper may get revised in ARR and then later committed to the conference. The
denominator includes:

* Papers in the ARR December 2023 cycle that selected NAACL as a preferred venue.
* Papers in the ARR December 2023 cycle that did not select any conference as a preferred venue.

* Papers in the ARR December 2023 cycle that selected another conference, but then committed to
NAACL 2024.

* Papers in the ARR cycles before December 2023 that committed to NAACL 2024.
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In total, we had 2604 submissions in the ARR December 2023 cycle. Among these, 29 were withdrawn
before reviews were released and 115 were desk-rejected. Of the remaining, 2328 had either an unspeci-
fied venue or included NAACL as the desired venue. Further, 17 out of the 132 submissions that selected
other venues were committed to NAACL. Finally, an additional 89 papers from other cycles were com-
mitted. So in total, the denominator for acceptance rate calculation is 2328 + 17 + 89 = 2434, Among
these, 1140 papers were officially committed to NAACL, and 565 were accepted. The acceptance rate
for Main Conference papers is therefore: 565 /2434 =23.2

Findings papers are those which are not accepted at the Main Conference, but nevertheless have been
judged worthy of publication as solid work with sufficient substance, quality and novelty. The next 304
/2434 =125

Presentation Format At NAACL 2024, we aimed to set all main conference papers on equal ground.
All presenters were allowed the same 13 minute video recording on the virtual site, regardless of whether
a paper was long or short, whether the presenter decided to attend in-person or virtually, and whether the
paper was assigned an oral presentation or a poster presentation.

To ensure there was no prestige associated with getting to present in oral vs. poster format, we tried
a new approach to presentation decisions: we assigned them randomly. Specifically, we calculated the
counts of papers across research areas, took the square roots of the counts to slightly upweight smaller
areas, converted the counts to a distribution, and then randomly sampled 130 orals from the research
areas according to the distribution (sampling in blocks of 5 to match the duration of oral sessions at the
conference).

Program Format At NAACL 2024, we aimed to improve both the in-person and virtual experiences.
For this, we are implemented the following two actions:

* A pre-conference virtual poster session was scheduled for Thursday, June 13, 2024, avoiding con-
flicts with the conference’s in-person sessions, and including different sessions to accommodate
various time zones. The goal of this move was to encourage all attendees, both virtual and in-
person, to join the virtual poster session.

* Oral presentations were given only to in-person attendees. (Oral presentations were still set to
be live-streamed for all virtual attendees). The goal of this move was to avoid Zoom fatigue and
encourage more in-person engagement with oral presenters.

The program includes live (and live-streamed) keynotes, plenaries, and panels, more than 100 live (and
live-streamed) oral presentations, more than 400 live poster presentations, and more than 200 virtual
poster presentations at the pre-conference event. The keynotes cover exciting topics including large
language models and indigenous languages (Claudio Pinhanez, IBM Research Brazil) and large language
models and neuroscience (Seana Coulson, UCSD), while the panel addresses the important issue of large
language models and their impact on education (Victoria Yaneva, National Board of Medical Examiners;
Swapna Somasundaran, Educational Testing Service; Karen Matias, Universidad Nacional Auténoma
de México; and Ekaterina Kochmar, Mohamed Bin Zayed University of Artificial Intelligence). Other
plenaries include the NAACL business meeting and the best paper awards session. The program is
rounded out with dedicated sessions during the main conference for industry track, demonstrations track,
student research workshop, NAACL Findings papers, and TACL/CL accepted papers.

Gratitude Conference organization is a team effort. We are very grateful for the support and contribu-
tions of many people, including:

¢ The General Chair, Katrin Erk
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* The ARR Editors-in-Chief of the Dec 2023 cycle (Mausam, Vincent Ng) and the entire team
(Viviane Moreira, Thamar Solorio, Lilja @vrelid, Jun Suzuki, Jonathan Kummerfield)

* The OpenReview team, especially Harold Rubio

* The 73 Senior Area Chairs

* The 870 Area Chairs and 7344 Reviewers

* The best paper committee chairs, Isabelle Augenstein and Manuel Montes y Gémez

* The ethics chairs (Cecilia Alm, Diana Galvan Sosa, Anjalie Field, Ameeta Agrawal, Daniel Fried,
Mark Yatskar, Maria Antoniak, Alane Suhr) and their team of reviewers

* The website chairs, Vered Shwartz and Xinya Du

* The publication chairs, Ryan Cotterell, Maarten Sap, and Lifu Huang, and their team of student
helpers

* The publicity chairs, Ximena Gutierrez- Vasques, Samuel Gonzalez-Lopez, and Najoung Kim
* The local chair, Hiram Calvo

* The volunteers chairs, Lucy Lu Wang and Liang Huang

* The ACL Anthology Director, Matt Post, and his team

e The Program Chairs of EACL 2024 (Yvette Graham, Matthew Purver) and ACL 2024 (Lun-Wei
Ku, Andre Martins, Vivek Srikumar)

e Damira MrSi¢ and Underline Team

* Jenn Rachhford and entire conference support staff

Kevin Duh, Helena Gomez, and Steven Bethard
NAACL 2024 Program Committee Co-Chairs
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Keynote Talk
Harnessing the Power of LLMs to Vitalize Indigenous
Languages

Claudio Pinhanez
IBM Research Brazil

Monday, June 17 — Time: 9:30 — 10:30 -

Abstract: How can Large Language Models (LLMs) and modern NLP be used to increase the use and
the documentation of Indigenous languages which are in danger of disappearing? First, I report on the de-
velopment of high-quality translators for Indigenous languages by fine-tuning SOTA machine translators
with tiny amounts of data, and discuss how to avoid some common pitfalls. Next, I present prototypes
built with Indigenous communities aiming to stimulate and facilitate writing, using LLM models to crea-
te spell-checkers, next-word predictors, and similar tools. Finally, I discuss a future for documentation
where dying languages are preserved as interactive language models.

Bio: Claudio Pinhanez is a scientist, innovator, and professor. He is currently a Principal Scientist in the
laboratory of IBM Research in Brazil where he leads research on artificial intelligence, human-machine
interaction, and natural language processing. He is also the Deputy Director of the Center for Artificial
Intelligence of the University of Sdo Paulo, where he is a Visiting Professor at the Institute of Advanced
Studies. Claudio got his Ph.D. from the MIT Media Laboratory in 1999, joined the IBM Research T.J.
Watson laboratory in New York and in 2010 co-founded the IBM Research laboratory in Brazil. Since
2022 he leads a joint project of IBM Research and the University of Sdo Paulo focused on the use of Al
technology to document and vitalize Brazilian Indigenous languages.
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Keynote Talk
Distributional Semantics: What do large language models
have to say?

Seana Coulson
University of California San Diego

Wednesday, June 19 — Time: 14:00 — 15:00 —

Abstract: Large language models motivate an approach to meaning known as distributional semantics,
that words mean what they do because of how they’re distributed in language. In this talk I will describe
some evidence from my lab that suggests metrics from large language models do a good job of predicting
behavioral and neural responses to some aspects of human language. 1 go on to describe some research
that highlights important differences in meaning processing in humans and the ‘understanding’ displayed
by language models. Discrepancies are particularly noteworthy in studies of joke comprehension.

Bio: Seana Coulson received her Ph.D. in Cognitive Science from the University of California San
Diego in 1997. The recipient of fellowships from the McDonnell Pew foundation and the NIH NRSA,
she worked as a post-doctoral fellow in the Psychology Department at the University of Arizona from
1997-1999. In 1999, she returned as faculty to UC San Diego’s Cognitive Science Department. She is
currently a full Professor, holds the Jeffrey Elman Chancellor’s Endowed Chair of Cognitive Science,
and co-directs the UCSD/SDSU Joint Doctoral Program in Language and Communicative Disorders.
She directs the Brain and Cognition Lab at UC San Diego where her research concerns how people
understand language and other meaningful stimuli.
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Abstract

We characterize and study zero-shot abstrac-
tive summarization in Large Language Models
(LLMs) by measuring position bias, which we
propose as a general formulation of the more
restrictive lead bias phenomenon studied pre-
viously in the literature. Position bias captures
the tendency of a model unfairly prioritizing
information from certain parts of the input text
over others, leading to undesirable behavior.
Through numerous experiments on four diverse
real-world datasets, we study position bias in
multiple LLM models such as GPT 3.5-Turbo,
Llama-2, and Dolly-v2, as well as state-of-the-
art pretrained encoder-decoder abstractive sum-
marization models such as Pegasus and BART.
Our findings lead to novel insights and discus-
sion on performance and position bias of mod-
els for zero-shot summarization tasks.

1 Introduction

Deep learning based abstractive text summarization
models and Large Language Models (LLMs) have
shown remarkable progress in generating concise
and coherent summaries from input articles that are
comparable to human-written summaries (Zhang
et al., 2023). Building upon this research, we aim
to quantitatively measure summarization perfor-
mance of LL.Ms (and pretrained encoder-decoder
models for reference) by proposing position bias,
which is a novel and general formulation of the
lead bias phenomenon (Liu and Lapata, 2019).
Position bias refers to the tendency of models
to prioritize information from certain parts of the
source text, potentially overlooking crucial details
in other parts of the input article. While position
bias has been studied previously in the literature as
lead bias, we posit that lead bias is a specific case
of position bias. Most prior works in this domain
aim to propose methods that either incorporate or
alleviate lead bias in models for improved perfor-
mance (Xing et al., 2021; Zhu et al., 2021) without

1

a thorough analysis of the problem itself. It is also
important to note that a formal definition for lead
bias is still currently lacking in related work.

In contrast to lead bias, position bias seeks to de-
cipher if models are over-utilizing sentences from
any section(s) of the input articles, instead of just
the leading segment. Moreover, a model’s output
summary can only be considered positionally bi-
ased if it overwhelmingly uses sentences from sec-
tion(s) of the input that the human-written (or gold)
summaries do not use themselves. For instance, if
gold summaries for a dataset are lead biased and
the model generates lead biased summaries, this is
desirable behavior and cannot constitute position
bias. In this scenario, if the model were to gener-
ate rail biased summaries, it would be regarded as
position bias. An example of a positionally biased
summary is shown in Figure 1.

Article: During a peaceful kayaking trip on a serene river,
John found himself in a frantic situation when he realized
he had lost his phone. His faithful dog, Max, was his only
companion on this adventure.... Hours passed, and just
when hope seemed to wane, John's perseverance paid off
as he spotted a glimmer of his phone beneath the
riverbank's mud. With his phone safe in hand, the kayaking
trip became an unforgettable adventure filled with both
despair and triumph.

Gold Summary: Amidst despair and triumph, a lost phone is
finally recovered during a kayaking adventure with a loyal
canine companion.

Model Summary: A man's kayaking trip with his dog takes a
stressful turn when he loses his phone on a serene river.

Figure 1: An example of position bias where gold sum-
mary is fail biased and model summary is lead biased.

We show how position bias can be empirically es-
timated by generating a distributional mapping be-
tween summary sentences and the article sentences
used to generate the summary. Then, position bias
can be measured using a metric such as Wasser-
stein distance (Vaserstein, 1969) between the model
generated summary distribution and the gold sum-
mary distribution. Position bias measurements aug-
mented with traditional metrics such as ROUGE
scores (Lin, 2004) can provide a more holistic eval-

Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 2: Short Papers), pages 1-11
June 16-21, 2024 ©2024 Association for Computational Linguistics



uation of zero-shot summarization models.

In summary, we make the following contribu-
tions in this work:

* We generalize and formalize the notion of lead
bias as position bias in zero-shot abstractive sum-
marization. Lead bias can then be understood as a
specific case of position bias (Section 3.2).

* We show how position bias can be empiri-
cally estimated for a given zero-shot summariza-
tion model and hence, can be employed as a met-
ric for summarization quality alongside traditional
metrics such as ROUGE scores. We conduct ex-
tensive experiments to benchmark LLMs (GPT
3.5-Turbo', Llama2-13B-chat?, and Dolly-v2-7B
(Conover et al., 2023)) and pretrained encoder-
decoder models (Pegasus (Zhang et al., 2020) and
BART (Lewis et al., 2020)) on 4 diverse datasets:
CNN/DM (See et al., 2017), Reddit TL; DR (Kim
et al., 2018), News Summary (Ahmed et al., 2018),
and XSum (Narayan et al., 2018) (Section 4).

* Using our findings, we compile novel insights
to aid practitioners in selecting the right model for
their zero-shot summarization tasks. (Section 5)

2 Related Works

Related work has studied the more specific phe-
nomenon of lead bias in summarization. Both
Grenander et al. (2019) and Xing et al. (2021) pro-
pose approaches and architectural changes to mod-
els that can reduce lead bias in extractive summa-
rization, where summary sentences are selected di-
rectly from the source text. In contrast, in our work
we study position bias more generally in abstrac-
tive summarization. Interestingly, Zhu et al. (2021)
seek to leverage lead biased pre-training to improve
performance on news articles, which are known to
be lead biased. Prior work has also analyzed LLMs
for their performance as zero-shot abstractive sum-
marizers (Retkowski, 2023). Goyal et al. (2022)
study GPT-3 specifically in the context of news
summarization and Zhang et al. (2023) benchmark
the summarization performance of multiple LLMs
on the CNN/DM and XSum datasets. Tam et al.
(2023) study the factuality of summaries generated
by LLMs and Shen et al. (2023) use GPT 3.5-Turbo
for evaluating summaries generated by other mod-
els. In vision, model bias has been investigated for
video summarization (Chhabra et al., 2023b). Un-
like our work, none of these have studied position

! https://platform.openai.com/docs/models/gpt-3-5
2https ://huggingface.co/meta-1lama/Llama-2-13b-chat-hf

bias of zero-shot summarization in LLMs.

3 Proposed Approach

3.1 Zero-Shot Abstractive Summarization

A zero-shot abstractive text summarization model
A operates on the dataset tuple D = (X, G) where
X is a set of articles and G are their corresponding
reference gold summaries, generally written by
human annotators. Moreover, each article and its
corresponding gold summary consists of a variable
number of sentences. The model .4 then takes in as
input the set of articles in the set X and outputs a
summary, i.e., A(X) = S where S is the generated
summary. Traditionally, the model is evaluated
by comparing the generated summaries (.S) with
the gold summaries () using the ROUGE metric
(Lin, 2004). We use R'/R?/R" to denote average
ROUGE-1, ROUGE-2, and ROUGE-L scores.

3.2 Formulating and Estimating Position Bias

Let an article x € X have |z| = N, number of
sentences. We also obtain the set of generated sum-
maries as S = A(X) where each s € S has Nj
number of sentences. Since we consider abstractive
summarization®, let us also assume we have a map-
ping function ¢ that takes in a summary sentence
s; € s and maps it back to a sentence r; € x in
the article that it was primarily derived from. Any
similarity function can be employed as a useful
approximation for such a mapping function ¢.*

Most works on lead bias implicitly assert that
lead bias exists if for most s; € s, ¢(s;) maps to
some z; that lies between the first (0, ] sentence
positions of the article. Here &’ < N, and can be
a dataset specific parameter— for example, for the
Lead-3 (Liu and Lapata, 2019) evaluation metric,
k' = 3. However, this does not seem to be a
reasonable definition, especially when considering
general position. For example, consider a model
which tends to derive information for generating
summaries by using only the last few sentences
of the article. This rail bias might also constitute
undesirable behavior if the gold summaries are not
tail biased themselves, but will not be accounted
for in the lead bias paradigm. Hence, it is better
to reason about position more generally.

Since articles can be of differing lengths, po-
sition becomes specific to an individual article.

3n extractive summarization, there is an exact one-to-one
mapping between summary and article sentences.
*ROUGE or TF-IDF vector similarities are some examples.
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Figure 2: Visualizing positional distributions of gold and model generated summaries for all datasets. The more
"different” these distributions are for a given dataset/model, the more position biased the model is for that dataset.

To overcome this issue, we divide each article =
into K segments of approximately equal length
(refer to Appendix A for how to do this) where
K < ming¢x |z|. This results in each article hav-
ing at least one sentence in a segment, and we now
have a uniform way of measuring sentence position
across articles irrespective of their length.

To quantify position bias, we first obtain which
article sentences the summary sentences are de-
rived from using ¢, for both gold G and generated
A(X) summaries. Then, we can map these article
sentences to article segments to obtain a general
sense of position in the article. We now have a
distributional mapping of summary sentences to ar-
ticle segments. Using Wasserstein distance (Vaser-
stein, 1969) between the G and A(X) positional
distributions we can then measure position bias.

4 Results

For experiments, we consider the CNN/DM, XSum,
News, and Reddit datasets. All datasets are differ-
ent, in terms of domain, inherent position biases,
or article and gold summary length. We choose
only instruction-tuned LLMs as they are more per-
formant at summarization (Retkowski, 2023) and

we cover different model sizes: GPT 3.5-T is large
(175B params), Llama-2 is mid-size (13B params),
and Dolly-v2 is small (7B params). We also con-
sider SOTA pretrained encoder-decoder models
such as Pegasus and BART, although these models
are not performant unless fine-tuned (i.e. many-
shot learning). All experiments are done on the test
set of datasets (more details in Appendix F).

We first visualize the positional distributions gen-
erated using our mapping procedure for the gold
summaries and model generated summaries in Fig-
ure 2 with K = 10. As can be seen, CNN and News
contain lead biased gold summaries and Reddit and
XSum are positionally uniformly distributed. It can
also be seen that the LLMs tend to have low posi-
tion bias on CNN, News, and Reddit datasets. How-
ever, for XSum, which constitutes the extreme sum-
marization setting, LLMs as well as BART/Pegasus
exhibit much more lead bias, which is absent from
the gold summaries. In XSum, the articles are up
to 286 sentences long, and summary lengths are
required to be between 1-2 sentences long. This
is the largest jump from article — summary and
might explain models’ tendency to pick a single
sentence from the leading segments of the article.



CNN Xsum News Reddit
0.4 0.4 0.4 0.4
0.3 1 0.3 1 0.3 1 0.3 1
I
o 021 0.2 1 0.2 1 0.2 1
€ 014 0.1 0.1- 0.1
0.0 - 0.0 - 0.0 - 0.0 -
p 0.100 0.100 T 0.100 0.100
'lni 0.075 A 0.075 - 0.075 A 0.075 -
.g 0.050 - 0.050 - 0.050 - 0.050 -
L
% 0.025 0.025 - 0.025 - 0.025 -
= 0.000 - 0.000 - 0.000 - 0.000 -
N BART I | Pegasus m Dolly-v2 I GPT 3.5T mm Llama-2

Figure 3: Measuring performance (R! score) and position bias (Wasserstein distance between gold and generated
summaries’ positional distributions). Lower Wasserstein distance values correspond to lower position bias.

Comparing even with Reddit where article lengths
are up to 23 sentences long and summaries are 1-
17 sentences long, it is evident that XSum poses a
unique challenge for summarization models.

Next, in Figure 3, we measure model perfor-
mance using the R! score between gold and gen-
erated summaries (results for R?, R” are provided
in Appendix B and follow similar trends) and po-
sition bias using Wasserstein distance between the
positional distributions of gold and generated sum-
maries of Figure 2. As is evident, LLMs attain the
highest ROUGE scores on all datasets, and tend to
have very low position bias, with the exception of
XSum. However, even for XSum, LLMs achieve
excellent performance on ROUGE. BART/Pegasus
tend to have low performance and BART is also
heavily position biased across all datasets.

5 Discussion

Insights on Model Performance and Biases.

* GPT 3.5-T consistently attains low position
bias and high performance. Generally, GPT 3.5-T
should be the de-facto choice for users, as can
be seen in Figure 3. It consistently obtains high
ROUGE scores and low position bias values. How-
ever, the paid API and closed-source access might
be unfavorable to some users. For open-source
models, Llama-2 is the better choice compared
to Dolly-v2, and at times obtains ROUGE scores
higher than even GPT 3.5-T (for e.g. on XSum). In
comparison, Dolly-v2 at times has arbitrary and un-
predictable performance, such as its low ROUGE
scores and large position bias on the Reddit dataset,

unlike the other LLMs on the same dataset.

* LLMs might exhibit significant lead bias for
extreme summarization. LLMs exhibit strong lead
bias in the extreme zero-shot summarization case
(Figure 3, XSum). For users who wish to undertake
a similar task (pick 1-2 sentence summaries from
very lengthy articles), LLMs might tend to only
select sentences/information from the beginning
of the article. If this is undesirable, it would be
recommended to instead collect gold summaries
and finetune LLMs/models to counteract this.

* Suitability of encoder-decoder models. As
zero-shot summarizers, pretrained encoder-decoder
models like BART and Pegasus have high position
bias and low performance. This likely stems from
their need to be finetuned on article-gold summary
tuples to achieve SOTA performance. However, we
would like to caution users to ensure that there is no
positional mismatch between the data they finetune
on and their evaluation set.> While obvious, not en-
suring this can lead to low ROUGE scores and high
position bias (we demonstrate this in Appendix C).

Choice of Mapping Function ¢. For experi-
ments in the paper we use TF-IDF vector similari-
ties as ¢. In our preliminary experiments, we did
not observe significant differences for other choices.
We provide these additional results when the R!
score is used instead and compare with the original
results (Appendix D). Future work can analyze this
choice of ¢ as well as effect of other values of K.

Correlation of Position Bias and ROUGE. An

>For e.g. finetuning on large # of news articles collected
over the internet to then summarize in a different domain.



interesting consequence of our ROUGE and posi-
tion bias results on datasets shows that their corre-
lation is highly data dependent. For e.g., for XSum
Spearman’s correlation shows statistically signif-
icant high positive correlation (= 0.89) between
Wasserstein distances and R? scores across all mod-
els but for Reddit there is significant negative cor-
relation (= —0.89). See Appendix E for detailed
results. Hence, ROUGE scores are not enough
to assess position bias. This also makes intuitive
sense as ROUGE simply measures n-gram overlap
and cannot holistically evaluate models (Cohan and
Goharian, 2016). In future work other evaluation
metrics can be studied alongside position bias.

6 Conclusion

We analyze zero-shot abstractive summarization by
LLMs via a novel formulation of position bias. Po-
sition bias measures the tendency of models to gen-
erate summaries which overtly and unfairly utilize
certain portions of input text over others. Through
extensive experiments on the CNN/DM, XSum, Red-
dit, News datasets, as well as various models (GPT
3.5-T, Llama-2, Dolly-v2, Pegasus, BART), we ob-
tain novel insights about model performance and
position bias that contribute to a deeper understand-
ing of the challenges and opportunities in leverag-
ing LL.Ms for effective abstractive summarization.

Limitations

Our work formulates the concept of position bias in
abstractive summarization and analyzes it in LLMs
(and other reference models) across four diverse
datasets: CNN/DM, XSum, Reddit, and News
Summary. The main limitation is that position
bias of LLMs needs to be evaluated on many more
datasets, and on other diverse problem settings
beyond the ones considered in our paper. Moreover,
the source domain itself could be challenging
(legal or medical documents) or the LLM might
not have been trained with data from that domain.
In such cases, the LLM might default to using
certain sections of the input articles over others,
resulting in position bias. Another limitation of our
work has been the primary use of English language
datasets, but it is important to benchmark LLM
position bias using summarization datasets from
other languages as well. Additionally, a limitation
of studies on LLMs such as GPT 3.5-Turbo is that
they are constantly being updated and improved,
and some behaviors might change or become

non-existent in future versions (Chen et al., 2023;
Leiter et al., 2024). This necessitates assessing
model performance/biases over time. Finally, as
preceding ML/AI models are usually designed to
be task/domain-specific (e.g. for clustering), issues
of bias, fairness, and robustness (Chhabra et al.,
2024, 2023a, 2022a,b, 2021) specific to these tasks
have been naturally studied in the literature. In
the same manner, despite their general nature,
task-specific robustness/bias needs to be further
explored for LLMs.® In future work, we seek to
alleviate these limitations.

Ethics Statement

Our work on position biases in LLMs is important
for understanding how these models prioritize infor-
mation, and whether or not they disproportionately
emphasize specific sections of the source text when
generating abstractive summaries in a zero-shot
setting. As LLMs are further integrated in society
and utilized in various application pipelines, it is
crucial to understand their behavior in a transparent
manner. Through this study, we wish to shed light
on this issue and allow practitioners to understand
undersirable model behavior with regards to the
summarization task better. This work also enables
users to understand scenarios in which these mod-
els will generate more reliable outputs, leading to
safer outcomes in practice.
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Appendix

A Dividing Articles into X' Segments of
(Approximately) Equal Length

To overcome the issue of articles being of differing
lengths, we need better mathematical structure for
describing position across articles in a dataset. For
this, we wish to divide an article x into /K segments
of approximately equal length. To achieve this, the
j-th segment will contain the sentences of the arti-
cle that lie in the interval:

[(j—1)-c+min(j —1,d), - ¢+ min(j,d) — 1],
where K < mingex|z|, ¢ = {—IJ and
d= N, mod K.

The aim is to distribute the content of the
article into K segments in a way that makes the
lengths of these segments as equal as possible.
Here, the inequality K < min,ex || ensures
that the number of desired segments K should
not exceed the length of the shortest article in the
set of articles X (otherwise it will lead to empty
segments for those articles). The content of each
segment j (note, j represents the index of the
segment from 1 to K) is determined by an interval
defined by: (j — 1) - ¢ + min(j — 1,d) (lower
bound) and j - ¢ + min(j,d) — 1 (upper bound).

Intuitively, ¢ = L%J calculates the approxi-
mate length of each segment as it divides the total
number of sentences in the article (V) by the de-
sired number of segments (KX) and rounds down
to the nearest whole number. However, N, might
not be fully divisible by K and hence, we might
have remainder d = N, mod K. Hence, d ac-
counts for any additional content that cannot be

evenly distributed among the segments and ensures
that segments accommodate the variation in article
lengths. In this manner, the terms min(j — 1, d)
and min(j, d) in the lower and upper bounds of the
interval are used to account for potential variations
in segment length due to the remainder d.

B Additional Results for Other ROUGE
Metrics

CNN Xsum News
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Figure 4: Additional results for R? and RY metrics.

In the main paper in Figure 3 we provided re-
sults for the ROUGE-1 (R') score. Here, we pro-
vide additional results for the ROUGE-2 (R?) and
ROUGE-L (R") scores measured between the gold
and model generated summaries as Figure 4. It can
be seen that the trends are similar to R' and LLMs
exhibit stellar performance for R? and R” across
all datasets.

C Additional Position Bias Results for
Finetuning BART and Pegasus

We go beyond the zero-shot setting to provide ad-
ditional results on measuring position bias when
BART and Pegasus are finetuned on the datasets
we consider. The training was carried out on one
NVIDIA-A100 with 50 GB memory. We use the
HuggingFace Seq2Seq Trainer Class with a batch
size of 64, gradient checkpointing of 4 and gradient
accumulation. We use mixed-precision training for
all models. The learning rate for all models was
set to 5.6e-5. While generating summaries during
finetuning we use a single beam and maximum
generation length of 128.

We finetune on the training set of each of the
4 datasets and evaluate on all datasets (for refer-
ence we again provide the no-finetuning / zero-shot
results of Figure 2). Results for the obtained posi-
tional distributions are shown in Figure 5. It is evi-
dent that if there is mismatch in the finetuning and
evaluation datasets for pretrained encoder-decoder
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Figure 5: Visualizing positional distributions of gold and Pegasus/BART generated summaries for all datasets with
and without finetuning on a particular dataset (training set). For the finetuned models, the diagonal subfigures are
the ones that have the same finetuning and evaluation datasets and have low position bias. All other subfigures have
a mismatch between finetuning and evaluation datasets, and exhibit high levels of position biases. That is, the model
generated summary positional distribution is very different from the gold summary positional distribution. The
no-finetuning results were also shown in Figure 2 and are provided again for reference.

models, they exhibit high position bias, leading to
biased summarization. Hence, it is important for
practitioners to collect article-summary data for
finetuning that exactly reflects their evaluation or
production use-case.

D Additional Results for Different ¢
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Figure 6: Results on News and Reddit for Llama-2 when
¢ is either TF-IDF similarity or ROUGE-1.

For experiments in the main paper, we opt for TF-
IDF vector similarities as the choice of the mapping
function ¢ due to computational efficiency (over
computing individual ROUGE scores between sum-
mary and article sentences for e.g.). However, it is
important to examine whether this choice signifi-

cantly impacts results, trends, and our findings. In
initial experiments with different ¢ we concluded
that this choice does not affect results. In Figure
6 we provide results that support this by using R*
(ROUGE-1) as the metric for ¢ on the Reddit and
News datasets for Llama-2 generated summaries.
We compare the gold summary and generated
summary positional distributions for both datasets
when ¢ is computed using TF-IDF vectors and R'.
It is clear that the trends and results are the same for
both ¢. Even the Wasserstein distance values com-
puted between gold and generated summaries do
not change much. For e.g. on Reddit: for TD-IDF
the distance value is 0.044 and for R' it is 0.046.
Despite no significant differences, we believe fu-
ture work can explore the choice of ¢ more deeply.

E Additional Results for Measuring
Correlation Between ROUGE and
Position Bias

In this section, we measure the correlation between
ROUGE scores (Lin, 2004) and Wasserstein dis-
tance computed between the gold summary and
model generated summary distributions. We con-
duct this experiment using Spearman’s correlation
coefficient statistic over all models and for each
dataset. We utilize the R', R?, R* ROUGE met-
rics individually for this analysis, and the results are
shown in Table 1. We find that correlation is highly



Table 1: Measuring Spearman’s correlation coeffi-
cient between position bias (Wasserstein distances) and
ROUGE metrics for all datasets (* denotes p-values of
< 0.1 and ** denotes p-values of < 0.05).

Dataset Metric Correlation
R! 0.499
CNN/DM  R? 0.799"
RE 0.300
R! 0.899
XSum R? 0.999™
RE 0.899"
R! -0.999™
News R? -0.899™
RE -0.999""
R! -0.799"
Reddit R? -0.899™
RE -0.799"

dependent on the dataset: for CNN the correlation
is not strong and the results are not statistically sig-
nificant, for XSum ROUGE and position bias are
positively correlated and statistically significant,
and for News and Reddit results are statistically
significant but highly negatively correlated. This
indicates that ROUGE itself is not enough to assess
position bias and hence, independent position bias
measurement is important for holistic summariza-
tion evaluation.

F Dataset, Model, and Training Details

F.1 Detailed Dataset Information

XSum (Narayan et al., 2018): The XSum dataset
contains over 200K short, one-sentence news sum-
maries answering the question "What is the article
about?" and was collected by harvesting online ar-
ticles from the British Broadcasting Corporation
(BBC). The testing set consists of 11334 articles.
The average number of sentences in the articles
are 19.105. The total number of sentences in the
summaries are 11334, leading to an average of 1
sentence per summary.

CNN/DM (See et al., 2017): The CNN/DM dataset
contains 300K unique news articles as written by
journalists at CNN and the Daily Mail and is one of
the most popular datasets for abstractive/extractive
summarization and abstractive question answering.
The testing set consists of 11490 articles. The aver-
age number of sentences in the articles was 33.37.
The total number of sentences in the summaries
was 43560 (an average of 3.79 sentences per sum-
mary).

Reddit TL;DR (Kim et al., 2018): The Reddit

dataset consists of 120K posts from the online dis-
cussion forum Reddit. The authors used these in-
formal crowd-generated posts as text source, in
contrast with existing datasets that mostly use for-
mal documents as source such as news articles.
We used an 80-20% train-test split to obtain 4214
articles in the test set. The average number of sen-
tences per article was 22.019. The total number of
sentences in the summaries was 6016 which leads
to an average of 1.4276 sentences per summary.
News Summary (Ahmed et al., 2018): The News
dataset was initially created for fake news classifi-
cation. We used the testing set comprising of 1000
articles. The number of sentences in the summaries
are 1012 (an average of 1.012 per summary)

F.2 Models

Pegasus (Zhang et al., 2020): The Pegasus model
family is used mainly for text-summarization tasks.
We use the google/pegasus-large checkpoint’ from
Huggingface as the summarization model.

BART (Lewis et al., 2020): BART is a Seq2Seq
encoder-decoder model for language tasks. We use
the facebook/bart-large checkpoint® from Hugging-
face as the summarization model.

GPT 3.5-T °: GPT-3.5-turbo is OpenAlI’s flagship
LLM which has been instruction-tuned and opti-
mized for chat purposes. We utilized the model
from Microsoft Azure’s OpenAl service and the
version was the August 3rd version.
Llama2-13B-chat '°: Meta developed and publicly
released the Llama-2 family of LLMs, a collection
of pretrained and fine-tuned generative text models
ranging in scale from 7-70B parameters. The chat
versions of the models are optimized for dialogue
via instruction finetuning. We generated inferences
by modifying the PyTorch code provided in the
official Github repository: https://github.com/
facebookresearch/11ama.

Dolly-v2-7B (Conover et al., 2023): Dolly-v2-
7B is a 6.9 billion parameter causal language
model created by Databricks that is derived from
EleutherATI’s Pythia-6.9B model and finetuned on
a 15K instruction corpus generated by Databricks
employees. We used the databricks/dolly-v2-7b
checkpoint!! from HuggingFace.

7h‘ctps ://huggingface.co/google/pegasus-1large

8https ://huggingface.co/facebook/bart-1large

9https ://platform.openai.com/docs/models/gpt-3-5
lOhttps ://huggingface.co/meta-1lama/Llama-2-13b-chat-hf
1 https://huggingface.co/databricks/dolly-v2-7b



F.3 Generating Summaries via LLMs

We provide the prompts used to generate sum-
maries for each LLM and each dataset (prompts
might differ between datasets for the same model
due to different summary requirements, and they
might differ across models as different models re-
spond to input text differently). Note that {Article}
in each prompt should be replaced by the article to
be summarized. It is also important to note that the
prompts were adapted iteratively through multiple
experiments to ensure that models followed the
prompt as closely as possible. At times models did
not follow the prompt specifications exactly and
would generate more summary sentences than re-
quired for that dataset (for e.g. GPT 3.5-T followed
exact prompt specifications 74.9% of the time).
Hence, for parity between dataset and model sum-
maries, and fair comparison between all models,
we uniformly randomly sampled (so as to not add
inductive bias) the number of sentences required
from the generated output. Also, due to OpenAl’s
content moderation policy GPT 3.5-T did not
give responses for a minority of inputs (6.16% of
all input). We believe future LLM versions will
improve along these lines to always follow prompts
exactly as specified so post-hoc measures will not
be required. We now provide prompts below.

F.3.1 Prompts for GPT 3.5-T

Xsum: For the following article: {Article}. Return a sum-
mary comprising of 1 sentence. Write the sentence in a dash
bulleted format.

CNN/DM: For the following article: {Article}. Return a
summary comprising of 3 sentences. Write each sentence in a
dash bulleted format.

Reddit: For the following article: {Article}. Return a sum-
mary comprising of 1 sentence. Write the sentence in a dash
bulleted format.

News: For the following article: {Article}. Return a sum-
mary comprising of 1 sentence. Write the sentence in a dash
bulleted format.

F.3.2 Prompts for Llama2-13B-chat

Xsum: For the following article: {Article}. Return a sum-
mary comprising of 1 sentence. Write the sentence in a num-
bered list format.

For example:

1. First sentence

CNN/DM: For the following article: {Article}. Return a
summary comprising of 3 sentence. Write the sentence in a
numbered list format.

For example:
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1. First sentence

2. Second sentence

3. Third sentence

Reddit: For the following article: {Article). Return a sum-
mary comprising of 1 sentence. Write the sentence in a num-
bered list format.

For example:

1. First sentence

News: For the following article: {Article}. Return a sum-
mary comprising of 1 sentence. Write the sentence in a num-
bered list format.

For example:

1. First sentence

F.3.3 Prompts for Dolly-v2-7B

Xsum: Generate a 1 sentence summary for the given article.
Article: {Article).

CNN/DM: Generate a 3 sentence summary for the given
article. Article: {Article}.

Reddit: Generate a 1 sentence summary for the given article.
Article: {Article).

News: Generate a 1 sentence summary for the given article.
Article: {Article).

G Analyzing the Effect of Prompt
Engineering Methods

To motivate future work and showcase the general-
izability of our framework, we include results for
position bias when a zero-shot prompt engineer-
ing approach is used: role-playing (Kong et al.,
2023). Role-playing has been shown to effectively
increase LLM performance and reasoning abili-
ties. We randomly sampled 2275 articles from
the XSum dataset and utilize the Llama2-13B-chat
LLM. Then, we use each of the 2275 articles to
plot position bias distributions for summaries gen-
erated using role-playing and our original prompt
generated summaries (as well as gold summaries)
for comparison. This result is shown as Figure 7.

2000

—— Llama
—— Gold
Llama-Roleplay

1500 -

# of sentences
=
o
o
o

500 -

Segment #

Figure 7: Using role-playing on Llama-2 and XSum.



It can be seen that the curves change slightly—
and the role-play summary distribution becomes
closer to the gold summary distribution, as ex-
pected. However, the overall trends are similar
as lead bias is still prominent. Clearly, role-playing
on this subset of data is not an exhaustive study, but
future work can expand on uncovering how prompt
engineering methods (e.g. role-playing, among
others) affect summarization position bias.

H Additional Results on Flan-T5

Since we have primarily considered specialized
encoder-decoder models such as BART and Pe-
gasus in this work, we also provide additional re-
sults for position bias when a generalized encoder-
decoder model such as Flan-T5 (Chung et al., 2022)
is used instead. These results can be observed in
Figure 8 for all 4 of our datasets. As can be seen
in the figure, position bias is low for all datasets,
and especially XSum (which contrasts with LLMs).
This is also observable in the Wasserstein distance
values (~0.050 for Reddit and CNN/DM, 0.024 for
News, and only 0.015 for XSum).

Flan-T5

30000

20000
CNN

10000 -

Xsum

News

7500
5000 Reddit

2500 -

Segment #

—e— Generated —— Gold

Figure 8: Position bias results for Flan-T5.

I Mapping Summary Sentences to
Multiple Article Sentences

Currently, ¢ maps back from one summary sen-
tence to one article sentence that contributes the
most to that summary sentence. To do this, as
¢ measures similarity between sentences, we cur-
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rently only pick the article sentence with the maxi-
mum similarity to the summary sentence. However,
since ¢ is basically measuring similarity, we can
return the top-2 or top-3 matches and undertake
the same position bias analysis as in the main re-
sults. No specific change is necessary, since our
position bias estimation is done in aggregate, via
binning. It is beneficial to assess the impact of
utilizing multiple article sentences, especially for
datasets like XSum where the summary is usually
just one sentence and discusses facts from multiple
article sentences.

BART PEGASUS Dolly-v2 GPT 3.5-T Llama-2
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Figure 9: Mapping summary sentences to multiple arti-
cle sentences for measuring position bias on XSum.

We undertake this analysis for each of our 5 mod-
els in the paper on the XSum dataset and the results
are shown in Figure 9. Here, we have provided po-
sition bias distributional results for only using the
top-1 match (our original results), top-2 matches,
and top-3 matches. It can be seen that the distri-
butions do change slightly, but overall the trends
remain the same. More specifically, lead bias for
each of the LLMs on XSum is further exacerbated,
indicating that even the top-1 match provides good
estimates for position bias.

J Code and Reproducibility

We open-source our code and provide it as a Github
repository: https://github.com/anshuman23/
LLM_Position_Bias. The repository contains ex-
plicit instructions for how to reproduce our results
and analyze the findings for each model. We used
Python 3.8.10 for all experiments. The experiments
were conducted on Ubuntu 20.04 using NVIDIA
GeForce RTX A6000 GPUs running with CUDA
version 12.0.
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Abstract

Despite the remarkable capabilities of Large Lan-
guage Models (LLMs) like GPT-4, producing com-
plex, structured tabular data remains challenging.
Our study assesses LLMs’ proficiency in struc-
turing tables and introduces a novel fine-tuning
method, cognizant of data structures, to bolster
their performance. We unveil STRUC-BENCH,
a comprehensive benchmark featuring prominent
LLMs (GPT-NeoX-20B, GPT-3.5, GPT-4, and Vi-
cuna), which spans text tables, HTML, and LaTeX
formats. Our proposed FORMATCOT aids in craft-
ing format-specific instructions from the intended
outputs to populate this benchmark. Addressing
the gap in task-centered evaluation, we propose two
innovative metrics, P-Score (Prompting Score) and
H-Score (Heuristical Score), to more accurately
gauge LLM performance. Our experiments show
that applying our structure-aware fine-tuning to
LLaMA-7B leads to substantial performance gains,
outshining its LLM counterparts across most mea-
sures. In-depth error analysis and creating an abil-
ity map across six dimensions—coverage, format-
ting, reasoning, comprehension, pragmatics, and
hallucination—highlight areas for future enhance-
ments and suggest forthcoming research trajecto-
ries. Our code and models can be found at https:
//github.com/gersteinlab/Struc-Bench.

1 Introduction

Significant advancements have been made in var-
ious natural language processing tasks by Large
Language Models (LLMs) (Brown et al., 2020;
Scao et al., 2022; Ouyang et al., 2022; Muennighoff
et al., 2022; OpenAl, 2023; Zhao et al., 2023a), es-
pecially in text generation tasks (Qin et al., 2023).
The ability to output structured data, one of the key
aspects of generative capability, has also attracted

* Contributed equally.
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great interest in previous studies (Wu et al., 2022;
Zhao et al., 2023c,b; Zha et al., 2023).

Despite their advanced capabilities, LLMs have
problems with generating complex structured ta-
bles, an indispensable skill for practical applica-
tions like coding copilot and automated report gen-
eration. This proficiency entails the organization of
information from multifarious sources into coher-
ent structures. Generating structured tables as out-
puts not only helps human understanding but also
facilitates the automated data processing pipeline
in autonomous language agents. Furthermore, gen-
erating structured tables can also serve as a criti-
cal preprocessing procedure for downstream tasks
such as decision-making and knowledge extraction.
However, the current landscape of LLM evaluation
often neglects this aspect of table generation, which
casts uncertainty on their full potential and utility
in such scenarios. Our research seeks to thoroughly
investigate these gaps.

First, there is a lack of systematic analysis and
comprehensive benchmarks of the ability of LLMs
to output complex structured tabular data. Previous
efforts on evaluating LLMs (Qin et al., 2023; Ma
et al., 2023) on structured data primarily centered
around simple Information Extraction (IE) tasks:
recognizing named entities, extracting relations,
and detecting events. Here the goal of IE tasks is
to gather the extracted data in a highly structured
form (Zhong and Chen, 2020). Much earlier work
was considerably more task-centric as opposed to
LLM-centric. The focus was predominantly on gen-
erating structured data from text (text-to-data) tasks
with pre-trained models (He et al., 2023; Rossiello
et al., 2022; Whitehouse et al., 2023; Pietruszka
et al., 2022) like BART (Lewis et al., 2019) and
T5 (Raffel et al., 2020).

Second, there is a lack of evaluation metrics of
structured tabular data generation. Existing bench-
marks often rely on rudimentary objective metrics
such as word overlap to measure the accuracy of

Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 2: Short Papers), pages 12-34
June 16-21, 2024 ©2024 Association for Computational Linguistics



A& —

Dataset
Curation

" p
w ]
| ¥ I
FormatCoT self-instruct with
in-context examples

Benchmark and

Train LLaMA-7B .
metrics

Figure 1: Overview of our workflow: We commenced by creating datasets of raw text tables, HTML tables, and
IATEX tables. Subsequently, LLaMA-7B was trained using the training data constructed by FORMATCOT. Finally,
our benchmarks validate the effectiveness of the current LLMs to generate such tables.

the content generated by the model (Li et al., 2023;
Wu et al., 2022; Pietruszka et al., 2022). This may
be insufficient for evaluating whether LLMs can
generate structured output, as an ideal evaluation
metric ought to also consider the format of gener-
ated content.

Third, there is a lack of methods to enhance the
performance of current LLMs to better follow nat-
ural language inputs and generate tabular outputs
with the correct format.

Our contributions can be encapsulated as out-
lined in Figure 1: (1) We introduce STRUC-BENCH,
a benchmark specifically constructed for generat-
ing structured tabular data. (2) We evaluate popular
LLMs on STRUC-BENCH using two proposed met-
rics, providing a comprehensive insight into the
prevailing limitations and common error types. (3)
We propose FORMATCOT to generate instruction
tuning data, wherein we utilize GPT-3.5 to generate
format instructions and then fine-tune LLaMA-7B
model to follow these formats. The resulting im-
pressive performance demonstrates that with FOR-
MATCOT small models can indeed surpass the per-
formance of a larger model in this particular task.

2 Problem Analysis and Benchmark

2.1 Problem Definition and Motivation

LLMs are tasked with generating complex struc-
tured tables, a process that involves understanding
both the content and the specific format require-
ments, such as LaTeX syntax. This task extends
beyond simple text generation as it demands preci-
sion not just in content creation but also in adhering
to a detailed and precise structural format. Spe-
cially, we aim to convert unstructured textual data
into structured tabular data, by extracting neces-
sary contents from text and following the required
structure or format.

2.2 Problem Analysis

To assess LLMs’ capability to convert textual de-
scriptions to structured tables, we utilized the Ro-
toWire dataset (Wiseman et al., 2017), originally
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a table-to-text dataset, in reverse as a text-to-table
task. After ensuring that the descriptions contained
adequate information for table generation through
areview of 20 samples, we found significant limi-
tations in the performance of GPT-3.5 and GPT-4,
especially when dealing with complex structures
as detailed in Appendix A.

When put to the test of generating data in precise
formats, such as tables, both GPT-3.5 and GPT-
4, despite their advanced capabilities, frequently
erred, as evidenced by a systematic MTurk human
annotation study (refer to Appendix B). The types
of errors, categorized into ‘Element Errors’, ‘Ele-
ment Format Errors’, ‘Structure Error’, and ‘Struc-
ture Naming Errors’, are quantified in Figure 2.

A mere 3% of GPT-3.5’s outputs were fully accu-
rate, with GPT-4 only slightly better at 9%. These
results suggest design limitations within the GPT
architecture, which, although effective at mimick-
ing language patterns, falter in tasks requiring sus-
tained structural coherence over longer sequences.

2.3 Benchmark Construction

We begin by selectively sourcing tables larger than
3x3 from the RotoWire (Wiseman et al., 2017)
dataset to present a baseline of complexity. Then,
to broaden our dataset diversity across various do-
mains, from The Stack (Kocetkov et al., 2022),
which includes GitHub code in 358 programming
languages from the BigCode project, we first se-
lect LaTeX and HTML formats. Further refining
our dataset, we extract elements relevant to table
representations to ensure focused complexity and
relevance to our structured data generation task. An
example of our benchmark is shown in Figure 4.
Table 1 gives statistics for the Rotowire dataset
and our constructed datasets. Then we eval-
uate 4 popular LLMs, including GPT-NeoX-
20B (Black et al., 2022), GPT-3.5, GPT-4, and
Vicuna-13B (Chiang et al., 2023). For LaTeX and
HTML data without paired text, we harness GPT-
3.5 to construct synthetic descriptions to be uti-
lized as input. To guarantee the quality of our
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Figure 2: Error analysis by human annotation. Some error types are explained in Appendix A.

benchmark, we sample 50 tables for each format
to ensure the correctness of the descriptions. Ini-
tially, we achieved a satisfaction rate of 76%. How-
ever, upon incorporating a manual interpretation
template (e.g. tab names for HTML) tailored to
each format (Appendix D), our satisfaction rate im-
proved significantly, reaching 96%. For example,
HTML tables possess their unique tags and struc-
ture, conforming faithfully to the syntax rules of
HTML language.

Dataset #Train #Test Format Rows & Columns

STRUC-BENCH Table 3.4k 728  Raw tex 7.26 & 8.75
STRUC-BENCH IETEX 5.3k 500 IATEX 275 & 4.47
STRUC-BENCH HTML 5.4k 499 HTML 5.50 & 3.54

Table 1: STRUC-BENCH data statistics. The number of
Rows & Columns has been averaged.

3 Methodology
3.1 Data Generation

As shown in Figure 3, we propose FORMATCOT
with GPT-3.5, a self-instruct method to generate
{data, instruction} pairs for fine-tuning purposes.
Specifically, our prompt of FORMATCOT involves
guiding models to accurately describe and inter-
pret the format elements presented in the output

: Input:
Task: Generate a LaTex table from given text
and format description
<TEXT>: ...

\_<FORMAT INSTRUCTION>: ...

table, inspired by Wang et al. (2023b) in the sum-
marization task. To verify the effectiveness of our
proposed FORMATCOT, we conduct an ablation
study in Appendix F.

3.2 Instruction Tuning

We introduce an instruction tuning approach de-
signed specifically to enhance LLMs’ abilities in
generating structured text (Touvron et al., 2023;
Patil et al., 2023). Specifically, we combine GPT-
3.5-generated format descriptions of output tables
and the original text input as the new input of
LLaMA fine-tuning. In other words, we start with
GPT-3.5 processing table data and synthesizing
comprehensive format instructions. The LLaMA
model is then fine-tuned on these enriched instruc-
tions we generate. This approach simulates a user-
agent interaction where GPT-3.5 effectively fetches
and consolidates table information, conversation-
ally instructing LLaMA for the final text generation,
outlined in Figure 3.

3.3 Evaluation Metrics

Assessing the accuracy of generated tables against
ground truth is complex due to the variability in
formatting, like HTML. An ideal evaluation met-
ric needs to discern substantial data discrepancies

<TABLES>: ...
Task: Generate a LaTex table from given text Describe the detailed format of a given latex table according to the commands
TEXT>: ... and tags with more than 500 words
- Whether there are table borderlines?

How is text alignment?
What are table attributes?
Whether to bold?
Whether to add \ref?
Whether there are horizontal and vertical lines bordering each row
and column?

Qy anything about special \" \ \" format token in latex.

Ayrmat(‘ oT: \
Input:

Guiding Questions for
Prompting

/

Figure 3: The upper-left corner box represents the original input, which notably lacks a description of the format.
To explicitly instruct the model on format understanding, we employ the FORMATCOT located on the right, which
produces the <FORMAT INSTRUCTION>. The lower-left box illustrates what the input for LLaMA fine-tuning
looks like after passing through FORMATCOT. <TEXT> provides a descriptive text for the expected table output
(original input), <TABLE> serves as a reference table (output), and the <FORMAT INSTRUCTION> is a format
guideline generated through FORMATCOT (added into input). Detailed prompts are displayed in Appendix D.1.



while disregarding trivial formatting variations.

We propose to break down the similarity of two
tables into two coarse components: content and
format. In scoring content similarity, we attempt
to parse content out the data within the table cells,
and compute the similarity. This similarity is com-
puted between the generated and ground-truth table
cells by commonly used similarity metrics. In scor-
ing format similarity, we place higher emphasis on
components such as the number of columns and
rows, cell alignment, and the table caption. We find
that these two scores allow us to perform a more
involved analysis of where predicted and ground-
truth tables differ. The implementation of these
two scores can be found in Appendix C.

3.3.1 P-Score

We take two approaches to score each metric. First,
we perform model-based evaluation, querying GPT-
3.5 with both tables and having it score the simi-
larity of content and format separately. Following
Wang et al. (2023a), we prompt the model to per-
form Chain-of-Thought (Wei et al., 2023) reason-
ing before outputting its scores, and we query the
model with the predicted and ground-truth tables
in both orders and average the scores. We report
these as the P-Score (Prompting Score).

3.3.2 H-Score

In addition, we also implement hand-crafted scor-
ing functions to score the similarity of the tables.
Since the tables can be presented in different for-
mats, we implement several heuristics to normalize
the tables and to compute their similarity. We use

an average of Levenshtein distance and the Ratclif-
f/Obershelp similarity metric to compute the sim-
ilarities between strings or data structures. These
heuristically normalized metrics are reported as the
H-Score (Heuristical Score). The analysis can be
found in Appendix A.3.

4 Experiments
4.1 Basic Settings

For metrics, we use SacreBLEU, ROUGE-L,
BERTScore, BARTScore, and BLEURT metrics as
they are all classical metrics to evaluate text sim-
ilarity, as well as two proposed metrics: P-Score
and H-score. qWe evaluate the following models:
GPT-NeoX-20B, GPT-3.5, GPT-4, Vicuna-13B,
LLaMA-7B, and our finetuning LLLaMa-7B. GPT-
NeoX-20B, GPT-3.5 and GPT-4 represent the state-
of-art performance of current LLMs and Vicuna-
13B is another version finetuned on LLaMA, which
can reach 90% of the capacity of GPT-3.5. We
think these models are strong enough to be persua-
sive. For the first 4 models, we simply call their
APIs from OpenAl or HuggingFace to generate
results without further finetuning. In our dataset,
each item consists of three parts: instruction, input,
and output. When generating results, we put each
item’s instruction and input together as the final in-
put to models. During inference, the user provides
the prompt in natural language, this can be for a
simple task (e.g., “please generate a table given by
the following information and format”). During
the inference process, we provide the model with
a natural language prompt to describe the format

Model SacreBLEU ROUGE-L BERTScore BARTScore BLEURT Content P-Score Format P-Score Content H-Score  Format H-Score
Tables from Raw Text
GPT-NeoX-20B 35.24 55.78 68.91 -2.34 33.51 3.86 6.10 0.50 -1.32
GPT-3.5 56.92 70.97 91.35 -1.68 36.85 6.19 8.16 0.52 -1.27
GPT-4 68.13 75.44 94.89 -0.99 55.24 6.88 8.30 0.85 0.53
Vicuna-13B 40.12 50.77 75.21 -2.05 40.02 4.07 6.33 0.55 -1.38
Ours-7B 90.6 88.98 98.54 -0.69 66.07 7.69 8.60 1.65 3.61
w.o. finetune 9.9 36.56 81.63 -2.50 70.24 4.58 6.00 0.51 -1.01
LaTeX
GPT-NeoX-20B 45.92 65.10 76.09 -2.05 40.87 7.23 7.02 0.56 0.72
GPT-3.5 56.94 75.99 86.25 -1.30 42.89 8.22 8.41 0.99 1.27
GPT-4 78.15 85.34 88.07 -1.09 67.11 8.78 8.81 1.10 1.35
Vicuna-13B 50.80 69.48 80.44 -1.07 36.74 7.70 8.10 0.78 1.06
Ours-7B 89.13 88.99 98.55 -0.69 66.07 8.94 9.05 1.14 1.52
w.o. finetune 47.24 70.89 73.27 -2.13 38.13 7.10 6.98 0.51 0.69
HTML
GPT-NeoX-20B 60.36 72.13 86.88 -1.59 30.06 8.42 8.94 0.81 0.92
GPT-3.5 73.80 85.19 96.76 -1.46 34.81 9.11 9.35 1.10 2.15
GPT-4 79.25 85.95 97.22 -1.31 41.59 9.17 9.62 1.15 2.29
Vicuna-13B 58.75 70.37 88.65 -1.58 31.11 8.55 8.88 0.79 0.93
Ours-7B 77.50 86.08 96.25 -1.30 42.89 9.20 9.70 1.18 2.49
w.o. finetune 65.30 78.24 88.12 -1.57 32.78 8.22 8.81 0.92 0.96

Table 2: Automated evaluation results on the test set, involving five types of previous metrics and four proposed
ones. w.o. finetune means that we also compared the performance of our model without finetuning as an ablation

study. ‘Ours-7B’ is finetuned LLaMA.

15



@ You

Generate tables according to the following description:

Input text: The Atlanta Hawks (46 - 12) beat the Orlando Magic (19 - 41) 95 - 88 on
Friday. Al Horford had a good all - around game, putting up 17 points, 13 rebounds,
four assists and two steals in a tough matchup against Nikola Vucevic. Kyle Korver
was the lone Atlanta starter not to reach double figures in points. Jeff Teague
bounced back from anillness, he scored 17 points to go along with seven assists and
two steals. After a rough start to the month, the Hawks have won three straight and
sit atop the Eastern Conference with a nine game lead on the second place Toronto
Raptors. The Magic lost in devastating fashion to the Miami Heat in overtime
Wednesday. They blew a seven point lead with 43 seconds remaining and they might
have carried that with them into Friday's contest against the Hawks. Vucevic led the
Magic with 21 points and 15 rebounds. Aaron Gordon (ankle) and Evan Fournier (hip)
were unable to play due to injury. The Magic have four teams between them and the
eighth and final playoff spot in the Eastern Conference. The Magic will host the
Charlotte Hornets on Sunday, and the Hawks with take on the Heat in Miami on
Saturday.

ChatGPT
Based on the provided input text, here are the tables you requested:

Table 1: Team Stats

Team Losses Total points Points in 4th quarter Wins

Hawks 12 95 26 46

Magic 4 88 22 19
Table 2: Player Stats

Player Assists Points Total rebounds Steals

Al Horford 4 17 13 2

Kyle Korver - -

Jeff Teague 7 17 - 2

Nikola Vucevic 21 15

Let me know if there are any adjustments you'd like to make!

Figure 4: An exemplification of our benchmark. The
input is made up of the instruction and the input text,
whereas the output aims to present the target table. No-
tably, there are some inaccuracies in the predicted out-
put; for instance, ‘Points in 4th quarter’ under ‘Hawks’
should be vacant, and correspondingly, ‘Points in 4th
quarter’ for ‘Magic’ should be 21.

and content of our task, as well as the expected
response.

4.2

Table 3 displays human evaluation results on two
proposed metrics with instance-level Pearson cor-
relation, reflecting a purposeful design that caters
to the specific demands of structured output assess-
ment. We engaged five undergraduate students to
annotate 200 examples focusing on content and for-
mat quality. Equipped with the input description
(with reference appended) and generated outputs,
they scored each aspect on a 10-point scale. Both
the P-score and H-score showcase a significant cor-
relation with human judgment, indicating their rel-
ative robustness and effectiveness in this evaluation
space. This level of correlation, which surpasses
that of many prior meta-evaluation efforts (Fab-
bri et al., 2020; Tang et al., 2021), reinforces the
value of our metrics and addresses concerns about
their ability to reliably reflect human evaluation.

Human Evaluation
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Additionally, we evaluated well-known metrics
including ROUGE-L, BERTScore, BARTScore,
and BLEURT. Limited space precluded a full dis-
cussion, yet our Content P-score showed the best
instance-level correlation.

Metrics Content Correlation Format Correlation
Content P-score 0.5301 -

Format P-score - 0.3812
Content H-score 0.1059 -

Format H-score - 0.3021

Table 3: Human evaluation results.

4.3 Results

Table 2 provides a comparative analysis of differ-
ent LLMs based on several metrics. For ‘Tables
from Raw Text’, the Ours-7B outperforms the other
models in every metric. Interestingly, without fine-
tuning, the performance drops significantly, partic-
ularly in SacreBLEU, ROUGE-L, and BERTScore.
The results for ‘LaTeX’ reveal a similar trend and
in the ‘HTML’ category, GPT-4 scores the highest
in SacreBLEU and BERTScore. However, these
differences are slight and our 7B model comes
out on top for the rest of the metrics. The results
demonstrate that our approach exhibits superior per-
formance, highlighting the efficacy of fine-tuning
smaller models in surpassing much larger models.
Moreover, we delve into an analysis based on our
Mturk annotation, attributing observed shortcom-
ings to several error types. And we present an
ability map in Figure 5 and Appendix E.

ChatGPT

Coverage
03

Vicuna % GPT-4 #Ours

08 4

o

i

Hallucination

Formatting
Control o

Pragmatics " Reasoning

Comprehension

Figure 5: Visualization of LLMs’ capability.

5

In summary, our study provides a thorough analysis
of LLMs’ challenges in structured table generation,
introduces novel evaluation metrics, and assem-
bles a specific benchmark covering a range of data
types. We pinpoint key issues including content fi-
delity, format adherence, numerical reasoning, and
management of extensive tables.

Conclusion



6 Limitations

Although we present a comprehensive analysis, the
exploration of LLMs in structured text generation
presented in this paper has several limitations:

Investigating Optimal Format for Tabular Rep-
resentation In this study, we did not investigate
which table formats are most effective. Different
presentations of the same information can be rea-
sonable, and table normalization strategies, such
as determining the best way to tabulate given facts
or how to interconnect multiple tables, remain un-
explored. Future research could engage in the study
of table normalization to ascertain optimal strate-
gies for tabular data structuring and representation.

Domain-Specific Benchmark Development
While we’ve made strides in constructing bench-
marks for structured text generation, it may be
beneficial to develop benchmarks that cater to
specific domains. Different fields might have
unique structural requirements and understanding
these nuances can significantly improve the
models’ applicability across diverse contexts.

Expand the Range of Datasets There are end-
less data types and sources that can be explored.
Incorporating a broader variety of datasets could
expose the models to an even wider range of struc-
tural formats, ultimately enhancing their overall
performance.

Enhancing Numerical Reasoning Capabilities
Our study identified inadequate numerical reason-
ing as one of the challenges faced by LLMs. Inves-
tigating techniques to bolster numerical reasoning
in these models could lead to significant improve-
ments in their performance.

Developing Advanced Methods While our
structure-aware instruction tuning method showed
promising results, more sophisticated techniques
could be developed. For instance, future work
could explore ways of incorporating more explicit
structural information into the model or developing
methods that allow the model to learn structural
patterns more effectively.

Exploring Multimodal LLMs As LLMs con-
tinue to evolve, there are opportunities to explore
multimodal models that can process and generate
both text and other forms of data, such as sound
or images (Kamigaito et al., 2023), in a structured
manner.
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A Analysis with Examples
A.1 Example Table A

The main difference between the reference tables
and the tables generated by GPT-3.5 and GPT4,
shown in figure 6, is in the completeness and preci-
sion of the data provided.

In the reference tables, all relevant data is fully
represented: For the teams (Table 1), each team has
a precise number or percentage for every statistic.
Similarly, for the players (Table 2), each player
has a definite number for every statistic, including
minutes played in the format “mm:ss”.

In contrast, the generated tables show data that is
incomplete and imprecise. For GPT-3.5 generated
one, the team statistics table has some statistics
missing, as represented by empty cells, and some
are not presented as percentages. The player statis-
tics table also has missing data similarly, and it
lacks the "minutes played" statistics entirely. For
instance, in the ‘team’ table, the "Percentage of
field goals" column for the Suns is missing. Sim-
ilarly, in the ‘player’ table, many key statistics
such as "3-pointers attempted", "3-pointers made",
"Field goals attempted”, "Field goals made", and
"Minutes played" are missing for various players.
Regarding the format, we observe a lot of format
errors. For example, the ‘Percentage of field goals’
column for Grizzlies is represented as "50" instead
of "50.0%". Moreover, the ‘Wins’ column for the
Suns is represented as "3" instead of "0". This
misrepresentation can lead to significant misunder-
standing of the data. The ‘Player’ table also has
format errors. For instance, the ‘Minutes played’
column is missing the time format (i.e., “00:00”).
On the other hand, the reference tables adhere to
a standard format. Percentage data is represented
with a ‘%’ sign, time data uses the ‘00:00’ format,
and numeric data correctly represents each statistic.

For Vicuna-13B results shown in figure 7, al-
though it has the correct format for both tables,
there are still many element errors. For instance,
the ‘team’ table has wrong statistics such as
“Losses” and “Win” for the Suns. Besides, in the
‘player’ table, many cells shouldn’t have data. How-
ever, they have, which is a mistake. Some cells
like Isaiah Thomas’s and Eric Bledsoe’s ‘Assists’
should be 2 and 4, but they are not in the Vicuna-
13B ‘player’ table. Similarly, LLaMA2-7B results,
have the same element errors in the ‘team’ table
and worse errors in the ‘player’ table. It fills all
cells, many of which should be none. As for some
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cells that should have data, their data are wrongly
filled in like Eric Bledsoe’s ‘Assists’ and ‘Field
goals made’.



The Grizzlies (50) used a strong second half to outlast the Suns (3 - 2) 102 - 91 in Phoenix on
Wednesday night. Memphis found itself behind six at halftime but outscored Phoenix 30 - 19 in
the third quarter and 26 - 20 in the final period. The Grizzlies shot 50 percent from the field, led
by strong performances from Courtney Lee and Mike Conley. Lee scored 22 points (9 - 14 FG, 4
- 5 3Pt), while Conley led all scorers with 24 (9 - 14 FG, 3 - 4 3Pt) and 11 assists. Marc Gasol
added 18 points, six assists, and five rebounds. The Suns, who beat the Lakers 112 - 106 on
Tuesday, were paced by 23 points (9 - 12 FG), five rebounds and four assists from Eric Bledsoe.
It was a quiet night for Goran Dragic, who scored just six points in 26 minutes. The third member
of the backcourt trio, Isaiah Thomas, had 15 points and two assists off the bench, while Markieff
Morris added 20 points and five rebounds. The Grizzlies out - rebounded Phoenix 37 - 35 and
outscored the Suns in the paint 46 - 32. Memphis also registered 25 assists compared to only 13 -
on 32 field goals - for the Suns. Memphis now heads to Oklahoma City to take on the Thunder on
Friday. Phoenix, meanwhile, hosts the Kings on Friday.

Table 1: Team
§ i Reference
Summary
Percentag Points in Points in
Numberof  eoffield  Los Total 3rd th Rebound
Team teamassists  goals ses  points quarter  quarter s Wins
Suns 13 - 2 91 19 20 35 3
Grizzlies 25 50 - 30 2 37
GPT-3.5
Number of Percentage Pointsin3rd  Points in 4th
Team team assists of field goals  Losses Total points quarter quarter Rebounds Wins
Suns 13 47.7% 2 91 19 20 35 0
Grizzlies 25 50.0% o 102 30 26 37 1
GPT-4
Number of Percentage
team of field Total Points in Points in points in
Team assists goals Losses points 3rdquarter 4th quarter Rebounds  Wins the paint
Grizzlies 25 50.0% - 102 30 % 37 50 46
Suns 13 - 2 91 19 20 35 3 32
Table 2: Player
L Reference
Statistics
3pointers  3-pointers  Field goals Field goals Minutes Total
Player Assists attempted  made attempted made played Points rebounds
Marc Gasol 6 - - - - - 18 5
Courtney 5 4 14 9 s 2
Lee
Mike Conley 11 4 3 14 9 - 24
Markieff
Morris 2 B
Gara‘n 26 6
Dragic
Eric Bledsoe 4 12 ° 23 s
Isaiah 15
Thomas
GPT-3.5
3-pointers  3-pointers  Field goals  Field goals Minutes Total
Player Assists attempted  made attempted  made played Points rebounds
Marc Gasol 6 0 0 12 8 35:00 18 5
CmaEy g, 5 4 14 9 34:00 2 2
Lee
Mike Conley 11 4 3 14 9 36:00 24 0
Markieff s 2 14 8 34:00 20 5
Morris
GeIly 2 1 2 9 26:00 6 5
Dragic
Eric Bledsoe 4 3 1 12 9 34:00 23 5
Isaiah 5 2 1 5 26:00 15 0
Thomas
GPT-4
3-pointers  3-pointers  Field goals  Field goals Minutes Total
Player Assists attempted  made attempted  made played Points rebounds
Marc Gasol 6 - - - - - 18 5
iy 5 4 14 9 s 2
Lee
Mike Conley 11 4 3 14 9 - 24
Markieff
Morris 2 S
Goran
Dragic & G
Eric Bledsoe 4 - - 12 9 - 23 5
Isaiah
Thomas  ° »

Figure 6: Examples of generating tables with GPT-3.5 and GPT-4 based on the input text. The genera