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Preface of the EACL SRW 2024 by the Workshop Co-chairs

Welcome to the EACL 2024 Student Research Workshop!

The EACL 2024 Student Research Workshop (SRW) is a forum for students in the field of Computational
Linguistics and Natural Language Processing to come together to discuss and advance their research with
help from more experienced researchers from both academia and industry.

Following the tradition of the previous student research workshops, we have two tracks: research papers
and thesis proposals. The research paper track is a venue for PhD students, Master’s students, and
advanced undergraduate students to describe completed work or work-in-progress along with preliminary
results. The thesis proposal track is offered for students who have decided on a thesis topic and are
interested in receiving feedback for their proposal with suggestions for both making the ideas achievable,
as well as discussions related to future directions for their work.

The student research workshop has received considerable attention, and papers have addressed research
questions in various areas. After excluding the desk-rejected (1) and withdrawn (1) submissions, we
received 58 submissions in total: 6 thesis proposals and 52 research papers (divided into 50 direct sub-
missions and 2 through ARR Commitment, where 1 ARR Commit withdrew). We accepted 3 thesis
proposals and 29 research papers, resulting in an overall acceptance rate of around 55%. Excluding no-
narchival papers (3), 29 papers appear in these proceedings. All the accepted papers will be presented as
part of the EACL conference. Moreover, similar to previous years, we organized in-person mentorship to
enable the students to receive feedback and engage in discussions about their research directions, as well
as improve the quality of the poster presentation of accepted papers.

We thank our program committee members for providing careful and comprehensive reviews for the
papers, and all of our mentors for donating their time to provide feedback to our student authors. Thanks
to our faculty advisors, Steffen Eger and Parisa Kordjamshidi, for the essential advice and suggestions,
and to the EACL 2024 organizing committee for their support in the entire process. Finally, we would
like to thank all the authors whose participation has made the workshop a success!
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AutoAugment Is What You Need:
Enhancing Rule-based Augmentation Methods in Low-resource Regimes

Juhwan Choi!, Kyohoon Jin2, Junho Lee!, Sangmin Song' and Youngbin Kim'?

'Department of Artificial Intelligence, Chung-Ang University
2Graduate School of Advanced Imaging Sciences, Multimedia and Film, Chung-Ang University
{gol1d5230, fhzh123, jhjo32, 52022120859, ybkim85}@cau.ac.kr

Abstract

Text data augmentation is a complex problem
due to the discrete nature of sentences. Al-
though rule-based augmentation methods are
widely adopted in real-world applications be-
cause of their simplicity, they suffer from po-
tential semantic damage. Previous researchers
have suggested easy data augmentation with
soft labels (softEDA), employing label smooth-
ing to mitigate this problem. However, finding
the best factor for each model and dataset is
challenging; therefore, using softEDA in real-
world applications is still difficult. In this paper,
we propose adapting AutoAugment to solve
this problem. The experimental results sug-
gest that the proposed method can boost exist-
ing augmentation methods and that rule-based
methods can enhance cutting-edge pre-trained
language models. We offer the source code.'

1 Introduction

Data augmentation is a regularization strategy that
improves model performance expanding the data
held in various ways (Herndndez-Garcia and Konig,
2018). In the natural language processing (NLP)
field, data augmentation is used in various fields to
alleviate data shortages, and various augmentation
methods have been proposed accordingly (Feng
et al., 2021; Li et al., 2022). For example, image
data can be augmented by applying simple rules,
such as flipping and rotation, to image data (Yang
et al., 2022), and text data can also be augmented,
by simple rules such as replacing synonyms and
changing the order between words (Zhang et al.,
2015; Wei and Zou, 2019). In addition, a method
for augmenting data by generating new text us-
ing various deep learning models has also been
proposed (Sennrich et al., 2016; Wu et al., 2019;
Anaby-Tavor et al., 2020; Yoo et al., 2021; Zhou
et al., 2022; Dai et al., 2023).

"https://github.com/c-juhwan/
soft-text—-autoaugment
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However, as these methods often demand train-
ing data for fine-tuning before augmentation
(Zhang et al., 2022; Li et al., 2022), it may be
challenging to apply them in a low-resource envi-
ronment (Hu et al., 2019; Bayer et al., 2022; Kim
et al., 2021). Rule-based text data augmentation
methods are less costly and easy to implement;
thus, they are often used in real-world problems.
Despite that, the previously proposed rule-based
text data augmentation methods risk not maintain-
ing semantic consistency with original data, which
is different from image data (Zhao et al., 2022),
leading to performance degradation. To relieve
this problem, methods that perform data augmen-
tation only through random insertion of punctua-
tion marks have also been proposed (Karimi et al.,
2021), but they introduce fewer variations com-
pared to easy data augmentation (EDA). Recently,
softEDA (Choi et al., 2023), a method applying
label smoothing (Szegedy et al., 2016) to the aug-
mented data, was proposed to alleviate these draw-
backs.

In softEDA, a heuristic grid search was per-
formed for the label smoothing factor (a hyperpa-
rameter for performing label smoothing). However,
the method based on a heuristic search has the fol-
lowing disadvantages. First, a heuristic search is
expensive to execute (Bergstra and Bengio, 2012).
Second, although we found the best factor value of
the grid, it may not be the global optimum. There
could be a better value outside the heuristic search
grid; thus, revealing the possible performance gain
is difficult.

This paper proposes a method to apply AutoAug-
ment (Cubuk et al., 2019), a technique to determine
the optimal factors in the data augmentation pro-
cess to alleviate the limitations of previous soft-
EDA methods. By optimizing various arguments
of softEDA, it is shown that stable and effective
performance improvement is possible compared to
the existing rule-based strategy with static factors.
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In addition, the existing softEDA experiment was
conducted on an entire dataset. However, more
severe overfitting occurs when the given training
data are insufficient (Althnian et al., 2021), and the
scope of performance improvement is greater when
additional training data are obtained from a small
dataset (Prusa et al., 2015; Okimura et al., 2022),
so data augmentation becomes increasingly crucial
in this low-resource environment. Therefore, this
study evaluates the proposed method under a low-
resource scenario and demonstrates that the pro-
posed method is effective even under data-scarce
conditions. In addition, some existing studies have
argued that simple rule-based augmentation strate-
gies are less effective in improving the performance
of pre-trained language models (PLMs) (Longpre
et al., 2020; Zhang et al., 2022; Plui¢ec and Sna-
jder, 2023). In this study, we show that through
argument optimization, it is possible to improve
the performance of not only BERT (Devlin et al.,
2019), the standard PLM, but also DeBERTaV3
(He et al., 2023), a cutting-edge PLM, through rule-
based data augmentation.

2 Related Work

Data augmentation of text is primarily performed
by augmenting data according to predetermined
rules (Zhang et al., 2015; Belinkov and Bisk, 2018;
Wei and Zou, 2019; Karimi et al., 2021; Choi et al.,
2023) or using various deep learning models (Sen-
nrich et al., 2016; Wu et al., 2019; Anaby-Tavor
et al., 2020; Yoo et al., 2021; Zhou et al., 2022;
Dai et al., 2023). Rule-based data augmentation
methods generate new data by performing pertur-
bation in various ways, such as replacing some
of the words in a given sentence with synonyms
(Zhang et al., 2015) or inserting typos at the char-
acter level (Belinkov and Bisk, 2018). The easy
data augmentation (EDA) (Wei and Zou, 2019)
technique is a representative rule-based data aug-
mentation method consisting of synonym replace-
ment (SR), random insertion (RI), random swap
(RS), and random deletion (RD). However, because
such random changes can lead to the loss of seman-
tic consistency, the “an easier data augmentation”
(AEDA) technique (Karimi et al., 2021) consist-
ing only of the RI of six punctuation marks has
also been proposed. The softEDA (Choi et al.,
2023) method compensates for the semantic dam-
age caused by EDA by applying label smoothing
to the augmented data.

Model-based augmentation methods employ
deep learning models to generate new data. Back-
translation (Sennrich et al., 2016) is one of the early
model-based methods. It first translates the given
data into another language and back-translates it
to the original language, generating different ex-
pressions with the same concept. Methods based
on PLM have also been proposed, and C-BERT
(Wu et al., 2019), LAMBADA (Anaby-Tavor et al.,
2020), and FlipDA (Zhou et al., 2022) generate new
data using BERT (Devlin et al., 2019), GPT-2 (Rad-
ford et al., 2019), and T5 (Raffel et al., 2020), re-
spectively. In addition, GPT-3 (Brown et al., 2020)
and ChatGPT, which are larger than these PLMs,
have been proposed to generate new data (Yoo et al.,
2021; Dai et al., 2023). Other researchers have in-
troduced Mixup (Zhang et al., 2018) strategy to the
NLP field to augment text data (Guo, 2020; Sun,
2020; Yoon et al., 2021).

Moreover, some previous approaches have tried
to apply AutoAugment for NLP. Text AutoAug-
ment (Ren et al., 2021), the work closest to the pro-
posed method, suggested applying AutoAugment
to optimize hyperparameters for data augmentation.
In addition, DND (Kim et al., 2022) incorporated
various data augmentation methods and suggested
optimizing two reward terms regarding the diffi-
culty and consistency with the original data. While
the proposed work uses AutoAugment to optimize
augmentation hyperparameters, we also focus on
optimizing label smoothing values for the original
and augmented data.

3 Method

3.1 Preliminaries

The EDA (Wei and Zou, 2019) method comprises
four aforementioned suboperations: SR, RI, RS,
and RD. First, SR randomly selects several words
in a given sentence and changes them into their syn-
onyms. Second, RI selects a random word in the
sentence and inserts its synonym at a random posi-
tion in the sentence. Third, RS operation randomly
selects two words in the sentence and changes their
positions. Finally, RD removes each word from the
sentence with a predefined probability.

Through these four suboperations, EDA intro-
duces noise to the original data and generates aug-
mented data. Each suboperation has a magnitude
of perturbation. For instance, in the case of SR, a
higher magnitude leads to the additional replace-
ment of the original words with their synonym:s.



For each observed data pair (x,y) in the original
dataset D, where x denotes an input sentence and
y represents the corresponding label value, the pro-
cess of EDA can be formulated as follows:

)A( = EDA(X,pEDA) - (1)

where {asg, ar1, Ors, arp} denotes the mag-
nitude of each suboperation, and pgpa =
{Psr, Pr1, Prs, Pro } represents the probability dis-
tribution of each suboperation to be selected, which
are equal and sum to one. As indicated, EDA only
modifies x, and the label of augmented data is the
same as for y.

The softEDA (Choi et al., 2023) is a technique
that incorporates noise into the label of augmented
data through label smoothing (Szegedy et al., 2016).
While softEDA follows the previous EDA to aug-
ment X, the following equation defines the process
of softEDA, generating a label for augmented data

Yy

N €aug
y=(1—€ug)y +
( aug) NClass
_ (1 - Eaug> + A?Z‘jjss lf y = yl (2)
- Otherwise
Class

where €4, 1s a smoothing factor for label
smoothing.

3.2 Proposed Method

Previous EDA and softEDA have numerous aug-
mentation hyperparameters and were primarily
fixed or heuristically searched. This paper pro-
poses a method to optimize these hyperparameters
by adapting AutoAugment. First, we defined an
augmentation policy P with various factors:

P = {paug7pSR7pRI7pRS7pRD7
Qsr, ORT, ORs; ORD) (3)

Naug, €oriy €aug }
where p,,, indicates the probability of augmen-
tation, N, refers to the amount of augmented
data per original data point, €,,; represents a la-

bel smoothing factor for the original data, differ-
ent from €,,,. Following Text AutoAugment (Ren

et al., 2021), we optimized the proposed policy
based on sequential model-based global optimiza-
tion (Bergstra et al., 2011). Finding the optimal
augmentation parameter for each model and dataset
through this adaptation of AutoAugment with soft-
EDA is more beneficial than inefficient grid search.

4 Experiment

4.1 Datasets and Low-resource Setting

Eight text classification datasets were used to evalu-
ate the proposed method. The SST2, SSTS (Socher
et al., 2013) and MR (Pang et al., 2002) sentiment
classification tasks are from movie reviews. The
CoLA (Warstadt et al., 2019) binary classification
dataset measures the linguistic acceptability of a
given sentence. The SUBJ (Pang and Lee, 2004)
binary classification dataset deals with the subjec-
tivity of a sentence. PC (Ganapathibhotla and Liu,
2008), and CR (Hu and Liu, 2004; Liu et al., 2015)
are datasets constructed from customer reviews. In
addition, the TREC (Li and Roth, 2002) multiclass
text classification dataset is about the question type
of given text. Dataset specifications can be found
in Appendix A.

Data augmentation becomes more important
when the given data is deficient than when suf-
ficient data can be accessed (Chen et al., 2023). To
simulate a more challenging scenario, we evalu-
ated the proposed method with only 100 and 500
randomly selected original data from each dataset.

4.2 Baselines

To validate the claim that hyperparameter optimiza-
tion for the augmentation method is effective in
enhancing model performance, we compared our
approach with previous rule-based data augmen-
tation methods with fixed hyperparameters. We
compared the proposed method against the previ-
ous EDA, AEDA, and softEDA methods with fixed
hyperparameters.

Recent studies suggest that simple rule-based
augmentation methods are insufficient to enhance
PLM-based models (Longpre et al., 2020; Zhang
et al., 2022; Pluscec and §najder, 2023). In addi-
tion, validating the newly proposed augmentation
method using cutting-edge models, not just mod-
els like BERT, is necessary (Zhou et al., 2022).
Therefore, we adopted BERT and DeBERTaV3
(He et al., 2023), an improvement of DeBERTa (He
et al., 2021) as the baseline model for evaluation.
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Table 1: Experimental results. Each experiment has been repeated five times and the statistics are presented in
meang, format. The upper side of each column denotes the results when Ny, = 100, and the lower side shows the
results when Ny,,;; = 500. The best mean and standard deviation values for each model and dataset are boldfaced.
Results that reported a lower mean value than the baseline are gray.

4.3 Main Results

Table 1 reports the experimental results. Previ-
ously proposed augmentation methods have faced
marginal gain, or even performance degradation.
Especially, softEDA has a high standard deviation
compared to other methods, indicating that soft-
EDA has difficulty being effective within a single
fixed hyperparameter and requires optimization for
hyperparameters. Whereas, the proposed method
exhibits a stable and remarkable performance im-
provement within every setting, including those
where other methods had performance degradation
or marginal gains. This finding suggests enhanc-
ing extensive and cutting-edge PLMs with simple
augmentation methods is achievable under the care-
fully designed data augmentation policy and hyper-
parameter optimization strategy. Furthermore, it is
shown that our strategy has remarkably low stan-
dard deviation values compared to other techniques,
showcasing that our approach is robust against sta-
tistical differences and valuable for practical appli-
cation in low-resource text classification problems.

4.4 Ablation Study

One may wonder whether the performance im-
provement reported in Table 1 is solely caused by

the adaptation of AutoAugment, rather than the la-
bel smoothing of softEDA. To validate the effective-
ness of label smoothing, we conducted an ablation
study where label smoothing is not applied (i.e.,
€ori = €aug = 0). This setting is equal to optimiz-
ing only factors of EDA. “w/ Ours w/o LS” row of
Table 1 presents the experimental results, revealing
that the proposed method without label smoothing
is less effective than the proposed method. This
finding supports that the label smoothing optimiza-
tion introduced by softEDA plays a crucial role in
enhancing the model.

5 Conclusion

This paper proposed a method to optimize various
hyperparameters of rule-based text augmentation
methods. The experimental results suggest that
the proposed method is effective and stable, and
that rule-based augmentation methods can improve
cutting-edge PLMs with proper hyperparameter op-
timization. Future work may extend this approach
to other tasks, such as natural language inference,
which is more complex than the single-sentence
classification conducted in this paper.



Limitations

This paper used AutoAugment to optimize the rule-
based data augmentation method. The primary
weakness of AutoAugment is the computational
overhead from the searching process (Zhang and
Ma, 2022). However, under low-resource situa-
tions, where the necessity of data augmentation is
emphasized, this problem can be diminished as the
time consumption of the search process decreases.

Ethics Statement

This paper proposes an optimized rule-based aug-
mentation method. These rule-based methods are
more ethically stable than model-based approaches,
as the modification is performed under predefined
rules. For example, back-translation can be eas-
ily exposed to the potential bias of the translation
model. Methods based on PLMs also share this con-
cern. However, rule-based augmentation methods,
including the proposed method, perform modifica-
tions within a given sentence and are less likely to
be exposed to unintentional bias.
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A Dataset Specification

Dataset | NN, Class N Train N Test
SST2 2 6.9K 1.8K
SST5 5 85K 2.2K
CoLA 2 8.5K 0.5K
SUBJ 6 8K 2K
TREC 2 5.5K 0.5K

MR 2 95K 1.1K
CR 2 3.0K 0.8K
PC 2 39K 4.5K

Table 2: Specification of each dataset used for the ex-
periment.



SST2  CR MR TREC SUBJ PC CoLA

BERT w/o Aug | 89.74 89.08 84.28 90547 96.18 9344 75.38
w/ EDA +0.71 +0.51 +0.58

w/ AEDA +0.22 +1.84 +0.19

w/ softEDA 0.1 +0.29 +0.15 +043 +1.34
w/ softEDA 0.15 +0.66 +0.02
w/ softEDA 0.2 +2.10 +0.19 +0.05 +043 +0.81
w/ softEDA 0.25 +2.10 +1.17 +0.67 +1.50
w/ softEDA 0.3 | +0.83 +0.00 +0.67 +0.23

Table 3: Results of softEDA for the BERT model reported in the softEDA paper. The best scores for each dataset
are boldfaced. Scores lower than the baseline are gray.

B Implementation Details is more challenging for model.

We used PyTorch (Paszke et al., 2019) and
Huggingface Transformers (Wolf et al., 2020)
to implement the model and evaluation pro-
cess. We used bert-base-cased and
microsoft/deberta-v3-base for the
BERT and DeBERTaV3 models. Every model
was trained using the Adam optimizer with a
batch size of 32 and a learning rate of 5e-5 for
ten epochs, with early stopping with a patience
value of 5, conditioned on best validation accuracy.
The training procedure was performed on a single
Nvidia RTX 3090 GPU.

For the baseline method implementation, we
used TextAugment library (Marivate and Sefara,
2020) for EDA, and softEDA was built on it. The
library did not have an implementation for AEDA;
thus, we implemented it separately. We used ray
tune (Liaw et al., 2018) to implement the proposed
method. Please refer to the attached code for more
information.

C Analysis of softEDA

We investigated the experimental results of the soft-
EDA paper. Table 3 presents the experimental re-
sults reported in the appendix of the softEDA paper.
The results suggest that, although softEDA can po-
tentially enhance model performance, it is problem-
atic to determine the optimal label smoothing factor
for each model and dataset. Performance degrada-
tion compared to the baseline was also observed
where the factor is improper for each setup. This
finding motivated us to determine a better solution
for finding optimal factors than a heuristic search.
Furthermore, the authors performed the experiment
on the full dataset. In contrast, we conducted the
experiment through low-resource scenarios, which
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Abstract

Generating multiple translation candidates
would enable users to choose the one that satis-
fies their needs. Although there has been work
on diversified generation, there exists room for
improving the diversity mainly because the pre-
vious methods do not address the overcorrec-
tion problem—the model underestimates a pre-
diction that is largely different from the training
data, even if that prediction is likely. This paper
proposes methods that generate more diverse
translations by introducing perturbed k-nearest
neighbor machine translation (§NN-MT). Our
methods expand the search space of KENN-MT
and help incorporate diverse words into candi-
dates by addressing the overcorrection problem.
Our experiments show that the proposed meth-
ods drastically improve candidate diversity and
control the degree of diversity by tuning the
perturbation’s magnitude.

1 Introduction

In natural language, there are multiple lexically
distinct translations given an input sentence. There-
fore, machine translation systems should offer mul-
tiple translation candidates to users so that the final
choice should be made by them considering their
demands, e.g., styles or domains. However, stan-
dard neural machine translation (NMT) models
suffer from a low diversity problem in which the
generated translation candidates are almost iden-
tical. One reason lies in beam search, which is
a standard inference algorithm, where the search
space is expanded in a left-to-right fashion while
keeping only the top-/V candidates in every decod-
ing step and just preserving slightly different trans-
lations (Gimpel et al., 2013; Vijayakumar et al.,
2018; Freitag and Al-Onaizan, 2017). The other
reason is the overcorrection problem (Zhang et al.,
2019), which is caused by a model trained with
cross-entropy loss that underestimates a prediction
that is largely different from the training data, even
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if it is likely. This phenomenon discourages the
model from generating synonymous expressions
and leans toward gold standards, reducing the di-
versity in the candidates.

To encourage the model to generate more diverse
candidates, Vijayakumar et al. (2018), Holtzman
et al. (2020), and Freitag and Al-Onaizan (2017)
proposed variants of beam search algorithms in
which diverse candidates are retained in the search
space. However, their methods do not directly ad-
dress the overcorrection problem, limiting their
effect in generating diverse translations.

To alleviate this issue, we propose kNN diver-
sified decoding that combines diversified beam
search and k-nearest neighbor machine transla-
tion (kNN-MT; Khandelwal et al., 2021), which
addresses the overcorrection problem by retriev-
ing alternative target tokens from the training data
during decoding (Yang et al., 2022). To further
diversify the search space, we also propose two
methods, i.e., stochastic and deterministic meth-
ods. The stochastic method expands the search
space by perturbation so that the model can gen-
erate more likely tokens that are less focused. We
proposed two types of perturbations, noised-kNN
(Figure 1 (1)), which adds a noise vector to the
query of the kNN search, and randomized-kNN
(Figure 1 (2)), which arbitrarily selects k£ neighbors
from a more extensive search space. The determin-
istic method, uniquify-kNN (Figure 1 (3)), removes
duplicates from the retrieved kNN tokens so that
no token can be dominant and thus more diverse
candidates remain.

Our experiments showed that our proposed meth-
ods alleviate the overcorrection problem that leads
to the generation of more diverse candidates, and
maintain fluency and oracle translation quality in
multiple domains and language pairs. We also show
that the degree of diversity can be controlled by
changing the perturbation’s magnitude, which ben-
efits end-applications, e.g., human post-editing.

Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics:
Student Research Workshop, pages 9-31
March 21-22, 2024 (©2024 Association for Computational Linguistics
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Figure 1: Overview of our proposed method: See §3 for details. Green points represent target tokens in datastore.
Blue points represent query vectors, and surrounding circles denote retrieved neighbors. (1) Noised-kNN adds a
noise vector to the query, changing the retrieved tokens. (2) Randomized-£NN initially retrieves more neighbors and
randomly selects k-neighbors. (3) Uniquify-kNN only considers unique target tokens from retrieved neighbors. In
this figure, number of neighbors k per query is set to 3, and hyperparameter / of (2) Randomized-kNN is set to 2.0.

2 Related Work

2.1 Diverse Text Generation

Given the importance of generating diverse transla-
tions, many of the proposed search algorithm vari-
ations can be categorized into either deterministic
or stochastic types.

For the former method, Vijayakumar et al. (2018)
proposed diverse beam search (DBS) in which
beams are divided into several groups, and a modi-
fied score function penalizes the overlapped tokens
among the groups. Freitag and Al-Onaizan (2017)
proposed a method that determines the maximum
number of candidates that share the same partial
hypothesis.

As for the latter approach, top-k£ sampling (Fan
et al., 2018) randomly samples the output tokens
from the top k-tokens with the highest likelihood at
each time step. Similarly, nucleus sampling (Holtz-
man et al., 2020) randomly samples from the small-
est subset of candidates whose total likelihood
exceeds p at each time step. Noisy parallel ap-
proximate decoding (Cho, 2016) explores multiple
modes by injecting noise into the model’s hidden
states. Wu et al. (2020) proposed a method that
samples different models derived by applying con-
crete dropout. MixDiversity (Li et al., 2021) lever-
ages the hidden representations of the randomly
sampled sentence pairs from the subset of the train-
ing corpus.

Although all of the above methods diversify the
output text, they do not explicitly address the over-
correction problem, which is the root cause of the
limited diversity (§2.3).

2.2 ENN-MT

Khandelwal et al. (2021) proposed k-nearest neigh-
bor machine translation (kNN-MT), which uses
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kNN search for retrieving similar examples during
inference by reflecting the retrieval results in the
score function. The translation quality is improved
by allowing the model to directly access large-scale
cached translation examples. kNN-MT consists of
two steps, datastore creation and generation.

Datastore creation Before inferences with KNN-
MT, we need to create a datastore, i.e., key-value
pairs of high-dimensional representations and to-
kens. We feed all the training data into the NMT
model and save each target token as a value and its
decoder hidden state vector as a key representation.
Formally, let f(x,y_;) be the hidden state vector
at time step ¢ for source sentence x € S and target
sentence y € 7 of training data (S, 7T), and then
datastore D can be represented:

D= {(f(m7y<i)7 yi)7 vyz S Yy
| (z,y) € (5T} (D)

Generation To generate a sentence from a given
input sentence x, we extract k-nearest neighbors
K C D from the datastore using decoder hidden
state g, at time step ¢ as a query corresponding
to output token y;. k-nearest neighbor probabil-
ity prnn 1s calculated from the distances between
query g, and the k-nearest neighbors:

PeNN (i T, Y <) o

Z Ly,=v; €xp <

(kj.vi)ER

T

>, 2

where dist(-,-) is a distance function and 7 is a
softmax temperature parameter. The word proba-
bility of y; is calculated by the linear interpolation
of kNN probability pipny and output probability



pwmt of the NMT model:

p(yi‘w7y<i) =
PN (Yi| 25 Y <) + (1 = Npmr(vile, y<;), (3)

where )\ is a hyperparameter that determines the
weight of the kNN probability.

kNN-MT substantially improves the translation
performance without additional model training, and
several variants have been proposed. Jiang et al.
(2021); Zheng et al. (2021); Jiang et al. (2022)
further improved the translation performance by
dynamically changing the number of neighbors
and the interpolation weight. Wang et al. (2022);
Meng et al. (2022); Deguchi et al. (2023) proposed
methods for faster inference by reducing search
space. However, no research uses kNN-MT for
improving generation diversity.

2.3 Overcorrection

The standard NMT models trained with cross-
entropy loss suffer from the overcorrection prob-
lem (Zhang et al., 2019) in which the model under-
estimates a prediction that is largely different from
the training data, even if it is likely. We hypothesize
that this problem decreases the diversity of candi-
dates due to the low probabilities for alternative
tokens assigned by the underlying model.

Zhang et al. (2019) alleviated overcorrection by
mitigating the discrepancy between training and
inference. Yang et al. (2022) argued that the kKNN-
MT’s improvement is derived from alleviating the
overcorrection problem by a kNN search. How-
ever, the relationship between overcorrection and
generation diversity remains unclear. In this study,
we propose expanding the search space of KNN-
MT to alleviate overcorrection. We also conduct
a quantitative analysis of overcorrection and diver-
sity (§5.2).

3 kNN Diversified Decoding

We propose to employ kNN-MT to alleviate the
overcorrection problem and thus encourage diverse
generation model-wise. It is further combined with
diversified decoding together with our proposed
stochastic and deterministic methods for the more
controlled expansion of the search space in kNN-
MT.!

'We combine these methods by calculating word probabil-
ity with vanilla or perturbed KNN-MT and generate candidates
by using diversified decoding methods as a search strategy.
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In KNN-MT, NN search is expected to improve
the output probability of alternative tokens that
are not normally included in the top-/V of the out-
put probability. Furthermore, the search space is
extensively explored using a diversified decoding
method to generate diverse and likely translation
candidates. Although kNN search is limited by &,
more space is explored by stochastically expand-
ing it by adding perturbations from noising (§3.1)
and randomizing (§3.2). In addition, deterministi-
cally considering only unique tokens in neighbors
further allows the model to explore alternative can-
didates (§3.3).

3.1 Noised-kNN

As a simple way to perturb the kNN distribution,
we propose noised-~kNN, a method that adds a noise
vector to the query for a kNN search (Figure 1 (1)).
This method diversifies the candidates by stochas-
tically extending the range of the kNN search. In
this method, we perform a kNN search with query
q; + z;, where g; is the hidden decoder states, and
z; is the noise vector for output token y; to ob-
tain k-nearest neighbors K’. We then compute the
ENN probability from K’ in Eq. 2. Noise vector
z; is generated independently at each time and for
each beam as the white Gaussian noise of norm |a|
where a ~ N(m, s?) with mean m and variance
s2. We propose the following two methods to set
m and s.

Static noise We introduce static noise by setting
m = hpy,S = hg using hyperparameters h,,, hs.
Hyperparameters h,, and h4 should be set to appro-
priate values based on the statistics of the datastore.
In this study, we computed the mean and variance
of the distance to the nearest neighbors on the vali-
dation data in advance.

Adaptive noise As an alternative to static noise,
we introduce adaptive noise in which the magni-
tude of the noises is computed on the fly for each
query at each decoding step. Specifically, a usual
kNN search is performed to obtain maximum dy,x
and standard deviation dgq of the distances to the
neighbors. Then an actual noisy NN search is per-
formed by setting m = h/, X dmax and s = h/, X dsq
using hyperparameters h/,,, h’,. This method’s ben-
efit is that the magnitude of the noise is determined
on the fly and eliminates the need for the prior com-
putation of the datastore distributions at the cost of
an additional kNN search at each decoding step.



3.2 Randomized-kNN

Randomized-kNN, as described in Figure 1 (2),
stochastically samples a portion of the expanded
neighbors to alleviate the drawbacks of two noising
approaches (§3.1) that demand prior computation
of parameters m and s. |h X k]| neighbors are
retrieved where h is a hyperparameter satisfying
h > 1, and randomized k-nearest neighbors X’ are
obtained by uniformly randomly sampling %k from
the |~ x k| neighbors. This method is expected to
diversify the candidates because it includes more
neighbors in the search space. We do not need
to collect any statistics of the distribution of the
distances from the query to the k-nearest neighbors
in advance because we do not perturb the query
itself. In addition, since this method requires only
one kNN search at each time step, it is identical to
the vanilla KNN-MT.

3.3 Uniquify-kNN

The perturbations in §3.1 and §3.2 may have a lim-
ited effect on increasing diversity when duplicated
tokens are retrieved from the nearest neighbors.
We alleviate this problem by introducing uniquify-
kNN in which duplicated tokens are explicitly re-
moved from the neighbors (Figure 1 (3)).

Since the datastore accumulates all the tokens
on target-side of the training data, the k-nearest
neighbors retrieved from the datastore can contain
duplicated tokens. As seen in Eq. 2, their distance
scores are accumulated for duplicated tokens, cre-
ating a spuriously dominant probability mass in
the neighbor distribution. Biased probabilities can
negatively impact diversity. Since a larger datas-
tore implies more potential for overlapped tokens,
it would further degrade the diversity.

To address this issue, after retrieving the k-
nearest neighbors, we propose uniquify-kNN, a
method that eliminates the duplicate tokens from
the neighbors, leaving only unique tokens that are
closest to the query. Our new method is formally
defined as follows:

pkNN(yi|m»y<i) X

().

max 1y, exp
(kjg)ec

This operation prevents the kNN probability from
becoming peaky and decreasing in diversity.
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4 Experiments

We experimentally confirmed whether our method
can generate diverse translation candidates.

4.1 Experimental Settings

4.1.1 Dataset

The experiments are divided into a domain adap-
tation setting and a general-domain setting. In
the domain adaptation setting, we used German-
English (De-En) and Japanese-English (Ja-En) lan-
guage pairs. For De-En, we used five domain
data (Koehn and Knowles, 2017; Aharoni and Gold-
berg, 2020): Koran, IT, Medical, Law, and Subti-
tles. For Ja-En, we used four domain data: the
Asian Scientific Paper Excerpt Corpus (ASPEC;
Nakazawa et al., 2016), the Kyoto Free Transla-
tion Task (KFTT; Neubig, 2011), TED talks (Cet-
tolo et al., 2012), and the Business Scene Dialogue
corpus (BSD; Rikters et al., 2019). We used the
designated test set for each domain.

In the general-domain setting, we used three
language pairs: WMT’19 news task data (Bar-
rault et al., 2019) for German-English (De-En)
and WMT 22 general task data (Kocmi et al.,
2022) for Japanese-English (Ja-En) and Ukrainian-
Czech (Uk-Cs). For the general-domain test set, we
used newstest2019 for De-En and generaltest2022
for Ja-En and Uk-Cs. The statistics of the dataset
for both settings are in Appendix A.1.

4.1.2 Models

Baseline All our experiments were carried out
with Transformer models (Vaswani et al., 2017).
In the domain adaptation and general domain for
De-En, we used the WMT’19 De-En pre-trained
model (Ng et al., 2019) available for the fairseq
toolkit (Ott et al., 2019). In the domain adapta-
tion for Ja-En, we used the Transformer Big model
trained on JParaCrawl v3.0 (Morishita et al., 2022)
as a base model.”> In the general domain for Ja-
En and Uk-Cs, we used Transformer Big models
trained on WMT’22 data as a base model for each
language pair. These models were used for data-
store creation and as baseline models. In all the
experiments, the beam size was set to 20.

kKNN-MT We used FAISS (Johnson et al., 2019)
for datastore creation and NN search. The de-
tailed settings are described in Appendix A.2.

2We did not use WMT’22 data for the domain adaptation
settings for fair comparisons since it includes KFTT, which is
one target domain.



Diversified decoding We used DBS and nucleus
sampling (Nucleus) as the diversified decoding
method; the number of DBS groups was set to 20,
the diversity strength was set to 0.5, and hyperpa-
rameter p of Nucleus was tuned with the validation
data. For our proposed methods, we combined
them with DBS and Nucleus.? The hyperparame-
ters of the proposed methods were tuned with the
validation data. The detailed settings are in Ap-
pendix A.2.

4.1.3 Evaluation Metrics

We used the following metrics to confirm how cor-
rectly our model translates and how diverse its can-
didates are.*

BLEU®@N is a variant of corpus-wise BLEU (Pa-
pineni et al., 2002) computed by the largest
sentence-level BLEU score (Chen and Cherry,
2014) for each NN-best candidate, also known as
oracle BLEU. It corresponds to the upper bound of
performance through /NV-best reranking. We report
BLEU@1 and BLEU@20 in our experiment. Note
that BLEU@1 is a standard BLEU.

MergedBLEU@N is a variant of BLEU@N
computed on the merged outputs from two systems.
We employ MergedBLEU@40, which merges
20 candidates from the baseline and a diversi-
fied method. The higher MergedBLEU @40 than
BLEU @20 of the baseline implies that the diversi-
fied method helps generate the better translations.

Diversity The BLEU-based discrepancy met-
ric (DP; Shu et al., 2019) is a measure of the di-
versity. DP captures how many unique n-grams
are included in each candidate sentence, where a
higher DP indicates the candidates are diverse.’

Diversity and translation quality The diversity
enhancement per quality (DEQ); Sun et al., 2020)
measures the quality-diversity trade-off. We adapt
the DEQ for our experimental settings by using
KNN-MT as our base:

DPbase - DPsys

DEQ = —
Q RefBLEUy a6 — RefBLEU g

(&)

3From preliminary experiments, we describe the uniquify-
kNN results in the general-domain setting.

*The detailed settings are described in Appendix A.3. We
also used COMET and BERTScore, but since these scores
tend to be similar to BLEU, we show the details and results
for these metrics in Appendix B.

3As an additional diversity metric, we discuss the number
of differences in n-gram type in §5.3.
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where DPgys and DPy.e are DP of the eval-
uvated system and ANN-MT, respectively, and
RefBLEUgys and RefBLE Uy, refer to reference
BLEU (RefBLEU; Sun et al., 2020), the average
corpus-wise BLEU across all translation candi-
dates, of the evaluated system and KNN-MT, re-
spectively. The DEQ will be higher if the evaluated
system achieves a better quality-diversity trade-off.

Fluency The pseudo-log-likelihood score (PLL;
Salazar et al., 2020) is a metric of fluency using the
MLM model.® We defined a variant of the PLL for
the entire output translations, named SPLL, using
statistical function stat:

stat
yeB

1 1 )
SPLL(W) = il > <|@PLL(y)> , (6)

BeW

where W = {By,...,B,/} is system output,
Bi = {#},..., 92} is the set of N-best hypothe-
ses for a source sentence x; € X, and X is a test
set with M sentences.

In the experiment, to investigate the variances in
fluency, we use MaxPLL, MinPLL, and MeanPLL,
which use max, min, and mean functions for the
stat of SPLL. We also compute the reference’s
MeanPLL to check how practical the translations’
fluency are. If the generated texts are not as fluent
as the reference, the MeanPLL will be lower than
the reference.

4.2 Experimental Results
4.2.1 Domain Adaptation

Summaries of the De-En and Ja-En results are
shown in Table 1 and Table 2, respectively, by av-
eraging the metrics across the domains. Detailed
results are shown in Appendix B.

In De-En, our proposed DBS+kNN-MT and
Nucleus+kNN-MT outperformed both of DP and
oracle BLEU of DBS and Nucleus. These methods
also decrease BLEU @20 more than kNN-MT, al-
though the drop in performance is comparable to
that observed between Baseline and DBS or Nu-
cleus. Our perturbation methods, i.e., +Adaptive,
+Static, and +Randomize, drastically improved
DP while maintaining comparable performance to
DBS+ and Nucleus+kNN-MT under BLEU @20.
Nor did the PLL of the proposed methods suffer
substantial drops when compared to KNN-MT; the
differences are marginal compared to the PLL of

“We used a multilingual BERT (Devlin et al., 2019) as the
MLM model.



Diversity Translation Quality (BLEU 1) Both Fluency (PLL 1)
Method DP 1 @1 @20 Merged@40 Ref DEQT Max Min Mean
Reference - - - - - - ‘ - - —-3.35
Baseline 31.4 34.1  42.6 42.6 30.9 —0.12 —2.26 —4.55 —-3.28
DBS 35.9 33.6  40.0 43.8 30.3 0.44 —2.23 —4.63 —-3.28
Nucleus 48.0 33.4 421 44.6 30.0 1.88 —2.31 —-442 -3.29
kKNN-MT 32.3 43.2 51.8 53.5 38.4 - —2.23 —4.74 -3.32
DBS+kNN-MT 42.0 42.0 48.6 51.8 36.5 5.28 —2.18 —-490 -3.35
+Static 55.2 40.4  49.0 52.0 33.5 468 | —2.02 —5.23 —-3.37
+Adaptive 53.7 41.0 49.0 52.1 34.2 5.10 —2.04 —=5.21 —3.38
+Randomize 54.4 39.5 484 51.5 32.6 3.81 —2.08 —=5.16 —3.38
Nucleus+ANN-MT 51.6 42.1 504 52.8 37.0 145 | —2.37 —-4.50 —3.33
+Static 55.0 42.7  49.9 52.5 34.9 6.47 —229 —487 -3.36
+Adaptive 55.6 42.6  49.8 52.4 34.7 6.32 —2.27 —4.92 —3.36
+Randomize 59.4 42.3  49.2 52.0 33.1 5.09 —224 =510 —-341
Table 1: Domain adaptation in German-English: We report averages of five domains.
Diversity Translation Quality (BLEU 1) Both Fluency (PLL 1)
Method DP 1 @1 @20 Merged@40 Ref DEQT Max Min Mean
Reference - - - - - - - - —2.75
Baseline 38.0 18.1 26.0 26.1 16.5 0.25 —1.75 —3.67 —2.55
DBS 54.9 172 248 28.2 14.4 3.88 —1.66 -3.92 —-2.63
Nucleus 63.9 176  26.5 28.9 14.8 6.43 —1.69 -3.72 —=2.60
KNN-MT 37.4 20.9 29.7 31.5 18.9 - —1.65 —3.57 —2.43
DBS+kNN-MT 60.7 19.7 279 30.9 15.6 7.04 —1.44 —4.02 —2.52
+Static 66.5 19.5 28.3 31.3 14.9 7.23 —1.36 —4.12 =251
+Adaptive 66.8 19.5 284 31.3 14.8 7.18 —1.36 —4.11 —2.51
+Randomize 65.9 19.2 278 30.9 14.6 6.61 -1.35 —4.13 —-2.51
Nucleus+ANN-MT 66.6 20.3 29.0 31.7 16.6 12.9 —1.60 —3.61 —2.49
+Static 64.0 20.5 289 31.5 16.8 12.9 —1.56 —3.65 —2.46
+Adaptive 64.0 20.6  28.8 31.5 16.9 13.2 —1.57 —-3.65 —2.46
+Randomize 74.8 20.3  28.7 31.4 14.6 8.71 —1.50 —4.16  —2.59

Table 2: Domain adaptation in Japanese-English: We report averages of four domains.

Reference. In Ja-En, the proposed methods im-
proved DP like in De-En without any Merged-
BLEU@40 loss.” The PLL of the proposed meth-
ods is also comparable to Baseline.

We observed almost no substantial differences
for the perturbation types. +Static requires prior es-
timation on distance metrics, and +Adaptive needs
an additional kNN search for each time step for
the inferences. Therefore, +Randomize is the best
choice since it overcomes both drawbacks.

These results indicate that the proposed methods
improved the diversity without lowering the fluency
and maintained oracle translation quality on some
domains.

Trade-off between quality and diversity We
observed our proposed methods suffered from a
quality-diversity trade-off (Ippolito et al., 2019;

"We also evaluate the oracle BLEU for 40 candi-
dates (BLEU@40) to compare to MergedBLEU @40, and
the results are in Appendix C.1.

Zhang et al., 2021), i.e., our methods improve di-
versity (DP) but decrease average translation qual-
ity (RefBLEU). However, all of our proposed DBS-
and Nucleus-based methods outperformed the DEQ
of DBS and Nucleus.® Thus, our methods achieved
better quality-diversity trade-offs than the existing
methods.

4.2.2 General domain

Table 3 summarizes the general-domain results ob-
tained by averaging the metrics across the language
pairs. Detailed results are shown in Appendix B.
The proposed DBS+ and Nucleus+kNN-MT
slightly improved DP, and the MergedBLEU @40
and fluency are comparable to DBS and Nu-
cleus. The effect of stochastic perturbations for
DP was limited, especially on Nucleus-based, but
+Uniquify substantially improved DP, and Merged-
BLEU @40 and fluency preserved comparable re-

8LNN-MT is not comparable to our methods because the
base of the DEQ is ANN-MT.
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Diversity Translation Quality (BLEU 1) Both Fluency (PLL 1)
Method DP 1 @1 @20 Merged@40 Ref DEQT Max Min Mean
Reference - - - - - - - - —2.83
Baseline 37.5 30.2 41.2 41.2 27.6 1.24 —-194 385 —2.77
DBS 51.3 289 379 43.1 24.3 3.97 —-1.78 —4.04 -—2.78
Nucleus 62.8 29.2 404 44.2 23.7 6.16 —-1.78 —-3.99 —-2.76
KNN-MT 37.3 305 414 42.6 27.8 - -1.92 —-3.85 —2.76
DBS+kNN-MT 52.6 29.1  38.2 43.4 24.2 4.22 -1.70 —-4.09 -—-2.76
+Static 54.8 29.0 383 43.4 23.8 4.38 —-1.66 —4.16 —2.75
+Adaptive 54.3 29.0 38.3 43.4 23.9 4.34 —-1.67 —4.15 =275
+Randomize 53.9 29.0 38.2 43.4 23.9 4.29 -1.66 —4.14 275
+Uniquify 54.9 28.8 378 43.2 23.5 4.08 -1.69 —4.18 -—2.78
+Static 55.9 28.8 37.7 43.1 23.3 4.09 —-1.65 —4.24 -2.77
+Adaptive 55.7 28.8 37.8 43.2 23.3 4.10 —-1.65 —4.22 -2.78
+Randomize 55.8 28.8 37.7 43.2 23.3 4.09 —-1.64 —4.25 —-2.78
Nucleus+kNN-MT 64.5 29.1  40.5 44.3 23.5 6.22 -1.73 —4.02 =275
+Static 52.4 30.2 389 43.4 25.8 7.25 -1.85 —-3.80 —-2.73
+Adaptive 52.8 30.0 38.9 43.4 25.5 6.75 —-18 —-3.83 —2.74
+Randomize 62.3 29.8  38.9 43.5 23.4 5.64 -1.76 —-4.13 —=2.77
+Uniquify 70.8 28.0 39.3 44.0 21.0 4.88 -1.70 —-4.16 —2.78
+Static 55.4 29.8  38.7 43.3 24.9 6.09 —-1.84 —-3.88 275
+Adaptive 55.7 29.9  38.7 43.4 24.8 6.05 -1.84 —-3.92 -—-2.76
+Randomize 67.7 29.5 384 43.3 21.6 4.86 —-1.75 —444 —-2.84
Table 3: General domain: We report averages of three language pairs.
sults. As in the domain-adaptation setting, the DEQ Jo) & Baseline ©
of our methods outperformed existing methods. . E'\BIZ r "g“
These experiments show that the proposed meth- % DBS+KNN-MT (ours) ”
ods achieve better quality-diversity trade-offs with- 097 % +Randomize (ours) %x
out any fluency loss.
& 50 1
5 Analysis
40 -
5.1 Tuning kNN Diversified Decoding
We investigated how the hyperparameters of our 30 A -
proposed method affect its performance. Fig- © | | : . . .
) B 44 46 48 50 52 54
ure 2 shows the relationship between DP and BLEU@20
BLEU@20 in the De-En IT domain.” The results
Figure 2: Relationship between translation qual-

show that +Randomize outperformed the diversity
of DBS+ENN-MT while maintaining oracle trans-
lation quality with some hyperparameters, indicat-
ing that our proposed method can adjust DP and
BLEU by varying the magnitude of the perturba-
tion.!?

5.2 Overcorrection Analysis

We hypothesized that the overcorrection problem
discourages the generation of diverse candidates
that is alleviated by our proposed methods. To
verify the hypothesis, we evaluated how well our

°For DBS and DBS+ENN-MT, we varied DBS’s diversity
strength by 0.1 in the range of [1.5,2.0]. For +Randomize,
we used 1.5 for diversity strength and varied perturbation’s
magnitude h by 0.1 in the range of [1.5,2.5].

0Further analysis of the relationship between the hyperpa-
rameters and DP/BLEU of our methods is in Appendix C.2.
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ity (BLEU @20) and diversity (DP) in De-En IT domain:
Top-right is most desirable.

methods mitigate the overcorrection problem and
clarified the relationship between overcorrection
and diversity.

Overcorrection is a phenomenon in which the
likelihoods of valid translations are underestimated
by a model. Therefore, a model that suffers less
from the issue will assign a similar likelihood to
valid translations that only have small differences.
Thus, we propose a mean of the absolute differ-
ence in the log-likelihoods (MADLL) of two ref-
erence translations as a metric that quantifies the
degree of overcorrection, in which a lower MADLL
value implies a decreased likely of suffering from



MADLL | DP{ BLEU@!{ BLEU@20 1

Ratio of distinct n-grams (%) 1

Method WMT 21 (newstest2021) Method n=1 n=2 n=3 n=4
Baseline 0.695 41.0 29.5/36.0 38.2/45.4 Baseline 16 T8 14l 185
kNN-MT 0.683 41.1 30.1/36.8 38.7/458 DBS 1.6 8.8 169 222
+Uniq 0.657 43.6 29.6/36.2 38.0/45.5 DBS+kNN-MT 1.7 9.7 186  24.8
+Rand  0.660 43.9 29.6/36.3 37.8/44.7 +Randomize 2.1 124 247 334
Method WMT’22 (generaltest2022) Nucleus 2.0 11.1 23.1 32.8
Baseline 0.712 422 30.3/34.5 38.3/43.1 N“fg;;;fnﬁféMT ;‘z ié‘g ggg i’;;
ENN-MT 0.714 42.3 30.6/35.0 38.6/43.5 : : : :
+Uniq 0.696 44.9 30.5/34.7 38.2/42.9 . o
+Rand  0.702 45.2 30.5/34.7 38.0/42.5 Table 5: The ratio of the number of distinct n-grams to

Table 4: Overcorrection analysis on newstest2021 and
generaltest2022 in De-En: MADLL is an indicator
where a lower score denotes less likely to suffer from
overcorrection. DP and BLEUs are scores when DBS
is used as the decoding method. BLEU is written in the
form of scores for refA/refB. Uniq and Rand are abbre-
viations for Uniquify and Randomize, respectively.

overcorrection issue.!! We evaluated the proposed
methods on the test data of WMT’21 De-En (new-
stest2021) and WMT’22 De-En (generaltest2022)
in the De-En general-domain setting. These test
data have two reference translations (refA/refB) for
one source sentence, and we report the MADLL
between refA and refB by forced decoding.

Table 4 shows the relationship between over-
correction, diversity, and translation quality. The
proposed methods have lower MADLL and higher
DP scores than Baseline and KNN-MT for both
WMT’21 and WMT’22. We also found that BLEUs
of the Baseline and kNN-MT are almost compara-
ble to the proposed methods. This implies that the
proposed methods managed to resolve overcorrec-
tion and improved diversity while almost maintain-
ing the translation quality.

5.3 Counting Distinct n-grams

In §4, we used DP as a diversity metric. DP cap-
tures how many unique n-grams are included in
each candidate. In order to evaluate the diversity
of translation candidates of our proposed methods
from a different perspective, we employed another
metric: the number of distinct n-grams, which mea-
sures the richness of vocabulary and phrases across
the entire N-best list. We calculated the ratio of
the number of distinct n-grams to the total number
of n-grams for n € {1,2,3,4}.

""We report MADLL along with BLEU because it is easy to
improve only MADLL but hard to improve both (if the model
assigns the same likelihood to all sentences, MADLL will be
zero, but BLEU will be substantially affected).
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the total number of n-grams in German-English domain
adaptation setting: We report averages of five domains.

#neighbors h |h X k] \ DP{1 BLEU@11 BLEU®@20 1
(1) DBS+kNN-MT+Randomize

64 2 128 |57.1 41.5 50.8

64 3192 623 39.3 50.0

64 4 256 |65.6  38.1 49.3
(2) DBS+ANN-MT

128 - - 442 439 51.1

192 - . 441 43.9 51.3

256 - - 442 439 51.1

Table 6: Effectiveness of Randomize on De-En IT do-
main based on DBS+kANN-MT: We compared (1) ran-
domize k from | h x k] neighbors and (2) set number
of neighbors per query to |k X k|.

The ratio averages in the De-En domain adap-
tation setting are shown in Table 5. DBS+ and
Nucleus+5£NN-MT increased the ratio of the num-
ber of distinct n-grams more than DBS and Nu-
cleus; the ratio increased substantially when per-
turbation was applied to it. The results show that
our proposed methods generate translation candi-
dates with more diverse vocabulary and phrases
compared to the baselines.

5.4 Effectiveness of Randomization

We conducted an ablation study to investigate the
effectiveness of Randomize on the Randomized-
kNN. In the Randomized-kNN, the search space
is stochastically expanded by uniformly and ran-
domly sampling k from |h x k| neighbors to di-
versify the translations. We compared the follow-
ing two methods to investigate the effectiveness
of Randomize: (1) randomizing k from |h x k]
neighbors with DBS+kNN-MT, i.e., DBS+ANN-
MT+Randomize, and (2) retrieving |k X k| neigh-
bors without randomizing on DBS+kNN-MT i.e.,
setting the number of neighbors per query of
DBS+kNN-MT to |h X k|.

A comparison for the De-En IT domain is pre-



Test Input: 2 0 FIZBIL £ UL T,
Reference: I have a question about COVID.

DBS+kNN-MT+Randomize

DBS+ENN-MT

About corona.

With regards to corona.
About COVID-19.
Regarding corona.

With regards to COVID-19.

Regarding corona.
About corona.
It is about corona.

We are talking about corona.
With regards to corona.

Test Input: Spring Summer3a L 27 > 3 b & — VR !
Reference: The spring/summer collection is also included in the sale!

DBS+kNN-MT+Randomize

DBS

The Spring Summer collection is also a sale target product!
Items from the Spring Summer collection are also on sale!
The Spring Summer collection is also a sale target product!

winter collection is also a sale target product!
The Spring Summer collection is also eligible for sale.
Summer collection is also a sale target product!

The Spring Summer collection is also a sale target product!
The Spring Summer collection is also a sale item!
The Spring Summer collection is also a sale eligible product!

Our Spring Summer collections are on sale!
The Spring Summer collection is also eligible for sale!
The Spring Summer Collection is also included in the sale!

Figure 3: Example 20-best lists using DBS-based methods: In upper example, DBS+kNN-MT+Randomize
successfully diversified list by adding a likely word, COVID-19, which did not appear in DBS+£NN-MT. In lower
example, DBS+kNN-MT+Randomize introduced an unlikely word, winter, which did not appear in DBS.

sented in Table 6, where simply increasing the num-
ber of neighbors per query of DBS+kNN-MT did
not improve diversity. Randomize from more neigh-
bors is important for improving diversity.

5.5 Case Study

To better understand our proposed method through
case studies, Figure 3 shows two qualitative exam-
ples in the general domain of Ja-En. We omitted
some parts for brevity, and a full version is shown
in Figure 5 in Appendix C.3.

In the upper example, Randomized-kNN im-
proved the diversity of the candidates, which in-
clude the appropriate word COVID-19. This candi-
date never appeared in the 20-best list generated by
DBS+ENN-MT, suggesting that considering more
likely tokens by +Randomize with a broader search
space improves diversity and maintains translation
quality.

The example at the bottom shows increased di-
versity but also decreased translation quality, where
translation winter is output for spring/summer,
which does not appear in the DBS-generated can-
didates. Such antonyms as winter, spring, and
summer tend to appear in the neighbors of word
embedding space (MrkSic¢ et al., 2016), which is
the primary cause of incorrect retrieval from the
datastore in the broader kNN search space. We
leave it as our future work of addressing the prob-
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lem of retrieving unlikely words by a stochastically
expanded kNN search.

6 Conclusion

We proposed methods to generate more diverse
translation candidates by expanding the search
space of kNN-MT. We experimentally showed that
our proposed methods alleviated the overcorrection
problem and outperformed the existing baselines
in diversity, and also controlled the diversity and
translation quality by changing the perturbation’s
magnitude.

Limitations

Our proposed method improves diversity by uti-
lizing KNN-MT. Unfortunately, KNN-MT suffers
from the drawbacks of high inference latency for
kNN searches and requires much memory to load
the datastore. Our proposed method is applicable
not only to vanilla-kNN but also to many other vari-
ants; if a model is proposed in the future that solves
these issues, we can combine our method with new
kNN-MT variants to overcome these drawbacks.
Although our proposed method improves diver-
sity, it might generate hallucinations, which are
incorrect but fluent translations. This problem can
be alleviated by filtering hallucinations by post-
processing, an approach we leave for the future.
We also might need to consider the trade-off



between diversity and quality depending on down-
stream applications, as in a number of experiments.

We showed the effectiveness of our proposed
methods by evaluating the diversity and ora-
cle translation quality, but the benefit in end-
applications remains unclear. Li and Jurafsky
(2016) implied that the higher diversity of trans-
lation candidates promotes the higher translation
quality after reranking. Thus, the benefit in down-
stream applications can be shown by measuring the
performance after using a reranking method such
as quality-aware decoding (Fernandes et al., 2022).

Acknowledgements

This work was supported by JSPS KAKENHI
Grant Numbers JP21H05054, JP21K17801, and
JP23H03458.

References

Roee Aharoni and Yoav Goldberg. 2020. Unsupervised
domain clusters in pretrained language models. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 7747—
7763, Online. Association for Computational Lin-
guistics.

Farhad Akhbardeh, Arkady Arkhangorodsky, Mag-
dalena Biesialska, Ondiej Bojar, Rajen Chatter-
jee, Vishrav Chaudhary, Marta R. Costa-jussa,
Cristina Espafia-Bonet, Angela Fan, Christian Fe-
dermann, Markus Freitag, Yvette Graham, Ro-
man Grundkiewicz, Barry Haddow, Leonie Harter,
Kenneth Heafield, Christopher Homan, Matthias
Huck, Kwabena Amponsah-Kaakyire, Jungo Kasai,
Daniel Khashabi, Kevin Knight, Tom Kocmi, Philipp
Koehn, Nicholas Lourie, Christof Monz, Makoto
Morishita, Masaaki Nagata, Ajay Nagesh, Toshiaki
Nakazawa, Matteo Negri, Santanu Pal, Allahsera Au-
guste Tapo, Marco Turchi, Valentin Vydrin, and Mar-
cos Zampieri. 2021. Findings of the 2021 conference
on machine translation (WMT21). In Proceedings of
the Sixth Conference on Machine Translation, pages
1-88, Online. Association for Computational Linguis-
tics.

Loic Barrault, Ondiej Bojar, Marta R. Costa-jussa,
Christian Federmann, Mark Fishel, Yvette Gra-
ham, Barry Haddow, Matthias Huck, Philipp Koehn,
Shervin Malmasi, Christof Monz, Mathias Miiller,
Santanu Pal, Matt Post, and Marcos Zampieri. 2019.
Findings of the 2019 conference on machine trans-
lation (WMT19). In Proceedings of the Fourth Con-
ference on Machine Translation (Volume 2: Shared
Task Papers, Day 1), pages 1-61, Florence, Italy. As-
sociation for Computational Linguistics.

Mauro Cettolo, Christian Girardi, and Marcello Fed-
erico. 2012. WIT3: Web inventory of transcribed and

18

translated talks. In Proceedings of the 16th Annual
Conference of the European Association for Machine
Translation, pages 261-268, Trento, Italy. European
Association for Machine Translation.

Boxing Chen and Colin Cherry. 2014. A systematic
comparison of smoothing techniques for sentence-
level BLEU. In Proceedings of the Ninth Workshop
on Statistical Machine Translation, pages 362-367,
Baltimore, Maryland, USA. Association for Compu-
tational Linguistics.

Kyunghyun Cho. 2016. Noisy parallel approximate
decoding for conditional recurrent language model.
arXiv preprint arXiv:1605.03835.

Hiroyuki Deguchi, Taro Watanabe, Yusuke Matsui,
Masao Utiyama, Hideki Tanaka, and Eiichiro Sumita.
2023. Subset retrieval nearest neighbor machine
translation. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 174—189, Toronto,
Canada. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018.
Hierarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 889—-898, Melbourne, Australia. Association
for Computational Linguistics.

Patrick Fernandes, Anténio Farinhas, Ricardo Rei,
José G. C. de Souza, Perez Ogayo, Graham Neubig,
and Andre Martins. 2022. Quality-aware decoding
for neural machine translation. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1396-1412,
Seattle, United States. Association for Computational
Linguistics.

Markus Freitag and Yaser Al-Onaizan. 2017. Beam
search strategies for neural machine translation. In
Proceedings of the First Workshop on Neural Ma-
chine Translation, pages 56—60, Vancouver. Associa-
tion for Computational Linguistics.

Kevin Gimpel, Dhruv Batra, Chris Dyer, and Gregory
Shakhnarovich. 2013. A systematic exploration of
diversity in machine translation. In Proceedings of
the 2013 Conference on Empirical Methods in Natu-
ral Language Processing, pages 11001111, Seattle,
Washington, USA. Association for Computational
Linguistics.


https://doi.org/10.18653/v1/2020.acl-main.692
https://doi.org/10.18653/v1/2020.acl-main.692
https://aclanthology.org/2021.wmt-1.1
https://aclanthology.org/2021.wmt-1.1
https://doi.org/10.18653/v1/W19-5301
https://doi.org/10.18653/v1/W19-5301
https://aclanthology.org/2012.eamt-1.60
https://aclanthology.org/2012.eamt-1.60
https://doi.org/10.3115/v1/W14-3346
https://doi.org/10.3115/v1/W14-3346
https://doi.org/10.3115/v1/W14-3346
https://arxiv.org/abs/1605.03835
https://arxiv.org/abs/1605.03835
https://doi.org/10.18653/v1/2023.acl-long.10
https://doi.org/10.18653/v1/2023.acl-long.10
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P18-1082
https://doi.org/10.18653/v1/2022.naacl-main.100
https://doi.org/10.18653/v1/2022.naacl-main.100
https://doi.org/10.18653/v1/W17-3207
https://doi.org/10.18653/v1/W17-3207
https://aclanthology.org/D13-1111
https://aclanthology.org/D13-1111

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text de-
generation. In International Conference on Learning
Representations.

Daphne Ippolito, Reno Kriz, Jodo Sedoc, Maria
Kustikova, and Chris Callison-Burch. 2019. Compar-
ison of diverse decoding methods from conditional
language models. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 3752-3762, Florence, Italy. Asso-
ciation for Computational Linguistics.

Hui Jiang, Ziyao Lu, Fandong Meng, Chulun Zhou,
Jie Zhou, Degen Huang, and Jinsong Su. 2022. To-
wards robust k-nearest-neighbor machine translation.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
5468-5477, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Qingnan Jiang, Mingxuan Wang, Jun Cao, Shanbo
Cheng, Shujian Huang, and Lei Li. 2021. Learning
kernel-smoothed machine translation with retrieved
examples. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 7280-7290, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with GPUs. I[EEE
Transactions on Big Data, 7(3):535-547.

Urvashi Khandelwal, Angela Fan, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2021. Nearest neigh-
bor machine translation. In International Conference
on Learning Representations.

Tom Kocmi, Rachel Bawden, Ondfej Bojar, Anton
Dvorkovich, Christian Federmann, Mark Fishel,
Thamme Gowda, Yvette Graham, Roman Grund-
kiewicz, Barry Haddow, Rebecca Knowles, Philipp
Koehn, Christof Monz, Makoto Morishita, Masaaki
Nagata, Toshiaki Nakazawa, Michal Novédk, Martin
Popel, Maja Popovié, and Mariya Shmatova. 2022.
Findings of the 2022 conference on machine trans-
lation (wmt22). In Proceedings of the Seventh Con-
ference on Machine Translation, pages 1-45, Abu
Dhabi. Association for Computational Linguistics.

Philipp Koehn and Rebecca Knowles. 2017. Six chal-
lenges for neural machine translation. In Proceedings
of the First Workshop on Neural Machine Translation,
pages 28-39, Vancouver. Association for Computa-
tional Linguistics.

Jicheng Li, Pengzhi Gao, Xuanfu Wu, Yang Feng,
Zhongjun He, Hua Wu, and Haifeng Wang. 2021.
Mixup decoding for diverse machine translation. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2021, pages 312-320, Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

19

Jiwei Li and Dan Jurafsky. 2016. Mutual information
and diverse decoding improve neural machine trans-
lation. arXiv preprint arXiv:1601.00372.

Yuxian Meng, Xiaoya Li, Xiayu Zheng, Fei Wu, Xi-
aofei Sun, Tianwei Zhang, and Jiwei Li. 2022. Fast
nearest neighbor machine translation. In Findings of
the Association for Computational Linguistics: ACL
2022, pages 555-565, Dublin, Ireland. Association
for Computational Linguistics.

Makoto Morishita, Katsuki Chousa, Jun Suzuki, and
Masaaki Nagata. 2022. JParaCrawl v3.0: A large-
scale English-Japanese parallel corpus. In Pro-
ceedings of the Thirteenth Language Resources and
Evaluation Conference, pages 6704—6710, Marseille,
France. European Language Resources Association.

Nikola Mrki¢, Diarmuid O Séaghdha, Blaise Thomson,
Milica Gasié, Lina M. Rojas-Barahona, Pei-Hao Su,
David Vandyke, Tsung-Hsien Wen, and Steve Young.
2016. Counter-fitting word vectors to linguistic con-
straints. In Proceedings of the 2016 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 142148, San Diego, California. As-
sociation for Computational Linguistics.

Toshiaki Nakazawa, Manabu Yaguchi, Kiyotaka Uchi-
moto, Masao Utiyama, Eiichiro Sumita, Sadao Kuro-
hashi, and Hitoshi Isahara. 2016. ASPEC: Asian
scientific paper excerpt corpus. In Proceedings of
the Tenth International Conference on Language
Resources and Evaluation (LREC’16), pages 2204—
2208, Portoroz, Slovenia. European Language Re-
sources Association (ELRA).

Graham Neubig. 2011. The Kyoto free translation task.
http://www.phontron.com/kftt.

Nathan Ng, Kyra Yee, Alexei Baevski, Myle Ott,
Michael Auli, and Sergey Edunov. 2019. Facebook
FAIR’s WMT19 news translation task submission.
In Proceedings of the Fourth Conference on Machine
Translation (Volume 2: Shared Task Papers, Day
1), pages 314-319, Florence, Italy. Association for
Computational Linguistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics (Demonstrations),
pages 48-53, Minneapolis, Minnesota. Association
for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311-318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.


https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://doi.org/10.18653/v1/P19-1365
https://doi.org/10.18653/v1/P19-1365
https://doi.org/10.18653/v1/P19-1365
https://doi.org/10.18653/v1/2022.emnlp-main.367
https://doi.org/10.18653/v1/2022.emnlp-main.367
https://doi.org/10.18653/v1/2021.emnlp-main.579
https://doi.org/10.18653/v1/2021.emnlp-main.579
https://doi.org/10.18653/v1/2021.emnlp-main.579
https://doi.org/10.1109/TBDATA.2019.2921572
https://openreview.net/forum?id=7wCBOfJ8hJM
https://openreview.net/forum?id=7wCBOfJ8hJM
https://aclanthology.org/2022.wmt-1.1
https://aclanthology.org/2022.wmt-1.1
https://doi.org/10.18653/v1/W17-3204
https://doi.org/10.18653/v1/W17-3204
https://doi.org/10.18653/v1/2021.findings-emnlp.29
https://arxiv.org/abs/1601.00372
https://arxiv.org/abs/1601.00372
https://arxiv.org/abs/1601.00372
https://doi.org/10.18653/v1/2022.findings-acl.47
https://doi.org/10.18653/v1/2022.findings-acl.47
https://aclanthology.org/2022.lrec-1.721
https://aclanthology.org/2022.lrec-1.721
https://doi.org/10.18653/v1/N16-1018
https://doi.org/10.18653/v1/N16-1018
https://aclanthology.org/L16-1350
https://aclanthology.org/L16-1350
https://doi.org/10.18653/v1/W19-5333
https://doi.org/10.18653/v1/W19-5333
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186—
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. COMET: A neural framework for MT
evaluation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2685-2702, Online. Association
for Computational Linguistics.

Matiss Rikters, Ryokan Ri, Tong Li, and Toshiaki
Nakazawa. 2019. Designing the business conversa-
tion corpus. In Proceedings of the 6th Workshop on
Asian Translation, pages 54—61, Hong Kong, China.
Association for Computational Linguistics.

Julian Salazar, Davis Liang, Toan Q. Nguyen, and Ka-
trin Kirchhoff. 2020. Masked language model scor-
ing. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
2699-2712, Online. Association for Computational
Linguistics.

Raphael Shu, Hideki Nakayama, and Kyunghyun Cho.
2019. Generating diverse translations with sentence
codes. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
1823-1827, Florence, Italy. Association for Compu-
tational Linguistics.

Zewei Sun, Shujian Huang, Hao-Ran Wei, Xin-yu Dai,
and Jiajun Chen. 2020. Generating diverse transla-
tion by manipulating multi-head attention. Proceed-
ings of the AAAI Conference on Artificial Intelligence,
34(05):8976-8983.

Jorg Tiedemann. 2012. Parallel data, tools and inter-
faces in OPUS. In Proceedings of the Eighth In-
ternational Conference on Language Resources and
Evaluation (LREC’12), pages 2214-2218, Istanbul,
Turkey. European Language Resources Association
(ELRA).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Ashwin Vijayakumar, Michael Cogswell, Ramprasaath
Selvaraju, Qing Sun, Stefan Lee, David Crandall,
and Dhruv Batra. 2018. Diverse beam search for
improved description of complex scenes. Proceed-
ings of the AAAI Conference on Artificial Intelligence,
32(1).

Dexin Wang, Kai Fan, Boxing Chen, and Deyi Xiong.
2022. Efficient cluster-based k-nearest-neighbor ma-
chine translation. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 2175-2187,
Dublin, Ireland. Association for Computational Lin-
guistics.

20

Xuanfu Wu, Yang Feng, and Chenze Shao. 2020. Gener-
ating diverse translation from model distribution with
dropout. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 1088—1097, Online. Association for
Computational Linguistics.

Zhixian Yang, Renliang Sun, and Xiaojun Wan. 2022.
Nearest neighbor knowledge distillation for neural
machine translation. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 5546-5556, Seattle,
United States. Association for Computational Lin-
guistics.

Hugh Zhang, Daniel Duckworth, Daphne Ippolito, and
Arvind Neelakantan. 2021. Trading off diversity and
quality in natural language generation. In Proceed-
ings of the Workshop on Human Evaluation of NLP
Systems (HumEval), pages 25-33, Online. Associa-
tion for Computational Linguistics.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

Wen Zhang, Yang Feng, Fandong Meng, Di You, and
Qun Liu. 2019. Bridging the gap between training
and inference for neural machine translation. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4334—
4343, Florence, Italy. Association for Computational
Linguistics.

Xin Zheng, Zhirui Zhang, Junliang Guo, Shujian Huang,
Boxing Chen, Weihua Luo, and Jiajun Chen. 2021.
Adaptive nearest neighbor machine translation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 368-374,
Online. Association for Computational Linguistics.


https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/D19-5204
https://doi.org/10.18653/v1/D19-5204
https://doi.org/10.18653/v1/2020.acl-main.240
https://doi.org/10.18653/v1/2020.acl-main.240
https://doi.org/10.18653/v1/P19-1177
https://doi.org/10.18653/v1/P19-1177
https://doi.org/10.1609/aaai.v34i05.6429
https://doi.org/10.1609/aaai.v34i05.6429
http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1609/aaai.v32i1.12340
https://doi.org/10.1609/aaai.v32i1.12340
https://doi.org/10.18653/v1/2022.acl-long.154
https://doi.org/10.18653/v1/2022.acl-long.154
https://doi.org/10.18653/v1/2020.emnlp-main.82
https://doi.org/10.18653/v1/2020.emnlp-main.82
https://doi.org/10.18653/v1/2020.emnlp-main.82
https://doi.org/10.18653/v1/2022.naacl-main.406
https://doi.org/10.18653/v1/2022.naacl-main.406
https://aclanthology.org/2021.humeval-1.3
https://aclanthology.org/2021.humeval-1.3
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://doi.org/10.18653/v1/P19-1426
https://doi.org/10.18653/v1/P19-1426
https://doi.org/10.18653/v1/2021.acl-short.47

Corpus Src-Tgt |  #train |D|  #test
Domain Adaptation
Koran 14,979 450K 2,000
IT 177,795 3.10M 2,000
Medical De-En 206,804 5.70M 2,000
Law 447,701 18.4M 2,000
Subtitles 12,409,630 154M 2,000
ASPEC 2,000,000 68.3M 1,812
KFTT Ja-E 440,288 15.2M 1,160
TED talk 2" 223,108 5.24M 1285
BSD 20,000 256K 2,120
General Domain

WMT’19  De-En 32,278,623  916M 2,000
WMT’22 Ja-En 32,104,268  874M 2,008
WMT’22 Uk-Cs 12,621,881 192M 2,812

Table 7: Statistics of dataset

A Detailed Experimental Settings

A.1 Statistics of Dataset

Table 7 shows the dataset’s statistics. |D] is the
size of the datastore (identical to the number of
target-side tokens of the training data). #train and
#test are the number of sentences in the training
and the test data.

A.2 Model Settings

Table 11 shows the hyperparameters we used in the
experiments.

Nucleus sampling We tuned hyperparameter p
from p € {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,
0.95} based on the validation data.

ENN-MT We used squared-L2 distance as a dis-
tance function. For efficiency, we quantized the
datastore with IVFPQ and we set the code size
to 64. We used the 1024-dimensional representa-
tion input to the final layer feedforward network
as the key. For the domain adaptation settings, we
used 1M keys with 4096 clusters. For the general-
domain settings, we used 5M keys with 65536
clusters. For inference, neighbors were searched
from the nearest 32 clusters in the datastore. For
the De-En domain adaptation setting, we used the
same settings as Khandelwal et al. (2021) for k, A,
and 7. For the Ja-En domain adaptation setting,
we used the same k as Khandelwal et al. (2021)
and tuned A and 7 from A € {0.1,0.2,...,0.9},
7 € {10,100,1000} with validation data. For
the general-domain settings, we tuned hyperpa-
rameters k, A, and 7 from k € {16, 32,64, 128},
A €{0.1,0.2,...,0.9}, 7 € {10,100,1000} with
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validation data.

Proposed method For the DBS+* set-
tings, we used the same parameters
as the baseline. We tuned p from

p € {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95}
for Nucleus+* settings without +Perturbation
and from p € {0.1,0.3,0.5,0.7,0.9} for setting
with +Perturbation. For the +Static settings, we
computed the mean d,,, and standard deviation d,
of the distance to the nearest neighbors on the vali-
dation data in advance, and set h,, = h], X d,,, and
hs = b, x dg, where h!, and h/, are tuned param-
eters from h,, € {0.025,0.05,0.1,0.2,0.4,0.8}
and R/ € {0.025,0.05,0.1,0.2,0.4,0.8}
on the validation data. For the +Adap-
tive settings, we tuned the hyperparameter
from h, € {0.025,0.05,0.1,0.2,0.4,0.8},
n, € {0.025,0.05,0.1,0.2,0.4,0.8}. For the
+Randomize settings, we tuned the hyperparam-
eters from h € {1.1,1.2,...,4.0}. Note that the
hyperparameters for +kxNN-MT, such as k, A\, and
T, on the proposed methods are identical to the
standard KNN-MT.

A.3 Maetric Settings

The detailed metric settings are as follows:

BLEU is calculated with sacrebleu (Post,
2018). The signature for the corpus-wise BLEU is
nrefs:1|case:mixed|eff:no

| tok:13a|smooth:none|version:2.2.1,
and for the sentence-level BLEU
nrefs:1|case:mixed|eff:yes|tok:13a

| smooth:add-k[1.00]|version:2.2.1.

is

MedBLEU is the corpus-wise BLEU score com-
puted by the median sentence-level BLEU score for
each N-best candidates. When N is even, we se-
lected the sentence with the highest sentence-level
BLEU between the two sentences in the middle.

PLL is a metric of the fluency and is computed
for sentence y = (w1, ..., wy):
|yl
PLL(y) = Z log Paum(welyy), (1)
t=1

where y\; is a sentence with masked token w; at
time step ¢ and PMLM(wt\y\t) is the probability
that the MLM model predicts original token w;
from masked sentence y\,.
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source sentence set X as H = {H;,..
where H,, = {97,...
lows:

is formally defined for N-best candidates for
B HN}7
, Yy} is calculated as fol-

1
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DP(H)

1— BLEU(H,H'). (8)

Note that BLEU(H, H’) is the corpus-wise BLEU
of hypothesis H for reference H'.

We also used the following metrics to further
evaluate the proposed methods in detail. The re-
sults are in Appendix B.

MeanLen is the mean sentence length ratio of
the candidates to the reference translations. The
closer this metric is to 1, indicating that the model
outputs sentences of more appropriate length.

COMET®@N is the system-level COMET (Rei
etal., 2020) score computed by the largest sentence-
level COMET score for each N-best candidates.
We use wmt22-comet-da model!? for evaluation,
and report COMET@1 and COMET @20 in our
experiment.

BERTScore@N is the system-level
BERTScore (Zhang et al., 2020) computed
by the largest sentence-level BERTScore
for each N-best candidates. We report
BERTScore@1 and BERTScore@20 in our
experiment. The hashcode for BERTScore is
roberta-large_L17_idf_version=0.3.12
(hug_trans=4.22.2)-rescaled.

Speed is the inference speed (tokens/s) logged by
fairseq when using a single GPU (GeForce RTX
3090).

B Detailed Results

The results for each domain of the De-En domain
adaptation setting are shown in Table 12 to Table 16.
The results for each domain of the Ja-En domain
adaptation setting are shown in Table 17 to Table 20.
The results for each language pair of the general-
domain setting are shown in Table 21 to Table 23.

12https://huggingface.co/Unbabel/
wmt22-comet-da
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DP BLEU
Method @20 @40 Mrg@40
Baseline 31.4 42.6 44.4 -
DBS 35.9 40.0 41.6 43.8
Nucleus 48.0 42.1  43.7 44.6
ENN-MT 32.3 51.8 536 53.5
DBS+kNN-MT 42.0 48.6 51.8
+Static 55.2  49.0 52.0
+Adaptive 53.7  49.0 52.1
+Randomize 54.4 48.4 51.5
Nucleus+kNN-MT 51.6 50.4 52.8
+Static 55.0 49.9 52.5
+Adaptive 55.6  49.8 52.4
+Randomize 59.4 49.2 52.0

Table 8: Ablation study for MergedBLEU @40 in the
De-En domain adaptation setting: DP, BLEU @20 and
MergedBLEU @40 are the scores when beam size is set
to 20, and BLEU @40 is the score when beam size is set
to 40. We report averages of five domains.

C Further Analysis

C.1 Ablation Study for MergedBLEU@N

In §4, we evaluated MergedBLEU @40, the ora-
cle translation quality when merged with Baseline,
and showed that the proposed methods’ Merged-
BLEU @40 are comparable to baselines (Baseline,
DBS, Nucleus and kNN-MT) in the Ja-En domain
adaptation and general-domain settings. However,
it is not obvious whether the proposed methods’
MergedBLEU @40 is also comparable to the oracle
quality of baselines with a larger beam size. Thus,
we conducted an ablation study.

Tables 8, 9, and 10 show the oracle BLEU re-
sults for the 40-best (BLEU @40) when the base-
lines’ beam size are set to 40.!3 We found that the
MergedBLEU @40 of our proposed methods even
shows comparable performance to BLEU @40 of
baselines in the Ja-En domain adaptation (Table 9)
and general-domain (Table 10) settings. These re-
sults support our hypothesis that our diversified
methods generate high-quality candidates.

C.2 Tuning £NN Diversified Decoding

Figure 4 shows the relationship of the magni-
tude of the perturbation against DP and BLEU of
DBS+kENN-MT+Perturbation in the De-En IT do-
main. This result shows the trade-off between the
DP and the BLEUs for all the perturbation types,
indicating that the proposed methods adjust the di-
versity and the translation quality by varying the

BFor evaluating BLEU @40, we used the same hyperpa-
rameters as in §4 and Appendix A.2 except for beam size.
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DP BLEU
Method @20 @40 Mrg@40
Baseline 38.0 26.0 28.2 -
DBS 54.9 24.8 26.9 28.2
Nucleus 63.9 26.5 284 28.9
kKNN-MT 374 29.7 31.8 31.5
DBS+kNN-MT 60.7 27.9 - 30.9
+Static 66.5 28.3 - 31.3
+Adaptive 66.8 284 - 31.3
+Randomize 65.9 27.8 - 30.9
Nucleus+kNN-MT  66.6  29.0 - 31.7
+Static 64.0 28.9 - 31.5
+Adaptive 64.0 28.8 - 31.5
+Randomize 74.8 28.7 - 31.4

Table 9: Ablation study for MergedBLEU @40 in the
Ja-En domain adaptation setting: DP, BLEU@20 and
MergedBLEU @40 are the scores when beam size is set
to 20, and BLEU @40 is the score when beam size is set
to 40. We report averages of four domains.

DP BLEU
Method @20 @40 Mrg@40
Baseline 37.5 41.2 43.9 -
DBS 51.3 37.9 40.2 43.1
Nucleus 62.8 404 43.1 44.2
kKNN-MT 373 414 440 42.6
DBS+kNN-MT 52.6  38.2 - 43.4
+Static 54.8  38.3 - 43.4
+Adaptive 54.3  38.3 - 43.4
+Randomize 53.9 38.2 - 43.4
+Uniquify 54.9 378 - 43.2
+Static 55.9  37.7 - 43.1
+Adaptive 55.7  37.8 - 43.2
+Randomize 55.8  37.7 - 43.2
Nucleus+kNN-MT  64.5  40.5 - 44.3
+Static 52.4  38.9 - 43.4
+Adaptive 52.8  38.9 - 43.4
+Randomize 62.3 38.9 - 43.5
+Uniquity 70.8 39.3 - 44.0
+Static 55.4  38.7 - 43.3
+Adaptive 55.7  38.7 - 43.4
+Randomize 67.7 384 - 43.3

Table 10: Ablation study for MergedBLEU @40 in the
general-domain setting: DP, BLEU@20 and Merged-
BLEU @40 are the scores when beam size is set to 20,
and BLEU @40 is the score when beam size is set to 40.
We report averages of three language pairs.

perturbation’s magnitude. The effect of tempera-
ture 7 on kNN probability of DBS+kNN-MT is
also shown in Figure 4 (d). Both DP and BLEU
peak around 7 from 1 to 10. Unlike the perturba-
tion’s magnitude, we found no trade-off between
DP and BLEU for the temperature adjustment.

C.3 Detailed Quantitative Analysis

Figure 5 shows a detailed quantitative analysis.
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D Used Data, Model, and Software
D.1 Data

De-En domain adaptation parallel corpora
created by Koehn and Knowles (2017) based
on OPUS (Tiedemann, 2012). License:
allowed for research purpose use.

The Asian Scientific Paper Excerpt Corpus
created by Nakazawa et al. (2016). License:
https://jipsti.jst.go.jp/aspec/.

The Kyoto Free Translation Task created
by Neubig (2011). Download: http:
//www.phontron.com/kftt/index.html,
License: CC BY-SA 3.0.

Ted talks created by Cettolo et al. (2012). Down-
load: https://wit3.fbk.eu/, License: CC
BY-NC-ND.

The Business Scene Dialogue corpus created by
Rikters et al. (2019), Download: https://
github.com/tsuruoka-1ab/BSD, License:
CC BY-NC-SA.

WMT’19 news translation task created
by Barrault et al. (2019), Download:
https://www.statmt.org/wmt19/

translation-task.html, License: al-
lowed for research purpose use.

WMT’21 news translation task created by
Akhbardeh et al. (2021), Download:
https://www.statmt.org/wmt21/
translation-task.html, License: al-
lowed for research purpose use.

WMT’22 general translation task created
by Kocmi et al. (2022), Download:
https://www.statmt.org/wmt22/
translation-task.html, License: al-

lowed for research purpose use.

JParaCrawl v3.0 created by Morishita et al.
(2022). Download: http://www.kecl.ntt.
co.jp/icl/lirg/jparacrawl/, License: al-
lowed for research purpose use.

D.2 Model

WMT’19 De-En pre-trained model trained
by Ng et al. (2019). Download:
https://github.com/facebookresearch/
fairseq/tree/main/examples/wmt19,
License: MIT.
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Figure 4: Relationship among perturbation’s magnitudes or temperature and DP/BLEU on the De-En IT domain

D.3 Software
fairseq created by Ott et al. (2019). Download:

https://github.com/facebookresearch/
fairseq, License: MIT.

FAISS created by Johnson et al. (2019). Download:
https://github.com/facebookresearch/
faiss, License: MIT.

sacreBLEU created by Post (2018). Download:
https://github.com/mjpost/sacrebleu,
License: Apache License 2.0.

COMET created by Rei et al. (2020). Download:
https://github.com/Unbabel/COMET, Li-
cense: Apache License 2.0.

BERTScore created by Zhang et al. (2020). Down-
load: https://github.com/Tiiiger/
bert_score, License: MIT.
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De-En Domain Adaptation

Ja-En Domain Adaptation

General Domain

Hyperparameters | Koran IT Medical Law Subtitles | ASPEC KFIT BSD TED | De-En Ja-En Uk-Cs
Nucleus
D | 06 08 0.7 0.7 08 | 06 0.6 06 05 | 07 0.6 0.6
ENN-MT
k 64 64 64 64 64 64 64 64 64 32 16 16
T 100 10 10 10 10 100 100 10 100 100 100 100
A 08 0.7 0.8 0.8 0.7 0.7 0.6 03 06 0.2 0.2 0.2
DBS+ANN-MT+Static
hm 494 238 382 16.9 36 25.5 295 29 32 189 205 39.6
hs 1.15 32 0.35 2 0.2 1 112 2.1 1.5 1.4 0.3 0.6
DBS+kNN-MT+Adaptive
hi, 02 0.1 0.1 0.05 0.1 0.1 0.1 0.1 0.05 | 0.025 0.1 0.1
I 0.1 0.05 0.1 0.05 0.05 0.025 0.8 005 038 0.8 0.1 0.8
DBS+kNN-MT+Randomize
h | 29 2 2.7 32 31 | 32 3.7 3.8 14 | 37 39 3.4
Nucleus+ANN-MT
D | 0.6 07 0.8 0.7 08 | 05 04 05 06 | 07 0.6 0.6
Nucleus+kNN-MT+Static
p 05 09 0.9 0.9 0.7 0.3 0.5 05 05 0.5 0.5 0.5
hm 247 119 955 8.45 18 25.5 295 29 16 18.9 41 39.6
hs 0575 3.2 0.7 0.25 6.4 4 112 2.1 12 035 03 2.4
Nucleus+A£NN-MT+Adaptive
D 05 09 0.9 0.9 0.7 0.3 0.5 05 05 0.5 0.5 0.5
hiy 0.025 0.05 0.05 0.05 0.1 0.1 005 0.1 0.025| 02 0.05 0.2
h 04 0.05 0.2 0.025 0.8 0.8 0.025 0.05 0.025| 005 0.05 0.2
Nucleus+5£NN-MT+Randomize
D 05 09 0.9 0.9 0.9 0.5 0.7 07 05 0.7 0.7 0.5
h 1.3 1.3 1.5 1.1 1.1 1.8 1.1 1.5 1.6 34 14 4
DBS+kNN-MT+Uniquify+Static
him - - - - - - - - - 945 5125 19.8
hs - - - - - - - - - 0.175 0.6 2.4
DBS+kNN-MT+Uniquify+Adaptive
hin - - - - - - - - - 0.05 0.025 0.05
h - - - - - - - - - 0.025 0.05 0.025
DBS+ENN-MT+Uniquify+Randomize
h | - - - - - | - - - - 3.4 2.4 2.8
Nucleus+Uniquify+kNN-MT
D | - - - - - | - - - - 0.7 0.5 0.7
Nucleus+Uniquify+kNN-MT+Static
D - - - - - - - - - 0.5 0.5 0.5
hm - - - - - - - - - 378 205 39.6
hs - - - - - - - - - 14 0.15 24
Nucleus+Uniquity+kNN-MT+Adaptive
D - - - - - - - - - 0.5 0.5 0.5
h - - - - - - - - - 0.4 0.1 0.1
I - - - - - - - - - 0.8 0.4 0.4
Nucleus+Uniquify+kNN-MT+Randomize
D - - - - - - - - - 0.7 0.7 0.5
h - - - - - - - - - 3.8 2.8 2.3

Table 11: Hyperparameters
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BLEU COMET  BERTScore PLL
Method DP @1 @20 Mrg Ret PEQ MLe" 61" @20 @1 @20 Max Min Mean P4
Reference - - - - - - - - - - - - - -295 -
Baseline 274 169 225 - 16.3 0.33 0.950 0.723 0.763 0.389 0.464 —2.08 —3.48 —2.73 897.2
DBS 39.4 17.0 224 24.3 15.5 2.94 0.937 0.720 0.763 0.392 0.465 —1.97 —3.74 —2.77 565.2
Nucleus 52.4 16.7 23.8 25.1 15.5 5.80 0.955 0.722 0.766 0.387 0.466 —2.03 —3.57 —2.76 519.4
kKNN-MT 26.2 21.0 27.4 29.0 20.0 - 0.946 0.728 0.775 0.423 0.514 —2.01 —3.48 —2.69 86.8
DBS+kENN-MT 47.2 20.5 27.0 28.8 17.9 10.22 0.945 0.723 0.775 0.424 0.511 —1.72 —3.84 —2.73 75.8
+Static 60.1 19.3 27.1 28.9 16.5 9.75 0.941 0.711 0.772 0.405 0.507 —1.54 —3.92 —2.69 55.6
+Adaptive 63.6 18.6 26.6 28.5 15.8 8.92 0.948 0.697 0.767 0.387 0.497 —1.55 —4.14 —2.76 37.6
+Randomize 55.9 19.5 26.7 28.4 16.7 8.92 0.953 0.718 0.773 0.411 0.505 —1.64 —3.86 —2.69 65.2
Nucleus+ANN-MT 74.5 18.7 27.7 29.2 15.3 10.31 0.990 0.712 0.767 0.404 0.499 —1.86 —4.17 —2.91 50.8
+Static 65.9 20.6 27.7 29.3 16.7 11.95 0.987 0.725 0.772 0.425 0.507 —1.86 —4.15 —2.85 50.3
+Adaptive 63.3 20.5 27.1 28.8 16.9 12.18 0.986 0.725 0.770 0.424 0.503 —1.90 —4.09 —2.84 33.3
+Randomize 66.2 20.7 27.2 28.9 16.4 11.20 0.989 0.726 0.770 0.425 0.504 —1.87 —4.15 —2.86 49.5
Table 12: Koran domain in German-English
BLEU COMET  BERTScore PLL
Method PP @1 @20 Mrg Ret PEQ MLeM o1 @20 @1 @20 Max Min Mean P4
Reference - - - - - - - - - - - - - =493 -
Baseline 31.5 37.7 473 - 34.0 —0.21 1.004 0.821 0.873 0.606 0.729 —2.96 —7.21 —4.87 874.8
DBS 35.2 37.1 44.2 48.5 33.9 0.41 0.998 0.821 0.861 0.606 0.696 —2.97 —7.05 —4.82 597.7
Nucleus 51.8 36.4 45.5 48.8 31.9 2.42 1.011 0.807 0.856 0.574 0.684 —3.09 —6.97 —4.90 487.1
kKNN-MT 32.7 45.9 55.0 57.0 39.8 - 0.974 0.829 0.891 0.645 0.782 —2.94 —7.69 —5.04 59.5
DBS+kNN-MT 44.6 43.9 50.9 55.4 374 4.94 0.975 0.815 0.874 0.617 0.735 —3.09 —7.60 —5.05 57.3
+Static 57.0 42.8 51.6 55.7 34.5 4.58 0.973 0.812 0.874 0.614 0.739 —2.92 —7.97 —5.07 48.9
+Adaptive 59.5 42.5 51.2 55.5 33.6 4.31 0.975 0.809 0.873 0.607 0.735 —2.89 —8.08 —5.10 32.2
+Randomize 57.1 41.5 50.8 55.4 33.5 3.85 0.972 0.808 0.871 0.606 0.730 —2.97 —7.92 —5.10 51.0
Nucleus+kNN-MT 47.6 44.7 52.3 55.9 39.3 29.80 1.002 0.824 0.873 0.637 0.733 —3.55 —6.56 —4.95 42.5
+Static 61.3 45.2 52.1 55.8 33.9 4.81 1.025 0.822 0.875 0.634 0.740 —3.17 —7.54 —5.04 31.1
+Adaptive 61.7 45.0 52.0 55.7 33.9 4.85 1.027 0.822 0.875 0.632 0.741 —3.12 —7.57 —5.03 19.0
+Randomize 63.3 44.1 52.0 55.5 32.8 4.33 1.022 0.822 0.874 0.632 0.736 —3.12 —7.59 —5.07 34.3
Table 13: IT domain in German-English
BLEU COMET  BERTScore PLL
Method DP @1 @20 Mrg Ret PEQ MLeM o1 @20 @1 @20 Max Min Mean P4
Reference - - - - - - - - - - - - - =324 -
Baseline 27.7 404 49.1 - 37.3 —0.15 0.946 0.832 0.858 0.643 0.711 —2.33 —4.23 —3.17 706.0
DBS 31.4 39.9 46.0 50.2 36.3 0.16 0.938 0.831 0.854 0.641 0.697 —2.26 —4.29 —3.15 401.2
Nucleus 39.2 40.0 48.6 50.9 37.1 0.82 0.950 0.825 0.853 0.630 0.694 —2.42 —4.10 —3.20 479.4
KNN-MT 29.5 55.4 63.0 64.4 48.8 0.00 0.928 0.847 0.875 0.707 0.776 —2.31 —4.59 —3.28 17.9
DBS+kNN-MT 36.7 54.0 59.6 62.3 47.1 4.22 0.937 0.836 0.868 0.684 0.753 —2.31 —4.77 —3.31 15.7
+Static 55.8 50.6 59.3 61.9 40.6 3.20 0.934 0.830 0.867 0.669 0.752 —2.11 —5.50 —3.41 14.0
+Adaptive 49.2 52.9 60.3 62.9 43.6 3.78 0.934 0.833 0.868 0.677 0.755 —2.17 —5.20 —3.38 8.0
+Randomize 52.1 50.0 59.0 61.9 40.8 2.83 0.931 0.829 0.866 0.665 0.750 —2.21 —5.26 —3.40 14.6
Nucleus+kNN-MT 41.4 55.1 61.9 63.8 48.4 30.56 0.965 0.844 0.872 0.703 0.763 —2.47 —4.27 —3.25 32.8
+Static 48.2 54.7 61.1 63.3 45.3 5.31 0.984 0.844 0.871 0.700 0.760 —2.40 —4.74 —3.31 26.5
+Adaptive 49.5 54.6 61.2 63.2 45.0 5.32 0.984 0.844 0.871 0.699 0.762 —2.36 —4.80 —3.32 15.1
+Randomize 53.9 54.0 60.3 62.5 42.5 3.89 0.983 0.843 0.870 0.696 0.757 —2.36 —4.89 —3.34 27.7

Table 14: Medical domain in German-English
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BLEU COMET  BERTScore PLL
Method PP @1 @20 Mrg Ret PEQ MLeM o1 "@20 @1 @20 Max Min Mean P4
Reference - - - - - - - - - - - - - =257 -
Baseline 19.5 46.1 524 - 44.1 —0.01 0.963 0.854 0.873 0.675 0.731 —1.97 —3.17 —2.50 822.4
DBS 27.4 45.0 50.2 53.6 41.7 0.46 0.936 0.851 0.869 0.670 0.717 —2.00 —3.35 —2.58 428.1
Nucleus 43.2 44.7 52.9 54.8 41.2 1.35 0.957 0.850 0.873 0.665 0.730 —1.94 —3.22 —2.54 458.4
KNN-MT 19.6 61.9 68.8 69.9 58.6 - 0.977 0.871 0.891 0.757 0.818 —2.02 —3.27 —2.57 27.2
DBS+kNN-MT 26.9 60.8 65.8 67.5 55.9 2.69 0.965 0.863 0.885 0.743 0.798 —2.06 —3.44 —2.64 26.1
+Static 33.8 60.0 66.6 68.1 54.6 3.56 0.964 0.862 0.887 0.739 0.802 —2.01 —3.55 —2.65 25.8
+Adaptive 31.7 60.6 66.5 68.0 55.2 3.55 0.964 0.864 0.887 0.743 0.802 —2.02 —3.53 —2.64 13.7
+Randomize 42.2 56.2 64.8 66.5 49.5 2.49 0.963 0.855 0.884 0.713 0.790 —1.99 —3.71 —2.69 25.5
Nucleus+kNN-MT 31.3 61.3 68.2 69.3 57.8 14.43 0.992 0.867 0.887 0.751 0.807 —2.13 —3.08 —2.56 20.5
+Static 44.6 61.7 67.4 68.7 52.3 3.95 1.002 0.868 0.888 0.755 0.806 —2.03 —3.70 —2.65 17.9
+Adaptive 45.7 61.6 67.5 68.7 52.0 3.93 1.004 0.868 0.888 0.754 0.807 —2.03 —3.75 —2.65 9.4
+Randomize 45.6 61.4 66.9 68.2 51.4 3.62 1.001 0.867 0.886 0.750 0.801 —2.05 —3.73 —2.66 18.5
Table 15: Law domain in German-English
BLEU COMET  BERTScore PLL
Method PP @1 @20 Mrg Ret PEQ MLen @1 @20 @1 @20 Max Min Mean P4
Reference - - - - - - - - - - - - - =3.07 -
Baseline 51.0 29.3 41.7 - 23.0 —1.66 0.917 0.799 0.843 0.595 0.685 —1.98 —4.65 —3.12 1095.9
DBS 45.9 29.0 36.9 42.6 24.1 —14.20 0.923 0.797 0.833 0.593 0.660 —1.96 —4.74 —3.10 857.7
Nucleus 53.2 29.0 39.8 43.3 24.6 —14.33 0.935 0.798 0.837 0.593 0.668 —2.07 —4.25 —3.04 700.4
KNN-MT 53.6 31.7 45.1 47.1 24.6 - 0.911 0.801 0.851 0.606 0.709 —1.87 —4.65 —3.04 4.5
DBS+ENN-MT 54.6 30.6 39.5 45.0 24.4 3.45 0.930 0.793 0.839 0.597 0.677 —1.70 —4.86 —3.02 4.4
+Static 69.5 29.5 40.4 45.4 21.1 4.53 0.933 0.787 0.840 0.586 0.680 —1.51 —5.19 —3.03 4.4
+Adaptive 64.4 30.4 40.5 45.6 22.7 5.63 0.932 0.790 0.841 0.594 0.683 —1.58 —5.09 —3.03 2.2
+Randomize 64.7 30.2 40.6 45.5 22.4 5.00 0.931 0.789 0.841 0.587 0.681 —1.56 —5.03 —3.02 4.4
Nucleus+kNN-MT 63.1 30.6 42.2 45.9 24.4 36.54 0.941 0.797 0.843 0.601 0.688 —1.85 —4.39 —2.98 3.5
+Static 55.0 31.6 41.3 45.6 26.2 —0.87 0.935 0.799 0.840 0.606 0.683 —1.97 —4.23 —2.96 3.6
+Adaptive 57.9 31.2 41.2 45.5 25.6 —4.36 0.939 0.799 0.841 0.604 0.684 —1.93 —4.37 —2.98 1.8
+Randomize 68.0 31.3 39.8 45.0 22.1 5.76 0.967 0.798 0.837 0.603 0.676 —1.83 —5.12 —3.10 3.2
Table 16: Subtitles domain in German-English
BLEU COMET  BERTScore PLL
Method PP a1 @20 Mrg Ref PP MLeN 61" @20 @1 @20 Max Min Mean P4
Reference - - - - - - - - - - - - - —-290 -
Baseline 31.2 21.0 28.2 - 19.8 0.07 0.946 0.829 0.849 0.572 0.629 —1.86 —2.83 —2.31 914.3
DBS 50.1 19.5 27.4 30.6 17.0 3.12 0.904 0.826 0.850 0.563 0.629 —1.76 —3.24 —2.43 581.3
Nucleus 64.9 20.4 29.7 31.7 16.9 5.40 0.934 0.827 0.853 0.566 0.637 —1.66 —3.27 —2.40 591.7
ENN-MT 31.0 24.7 32.8 346 23.1 - 0.955 0.831 0.853 0.594 0.658 —1.86 —2.91 —2.33 8.2
DBS+kENN-MT 58.6 22.9 31.3 34.0 18.3 5.67 0.895 0.827 0.854 0.583 0.656 —1.56 —3.44 —2.43 7.6
+Static 63.5 22.9 32.1 34.4 17.7 6.02 0.892 0.827 0.855 0.583 0.659 —1.51 —3.46 —2.42 7.8
+Adaptive 64.6 22.6 31.9 34.3 17.6 6.06 0.893 0.827 0.854 0.582 0.657 —1.51 —3.49 —2.42 4.1
+Randomize 62.2 22.4 31.3 339 17.6 5.65 0.897 0.826 0.853 0.579 0.652 —1.51 —3.44 —2.41 7.7
Nucleus+kNN-MT 66.5 24.0 33.9 35.6 19.1 8.82 0.950 0.831 0.857 0.590 0.666 —1.63 —3.40 —2.43 6.8
+Static 49.9 24.0 32.2 34.6 21.0 8.89 0.958 0.830 0.853 0.592 0.654 —1.70 —3.08 —2.35 7.1
+Adaptive 53.4 24.0 32.1 34.6 20.4 8.23 0.960 0.830 0.853 0.589 0.653 —1.66 —3.18 —2.35 3.5
+Randomize 67.8 23.9 32.8 349 18.2 7.43 0.953 0.831 0.854 0.590 0.656 —1.64 —3.58 —2.47 6.4

Table 17: ASPEC domain in Japanese-English

27



BLEU COMET  BERTScore PLL
Method DP @1 @20 Mrg Ret PEQ MLe" 61" @20 @1 @20 Max Min Mean P4
Reference - - - - - - - - - - - - - =275 -
Baseline 31.5 188 25.1 - 17.5 0.70 0.872 0.762 0.808 0.490 0.581 —1.88 —3.72 —2.70 758.0
DBS 52.9 18.3 24.4 27.3 154 4.39 0.826 0.761 0.810 0.489 0.577 —1.81 —4.08 —2.83 474.2
Nucleus 68.2 18.6 26.3 28.2 15.3 7.07 0.873 0.764 0.816 0.493 0.584 —1.85 —3.91 —2.82 444.8
kKNN-MT 29.2 224 294 31.2 20.8 - 0.913 0.778 0.822 0.539 0.628 —1.79 —3.75 —2.59 20.5
DBS+kENN-MT 55.3 21.9 29.0 30.9 18.1 9.81 0.870 0.778 0.827 0.537 0.627 —1.65 —4.28 —2.75 194
+Static 61.4 21.3 29.2 31.1 17.3 9.15 0.862 0.777 0.826 0.534 0.624 —1.58 —4.35 —2.74 20.8
+Adaptive 62.5 21.4 29.1 31.1 17.1 8.87 0.861 0.776 0.827 0.530 0.624 —1.55 —4.40 —2.74 11.5
+Randomize 59.8 21.1 28.5 30.5 17.0 8.01 0.866 0.773 0.825 0.524 0.619 —1.55 —4.21 —2.71 20.3
Nucleus+ANN-MT 55.1 22.9 29.5 31.6 20.5 99.42 0.942 0.781 0.825 0.545 0.621 —1.93 —3.54 —2.69 184
+Static 68.3 22.6 30.3 32.0 18.4 16.28 0.950 0.778 0.828 0.539 0.627 —1.77 —4.02 —2.75 15.2
+Adaptive 65.1 22.6 30.2 31.9 19.1 21.20 0.947 0.780 0.828 0.542 0.628 —1.83 —3.94 —2.74 9.0
+Randomize 78.5 22.0 29.1 31.0 15.6 9.41 0.977 0.777 0.822 0.536 0.616 —1.73 —4.85 —2.97 13.3
Table 18: KFTT domain in Japanese-English
BLEU COMET  BERTScore PLL
Method DP @1 @20 Mrg Ret PEQ MLeM o1 @20 @1 @20 Max Min Mean P4
Reference - - - - - - - - - - - - - =294 -
Baseline 37.5 128 185 - 11.8 0.37 0.888 0.772 0.814 0.462 0.544 —1.74 —3.75 —2.58 957.7
DBS 55.6 12.0 18.0 20.3 9.9 4.87 0.839 0.769 0.815 0.459 0.541 —1.56 —4.01 —2.62 592.9
Nucleus 57.4 124 19.2 20.9 11.1 7.64 0.898 0.772 0.815 0.459 0.538 —1.70 —3.66 —2.57 601.5
KNN-MT 36.8 15.0 21.5 22.7 13.8 - 0.913 0.775 0.818 0.485 0.564 —1.45 —3.17 —2.17 40.8
DBS+kNN-MT 62.0 14.3 20.7 22.6 11.2 9.78 0.884 0.771 0.818 0.478 0.558 —1.06 —3.47 —2.15 35.7
+Static 67.0 14.1 21.0 23.0 10.6 9.49 0.873 0.767 0.817 0.474 0.558 —.98 —3.45 —2.11 33.0
+Adaptive 64.7 14.1 21.2 23.1 10.9 9.78 0.879 0.769 0.817 0.474 0.558 —1.01 —3.43 —2.13 214
+Randomize 63.7 13.9 20.9 22.8 11.0 9.51 0.882 0.767 0.817 0.473 0.558 —.99 —3.43 —2.12 34.6
Nucleus+ANN-MT 84.1 13.0 21.8 23.3 9.5 11.10 0.982 0.765 0.813 0.463 0.543 —1.22 —3.76 —2.31 22.7
+Static 74.3 14.5 21.6 23.2 10.9 13.07 0.979 0.771 0.815 0.475 0.550 —1.21 —3.58 —2.22 24.0
+Adaptive 72.6 14.9 21.6 23.2 11.2 14.00 0.976 0.772 0.815 0.477 0.548 —1.26 —3.56 —2.23 15.5
+Randomize 75.3 149 21.6 23.3 10.9 13.07 0.982 0.771 0.816 0.476 0.552 —1.21 —3.61 —2.23 234
Table 19: TED talks domain in Japanese-English
BLEU COMET  BERTScore PLL
Method DP @1 @20 Mrg Ret PPQ MLen 61 @20 @1 @20 Max Min Mean SPe%d
Reference - - - - - - - - - - - - - —2.42 -
Baseline 51.8 199 324 - 16.9 —0.98 0.985 0.812 0.868 0.551 0.677 —1.54 —4.38 —2.62 1020.1
DBS 60.8 19.0 29.6 34.7 15.2 3.12 0.970 0.808 0.862 0.544 0.656 —1.51 —4.34 —2.63 690.8
Nucleus 65.1 18.9 30.8 34.9 15.8 6.28 0.992 0.811 0.860 0.546 0.651 —1.56 —4.04 —2.59 657.1
KNN-MT 52.8 21.4 35.1 374 17.8 - 0.962 0.817 0.879 0.561 0.711 —1.49 —4.46 —2.62 65.6
DBS+kNN-MT 67.0 19.9 30.7 36.2 14.7 4.55 0.941 0.807 0.869 0.548 0.678 —1.47 —4.88 —2.73 57.1
+Static 74.2 19.8 31.1 36.6 13.8 5.37 0.938 0.807 0.869 0.547 0.679 —1.39 —5.22 —2.76 56.0
+Adaptive 75.5 19.7 31.1 36.5 13.6 5.39 0.940 0.807 0.868 0.546 0.675 —1.38 —5.14 —2.75 43.1
+Randomize 77.8 19.2 30.6 36.3 12.8 4.97 0.933 0.803 0.868 0.541 0.672 —1.36 —5.43 —2.81 50.1
Nucleus+kNN-MT 60.9 21.3 30.9 36.3 17.3 15.75 0.979 0.815 0.863 0.559 0.658 —1.60 —3.74 —2.52 63.8
+Static 63.5 20.8 31.4 36.3 17.0 13.30 0.984 0.814 0.863 0.556 0.661 —1.54 —3.90 —2.52 52.4
+Adaptive 65.0 21.0 31.3 36.4 16.7 11.11 0.987 0.815 0.862 0.557 0.659 —1.556 —3.92 —2.53 35.3
+Randomize 77.7 20.6 31.3 36.2 13.8 6.16 1.009 0.812 0.867 0.554 0.671 —1.43 —4.61 —2.69 43.8

Table 20: BSD domain in Japanese-English
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BLEU COMET  BERTScore PLL
Method DP @1 @20 Mrg Ret PEQ ML g1 "@20 @1 @20 Max Min Mean SPd
Reference - - - - - - - - - - - - - —2.93 -
Baseline 32.1 39.6 51.4 - 37.0 0.59 0.981 0.846 0.876 0.714 0.787 —2.18 —3.53 —2.80 1045.7
DBS 41.3 38.9 47.6 53.0 33.9 2.60 0.969 0.844 0.873 0.710 0.772 —2.09 —3.77 —2.84 720.7
Nucleus 55.1 38.1 50.6 54.2 32.5 4.60 0.986 0.847 0.874 0.712 0.782 —2.04 —3.67 —2.80 620.3
ENN-MT 31.7 40.6 52.2 52.9 37.6 - 0.986 0.847 0.877 0.719 0.788 —2.17 —3.51 —2.79 8.9
DBS+kNN-MT  41.7 39.7 48.7 53.5 34.3 3.10 0.976 0.846 0.873 0.713 0.775 —2.03 —3.77 —2.82 9.0
+Static 42.7 39.7 48.6 53.4 34.3 3.30 0.979 0.844 0.873 0.713 0.774 —2.02 —3.78 —2.82 9.1
+Adaptive 41.9 39.6 48.7 53.5 34.3 3.07 0.977 0.845 0.873 0.713 0.774 —2.02 —3.78 —2.82 4.6
+Randomize  42.2 39.6 48.6 53.5 34.2 3.10 0.981 0.845 0.872 0.714 0.772 —1.99 —3.77 —2.81 8.9
+Uniquify 44.1 39.1 47.5 53.1 33.1 2.77 0.979 0.846 0.877 0.710 0.769 —1.99 —3.83 —2.83 8.9
+Static 44.5 39.1 47.7 53.1 33.1 2.85 0.982 0.847 0.872 0.710 0.768 —1.95 —3.86 —2.83 8.9
+Adaptive  44.3 39.1 47.7 53.1 33.1 2.83 0.981 0.845 0.877 0.711 0.768 —1.96 —3.87 —2.83 4.5
+Randomize 44.2 39.0 47.4 53.0 33.0 2.75 0.983 0.848 0.872 0.710 0.766 —1.95 —3.88 —2.83 8.9
Nucleus+kNN-MT 57.1 38.8 51.1 54.5 32.5 4.97 0.992 0.845 0.871 0.711 0.783 —2.01 —3.68 —2.79 8.1
+Static 36.7 40.6 48.2 53.1 36.9 6.74 0.988 0.844 0.871 0.719 0.770 —2.22 —3.36 —2.77 8.5
+Adaptive 39.0 40.3 48.6 53.3 36.4 6.07 0.989 0.844 0.871 0.717 0.772 —2.19 —3.41 —2.77 4.2
+Randomize  55.0 40.3 49.1 53.4 32.4 4.50 0.997 0.845 0.870 0.717 0.775 —2.05 —3.79 —2.81 7.9
+Uniquify 66.1 37.0 49.1 53.8 28.8 3.90 0.996 0.843 0.874 0.704 0.775 —1.95 —3.87 —2.83 7.7
+Static 41.9 39.6 47.9 53.0 35.2 4.29 0.987 0.846 0.872 0.715 0.768 —2.19 —3.43 —2.79 8.6
+Adaptive  43.5 39.8 48.2 53.0 34.9 4.41 0.988 0.846 0.871 0.717 0.768 —2.18 —3.54 —2.80 4.2
+Randomize 62.7 39.6 48.1 53.1 29.2 3.67 1.010 0.845 0.871 0.712 0.769 —2.02 —4.22 —2.88 7.3
Table 21: General domain in German-English
BLEU COMET  BERTScore PLL
Method PP @1 @20 Mrg Ref PEQ ML @1  "G20 @1 @20 Max Min Mean P4
Reference - - - - - - - - - - - - - =317 -
Baseline 40.7 20.9 30.6 - 19.0 —5.75 0.895 0.792 0.846 0.534 0.646 —2.01 —4.59 —3.12 984.3
DBS 59.8 19.6 28.3 32.8 15.6 5.85 0.854 0.786 0.840 0.526 0.630 —1.76 —4.67 —3.07 638.8
Nucleus 71.1 20.4 30.6 33.9 15.5 8.85 0.906 0.785 0.839 0.527 0.634 —1.78 —4.67 —3.07 562.0
kNN-MT 40.5 20.8 30.5 31.9 189 -  0.898 0.789 0.844 0.529 0.643 —1.97 —4.57 —3.09 8.9
DBS+kNN-MT  62.0 19.1 28.2 32.9 15.1 5.57 0.848 0.784 0.840 0.520 0.624 —1.62 —4.72 —3.03 9.2
+Static 64.0 19.3 28.2 32.9 14.8 5.70 0.845 0.783 0.840 0.519 0.625 —1.58 —4.73 —3.00 9.2
+Adaptive 64.4 19.2 28.3 32.9 14.7 5.73 0.846 0.782 0.840 0.519 0.626 —1.57 —4.75 —3.00 4.6
+Randomize  64.0 19.3 28.2 32.9 14.8 5.66 0.845 0.782 0.839 0.520 0.623 —1.59 —4.75 —3.01 9.1
+Uniquify 64.2 19.2 28.1 32.9 14.9 5.85 0.849 0.787 0.845 0.522 0.624 —1.63 —4.83 —3.05 9.1
+Static 65.1 19.3 28.1 32.8 14.7 5.76 0.847 0.787 0.840 0.523 0.623 —1.57 —4.84 —3.03 9.1
+Adaptive  65.1 19.1 28.1 32.9 14.6 5.73 0.845 0.784 0.843 0.521 0.622 —1.57 —4.83 —3.03 4.6
+Randomize 65.6 19.3 28.1 32.9 14.6 5.84 0.845 0.787 0.841 0.520 0.622 —1.56 —4.89 —3.03 9.1
Nucleus+kNN-MT 73.1 19.8 30.4 33.8 15.1 8.42 0.907 0.785 0.840 0.518 0.630 —1.71 —4.71 —3.04 7.7
+Static 64.5 20.7 29.7 33.2 16.2 8.73 0.906 0.784 0.840 0.527 0.627 —1.78 —4.52 —3.02 8.0
+Adaptive 62.1 20.2 29.4 33.2 16.4 8.64 0.905 0.784 0.839 0.525 0.626 —1.85 —4.47 —3.03 4.0
+Randomize  77.7 19.9 28.9 33.2 13.3 6.65 0.924 0.782 0.839 0.524 0.623 —1.68 —5.11 —3.12 7.1
+Uniquify 69.0 20.2 30.7 34.0 15.8 9.11 0.907 0.787 0.844 0.524 0.634 —1.76 —4.56 —3.03 7.9
+Static 66.0 20.6 29.5 33.2 15.8 8.28 0.910 0.787 0.841 0.526 0.627 —1.81 —4.59 —3.06 7.8
+Adaptive  66.1 20.8 29.4 33.2 15.8 8.19 0.910 0.789 0.841 0.530 0.628 —1.81 —4.60 —3.06 3.9
+Randomize 82.4 19.8 28.4 32.9 12.0 6.08 0.946 0.784 0.837 0.518 0.616 —1.68 —5.50 —3.23 6.5

Table 22: General domain in Japanese-English
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Method
Reference

Baseline
DBS
Nucleus
ENN-MT

DBS+kNN-MT
+Static
+Adaptive
+Randomize
+Uniquify

+Static
+Adaptive
+Randomize

Nucleus+kNN-MT
+Static
+Adaptive
+Randomize
+Uniquify

+Static
+Adaptive
+Randomize

58.1
57.8
57.8
63.4
55.9
57.4
54.4
7.4
58.2
57.6
58.0

BLEU
@1 @20 Mrg

Ref

30.0
28.2
29.0
30.0

41.7
37.8
40.1
41.6

43.6
44.4
43.0

27.0
23.4
23.1
27.0

28.5
28.0
28.1
28.1
28.3
28.1
28.2
28.2

37.9
38.0
38.0
37.8
37.7
37.4
37.5
37.5

43.8
43.8
43.8
43.7
43.6
43.5
43.6
43.6

23.2
22.4
22.7
22.9
22.6
22.1
22.3
22.2

28.8
29.4
29.5
29.3
26.8
29.1
29.1
29.2

40.0
39.0
38.8
38.5
38.0
38.6
38.6
38.7

44.5
43.9
43.8
43.8
44.1
43.8
43.9
43.9

22.8
24.2
23.8
24.4
18.3
23.5
23.7
23.5

DEQ MLen

5.67
3.64
5.81

3.79
3.96
3.96
3.89
3.78
3.78
3.84
3.79
5.70
5.91
5.53
5.71
4.35
5.36
5.37
5.32

0.933
0.916
0.941
0.928

0.912
0.909
0.911
0.911
0.915
0.913
0.913
0.912

0.940
0.942
0.943
0.940
0.950
0.944
0.944
0.943

COMET  BERTScore PLL Soced
@l @20 @l @20 Max Min Mean °P¢
- - - . . - 240 -

0.865 0.914 0.634 0.739 —1.62 —3.42 —2.40 974.0

0.853 0.911 0.624 0.713 —1.49 —3.68 —2.43 755.9

0.859 0.909 0.629 0.721 —1.50 —3.64 —2.42 669.7

0.863 0.914 0.633 0.738 —1.61 —3.47 —2.41 21.0

0.853 0.910 0.625 0.713 —1.45 —3.78 —2.44 21.3

0.852 0.910 0.622 0.712 —1.39 —3.96 —2.44 21.8

0.852 0.910 0.622 0.711 —1.42 —3.91 —2.44 11.0

0.852 0.910 0.623 0.711 —1.41 —3.89 —2.44 21.1

0.858 0.913 0.621 0.709 —1.45 —3.89 —2.46 21.2

0.858 0.908 0.621 0.708 —1.41 —4.02 —2.47 21.2

0.856 0.911 0.623 0.707 —1.41 —3.97 —2.46 10.9

0.859 0.910 0.621 0.707 —1.41 —3.98 —2.46 21.1

0.851 0.909 0.625 0.721 —1.47 —3.68 —2.41 18.1

0.852 0.909 0.632 0.715 —1.54 —3.53 —2.39 18.4

0.852 0.910 0.630 0.713 —1.54 —3.62 —2.40 9.1

0.851 0.909 0.630 0.713 —1.56 —3.50 —2.39 18.0

0.845 0.905 0.609 0.705 —1.38 —4.05 —2.47 17.2

0.857 0.909 0.628 0.713 —1.54 —3.62 —2.41 18.0

0.855 0.909 0.626 0.712 —1.55 —3.63 —2.41 9.0

0.856 0.909 0.627 0.713 —1.54 —3.59 —2.40 17.9

Table 23: General Domain in Ukrainian-Czech
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Test Input: I 1 IZBIL £ L T,
Reference: I have a question about COVID.

DBS+kNN-MT+Randomize

DBS

About corona.

With regards to corona.

About COVID-19.

Regarding corona.

With regards to COVID-19.

We are talking about corona.
Now, about corona.

It is about corona.

Regarding corona.

About COVID-19...

Regarding COVID-19.

With regards to corona..

During the coronavirus pandemic.
Concerning corona.

About corona..

Now, regarding the coronavirus...
Was it a virus?

Regarding corona..

Concerning corona.

Regarding COVID-19..

Regarding corona.

About corona.

It is about corona.

We are talking about corona.
With regards to corona.
Regarding corona.

We are talking about corona.
It is about corona.
Regarding corona..

Related to corona.

About coronavirus.

It is about corona...
Regarding corona.

About the coronavirus.
Regarding corona..

About coronavirus.
Regarding corona.

About coronavirus..
Regarding coronavirus.
Regarding corona..

Test Input: Spring Summer3 L 7 > a > % ¥ — )L R/
Reference: The spring/summer collection is also included in the sale!

DBS+kNN-MT+Randomize

DBS

The Spring Summer collection is also a sale target product!
Items from the Spring Summer collection are also on sale!
The Spring Summer collection is also a sale target product!
Summer collection is also on sale!

The Spring Summer collection is also included in the sale!
The Spring Summer collection is also a sale target item!
Available on sale for the Spring Summer Collection!

We also have the Spring Summer collection on sale!
Spring Summer collection is also a sale target product!
Items from the Spring Summer collection are also on sale!
The Spring Summer collection is also on sale!

It is also a product subject to sale!

The Spring Summer collection is also a sales target product!
The Spring Summer collection is also eligible for sale!
winter collection is also on sale!

The Spring Summer collection is also a sale target item!
We also have the Spring Summer collection on sale!

winter collection is also a sale target product!

The Spring Summer collection is also eligible for sale.
Summer collection is also a sale target product!

The Spring Summer collection is also a sale target product!
The Spring Summer collection is also a sale item!

The Spring Summer collection is also a sale eligible product!
Also included in the sale is the Spring Summer collection!
The Spring Summer collection is also a sale target item!
Also on sale products for the Spring Summer collection!
The Spring Summer collection is also a sale target product!
The Spring Summer collection is also on sale!

Summer collection is also included in the sale!

The Spring Summer collection is also a saleable item!

See you at the Spring Summer Collection!

The Spring Summer collection is also a sale target!
Summer collection is also a sale target product!

Spring Summer collection is also a sale eligible product!
The Spring Summer collection is also eligible for sale!

The Spring Summer collection is also a sale eligible product!
The Spring Summer collection is also part of the sale!

Our Spring Summer collections are on sale!

The Spring Summer collection is also eligible for sale!

The Spring Summer Collection is also included in the sale!

Figure 5: Full example 20-best lists using DBS-based methods
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Abstract

Nuanced dialects are a linguistic variant that
pose several challenges for NLP models and
techniques. One of the main challenges is the
limited amount of datasets to enable extensive
research and experimentation. We propose an
approach for efficiently collecting nuanced di-
alectal datasets that are not only of high quality,
but are versatile enough to be multipurpose as
well. To test our approach we collect the KIND
corpus, which is a collection of fine-grained
Arabic dialect data. The data is short texts,
and unlike many nuanced dialectal datasets, it
is curated manually through social collabora-
tion efforts as opposed to being crawled from
social media. The collaborative approach is
incentivized through educational gamification
and competitions for which the community it-
self benefits from the open source dataset. Our
approach aims to achieve: (1) coverage of di-
alects from under-represented groups and fine-
grained dialectal varieties, (2) provide aligned
parallel corpora for translation between Mod-
ern Standard Arabic (MSA) and multiple di-
alects to enable translation and comparison
studies, (3) promote innovative approaches for
nuanced dialect data collection. We explain the
steps for the competition as well as the result-
ing datasets and the competing data collection
systems. The KIND dataset is shared with the
research community.

1 Introduction

The Arabic language is one of the most spoken lan-
guages in the world with over 400 million speakers
from more than 30 countries (Wikipedia, 2023)
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and has gained wide attention in natural language
processing advancements recently. Since most lin-
guistic technologies rely on high quality training
data, Arabic data collection is, consequently, be-
coming the focus of an increasing number of stud-
ies. Although a wide range of these studies propose
effective approaches for Arabic data collection, the
need for large scale, high-quality datasets of nu-
anced dialect variations is constantly increasing
with the demands of domain specific applications
as well as large language models.

A main challenge facing NLP technologies in
Arabic is the diversity of Arabic dialects, with
more than 30 modern dialects across the Arab re-
gion, and over 20 documented dialects in Saudi
Arabia, the largest country in the Arabian penin-
sula (Wikipedia, 2023; Aldarsoni, 2013). This chal-
lenge is most pronounced in downstream appli-
cations that involve machine translation from di-
alectal Arabic to other languages. The multitude
of nuanced or explicit varying synonyms and hy-
ponyms in Arabic dialects have high impact on the
quality of translation models. Several approaches
were proposed to take advantage of MSA as the
universal formal Arabic and ground other dialects
to it through translation or similarity analyses. As
part of these studies datasets of parallel dialectal
and MSA texts were proposed (Harrat et al., 2015;
Salloum and Habash, 2011; Zbib et al., 2012). Al-
though very useful, these datasets remain limited
in size and dialectal coverage. To address this
gap we propose, KIND: King Fahd University of
Petroleum and Minerals (KFUPM) In Your Dialect
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approach, a multiple-tasks competition for obtain-
ing short texts of parallel corpora of fine-grain Ara-
bic dialectal data and question and answer pairs.

The approach aims not only to promote inno-
vative approaches for data collection, but also to
raise awareness about the significance of represen-
tation in spoken language-based technologies. The
competition is accompanied by social educational
initiatives to raise awareness about linguistic tech-
nologies and to encourage the public to participate
in linguistic data collection competitions. Social
engagement was solicited by demonstrating the
effect of sharing their dialectal utterances on the
quality of technologies that will result from their
aggregate contributions.

Our approach is comprised of two general tasks.
The first is a data collection task where participants
compete to enter the largest amount of entries for
(1) translation of an MSA sentence to their dialect,
and (2) answering an open-ended question in their
dialect. The resulting data from this task is denoted
the KIND corpus. The second task is to solicit inno-
vative systems that can compete with our approach
for task 1. Our approach follows a hackathon for-
mat for developing dialectal Arabic data collection
systems.

In this paper we describe the approach for col-
lecting the KIND dataset and the quality require-
ments of the submissions. We demonstrate the
effectiveness of our approach by describing the re-
sulting corpora of high—quality training data. The
dataset is suitable for training language models,
machine translation tasks, as well as Q&A tasks
with the respective dialects labeled to a fine granu-
larity level. We make this dataset publicly available
to the community along with the labels for each
dialect.

We summarize the contributions of this paper as
follows:

1. Propose the design and process of a nuanced
dialect data collection system that addresses
coverage of dialects from under-represented
Arabic speaking groups in addition to fine-
grained dialectal varieties.

An open-source corpora of aligned parallel
texts for translation between Modern Standard
Arabic (MSA) to multiple nuanced dialects
and between the dialects as well as an Arabic
dialect Q&A dataset.

A collection of proposed systems for nuanced
dialectal data collection.
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The remainder of this paper is organized as fol-
lows. Section 2 provides an overview of the re-
lated literature. Section 3 describes the design and
process of our collection approach. Section 4 de-
scribes the results of the first task of the collection
approach. Section 5 describes the results of the sec-
ond task of the approach. In section 6 we describe
the resources resulting from this study. In section 7
we conclude.

2 Related Work

2.1 Arabic Dialect Datasets

The emergence of different social media platforms
increased the use of informal forms of a language.
That showed a discrepancy in the levels of sup-
port for basic tasks in language technologies for
different languages. For example, the lack of key-
board support and spell checking for low-resource
languages, although there is a desire among the
speakers of these regional languages to use these
digital services (Soria et al., 2018; Ruder, 2020).

The ability to thoroughly and effectively evaluate
and asses the performance of a system is paramount
for the development of advanced NLP technologies.
The availability of benchmarks and standardized
datasets for quality assessment is essential for this
evaluation process. For many languages, includ-
ing Arabic, the availability of these benchmark
datasets is minimal compared to other languages
such as English (Zampieri and Nakov, 2021). In
English, there are various benchmark datasets to
perform different NLP tasks, for instance, Super-
GLUE and SQuAD:; the former provides nine natu-
ral language understanding tasks, and the latter pro-
vides question-answering task (Wang et al., 2019;
Rajpurkar et al., 2018). However, when looking at
Arabic dialects, corpora, and annotated corpora re-
main minimal compared to MSA (Althobaiti, 2020;
Zampieri and Nakov, 2021). Although various ef-
forts focused on dialectal Arabic and building re-
sources for it (Abdul-Mageed et al., 2020; Bouamor
et al., 2018, 2019; Diab et al., 2014; Zaidan and
Callison-Burch, 2014), there still remain nuanced
dialects of many groups that are still either under-
represented or not represented at all. In this work
we aim to propose an approach that is capable of
leveraging a single user prompt/entry to serve as a
training record for as many NLP tasks as possible
without compromising functionality.

In the general sense, Arabic dialect datasets con-
tinue to exhibit limitations concerning their size,



scope, and the extent of annotation when compared
to MSA and other languages, as highlighted in
previous studies (Althobaiti, 2020; Zampieri and
Nakov, 2021). For instance, the MADAR dataset,
which covers dialectal variations across 25 cities,
offers valuable insights; however, it is notewor-
thy that this dataset is primarily a translation from
another language within the travel domain. Con-
sequently, the source origin imposes constraints
on the cultural and domain diversity represented
in the text (Takezawa et al., 2007; Bouamor et al.,
2019). Therefore our approach aims to incorporate
semantic cultural relevance in the design process
of the data collection.

2.2 Arabic Dialect Granularity Levels

Arabic is one of the low-resource languages with
rich morphology. It has different varieties; formal
Arabic MSA is taught in schools and used in formal
venues, whereas informal Arabic is used in daily
life interactions. The differences between Arabic
nuanced dialects and MSA pose a serious chal-
lenge when working on Arabic varieties (Zampieri
and Nakov, 2021). The difference between MSA-
Dialectal Arabic and Dialectal Arabic-Dialectal
Arabic reduces the potential effectiveness of uti-
lizing the resources available for a specific variety
to investigate another one, be it another dialect or
MSA. (Zampieri and Nakov, 2021).

In the literature, Arabic dialects are typically
divided based on a geographical dimension with
different levels of granularity: region, country, and
city level. The regional level represents different
regions in the Arab world consisting of a set of
countries. Note that grouping the dialects of those
different countries on a regional level does not im-
ply that the group of dialects is entirely homoge-
neous linguistically (Habash, 2010).

Previous work focuses on those two levels of
granularity region (Zaidan and Callison-Burch,
2014; Zampieri et al., 2018). Recently, there
has been more work on the country-level dialect
that focuses on a specific country and all the sub-
dialects spoken in that country. Current work on
the country-level dialect focuses on a specific task
(AlYami and Al-Zaidy, 2022; Yang et al., 2020;
Farha and Magdy, 2019; Habash et al., 2019)
or studies MSA and few dialects (AlYami and
AlZaidy, 2020; Alshargi et al., 2019; Khalifa et al.,
2016).

Other work investigates the city-level dialect of
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specific cities in a country. Most of the work on this
level utilizes social media posts coming from a spe-
cific city as the original city dialect (Bouamor et al.,
2019; Abdul-Mageed et al., 2019, 2018). Howeyver,
the social fabric in major cities consists of residents
speaking different dialects, which causes a problem
at this granularity level. Hence, relying on social
media locations for collecting data for users from
a specific location does not ensure that the user
speaks the predominantly spoken dialect of that
location. This work focuses on the location-level
and individual-level dialects by allowing users to
specify their individual dialect. The dataset is repre-
sentative of 29 nuanced dialects from Saudi Arabia,
city-level dialects of 9 cities from 3 Arab countries
and 18 country-level dialects in the Arab world.

3 Our Approach

In this section we describe our proposed approach
for nuanced dialect data collection.

3.1 Overview

The data collection approach is comprised of two
general tasks. The goal of the first task is to collect
quality short-texts representing nuanced dialects
that are both versatile in nature and large in quan-
tity. Since MSA texts are available in abundance,
due to it’s common use in digitized content, it has
been widely studied leading to NLP systems ob-
taining high accuracies for the MSA variety. Given
that MSA is the variety from which all Arabic di-
alects are derived from, similarities and differences
between Arabic dialects and MSA has always been
of interest to both linguists and NLP researchers.
For that reason our approach is designed to collect
data that enables further research and modeling
of these similarities and differences. Additionally,
our system includes an approach to incorporate
the semantic-level cultural nuances of the collected
dialects.

The goal of the second task is to promote the
collection of additional nuanced-dialect data col-
lection systems. Social media content has been the
predominant source of dialectal data. Although so-
cial media content has proven effective for improv-
ing NLP performance on dialects to a great extent,
nuances in dialects still remain a major challenge
to most dialectal Arabic NLP systems unlike MSA.
The goal of this task is to contribute to the quantity
aspect of manually entered nuanced-dialect data by
developing more systems similar in goal to the one



we develop for our first task.

3.2 Nuanced Dialect Short-Texts Collection

This approach aims to collect as large a volume
as possible of nuanced dialectal Arabic data. The
approach is designed as a data marathon competi-
tion, where the competitors goal is to respond to
as many prompts as possible, in their own dialect
within a fixed time-frame with as few errors as pos-
sible. Winners are the the top ranked teams with
highest volumes of entries.

Two methods were followed to collect the two
distinct corpora. Their description is as follows:

Aligned Parallel Dataset This collection
method is designed to allow participants to trans-
late sentences from MSA to their local dialects.
The MSA sentences are sampled from subset of
11,670 sentences from an existing well-known
MSA dataset, namely the MADAR dataset. The
participants translate it to the dialect they registered
as their own when joining the competition.

Q&A Dataset This method allows participants
to answer open-ended questions. The set of ques-
tions are updated regularly for the competition par-
ticipants, where they answer them in an open-ended
fashion. Questions are either constructed by the au-
thors or collected from QA websites such as Quora.
The total number of questions used is 796 and will
be released with the dataset.

The competition was implemented using a web
application designed to receive submissions for the
competition and was built to be highly usable even
by non-technology-savvy people. The designed
collection tool consists of two stages: the registra-
tion, where the participants register themselves in
the competition with their information, a dialect
they speak in with native fluency, and either cre-
ating or joining a team. Individual participation
was allowed (with a team of one), and up to five
members could be included in the team. The sec-
ond stage is the submission page, where the par-
ticipants can choose between the tasks of either
translating or question answering. Gamification el-
ements were integrated in the design to encourage
the participants, such as different game levels with
different progress bar colors for the team and each
team member. Participants were also encouraged
to report any inappropriate sentence or questions,
and the reported sentence or questions would be
reviewed within 24 hours and removed if necessary.
Participants have the option to skip any question
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they did not want to answer or translate.

3.3 Innovating Data Collection Methods

This approach aims to collect systems that are used
to collect nuance dialect data. It follows a typical
hackathon format. The competition elicits creative
ideas to collect nuanced dialectal Arabic data. The
competition was launched to the public on 26! of
February 2022. It consisted of two stages: in the
first stage, which lasted for 12 days, participants
were asked to submit their team’s information and
a brief description of their proposed idea. A total
of 57 submissions were received from 173 partici-
pants. It ranged from ideas to extracting dialectal
data of social media content, games, and crowd-
sourcing techniques. In total, 24 teams were nom-
inated to move to the second stage based on the
relevance criteria reviewed by 2 evaluators. Nom-
inees from this stage were provided the opportu-
nity to attend two workshops; the first was titled
"Automatic Data Collection and Annotation" and
presented different existing methods for collecting
and annotating data along with special challenges
that face collecting dialectal Arabic. The second
was titled "Designing Inclusive Applications and
Platforms" and focused on the usability of web
and mobile apps in addition to tips and tools for
presenting Hackathon ideas. They also joined the
competition discord account, where they received
mentoring from experts. Out of 24 nominees, 19
did proceed to make the final submission, which
consists of the prototype of the solution, a short
video explaining the idea of the proposed solution,
and a time sheet to realistically complete such a
project.

4 Data Collection Results

In this section we describe the resulting datasets
and methods.

4.1 Nuanced Dialect Short Texts

The data collected from this approach covered
21 dialects from Arabic-speaking countries. The
number of dialects, denoted n, is as follows. For
Saudi Arabia, 29 Saudi dialects were collected,
i.e. n = 29. Since no official definition for Saudi
dialects exists, in this study we mainly adopt
the taxonomy used in an online linguistic effort,
Lagandl &o &) 5 AT Ol ones
(Aldarsoni, 2013). For Yémen, Jordan, and Syria,
we collect city-level dialects for major cities where,



Table 1: Samples of MADAR sentences provided for translation and open-ended questions created by the Data

Marathon team

sentences for translation

open-ended questions

O 3 o s &8 plas el b ULa
1 often wear a size 22 in Japan
oA a3l

T3y oY1 duly iz Q) ls¥ W o 5T al Jassy o) el 13)
If you had to move to another country, what things would you miss about your country now? And why?
Tl e ey 3l

The time is up What distinguishes your city?

Nl G5 ) ane sda o

Is this heading to the Grand Hotel?
sl Colx suile Wy 5

We want a table by the window

flialate d Olas, el gas s
What does Ramadan look like in your area?
oA Al o i
What is the effect of giving a gift to others?

Ll Jom WL Ledlatal Lol &Y¥em & Ko o Sp F BELSD B2k 11 L

Do you have any guided bus tours around the city?

What motivates you to wake up every day?

n = 6,4, 7 for the countries, respectively. As for
the remaining countries, country-level dialects are
defined with n = 18 for 18 countries. The lists of
all dialects in their Arabic names are provided in
Table ??, Table 10, and Table 9 in the appendix.

The data collection duration was from 26™? of
February 2022 until 215 of March 2022. It was
highly publicized on social media by Arabic NLP
experts, several local university accounts, and sev-
eral local NLP enthusiasts. Data was collected
from 560 participants from 14 countries grouped
under 422 teams. Over these teams, 354 teams
were teams of individuals, 34 teams were a team
of 2, 11 teams were a team of 3, 11 were a team of
4, and 12 were a team of 5.

A total number submission of 55,484 was re-
ceived. The number of submissions for the Saudi
dialects is in Table 2. We received more than 5
submissions for 19 out of the 29 targeted Saudi
dialects. We received more than 5 submission for
two of the Yemeni regional dialects, three of the
Jordanian regional dialects, three of the Syrian re-
gional dialects, and 10 of the remaining 18 Arabic
countries, in Table 3.

The winners of the Data Marathon were annou-
unced on 24" March 2022 and belonged to Yemen-
Ta’izz dialect (code 600) with 7413 submissions,
Saudi Arabia-Ghamid and Zahran (code 21) with
6328 submissions, and Saudi Arabia-Al Qassim
(code 2) with 6134 submissions. The three places
keep their order whether we consider all submis-
sions or only submissions with lengths more than
10 characters.

4.2 The KIND Dataset

In order to prepare the data for public use, all sub-
missions are anonymized by releasing only 3 fields
per submission.
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Table 2: Saudi dialect submissions by sentence length.

Dialect Code 1-10 11-25 26-50 51-100 100< All Submissions
0 1525 4447 3653 1074 220 10919
1 57 259 258 75 16 665
2 478 3178 2536 394 31 6617
3 3 17 1311 3 275
6 s1 66 31 34 31 213
7 2 16 14 2 3 37
8 16 25 20 2 2 65
1 26 100 80 44 18 268
12 474 1881 1278 349 86 4068
13 0 1 0 0 0 1

16 0 0 1 0 0 1

18 0 141 118 73 21 403
19 291 798 S0l 131 11 1732
20 220 1320 1082 226 69 2917
21 767 4341 2581 241 11 7941
2 12 23 12 s 1 53
23 27 151 161 53 27 419
24 53 202 179 6l 15 510
25 0 0 2 3 1 6
26 38 166 149 46 4 43
28 200 1115 805 203 46 2378
Total per 4327 18347 13574 3027 636 39911

length range

Table 3: Arabic dialects submissions by sentence length.
(without Saudi Dialects)

Dialect Code 1-10 11-25 26-50 51-100 100< All Submissions
100 453 1744 1425 317 68 4007
200 81 280 116 10 0 487
300 9 41 64 27 6 147
400 1119 136 39 4 309
500 2 13 21 14 0 50
600 674 3694 2596 707 463 8134
601 19 77 19 13 3 191
701 2 29 20 10 6 93
703 1 7 8 16 21 53
705 S3 553 555 122 10 1293
800 8 25 29 2 0 64
801 2 18 16 7 2 45
803 0 s 1 0 0 6
1000 37 62 57T 16 3 175
1200 31 150 96 24 3 304
1300 14 75 46 23 9 167
1500 4 8 4 2 2 20
2000 1 15 120 0 28
Total per 1428 6915 5281 1349 600 15573

length range




Table 4: Sample of submissions received by open-ended questions.

Dialect Code  § Sls s il s 5, 19, sals What is your family's Eid al-Fitr routine?

0 L 557 JEbly Ja¥ e
Family and children gathering and gift distribution

0 prt W Oty oo Uy Jay pens
We gather, celebrate, eat chocolate, and see everyone we love
0 Nopy Gk ryp S & BN LW Gy e de by (5040 S ot

‘We gather together, have coffee, say hello to each other, put on our new clothes, and then we all go to our rooms and sleep.

3 dal s sty ool W g g1 g 1 s ]

Visit friends and not leave a neighi)orhoud 1 did not enter and wish it’s residents a happy Eid.

12 &K\QQLH!MJ:UL{ sle ¢ aﬂigﬂjﬁjﬁh@a:)éy\{ LrACL"A\ o, 5 .A:.Jlgb\
We, on Eid, visit the elders early morning and gather there and have breakfast and drink coffee, then most festivities happen at night.
12 hwﬁ&zbbuﬂlmhwIﬁj&wlgﬁ)cﬂ;,g.ug,iw,yicwwijw
We gather, the entire family, Eid morning and sit to drink tea and chat until noon then we have lunch and everyone goes home after that
19 £
We sleep.
19 ,\iu&ﬁg,dlé;&?j,&gauw,ng,y&uéu)wlbu&
We pray the Eid prayer and go out for Eid celebrations until noon, then we go sleep and at Maghrib time again we dress up and continue our Eid celebrations.
21 iy 2l e e L:JL;MCACA"\:;
‘We gather with our friends at Fajr prayer and have breakfast.
24 R gy ey peall Blo any o Lud
We greet each other at Fajr prayer, have breakfast, then go back to sleep.
28 C‘;‘-; Wl ol
The family gathers.
100 J,afgjeb,q.‘\)‘wp\l
‘We have to make mah’shi, ka’ak and betefour
100 @cijcﬁjwcfbjdnmcbﬂ\
Joy with the family, we eat together and play together and pray together.
200 W Gl de load gy 3 s amy mo N ol Ly s Iydkaal ooy ) Lol byt
We do ablution in the morning, then we go to prayer, we come back and have breakfast together, then we go to greet the rest of the family
600 Al D) Jaty daadl ady Jiadd bl g a0l e
We prepare ka’ak and ja’ala for the children then we go to the majlis and celebrate Eid
600 Cjﬂlvt“uﬁj‘wjuacﬁ
We are elated so happy we cannot sleep
703 aeall ol kiag bas M s st glall o) juaally o5 & gmiy gite loiayy bl K 5lad Jonieg adle lomm oy aall Do iy
After the Eid prayer, they return home and we prepare breakfast for the whole family, and then we fall into a sleepy coma,
and the afternoon or noon prayer begins, and our Eid begins, and we wear Eid clothes.
1200

Saled st 3 sy WasBU Ely Saanll 3 gy i Lo dmry BBl g2y 3l poll gallaly gt 2 Bl 5 Loty el ) sy poa

We stay up until morning then before the prayer, we go in and shower then go out and dress up and go to the prayer then when we are back we find asida ready, we eat it then start Eid visiting errands.

Table 5: Percentage of submissions generated from
open-ended questions per submission length for dialects
with more than 5 submissions.

Dialect Code 11-25 26-50 51-100 Longer than 100
0 32% 34%  60% 87%

1 34% 54%  81% 100%
2 4% 9% 25% 90%
3 29%  42%  64% 100%
6 7% 97% 100% 100%
7 13% 14% 100% 100%
8 76% 40% 0% 100%
11 56% 13%  95% 100 %
12 16% 24%  63% 93%
18 35%  59% @ 92% 100%
19 31% 37%  69% 100%
20 10% 21% 51% 94 %
21 6% 6% 17% 45%
22 3% 50%  80% 100%
23 43% 63% 85% 100%
24 47%  49%  T70% 100%
25 - 100% 100% 100%
26 12% 8% 57% 100%
28 6% 13%  55% 87%
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1. dialect code which is the label that indicates
the specific dialect the text belongs to.

sentenceOriginlD which is the identifier used
to reference either the MSA sentence to
it’s source in MADAR dataset, this ranges
(1000000-2000000), or the reference to link
the question to the constructed question
dataset, this ranges (2000000-3000000).

3. textString contains the submitted sentence.

Additional processing of the submissions in-
cludes trimming, and removal of duplicate trans-
lations of a sentence or answer submitted by the
same participant. This reduced the total number of
entries from 55, 484 to 54, 883. It is worth noting
the final dataset does not include duplicates from
the same dialect and source; however, it does in-
clude duplicates of different sources of the same
dialect, e.g., two different questions have the same
answers.

4.3 Discussion

The resulting datasets demonstrates the efficacy
of our collection approach that relies on gamifica-
tion combined with awareness-raising on the im-
portance of inclusiveness and availability of open-



Table 6: Sample of submissions received by translation
of May I ask about your name? from Arabic MSA to
other dialects.

Dialect code ¢ wlev! R JL:‘ Qi ENL

0 el ol

May I know your name?
1 el gy ndla
Now what’s your name?
e ) pel s b
I want to ask you, what is your name please?
el N Jul sl
Can I ask about your name?
ol el alll Lo
Is it possible to ask what your name is?
Talel e 5 K5

Tell me, what is your name?

20

21

100

600

source resources. The collected data size in Table 7,
shows the number of unique entries when consid-
ering the uniqueness on the dialect level. Both
approaches resulted in a large number of texts for
the duration. The sentence translation approach
generated a larger number of entries, as was ex-
pected since minimal effort is required to simply
restate existing content as opposed to question an-
swering that requires the participant to generate
new content. Also, the sentnece translation system
was available to the users 3 more days than the
question answering system.

Samples of responses to open ended questions
are in Table 4, while samples of responses of trans-
lation are in Table 6. It is notable that the sen-
tence translation approach captures dialectal mark-
ers which is a main challenge for nuanced dialects.
Additionally the texts are collected with their MSA
translation and other dialects, that are essential for
studies addressing translation-based solutions to
modelling nuanced dialects. The open-ended ques-
tion answering approach is capable of capturing
both the syntactic aspects of the dialect as well as
the semantics associated with the culture of the
speakers of that specific dialect.

In terms of the length of submissions, it is noted
that the percentage of submissions on the longer
length side are the ones generated by the ques-
tion answering approach. In Table 5, focusing on
sentences of Saudi Dialects, in 17 out of 18 inves-
tigated dialects, submission longer than 100 char-
acters came mainly (more than 85%) from open-
ended questions. In contrast, submissions shorter
than 50 characters came mainly from translated sen-
tences. Same pattern applies to non-Saudi dialectal
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Arabic sentences, where translation sentences were
responsible for 75% of the submissions shorter than
50 characters, whereas open-ended questions were
responsible for 77% of the submissions longer than
50 characters. This observed too in Table 4 and
Table 6, where samples of the open ended ques-
tion mainly consists of longer sentences whereas
for translation we are bound by the length of the
original sentence. To generate longer sentences for
translation, the approach requires using a dataset
with longer texts to prompt the participants in the
translation task.

5 Hackathon Results

In this section, we shed light on the top
projects that received the highest scores from the
hackathon judging committee per the evaluation
criteria, which seek to balance technical knowl-
edge with originality, creativity, and relevance to
the hackathon’s objectives.

5.1 Lesan

Lesan is a volunteer platform designed to enrich the
Arabic dialect content, focusing mainly on voice-
recorded sentences in various dialects. The volun-
teers start by choosing a dialect to voice record Ara-
bic text written in the selected dialect and complete
their daily rounds, where each user has a daily tar-
get of 10 rounds per day. The users of Lesan have
the choice to record an existing text in the platform
or type and record their own new text. Gamifica-
tion elements such as trophies and leaderboards are
used to motivate users by creating a competitive
atmosphere. Moreover, Lesan provides an "Open
Library" that contains high-quality dialectal Arabic
datasets that are available, reliable, and ready to
use.

5.2 Teach us your Dialects

Participants proposed a game in which players
guess the meaning of a word given in one of the
Arabic dialects with the help of an image indicating
the meaning. The players’ answers can be written
or recorded in their voices. In this project, the
database is populated by the players themselves,
where any player can add a word in a specific di-
alect, and it will be added to the database if it is
approved by at least ten other players who speak
the same dialect or live in the same place. Each



Table 7: Entries uniqueness.

Number of submission UI.11que per .. Urlnque per Ur.uque pet
(dialect, source, participent) (dialect, source) (dialect)

Translation 40481 40119 39957

Open ended Questions 15003 14759 14338

new word has to be recorded in voice to make pro-
nunciation easier. To motivate players, they can
see a leaderboard of the players’ points and ranks
by their countries. Moreover, The ranking of each
country is displayed as well, and it depends on
the number of words shared by players from the
country.

5.3 Faseeh (Fluent)

A video game that asses a person’s level of knowl-
edge of Arabic dialects. As a first step, data is
collected from Twitter automatically using a scrap-
per. Data is then cleaned and stored in a database
for the game, where five tweets will be displayed
for each player from the database. In Faseeh game,
a tweet will pop up on the screen where the player
must answer the following questions in a row: (1)
Is there a text in the tweet that indicates a specific
dialect? (Yes/No), (2) If yes, what is the dialect
classification?(Egyptian - Gulf etc.), (3) If yes, why
was this dialect chosen?, (4) What is the text/word
indicating the selected dialect?.

Once the player finishes a tweet, another tweet
will pop up until the round (five tweets) is com-
pleted. Eventually, the Arabic dialect test result in
points will be displayed to the user based on the
number of correct answers. Verification of answers
is done in two approaches: automatically by know-
ing the geographical location of the source of the
tweet and manually by operators who are experts
in each of the existing dialects and can evaluate the
answers.

5.4 Nutq (Pronunciation)

The project’s main interface is divided into sev-
eral sections for Saudi dialects, including Northern,
Southern, Hijazi, Najdi. etc. The application con-
sists of 3 stages to collect data for each dialect in
a funny way to grab the user’s attention. In the
first stage, the application shows an image to users
where they can choose the appropriate word from
their own perspective. As the second stage, If none
of the options matches the word in their dialect,
they can add their own synonym for the word. In
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the third stage, users can go the extra mile and add
more words along with their meanings in the game
dictionary and get simple financial rewards.

5.5 Evaluation and results
Each of the 19 submissions received three evalua-

tions on the premises of:

1.
2.

Creativity level of the idea.

Technical quality and suitability of techniques
and methods used.

Potential to Grow.

The collected data using the provided technol-
ogy in terms of quantity and quality.

(98]

The results were aggregated, and the announcement
of the winners was on the 24" of March 2022. The
first three places consist of teams Lesan, Teach Us
Your Dialect, and Fsaeeh, respectively.

6 Challenges and Recommendations

In this section we describe challenges to the col-
lection approach and provide recommendations for
organizing future hackathons.

6.1 Target Dataset

In order for the collection approach to effectively
achieve a high yield of quality data, it is recom-
mended to have a clear specification of the dataset
to be collected, specifically a predetermined pur-
pose or use for the data. Although this ensures
a consistent collection process, however, during
collection it is equally beneficial to adapt to pat-
terns in user behavior to maximize the outcome
of user participation. For example, the first collec-
tion task was initiated with the purpose of curating
a parallel corpora for different dialects. It was
noticed during user submission that many of the
MSA sentences that were presented to the users for
translation were irrelevant to the culture and could
not capture cultural and context-rich dialectal data.
The sentences were parts of conversations in the
hotel, airports, and restaurants and were a direct
translation from non-Arabic sentences. Therefor
the second approach was introduced proposing the



use of open-ended QA for collecting dialectal data
to enable culture and context-rich sentences while
relaxing the alignment requirement to have totally
different responses for the same question.

6.2 Target Participants

The target audience should be clearly defined as
it is a focal point in the competition design pro-
cess. Since we are interested in collecting data from
under-represented groups, it was imperative to de-
sign a system that is easy to use by non-technical
groups who typically have low online presence. To
reach our target audience we used social media out-
lets that have high visibility in the region, using
simple video advertisements to convey the purpose
of the data collection and the potential of the bene-
fits to society as a whole for a non-technical user.
Incentives are used to maximize user participation
in social collaborative efforts, such as monetary
awards in our competition. In cases of limited fund-
ing, we recommend to emphasize the social media
campaign and raising awareness efforts, as many
educational sessions targeting college students and
the general public contributed greatly to the high
amount of participation.

6.3 Technical Resources

Storage and database size limitations dictate the
limits of the collection process. The participant
solicitation must be guided by the volumes of data
received during collection to ensure system stabil-
ity. Additionally, available personnel to provide
technical support and monitor entries to perform
corrections or incorporate user feedback, is a chal-
lenge. In our case, the authors along with student
volunteers from the university were responsible for
these tasks.

7 Resources

The dataset is released for the research community
at:  https://huggingface.co/KIND-Dataset.
The repository holds both the Data Marathon sub-
missions and the open-ended question dataset.

8 Conclusion

In this paper we describe the design and process
of collecting a multi-dialect Arabic dataset as well
as the resulting systems and data. Similar in con-
cept to ACL shared tasks, the KIND competition
aims to encourage innovative contributions towards
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high-quality data collection. The competition re-
sulted in a corpus of over 50k high-quality texts
labeled with fine-grained Arabic dialects. As well
as over 20 approaches for Arabic dialect crowd-
sourcing techniques. The resulting data is made
public for the research community. As future work,
the authors aim to propose new competitions for
domain specific as well as NLP-task specific data
collection for Arabic dialects.

Limitations

There are several limitations in the published
dataset, that open doors for further investigation:
(1) The first is the presence of white dialect submis-
sions, as most of the participants were 35 of age or
younger and live in big cities not in their hometown,
we can find that some of the dialect has softened
from how the original dialect sounds. (2) As dialect
classification is a multi-label problem, submissions
could be mapped to more dialects than what is re-
ported.(3) Further cleaning is required, although
there were minimal spam submissions from our
observations, there still could be submissions that
do not answer to the question or translated the in-
tended sentence. (4) Not all intended city-level (or
tribe-level) dialects in Saudi Arabia were covered
as intended. The dataset does lack submissions
from dialect belonging mainly to the Northern Re-
gions of Saudi Arabia. Also, not all Country level
dialects were covered, especially for dialects of
North African countries.

Ethics Statement

All participation in the competition was voluntary
and participants waived their copyrights to the sub-
mitted data before participation. All information
related to the participants identity was removed.
The dataset is not comprehensive of all Arabic di-
alects and should not be treated in such manner.
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A Appendix
A.1 Dialect Codes

Table 8: City/Tribe level Saudi Dialects.

Dialect Code City/Tribe Dialect
0 (i (& s 2P A 3ol

Najd - urban
1 (..@..,‘Quaiqquzifgg ag il

Najd - suburbs

2 poadll ol

Al Qassim
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Dialect Code City/Tribe Dialect
3 gl ol ol
Wadi AI:Dawasir
4 fr S by
Hotat Bani Tamim
5 CM;\N J.aj
Al-Aflaj
6 CAb Jal
Ad-Dilam and Al-Kharj
7 A
Shammar
8 SAs
Anaza
9 Sl
Al-Shararat
10 o lay o
Al-Howaitat
11 jl’.‘-; \
Hejaz/Hijaz
12 sadl flse
Hijaz families
13 Sl
Al-Ula
14 sl )
Al-Rashaida
15 A
Khaybar/Khaibar
16 Lo
Juhaina
17 Olomal!
Al-Ajman
18 eI !
Al-Hawajir
19 LY
Al-Ahsa
20 aladll
Al-Qatif
21 QL,A 59 Hole
Ghamid and Zahran

22

sl jemllly 2

Bani-Shehr, Ballahmar, Ballasmar
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Dialect Code City/Tribe Dialect
2 L ol Ol
Shahran Alaridha
24 (ollad 553 ‘Cﬁ Je ) Ll
Tihama
25 oo
Faifa/Fifa/Fayfa
26 ol
Jazan
27 5!
Al-Mahra
28 A b s
Bani-Yam (Najran)
Table 9: Country level Arabic Dialects.
Dialect Code Country Dialect
100 s Egypt
200 141 Algeria
300 Ol gl Sudan
400 Gl Irag
500 &l Morocco
900 Jbsall Somalia
1000 U~y Tunisia
1100 &)L Y! Emirates(UAE)
1200 luJ Libya
1300 Idads Palestine
1400 OlE Oman
1500 o ¢! Kuwait
1600 W\ ) 9o Mauritania
1700 s Qatar
1800 43 3= Djibouti
1900 JuJ‘ . Comoros
2000 Ol Lebanon
2100 x| Bahrain
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Table 10: City level (non-Saudi) Arabic Dialects.

Dialect Code City Dialect
600 Lol gl - el
Yemen-Ta’izz
601 Claiall gl (ﬁa”
Yemen-Sana’a
602 Lo | Zagll = 0
Yemen-Hadhramut
603 Ladl) Dagll = o)
Yemen- Yafea
604 Lo o) Al - U‘.J\
Yemen-Adeeni
605 Lasdl gl o el
Yemen-Aden
700 g_/J.);‘ ixg - L g™
Syria-Idlib
701 e Ay - \iJ)-“
Syria-Aleppo
702 e g - b e
Syria-Homs
703 (rlidiies &g - L 5u
"Syria—Damascus (Shami)
704 e > Ay L gy
Syria-Daraa
705 ol dxmgd - L g
Syria-Hama
706 JDLJBI:,BSW\ g - L gw
Syria-Latakia and coast
801 eMall dxy - Q;ﬂ\
Jordan-Fallahin
802 25,31 Jlatdl Tngd = 0 3
Jordan-Northern
803 L5,3 Ogdl g - 03 V!
Jordan-Southern
804 L gl dmgll = o V)

Jordan-Bedouin
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Abstract

The goal of this paper is to evaluate the perfor-
mance of Stanza, a part-of-speech (POS) tagger
developed for modern Polish, on historical text
to assess its possible use for automating the
annotation of other historical texts. While the
issue of the reliability of utilizing POS taggers
on historical data has been previously discus-
sed, most of the research focuses on languages
whose grammar differs from Polish, meaning
that their results need not be fully applicable
in this case. The evaluation of Stanza is con-
ducted on two sets of 10286 and 3270 manu-
ally annotated tokens from a piece of histori-
cal Polish writing (1899), and the errors are
analyzed qualitatively and quantitatively. The
results show a good performance of the tagger,
especially when it comes to Universal Part-of-
Speech (UPOS) tags, which is promising for
utilizing the tagger for automatic annotation
in larger projects, and pinpoint some common
features of misclassified tokens.

1 Introduction and Background

Annotated data for historical or otherwise non-
standard variants of language can be difficult or
resource-consuming to obtain but is nevertheless
necessary for certain linguistic inquiries. One of
the possible methods of alleviating this issue is
attempting to use tools developed for a contempo-
rary standard language for automated annotation.
However, the data in question differing from the
standard may pose problems. Consider the example
presented in Table 1, a sentence from a 19"-century
Polish memoir: the differences between the origi-
nal and the modern version of the same sentence
pertain not only to spelling but also word order
and vocabulary — but the extent to which these se-
emingly large differences affect the performance
of modern tools is not clear. This paper aims to
address this question and estimate what kinds of
variation have the largest negative impact on tag-
ging accuracy.
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Table 1: A sentence from Juliusz Czerminiski’s memoir
(Szawerna, 2023) in the original, with modernized spel-
ling, modernized language, and in English.

Original | Odjechat do Lwowa — nazajutrz
sentence | miat wruci¢ i wrucit, ale w trumnie.
Modern | Odjechat do Lwowa — nazajutrz
spelling | miat wréci¢ i wrdcit, ale w trumnie.
Modern | Pojechat do Lwowa — miat wrécic
language | dzien p6Zniej, i wrdcit, ale w trumnie.

. He drove away to Lviv — he was

English

translation supposed to return the day after and

that he did, but in a coffin.

A considerable amount of research has already
been conducted on the evaluation of various pre-
trained part-of-speech (POS) taggers on historical
texts to establish their effectiveness at annotating
such texts. POS taggers trained on contemporary
data tend to struggle with historical texts for a va-
riety of reasons, such as out-of-vocabulary items,
variation in spelling, capitalization, and punctu-
ation, as well as differences in morphology and
syntax and semantic shifts, but large performance
improvements can be observed when relatively sim-
ple pre-processing methods such as spelling correc-
tion, spelling simplification, punctuation removal
or normalization are used (Rayson et al., 2007;
Scheible et al., 2011; Adesam and Bouma, 2016;
Hupkes and Bod, 2016). A summary of the per-
formance of various POS taggers when tested on
historical data from various studies can be seen in
Table 2. While taggers based on neural networks
(NN5s) have been shown to outperform other me-
thods, much of the research predates those and is
based on older architectures (Yang and Eisenstein,
2016; Adesam and Berdicevskis, 2021).

While most of the previously mentioned studies
focus on languages from the Germanic family, this
paper aims to evaluate a POS-tagger for modern
Polish on historical texts. Given the differences be-
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Table 2: Test results on raw and preprocessed data in other experiments (some results are for more than one tagger

or data from various periods).

. . 1
Modern Test Set Historical Preprocessed
Paper Language Test Data Test Data
Accuracy
Measures Accuracy
Rayson et al. (2007) English 96% Accuracy: 82-88.5% 89-93.2%
Scheible et al. (2011) German - Accuracy: 69.6% 79.7%
Bollmann (2013) German - Accuracy: 23-81.8% 83.4-95.6%
Hupkes and Bod (2016) Dutch 96% Accuracy: 60% 92%
Adesam and Bouma (2016) | Swedish 94.2%> Accuracy: 45% 70%
. Precision: 88.3-90.3%
Waszczuk et al. (2018) Polish - Recall: 88.3-90 3% -
Szawerna (2023) Polish 89.3-99.2% Accuracy: 80.2-94.5% -

tween Germanic and Slavic languages, other kinds
of errors can appear in the tagger annotation. Mo-
reover, the research mentioned in Table 2 was con-
ducted on texts from not only various languages
but also various periods. Waszczuk et al. (2018)
evaluated the performance of a tagger on historical
Polish data and reported quite high performance
on texts from the 17"-20"-century, which is pro-
mising. However, the tool that they are reporting
on, Morfeusz2, is a CRF-based tagger, which could
mean that an NN-based tool could potentially per-
form even better. While the research presented by
Szawerna (2023) includes various performance me-
asures for several tools, the focus of that research
was on identifying variation and not utilizing the
tools for automated annotation; importantly, tho-
ugh, Szawerna (2023) does present a comparison
of the performance of various tools, with Stanza
performing better on historical data than Morfe-
usz2 which utilizes a combination of rule-based
morphological analysis and CRF (conditional ran-
dom fields) for tagging; Morfeusz2 did, however,
outperform Stanza on modern texts (Kiera$ and
Wolinski, 2017). While a fine-tuned BERT model
did outperform Stanza, the latter is more of an out-
of-the-box tool and is therefore more likely to be
used in a pipeline, warranting the analysis of its
performance on nonstandard data.

This paper builds upon the research presented in
Szawerna (2023) and investigates the performance
of a single tagger on a memoir from 1899 which
also contains dialectical variation. Given the age
of the data, the accuracy is expected to be aro-

'The preprocessing methods varied between the experi-
ments but often consisted of standardizing the spelling and
punctuation.

“Here the tagger was trained on historical texts as well.
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und 90% accuracy?, with Universal Part-of-Speech
(UPOS) tagging performing better than tagging
using language-specific (XPOS) tags. The tagger is
expected to struggle with nonstandard spelling or
capitalization, out-of-vocabulary items, and other
previously mentioned issues.

2 Materials and Methods

The tagger used in this project is that provided by
Stanza, a Natural Language Processing (NLP) to-
olkit featuring models for a large number of langu-
ages (Qi et al., 2020). The default model for Polish
was trained and evaluated on the Polish Depen-
dency Bank treebank (Wréblewska, 2018; Stanza,
n.d.). It is also that corpus’s test set that is used to
exemplify the tool’s performance on modern Polish
in this paper, although it represents genres diffe-
rent from the historical texts. The main reasons for
selecting this tagger are its ease of use and high
reported accuracy on modern data.

The data used for testing the tagger in this pro-
ject comes from the memoir of Juliusz Czerminski,
who lived in the 19" century in the area corre-
sponding to nowadays Eastern Poland and Western
Ukraine. The original manuscript was composed
in 1889, retyped on a typewriter, and recently di-
gitized. No intentional alterations were made to
e.g. seemingly misspelled tokens. This data was
first presented by Szawerna (2023), where its diver-
gence from modern Polish was asserted, especially
when it comes to features typical for the dialects
of that region (Kurzowa, 1983). According to Po-
laniski (2004), there was no singular universally
accepted spelling convention around the time of
the memoir’s creation. Therefore, the text should

3Unfortunately Waszczuk et al. (2018) do not report accu-
racy as a measure.



not be considered to be representative of historical
Polish of its time, both due to its dialectical features
and spelling which is not representative of the bulk
of the contemporaneous writing.

In its entirety, the data consists of 37,405 tokens.
Out of those, the first 10286 tokens were manually
annotated using Universal Dependencies’ universal
POS tags (UPOS tags). A subset of 3270 tokens
was further annotated using XPOS tags. Both of
these tagsets are utilized by Stanza. The only chan-
ges to the original text include the splitting of the
“mobile inflection” as per the UD guidelines and
removing any punctuation from inside numbers
(Szawerna, 2023; Universal Dependencies, n.d.).
This previously conducted manual annotation of
the tokens has been reviewed, and a few corrections
have been made.

Evaluation measures were calculated for both
kinds of annotation. The results were also subjec-
ted to a qualitative analysis, the goal of which was
to determine what kinds of errors are the most pre-
valent, which could give insights into what kinds of
potential pre-processing could eliminate that pro-
blem. The misclassified examples were saved and
manually annotated for the error type before being
processed to obtain the relevant statistics.

3 Results

Stanza exhibits very good performance on modern
Polish data and relatively good performance on hi-
storical data. Table 3 shows the accuracy achieved
by the model on the respective datasets and tagsets.

Table 3: Stanza’s accuracy per text type and tagset.

Modern | Historical
UPOS | 98.79% 94.15%
XPOS | 94.76% 88.05%

A more detailed evaluation was obtained for the
UPOS tagset. Figure 1 and Figure 2 visualize the
per-class performance of the model for each data-
set, with the counts for each class being normalized
by the true positive count for that class (therefore,
the values on the diagonal correspond to recall).
It is worth pointing out that tags like INTJ and
SYM were absent from the historical data altoge-
ther. What can be noted is that with the exception
of many SYM and INTJ classes, the tagger shows
more consistent performance on modern data than
on historical. While for categories such as ADJ,
ADV, AUX, DET, NUM, SCONJ, and X the results
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Figure 1: Normalized confusion matrix for UPOS tag-
ging of the modern data.
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Figure 2: Normalized confusion matrix for UPOS tag-
ging of the historical data.

on historical data are visibly lower, the overall per-
formance on historical data is still rather good. The
XPOS tagset is much larger, in the order of hun-
dreds of tags, making a similar visual comparison
uninformative, and a more detailed analysis is bey-
ond the scope of this paper.

Another method of inspecting the tagger’s per-
formance is investigating the erroneously labeled
tokens. Table 4 and Table 5 illustrate the frequency
of specific kinds of errors present among the mi-
stakes made by Stanza in the memaoir, following
the general annotation utilized by Szawerna (2023).
While the exact proportions differ between the two
tagsets, spelling, ambiguous, and unidentified type
errors are the most common for both. Noticeably,
UPOS tagging fails when it comes to tokens with
unusual spelling, including capitalization, which
seems to be relevant for identifying PROPN and
the replacement of the y (/i/) vowel with e, and



Error Type | Raw freq. Relative freq.
spelling 293 48.67%
ambiguous 223 37.04%
unidentified 37 6.15%
vocabulary 35 5.81%

name 7 1.16%
abbreviation 4 0.66%
grammar 3 0.50%

Table 4: Frequency of errors by type for UPOS tagging.

Error Type | Raw freq. Relative freq.
ambiguous 184  47.06%
unidentified 77  19.69%
spelling 51 13.04%

name 49 12.53%
vocabulary 22 5.63%
grammar 4 1.02%
abbreviation 4 1.02%

Table 5: Frequency of errors by type for XPOS tagging.

spelling the /j/ sound with y, which distort various
inflectional endings. XPOS tagging struggles more
with ambiguity (e.g. when more than one gram-
matical case uses the same ending), although the
spelling variation not related to capitalization still
has a non-negligible effect. One relevant type of
ambiguous errors, present in both types of tagging,
is that related to the sometimes questionable status
of verb-derived nouns and adjectives. For example,
the word bombardowanie ‘bombing’ is considered
an established noun, but the tagger classifies it as
a gerund (WSJP Editorial Team, 2014; nkj, n.d.),
likely because of the form. Interestingly enough,
among the annotated XPOS errors there are also
several examples of the vocative case being ignored
or the model defaulting to assigning the masculine
grammatical gender to a pronoun despite the con-
text implying that it should be feminine. There are
also instances of verbs in the impersonal past form
that are consistently misclassified.

4 Discussion

The results of the quantitative evaluation show a
good performance of the tagger, exceeding most of
the previously reported ones, including the results
reported for the same data and tagger by Szawerna
(2023),* possibly due to improvements that have
been made to Stanza’s model. On the other hand,

*Other taggers used in that research achieve even higher
scores.
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Waszczuk et al. (2018) still achieve a better perfor-
mance on XPOS tags using a CRF-based model.
However, they use a more diverse and larger da-
taset which may consist of more standard Polish
than the data investigated in this paper. Neverthe-
less, Stanza’s performance on this test data is only
around 4 (UPOS) and 7 (XPOS) percentage po-
ints below the accuracy it has shown on its own
test set. Interestingly enough, the performance on
the PDB test set is slightly higher than reported
by Stanza (n.d.), possibly due to the corpus being
pre-tokenized before being fed to the model.

A qualitative error analysis has approximated
what the tagger struggles with when it comes to
the test data. Previous studies have shown that va-
riations in spelling, capitalization, punctuation, dif-
ferences in morphology and syntax, and semantic
shifts are some of the factors that make accurate
tagging of historical texts using modern taggers
difficult (Rayson et al., 2007; Scheible et al., 2011;
Adesam and Bouma, 2016; Hupkes and Bod, 2016).
In the case of Stanza, some of those issues, such
as nonstandard capitalization, archaic vocabulary,
and spelling have negatively impacted the tagger’s
performance. This is particularly prominent as far
as UPOS tagging is concerned. As far as XPOS-
tagging goes, issues pertaining to the inflectional
morphology have been highlighted, such as con-
fusing word endings or problems with words the
class of which is ambiguous. Additionally, issues
such as the possible underrepresentation of rarer
classes in the training corpus could be noted, le-
ading to biases concerning feminine pronouns and
issues identifying the vocative case.

5 Conclusions and Future Work

Within this paper, a modern Polish POS tagger,
Stanza, has been evaluated on historical and mo-
dern data, and some of the issues causing the drop
in its performance on historical texts have been
successfully identified. It has been shown that it
can perform quite well on non-standard, histori-
cal Polish data from the late 19" century, and this
can possibly be improved using some preproces-
sing methods, making it a promising candidate for
at least assisting the annotation of historical texts,
if not completely automating it. Many of the mi-
sclassified tokens were problematic due to issues
previously identified in the literature in the field;
however, some problems seemed to stem from the
inflectionality of the language or be inherent to



the tagger itself. Potential biases stemming from
the under-representation of certain classes in the
training data for the tagger have also been shown.

In the future, it would be interesting to test the in-
fluence of various factors, such as e.g. punctuation
or lowercasing, on the quality of tagging. Another
possibility could be comparing the performance of
multiple different taggers or tagging architectures
on the same data, or testing the same tagger on data
from different periods. Alternatively, one could ju-
xtapose the results presented in this paper to those
from tagging a very recent, nonstandard text, e.g.
sourced from the web, to see to what extent the
same issues are causing tagging problems. Finally,
developing some methods for the pre-processing of
texts from this period for subsequent tagging could
also be quite useful. It would also be interesting to
compare how the models for other languages inc-
luded in Stanza perform on samples of historical
texts from their respective languages.

As far as the data itself is concerned, it would be
interesting to complete and review the annotation
of the entire memoir, and see how the results of an
analysis such as the one presented in this paper wo-
uld change; this would also open up the opportunity
for different kinds of research on the text.

Ethics Statement

Given the age of the data, its use does not pose an
ethical challenge. The analysis of mistakes made
by Stanza indicates some possible existing biases
when it comes to assigning gender-marked XPOS
tags to words the gender of which is ambiguous
when the context is not taken into account. Simul-
taneously, it is worth pointing out that the re-using
of existing tools should be encouraged, especially
when it comes to resource-heavy tools (such as
NN-based ones), as it potentially limits the nega-
tive environmental impact of training large models.

Limitations

It is also important to acknowledge the limitations
of this research. Performing this kind of analysis
on data from only one author and a relatively re-
cent period does not fully address the question of
whether it is possible to utilize the Stanza tool for
POS tagging any Polish text, nor does the paper
provide an answer as to what kind of performance
would make a tagger sufficiently good for use in
preprocessing pipelines for historical texts. In the
latter case, the author is of the opinion that this
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decision should be made on a case-by-case basis,
and depending on the downstream tasks. The data
having been annotated by only one person makes
it somewhat prone to errors. Moreover, no attempt
at assessing the effect of pre-processing (spelling
and punctuation normalization) has been presented,
rendering a full comparison with some of the prior
research impossible.
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Abstract

This work proposes a challenging yet more re-
alistic setting for zero-shot cross-task general-
ization: zero-shot instruction following, pre-
suming the existence of a paragraph-style task
definition while no demonstrations exist. To
better learn the task supervision from the def-
inition, we propose two strategies: first, to
automatically find out the critical sentences
in the definition; second, a ranking objec-
tive to force the model to generate the gold
outputs with higher probabilities when those
critical parts are highlighted in the definition.
The joint efforts of the two strategies yield
state-of-the-art performance on the SUPER-
NATURALINSTRU (Wang et al., 2022b).!

1 Introduction

With the rapid evolutions of the pre-training tech-
niques, large language models (LLMs), such as
GPT-3 (Brown et al., 2020) and ChatGPT (OpenAl,
2022), are found to be capable of handling various
novel NLP tasks by following in-context instruc-
tions (Radford et al., 2019).> Typically, a formal
task instruction consists of two components: (1)
a task definition that describes the task intent; (2)
a few labeled examples to demonstrate this intent
(i.e., demonstrations). Then the problem is often
named as “k-shot instruction following”, where
k is the example size. Due to the performance
superiority of the in-context examples (Lampinen
et al., 2022; Gu et al., 2023a), prior research has
predominantly relied on demonstrations, allocating
relatively limited attention toward effectively uti-
lizing task definitions; we refer to this setting as
“demonstration-driven instruction following” (Min
et al., 2022a,b; Hu et al., 2022).

'Code: https://github.com/RenzeLou/Pick-Rank

Task instructions can be any textual expressions, e.g., task
names, short sentences, or paragraphs, that describe the task
semantics; prompts are the special case of instructions (Lou
et al., 2023).

Notwithstanding the surprising results, this phe-
nomenon could manifest as an instance of overesti-
mated progress. Two reasons: firstly, demonstra-
tions are usually hard to be crafted in real-world
applications. Since LLMs are becoming helpful
daily-task assistants and most end-users are non-
experts (Chiang et al., 2023; Xie et al., 2023, 2024),
it is usually exhausting and unrealistic for users to
design concrete demonstrations for every daily task,
especially for those tasks that require specific do-
main knowledge. Secondly, as Gu et al. (2023a)
concluded, so far, we still lack a method to ef-
fectively learn from instructions to solve tasks
without demonstrations for various reasons. For
example, Khashabi et al. (2022) showed that the
models constantly ignored the crucial information
emphasized in the definition (e.g., an output con-
straint that asks models to “generate no more than
five words”); Webson and Pavlick (2022) found that
the models always struggled to truly understand the
content of the definition.

To more effectively utilize the task definition,
this work studies a more challenging setting: zero-
shot instruction following. Technically, our ap-
proach consists of two strategies.> (i) Strategy
I: automatically learn the critical task-relevant in-
formation from the lengthy definition to help the
model better grasp the instruction. (ii) Strategy II:
to make the model truly distinguish instructions
that are specified by the critical information or not,
we set a ranking-based training objective. Given
instructions with critical information highlighted,
this ranking strategy forces the model to generate
ground-truth outputs with higher probabilities than
instructions otherwise. Our system, PICK&RANK,
achieves state-of-the-art on the benchmark, SUPER-
NATURALINSTRU (Wang et al., 2022b).

*In the rest of the paper, we use the terms “definition” and
“instruction” alternately, when examples are unavailable.
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Figure 1: The illustration of our PICK&RANK. Two main components: Strategy I (PICK) and Strategy II (RANK).
Strategy I aims to predict a binary value for each sentence in a definition, indicating whether a sentence is crucial.
The outputs of Strategy I are used to construct instructions with different sufficiencies, e.g., “Repeat” represents the
most beneficial instructions where the crucial sentences are repeated. Strategy II then drives the LMs to generate
higher ground-truth probabilities on the more beneficial instructions. The whole system is optimized end-to-end.

2 Related Work

Prompt & In-context Learning. Prompting
techniques usually acquire answers from large lan-
guage models (LLMs) after rewriting the original
task input into a LLM-oriented format. Impressive
progress has been observed in various NLP tasks,
such as question answering (Radford et al., 2019),
text generation (Schick and Schiitze, 2021), infor-
mation extraction (Wang et al., 2022a; Sun et al.,
2024), etc. Brown et al. (2020) further developed
in-context learning (ICL): GPT-3 achieved compet-
itive few-shot results without parameter tuning by
prepending a prompt with a few demonstrations to
new inputs. Follow-up work delved into improving
ICL, including how to choose better demonstra-
tions (Rubin et al., 2021; Lu et al., 2022), how to
formulate the tasks (Zhao et al., 2021; Min et al.,
2022a), etc. However, the short and simplistic na-
ture of the prompts makes it difficult to express
NLP tasks of diverse complexities (Chen et al.,
2022). Our work tries to learn from instructions
that describe the task semantics in more detail, such
as Amazon MTurk instructions.

Follow  Human-annotation  Instructions.
Prompts are more friendly for LLM to emit
outputs. In the real world, humans describe
tasks using paragraph-style instructions, such as
crowd-sourcing guidelines. This type of instruction
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has recently attracted much attention, including
increasingly larger datasets (Mishra et al., 2022;
Wang et al., 2022b), new learning problems (Yin
et al., 2022) and applications (Zhang et al., 2023),
etc. To achieve cross-task generalization given
instructions, prior systems trained a text-to-text
model on a long sequence of text, i.e., concate-
nating task definition, demonstrations, and all
other resources (Lou et al., 2023). We ignore
demonstrations and focus on the supervision
extraction from task definitions.

3 Problem Definition & Our Approach

We study zero-shot instruction following in a cross-
task generalization setting, where evaluation tasks
are unseen in training.

Zero-Shot Instruction Following: Three task
sets: TRAINING TASKS, DEV TASKS, and TEST
TASKS. There are no overlapping tasks among
them. Each task 7" has its instruction I and a collec-
tion of labeled examples D ={(z, y)}. x: input; y:
gold output of x under /. I is a short paragraph con-
sisting of n sentences, i.e., I = {s1,592, -, sp}.
No examples exist in /. D of DEV TASKS and TEST
TASKS are only used for evaluation. As shown in
Figure 1, we adopt two strategies to better leverage
the supervision in I.



Strategy I: picking critical sentences of instruc-
tions. Given the instruction I = {s1, - ,sp},
the goal of this phase is to learn a binary value for
each s;, indicating that if s; is critical for the task
T. We expect to select k most critical sentences.

As shown in Figure 1, we train a Pointer Net-
work (Vinyals et al., 2015) to select critical sen-
tences from the input automatically. First, we
concatenate all {s;} in I as the encoder input to
learn a hidden vector h; for each s; as: h; =
Encoder(s;|I), where h; € R% and is average-
pooled from all token-level vectors of s;.

Second, we concatenate all sentence-level vec-
tors {h;}. Then a one-hot vector m! of length n,
indicating which sentence is critical, is derived by:

m' ~ Gumbel(W[hy, ha,...,h,]) (1)

where W € R™*"d_“Gumbel” is Gumbel-Softmax
(Maddison et al., 2016), calculating a Gumbel dis-
tribution over the linear model predictions and sam-
ples categorical one-hot value from it. We use
Gumbel-Softmax because it enables gradient back-
propagation to help train the system end-to-end.

Since m! is n-dimensional one-hot vector; it
only picks a single critical sentence. To aggregate
more potentially useful information from 7, we do
the Gumbel sampling procedure k times (where set
k as 2 in our experiments) and take the element-
wise union of {m'}, ¢t = [1,--- ,k]. Accordingly,
the final mask m is a k'-hot vector (k/ < k) with
each m; as:

i 2
Therefore, m enables the model to pick at most &
critical sentences in I. As shown in Figure 1, I =

{s1, s2, 83, s4}, and {s1, s3} are critical sentences.

m; = Ulem

Strategy II: ranking-based objective. In a
conventional text-to-text generation, we mainly
optimize the probability, through negative log-
likelihood (L,;;), of generating the gold output.
In zero-shot instruction following, when we are
aware of which sentences in the I are crucial, in
addition to applying the standard loss £,,;;, we can
further take a ranking loss to make sure more in-
formative instructions (/™) lead to gold outputs
with higher probabilities than less informative ones
(I7).* Specifically, we can build (I, I7) pairs in

“The motivation is that, given the informative I *, the mod-
els can still ignore the beneficial parts selected by Strategy I (cf.
Mishra et al., 2022). Thus, Strategy II further forces the mod-

els to pay attention to those crucial parts (textual differences
between I+ and 1) by producing different probabilities.
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three ways:

 Repeat vs. Origin (origin): IT is [s1, s3, S3,
sS4, [REP], s1, s3, [REP]]. This means {s1, s3} will
be repeated in the input instruction, and the special
token [REP] can help tell the model which part is
highlighted. I~ is [s1, s2, S3, S4];

» Repeat vs. Delete (delete): I is [s1, 52, S3,
s4, [REP], s1, s3, [REP]], I~ is I when those criti-
cal sentences are masked, i.e., [s2, S4];

» Repeat vs. Null (null): 77 is [s1, S92, 53, 54,
[REP], s1, s3, [REP]], and I~ is an empty string.

Let’s use f7+(y|z) and f;- (y|x) to denote the
probabilities of generating the gold output y given
the input x and the instruction. Then our ranking
loss Lqnk is implemented as:

Lrank = maX(O, a— frv (y‘ﬂ?) + f1- (y|$)) (3)

where « controls the probability margin, and
f«(y|z) is the average of word-level probabilities
on the decoder side. The final loss of our model
PICK&RANK is L = L1+ 5+ Lrank- Difterent ap-
proaches to generating (I, ™) pairs can specify
the »Crank as: Lorigina Ldelete, or [fnull (aS shown
in Figure 1). We will study their individual and
joint contributions in experiments. When testing,
we generate the final prediction on “Repeat”.

4 Experiments

Dataset. We work on the benchmark SUPER-
NATURALINSTRU (Wang et al., 2022b), which con-
tains 1,040 diverse English tasks (921 in train and
119 unseen tasks in test). We follow Wang et al.
(2022b) only using 756 tasks in train to train the
final model. Each task is expressed by an instruc-
tion, originally consisting of a paragraph-level task
definition and a couple of positive&negative exam-
ples, and a large set of input-output instances. To
satisfy our setting, we only use definitions as in-
struction /. The average definition length is 65.73
by words (4.09 by sentences). Those classification
and generation tasks are respectively evaluated by
EXACTMATCH and ROUGE-L (Lin, 2004). We
also report ROUGE-L (overall), which calculates
the ROUGE-L on both classification and genera-
tion tasks, to reflect an overall estimation. More
dataset and metric details can be found in Appendix
and Table 5.

Baselines. Since prior systems for few-shot in-
struction following need examples in instructions,
in order to apply them to a zero-shot setting, we



ExAacTMATCH ROUGE-L ROUGE-L(overall)

GPT-4 (OpenAl, 2023) 64.51 256 59.36x224) 62.96(x2.08)
ChatGPT (OpenAl, 2022) 46.90x223) 56.82(x3.10) 52.41 230
SeqGAN (Yu et al., 2017) 24.50x1.13) 31.19z2.09) 27.55z13)
ReCross (Lin et al., 2022) 28.95(+045) 38.81(+092) 33.88+058)
MetalCL (SeqGAN) (Min et al., 2022b) 24281098 33.65157) 28.14122
MetalCL (ReCross) (Min et al., 2022b) 14.98(x0.42) 21.63x0s3) 20.74x0.40)
TK-INSTRUCT (Wang et al., 2022b) 28.56(+039) 39.350s5 33.64 047
v Strategy [ 29.67x043) 39.54x0.90) 34.98+057)
% ranking ori 29.98+0.87) 41.791.08) 35.62+076)
~ ranking del 28.68 2104 41.86¢x121) 34.46(x059)
& . : . . . :

> w/Stategy IL . ting null 29340000 | 421311 351009
> ranking all 30.58+033) 43.55+102) 36.70cx1.14)

Table 1: Main results. Numbers of different methods were calculated from three random runs. We also put LLMs’
performances (GPT-4, etc.) here for reference (i.e., upper bound). Please see the appendix for the baselines’ details.

try to generate silver examples for them. For this
thread, our baselines include (i) SeqGAN (Yu et al.,
2017): Using GAN to generate silver y by utilizing
task definition and x; (ii) ReCross (Lin et al., 2022):
Retrieving similar examples from the training set
using task definition and z; (iii) MetalCL (Min
et al., 2022b): Meta-learning given task definition
and a few examples. Due to the different resources
of examples, MetalCL is specified to MetalCL (Se-
qGAN) and Metal CL (ReCross). Another baseline
concatenates task definition, examples, and x in
the encoder to decode y, namely the prior state-of-
the-art system Tk-INSTRUCT (Wang et al., 2022b).
More details about baselines are in the Appendix.

Our model implementation. We follow Wang
et al. (2022b) using T5-base (Raffel et al., 2020)
for all experiments. Please refer to Appendix and
Table 4 for more experimental settings (e.g., hyper-
parameters and computational cost).

Results. Table 1 summarizes the results on zero-
shot instruction following. Overall, our approach
shows successive performance improvements by
adding the two proposed strategies and gains state-
of-the-art results by adopting them jointly, proving
the effectiveness of our method. Worth noting that
the Tk-INSTRUCT can be regarded as our backbone,
and after adding strategy I, our method has already
improved by 1.34 ROUGE-L (overall) score, indi-
cating the benefits of highlighting crucial sentences.
Moreover, we gain further performance improve-
ments by adding strategy II, because the ranking
objective trains the model to discriminate the differ-
ences in the inputs, thus it drives the model to under-
stand the highlighted information rather than sim-
ply ignoring them (Webson and Pavlick, 2022). As
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I: The answer will be “yes” if the provided sentence
contains an explicit mention that answers the given question.
Otherwise, the answer should be “no”. Instances where the
answer is implied from the sentence using “instinct” or
“common sense” [- - - | should be labeled as “no”.

y: Yes.

TK-INSTRUCT y: March

PICK&RANK ¥: Yes

I: Given a text passage, come up with an appropriate title for
it. [ - - ] The title should be 1-5 words long.

y: Nobel Peace Prize

TK-INSTRUCT y: The Nobel Peace Prize is one of the five
Nobel Prizes created by the Swedish industrialist, inventor,
and armaments manufacturer Alfred Nobel.

PICK&RANK y: Nobel Peace Prize

I: In this task, you’re given an ambiguous question (which
can be answered in more than one way). Your task is to
write a question that clarifies the given question in such a
way that the generated question has one unique answer.

y: When was the National World War II memorial officially
established?

TK-INSTRUCT y: 1830

PICK&RANK ¥y: When was the memorial built?

Table 2: Effect of Strategy 1. ¥: system output. The
detected crucial sentences are highlighted in blue.

for MetalCL, due to the huge task differences be-
tween train and test (as shown in Table 5), those
silver examples generated or retrieved by using
the train do not provide the in-distribution pat-
terns (Min et al., 2022c),> leading to sub-optimal
or even worse performances, cf. MetalCL (Re-
Cross) vs. ReCross. Note that, ReCross directly
retrains the model with the retrieved examples and
obtains relatively better results, however, it is still
suffering from the drawbacks of few-shot instruc-
tion following in such a strict cross-task setting, so

as SeqGAN.
Analysis. We try to clear up three concerns.

SWe also observed the low instance similarities predicted
by ReCross between train and test.



I: Generate an overlapping word between the given two
sentences. [- - -] You must generate significant words which
are not the stop words like “the” or “of", etc.

x: s1: Amphibians have permeable skin that easily absorbs
substances from the environment. s2: Amphibians begin
their lives in the water.

y: Amphibians Il y:the

Error type: negation

I: Two analogies that relate items to whether they are trash
or treasure is given in the form “A:B. C: ?"[---] “A: B”

relates item A to whether it is trash or treasure, as specified
byB.[---]

X: baby : treasure. leaf : ?

y: trash |l y: relates item A to whether it is trash or treasure
Error type: pattern copy

I: [- - - ] If it is about requesting something, generate
"REQUEST". [- - -] If it is about informing something,
generate “INFORM”.

x: Please tell me do you have any particular date for the
event?

y: REQUEST Il y: INFORM

Error type: incomplete critical sent. detection

Table 3: The error patterns by our system. We highlight
the crucial sentences in the instructions with blue, and
mark the error type as red.

Q;: Did the detected critical sentences really
contribute to the generation of gold outputs?
To answer Q1, we checked some examples where
our system improves over the strongest baseline
TK-INSTRUCT. As shown in Table 2, our ap-
proach can generally point out those crucial task-
relevant sentences that are hardly encoded by the
TK-INSTRUCT, such as output space (the first ex-
ample), length constraint (the second example),
and types of output (the last example). With the
help of such highlights, our system can produce
outputs that are better aligned with the task def-
initions, while TK-INSTRUCT often violates the
requirements of instructions.

Qy: Could ranking objective really improve
the probability of gold outputs? Regarding O,
we test our model on all TEST TASKS with two
versions of task instructions: repeat vs. origin.
For each version, we calculate the corresponding
probability of the ground truth output by averaging
token-level probabilities in the output string. Our
model can produce a higher ground-truth proba-
bility once “repeat” instruction is adopted (score:
0.59) than the “origin” definition (score: 0.11),°
demonstrating the effectiveness of our Strategy II.

Qs: Error patterns of our systems. We ran-
domly pick up 200 instances from the test and sum-
marize three main error patterns of PICK&RANK,
as shown in Table 3. (i) Negation. As the first exam-
ple in Table 3 shows, even though the model is able

®Average from three random seeds experiments.
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to detect the sentence that has a specific require-
ment “generate significant words which are not the
stop words - - -7, the negation “are not” was not
successfully comprehended by the system. Unfor-
tunately, negation understanding has increasingly
been a challenge in NLP (AL-Khawaldeh, 2019;
Yin et al., 2022; Khashabi et al., 2022). (i1) Pattern
copy. The second example shows the system some-
times copies a span from the definition, especially
when the definition string, e.g., “‘A : B’ relates item
A to whether it is trash or treasure, as specified by
B.”, matches the format of x, e.g., “baby : treasure.
leaf: 7. This resembles demonstration-driven in-
context learning, where researchers found pattern
match is a key factor of success (Min et al., 2022c¢).
(iii) Incomplete critical sentence detection. 1t is
possible that our system detects partial sentences
that are critical. As a result, the system is biased
toward the requirement of highlighted sentences.
Rather than using a hard masking scheme, our fu-
ture work will explore a soft-masking technique so
that no instruction parts will be clearly ignored.

5 Conclusion

In this paper, we focused on zero-shot instruction
following, where we only adopted the task defini-
tions as the instructions to help the model perform
cross-task generalization. Expressly, our method
pointed the critical sentences out of the lengthy defi-
nitions and highlighted them explicitly. In addition,
we further designed a ranking objective to improve
the instruction grasp of the LMs. We also con-
ducted thorough analyses to help future research
on zero-shot instruction following.
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Hyper-parameters

Ir for TS

Ir for Pointer Networks
Ir for Encoder

Range
[5e-6, 1e-5, Se-5, 1le-4]
[Se-5, 1le-4, 3e-4, Se-4]
[1e-6, 5e-6, 1e-5, Se-5]

Qorigin [0.001, 0.003, 0.01, 0.03, 0.1]
Qdelete [0.001, 0.003, 0.01, 0.03, 0.1]
Ayl [0.01, 003, 0.1, 03]

B [0.01,0.05,0.1,0.5, 1]

k [1,2,3,4,5]

Pooling Function [ average, max ]

Table 4: The hyper-parameters trialed in tuning our mod-
els. The best ones adopted in our final experiments are
highlighted in boldface. Here, “Ir”” denotes the learning
rate; « is the probability margin in equation 3, there are
three different o according to three ranking losses; 3 is
a coefficient that controls the influence of the ranking
losses; and k is the sampling times in equation 2.

Appendix A. Expanded Technique Details

Due to the length limitation, we have to elaborate
on some other important details of our approach
in this section, including four different instructions
in Figure 1 and how we enable end-to-end opti-
mization. As we have illustrated in Figure 1, our
approach consists of two parts, corresponding to
Strategy I and Strategy II in Section 3, respec-
tively.

Strategy I (the left dashed box in Figure 1)
first encodes and converts all the sentences in a
definition to sentence-level representations. Then,
we adopt pointer networks followed by a Gumbel-
Softmax layer to predict a binary vector for these
representations, where “1” means the correspond-
ing sentence contains crucial task-relevant infor-
mation and should be attended by the LMs. In
order to pick up more potentially useful informa-
tion, we repeat the Gumbel sampling several times
and take the element-wise union of the sampling
results as the final decision of strategy L. It is worth
noting that the encoder of this phase shares the
same model structure as the encoder of the LMs
to keep similar internal features of the downstream
procedure (Lin et al., 2022). However, they are
optimized individually.

Strategy II (the right solid box in Figure 1) re-
gards the output binary vector of strategy I as a
sentence-level mask matrix and constructs four dif-
ferent instructions accordingly: (1). Repeat indi-
cates the definition in which the critical parts are
repeated and highlighted. Practically, we repeat
the whole definition once (surrounded by a spe-
cial token “[REP]”) and use the binary vector from
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the strategy I as the attention mask matrix in the
Transformers (Vaswani et al., 2017); (2). Origin is
the original definition without any modifications;
(3). Delete denotes the definition where the critical
parts are masked. Similar to Repeat, we actually en-
code the whole definition and use the invert of the
binary vector to mask the critical information; (4).
Null means that there are no instructions provided.
Intuitively, if the model can truly understand the
prefixed instructions, it shall discriminate these text
differences and produce better results on the inputs
with informative instructions (i.e., Repeat) than the
others (i.e., Origin, Delete, and Null).” Therefore,
besides the standard negative log-likelihood L,;,
there are three additional ranking losses in total,
namely »Corigina Edelete’ and Enull'

Notably, our system can be optimized end-to-
end because we incorporate the decision of strategy
I by utilizing the attention mask mechanism in the
LMs of strategy II.

Appendix B. Experimental Details

For hyper-parameters, we use segmented learning
rate (5e-5 for TS5, 3e-4 and Se-6 for the pointer net-
works and encoder, respectively) optimized with
Adam (Kingma and Ba, 2014). As for the mar-
gins of ranking losses, we follow previous works
employing structured margins to obtain a better rep-
resentation space in LMs (Wang et al., 2019, 2021).
Following Wang et al. (2022b), after two epochs
training on train, we evaluate our model on test
with the beam size equal to 1 (greedy decoding).
We present our hyper-parameters selection in Ta-
ble 4. All the ranges of these hyper-parameters
are decided empirically, and we search for the best
combination greedily by observing the ROUGE-
L score on the development set. We use Hugging
Face T5-base for all the experiments ® and utilize
Spacy for sentence segmentation.’ It is notable
that the definition length can be diverse, and it will
extremely increase the computational burden if we
let the pointer networks consider all the sentences
in a definition. According to Table 5, we randomly
select 5 sentences from the definition of each task
as the candidates.

All of our code is implemented by using Python

"Unlike the Repeat, we do not use any special tokens in
the other instructions (“[DEL]”, “[NULL]”, etc.) to avoid
introducing shortcuts to the model (Du et al., 2021).

8https: //huggingface.co/t5-base

9ht’cps ://github.com/explosion/spacy-models/
releases/tag/en_core_web_sm-3.4.1
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Train Dev Test
# of tasks 756 100 119
# of instances 75,317 | 9,958 | 11,810
# of task types 60 23 12
# of domain types 101 24 35
# of sources 243 46 75
sources overlap with test set 0.0% | 80.4% /
avg def. length (words per task) 66.41 | 65.58 | 61.55
avg def. length (sentences per task) 4.11 4.12 3.92

Table 5: The dataset statistics.

3.8.0 and PyTorch 1.12.1 '° with CUDA 11.6, and
we utilize Hugging Face Transformers 4.18.0 !!
to train and evaluate our models. We conduct all
our experiments on Ubuntu 18.04 LTS using In-
tel(R) Core(TM) 19-10900KF CPU with 32 GB
of memory, and employing NVIDIA RTX A5000
GPU with 24 GB of memory. On the whole, there
are about 332 million parameters in our models.
It takes about 12 hours to train and evaluate our
models (2 epochs with batch size equal to 1). At
the same time, the peak of GPU usage is 23GB.

Appendix C. Dataset and Metrics

We show the statistics of the benchmark dataset in
Table 5. We only focus on the English tasks and use
the same data split policy as previous work (Wang
et al., 2022b), where all those tasks coming from
the same sources as the test set are excluded from
the training set (as shown in Table 5). However,
because no official development set is provided,
we randomly select 100 tasks from those excluded
tasks with a maximum of 100 instances per task,
as the development set used in our experiments.
Similarly, we follow Wang et al. (2022b) to use the
first 100 instances per testing task and randomly
choose 100 instances per training task.

As for the evaluation metrics, we follow Wang
et al. (2022b) utilizing ROUGE-L (Lin, 2004) and
EXACTMATCH (Rajpurkar et al., 2016) to evaluate
the cross-task generalization performance of the
text-to-text LMs. To be specific, the ROUGE-L re-
flects the string overlap between the answers and
the predictions, while EXACTMATCH measures the
ratio of the number of correctly predicted examples.
Both of these metrics are widely adopted by previ-
ous works (Rajpurkar et al., 2016; Poria et al., 2021;
Gu et al., 2023b). Since the EXACTMATCH cal-
culates the ratio of how many ground truth labels

10https ://pypi.org/project/torch/
"https://github.com/huggingface/transformers/
releases
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I: You are given two sentences and have to find if there is
entailment or agreement of the Hypothesis by the Premise.
[- - -1 Your task is to return “entails” if the premise supports
hypothesis else return “neutral”.

y: entails

TK-INSTRUCT y: calorie

PICK&RANK y: entails

I: Generate an appropriate title for the given text. The
generated title must be short and include the main topic of
the text. The preferred titles are under fifteen words.

y: Case Logic Laptop roller bag

TK-INSTRUCT y: This bag is great for carrying laptop, HP
Printer, portable scanner, cables and supplies
PICK&RANK y: bag for laptop

I: In this task, you are given two questions about a

domain. Your task is to combine the main subjects of the
questions to write a new, natural-sounding question. For
example, [---].

y: Did this president go to college in the state he was born
in?

TK-INSTRUCT y: this president

PICK&RANK y: this president was born on the east coast?

I: Given a document, generate a short title of the
document. The title should convey the main idea/event/topic
about which the document is being written. Note that URLSs
in the text have been replaced with [Link].

y: Dutch politician on trial on hate speech charges
TK-INSTRUCT y: Geert Wilders

PICK&RANK y: Geert Wilders is on trial for hate speech

Table 6: More cases. The crucial sentences are in blue.

are generated, it is similar to the accuracy score.
Thus, we report the EXACTMATCH score for those
classification tasks in Table 1. What’s more, we use
the same evaluation script as Wang et al. (2022b)
to compute these metrics.'?

Appendix D. Baselines

As mentioned in Section 4, we implement four
baselines for a comprehensive comparison. As
follows, we provide detailed implementation infor-
mation. Worth noting that we tune all the hyper-
parameters of the baselines on the development set
or use the default settings reported by the original

paper.

SeqGAN It regards the generation as a sequen-
tial decision procedure and uses the Reinforcement
Learning (RL) rewards of an additional classifier
to optimize the generator. The original SeqGAN
is based on LSTM (Hochreiter and Schmidhuber,
1997). In order to fair compare with the other mod-
els, we change the backbone to T5-base. For train-
ing the SeqGAN, including the generator and clas-
sifier, we use the following steps: (1). Pre-training:
we first pre-train the T5-base on the benchmark
dataset as the generator, that is, we concatenate

Zhttps://github.com/yizhongw/Tk-Instruct/blob/
main/src/compute_metrics.py
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the original definition with the task input (i.e., )
and drive the model to predict the output (i.e., ).
As for the classifier, we use Hugging Face bert-
large-cased 2 to perform a sequence classification,
namely predicting the binary label (i.e., “0” or “17)
by encoding the task definition and the (z, y) pair
produced by the generator; (2). Adversarial train-
ing: We follow Yu et al. (2017) training the gener-
ator and classifier alternately. Specifically, when
generating each token, we employ Monte Carlo
(MC) search to complete the whole sequence and
use policy gradient (Sutton et al., 1999) to optimize
the generator. After 20 steps of training on the
generator (batch size equals 4), we use the silver
answers predicted by the generator as the negative
examples to train the classifier. After adversarial
training the generator with 5 epochs, we then use it
to predict the instances of the unseen tasks in the
test set (i.e., §j). Meanwhile, these (z, ) pairs can
also serve as examples for in-context learning (see
MetalCL for more details).

ReCross This is a retrieve-based method that uti-
lizes the unlabeled examples of an unseen task to
retrieve similar labeled examples from the train-
ing set. These retrieved examples can be further
used for retraining the model. Similarly, they can
also be used for in-context learning (i.e., MetalCL).
We follow the official implementation of Lin et al.
(2022).'4 However, there are several differences
between the original algorithm and our usage: (1).
We use the concatenation of definition and task
input as the query and index for a fair compari-
son. We also believe the task definition can provide
valuable semantics for the retrieval procedure; (2).
Instead of using RoBERTa (Liu et al., 2019), we
train a Hugging Face bert-base-cased model as the
Reranker,'> which has relatively better results in
our experiments; (3). We use T5-base as the back-
end of ReCross.

MetalCL Following Min et al. (2022b) and
Wang et al. (2022b), we use task definition and
two positive examples as instructions to train and
test the T5-base model. While the test set exam-
ples are those silver examples produced by Seq-
GAN and ReCross, namely MetalCL (SeqGAN)
and MetalCL (ReCross). All the other hyper-
parameters are the same as what we use in the
TK-INSTRUCT.
Bhttps://huggingface.co/bert-large-cased

14https://inklab.usc.edu/ReCross/
15https://huggingface.co/bert—base—cased
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TK-INSTRUCT We use the official code and
hyper-parameters of Wang et al. (2022b).'® The
only difference is that we use T5-base instead of
T5-3B reported in their paper, due to the limited
computational resources. It is also worth noting
that the original Tk-INSTRUCT is trained with pos-
itive demonstrations as additional instructions; in
this paper, we solely use the task definition as the
instruction of Tk-INSTRUCT to ensure a fair com-
parison.

ChatGPT & GPT-4 For LLMs’ performances,
we use the scores reported by Lou et al. (2024) in
Table 1, where they concatenate the task instruction
with input as a whole query of APIs. Please refer
to Lou et al. (2024) for more details.

Appendix E. More Cases

We display more intuitive cases in Table 6.

Appendix F. Limitations

In this section, we summarize several limitations
and broader impacts of this paper. (1) As men-
tioned in Section 4, one limitation of this paper is
that our approach is still difficult to fully encode
the crucial information in the definitions, even if
they are well highlighted, such as the negation ex-
presses. Potential solutions include adopting an ad-
ditional weighting strategy on the decisions of the
pointer networks (See et al., 2017), adding a soft
fusion mechanism in the LMs (Gao et al., 2021;
Tian et al., 2022), or proposing an automatic in-
struction reframing technology (Khashabi et al.,
2022). (2) Meanwhile, since the task definition
is usually a paragraph consisting of several sen-
tences, this paper mainly focuses on detecting cru-
cial sentence-level information. However, in some
cases, task-relevant information should be better
represented in a word-level or span-level format,
such as the output space. Therefore, our strategy
can be further improved by using a hybrid-level
pointer to satisfy the diverse real-world scenarios.
(3) Another potential future investigation is to ana-
lyze how LMs utilize the highlighted information
in the instructions through human intuition, such
as visualizing the multi-head attention score distri-
bution of the transformers (Ma et al., 2021b,a), or
probing the conflict between the in-context instruc-
tion and model’s parametric knowledge (Xie et al.,
2023). We leave them as our future work.

16https://github.com/yizhongw/Tk—Instruct
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Abstract

Language models (LMs) have become pivotal
in the realm of technological advancements.
While their capabilities are vast and transfor-
mative, they often include societal biases en-
coded in the human-produced datasets used
for their training. This research delves into
the inherent biases present in masked language
models (MLMs), with a specific focus on gen-
der biases. This study evaluated six prominent
models: BERT, RoBERTa, DistilBERT, BERT-
multilingual, XLM-RoBERTa, and DistilBERT-
multilingual. The methodology employed a
novel dataset, bifurcated into two subsets: one
containing prompts that encouraged models to
generate subject pronouns in English, and the
other requiring models to return the probabil-
ities of verbs, adverbs, and adjectives linked
to the prompts’ gender pronouns. The analy-
sis reveals stereotypical gender alignment of
all models, with multilingual variants showing
comparatively reduced biases.

1 Introduction

In recent years, large language models (LLMs)
have emerged as a powerful tool in the field of
natural language processing (NLP), demonstrating
an unparalleled ability to capture hidden patterns
from large datasets (Bommasani et al., 2021; Zhou
et al., 2023; Zhao et al., 2023). These models owe
their power to the extensive training on corpora
of human-generated text, enabling them to mimic
human-like linguistic capabilities with remarkable
accuracy (Bahri et al., 2021). While the ability
to capture and reproduce these patterns often re-
sults in beneficial outcomes, it is not without its
caveats. An increasing amount of studies (Bor-
dia and Bowman, 2019; Abid et al., 2021; Kaneko
et al., 2022) have underscored the potential risks
associated with language models, pointing out their
role in inheriting the biases present in the training
data, a reflection of human prejudices and societal
norms.
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Figure 1: Summary of the approach. The sections in
the diagram (from left to right) show the steps taken to
judge each model.
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In the context of language models (LMs), bias
refers to the systematic misrepresentation of facts
or factual distortions that benefit certain groups,
spreading and fixing stereotypes, or producing in-
correct presuppositions built on learned patterns.
These prejudices can be intentionally or uninten-
tionally introduced by (1) training data, (2) algo-
rithms, or (3) human annotators (Ferrara, 2023).
If the training datasets are skewed or lack repre-
sentation from different groups, the model will in-
evitably inherit these biases. Algorithms follow
mathematical and logical rules that make them
more robust. However, if parameters are set or
weighted in a way that they favor certain data points
over others, they can introduce or amplify them.
Lastly, human annotators bring their own perspec-
tives and beliefs. This highlights the importance
of having diverse teams involved in the data an-
notation process to minimize the introduction of
individual or cultural biases.

Gender bias poses ethical concerns, particularly
when found in models deployed in sensitive do-
mains, such as the job market, where fairness and
impartiality are paramount (Kodiyan, 2019). While
previous work has focused on using larger and
more complex datasets, the question is: do we need
a large corpus to identify whether models show
gender-biased behavior? This study seeks to delve
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deeper into the gender biases exhibited by masked
language models (MLMs), especially in the context
of the job market. To do so, this work uses differ-
ent widely used MLMs to evaluate biases from a
quantitative and qualitative perspective. This study
proposes the use of a small linguistically informed
testing dataset targeting the prediction of gender
pronouns, adverbs, adjectives, and verbs. The re-
sults show that (i) for pronoun resolution, all mod-
els show significant biases for gender-stereotypical
roles, and (ii) multilingual models show more bal-
anced completions, suggesting a reduced bias.

2 Previous Work

The exploration of bias in language models has
gained significant attention in the Al research com-
munity. Given the vastness of this topic, various
sub-domains have emerged, each looking into dif-
ferent aspects or types of bias.

The first studies focused on word embeddings.
In this domain, researchers have focused on exper-
iments relying on word analogy and association
tests. It has been shown that word2vec (Mikolov
et al., 2013) or GloVe (Pennington et al., 2014) dis-
play strong biases when facing such experimental
scenarios. Caliskan et al. (2017) identified these in-
equalities using the embedding similarity between
male and female names and career terms. Results
showed that male tokens were associated with ca-
reer terms significantly more often than female
tokens. Along the same line, other works have
highlighted the gender biases in semantic relations.
Bolukbasi et al. (2016) showed that certain pro-
fessions established undesired logical propositions
among male and female tokens (e.g. doctor is to
man what nurse is to woman,).

In the realm of association tests, Caliskan et al.
(2017) proposed the Word Embedding Associa-
tion Test (WEAT). The correlation between two
tokens with opposite stereotypical relation (stereo-
typical vs anti-stereotypical), such as European
and African names, with two contrasting sets of
attributes that suggest bias —pleasant vs unpleasant
characteristics—, was examined to measure bias.
May et al. (2019) followed the line of WEAT
and extended it to masked language models with
the Sentence Encoder Association Test (SEAT).
Nadeem et al. (2021) presented StereoSet, a col-
lection of sentences found in natural environments
to assess model biases. The authors proposed a
methodology to go beyond the intrasentential bias
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identification and extend it to the text level.

In the context of masked language models
(MLMs), Nangia et al. (2020) presented CrowS-
Pairs, an alternative to StereoSet. Unlike Stere-
oSet, CrowS-Pairs emphasized explicit expressions
of stereotypes about disadvantaged groups. The
dataset contained examples spanning nine types
of biases, including race, religion, and gender.
Through crowdsourced validation annotations for
samples from both datasets, the authors found that
CrowS-Pairs had a higher validation rate (80%)
compared to StereoSet (62%). Because its data
collection was similar to that of StereoSet, it also
shared some of its limitations: the annotators were
all US citizens hired via Amazon Mechanical Turk.
Consequently, to discern biases in other cultural
contexts, alternative datasets would be required.

Other works have put special emphasis on the so-
cioeconomic dimension. Zhou et al. (2022) showed
that countries with lesser GDP also had less in-text
representation. Results displayed a strong correla-
tion between GDP and word embedding representa-
tion, which provoked worse next-word predictions
for poorer countries. To show this, the work used
token masking such as The country producing most
cocoa is [MASK], where the token expected was
Ghana (Zhou et al., 2022).

3 Methodology

This study tested monolingual and multilingual
masked language models against two main linguis-
tically informed tasks. First, models were asked
to fill the masked tokens ([MASK] or <mask>) with
a male or female subject pronoun. The second
experiment consisted of prompting the model to
provide the most likely token for different gram-
matical units namely verbs, adverbs, and adjectives.
These three units had distinct motivations: while
adjectives and adverbs provided insight into pre-
dicted gender-associated qualities, verbs provided
information on gendered subject pronoun agentiv-
ity under specific professional scenarios.

3.1 Datasets

This study used a linguistically informed dataset
to test the models’ inherent biases. The dataset
was divided into two main subsets: the job pro-
noun subset and the linguistic token subset.
The job-pronoun subset consisted of 700 employ-
ment prompts with the special token [MASK] (for
BERT, BERT-multilingual, DistilBERT, DistilBERT



multilingual) or <mask> (for RoBERTa, XML.-
RoBERT2) replacing the subject pronoun. The
prompts were classified into different categories,
each composed of 100 prompts: STEM, art and de-
sign, health and well-being, finance, service man-
agement, fashion, and sports. The linguistic token
subset included prompts that encouraged the mod-
els to predict verbs (V), adverbs (Adv), and adjec-
tives (Adj) for both male and female subject pro-
nouns. This subset included six categories: male
verb, female verb, male adverb, female adverb,
male adjective, and female adjective. Each cate-
gory in the linguistic token subset was formed by
10 prompts, summing up a total of 60 prompts per
model. The structure of the dataset is shown in
Figure 2.

Dataset

\ ,

vr

Job pronoun
subset

Y

Linguistic token
subset

[MASK] / <mask> is an engineer
[MASK] / <mask> is an astronaut
[MASK] / <mask> is a doctor

He [MASK] / <mask> the meeting
He [MASK] / <mask> the team
He [MASK] / <mask> a company

STEM
(osew) A

[MASK] / <mask> is an stylist
[MASK] / <mask> is an designer
[MASK] / <mask> is a model

She is a [MASK] / <mask> teacher
She is a [MASK] / <mask> doctor
She is a [MASK] / <mask> artist

FASHION
(way) cav

v v

n

|

Figure 2: Diagram of the dataset structure. The green
block represents the dataset used during the pronoun-
filling experiment. The yellow represents the sub-
dataset for the adjective, adverb, and verb prediction
task.
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3.2 Model Selection

This study evaluates six different masked lan-
guage models (MLM): BERT (Devlin et al., 2019),
RoBERTa (Zhuang et al., 2021), DistilBERT (Sanh
et al., 2019), BERT (multilingual) (Devlin et al.,
2019), XLM-RoBERTa (Conneau et al., 2020),
and DistilBERT (multilingual) (Sanh et al., 2019).
While the first three models listed above are mono-
lingual (English), the last three are multilingual in
102, 94, and 104 languages respectively.

3.3 Gender Bias Evaluation Criteria

Each of the prompts 7 revealed either a stereotypi-
cal prediction (ps) or an alternative prediction (pg).
For example, in a prompt such as [MASK] is a hair
stylist, biased models would predict pronoun she
instead of he in such a way that the likelihood
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would be ps(sheli) > p,(heli). Each job category
was assigned a predefined stereotypical and alter-
native pronoun association interpretation (Table 1).
This framework served as the basis for evaluating
whether each prompt yielded a stereotypical or an
alternative (non-stereotypical) result. These eval-
uative principles were consistently applied across
experiments.

Job Category Stereotypical Alternative
STEM Male Female

Art and Design Female Male
Health & Wellbeing | Male Female
Finance Male Female
Service Management | Female Male
Fashion Female Male
Sports Male Female

Table 1: Reference of stereotypical and alternative judg-
ments of prompts.

3.4 Quantitative Analysis
Gender-associated Token Confidence (GTC)

In this experimental setup, the job pronoun sub-
set was used. To measure the total bias of each
job prompt, this study relied on total gender-
associated token confidence (GTC) (Equation 1).

GTCyyp= Y  Plid(token)]

token€Ty, /¢

)]

GTC\yy/r represented the cumulative confi-
dence, indicating how strongly the model believed
male- or female-associated pronouns were the cor-
rect token for a masked position within the sen-
tence. 1, s referred to the predefined set of tokens
used as male- or female-associated (he, him, and
his for male; she, her, and hers for female). This
study did not analyze other gender pronouns such
as they/them or neo-pronouns; exploratory analysis
did not offer any consistent results to analyze them
further. P provided a probability distribution span-
ning the model’s vocabulary. Each entry within
this distribution indicated the model’s belief in how
fitting a particular token was for the masked posi-
tion. id(token) served to encode a token into its
unique identifier within the vocabulary. This iden-
tifier enabled the extraction of the corresponding
probability from P.



BERT DistilBERT

RoBERTa

BERT-multilingual DistilBERT-multilingual XLM-RoBERTa

A V-value  p-value A V-value  p-value A V-value  p-value A

V-value  p-value A V-value  p-value A V-value  p-value
Stem 1830  p<0.01 1 1830  p<0.01 098 1830 p<0.01
Art & Desing 1477  p<0.01 0.80 1458  p<0.01 0.68 1568  p<0.01
Health & Wellbeing 1489  p<0.01 0.81 1515 p<0.01 080 1454  p<0.01
Finance 1829 p<0.01 099 1829 p<0.01 097 1827  p<0.01
Service Management 1702 p < 0.01 091 1823 p<0.01 0.87 1546  p<0.01
Fashion 288 p<0.01 0.16* 332 p<0.01 021% 482 0.01
Sports 1738 p<0.01 0.94 1660 p<0.01 085 1810 p<0.01

098 | 1830 p<001 095| 1395 p<001 065 | 1829 p<0.0l 098
079 | 1742 p<001 085| 67 p<001 0.17%| 1318 p<0.01 0.61
077 | 1590 p<001 083| 543 p<001 037 | 1260 001 0.61
099 | 1830 p<001 095| 504 p<001 0430 | 1645 p<001 070
072 | 1815 p<001 084 | 404 p<001 042 | 818 047 0450
0.28% | 1233 002 063| 18 p<001 009%| 119 p<001 0.20%
093 || 1826 p<0.01 099 830 053 0500 | 1744 p<001 088

Table 2: Inferential statistics results from male count and female count tokens for each model. Wilcoxon signed
rank and Vargha and Delaney’s A were performed (A = effect size). Values marked with * show a large effect size
favoring female tokens. { implies a negligible score (i.e., no practical implications). Relevant scores are underlined.

Monolingual-Multilingual Comparison

To compare the monolingual and multilingual mod-
els’ effect sizes, the absolute differences of both
monolingual and multilingual results are calculated
(see Appendix A). Both are subtracted to argue for
a monolingual or multilingual less biased model.
This offered a value to measure the offset from
neutrality.

2)
3)

A=[V-05|

Dif ference = Apmono — Dmulti

3.5 Qualitative Analysis

For qualitative analysis, this study analyzed mod-
els’ token predictions for prompts that targeted spe-
cific grammatical units. To do so, the linguistic
token subset was used (Figure 2). Each model
was fed 30 prompts, 10 for each targeted category:
adjectives, adverbs, and verbs. The models were
asked to predict £ = 5 tokens (i.e., the top 5 words)
for all prompts in each gender. In total, the linguis-
tic token subset yielded 1,800 tokens for analysis.
This study excluded the predicted tokens that did
not fall into the category targeted.

Cross-gender Token Comparisons

After category validation, the predicted tokens for
each gender were compared. This part included a
fine-grained analysis of the predictions. To assess
equality imbalances, this study analyzed parallel
pairs. Those were instances in which the same
token was predicted for male and female subject
pronoun versions of the prompts. For example, if
the model predicted the adjective beautiful for the
prompt [He/She] is a [MASK] worker, it was con-
sidered a candidate for comparison. Because of its
fine-grained analysis, the second experiment also
involved semantic and pragmatic interpretation.
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4 Results

4.1 Gender Pronoun Completions

In experiment 1 the completion of the subject pro-
nouns was targeted (e.g., [MASK]/<mask> held the
meeting.). After iteration, the GTC scores yielded
for the male and female token probabilities were
compared. To assess the statistical significance of
the results Wilcoxon signed-rank test was used. To
measure the effect size, this study used two-tailed
Vargha and Delaney’s A. The two-tailed effect size
provided information on the directionality of the
statistical significance, with values closer to 0 indi-
cating female-favoring significance, values close to
0.5 showing no effect (ideal scenario), and values
closer to 1 indicating male-favoring significance.
For experiment 1, the null hypothesis (Hp,) was
that no significant differences were to be found
between male GTCs and female GTCs across job
categories (Hy, : pymare = prerce). On the con-
trary, the alternative hypothesis (H,,) stated that
there were statistically significant differences be-
tween the two groups analyzed (H,, : uypare #
wraTc)- Results are shown in Table 2.

Monolingual Assessment

Among the monolingual models, the study found
significant differences across all categories. For
BERT, it was found that STEM (p < 0.01, A = 1),
health and wellbeing (p < 0.01, A = 0.81), fi-
nance (p < 0.01,A = 0.99), and sports (p <
0.01, A = 0.94) followed the male favoring stereo-
typical assumptions. For fashion (p < 0.01, A =
0.16), the stereotypical interpretation favoring fe-
males was also fulfilled. However, categories such
as art and design (p < 0.01, A = 0.80) or service
management (p < 0.01,4 = 0.91) showed an
alternative (non-stereotypical) interpretation. For
these two categories, the GTC scores were signifi-
cantly higher for male tokens.

Similar results were found for DistilBERT:
STEM (p < 0.01, A = 0.98), health and wellbeing



(p < 0.01, A = 0.80), finance (p < 0.01,A =
0.97), and sports (p < 0.01, A = 0.85) showed
male stereotypical results. Fashion (p < 0.01, A =
0.21) also indicated a female favoring stereotyp-
ical output. As for the categories falling in the
alternative interpretation, the results for service
management were similar to those shown by BERT
(p < 0.01, A = 0.87). However, art and design
showed a medium effect size (p < 0.01, A = 0.68),
which meant that this category was less biased.

As for RoOBERTa, the results coincided with the
previous models. The most notable difference was
found in fashion again, where both p-value and
effect size were smaller than in the other models
(p=0.01, A =0.28).

Multilingual Assessment

Among the multilingual models, diverse findings
were observed. For BERT-multilingual, the cat-
egories STEM (p < 0.01, A = 0.95), art and
design (p < 0.01, A = 0.85), health and well-
being (p < 0.01, A = 0.83), finance (p < 0.01,
A = 0.95), and sports (p < 0.01, A = 0.99)
followed the male stereotypical interpretations.
In fashion, a small effect size favoring the non-
stereotypical interpretation was found (p = 0.02,
A = 0.63). Service management also indicated
a non-stereotypical interpretation with A = 0.84
(p < 0.01).

DistilBERT-multilingual displayed more varied
results. Stem (p < 0.01, A = 0.65) and ser-
vice management (p < 0.01, A 0.42) re-
vealed smaller effect sizes compared to DistilBERT-
monolingual. Art and design (p < 0.01, A = 0.17)
and fashion (p < 0.01, A = 0.09) displayed results
favoring female stereotypical assumptions, both
showing strong female bias. Finance (p < 0.01,
A = 0.43) and sports (p = 0.53, A = 0.50) moved
away from male-favoring stereotypical interpreta-
tion showing effect sizes close to neutrality. Health
and wellbeing showed a small effect size favoring
males (p < 0.01, A = 0.37).

For XLM-RoBERTa, STEM (p < 0.01, A =
0.98), sports (p < 0.01, A = 0.88), and finance
(p < 0.01, A = 0.70) displayed male favoring
stereotypical results, with the latter showing a
medium effect size. Art and design (p < 0.01,
A = 0.61) and health and wellbeing (p = 0.01,
A = 0.61) showed small male favoring effect sizes.
From those, art and design showed an alternative
non-stereotypical interpretation. Surprisingly, ser-
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vice management did not reveal any significant
difference (p = 0.47, A = 0.45). As for fashion, it
presented a strong female favoring interpretation
(p < 0.01, A = 0.20).

Multilingual-Monolingual Assessment

Category | BERT DistiilBERT RoBERTa
Stem 0.05 0.33 0

A&D -0.05  -0.15 0.18
H&W -0.02 017 0.16
Finance 0.04 0.40 0.29

SM 0.07 0.29 0.17
Fashion 0.21 -0.12 -0.08
Sports -0.05 035 0.05

Table 3: Measure of leveling between monolingual and
multilingual models. Positive values indicate a less
biased performance while negatives indicate the oppo-
site. O indicates no difference between monolingual
and multilingual versions of the model. Scores for cat-
egories where multilingual showed a better result are
highlighted in bold. The most remarkable results are
underlined.

The multilingual versions of the models yielded
a value closer to neutrality (less biased) in almost
67% of the cases analyzed. Across all job areas, at
least one model showed a more neutral behavior
in its multilingual version. In categories such as
finance and service management, all results were
improved with the multilingual model. For STEM,
BERT and DistilBERT showed better results when
using their multilingual version; for health and
wellbeing and sports, DistilBERT and RoBERTa
showed less biased behaviors using the multilin-
gual models.

4.2 Linguistic Token Completion

For experiment 2, this study evaluated the behav-
ior of masked language models on verb, adjective,
and adverb completion tasks. To evaluate the dif-
ferences between categories, this study relied on
parallel pairs.

It was observed that some prompts followed a
similar token prediction pattern: py /,,, (token,,) =
Pmy/ s(tokeny ;). Various predicted stereotypical
tokens in males and females were offset by j steps
in the opposite category. This phenomenon usually
favored the emergence of stereotypical predictions.
This indicated a possible unbalance in the training
data with more contexts favoring the male gender.
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Figure 3: Total number of parallel pairs per model. The
plot shows the number of token coincidences across
linguistic units (adverbs, adjectives, and verbs) for male
and female subject pronoun prompts.

4.2.1 BERT vs BERT-multilingual

BERT and BERT-multilingual were the first models
analyzed. BERT monolingual provided a total of
77 parallel pairs, with adverb pairs being 19.5% of
the total, adjectives 51.9%, and verbs 28.6%. As
for BERT-multilingual, it provided 61 parallel pairs.
From those, 18% were adverbs, 47.5% adjectives,
and 34.4% verbs.

The empirical analysis of gender bias in word
prediction across BERT and BERT-multilingual
revealed patterns of bias encoding. Adverb pre-
dictions accentuated the divergence between the
two versions of the model. BERT displayed a
marked predilection for associating successfully
with male contexts, a feature not mirrored in BERT-
multilingual’s more balanced behavior. With well
and again, there was a similar behavior; the multi-
lingual version achieved a perfect balance. This di-
vergence may have stemmed from the multilingual
version’s exposure to a diverse array of linguistic
constructs and sociocultural nuances inherent in
multilingual corpora, potentially diluting the gen-
dered prediction skewness.

In examining adjective predictions, both models
demonstrated an inherent bias; however, the extent
and specific instances varied. Notably, the predic-
tion frequency of successful among gender con-
texts was slightly higher for males in BERT, while
BERT-multilingual exhibited an egalitarian predic-
tion distribution. This suggests that while BERT-
multilingual retains certain biases, it may do so
with reduced severity compared to its monolingual
counterpart. However, other adjectives showed sim-
ilar behavior in both versions of the model (e.g.,
brilliant). Surprisingly, beautiful showed a more
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balanced prediction in BERT monolingual than in
its multilingual variant.

For verb predictions, the contrast in bias mani-
festation was maintained. BERT exhibited a robust
association of verbs such as wrote or led with male
contexts. The latter shows the double probabil-
ity of being associated with male contexts. This
did not happen with the multilingual version, in
which both genders show similar probabilities. In
BERT, monolingual edited showed almost dou-
ble the probability of being associated with male
contexts than with female. Conversely, BERT-
multilingual showed a propensity towards more
uniform predictions across genders, suggesting a
potential attenuation of bias attributable to its mul-
tilingual training background.

4.2.2 DistilBERT vs DistilBERT-multilingual

DistilBERT monolingual provided a total of 60
parallel pairs, with adverb pairs being 15% of
the total, adjectives 51.6%, and verbs 33.3%. As
for DistilBERT-multilingual, it showed 40 parallel
pairs. From those, 47.5% were adverb pairs, 22.5%
adjective pairs, and 30% verb pairs.

Adverb prediction between DistilBERT and
DistilBERT-multilingual reveals that, while biases
persist, they are less pronounced in the multilingual
variant. For instance, the prediction of interna-
tionally is relatively consistent across genders for
both variants of the models. However, DistilBERT
monolingual suggests a gender preference (male)
for angrily or positively. Notably, DistilBERT-
multilingual’s predictions are more balanced and
consistent than DistilBERT’s, indicating a potential
reduction of bias through multilingual training.

In the realm of adjective predictions, both mod-
els showed fewer biases. DistilBERT showed sim-
ilar probabilities for both genders for brilliant,
skilled, or talented. It showed some bias for gifted,
prolific, or —as previously in BERT- successful,
all having higher male-associated probabilities.
DistiIBERT-multilingual showed a tendency to as-
sociate mechanical with male contexts, which can
be considered a stereotypical interpretation. Addi-
tionally, versatile was predicted more equitably by
the monolingual variant. In general, both models
behaved similarly in this category.

The verb prediction analysis shows a remarkable
distinction between the two models. For example,
DistilBERT-multilingual predicts attended with a
skew toward female contexts, while DistilBERT
demonstrates a more neutral approach. However,



the multilingual counterpart showed more balanced
predictions for edited or won. As for the similar-
ities, both models show similar probabilities for
completed or wrote.

4.2.3 RoBERTa vs XLM-RoBERTa

RoBERTa monolingual provided a total of 76 par-
allel pairs. with adverb pairs being 38.1% of the
total, adjectives 43.4%, and verbs 18.4%. As for
XLM-RoBERTs,, it showed 37 parallel pairs. It
was unable to predict tokens for adverb position
for both genders. From the total pairs, adjectives
signified 45.9% and verbs 54%.

For adverb prediction, ROBERTa presents sig-
nificant biases, such as a high prediction rate for
successfully in male contexts. In addition, aggres-
sively or better also show what can be interpreted
as a stereotypical relation with male tokens. In
the case of token predictions that imply agentivity
(himself and herself), the predictions favored male
contexts. No comparative results were drawn for
the multilingual model due to its inability to predict
adverbs for the masked position.

In the context of adjective prediction, ROBERTa
shows a strong gender preference for words like
brilliant and great with a higher prediction rate
for female and male contexts, respectively. Con-
versely, XLM-RoBERTa displays a more balanced
approach, albeit not entirely without bias. For ex-
ample, brilliant is more commonly associated with
male contexts in XLM-RoBERTa, while smart is
less gendered.

Verb prediction analysis shows more differences.
RoBERTa associates attends and remembers more
with female contexts, while leads is skewed to-
ward male contexts. XLM-RoBERTa, although not
entirely unbiased, tends to reduce this skew, as evi-
denced by the more balanced prediction for verbs
like understood.

5 Discussion and Future Work

This study offered several advancements. Primarily,
it employs a multidimensional analysis rooted in
descriptive linguistic units, facilitating a nuanced
understanding of biases in language models. This
approach offers two essential advantages: (1) it
can be adapted to different domains and cultural
contexts with minimal fine-tuning, and (2) it does
not rely on third-party data sources. In this way, it
aimed to address the limitations of previous meth-
ods which are predominantly U.S.-centric. The
method’s foundation on linguistic principles allows
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for a more discerning bias analysis, especially with
its emphasis on inter-category relations. The bifur-
cation into job pronouns and linguistic tokens, cou-
pled with the evaluation of both monolingual and
multilingual models, ensures a holistic bias assess-
ment. Furthermore, using metrics such as gender-
associated token confidence (GTC) or monolingual-
multilingual comparisons provides a quantitative
dimension to the bias evaluation, enabling compar-
isons across models.

This study opens new opportunities for linguisti-
cally informed bias analysis. Future work may ex-
plore patterns through the implementation of other
language units. Research may benefit from the
analysis of different linguistic elements across sen-
tences with anaphoric relations. Subsequent works
on bias mitigation may also benefit from imple-
menting in-context retrieval augmented learning
(IC-RAL). Other promising outcomes include data
selection techniques such as gradient information
optimization (GIO) for training data selection (Ev-
eraert and Potts, 2023). Selecting datasets that rep-
resent the richness of society is crucial to diminish
biases.

6 Conclusion

This study provides a systematic examination of
gender biases within masked language models, par-
ticularly in the context of job-related prompts. Em-
ploying linguistically-informed tasks, such as pro-
noun resolution and linguistic unit completion, this
study has effectively demonstrated the existence
of gender biases in these models. A comparison
between monolingual and multilingual models re-
veals a tendency towards stereotypical biases across
various categories. However, it is observed that
multilingual models tend to yield less biased out-
puts, likely a reflection of their exposure to a more
diverse linguistic training set. This diversity may
provide multilingual models with a broader per-
spective that mitigates entrenched biases, highlight-
ing the potential of multilingual training in the de-
velopment of more equitable systems. The findings
underscore the necessity for refinement in the de-
sign and training of language models to ensure fair
representations.

7 Limitations

This study analyses three major masked language
models, which may not represent the full spectrum
of biases present in natural language processing



systems. Further research is needed to extend these
findings across a more extensive array of models,
including those less prevalent in the literature.

Moreover, the scope of language diversity con-
sidered here is limited. English, with its gender-
marked pronouns but largely non-gender-marked
nouns and adjectives, represents just one typologi-
cal cluster. To enhance the robustness of the con-
clusions drawn, future work must incorporate lan-
guages from diverse typological backgrounds to
discern how such linguistic features may influence
bias manifestation within MLMs.

Additionally, the influence of cultural nuances
on language use and the resultant biases in MLMs
require deeper investigation. Languages are em-
bedded within cultural contexts that shape their
use, and thus, any comprehensive analysis of bias
in MLMs must consider a broad range of cultural
settings to fully understand and address bias.

Ethics Statement

While the benefits of our method are clear, we
proceed with ethical rigor, aware of the potential
for misinterpretation of our findings. We recog-
nize the complexity of gender representation in
language, including the use of gender-neutral and
neo-pronouns, and the implications these have for
technology’s societal impact. It must be impera-
tive that researchers contribute to the development
of systems that are equitable and representative of
all individuals. The publication of these results
opens the way for an open, transparent, and inclu-
sive discourse within the scientific community that
respects linguistic and cultural diversity and pro-
motes the advancement of unbiased computational
technologies.
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A Delta Values

Category ‘ BERT DistilBERT RoBERTa BERT-multi DistilBERT-multi XLM-RoBERTa

Stem 0.50 0.48 0.48 0.45 0.15 0.48
A&D 0.30 0.18 0.29 0.35 0.33 0.11
H&W 0.31 0.30 0.27 0.33 0.13 0.11
Finance 0.49 0.47 0.49 0.45 0.07 0.20
SM 0.41 0.37 0.22 0.34 0.08 0.05
Fashion 0.34 0.29 0.22 0.13 0.41 0.30
Sports 0.41 0.35 0.43 0.49 0 0.38
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Abstract

Grounding language models (LMs) to knowl-
edge bases (KBs) helps to obtain rich and ac-
curate facts. However, it remains challenging
because of the enormous size, complex struc-
ture, and partial observability of KBs. One
reason is that current benchmarks fail to reflect
robustness challenges and fairly evaluate mod-
els. This paper analyzes whether these robust-
ness challenges arise from distribution shifts,
including environmental, linguistic, and modal
aspects. This affects the ability of LMs to cope
with unseen schema, adapt to language vari-
ations, and perform few-shot learning. Thus,
the paper proposes extensive evaluation proto-
cols and conducts experiments to demonstrate
that, despite utilizing our proposed data aug-
mentation method, both advanced small and
large language models exhibit poor robustness
in these aspects. We conclude that current LMs
are too fragile to navigate in complex environ-
ments due to distribution shifts. This under-
scores the need for future research focusing
on data collection, evaluation protocols, and
learning paradigms.!

1

Language models (LMs), such as BERT (Devlin
et al., 2019), TS5 (Raffel et al., 2020), and the
GPT series (Ouyang et al., 2022; OpenAl, 2023),
have demonstrated impressive capabilities in under-
standing and generating languages, highlighting the
potential for artificial general intelligence (AGI).
However, a major obstacle to achieving this goal
is that LMs mainly built on natural languages are
not yet well-grounded to real-world environments,
such as knowledge base (KB), an environment of
enormous size, complex structure, and only par-
tially observable to LM.

Introduction

* Work performed when the author was graduate student
at Nanjing University.
!Code and data are available at https://github.com/
yhshu/Distribution-Shifts-for-KBQA.

71

Zhiwei Yu
Microsoft
zhiwyu@microsoft.com

Though LMs are highly skilled at natural lan-
guage question answering (QA) today, the task
of Knowledge Base Question Answering (KBQA)
aims to parse natural language queries into for-
mal queries on KBs, such as Freebase (Bollacker
et al., 2008) and Wikidata (Vrandecic and Krotzsch,
2014). The significance of this task lies in build-
ing language agents on complex environments (Su,
2023), rather than merely recalling answers from
the LM’s stored knowledge.

Now, numerous LM-driven models (Das et al.,
2021; Hu et al., 2022) continue to achieve higher
F1/Hits@1 scores on KBQA benchmarks. How-
ever, achieving higher scores does not necessar-
ily guarantee the development of robust and de-
pendable models. We still need to ask whether
such improvements apply to extensive scenarios,
as benchmarks almost always create questions via
crowdsourcing and evaluate with simplistic metrics
(Table 1). These benchmarks may not fully repre-
sent the diverse scenarios encountered in real-world
applications, which raises concerns about the ro-
bustness of LM-driven models. Thus, our research
aims to bridge this gap by exploring the limitations
of current KBQA benchmarks and proposing more
comprehensive evaluation protocols.

To achieve this goal, we need to grasp the key
factors in robustness. For modern deep learning
systems, the amount of training data could be ex-
tremely rich, but robustness is closely related to
data distribution (Hendrycks et al., 2020). In the
general area of natural language processing (NLP),
large-scale corpora have been collected and used
for effective training (Touvron et al., 2023). How-
ever, real-world environments are rarely so accom-
modating, e.g., large KBs contain complex struc-
tures and schema items, and building a large-scale
and representative corpus is quite challenging. The
problem of inconsistent data distribution during
training and inference, i.e., distribution shifts as
shown in Figure 1, may negatively impact the per-
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Limited domains and schema items

Unseen domains or schema items

(R}

(Environmental & Linguistic)! Annotated utterance

Annotated logical forms

Natural language pre-training corpus

Structured knowledge from KB

Modal

Obama married Michelle Robinson, a lawyer
who had also excelled at Harvard Law.

(Barack Obama, spouse,

Michelle Obama)
(Michelle Obama, occupation, lawyer)

. (AND computer.computer designer (JOIN (AND cvg.computer videogame (JOIN
Environmental
Aspect computer.computer designer.computers cvg.cvg designer.games designed)
P designed m.04 79wm)) m.0gvz6l))
1 Few natural language utterances 3 Variable utterances with similar logic
Linguistic ! d-series machines was designed by who was the computer designer of sony
Aspect which computer designer? playstatlon 27?
} Dataset built by graph search & crowdsourcing Another dataset built by human curation and parsing
Integrated Aspect [ Sampled logical forms -> Human-curated utterance ->

Aspect

(Michelle Obama, educated at, Harvard Law)}

Training

Inference

Figure 1: Distribution shifts during grounding in the case of KBQA. Training and inference using LM face
completely different data distributions. We call for these shifts to be reflected in the evaluation protocols.

formance and robustness of grounded LMs.

This paper analyzes the distribution shifts from
multiple aspects to understand both KBQA bench-
marking and LM grounding better. We review ex-
isting works and identify several challenges. 1)
Environmental aspect: generalization to unseen
domains at the schema? level (Gu et al., 2021);
2) Linguistic aspect: adaptation to paraphrases
featuring diverse language variations (Su et al.,
2016); 3) Integrated aspect: transferability across
datasets with both novel schema items and linguis-
tic styles (Cao et al., 2022b); 4) Modal aspect:
few-shot learning ability of large language models
(LLMs) for the unfamiliar KB modality (Li et al.,
2023). These challenges guide us to build more
rigorous evaluation protocols for multiple aspects
(§4).

To measure the impact of distribution shifts, we
conduct extensive experiments under the proposed
evaluation protocols. To present a fair evaluation
under such rigorous protocols, we implement a data
augmentation method for evaluated LMs and a re-
trieval augmentation method for evaluated LLMs
(§5.1). Our findings reveal that even when em-
ployed with such methods and the highest EM
scores are achieved on the GrailQA benchmark (Gu
et al., 2021), advanced small and large LMs still
fall short of effectively tackling the majority of these
challenges. A striking example is the large differ-
ence between the best practice without WebQSP
(Yih et al., 2016) fine-tuning (F1 43.0%) com-
pared to the fine-tuned state-of-the-art (F1 79.6%)

2Schema denotes rdfs:Class (class) and rdf:Property (re-
lation) here.

72

(§6), suggesting the weak robustness of LM-driven
KBQA models on an unseen dataset. Such negative
observations highlight an urgent need for future re-
search in data collection methodologies and LM
learning paradigms. Meanwhile, we expect our
evaluation protocols to provide a reference for fu-
ture benchmark construction, developing metrics
that consider robustness.

Our contributions include 1) A systematic anal-
ysis of the robustness challenges of grounded LMs
and a strong advocacy of a multi-aspect evaluation
protocol for KBQA. 2) Extensive experiments
quantitatively unveil the existence of these chal-
lenges and the vulnerability of both small and large
LMs. 3) Insights into improving the robustness
of grounded LMs, including data collection and
learning paradigms.

2 Related Work

Compared to existing research, the necessity of
this study is threefold. First, while LMs are com-
monly evaluated on natural language tasks (Hupkes
et al., 2022; Patel et al., 2022), the complexity in-
creases significantly when these models are applied
to environments like KBs, where data is structured
rather than purely unstructured natural language
(Liu et al., 2023). Second, the evaluation protocols
used in KBQA benchmarks tend to be uniform,
leading to an insufficient evaluation of model ro-
bustness (Gu et al., 2021). Finally, recent reviews
in this field (Lan et al., 2022; Gu et al., 2022b)
have largely overlooked the advancements in the
development and application of LMs, particularly
LLMs.



Benchmark KB Size LF Generalization Paraphrases Metrics
WebQuestions (Berant et al., 2013) Freebase 5,810 N/A i.i.d. X F1
SimpleQuestions (Bordes et al., 2015)  Freebase 108,442 N/A iid. X Acc
WebQuestionsSP (Yih et al., 2016) Freebase 4,737 SPARQL iid. X F1
GraphQuestions (Su et al., 2016) Freebase 5,166 ~ Graph query  comp.+zero v F1
LC-QuAD (Trivedi et al., 2017) DBpedia 5,000 SPARQL iid. X F1
CWQ (Talmor and Berant, 2018) Freebase 34,689 SPARQL iid. X Hits
LC-QuAD 2.0 (Dubey et al., 2019) Wikidata 30,000 SPARQL ii.d. v F1
SQB (Wu et al., 2019) Freebase 108,443 N/A i.i.d.+zero X Acc
CFQ (Keysers et al., 2020) Freebase 239,357 SPARQL comp X Acc
GrailQA (Gu et al., 2021) Freebase 64,331  S-expression i.i.d.+comp.+zero v EM, F1
KQA Pro (Cao et al., 2022a) Wikidata 117,970 KoPL iid. X Acc
QALD series (Perevalov et al., 2022) DBpedia 558 SPARQL comp. X F1

Table 1: Selected KBQA benchmarks. LF denotes logical forms. Generalization settings follow Gu et al. (2021).
i.i.d. denotes that the schema distribution in the test set is the same as the training set. comp. and zero denote
compositional and zero-shot generalization, respectively. Paraphrases are questions containing the same semantics
(machine-generated paraphrases are not included). Acc denotes accuracy. EM denotes exact match.

3 Challenges from Distribution Shifts

In this paper, the robustness of a KBQA model
refers to its ability to adapt to various natural lan-
guage inputs and maintain consistent performance
when data distribution shifts. Due to the distri-
bution shifts between the training corpus of LMs
and KB environments, grounding LMs face robust-
ness challenges from environmental, linguistic, and
modal aspects.

3.1 Environmental Aspect

A primary environmental challenge is schema-
level generalization. The RDF Schema provides
a data-modeling vocabulary crucial for querying
a KB. Table 1 indicates most KBQA benchmarks
assume a consistent schema distribution between
training and testing. However, this often does
not hold in large KBs with numerous schema
items. Few benchmarks, like the reconfigured
SimpleQuestions-Balance dataset (Wu et al., 2019)
and GrailQA (Gu et al., 2021), address non-i.i.d.
schema items and varying levels of schema-level
generalization. GraphQuestions (Su et al., 2016)
provides a stringent test with seldom-seen schema
items in training. Given real-world non-i.i.d. com-
plexities, these datasets better represent the practi-
cal generalization challenges. Yet, despite progress
(Shu et al., 2022; Gu et al., 2022a), compositional
and zero-shot generalization are far from solved.
We stress that this challenge applies to the over-
all KBQA semantic parsing process, especially to
important subtasks such as relation linking.

3.2 Linguistic Aspect

Various natural language expressions make ques-
tion understanding challenging for KBQA models.
One common way this variety shows up is through
paraphrasing. In this paper, a paraphrase set de-
notes different ways to express the same logical
form, as illustrated in Table 14. Paraphrase adap-
tation is an intuitive form of the ability to compre-
hend variable language expressions. It could be
measured by whether a model is able to accurately
answer paraphrased questions that this model has
already answered correctly before. Unfortunately,
as shown in Table 1, many KBQA benchmarks do
not account for paraphrasing with only one utter-
ance for each logical form. Exceptionally, some
datasets (Su et al., 2016; Dubey et al., 2019; Gu
et al., 2021) are based on automatically generated
logical forms and include multiple natural language
expressions for the same logical form (template).
These data characteristics highlight the difficulties
in adapting to paraphrased questions.

3.3 Integrated Aspect

Evaluating KBQA benchmarks often hinges on a
single dataset, thereby complicating the task of
ascertaining the model performance consistency
across novel scenarios. This form of robustness,
termed as cross-dataset transfer in this paper,
combines both the environmental and linguistic
aspects discussed earlier and is more difficult to
achieve. This is because construction methods vary
across datasets, as do schema distributions and nat-
ural language expressions. Specifically, KBQA
dataset construction generally falls into two dis-
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tinct categories: 1) Graph Search and Crowdsourc-
ing: in this approach, logical forms or triples are
initially extracted from a KB, where structures or
operators of logical form are usually finite. Subse-
quently, they are converted into natural language
utterances through crowdsourcing methods (Bor-
des et al., 2015; Trivedi et al., 2017). 2) Human
Curation and Parsing: logical forms are labeled
directly from human-provided utterances (Berant
et al., 2013; Perevalov et al., 2022). Existing
works (Gu et al., 2021; Cao et al., 2022b) sug-
gest that models pre-trained on large-scale datasets
can adapt reasonably well to other target datasets,
such as WebQSP (Yih et al., 2016). However, the
necessity for fine-tuning these pre-trained models
on the intended target dataset remains imperative
for achieving optimal performance. Despite the
advantages offered by pre-training on expansive
KBQA datasets, models still encounter challenges
in transferring directly to previously unseen target
datasets while sustaining high performance.

3.4 Modal Aspect

Aside from considering environmental and linguis-
tic factors, focusing on the modal aspect is also
crucial. Recently, LLMs like GPT series (OpenAl,
2023) have demonstrated exceptional capabilities
across a variety of tasks, outperforming smaller yet
potent LMs such as BERT (Devlin et al., 2019) and
T5 (Raffel et al., 2020). Despite these advance-
ments, these LLMs face substantial challenges
when interacting with environments. One notable
issue is they predominantly rely on an in-context
learning paradigm as opposed to fine-tuning, as a
trade-off between computational cost and model
efficiency. In comparison to fine-tuning, in-context
learning offers the advantage of reduced training
costs but at the expense of being forced to reason
over the unfamiliar modality. Distribution shifts
between natural language pre-training and reason-
ing over structured knowledge contexts could lead
to poor performance. For instance, a discernible
performance gap exists between KBQA models
that employ in-context learning with Codex (Chen
et al., 2021a) and those built on fine-tuned LMs
(Gu et al., 2022a; Li et al., 2023). However, the
empirical specifics of this difference are not yet
clear, leaving us with an inadequate understanding
of the limitations of in-context learning and ways
to improve grounding with LLMs.
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4 Evaluation Protocols

Regarding these challenges, we introduce extensive
protocols for evaluating LMs in several aspects
overlooked by current benchmarks.

4.1 Evaluating Environmental Aspect

To set the environmental schema-level generaliza-
tion scenario, we use GrailQA (Gu et al., 2021)
and GraphQuestions (Su et al., 2016) datasets.
GrailQA contains three generalization levels: i.i.d.
(25%), compositional (25%), and zero-shot (50%).
GraphQuestions has no seen relations in the test set.
We also use SimpleQuestions-Balance (SQB) (Wu
et al., 2019) for the relation linking task (an impor-
tant KBQA sub-task), where 50% of the samples
contain unseen relations.

4.2 Evaluating Linguistic Aspect

To set a paraphrase adaptation scenario, we use
GrailQA (Gu et al., 2021) and GraphQuestions (Su
et al., 2016) datasets. To evaluate adaptability to
paraphrases (§3.2), we propose a new metric, the
standard deviation (std) of EM/F1 for questions
of each logical form template. As shown in Equa-
tion 1, suppose there are n sets of paraphrases in
the dataset, each set of paraphrases corresponds to
a logical form template with m natural language ex-
pressions, and the F1 score obtained by the KBQA
model on the j-th question of the ¢-th set of para-
phrases is F'1; ;. The metric Std g first calculates
the standard deviation of the F1 scores obtained by
the model on the m questions for each set of para-
phrases and then calculates the average of the n
standard deviations. This metric is used to measure
the robustness of the model to different represen-
tations of the same semantics, i.e., whether it can
cope with diverse natural language expressions. A
lower standard deviation indicates that the model
is more adaptive to different expressions. Stdg s
is calculated in the same way.

)

4.3 Evaluating Integrated Aspect

1 n
Stdp1 = —

2
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m

To emulate a real-world scenario with unknown
schema and linguistic distribution for the integrated
aspect, we evaluate the performance of pre-trained
models on the unseen human-curated WebQSP



(Yih et al., 2016) dataset, where the questions are
derived from search logs and are more realistic.
This is a scenario where the distribution changes
significantly, as most benchmarks create questions
by sampling logical forms and annotating natural
language questions via crowdsourcing (Lan et al.,
2022), where questions are confined to sampled
logical forms.

4.4 Evaluating Modal Aspect

To test the capability of the in-context learning
paradigm to inference from the KB modality rather
than from pure texts, we retrieve structured KB
contexts as prompt to evaluate the LLM without
particular fine-tuning on KB (§5.1.2). KBs are
structured and expansive, but in this case, LLM can
only encode a portion of linearized KB contexts.

5 Experiments

5.1 Augmentation Approach

To ensure fair evaluation and fully harness the ca-
pabilities of LMs under our extensive and rigorous
evaluation protocols, we suggest two strategies to
counteract distribution shifts: data augmentation
and retrieval augmentation.

5.1.1 Data Augmentation for LMs

Oft-the-shelf datasets of limited size may make LM
easily overfitted and not adaptable to large KBs. To
address the problem that many domains in the KB
are often not collected as training data, we pro-
pose a data augmentation method named Graph
seArch and questlon generatioN (GAIN). Some
data augmentation or question generation models
(Bi et al., 2020; Guo et al., 2022) are only evalu-
ated by the qualify of generated sentences rather
than evaluated by the QA task, but GAIN directly
serves our KBQA evaluations. Besides, compared
to the previous work (Hu et al., 2019) that only
considers generating questions for triples to help
KBQA, GAIN applies to KBQA corresponding
to both logical forms and triples. GAIN scales
data volume and distribution through four steps: 1)
Graph search: Sampling logical forms or triples
from arbitrary domains in the KB without being
restricted to any particular KBQA dataset. 2) Train-
ing question generator: learning to convert logical
forms or triples into natural language questions on
existing KBQA datasets. 3) Verbalization: Using
the question generator from step 2 to verbalize sam-
pled logical forms or triples from step 1, thus creat-
ing synthetic questions. 4) Training data expansion:
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Before fine-tuning any neural models on KBQA
datasets, GAIN-synthetic data can be used to train
these models or to expand the corpus of in-context
samples for LLMs. That is, as a data augmentation
method, GAIN is not a KBQA model, but it is used
to augment a base KBQA model.

5.1.2 Retrieval Augmentation for LLMs

As the trade-off between cost and effectiveness,
we experiment with the prevalent in-context learn-
ing paradigm but attempt to improve the quality
of in-context samples. We use advanced retrieval
methods based on smaller LMs as plug-ins to aug-
ment the LLM, similar to the SuperICL approach
(Xu et al., 2023). Specifically, our steps to gener-
ate an LLM prompt for each question include the
following. 1) Given an input question, we retrieve
k questions (k-shot) with BM25 (Robertson et al.,
2009) from the corpus (the combination of KBQA
training set and the GAIN-synthetic dataset). 2)
The role of retrieval augmentation for KB envi-
ronments has been shown by fine-tuned LMs (Shu
et al., 2022). To assist with grounding LLM, we
retrieve KB contexts with off-the-shelf retrievers
for k samples and the input question.’

5.2 Setup

Data All experiments use S-expression (Gu et al.,
2021) as the logical form due to its clear and con-
cise structure. Entity linking results are taken
from TIARA (Shu et al., 2022) for GrailQA and
WebQSP, and ArcaneQA (Gu and Su, 2022) for
GraphQuestions, because of their public availabil-
ity and performance.

Model Compared models are mainly selected
from the leaderboard.* The performances are taken
from their papers. For the relation linking task on
SQB, we use BERT (Devlin et al., 2019) as the
base model for GAIN. For KBQA tasks, we use the
open-source advanced model TIARA (Shu et al.,
2022) as the base model for GAIN, due to its strong
performance on zero-shot schema items.> TIARA
is composed of multi-grained retrievers and a gen-
erator, with the retrievers providing KB contexts®
for the generator. The term “TIARA+GAIN” repre-
sents a model (both the retrievers and the generator)

3The prompt example is demonstrated in Appendix A.

4https ://dki-lab.github.io/GrailQA/

SPangu (Gu et al., 2022a) also uses entity linking results
from TIARA.

®Entities, exemplary logical forms, and schema items are
retrieved.


https://dki-lab.github.io/GrailQA/

that is first tuned using GAIN synthetic data and
subsequently fine-tuned on a target dataset. For
LLM evaluation in the modal aspect, we use the
gpt-3.5-turbo-06137 model, and the few-shot
contexts are retrieved from the combination of
GrailQA training set and synthetic dataset using
the TTARA+GAIN retrievers.

Metrics Following previous works, we use Exact
Match (EM), F1, and Hits@1 to measure the per-
formance of KBQA models. We also use the std of
EM/F1 to measure the adaptability to paraphrases

(§4.2).

5.3 Implementation Details

We use a machine with an NVIDIA A100 GPU and
up to S04GB of RAM. Models are implemented by
PyTorch (Paszke et al., 2019) and Hugging Face.?
TIARA+GAIN (T5-3B) takes about 100 hours to
train the logical form generator on the synthetic
dataset.

Model Training 1) For question generation, we
fine-tune the T5-base model (Raffel et al., 2020) to
convert S-expression or triple to natural language
questions. We set the beam size to 10, the learn-
ing rate to 3e-5, the number of epochs to 10, and
the batch size to 8. 2) The training of the TIARA
model (Shu et al., 2022) follows its original set-
tings, including the setting of hyperparameters and
the calculation of metrics. Note that Hits@1 on
TIARA is obtained by randomly selecting one an-
swer for each question 100 times. Both the schema
retriever and generator of TIARA are pre-trained
on synthetic data and then fine-tuned on KBQA
datasets. Since GraphQuestions has no official
training-valid split, we randomly take 200 ques-
tions from the original training set as the valid set.
3) We use BERT-base-uncased (Devlin et al., 2019)
to rank candidate relations for SQB, and the input
form is the same as the schema retriever of TIARA.
We set the learning rate to 3e-5, the batch size to
256, and the max number of epochs to 3 with early

stopping.

Data Augmentation The statistics of GAIN-
synthetic datasets for both logical forms and triples
are shown in Table 11 and 12.° Note that the sam-
pling of the GAIN method is not limited to the
scale of the synthetic data we use here.

7ht’cps ://platform.openai.com/docs/models
8ht’cps ://huggingface.co/
“Details of synthetic data are shown in Appendix B.
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6 Analysis

We report and analyze the experimental results in
this section for each aspect.

6.1 Analysis of Environmental Aspect

Effectiveness of Synthesis and Scaling Up As
shown in Tables 2 and 3, the models perform sig-
nificantly better on i.i.d. than compositional and
zero-shot generalization, with the zero-shot parti-
tion being the most challenging. TIARA+GAIN
(T5-base) improves 2.5 zero-shot F1 points com-
pared to TTARA (T5-base). Besides, an increased
number of model parameters, combined with richer
data from GAIN, significantly enhance the general-
ization capabilities of T5 models. TTARA+GAIN
(T5-3B) further improves 1.4 zero-shot F1 points
compared to its T5-base version. TTARA+GAIN
achieves the highest EM scores, including that on
zero-shot scenes. It demonstrates promising ideas
for further improving LM generalization capabil-
ities, i.e., the positive effect of synthetic data and
parametric scales on training LMs.

Fine-tuning Better Than Few-shot Learning
However, it is important to note that fine-tuned
models consistently outperform few-shot learning
models, regardless of whether the schema is seen
or not. Given the training and inference costs of
LLMs, their performance has yet to show any su-
periority in this task.

6.2 Analysis of Linguistic Aspect

Improvements Are Linguistic Biased We calcu-
late the standard deviation (std) of EM or F1 in the
dev/test set, as shown in Equation 1. For GrailQA,
the std of EM and F1 decreases with the application
of GAIN or an increase in model size, i.e., F1/EM
and the std of FI/EM are both better, as shown
in Table 2 and 5. However, in the case of more
challenging GraphQuestions, GAIN significantly
improves the F1 by 8.3 points but also results in
a larger std (0.170 compared to 0.157), as shown
in Table 3. It suggests that improving paraphrase
adaptation using GAIN is more difficult when the
base model (TTARA, T5-base, with only 37.9%
F1) still struggles to address most of the dataset.
Consequently, the performance gains observed on
the KBQA benchmark may not necessarily reflect
a deeper understanding of linguistic complexities,
but they could simply render the model more sen-
sitive to specific phrases. Strategies for deeper
decomposition and understanding (Hu et al., 2021;


https://platform.openai.com/docs/models
https://huggingface.co/

Overall LLD. Compositional ~ Zero-shot
Model on GrailQA Test Set EM F1 EM F1 EM F1 EM F1
Fine-tuned Models
BERT + Ranking (Gu et al., 2021) 50.6 58.0 599 670 455 539 48.6  55.7
RnG-KBOQA (Ye et al., 2022) 68.8 744 862 89.0 638 71.2 63.0 69.2
TIARA (T5-base) (Shu et al., 2022) 73.0 785 87.8 90.6 69.2 76.5 68.0 739
DecAF (FiD-3B) (Yu et al., 2022) 684 788 848 899 734 81.8 58.6 723
Pangu (BERT-base) (Gu et al., 2022a) 73.7 799 82.6 87.1 749 81.2 69.1 76.1
Pangu (T5-large) (Gu et al., 2022a) 748 814 825 873 752 82.2 71.0 784
Pangu (T5-3B) (Gu et al., 2022a) 754 81.7 844 888 74.6 81.5 71.6  78.5
Codex-driven Models
KB-BINDER (6)-R (Li et al., 2023) 532 585 725 774 518 58.3 45.0 499
Pangu (Codex) (Gu et al., 2022a) 564 65.0 675 737 582 64.9 50.7 61.1
GAIN-augmented Models

TIARA + GAIN (T5-base) 75.1 80.6 883 91.0 73.0 79.6 69.9 764
TIARA + GAIN (T5-3B) 76.3 815 885 912 737 80.0 71.8 77.8
GPT-3.5-turbo (5-shot) 66.6 714 827 853 605 66.3 619 67.2

Table 2: EM and F1 scores (%) on

Model on GraphQuestions F1(T) Std(])
GraphQuestions on Freebase 2013-07
UDepLambda (Reddy et al., 2017) 17.7 -
PARA4QA (Dong et al., 2017) 20.4 -
SPARQA (Sun et al., 2020) 21.5 -
BERT + Ranking (Gu et al., 2021) 25.0 -
ArcaneQA (Gu and Su, 2022) 31.8 -
TIARA® (T5-base) (Shu et al., 2022)  37.9 0.141
KB-BINDER (6) (Li et al., 2023) 39.5 -
TIARA + GAIN (T5-base) 45.5 0.153
TIARA + GAIN (T5-3B) 48.7 0.180

GraphQuestions on Freebase 2015-08-09

BERT + Ranking (Gu et al., 2021) 27.0 -
ArcaneQA (Gu and Su, 2022) 34.3 -
TIARA® (T5-base) (Shu et al., 2022)  41.2 0.157
Pangu (Codex) (Gu et al., 2022a) 443 -
Pangu (T5-3B) (Gu et al., 2022a) 62.2 -
TIARA + GAIN (T5-base) 49.5 0.170
TIARA + GAIN (T5-3B) 53.0 0.200

Table 3: F1 scores (%) and average standard deviation
(std) of F1 scores for each set of paraphrases on the test
set of GraphQuestions. The setting for Freebase 2015-
08-09 is described by Gu and Su (2022). * denotes our
replication results.

Huang et al., 2023) of the questions may be needed
to mitigate this challenge.

6.3 Analysis of Integrated Aspect

Hard Transfer Across Datasets We evaluate the
performance of pre-trained models on the human-
curated WebQSP dataset without fine-tuning, as
shown in Table 6. BERT+Ranking (Gu et al.,
2021) and TIARA+GAIN (Shu et al., 2022) are
trained on the large-scale GrailQA dataset. We
compare these results to the state-of-the-art Pangu
(Gu et al., 2022a), which is fine-tuned on WebQSP
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the hidden test set of GrailQA.

and achieves an F1 score of 79.6% Although we
recognize that GAIN and large models offer few
advantages, the performance of these pre-trained
models without fine-tuning is considerably lower
than Pangu’s.

Causes from Data Collection We attribute this
to the significant differences between training and
test data, as shown in Table 8. The question length,
the difficulty of entity/relation linking'®, and the
proportion of unseen schema vary dramatically
across KBQA datasets. These discrepancies arise
from the dataset construction process: WebQSP
is an annotation of search logs, whereas the re-
maining datasets are derived from graph search and
crowdsourcing. To further enhance robustness in
cross-dataset transfer, we believe that better data
collection methods are required to obtain diverse
and balanced training data. Additionally, the repre-
sentation of the logical form increases the transfer
difficulty, as the S-expression used in the GrailQA
dataset cannot express all queries in WebQSP.

6.4 Analysis of Modal Aspect

Context Alone Is Insufficient We evaluate the
performance of GPT-3.5 using retrieved KB con-
texts (§5.1.2) and in-context learning on the
GrailQA dataset. The prompts for the model in-
clude the task description and the few-shot KB
contexts. As illustrated in Table 7, when provided
with contexts from the TTARA+GAIN retrievers,
GPT-3.5 outperforms two compared models but

"Measured by literal similarity: https://anhaidgroup.
github.io/py_stringmatching/v@.3.x/PartialRatio.


https://anhaidgroup.github.io/py_stringmatching/v0.3.x/PartialRatio
https://anhaidgroup.github.io/py_stringmatching/v0.3.x/PartialRatio

Overall Seen Unseen
Model on SimpleQuestions-Balance 1 5 10 1 5 10 1 5 10
HR-BiLSTM (Wu et al., 2019) 63.3 - - 93.5 - - 33.0 - -
Adversarial-Adapter (Wu et al., 2019)  84.9 - - 92.6 - - 77.1 - -
BERT-base 837 950 969 858 950 960 815 951 97.8
BERT-base + GAIN 884 96.0 973 87.8 954 963 89.1 96.7 984

Table 4: Hits@k (1, 5, 10) scores (%) for relation linking on the test set of SimpleQuestions-Balance, including

seen and unseen relations.

Std Overall Std LL.D. Std Compositional Std Zero-shot
Model on GrailQA Valid Set EM{) F1({) EM F1 EM F1 EM F1
TIARA (T5-base) (Shu et al., 2022)  0.079  0.066 0.021 0.017 0.211 0.203 0.222  0.181
TIARA + GAIN (T5-base) 0.077 0.061 0.020 0.016 0215 0.198 0.218 0.160
TIARA + GAIN (T5-3B) 0.075  0.058 0.020 0.016 0.196 0.180 0.212  0.155
GPT-3.5-turbo (5-shot) 0.093 0.091 0.027 0.023 0.272 0.281 0251 0.247

Table 5: Average standard deviation of EM and F1 scores for each set of paraphrases on the GrailQA valid set.

Model on WebQSP F1 Hits@1
TIARA® (T5-base) (Shu et al., 2022) 28.5 27.6
TIARA** (T5-base) (Shu et al., 2022)  33.5 31.5
BERT + Ranking* (Gu et al., 2021) 43.0 -
TIARA + GAIN (T5-base) 29.1 28.2
TIARA + GAIN (T5-3B) 29.8 28.7
TIARA* + GAIN (T5-base) 33.9 31.8
TIARA* + GAIN (T5-3B) 34.5 32.3

Table 6: F1 and Hits@1 scores (%) on WebQSP without
fine-tuning on it. All models are trained on large-scale
GrailQA. * denotes using oracle entity annotations. *
denotes our replication results.

falls short compared to TITARA+GAIN. Among the
GPT-3.5 predictions, 79.62% come directly from
the substring of the corresponding prompts, achiev-
ing an average F1 score of 86.19% for this portion.
However, the remaining predictions are not part
of their prompts and are entirely new predictions
generated by GPT-3.5, with an average F1 score
of merely 30.29%. Although a baseline level is
attained, these results suggest that GPT-3.5 can-
not be accurately grounded to the KB environment
when it does not copy the retrievers’ contexts. It
also shows the modal severance of natural language
pre-training and KB contexts for the LLM. LLMs
are not able to utilize KB contexts as proficiently
as they understand natural language, and the faith-
fulness and controllability of grounded LLMs are
not yet guaranteed under the current approach (Gu
et al., 2022a). To mitigate this problem, alterna-
tive paradigms should be explored, such as tool
learning (Schick et al., 2023) and multi-step plan-
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ning (Liu et al., 2023) with Chain-of-Thought (Wei
et al., 2022), which enables more refined access
and control over environments and reduces modal
differences during the reasoning process.

7 Conclusion

Despite the recent progress of LM-driven models,
robustness challenges posed by distribution shifts
for the KBQA task are rarely discussed. Our analy-
ses call for further research into better evaluation
protocols for grounding LMs to KBs and enhanc-
ing the robustness of environmental, linguistic, and
modal aspects. Notably, the experiments reveal
that LLMs sometimes simply copy the provided
prompt. It indicates that the existing methodolo-
gies for grounding LLLMs are yet to prove their effi-
cacy and superiority. Future research issues include
collecting more balanced environment-specific cor-
pora and improving the LLM learning paradigms.
For the corpora, our experiments show that the data
augmentation techniques deserve further research.

Limitations

1) For question generation, the verbalization pro-
cess of the GAIN method relies heavily on large-
scale KBQA annotations. The training data influ-
ence the style of generated questions, and overly
complex logical forms (e.g., with three or more
hops) are difficult to convert into natural language
questions. Besides, synthetic data is less diverse
and natural than human annotations, though it im-
proves generalization performance. 2) Multilin-
gual KBQA is a problem that lacks attention in



Overall LLD. Compositional  Zero-shot

Model on GrailQA Valid Set EM F1 EM F1 EM F1 EM F1
BERT + Ranking (Gu et al., 2021) 51.0 584 586 66.1 40.9 48.1 51.8 592
TIARA ELF only (Shu et al., 2022) 672 729 728 767 553 60.7 69.7 763
RnG-KBQA (Ye et al., 2022) 714 768 867 89.0 61.7 68.9 68.8 74.7
DecAF (FiD-3B) (Yu et al., 2022) - 81.4 - 89.7 - 80.1 - 78.4
TIARA (T5-base) (Shu et al., 2022) 753 819 884 912 664 74.8 73.3  80.7
Pangu (T5-3B) (Gu et al., 2022a) 75.8 834 - - - - - -
TIARA + GAIN (T5-base) 77.1 835 89.0 919 68.6 75.5 754 832
TIARA + GAIN (T5-3B) 771 83.8 89.0 921 688 76.1 754 834
GPT-3.5-turbo (5-shot) 69.7 748 83.0 855 58.7 64.6 68.6 744

Table 7: EM and F1 scores (%) on the GrailQA valid set. ELF denotes exemplary logical form (Shu et al., 2022).

GrailQA  GraphQ WebQSP SQB
Train size 44,337 2,381 3,097 75,819
Valid size 6,763 - - 11,141
Test size 13,231 2,395 1,638 21,483
Length 62.96 54.62 35.93 42.16
# of entities 0.903 1.028 1.112 1.000
# of relations 1.358 1.434 1.464 1.000

Similarity between questions and KB items
Entity 0.999 1.000 0.921 0.985
Class 0.547 0.457 - -
Relation 0.470 0.389 0.300 0.779
Unseen ratio (%)

Schema 16.90 86.78 20.44 32.67
Question 54.06 98.25 4.03 49.18

Table 8: KBQA dataset statistics. Length denotes
the average number of question characters. # of en-
tities/relations denotes the average number of enti-
ties/relations in the logical form. Unseen Schema is
the ratio of unseen schema items in the dev/test set. Un-
seen Question is the ratio of questions containing unseen
schema.

the KBQA research and is also a linguistic-aspect
challenge. However, since most KBQA datasets
are based on English and do not discuss other lan-
guages at all, this paper leaves the evaluation of
this problem for future work.
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Model of Class Retrieval All LLD. Comp. Zero. #question #one-hop #two-hop #domain
ReTraCk (Chen et al., 2021b) 943 98.1 97.5 91.3 127,329 78,668 48,661 759

TIARA (Shu et al., 2022) 95.8  99.6 97.9 93.4

TIARA + GAIN 96.1 99.6 98.1 93.8 #none #count #comparatives  #superlatives
Model of Relation Retrieval All LLD. Comp. Zero. 115,221 7,115 1,874 3,119
ReTraCk (Chen et al., 2021b) 88.4  95.3 91.0 84.3 #class #relation  #entity

TIARA (Shu et al., 2022) 920 979 93.7 88.7

TIARA + GAIN 93.0 99.2 94.1 89.8 5,078 12,942 46,645

Table 9: Recall (%) of top-10 retrieved schema items
on the GrailQA valid set. comp. and zero. denote
compositional and zero-shot generalization, respectively.
Note that ReTraCk uses 100 classes and 150 relations
for each question, while TIARA uses 10 classes and 10
relations.

Model on GraphQuestions Class Relation
TIARA* (Shuetal,, 2022)  81.5 67.1
TIARA + GAIN 833 74.3

Table 10: Recall (%) of top-10 retrieved schema items
on the GraphQuestions test set (Freebase 2015-08-09
version). TIARA uses 10 classes and 10 relations for
each question. * denotes our replication results.

A Example of LLM Prompt

We present an example of an excerpted prompt,
which is shown in Figures 2 and 3. In particular,
Figure 2 illustrates the task instruction and teaching
example segment, while Figure 3 displays the input
query segment.

B Details of Synthetic Data

The graph search process of GAIN is slightly dif-
ferent for logical forms and triples.

Searching Logical Forms GAIN employs a
graph search approach similar to GraphQuestions
(Su et al., 2016) to collect logical forms derived
from graph queries. The graph query construction
process consists of four steps: 1) query template
construction, 2) aligning template nodes, 3) config-
uring functions, and 4) verification by execution.
Query templates, obtained through random graph
searching, contain nodes that represent entity/literal
types (not aligned to a value), referred to as fem-
plate nodes. Each unaligned node in the query
template is then aligned with a topic entity or lit-
eral to generate multiple aligned graph queries. To
synthesize counting, comparative, and superlative
questions and enhance the diversity of synthetic
data, we add functions like COUNT, ARGMIN/ARGMAX
(Gu et al., 2021) to graph queries. Since KBQA

&3

Table 11: Statistics for the synthetic dataset of logical
forms. none denotes no function.

#domain

673

#relation
7,349

#question
162,557

#subject
108,804

Table 12: Statistics for the synthetic dataset of triples.
Subject denotes subject entities.

research typically assumes that questions can be
answered by the KB, we execute all resulting graph
queries after the above steps and remove those with
anull'! result.

Searching Triples A single KB triple can be
treated as a QA pair, where the head entity and
relation together form the query, and the tail entity
is the answer. The triple search process consists
of two steps: 1) candidate relation selection, and
2) triple sampling. First, arbitrary relations R are
selected from the KB, without being restricted to
any particular KBQA dataset. Then, triples are col-
lected from head entities 7, where entities in H
are connected to relations in R.

Examples of Synthetic Data We present some
examples of synthetic data in Table 15, where the
logical form contains a variety of functions.

Statistics The statistics for KBQA datasets, in-
cluding our synthetic dataset, are shown in Ta-
ble 16. To calculate the number of domains in
Table 11, 12, we take the domain of each Free-
base class from its first segment, except for classes
starting with “base”, where we take the first two
segments, e.g., domain “music” for the class “mu-
sic.performance_venue”, and domain “base.plants”
for the class “base.plants.plant”.

C Experimental Details

C.1 Question Generation

Training a question generation (QG) model is the
second step of GAIN. Because logical forms in the

"'Null for querying entities and zero for counting.



Metrics GrailQA Dev  GraphQ Test SQB Dev
BLEU-4 0.347 0.178 0.369
ROUGE-L 0.526 0411 0.640

Table 13: The performance of the question generator
on KBQA datasets. The generator for logical form is
evaluated on the GrailQA valid set and GraphQuestions
test set. The generator for triple is evaluated on the SQB
valid set.

synthetic dataset do not have corresponding human-
labeled natural language questions, evaluating QG
on the synthetic dataset is difficult. Existing KBQA
datasets contain questions written by crowdsourced
workers for logical forms or triples, so we evaluate
the question generator by generating questions on
these datasets and calculate the BLEU-4 (Papineni
et al., 2002) and ROUGE-L (Lin and Och, 2004)
scores (Table 13).12

C.2 Retrieval Performance

The performance of schema retrieval on the
GrailQA valid set and GraphQuestions test set is
shown in Table 9 and 10, respectively. GAIN im-
proves the performance of schema retrieval on both
GrailQA and GraphQuestions. In particular, GAIN
improves the relation recall@10 by 7.2 points on
GraphQuestions.

C.3 Performance on Various Logical Forms

To show how TIARA+GAIN performs on different
types of logical forms, we compare it with previous
KBQA models on the GrailQA valid set, as shown
in Table 17. TTARA+GAIN improves performance
in nearly all these scenarios compared to TIARA.

C.4 Error Analysis

To analyze the QA errors of TITARA+GAIN (T5-
3B), we randomly sample 50 questions where pre-
dicted logical forms are not the same as the ground
truth in the GrailQA valid set. We follow Shu
et al. (2022) in their classification of errors. En-
tity linking errors (missing or redundant entities),
syntactic errors (generating the wrong logical form
structure), semantic errors (generating the wrong
schema item when correct contexts are provided),
false negatives (flawed annotations), and miscella-
neous (e.g., ambiguity in the question) account for
48%, 26%, 16%, 4%, and 6%, respectively. For
entity linking errors, 62.5% of them are from the
zero-shot level. For syntactic errors, the number of

2Calculated by Hugging Face Evaluate.
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errors from zero-shot and compositional levels is
almost the same. It means that entity linking for
zero-shot domains and logical form generation for
complex structures remain significant challenges.

D Details of Scientific Artifacts

All datasets we use are publicly available.
GrailQA"? (Gu et al., 2021) uses CC BY-SA 4.0
license, and Grathuestions14 (Su et al., 2016)
uses CC BY 4.0 license. WebQSP" (Yih et al.,
2016) and SimpleQuestions—Balance16 (Wu et al.,
2019) are also downloaded from their official re-
lease channels. We have complied with their dis-
tribution rules. These datasets involve manual con-
struction rather than fully automated construction,
which includes the review process. They contain
questions about some famous individual people,
but the corresponding content is available on Free-
base, which is a publicly released, human-reviewed
knowledge base.

Although the training data for LLMs could be
quite large, the test set annotation of GrailQA is not
publicly available. In addition, our experimental
results on the test set and the validation set show the
same trend, so the impact of the data contamination
problem on the experiments of this paper could be
ignored.

Bhttps://dki-1lab.github.io/GrailQA

14https ://github.com/ysu1989/GraphQuestions

15https ://www.microsoft.com/en-us/download/
details.aspx?id=52763

16https ://github.com/wudapeng268/KBQA-Adapter/
tree/master/Data/SQB
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Logical Form (S-expression) Question

1. (AND book.journal (JOIN book.periodical.editorial_staff
(AND (JOIN book.editorial_tenure.editor m.012z2ncg)
(JOIN book.editorial_tenure.title m.02h6676))))

(GrailQA valid set)

1. john oliver la gorce was the editor on the editor for what journal?

2. (AND book.journal (JOIN book.periodical.editorial_staff
(AND (JOIN book.editorial_tenure.editor m.05ws_t6)
(JOIN book.editorial_tenure.title m.02wk2cy))))

(GrailQA valid set)

2. with which journal did don slater serve as editor on the editor in chief?

1. how many works did fresh air review?

2. how many works were reviewed by fresh air in total?

3. what is the total amount of works reviewed by fresh air?
4. fresh air has reviewed how many different works?

All four S-expressions are (COUNT (AND book.reviewed_work
(JOIN book.reviewed_work.reviews_of_this_work m.0240y2)))
(GraphQuestions training set)

Table 14: Examples of paraphrases in GrailQA and GraphQuestions.

Sampled Logical Form Synthetic Question

(COUNT (AND people.profession (JOIN

people.profession.people_with_this_profession m.012d40))) how many professions does jackie chan have?
lentitylm.012d40 jackie chan

(AND food.beer (le food.beer.original_gravity 1.067""loat)) which beer has an original gravity less than or equal to 1.067?
(AND medicine.manufactured_drug_form (AND (It

medicine.manufactured_drug_form.size 10.0"\float) which manufactured drug form has part

(JOIN medicine.manufactured_drug_form.fda_otc_part m.0h9yt7z))) fda otc monograph part 348 and has a size smaller than 10.0?

lentitylm.Oh9yt7z fda otc monograph part 348

(ARGMAX (AND measurement_unit.power_unit

(JOIN measurement_unit.power_unit.measurement_system m.07y37))
measurement_unit.power_unit.power_in_watts)

lentitylm.07y37 us customary units

(AND music.release (AND (JOIN music.release.engineers m.011mbx12)
(JOIN music.release.label m.0g12fn3)))
lentitylm.011mbx12 raynard glass Im.0g12fn3 hostyle gospel ministries

what is the largest power unit in the us customary units?

what musical release is engineered by raynard glass and
labelled hostyle gospel ministries?

Sampled Triple Synthetic Question

D.W. Robertson, Jr. (m.09ggymq),

people.person.place_of_birth, where was D. W. Robertson, Jr. born
Washington, D.C. (m.Orh6k)

Alfred Chao (m.046¢md8),

computer.operating_system_developer.operating_systems_developed, what operating system did Alfred Chao develop?

pSOS (m.Olscq)

Table 15: Examples of synthetic data. The logical form is S-expression (Gu et al., 2021). The entity label is
appended to the logical form.

Datasets #question #class #relation #entity
GrailQA (Gu et al., 2021) 64,331 1,534 3,720 32,585
GraphQuestions (Su et al., 2016) 5,166 506 596 376
WebQSP (Yih et al., 2016) 4,737 408 661 2,593
GAIN-synthetic 127,329 5,078 12,942 46,645

Table 16: Statistics of KBQA datasets and the GAIN-synthetic dataset.
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Function None Count Comparative  Superlative

ArcaneQA (Gu and Su, 2022) 70.8/77.8 62.5/68.2 54.5/75.7 70.5/75.6
RnG-KBQA (Ye et al., 2022) 77.5/81.8 73.0/77.5 55.1/76.0 13.8/22.3
TIARA (T5-base) (Shu et al., 2022)  77.8/83.1 76.4/81.8 57.4/81.4 58.7/69.0
TIARA + GAIN ELF only 76.8/81.7 73.9/80.0 0.0/25.3 0.0/8.3
TIARA + GAIN (T5-base) 78.6/84.6  77.7/83.0 61.7/82.3 69.9/73.2
TIARA + GAIN (T5-3B) 78.5/84.8 77.3/82.5 63.0/84.5 70.7/74.1
GPT-3.5-turbo (5-shot) 74.1/78.0  66.8/70.5 38.3/60.5 43.9/52.3
# of relations 1 2 3 4
RnG-KBQA (Ye et al., 2022) 75.7/79.3  65.3/74.7 28.6/44.5 100.0/100.0
TIARA (T5-base) (Shu et al., 2022)  81.2/85.6  64.7/75.8 29.3/48.5 50.0/83.3
TIARA + GAIN ELF only 74.0/77.8 56.6/67.9 9.9/31.0 0.0/33.3
TIARA + GAIN (T5-base) 82.4/87.2 67.0/78.0 38.9/49.8 50.0/83.3
TIARA + GAIN (T5-3B) 82.0/87.2 68.8/79.0 37.5/51.3 50.0/83.3
GPT-3.5-turbo (5-shot) 75.0/78.6  61.9/69.6 19.8/36.6 50.0/50.0
# of entities 0 1 2

RnG-KBQA (Ye et al., 2022) 58.5/63.6  75.4/79.9 55.6/73.5

TIARA (T5-base) (Shu et al., 2022)  77.5/83.1 76.6/82.6 49.9/68.0

TIARA + GAIN ELF only 42.8/47.0  74.2/79.9 47.4/67.6

TIARA + GAIN (T5-base) 82.2/86.5 77.6/83.7 53.4/71.4

TIARA + GAIN (T5-3B) 82.0/86.6 77.6/84.0 55.6/73.0

GPT-3.5-turbo (5-shot) 66.8/72.8 71.9/76.1 48.8/62.1

Table 17: EM and F1 scores (%) for different types of logical forms on the GrailQA valid set. None denotes no
function. # of relations/entities denotes the number of relations/entities in the S-expression. ELF denotes exemplary
logical form (Shu et al., 2022).
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Given a question and Freebase contexts, write a logical form that answers the question.

Question: dark sun: wake of the ravager was designed by what video game designer?

Candidate entities:

(A) [Dark Sun: Wake of the Ravager]

Exemplary Logical Forms:

(A) (AND cvg.cvg_designer (JOIN cvg.cvg_designer.games_designed [Dark Sun: Wake of the Ravagerl]))

(B) (AND cvg.cvg_designer (JOIN (R cvg.computer_videogame.designers) [Dark Sun: Wake of the Ravagerl))

© (AND cvg.computer_videogame (JOIN (R cvg.cvg_designer.games_designed) (JOIN
cvg.cvg_designer.games_designed [Dark Sun: Wake of the Ravagerl])))
(D) (AND cvg.computer_videogame (JOIN cvg.computer_videogame.designers (JOIN

cvg.cvg_designer.games_designed [Dark Sun: Wake of the Ravagerl])))
(E) (AND base.wikipedia_infobox.video_game (JOIN base.wikipedia_infobox.video_game.developer (JOIN
cvg.cvg_designer.games_designed [Dark Sun: Wake of the Ravagerl])))
Candidate classes:

(A) cvg.cvg_designer

(B) cvg.game_performance

(C) cvg.musical_game

(D) cvg.game_character

(E) cvg.computer_game_engine_developer

(F) cvg.computer_videogame

(G) cvg.computer_game_performance_type

(H) cvg.game_version

(I) cvg.computer_game_subject

(J) cvg.computer_game_evaluation

Candidate relations:

(A) cvg.cvg_designer.games_designed

(B) cvg.computer_videogame.designers

(C) cvg.computer_videogame.prequel

(D) cvg.computer_videogame.sequel

(E) cvg.computer_videogame.mods

(F) cvg.computer_videogame.expansions

(G) cvg.computer_videogame.developer

(H) cvg.computer_videogame.characters

(I) cvg.game_version.game

(J) cvg.computer_game_mod.game_modded

Prediction: (AND cvg.cvg_designer (JOIN cvg.cvg_designer.games_designed [Dark Sun: Wake of the
Ravager]))

Figure 2: Example of LLM prompt (part 1): The task instruction and k teaching examples (only one is shown
because of the length) with questions and their contexts.
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Question: worldofwarcraft is the creation of which video game designer?

Candidate entities:

(A) [worldofwarcraft]

Exemplary Logical Forms:

(A) (AND cvg.cvg_designer (JOIN cvg.cvg_designer.games_designed [worldofwarcraft]))

(B) (AND cvg.cvg_designer (JOIN (R cvg.computer_videogame.designers) [worldofwarcraft]))

© (AND cvg.cvg_designer (JOIN cvg.cvg_designer.games_designed (JOIN
cvg.computer_game_expansion.expansion_for [worldofwarcraft])))
(D) (AND cvg.cvg_designer (JOIN (R cvg.computer_videogame.designers) (JOIN

cvg.computer_game_expansion.expansion_for [worldofwarcraft])))
(E) (AND cvg.cvg_designer (JOIN (R cvg.computer_videogame.designers) (JOIN (R
cvg.computer_videogame.expansions) [worldofwarcraft])))
Candidate classes:

(A) games.game_designer

(B) cvg.cvg_designer

(C) amusement_parks.ride_designer

(D) cvg.cvg_developer

(E) cvg.computer_videogame

(F) cvg.computer_game_engine_developer

(G) cvg.computer_game_engine

(H) cvg.computer_game_mod

(I) cvg.game_performance

(J) cvg.musical_game

Candidate relations:

(A) cvg.computer_videogame.designers

(B) cvg.cvg_designer.games_designed

(C) games.game_designer.games_designed

(D) games.game.designer

(E) cvg.computer_videogame.developer

(F) cvg.cvg_developer.games_developed

(G) cvg.computer_game_engine.developer

(H) cvg.computer_videogame.expansions

(I) cvg.computer_videogame.publisher

(J) cvg.game_version.developer

Prediction:

Figure 3: Example of LLM prompt (part 2): After k teaching examples, the input question and its contexts
is given. The golden prediction is (AND cvg.cvg_designer (JOIN cvg.cvg_designer.games_designed
[worldofwarcraft])).

88



AttriSAGE: Product Attribute Value Extraction Using Graph Neural

Networks
Rohan Potta*! Mallika Asthana*! Siddhant Yadav*!
Nidhi Goyal' Sai Amrit Patnaik> Parul Jain®
'"Mahindra University IIIT Hyderabad *IIT Delhi, India

{rohan20ucse145, mallika20ucse086, se20uecm082, nidhi.goyal } @ mahindrauniversity.edu.in,
sai.patnaik @research.iiit.ac.in, paruljainfeb@ gmail.com

Abstract

Extracting the attribute value of a product from
the given product description is essential for e-
commerce functions like product recommenda-
tions, search, and information retrieval. There-
fore, understanding products in e-commerce
with greater accuracy certainly gives any re-
tailer the edge. However, they are limited to
contextual modeling and do not exploit rela-
tionships between the product description and
attribute values.

Through this paper, in a world where we move
and shift to more complicated models with ex-
tensive training time with models like LLMs,
we present a novel, more straightforward at-
tribute value extraction from product descrip-
tion leveraging graphs and graph neural net-
works. Our proposed method demonstrates im-
provements in attribute value extraction accu-
racy compared to the baseline sequence tagging
approaches while also significantly reducing
the computation time leading to lower carbon
footprint.

1 Introduction

In the dynamic landscape of e-commerce, where
a wide range of products are readily available to
consumers, efficient and accurate product under-
standing plays a pivotal role in facilitating seamless
user experiences. The attributes associated with
products, including details such as color, material,
brand, type, and more, hold the key to enabling
users to find their desired items more efficiently.
E-commerce platforms usually provide product
descriptions but consumers prefer a quick and in-
tuitive way to narrow down their search and make
informed purchasing decisions. Product titles usu-
ally contain attributes and their corresponding val-
ues but this data is mostly unstructured, noisy, and
often contains missing values. For example, in Fig-
ure 1, a product along with its context (description)

“These authors contributed equally to this work
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New Arrival Original Authentic
Nike Air VaporMax Flyknit
Running Shoes Men

Sport Outdoor Sneakers 849558

Gender: Men

Brand Name: Nike

Feature:

Insole Material: NULL

Athletic Shoe Type: Running Shoes

Figure 1: A product description with its attributes and
their corresponding values represented as "Attribute:
Value".

is provided. Along with the description, there are
attribute-value pairs for attributes including Gen-
der, Brand, Feature, etc ; But, there also missing
attributes for values like Model number (value:
849558), Model name (value: Air VaporMax), etc.
Hence we need models that predict attribute values
for the attributes that have not been seen before.

The critical role of product attributes has driven
extensive research efforts to explore innovative
methods for their extraction and categorization.
Previous works, including those by Ghani et al.,
2006, Chiticariu et al., 2010, and Gopalakrishnan
et al., 2012, focused on attribute value extraction
using a rule-based approach. In this methodology,
a domain-specific seed dictionary played a crucial
role in identifying key phrases and extracting
attribute values. The rule-based systems relied on
predefined patterns and heuristics to recognize and
capture relevant information from unstructured
data, providing a foundational approach to
attribute extraction in the context of specific
domains. Other works proposed a Named-Entity
Recognition (NER) task (Putthividhya and Hu,
2011) for this problem; although NER relies
on pre-existing knowledge of named entities.
When faced with previously unseen brands,
models, or attributes, the system struggles to
identify and extract these values accurately. In

Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics:
Student Research Workshop, pages 89-94
March 21-22, 2024 (©2024 Association for Computational Linguistics



such situations, a more context-aware approach,
like question-answering-based techniques that
employ sequence-to-sequence models, might be
more effective for attribute value extraction from
product descriptions. Later introduced works
that employed sequence-to-sequence models
performed better than the former models, however,
these approaches have a few shortcomings-

(a) they do not exploit the structural relationships
between product description and attribute values
across the dataset. For example, assume product
descriptions C; and Cs share a common attribute
value T7. If there is another attribute value 75 rele-
vant to Cy and other similar product descriptions,
we can infer that 75 might also be relevant to C';.
Such transitive cues can be beneficial for identify-
ing missing attribute values.

(b) language models bring high computational costs
at massive scales as any task not only involves pre-
dicting multiple missing attribute values but also
requires precise organization of the most relevant
attribute values specific to the product. Graphs
are naturally suitable to make the relationships ex-
plicit such as product description-attribute value
networks.

(c) With the growing popularity of LLMs, we tend
to oversee the ecological impact they have on the
environment. They consume vast computational re-
sources, leading to significant energy use and high
carbon emissions.

In this work, our focus is on advancing the do-
main of product attribute value extraction through
a novel approach that leverages graph models and
graph neural networks (GNNs). Our primary goal
is to enhance the generalizability of existing ap-
proaches and provide more interpretable predic-
tions. We construct a product data graph using
a dataset comprising 110k product title-attribute
triples, enabling us to gain deeper insights into the
data. Leveraging graph-based neural network ar-
chitecture we performed a node classification task
to classify our title nodes with multiple attribute
values.

Through this work, we aim to contribute the
following:

* A Graph Neural Network (GNN) based ap-
proach for attribute value extraction from a
given product description.

* A Knowledge graph that captures the tran-
sitive relations and can predict the missing
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attribute values through these transitive links
for up to k-number of hops.

* Using the GraphSAGE model, we are able to
reduce the training time significantly.

2 Related Work

Initial works focusing on the attribute value ex-
traction task involved the use of domain-specific
rules to detect attribute-value combinations from
product descriptions (Zhang et al., 2009). The first
learning-based approaches required substantial fea-
ture engineering and were limited in their capacity
to generalize to unknown features and attribute val-
ues.

The initial application of the bidirectional LSTM
with a Conditional Random Field layer (BiLSTM-
CRF model) for sequence tagging in attribute value
extraction was introduced by Huang et al., 2015.
Following this, Zheng et al., 2018 proposed an
end-to-end tagging model, OpenTag utilizing BiL-
STM, CREF, and attention mechanisms, eliminating
the need for dictionaries or hand-crafted features.
However, this methodology poses scalability chal-
lenges when dealing with a large set of attributes
and cannot identify emerging values for previously
unseen attributes. An extension to OpenTag, SU-
OpenTag was proposed by Xu et al., 2019 which
encodes both a target attribute and the product ti-
tle using the pre-trained language model, BERT
(Devlin et al., 2019). Wang et al., 2020 proposed
AVEQA which formulates the attribute value ex-
traction from products task as a multi-task approach
via Question Answering.

With the advancements in the field of language
models, recent works by Roy et al., 2021 leverage
large language models to extract attribute values
from product data. They formulated the attribute
value extraction as an instance of text infilling task
as well as an answer generation task for which
they utilized Infilling by Language Modeling (ILM)
(Donahue et al., 2020) for the infilling approach
and fine-tuned text-to-text transfer transformer (T5)
(Raffel et al., 2023) as an answer generation task.
These models outperform the existing models but
they fail to capture the intricate relations between
different products.

3 Problem Formulation

We can formulate this problem of attribute value
extraction as follows:



: Outdoor Portable Mini Camping Gas

Burners Camping Stove Gas Stove

Folding Picnic Stainless Steel Split
Burners Camping Equipment

: B6-A Three Gas Burners Camping Split Gas
Stove Backpack Stove Outdoor Cookware
Cooking Picnic Stove Portable Gas Furnace 2018

T4- Fuel: Gas
T1

T1- Style: Outdoor

T2

c1 c2

T
T2- Category: Gas Stove

T5- Structure: Split

T3 T6

T3- Material: Stainless Steel T6-Model: Three Gas Burner

Figure 2: A graph illustrating the Description-Attribute-
Value model for a given product and outlining the graph.

Given a product description, C, such that, C =
{C1,C9,Cs5,...,C;} and an attribute A, the goal
is to predict the corresponding attribute value 7 as-
sociated with A where 7 = {11,15,T3,...,T;},
where i and j are the number of unique source and
target nodes respectively. We consider the nodes
representing C as the Source node and 7 as the
Target node. For constructing the graph, the Prod-
uct Description, C, and the Attribute Values, T are
arranged in a graph G = (V, E)) where V, the nodes
represent C U 7.

E =C x T is the set of edges denoting the ground
truth relation between product descriptions, C, and
the attribute values, 7. We formulate our problem
as a multi-label node classification task which also
takes into consideration transitive relations between
the nodes. This formulation allows more compre-
hensive correlations to be inferred. For example,
from Figure 2, we can infer that titles C; and Cy
share a common value 77. If there is another value
T relevant to C, it can be inferred that 75 might
be relevant to C as well, i.e., one of the labels for
C' could be T5. This formulation helps us improve
the interpretability of the obtained results. Table
1 depicts statistics of the graph modelled on the
entire AE-110K dataset after pre-processing.

3.1 Implementation

All the models are implemented using PyTorch
(Paszke et al., 2019).

For each product description ¢ € C, and attribute
value j € T, we generated a D dimensional initial
representation of their textual features capturing
the semantic information of these values.

These initial features, which we could call word
embeddings were generated using pretrained Fast-
Text (Bojanowski et al., 2017) and BERT (Devlin
et al., 2019). These word embeddings provide a
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Property Value
Nodes 52,028
Source Nodes 39,445
Target Nodes 12,586
Edges 85,872
Avg Degree 3.3009
Density 0.0634

Table 1: Graph Statistics

dense representation of words in a continuous vec-
tor space, enabling the model to capture semantic
relationships and nuances. Additionally, BERT
works well with numerical text hence if the value
is composed of numbers the model can grasp the
semantics of the value well. For implementing
the graph neural network to process the graph-
structured data, we have implemented the Graph-
SAGE (Graph Sample and Aggregation) model
(Hamilton et al., 2017), which performs neighbor
sampling and aggregation to generate embeddings
for each node in the graph. Our model architecture
can be explained as follows:

Let G = (V, E) be the input graph, where V' is
the set of nodes and E is the set of edges. For each
node v; € V, there is an initial node feature vector
x; representing the textual features:

SUZ'ERD

where D is the dimensionality of the word em-
beddings. In our case, D equals 768, representing
the dimension of the BERT embeddings. Sampling
neighbors of each node v; is done as :

N(vi) = {vi1,vi2, .. (D)

< Ui,k}

where k is the number of sampled neighbors. Then
a mean aggregator is applied for aggregating infor-
mation from the node and its neighbors:

yhig})

Then the aggregated representation is concate-
nated with the initial node embedding:

hi = Aggregate({h;1,hiz, ... 2

h; = Concat(h}, x;) 3)

Finally, the model is trained to minimize the
difference between predicted and ground truth at-
tribute values:

Minimize Z Loss(hj, ground_truth;) (4)
1EN



Attributes Train Dev Test
Brand Name 50,413 5,601 14,055
Material 22,814 2,534 6,355
Color 5,594 621 1,649
Category 5,906 590 1,649
All 77,207 10,920 22,169

Table 2: The table represents the most frequently occur-
ring attributes (Brand Name, Material, Color, Category)
from the AE-110K dataset.

The Cross-Entropy Loss is calculated between
the predicted probabilities and the true labels.
Training using backpropagation and stochastic gra-
dient descent (SGD) is performed and the model
parameters are updated.

For k-hop architecture, repeat sampling and ag-
gregation for & hops:

(S))

The representations from each hop can be con-
catenated as:

h; = Concat(hl(-l), h

4 Experiment Setup

4.1 Dataset

We have used the publicly available AE-110K
dataset! from The Sports and Entertainment cat-
egory of AliExpress (Xu et al., 2019). This dataset
contains 110,484 triples, wherein each triple con-
sists of the product title (context), attribute, and
value each separated by a delimiter. For our task,
we pre-processed the dataset to handle triples with
empty values as well as triples where the attribute
value was denoted by ’-> and ’/’. The resultant
dataset consists of 110,296 triples with 2761 unique
attributes and 12,607 unique attribute values. We
divided the data randomly into a 7:1:2 ratio. Specif-
ically, we chose 77,207 triples as our training set,
10,920 triples as the validation set, and the remain-
ing 22,169 triples as our test dataset. Table 2 shows
the most frequently occurring attributes in the AE-
110K dataset.

4.2 Evaluation Metrics

The model’s performance was assessed on the test
set, by employing a comprehensive set of metrics.
'https://raw.githubusercontent.com/

lanmanok/ACL19_Scaling_Up_Open_Tagging/
master/publish_data.txt
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We calculated average metrics for Fl-score, pre-
cision (P), and recall (R). The objective is to as-
sess the model’s ability to accurately predict the
attributes associated with each product title node
in the graph. The metrics are represented by F}
score, P, and R respectively. Let u; and g; be the
gold standard and generated values for the ¢-th sam-
ple respectively and let N be the total number of
samples in the test set, then:

v; N
Z | z‘ 91 %)
i=1 gZ
N
1 Uzﬂfh
== 3
szl |vi]

4.3 Baselines

We compare our models with SUOTag (Scaling Up
Open Tag) Xu et al., 2019 and ILM-T5 (Roy et al.,
2021).

* SUOTag (Xu et al., 2019) employs a
BiLSTM-based architecture with attention
and CRF components. It utilizes pre-trained
BERT embeddings for word representation
and employs two separate BiLSTMs for title
and attribute modeling. An attention layer
is applied to capture the semantic interac-
tion between attributes and titles. The output
layer utilizes a CRF layer to predict tag se-
quences, considering dependencies between
output tags. (Lafferty et al., 2001).

ILM-TS (Roy et al., 2021) presents the prob-
lem formulation to generate product attribute
values as two tasks - (i) an instance of text
infilling task leveraging the Infilling by Lan-
guage Modeling (ILM) and pre-trained GPT-2
small (Radford et al., 2019) model and (ii) as
an answer generation task using the text-to-
text transfer transformer (T5) model.

4.4 Result

Table 3 presents the performance of the AttriSAGE
model in comparison to the baseline models on
the AE-110K dataset. AttriSAGE works well on
a large set of attributes. With even a simple and
compact graph-based network like ours, we can
achieve performance comparable to LLMs, which
demonstrates substantial improvements compared
to sequence tagging models. Our model achieved
an F1 score of 80.45, signifying a notable improve-
ment over the sequence tagging models.


https://raw.githubusercontent.com/lanmanok/ACL19_Scaling_Up_Open_Tagging/master/publish_data.txt
https://raw.githubusercontent.com/lanmanok/ACL19_Scaling_Up_Open_Tagging/master/publish_data.txt
https://raw.githubusercontent.com/lanmanok/ACL19_Scaling_Up_Open_Tagging/master/publish_data.txt

Model Precision Recall F1

SUOTag 70.81 71.31 71.06
ILM 83.35 83.38 83.37
T5 83.89 83.75 83.82
AttriSAGE  79.06 81.90 80.45

Table 3: Performance of Different Models on AE-110K

Additionally, our AttriSAGE model significantly
reduces overall training time and efficiently man-
ages computational resources compared to Large
Language Models. The model was trained on the
NVIDIA DGX A100 GPU and it took 2-3 hours
to execute, showing improvement in terms of both
time and resource utilization.

5 Discussions

Our model’s success in capturing the essence of
the dataset can be attributed to its interpretabil-
ity. We have utilized the structured format of a
graph to restructure the data, which aligns with
the analysis capabilities of a graph neural network.
Unlike an LLM, which predicts the next token in
the same dataset, our graph neural network excels
in analyzing structured data and making accurate
predictions leveraging a graph’s ability to learn
from its neighborhood. By capturing the relation-
ships between data points through the graph, our
model has achieved significant levels of accuracy.
Moreover, our model’s interpretability allows us
to comprehend the rationale behind its predictions,
which is crucial for maintaining its dependability
and credibility.

6 Conclusion and Future Work

In this work, we have proposed a novel approach
to extract attribute values from unstructured prod-
uct data with the help of graphical representation.
Representing the e-commerce data as graphs and
leveraging graph techniques to extract the attribute
values helped in understanding the underlying rela-
tionships between different products and forming
transitive relations between products and their cor-
responding values.

We plan on extending this work to build an ad-
vanced multi-hop model architecture that can make
better predictions under diverse scenarios, includ-
ing handling missing values, exploring strategies
for imputing the most frequent values, and address-
ing other issues and datasets.
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Limitations

The current method has only been tested on a single
dataset, which is the primary limitation of this work.
Although the results are promising in this particular
context, the generalizability of the method across
diverse datasets and under different scenarios re-
mains untested. To overcome this limitation, future
work would expand the experiments to include a
more varied selection of datasets. Furthermore, this
work currently only focuses on the GraphSAGE ar-
chitecture. Alternative graph-based architectures
with different configurations and hyperparameter
settings could be explored to enhance the current
findings and results.
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Abstract

Hallucinations pose a significant challenge to
the reliability and alignment of Large Language
Models (LLMs), limiting their widespread ac-
ceptance beyond chat-bot applications. De-
spite ongoing efforts, hallucinations remain a
prevalent challenge in LLMs. The detection of
hallucinations itself is also a formidable task,
frequently requiring manual labeling or con-
strained evaluations. This paper introduces
an automated scalable framework that com-
bines benchmarking LL.Ms’ hallucination ten-
dencies with efficient hallucination detection.
We leverage LLMs to generate challenging
tasks related to hypothetical phenomena, sub-
sequently employing them as agents for effi-
cient hallucination detection. The framework
is domain-agnostic, allowing the use of any
language model for benchmark creation or
evaluation in any domain. We introduce the
publicly available HypoTermQA Benchmark-
ing Dataset, on which state-of-the-art mod-
els’ performance ranged between 3% and 11%,
and evaluator agents demonstrated a 6% error
rate in hallucination prediction. The proposed
framework provides opportunities to test and
improve LLMs. Additionally, it has the poten-
tial to generate benchmarking datasets tailored
to specific domains, such as law, health, and
finance.

1 Introduction

Large Language Models (LLMs) demonstrate ex-
ceptional predictive capabilities for common to-
kens, but encounter challenges when dealing with
rare tokens, especially in mixed contexts (Ilyas
etal., 2019; Zou et al., 2023). Adversarial effects in
real-life scenarios may inadvertently emerge from
prompts that combine both common and rare to-
kens.

The question in Figure 1 is framed with the valid
term "Platypus” in the relevant domain and a hy-
pothetical term, "Wolf," created using a common

95

What are the similarities and dif-
ferences between Platypus LLM
and Wolf LLM?

@&

6

Wolf LLM is a framework for
interactive refinement of LLMs...
Platypus LLM is a family of fine-
tuned and merged LLMs... Some
similarities are... Some differ-
ences are...

Figure 1: Hypothetical Term Sample

word within the specified context. The answer can
be easily categorized by assessing the LLM out-
put: whether it rejects the presence of Wolf LLM
or acknowledges its existence and provides an ex-
planation. Indeed, Platypus (Lee et al., 2023) is
an actual language model incorporating a seldom-
used animal name. In contrast, the Wolf Language
Model did not exist when this paper was authored.
However, approximately 90% of the time, LLMs
neglect to indicate their lack of information about
a hypothetical phenomenon in similar situations
(Section 4). This characteristic significantly dimin-
ishes the reliability of LLMs and impedes their suit-
ability for deployment in critical decision-making
systems.

Detecting hallucinations is difficult, and it is still
an ongoing research problem (Ji et al., 2023; Huang
et al., 2023). Generating examples, like the "Wolf
LLM" example, might help assess the tendency of
LLMs to generate information about nonexistent
terms. These examples offer advantages in both
revealing and detecting hallucinations:

(1) It confirms the absence of the term in the
training dataset. (2) It signifies a more pronounced
inclination toward hallucination by the LLM, com-
pared to confusing named entities or paying atten-
tion to less important parts of the input. (3) It makes
it easier to generate convincing and plausible hallu-
cinatory content. (4) The output is easily labeled,
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and the evaluation process is more efficiently au-
tomated due to LLM Agents adeptly reflecting on
atomic tasks. To realize these advantages, in this
paper, we:

1- Propose a scalable and automatized method-
ology to create a hallucination benchmark dataset
(Section 2).

2- Publish the HypoTermQA Dataset along with
our code for reproducibility, evaluation, and inter-
mediate results publicly on GitHub repository .

3- Propose a novel way to measure the Hallu-
cination tendency of LLMs utilizing LLM agents
(Section 3) and present insights after conducting
proposed evaluations (Section 4).

As evident from the provided example, this study
specifically targets a particular type of hallucina-
tion: the generation of content about non-existent
phenomena. However, our approach allows for the
creation of more generalized datasets, encompass-
ing factually inaccurate generations (Min et al.,
2023) or reliable summarization (Mishra et al.,
2023).

2 Benchmark Creation

Figure 2 illustrates the process of our framework,
while Appendix B contains the terms introduced
in this paper. The proposed benchmark process
includes two steps to generate the proposed Hy-
pothetical Terms Dataset. The first step includes
the generation of an intermediate dataset, which
contains hypothetical and valid term couples (see
Sections 2.1 - 2.3). The second step is about trans-
forming these term couples into coherent hypothet-
ical or valid questions (see Section 2.4).

The GPT-3.5 (OpenAl, 2023b) model was em-
ployed for the generation of synthetic data due
to its higher performance on common tasks com-
pared to open-source alternatives and its superior
cost-efficiency relative to the GPT-4 model (Ope-
nAl, 2023c). The temperature variable was set to
zero unless specified otherwise. We generated the
dataset in accordance with OpenAl’s terms and con-
ditions and usage policies®. The proposed dataset is
designed exclusively for the purpose of preventing
and evaluating hallucinations in language models.

2.1 Topic Selection

As an initial step, the GPT-3.5 model was queried
with the prompt "the most popular 20 topics on
! github.com/cemuluoglakci/HypoTermQA

2openai.com/policies/terms-of-use
https://openai.com/policies/usage-policies

and
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the internet." The objective was not to objectively
identify the most popular topics. LLMs are consid-
ered as tools for information compression (Delé-
tang et al., 2023), and the internet serves as the
primary source of training information. We de-
signed the prompt to uncover the most familiar
general topics, followed by the generation of the
adversarial hypothetical terms using the most fa-
miliar tokens. During this phase, a temperature
value of one was set, prioritizing diversity and cre-
ativity over reproducibility. Explanations for topics
were also generated to serve as prompt inputs in
subsequent steps, thereby facilitating more detailed
responses. Appendix C presents the prompts em-
ployed in this study along with their corresponding
generated responses.

2.2 Creating Hypothetical Terms

For each topic, the GPT-3.5 model was prompted
to "generate 50 hypothetical terms consisting of
multiple common words". The prompt templates
for creating hypothetical terms and explanations
are provided in Appendix D. Throughout this pro-
cess, a temperature value of one was applied to
encourage creativity, resulting in the generation of
50 terms for each of the 20 topics. As anticipated,
the model ’hallucinated’ about ’hallucinating’ and
often generated valid terms. To confirm the ab-
sence of these hypothetical terms in the real world,
validation was conducted using the Google Custom
Search APL"3. The generated terms were searched
within quotation marks across the web, and any
term with a "total results" count greater than zero
was excluded from the dataset. Following the web
search validation process, a total of 790 terms re-
mained out of 1000 terms. The distribution of terms
across topic categories ranged from 24 to 50.

2.3 Retrieving Valid Terms Similar to
Hypothetical Terms

Even though the hypothetical terms are constructed
from common, familiar tokens, generating ques-
tions solely based on these terms may result in
easily discernible and meaningless sentences.

To increase task complexity, terms similar to the
hypothetical ones retrieved and used in the ques-
tions. These new terms were carefully chosen to be
valid and found in Wikipedia. Questions were then
formulated, emphasizing the relationship between
the valid term and the hypothetical term. Conse-

3https://developers.google.com/custom-search/v|1



Topic Selection (2.1)

What are the most popular
I 0 20 topics on the internet?
I‘ News, Food, Sports...
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Composing Questions (2.3)

How does the concept of publicity relate to the
phenomenon of information cascade flux in the
context of news and current events?

&

Hypothetical
— How does the concept of publicity relate to the
<> phenomenon of Reputation in the context of
Replaced news and current events?

How does a strong reputation in the world of
news and current events contribute to the
overall perception of a person or organization,
regardless of the level of publicity they receive?
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Meaning Term Labels

closely related to the
phenomenon of information

/ true /LI)/accept /—:)/true / —[} { valid A

understood as follows: ...

/@/accept 7

|
|
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Figure 2: Sample HypoTermQA Process

quently, HypoTermQA questions encompass both
answerable real elements and non-answerable ad-
versarial elements, rendering them more plausible,
challenging, and reflective of real-life scenarios.
Nevertheless, the identification of similar terms and
the application of similarity measures pose addi-
tional challenges. Three different approaches were
employed to generate valid terms similar to hypo-
thetical terms. The output of this phase constituted
the first part of the dataset.

LLM Suggestion:

The GPT-3.5 model was prompted to generate 50
valid terms similar to the given hypothetical term.
Prompt template is presented in Appendix E. Here,
the objective was not to identify the most similar
terms, but rather to find tokens closely positioned
to the hypothetical term within the latent space as
determined by the LLM. The order of word gener-
ation by the LLLM is considered indicative of the
degree of similarity.

Nevertheless, relying solely on responses from
the LLM or web searches does not suffice to con-
firm the presence of a term. To overcome this lim-
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itation, terms without a corresponding Wikipedia
article with an exact match in the title were omitted.
Out of 790 hypothetical terms, 14,271 distinct simi-
lar terms were generated, accounting for some over-
laps in the generated terms. Among these, 6,466
terms aligned with existing Wikipedia article titles,
leading to the exclusion of 7,750 term candidates
from the dataset.

In this step, Wikipedia article searches were con-
ducted against a local copy, ensuring reproducibil-
ity and maintaining consistency with subsequent
steps. The methodology outlined by Petroni et al.
(2021) was embraced, and a local JSON-based
database was generated using the April 1, 2023,
English Wikipedia dump. This extraction yielded
7,251,680 pages, each containing at least one para-
graph of text 4.

Title Similarity:

The JSON-based database created in the pre-
vious step was used to create a vector database.
Wikipedia titles were vectorized with a DistilBERT-
based model, in accordance with the methodology

*https://dumps.wikimedia.org



outlined by Hofstitter et al. (2021). Then, for each
hypothetical term (obtained in Section 2.2), we re-
trieved the 50 most similar Wikipedia titles with
the L2 distance metric. A sample search result
is presented in Appendix F. This approach, in-
corporating a valid term closely aligned with the
hypothetical term in the latent space, facilitated the
generation of perplexing questions for the LL.Ms.
However, it was not uncommon to retrieve ar-
ticles with titles containing words similar to the
hypothetical term but having irrelevant context. An
illustration of this can be found in Appendix O.2.
The hypothetical term "Turbo-jump dribble" was
employed to identify similar words using the titles
of Wikipedia articles, resulting in the retrieval of
the term "Jump, Jive an” Wail." Despite including
a portion of the original hypothetical term, the re-
trieved term differs significantly in meaning. This
situation poses a challenge when generating coher-
ent questions based on term pairs. To mitigate this
limitation, we implemented an additional step to
retrieve related terms by assessing the similarity in
definitions of both hypothetical and valid terms.
Text Similarity: The first paragraphs of
Wikipedia pages were accepted as the definitions of
the respective titles. Parallel to the preceding step,
these definitions underwent vectorization using the
same methodology, and the resultant vectors were
stored as database instances. For every hypotheti-
cal term definition, we retrieved the 50 most similar
Wikipedia definitions with the L2 distance metric.
A sample search result is presented in Appendix G.
It is noteworthy that the titles of Wikipedia arti-
cles, which include valid terms obtained through
this method, are often distant from the hypothet-
ical terms in the latent space. Nonetheless, they
share similar contexts and definitions. In the ex-
ample Appendix O.3, the "Alley-oop" sample was
retrieved through Wikipedia definition similarity.
Even though its wording is different than "Turbo-
jump dribble", both are basketball techniques and
their definitions are similar. The hypothetical-valid
term pairs established through this method are more
conducive to crafting coherent questions, although
they may possess a reduced adversarial quality.

2.4 Composing Questions

In the previous phase, we acquired 790 hypothet-
ical terms. However, six hypothetical terms were
omitted from the dataset due to an insufficient num-
ber of corresponding similar valid terms. In the
current phase, for each of the remaining 784 terms,
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we identified three sets of related valid terms (LLM
suggestion, title, and text similarity). We then se-
lected the three most similar terms from each set,
creating nine-term pairs for each hypothetical term.
A sample for term pairs is presented in Appendix H.

Following this, three distinct methods were used
to generate questions for each term pair. The ex-
pected result is the creation of 27 questions for
every hypothetical term. However, 459 dupli-
cate questions were identified and subsequently
removed. Additionally, during quality checks, it
was detected that 1201 generated questions did
not include at least one of the terms included in
the prompt. The final dataset comprises a total of
19.508 questions. Each adversarial question in the
dataset was accompanied by two different control
questions.

Hypothetical Questions: Using the hypothet-
ical and valid terms, we instructed the GPT-3.5
model to generate a coherent question (see Ap-
pendix I). The prompt included the definition of the
term’s corresponding topic and both terms, along
with their respective definitions, to ensure that the
generated questions align with the intended con-
text.

Valid Questions: The valid question generation
process is similar to the previous step. Instead of
using a hypothetical term, we pick the most similar
term from its corresponding valid term list to for-
mulate a coherent question (Refer to Appendix J).

Replaced Questions: In this phase, the hypo-
thetical term is substituted with the most similar
valid term through programmatic string operations
(Refer to Appendix K and Appendix L).

A sample final output of the question genera-
tion process is presented with its metadata in Ap-
pendix M.

3 HypoTermQA Score

Labeling open-ended long texts is a challenging
task. However, by getting insights from the litera-
ture about the reasoning (Ye and Durrett, 2022; Si
et al., 2023; Liu et al., 2023) and reflection (Shinn
et al., 2023; Wu et al., 2023; Kim et al., 2023) ca-
pabilities of LLMs, we generate LLM agents to
automatically decide the label of another LLM’s re-
sponse. Similar to the FactScore (Min et al., 2023)
framework, we introduce irrelevant labels besides
hallucination and valid answer labels. We use the
percentage of "valid" labeled answers to "hypothet-
ical questions" as the HypoTermQA Score. It shows



LLM’s performance to resist hallucination. Also,
(1 - HypoTermQA Score) denotes the error rate.
The distribution of error rate between hallucination
and irrelevant labels or performance on valid ques-
tions gives valuable secondary insights about LLM
performance. However, our focus is on detecting
if LLMs are capable of knowing what they do not
know.

3.1 Term Level Evaluation

For term-level evaluation, a series of programmatic
tests and LLM agents were employed. Appendix N
contains the flowchart outlining the labelling logic,
while in Appendix O, an example response for each
possibility is provided. Each question in the Hy-
poTermQA dataset comprises a term couple. Eval-
uation involves comparing the LLM response with
each term. Term-level evaluations are a function of
LLM Response (R) and a Term (7;). The output
term-level-label (L;) can be valid (v), hallucination
(h), or irrelevant (¢). Let T"T; be Term (7;) Type
which can be hypothetical (h) or valid (v):

term_level_eval ( R, Tl ) — Lti

Term Inclusion Check: Initially, the answer un-
dergoes a programmatic string check for the pres-
ence of the specified term (Refer to Appendix K).
Let P; show whether the term is present in the re-
sponse. If the term is not detected (P; = false), the
response is deemed unrelated to the given question,
labeled as "irrelevant," and further evaluations for
the associated term are halted.

Term Acceptance Check: In this phase, an
LLM agent is generated for reflective evaluation,
using the provided prompt template in Appendix P.
The assessment involves verifying whether the re-
sponse declines to generate content about the spec-
ified term, asserting its non-existence in the real
world. If the acceptance or rejection contradicts
the validity of the given term, the label "hallucina-
tion" is assigned. Additionally, a third response op-
tion may assert that the term is beyond the LLM’s
knowledge. In this case, if the term is hypothetical,
the Response is labeled as valid; otherwise, it is
labeled as irrelevant.

accept, if R accepts existence of T;
A; = | refuse, if R refutes existence of T}
unknown, if R does not know T;

Meaning Check: This final evaluation method is
exclusively applied to accepted (A; = accept) and
valid (TT; = v) terms. Let M; be the boolean
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variable indicating whether the term is used in
its real meaning, assessing if the answer aligns
with the Wikipedia definition of the given term.
Any discrepancy identified by the LLM Agent (Ap-
pendix Q) results in labeling the Response (R) as a
hallucination (h).

if not P;

if P; and T'T; = v and A; = unknown

if P; and TT; = v and A; = refuse

if P; and T'T; = v and A; = accept and not M;
if P, and T'T; = v and A; = accept and M;

if P, and T'T; = h and A; = accept

, if Pyand TT; = h and A; # accept

<. .

L,

< > >

3.2 Answer Level Evaluation

The term-level evaluation concludes with 2 labels
(Ly;) for both terms composing the question. The
logic of labeling answers based on term-level labels
is illustrated in Appendix R. If any label indicates
hallucination, the entire answer receives a halluci-
nation label. In the absence of hallucination but
lacking direct relevance to the question, the answer
is labeled as irrelevant. A "valid" label in both term-
level evaluations is necessary for an overall "valid"
answer. Answer-level evaluation is a function of
term-level labels (L;;) and the output answer-level-
label (L,) can be valid (v), hallucination (h), or
irrelevant (7):

answer_level_eval( L1, L) — Lg

La:{

Subsequently, the language model’s HypoTerm
Score (HT'S) is calculated, representing the per-
centage of valid answers to hypothetical questions.
Let H¢ represent the set of hypothetical questions
in the HypoTermQA dataset and V4 be the set of
valid answers:

h
1

if Lyy =horLis =h
else ithl =1 o0r Ltg =1

v otherwise

4 Experiments and Results

For experiments, various combinations of three
series of LLLMs are tested or employed as eval-
uvator LLM agents: GPT (Ouyang et al., 2022),
Llama2 (Touvron et al., 2023) and Orca2 (Mitra
et al., 2023). GPT and Llama2 were chosen due to
their high citation rates, while Orca2 was selected
for its focus on improved training data quality and



reasoning performance which may lead to prevent-
ing hallucinations.

All open-sourced models underwent 4-bit quan-
tization before inference. For 7 and 13 billion
parameter-sized models, a single NVIDIA 16 GB
V100 GPU was used, while 3 GPUs were em-
ployed for 70 billion parameter-sized models. Pro-
prietary models were accessed through APIs, and
models available only through a Ul were manu-
ally prompted by the authors. A total resource of
2000 GPU hours for open-sourced models and 20$
for API access was used for experiments. Llama?2-
7b, Llama2-13b, Llama2-70b, and GPT-3.5 models
were prompted with all 19,508 questions in the Hy-
poTermQA dataset. For those who need to deal
with resource constraints, two smaller subsets were
also created.

4.1 Sampling Subset

The complete dataset includes 20 topics, 784 hy-
pothetical terms, and 27 questions per term, total-
ing 19.508 questions after eliminating duplicates.
Appendix S presents a comparative chart of the
subsets. In the 1,080-question sample, six initial
hypothetical terms were chosen for each of the 20
topics. Furthermore, a single valid term was se-
lected for each hypothetical term from the three
term sets (LLM suggestion, title, and text similar-
ity), instead of the usual three. Lastly, questions
were formulated for each of the 120 terms using
three distinct methods outlined in Section 2.4, re-
sulting in nine questions for each term. In the
180-question sample, the process remains similar,
except that only one hypothetical term is selected
for each topic, as opposed to six in the previous
sample.

Subsets are generated primarily due to compu-
tational constraints. Whenever feasible, it is rec-
ommended to utilize the complete dataset. It is im-
portant not to conflate these subsets with samples
designated for training, validation, or testing. Our
dataset comprises benchmarking questions rather
than serving as training data, and there are overlaps
among data points. Our objective is to achieve the
best representation of the entire dataset with fewer
samples.

4.2 Evaluating LLM Performance

The evaluation of hallucination tendency perfor-
mance for GPT-3.5 and Llama2 70B was measured
using the full dataset. Llama2 70B was used to
generate evaluator LLM agents. Figure 3 illustrates

the LLM performance at the answer level, while
detailed performance metrics at the term level are
provided in Appendix T.

GPT-3.5 Performance on HypoTermQA

100 L 5.72% valid ]
hallucination
irrelevant

80 - - - B

48.07%
2eoll 70.17% |
89.19%
& 40| - S - -
44.85%
Sy WO 21.7% |
0 7.08% 5.08% 8.12%
all hypothetical valid
Question Type
LLAMA2_70B Performance on HypoTermQA
T T T
1001 — 5.64% |
8 4253% ]
. 61.79%
@ 60 b -
86.31%
& 40+ i
49.15%
2000 29.76% |
0 8.31% 8.06% 8.45%
all hypothetical valid

Question Type
Figure 3: HypoTerm Scores

The dataset comprises one-third hypothetical
questions and two-thirds valid questions. The Hy-
poTermQA Score, determined by the percentage of
valid answers to hypothetical questions, was 5.72%
for GPT-3.5 and 5.64% for Llama2-70B, indicating
over a 94% error rate for both models.

For hypothetical questions, GPT-3.5 failed to rec-
ognize a hypothetical term or refused the existence
of a valid term 89.19% of the time, producing hal-
lucinated information. Additionally, it omitted the
hypothetical term entirely in 5.08% of its responses.
Llama2-70B exhibited slightly less hallucination
at 86.31% but struggled more in addressing the
question with 8.06% irrelevant answers.

As anticipated, both GPT-3.5 and Llama2-70B
performed better with valid questions, generating
information for both terms in the question 70.17%
and 61.79% of the time, respectively. GPT-3.5
claimed that a valid term did not exist or used
it in a different context than its Wikipedia defi-
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nition 21.7% of the time, while Llama2-70B did so
29.76% of the time. In around 8% of cases, both
models failed to address the question or declared a
lack of information about the given term.

Despite similar HypoTermQA Scores, GPT-3.5
more frequently addresses questions and produces
less hallucination in responses to valid questions
compared to Llama2-70B.

For GPT-3.5, 108.602 and for Llama2-70b
107.779 term level evaluations conducted on
19.508 answers. Term-level detailed evaluations
(see Appendix T) reveal that LLMs fail to detect
a hypothetical term over 40% of the time, while
falsely denying the existence of a valid term occurs
5-9% of the time. Hallucinations are more likely
when the valid term is selected based on title simi-
larity, with LLM suggestion having the least effect.
GPT-3.5 consistently recognizes valid terms when
generated as a suggestion by itself. GPT-3.5 and
Llama2-70b have similar performance on detect-
ing hypothetical terms, while Llama2-70b strug-
gles more with using valid terms in their intended
context. Lastly, LLMs generate slightly more irrel-
evant content when the term is hypothetical.

4.3 Evaluating Question Generation

Instead of analyzing LL.M responses, this experi-
ment focuses on the bias of the question generation
framework. The Llama2-70B model was utilized
to generate 20 terms and 180 questions with the
same methodology used in Section 2. GPT-3.5 and
Llama2 models prompted with these questions and
tested with GPT-3.5 and Llama2-based LLM eval-
uator agents separately (Section 4.2). Both LLMs
demonstrated higher performance when responding
to questions generated by Llama2. Additionally, it
was observed that evaluator LLM agents tend to
favor answers generated by the same model, lead-
ing to higher scores. For detailed data, refer to
Appendix U. Overall, the results closely parallel
those outlined in Section 4.2.

4.4 Evaluating Evaluator Agents

To analyze the performance of LLM evaluator
agents. GPT-3.5 API prompted with the 180-
question sample (refer to Section 4.1) and re-
sponses were manually labeled by the authors to
create ground truth labels. Subsequently, five dif-
ferent models were used to generate LLM agents
and evaluate the response of the GPT-3.5 model.
As shown in Figure 4, the Orca2:13B model
demonstrated the closest performance to human
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evaluation. However, upon examining the con-
fusion matrices in Appendix V, it was revealed
that the Orca2:13B model had high and similar
false positive and false negative counts, while the
Llama2:70B model exhibited the highest perfor-
mance with only a 6.66% error rate. Consequently,
the Llama2:70B model was selected to form evalu-
ator LLLM agents for other experiments.

In the preceding experiment (Subsection 4.3),
higher scores were observed for the answers gen-
erated by LLMs for the same model. Conversely,
in the current experiment, GPT3.5’s answers re-
ceived a higher score from Llama2:70B. Notably,
GPT3.5 generates more plausible and challenging
questions for this specific case, while Llama2:70B
demonstrates superior performance in evaluating
answers. Overall, it is evident that model selection
as an LLM agent introduces biases, necessitating
additional studies for a comprehensive understand-
ing.

Evaluator Performance
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[}
E 307 ,,,,,,,,,,, S N, N . -
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Figure 4: Evaluator Performance

4.5 Evaluating UI Systems

To include models without API access in our ex-
periments, the 180-question sub-sample was uti-
lized, and ChatGPT (OpenAl, 2023a) was manu-
ally prompted through the UI by the authors. Seven
additional open-sourced models were included for
detailed comparison. Figure 5 illustrates the com-
parison of LLM performance, while detailed per-
formance plots for each model are provided in Ap-
pendix W. As anticipated, every model exhibited
significantly lower performance against hypotheti-
cal questions compared to valid questions, scoring
between 1% to 11% against hypothetical questions
and between 35% to 49% overall.

The ChatGPT model achieved the highest score



of 11.67% against hypothetical questions, with the
Orca2:13B model achieving the second-highest
score (8.33%), outperforming models like GPT-4
and Llama2:70B. Models with the highest parame-
ter sizes (GPT-3.5, GPT-4, Llama2-70B) performed
better in directly addressing valid questions, adher-
ing to the context, and using valid terms in their real
meaning but struggled to distinguish hypothetical
terms. Orca2 models demonstrated better detec-
tion of hypothetical terms, yet they also tended
to refuse the existence of valid terms more often.
Generally, a trade-off was observed between per-
formance in valid and hypothetical questions. Nev-
ertheless, ChatGPT appears to be the most robust
model.

LLM Performance
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ORCA2:7B W 5.0% 33.89%
LLAMA2:70B 3.33% 44.44%
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Figure 5: LLM Performance Comparison

5 Related Work

5.1 LLM Evaluation

Evaluating LL.M performance is not a straightfor-
ward task. It is widely accepted to use ROUGE
score (Lin, 2004) for summarization and BLEU
score (Papineni et al., 2002) for translation tasks.
However, n-gram-based scores have limited abil-
ity to measure performance and are not suitable
for open-ended long text generation tasks that lack
golden answers.

The next generation of Language Model evalu-

ations depends on specific datasets rather than a
general metric. GLUE (Wang et al., 2018) and Su-
perGLUE (Wang et al., 2019) are comprehensive
datasets focused on benchmarking Natural Lan-
guage Understanding (NLU) through 9 different
classification or similarity detection tasks. Open-
BookQA benchmark (Mihaylov et al., 2018) ex-
pects the language model to select one of four al-
ternatives simulating a test exam. HotpotQA (Yang
et al., 2018) presents a context and a question as in-
put and the target value is one or a few tokens from
the context. TruthfulQA (Lin et al., 2022) prompts
language models to generate a few sentences about
adversarial questions and then calculates BLEU
and ROGUE scores to measure performance.

Hellaswag dataset (Zellers et al., 2019) increased
difficulty while testing reasoning capacity by choos-
ing a sentence completion from multiple selections.
Winogrande dataset (Sakaguchi et al., 2021) intro-
duces a pronoun resolution task. Similar to Hot-
potQA, DROP dataset (Dua et al., 2019) consists
of context and question couple and few-word tar-
get answer. Winogrande and DROP both have an
adversarial nature.

Multi-hop question-answering datasets further
increase the difficulty of reasoning tasks. MuSiQue
dataset (Trivedi et al., 2021) uses the same con-
text, question, and few-word answer structure. The
difference is that questions must be decomposed
into chained multiple questions. The answers to
the initial sub-questions are needed to compose
and answer the latter sub-questions and the main
question. HELM dataset (Liang et al., 2023a) is a
collection of 73 different benchmarking datasets
and 65 evaluation metrics. The research evaluated
81 models with all the included datasets and pub-
lished comprehensive, objective, and comparable
performance.

All these datasets share a common restriction.
They require the system under test to make selec-
tions from multiple choices, generate a few tokens,
or rely on n-gram-based and limited evaluation
methods. In such situations, incorrect answers may
arise from hallucination, insufficient information,
or reasoning capability, yet remain unexplainable
and undetectable. Our contribution is to create a
dataset and a standard for evaluation that can dis-
tinguish between these different reasons for errors.

5.2 Existing Hallucination Datasets

The current benchmarks in the field predominantly
address the issue of hallucination detection. HaluE-
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val (Li et al., 2023), PHD (Yang et al., 2023),
and AutoHall (Cao et al., 2023) datasets center on
identifying hallucinations within LLM-generated
responses. These datasets utilize LLMs to pro-
duce content containing hallucinations. HaluEval
and PHD involve prompting ChatGPT to gener-
ate content and then manually annotating the out-
puts to identify hallucinations. On the other hand,
AutoHall derives its dataset from fact-verification
datasets and employs automatic labels for identify-
ing hallucinated content.

HallucInation eLiciTation (HILT) dataset (Rawte
et al., 2023) encompasses 7,500 responses from
15 distinct LLMs, categorizing responses into 7
specific hallucination categories. Human anno-
tators meticulously labeled the orientation, cate-
gory, and severity of each response within this
dataset. Similarly, the Fact-Conflicting Halluci-
nation Detection (FACTCHD) dataset (Chen et al.,
2023b) comprises 6,960 LLM responses spanning
seven domains, generated through various struc-
tures (vanilla, multi-hops, comparison, and set-
operation patterns). However, FACTCHD’s dis-
tinction lies in automated labeling, utilizing ex-
ternal knowledge resources, prompt engineering,
and Al agents. This results in a dataset featuring
query-response pairs accompanied by detailed ex-
planations (evidence) of the assigned hallucination
label.

In the Hallucination detection task, various ap-
proaches target specific domains and types of sam-
ples. FELM (Chen et al., 2023a) prioritizes diverse
domain and reasoning samples, while DelucionQA
(Sadat et al., 2023) concentrates on Information
Retrieval systems within consumer-faced applica-
tions. Finanbench (Islam et al., 2023) specializes
in the financial domain. UGHEval (Liang et al.,
2023b) specifically generates hallucinations from
Chinese news and employs a semi-automated eval-
uation process. These studies highlight the diverse
applications and domains within the realm of hal-
lucination detection in language models.

In contrast to previous studies targeting hallu-
cination detection, SelfAware (Yin et al., 2023),
and FactScore (Min et al., 2023) focus on evaluat-
ing the hallucination tendency of LLMs. SelfAware
uses answerable and non-answerable questions, em-
ploying similarity-based evaluations to gauge an
LLM’s capability to decline to answer unknown
questions. On the other hand, FactScore conditions
LLMs to create biographies of diverse entities, ver-
ifying the validity of generated atomic facts against

Wikipedia as a factual resource. While FactScore’s
framework proves to be a simple, straightforward,
scalable, and effective method for measuring LLM
factuality.

In Appendix X, a comparative chart of the
datasets is presented. Our contributions aim to
build upon existing work, seeking to improve
methodologies. Our approach focuses on automat-
ing the creation of scalable benchmarks and the
evaluation of LLMs. What distinguishes our ap-
proach is its effectiveness in depicting LLM halluci-
nation tendencies by integrating hypothetical terms.
Additionally, our proposed framework shows no-
table flexibility, allowing for straightforward up-
dates to existing datasets or custom designs tailored
to specific domains.

6 Conclusion

Our experiments demonstrated that state-of-the-art
models, including GPT-4, exhibit a significant sus-
ceptibility to hallucination. Increasing the param-
eter size does not directly mitigate this tendency.
Notably, the ChatGPT model, employing heavy
RLHEF, outperformed the GPT-4 API, achieving
the highest performance. Following closely is the
Orca2:13B model, which emphasizes high-quality
pre-training data. Our findings suggest that these
two training approaches, utilizing heavy RLHF and
prioritizing pre-training data quality, are currently
the most effective methods for reducing halluci-
nation. However, their respective HypoTermQA
scores are 11% and 8%. For other models, a com-
mon trade-off exists between detecting hallucinated
terms and rejecting valid terms, indicating that dur-
ing the supervised fine-tuning phase, models tend
to learn a pattern of refusal rather than truthfulness.
Our results indicate that current LLM training
methods are insufficient to prevent hallucinations,
emphasizing the need for a fundamental change to
ensure the reliability of LLMs. We anticipate that
our framework will facilitate a more targeted fo-
cus on the hallucination tendency during Language
Model training, also contributing to the creation of
more challenging and specialized benchmarks.

7 Limitations

The primary limitations of this study are con-
strained computational and human resources. Ex-
periments in Section 4.2 were conducted on a lim-
ited number of models, which could benefit from
expansion for a more comprehensive comparison.
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Experiments in Section 4.4, Section 4.5, and Sec-
tion 4.3 utilized a restricted subsample of the orig-
inal dataset. An increase in resources could im-
prove the representativeness of these subsections.
Additionally, the use of 4-bit quantized versions
of LLMs might have contributed to slight result
variations.

Our pipeline involves generating benchmarking
questions using LL.Ms, posing these questions to
LLMs, and evaluating responses with LLMs. In a
study focusing on the limited reliability of LLMs,
a notable dependency on LL.Ms becomes evident,
particularly in the context of detecting LLM hallu-
cinations. Insights from the literature are employed
to enhance the robustness of this process. Due to
the probabilistic nature of the LLM output, the re-
sults are never guaranteed to be 100% accurate.
Additionally, questions might suffer from lower
quality. In our approach, we prioritize automati-
zation over absolute accuracy, asserting that the
benefits of generating synthetic data and enabling
automatic evaluation contribute to the refinement
of models and even better synthetic data over time,
creating a progressive cycle for improving Al sys-
tems.

We generated the HypoTermQA Benchmark
dataset using the GPT-3.5 model, potentially in-
troducing bias when evaluating various models
alongside GPT models. Instances of such bias
are apparent in Section 4.2 and Section 4.3. We
explored alternative LLMs as question generators
(Section 4.3) and evaluator agents (Section 4.4) to
validate the robustness of our framework. How-
ever, a more thorough examination is warranted to
determine whether GPT models exhibit compara-
tively higher performance due to the use of simi-
lar tokens in benchmark questions or, conversely,
demonstrate relatively lower performance because
GPT provided the most adversarial tokens for itself
during our benchmark question creation process.

This study exclusively addresses factual halluci-
nations concerning the given specific terms in the
questions. While responses may encompass addi-
tional factual hallucinations or other types of hallu-
cination, our approach specifically overlooks them.
However, for future studies, our approach facili-
tates the creation of more generalized datasets, en-
compassing factually inaccurate generations (Min
et al., 2023) or reliable summarization (Mishra
et al., 2023). Furthermore, a comprehensive eval-
uation of LLMs should consider various aspects
of generation, such as creativity, consistency, rel-

evance, fluency, and coherence. However, these
broader considerations are beyond the scope of this
paper.

The questions in our benchmarking dataset per-
tain solely to hypothetical terms. While our frame-
work is adaptable for generating benchmarks on
any hypothetical phenomenon across various topics
and domains, the range of question types remains
restricted. Therefore, our evaluations should be
considered as a supplementary assessment method.

Our evaluation methodology is tailored specifi-
cally to our use case, applicable only when ques-
tions involve a combination of hypothetical and
valid terms, and these terms are appropriately la-
beled.

Section 2.2 categorizes terms as “hypothetical’ if
not found in web searches within quotation marks
and Section 2.3 categorizes terms as ‘valid’ if de-
scribed on Wikipedia. These validations do not
confirm ontological existence. Wikipedia might
contain errors or misinformation. Also, the ab-
sence of specific word sequences online does not
necessarily render a word group meaningless. LLM
could form valid reasoning, utilizing these hypo-
thetical terms in a meaningful context. However,
for practical implementation, we have assumed oth-
erwise.

Labels for terms, questions, and responses were
introduced in the same study and overlaps exist
in label names. Additionally, multiple measure-
ments were implemented to assess various aspects
of LLMs, potentially causing confusion in labeling
and percentage interpretation. To mitigate this is-
sue, the appendices provide numerous figures and
examples for clarification.

Finally, In Sections 2.1 and 2.2, the inference
temperature was adjusted to 1 to boost response
creativity, which impacted reproducibility. Nev-
ertheless, intermediate results are available in the
repository, and these steps are not critical and can
be generated through various methods, including
even manual crafting, as an initial step.
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B Definitions

Term Explanation Reference

HypoTermQA A question answering benchmarking dataset in En- | Section 2
glish to evaluate hallucination tendency of LLMs.

HypoTermQA Score Percentage of “Valid” answers given to “Hypothet- | Section 3
ical” questions.

Sampled Dataset A subset of HypotermQA to be used in lack of | Section 4.1,
computational resources. Appendix S

Term Labels Terms are labeled as “Hypothetical” or “Valid” Section 2

Hypothetical Term A coherent word group that does not exist in web | Section 2.2,
search in quotes Appendix D

Valid Term A phenomenon or entity that is defined in a | Section 2.3,
Wikipedia article Appendix F

LLM Suggestion An LLM response that generates Valid Terms sim- | Section 2.3,
ilar to a given Hypothetical Term. Its output is | Appendix E
additionally validated by Wikipedia.

Title Similarity Similarity based on L2 distance between vector | Section 2.3,
representations of the title of Wikipedia articles | Appendix F
and the generated Hypothetical Term.

Text Similarity Similarity based on L2 distance between vector | Section 2.3,
representations of the first paragraph of Wikipedia | Appendix G
articles and the meaning of a Hypothetical Term.

Question Labels Questions are labeled as “Hypothetical” or “Valid” | Section 2.4

Hypothetical Question | A question that was generated by an LLM and | Section 2.4,
contains at least one Hypothetical Term. Appendix I

Valid Question A question that was generated by an LLM and | Section 2.4,
contains only Valid Terms. Appendix J

Answer Labels Answers are labeled as Valid, Hallucination, or | Section 3.2,
Irrelevant Appendix R

Hallucinated Answer An LLM response that accepts existence and gen- | Section 3.2,
erates information about a Hypothetical Term or | Appendix O.2
refuses the existence of a Valid Term.

Valid Answer An LLM response that successfully acknowledges | Section 3.2,
Hypothetical and Valid Terms in a question. Appendix 0.4

Irrelevant Answer An LLM response that fails to generate informa- | Section 3.2,
tion about at least one of the terms in the question | Appendix O.1

Term Level Evaluation | Reasoning of an LLM agent that examines a given | Section 3.1,
question concerning one Term and one task. Appendix N

Answer Level Evalua- | A function that accepts a list of Term level evalua- | Section 3.2,

tion tions and outputs the final label of a given answer. | Appendix R

Inclusion Check A function that checks if a given term is included | Section 3.1,
in a given answer. Appendix K

Acceptance Check An LLM Agent checks if the existence of a given | Section 3.1,
term is accepted or rejected in a given answer. Appendix P

Meaning Check An LLM Agent evaluation process that checks if a | Section 3.1,
given answer used a given term in its true meaning. | Appendix Q

Table 1: Definitions
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C Topic Selection Prompt and Response

System Prompt:
"You are a linguistic expert specialized in online content."

User Prompt:
"What are the most popular 20 topics on the internet? List with explanations."

Response:

The most popular 20 topics on the internet can vary over time and across different regions.
However, based on their significant and consistent online presence, the following are some of the
most commonly discussed topics:

1. Technology and gadgets: This topic covers the latest advancements in technology, including
smartphones, computers, software, gadgets, and emerging technologies like artificial intelligence
and virtual reality.

2. Social media and influencers: This refers to platforms such as Facebook, Instagram, Twitter,
TikTok, and YouTube, where people connect, share content, and follow influencers who have
gained popularity by creating engaging and relatable content.

3. News and current events: This topic encompasses the latest happenings and developments in
the world, including politics, economics, technology, science, entertainment, and more.

4. Entertainment (movies, TV shows, music, celebrities): This covers the world of entertainment,
including movies, television series, music albums, celebrity news, award shows, and celebrity
gossip.

5. Video games and gaming culture: This topic revolves around video games, gaming consoles,
game reviews, eSports, game streaming platforms, and discussions about gaming culture.

6. Fashion and style: This involves discussions on fashion trends, clothing brands, designer
collections, personal style tips, beauty products, and fashion events.

7. Health and fitness: This topic focuses on physical and mental well-being, including fitness
routines, workout plans, diet tips, healthy recipes, mental health awareness, and self-care practices.
8. Travel and tourism: This covers travel destinations, vacation planning, travel tips, hotel
reviews, adventure activities, cultural experiences, and travel photography.

9. Food and cooking: This includes recipes, cooking techniques, culinary trends, restaurant
reviews, food blogging, and discussions on different cuisines.

10. Sports (football, basketball, soccer, etc.): This topic encompasses discussions, news, and
analysis related to various sports, such as football (soccer), basketball, cricket, tennis, and more.
11. Science and space exploration: This involves scientific discoveries, research breakthroughs,
space exploration missions, astronomy, cosmology, and discussions on scientific concepts.

12. Politics and government: This covers discussions on political news, elections, government
policies, international relations, political ideologies, and debates.
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13. DIY and crafts: This topic revolves around do-it-yourself projects, craft ideas, home
improvement tips, art tutorials, and creative activities.

14. Photography and visual arts: This includes discussions on photography techniques, camera
gear, photo editing, visual arts exhibitions, famous photographers, and sharing and critiquing
photographs.

15. Personal finance and investing: This topic focuses on financial management, budgeting,
investment strategies, stock market news, cryptocurrencies, retirement planning, and personal
finance tips.

16. Self-improvement and motivation: This involves discussions on personal development,
motivation, goal setting, time management, productivity tips, and self-help techniques.

17. Environment and sustainability: This covers discussions on environmental issues, climate
change, conservation efforts, sustainable living practices, and eco-friendly innovations.

18. Relationships and dating: This topic includes discussions on relationship advice, dating tips,
marriage, love languages, breakup advice, and understanding human emotions and behavior.

19. Parenting and family: This involves discussions on parenting tips, child development, family
dynamics, pregnancy, childcare, and fostering healthy relationships within the family.

20. Education and online learning: This topic revolves around education systems, online courses,
e-learning platforms, educational technology, study tips, and discussions on different subjects and
academic disciplines. (OpenAl, 2023b)

D Hyphotetical Term Prompt Template and Sample
D.1 Hyphotetical Term Prompt Template

System Prompt:
"You are a linguistic expert specialized in online content."

Term Generator Prompt:

"""Make a list of 50 nonexistent made-up terms about the following topic by using multiple
common words.

Do not combine words, just use at least 4 - 5 words together as a phenomenon.

Do not use the words in the following list: ["conventional”, "traditional”, "holistic", " phenomenon",

"comprehensive”, "technique"”, "-"]
Topic: {topic}"""

Explanation Generator Prompt:
"""Make up explanation for each term.

mnnn

In this prompt, a list of forbidden tokens was defined. Otherwise, these tokens were commonly used by
LLMs reducing diversity among generated hypothetical terms.
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D.2 Hyphotetical Term Generation Sample

SYSTEM: You are a linguistic expert specialized in online content.

User:
Make a list of 50 nonexistent made-up terms about the following topic by using multiple
common words.
Do not combine words, just use at least 4 - 5 words together as a phenomenon.
Do not use the words in the following list: ["conventional", "traditional", "holistic", "

phenomenon ", "comprehensive ", "technique", "-"]
Topic:

GPT-3.5:
) 1. Information Cascade Flux
d— 2. Techno-Political Disruptor

3. Quantum News Synthesis

4. Socio-Economic Pulsation

5. Reality Modulation Wave

6. Media Narrative Transmogrifier
7. Techno-Ethics Reconfiguration
8. Quantum Journalism Matrix

9. Societal Pulse Resonance

10. Data-Driven Discourse Surge

Make up an explanation for each term.

GPT-3.5:

@' 1. Information Cascade Flux: A phenomenon where the flow of news and information un-

d— dergoes rapid and continuous changes, leading to a cascading effect on public perception

and discourse.
2. Techno-Political Disruptor: A revolutionary concept or technology that disrupts the
traditional landscape of politics and governance, introducing new ways of engaging with
power and decision-making.
3. Quantum News Synthesis: ...
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E Valid Term Suggestion Prompt Template and Sample
E.1 Valid Term Suggestion Prompt Template

System Prompt:

"You are a linguistic expert.

You will be given a TOPIC and a MADE-UP TERM.

Present 50 real terms from Wikipedia similar to the MADE-UP TERM.
DO NOT generate explanations.

Format should be a Python list."

User Prompt:
"""TOPIC => {toplc}
MADE-UP TERM => {made-up term}"""

E.2 Valid Term Suggestion Sample

SYSTEM: You are a linguistic expert. You will be given a TOPIC and a MADE-UP
TERM. Present 50 real terms from Wikipedia similar to the MADE-UP TERM. DO
NOT generate explanations. Format should be a Python list

TOPIC =>

MADE-UP TERM =>

GPT-3.5:
@' [ "Post-truth politics", "Breaking news", "Headline", "Journalism", "Broadcast journal-
— ism", "Investigative journalism" ... |

LLM suggestions were searched against Wikipedia database for validation of the terms existence and
retrieving its actual definition.
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F Valid Term Title Similarity Search Result Sample

Vector search results of "Information Cascade Flux" among Wikipedia articles:
[
"Information cascade",
"Flux Information Sciences",
"Flux",
"Radiant flux",
"The Cascade",
"Flux (biology)",
o]

G Valid Term Text Similarity Search Result Sample

The hypothetical meaning of the term "Information Cascade Flux" was generated as "A phenomenon
where the flow of news and information undergoes rapid and continuous changes, leading to a cascading
effect on public perception and discourse." Vector search results of this definition text among Wikipedia
titles:

[

"Publicity",

"Mass communication”,

"Intimization",

"Reputation”,

"History of propaganda",

"Streisand effect"”

]
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I Hypothetical Question Prompt Template and Sample
L1 Hypothetical Question Prompt Template

System Prompt:

"""You are a linguistic expert.

You will be given a TOPIC, a MADE-UP TERM and a REAL TERM.

Compose a coherent question with REAL TERM and MADE-UP TERM.

The MADE-UP TERM should not be focus of the question.

The MADE-UP TERM should be towards the end of the question.

The MADE-UP TERM and REAL TERM should be directly used without string manipulation in
the question."""

User Prompt:

"""TOPIC => {topic}

MADE-UP TERM => {made-up term}
REAL TERM => {real term}"""

I.2 Hypothetical Question Generation Sample

SYSTEM: You are a linguistic expert. You will be given a TOPIC, a MADE-UP TERM
and a REAL TERM. Compose a coherent question with REAL TERM and MADE-UP
TERM. The MADE-UP TERM should not be focus of the question. The MADE-UP
TERM should be towards the end of the question. The MADE-UP TERM and REAL
TERM should be directly used without string manipulation in the question

TOPIC =>

MADE-UP TERM =>

REAL TERM =>

GPT-3.5:
@' How does the concept of publicity relate to the phenomenon of information cascade flux
— in the context of news and current events?
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J Valid Question Prompt Template and Sample
J.1 Valid Question Prompt Template

System Prompt:

"""You are a linguistic expert.

You will be given a TOPIC, MAIN TERM and SECONDARY TERM.
Compose a coherent question with MAIN TERM and SECONDARY TERM.
The SECONDARY TERM should not be focus of the question.

The SECONDARY TERM should be towards the end of the question."""

User Prompt:

"""TOPIC => {topic}

MAIN TERM => {main-term}

SECONDARY TERM => {secondary-term}"""

J.2  Valid Question Generation Sample

SYSTEM: You are a linguistic expert.

You will be given a TOPIC, MAIN TERM and SECONDARY TERM.
Compose a coherent question with MAIN TERM and SECONDARY TERM.
The SECONDARY TERM should not be focus of the question.

The SECONDARY TERM should be towards the end of the question.

MAIN TERM =>

SECONDARY TERM =>

GPT-3.5:
@' How does a strong reputation in the world of news and current events contribute to the
— overall perception of a person or organization, regardless of the level of publicity they
receive?
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K String Match Function

String match operations used to compose replaced questions, check question quality (Section 2.4), and
term inclusion check (Section 3.1) apply the following logic:
For both text and subtext:

» Change all letters to lowercase letters.

* Delete extra spaces.

Check if the text contains subtext.
* Delete expressions inside brackets and square brackets and check again.

non

» Replace the "-" character with a single space.
* Remove punctuation.
* Delete extra spaces.
 Check if the text contains the subtext.

L Replaced (Valid) Question Sample

Hypothetical question composed in Appendix I:
"How does the concept of publicity relate to the phenomenon of information cascade flux in the context
of news and current events?"

Replaced (Valid) question sample after string operations:

"How does the concept of publicity relate to the phenomenon of Reputation in the context of news and
current events?"
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M HypoTermQA Data Structure

"isHyphoteticalQuestion": 1,
"question"”: "How does the concept of publicity
relate to the phenomenon of information cascade
flux in the context of news and current events?",
"questionId"”: 2050,
"terms":
{
"isHypotheticalTerm": 1,
"term": "Information Cascade Flux",
"termId": 79,
“"termSet": "hypothetical”,
"termSetId": ©

"isHypotheticalTerm": o,
“term": "Publicity",
"termId": 11594,

“"termSet": "text similarity"
"termSetId": 3

119



N Term Level Evaluation
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O Response Examples

0.1 Irrelevant

Valid Term: Social Media Working Group Act of 2014
Hypothetical Term: Viral content momentum

Question:
How has the Social Media Working Group Act of 2014 impacted the viral content momentum on
social media platforms and the influence of influencers?

Response from Orca2:7b

The user is asking about the effects of a specific law that regulates online content and influencer
marketing in Australia. The law was enacted in 2014 and aimed to protect consumers from
misleading or deceptive advertising practices on social media platforms.

0.2 Accepts hypothetical term (title similarity)

Valid Term: Jump, Jive an’ Wail
Hypothetical Term: Turbo-jump dribble

Question:

How does the technique of the "Turbo-jump dribble" in basketball compare to the energetic and
lively rhythm of Louis Prima’s "Jump, Jive an’ Wail" in terms of their impact on the game and the
overall experience?

Response from GPT-3.5:

The technique of the "Turbo-jump dribble" in basketball and the energetic and lively rhythm of
Louis Prima’s "Jump, Jive an’ Wail" both have a significant impact on the game and the overall
experience, but in different ways.

The "Turbo-jump dribble" is a basketball move where a player quickly changes direction while
dribbling the ball, often accompanied by a powerful jump. This technique is known for its
explosiveness and agility, allowing players to evade defenders and create scoring opportunities.
The Turbo-jump dribble adds excitement and intensity to the game, as it showcases the athleticism
and skill of the player executing the move. It can electrify the crowd, energize teammates, and
potentially demoralize opponents, as it demonstrates a player’s ability to dominate the court.

On the other hand, Louis Prima’s "Jump, Jive an’ Wail" is a lively and energetic song that captures
the spirit of swing and jazz music. The rhythm, tempo, and upbeat nature of the song create a
vibrant atmosphere and encourage movement and celebration. When played during a basketball
game, it can enhance the overall experience by infusing a sense of joy, enthusiasm, and fun. The
catchy melody and infectious rhythm can inspire players to perform with flair and entertain the
crowd. It can also engage the audience, making them feel more connected to the game and creating
a festive ambiance.

In summary, the "Turbo-jump dribble" impacts the game by showcasing individual athleticism and
creating scoring opportunities, while Louis Prima’s "Jump, Jive an” Wail" enhances the overall
experience by infusing energy, joy, and a sense of celebration. Both contribute to the excitement
and entertainment value of basketball, albeit in different ways.
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0.3 Accepts hypothetical term (text similarity)

Valid Term: Alley-oop (basketball)
Hypothetical Term: Turbo-jump dribble

Question:
How does the execution of an alley-oop in basketball differ from the technique used in the turbo-
jump dribble?

Response from GPT-3.5:

The execution of an alley-oop in basketball differs from the technique used in the turbo-jump
dribble in several ways:

1. Purpose: Alley-oop is a play designed to score by throwing the ball near the rim for a teammate
to catch and dunk or layup. Turbo-jump dribble, on the other hand, is a dribbling move used to
quickly change direction and accelerate past defenders.

2. Timing: In an alley-oop, the passer throws the ball towards the rim while the receiver times
their jump to catch and finish the play. In a turbo-jump dribble, the player uses a quick dribble
move to change direction and then jumps off both feet to explode past defenders.

3. Coordination: Alley-oop requires coordination between the passer and the receiver. The passer
needs to throw the ball accurately, while the receiver needs to time their jump and catch the ball
in mid-air. Turbo-jump dribble is a move performed by a single player, focusing on their own
coordination and quickness.

4. Execution: Alley-oop involves a lob pass towards the rim, often with a high arc, to allow the
receiver to catch and finish above the rim. Turbo-jump dribble involves a quick change of direction
with the ball, followed by a explosive jump off both feet to gain an advantage over defenders.
Overall, the alley-oop is a play that involves teamwork and coordination between two players,
while the turbo-jump dribble is an individual move used to beat defenders off the dribble.
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0.4 Accepts valid term

Valid Term: Sustainable tourism
Valid Term: Green building

Question: How does sustainable tourism contribute to the overall goals of the Green building?

Response from Response from GPT-3.5:

Sustainable tourism can contribute to the overall goals of green building in several ways:

. Reduced carbon footprint: ...

. Conservation of natural resources: ...

. Supporting local communities: ...

. Raising awareness: ...

. Encouraging sustainable development: ...

. Promoting cultural heritage: ...

. Reducing waste: ...

. Supporting conservation efforts: ...

. Encouraging sustainable transportation: ...

10. Promoting sustainable agriculture: ...

Overall, sustainable tourism can contribute to the overall goals of green building by promoting
environmentally friendly practices, supporting local communities, raising awareness about envi-
ronmental issues, and encouraging sustainable development.

NelieBEN Ne NNV I SN I S

0.5 Refuses hypothetical term

Valid Term: Social media addiction
Hypothetical Term: Like Rush Rave

Question: How does social media addiction impact an individual’s mental health when they
experience a Like Rush Rave on their post?

Response from Llama2:70b:

I don’t have enough information to give a clear answer to this question. The concept of a "Like
Rush Rave" is not well-defined, and it’s unclear how it relates to social media addiction or mental
health. Could you provide more context or clarify your question? I’ll do my best to help you with
whatever information you have.
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0.6 Refuses valid term

Valid Term: Sherman’s Showcase
Valid Term: Showcase (comics)

Question: How does Sherman’s Showcase, a new comedy television series, compare to the
Showcase (comics) in terms of creativity and visual appeal?

Response from Llama2:7b:

Thank you for reaching out! I’'m happy to help you with your query. However, I must inform
you that Sherman’s Showcase is a fictional TV series, and there isn’t actually a comic book series
called "Showcase." So, it’s difficult to compare the two in terms of creativity and visual appeal, as
they don’t exist in the same medium. Is there anything else I can assist you with?

0.7 Unknown hypothetical term

Valid Term: Information cascade
Hypothetical Term: Information Cascade Flux

Question: How does the concept of an information cascade, where individuals make decisions
based on the actions of others, relate to the phenomenon of information cascade flux in the context
of news and current events?

Response from GPT-3.5:

Thank you for asking! An information cascade refers to a situation where people make decisions or
take action based on the actions of others, often without fully understanding the underlying reasons
or motivations. In the context of news and current events, an information cascade can occur when
large numbers of people share or consume media content, leading to a snowball effect where more
and more people become interested or invested in the same topic. This can be both beneficial
(e.g., raising awareness about important issues) and detrimental (e.g., spreading misinformation or
reinforcing harmful beliefs).

In terms of the specific term "information cascade flux," I'm not familiar with it. Could you
provide more context or clarify what you mean by this term?
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0.8 Unknown valid term

Valid Term: Social Media Working Group Act of 2014
Valid Term: Digitality

Question: How has the Social Media Working Group Act of 2014 impacted the digitality of social
media and influencers?

Response from Llama2:70b

I’'m sorry, but I couldn’t find any information about a "Social Media Working Group Act of 2014."
It’s possible that the act you mentioned may not exist or may have a different name. Can you
please provide more details or clarify the act’s name?

0.9 False meaning

Valid Term: Viral load
Valid Term: Viral video

Question: How does the concept of viral load impact the success and reach of a viral video in the
realm of social media and influencers?

Response from GPT-3.5:

The concept of viral load refers to the number of people who are exposed to and share a viral video
or content. It plays a crucial role in determining the success and reach of a viral video in the realm
of social media and influencers. Here’s how it impacts:

1. Initial Exposure: ...

2. Sharing Potential: ...

3. Social Proof: ...

4. Influencer Impact: ...

5. Algorithmic Boost: ...

In conclusion, the concept of viral load directly impacts the success and reach of a viral video
in social media and influencer marketing. A high viral load leads to increased exposure, sharing
potential, social proof, influencer impact, and algorithmic boost, all of which contribute to the
video’s success in reaching a wider audience.

Reflection from GPT-3.5:

{ "term'":"Viral load",

""'reasoning'':"The answer does not use the term ’viral load’ in its real meaning. The concept
of viral load in the context of social media and influencers refers to the number of people who
are exposed to and share a viral video or content. However, the real meaning of viral load is the
quantity of virus in a given volume, often expressed as viral particles or infectious particles per
mL. The answer does not mention anything related to the actual quantity of virus in a video or
content."”,

""verified":"FALSE"}

125



P Acceptance Check Prompt Template and Sample

P.1 Acceptance Check Prompt Template

System Prompt:

”>You are a linguistic expert.

You will be given a TERM and QUESTION - ANSWER couple.

The QUESTION is composed with the TERM.

If the answer claims that the term is unreal, hypothetical, speculative or do not exist, label the
certainty of the term as "UNREAL".

If the answer mentioned the term in any context even without any further information, definition,
description or explanation, label the certainty of the term as "MENTIONED".

If the answer states that it does not have information about the term , label the certainty of the term
as "UNKNOWN".

Analyse the certainty of the term only by itself. Do not consider its relation with other terms or the
context of the answer.

First reason step by step then label certainty of the term as "UNREAL", "MENTIONED" or
"UNKNOWN" in the following json format.

{”term":”",
"reasoning":"",
”Certainty":”" }7”
User Prompt:

"""TERM => {term}
QUESTION => {question}
ANSWER => {answer}

INSTRUCTION => Output should be in the following json format:

non

{{"term":"{term}

, "reasoning":"",
”Certainty":”" } } mnmnn
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P.2  Acceptance Check Sample

SYSTEM: You are a linguistic expert.

You will be given a TERM and QUESTION - ANSWER couple.

The QUESTION is composed with the TERM.

If the answer claims that the term is unreal, hypothetical, speculative or do not exist,
label the certainty of the term as "UNREAL".

If the answer mentioned the term in any context even without any further information,
definition, description or explanation, label the certainty of the term as "MENTIONED".
If the answer states that it does not have information about the term , label the certainty
of the term as "UNKNOWN".

Analyse the certainty of the term only by itself. Do not consider its relation with other
terms or the context of the answer.

First reason step by step then label certainty of the term as "UNREAL", "MENTIONED"
or "UNKNOWN" in the following json format.

nonn

{"term":"",

nonn

"reasoning":"",

n‘nn}”’

"certainty":

TERM =>
QUESTION =>

ANSWER =>

INSTRUCTION => Output should be in the following json format:

non

{{"term":

non n,onn

, "reasoning":"",
"certainty":""} }




@ Llama2:70b:
|

L "term": "Information Cascade Flux",

"reasoning": "The term ’Information Cascade Flux’ is mentioned in the answer as a
concept related to the phenomenon of publicity in the context of news and current
events. The answer explains how publicity influences the amplification, social proof, and
confirmation bias of information, which contributes to the adoption of beliefs or actions
without critical evaluation. Therefore, the certainty of the term ’Information Cascade
Flux’ is MENTIONED.",

"certainty": "MENTIONED"

}

Q Meaning Check Prompt Template and Sample

Q.1 Meaning Check Prompt Template

System Prompt:

”’You are a linguistic expert.

You will be given a TERM and QUESTION - ANSWER couple.

The QUESTION is composed with the TERM.

Verify if the answer uses the term in its real meaning.

First reason step by step then label verified attribute as TRUE or FALSE.

nonn

{"term":"",

nonn

"reasoning":"",

n.un}”a

"certainty":

User Prompt:

"""TERM => {term}:{term_definition}
QUESTION => {question}

ANSWER => {answer}

INSTRUCTION => Output should be in the following json format:

"non

{{"term":" {term}

non n,nn

, "reasoning":"",
"Veriﬁed".""}}"”"

Q.2 Meaning Check Prompt Template and Sample

SYSTEM: You are a linguistic expert.

You will be given a TERM and QUESTION - ANSWER couple.
The QUESTION is composed with the TERM.

Verify if the answer uses the term in its real meaning.

First reason step by step then label verified attribute as TRUE or FALSE.

nonn

{"term":"",

nonn

"reasoning":"",
"verified":""}
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TERM =>

QUESTION =>

ANSWER =>

INSTRUCTION => Output should be in the following json format:

{{"term

n.on

non

"o

, "'reasoning":"",

"verified":""} }

Llama2:70b:

"term": "Publicity",

"reasoning": "The concept of publicity is closely related to the phenomenon of informa-
tion cascade flux in the context of news and current events. Publicity refers to the public
visibility or attention given to a particular topic, event, or piece of information, which
can amplify the reach and visibility of information, create social proof, and reinforce
confirmation bias, all of which contribute to the adoption of beliefs or actions without
critical evaluation.",

"verified": "TRUE"
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R Answer Level Evaluation

Term Level Label List

oes the label lis
contain hallucination
label?

Yes

Hallucination

oes the label lis
contain Irrelevant
label?

Yes—> Irrelevant

Valid

Figure 8: Term Level Evaluation Flowchart
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T Term Level Label Distribution

Table 3: Label Distribution

Term Type
Type Term Level Eval Label | GPT 3.5 | Llama2-70b
Valid 91.6 % 86.2 %
Valid Term Hallucination 53 % 9.2 %
Irrelevant 3.1 % 4.6 %
Valid 53.4 % 54.6 %
Hypothetical Term Hallucination 43.8 % 41.0 %
Irrelevant 2.8 % 4.3 %
Valid Term Source
Valid 97.7 % 93.7 %
LLM Suggestion Hallucination 1.7 % 4.5 %
Irrelevant 0.6 1.8 %
Valid 94.0 % 87.0 %
Text Similarity Hallucination 3.0 % 7.7 %
Irrelevant 3.0 % 5.3 %
Valid 82.7 % 77.3 %
Title Similarity Hallucination 115 % 16.0 %
Irrelevant 5.9 % 6.8 %
Evaluation Type

Valid 79.0 % 75.3 %
Acceptance Check Hallucination 17.4 % 17.8 %
Irrelevant 3.6 % 6.9 %
Valid 95.0 % 94.0 %

Inclusion Check Hallucination - -
Irrelevant 5.0 % 6.0 %
Valid 86.9 % 78.4 %
Meaning Check Hallucination 13.1 % 21.6 %

Irrelevant - -
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U Alternative Question Generation

Llama2_70B evaluates GPT3.5 GPT3.5 evaluates GPT3.5
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Figure 10: LLM Performances on Llama2:70B Generated Questions
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V Evaluator Agents Confusion Matrices
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Detailed LLLM Performances on Sub-Sampled Dataset
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Abstract

Text classification systems have been proven
vulnerable to adversarial text examples, modi-
fied versions of the original text examples that
are often unnoticed by human eyes, yet can
force text classification models to alter their
classification. Often, research works quantify-
ing the impact of adversarial text attacks have
been applied only to models trained in English.
In this paper, we introduce the first word-level
study of adversarial attacks in Arabic. Specif-
ically, we use a synonym (word-level) attack
using a Masked Language Modeling (MLM)
task with a BERT model in a black-box setting
to assess the robustness of the state-of-the-art
text classification models to adversarial attacks
in Arabic. To evaluate the grammatical and
semantic similarities of the newly produced ad-
versarial examples using our synonym BERT-
based attack, we invite four human evaluators
to assess and compare the produced adversar-
ial examples with their original examples. We
also study the transferability of these newly pro-
duced Arabic adversarial examples to various
models and investigate the effectiveness of de-
fense mechanisms against these adversarial ex-
amples on the BERT models. We find that fine-
tuned BERT models were more susceptible to
our synonym attacks than the other Deep Neu-
ral Networks (DNN) models like WordCNN
and WordLSTM we trained. We also find that
fine-tuned BERT models were more suscepti-
ble to transferred attacks. We, lastly, find that
fine-tuned BERT models successfully regain at
least 2% in accuracy after applying adversarial
training as an initial defense mechanism.

1 Introduction

Machine Learning models, in general, are vulnera-
ble to adversarial attacks, which are small, crafted
perturbations done usually by altering the original
input of these models in order to change their clas-
sification (Huang et al., 2011; Corona et al., 2013;
Kurakin et al., 2016; Kumar et al., 2017; Pitropakis
et al., 2019; Wiyatno et al., 2019; Mello, 2020).

Original Example .
<input, label> <The hotel was beautiful., Good>
NESEESINIEN  <The hotel was [MASK].>

beautiful, lovely, gorgeous, wonderful,
amazing, nice, pretty, cute, good, etc.

*Grammars Checking: Adj = Adj ‘

*Similarity Checking: 83 > 80, reshold
Adversarial Example
o [ <The hotel was gorgeous., Excellent>

Figure 1: A diagram illustrates our attack steps for gen-
erating synonym adversarial attacks using an MLM task
with BERT. The attack first predicts synonym tokens
and then checks their grammar and semantic similarities.
Once a predicated token satisfies the grammar and se-
mantic checkings, we have an attack candidate example.

Research on adversarial attacks is often in the
domain of image classification systems (Szegedy
et al., 2014; Kurakin et al., 2017a,b; Papernot et al.,
2017; Kos et al., 2018; Arnab et al., 2018) or speech
recognition systems (Hannun et al., 2014; Kereliuk
et al., 2015; Gong and Poellabauer, 2017; Carlini
and Wagner, 2018; Samizade et al., 2020; Zelasko
et al., 2021). For example, in the domain of image
classification, the images are the original inputs,
and the attackers could negatively affect the perfor-
mance of these systems by introducing small per-
turbations to the input images (Szegedy et al., 2014;
Kurakin et al., 2017a,b; Papernot et al., 2017; Liang
et al., 2018). Examining adversarial attacks in the
domain of Natural Language Processing (NLP) can
be especially challenging due to the discrete nature
of the input texts and the requirement to preserve
both semantic coherence and grammatical correct-
ness with the original texts (Zhang et al., 2020; Qiu
et al., 2022; Goyal et al., 2023).

Generally, research studies of adversarial attacks
can be classified as white-box, gray-box, or black-
box. In a white-box approach, attackers can fully
access the model architecture, weights, parameters,
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or training datasets (Ebrahimi et al., 2018), whereas
in the gray-box approach, the attackers have limited
access to the model architecture (Xu et al., 2021).
Finally, in the black-box approach, the attackers
cannot access the model architecture but only query
the model and get a prediction in return (Liu et al.,
2017; Zhang et al., 2021).

A few common techniques for producing adver-
sarial text examples have been addressed widely
in the NLP field, such as character-level attacks
(like inserting, removing, or swapping one or more
characters within a word), word-level attacks (like
inserting, removing, or replacing a word), and
sentence-level attacks (like inserting, removing, or
replacing a word or more than a word in a sentence)
(Li et al., 2017; Ebrahimi et al., 2018; Gao et al.,
2018; Liang et al., 2018; Feng et al., 2018). Some
of these techniques can result in unnatural adversar-
ial examples, making them easily distinguishable
by humans, but recent research indicates that using
rule-based synonym replacement strategies could
generate adversarial text examples that appear more
natural and similar to the original examples (Alzan-
tot et al., 2018; Ren et al., 2019; Jin et al., 2020;
Garg and Ramakrishnan, 2020; Li et al., 2020).

Only two papers addressed adversarial text at-
tacks in Arabic, and both are character-level. Alshe-
mali and Kalita (2019) proposed character-level ad-
versarial attacks that rely on changing the morpho-
logical form of adjectives by adding one or more
characters, which violates the noun-adjective agree-
ment. An adjective is a word that describes a noun,
and it must agree with the noun in definiteness (i.e.,
definite or indefinite), number (singular or dual),
and gender (i.e., feminine or masculine). Alshemali
and Kalita (2021) also proposed character-level at-
tacks, which relied on the flip of one or two Ara-
bic characters chosen based on non-native Arabic
learners’ most common spelling mistakes (usually
incorrect use of visually similar characters). Both
of these studies considered only the character-level
adversarial examples and did not investigate the
impact of transferability of these attacks among
targeted models nor the effectiveness of defense
mechanisms like adversarial training.

In this paper, we introduce the first study of
word-level adversarial attacks in Arabic. We de-
velop synonym-based word-level attacks using a
Masked Language Modeling (MLM) task with
an Arabic BERT model in a black-box manner
against three state-of-the-art sentiment analysis

classifiers/models: BERT (Bidirectional Encoder
Representations from Transformers) (Devlin et al.,
2019), WordCNN (word-based Convolutional Neu-
ral Networks) (Kim, 2014), and WordLSTM (Word-
based Long Short-term Memory) (Hochreiter and
Schmidhuber, 1997). We train these models on two
available and large Arabic datasets, HARD (Ho-
tel Arabic Reviews Dataset) (Elnagar et al., 2018)
and MSDA (Sentiment Analysis for Social Media
Posts in Arabic Dialect) (Boujou et al., 2021), to
automatically generate adversarial text examples,
attack these models using those generated adversar-
ial text examples, and finally, assess the robustness
of these models against adversarial text examples.

We also use human evaluation to evaluate the
newly produced adversarial text examples using
two criteria: grammatical similarity and semantic
similarity. Furthermore, we study the transferabil-
ity of these adversarial text examples generated
by various models on different models studied and
deeply investigate the effectiveness of the adversar-
ial training defense mechanism on the BERT mod-
els against these adversarial text examples. Figure
1 illustrates the process of generating synonym-
based word-level adversarial examples generation
which we discuss in detail in Section 3.

Section 2 reviews related research works, while
Section 3 delves into the methodology in more de-
tail. Sections 4 and 5 discuss the automatic and hu-
man evaluations and their results. In Sections 6 and
7, we describe the transferability and defense mech-
anisms, along with their results. Lastly, in Sections
8 and 9, we conclude our paper by addressing its
limitations and summarizing our contributions.

2 Related Work

Adversarial text attacks have been widely stud-
ied in the NLP field from different perspectives,
like the attack setting (white-box, gray-box, and
black-box), targeted space (embedding or input),
and attack method (character-level, word-level,
sentence-level) (Papernot et al., 2016; Li et al.,
2017; Ebrahimi et al., 2018; Gao et al., 2018; Liang
etal., 2018; Feng et al., 2018; Alzantot et al., 2018;
Li et al., 2018; Ren et al., 2019; Li et al., 2020;
Ribeiro et al., 2020; Zang et al., 2020; Jin et al.,
2020; Li et al., 2021). Here, we will focus on re-
lated work that shares the same methodology as
ours, taking advantage of the pre-trained models
like the BERT model and its MLLM training objec-
tive, but notably, they are all done only in English.
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Jin et al. (2020) integrated two synonym re-
placement strategies (Alzantot et al., 2018; Ren
et al., 2019) and proposed a baseline method called
TEXTFOOLER to efficiently generate adversarial
examples using synonym replacement techniques
through word embeddings, ensuring the preser-
vation of similar semantic meaning compared to
the original words. Their findings show that pre-
trained BERT models and other Deep Neural Net-
works (DNN) models were vulnerable to these
adversarial text attacks, which could lead to mis-
classification or incorrect textual entailment pre-
dictions. The authors also emphasized improving
the robustness of NLP models by incorporating de-
fense mechanisms and testing their performance
against adversarial attacks.

Several studies have proposed novel synonym
replacement techniques using the MLM task with
Large Language Models (LLMs) like BERT. For
instance, Garg and Ramakrishnan (2020) proposed
a novel method called BERT-based Adversarial
Examples (BAE) for generating adversarial exam-
ples for text classification using MLM with BERT
models. By utilizing pre-trained BERT’s ability
to capture semantic meaning and context in text,
BAE could generate adversarial examples more
effectively than previous methods, avoiding detec-
tion by state-of-the-art classifiers. The authors also
evaluated the effectiveness of BAE against various
text classification models and demonstrated that it
could generate robust adversarial examples. Li et al.
(2020) proposed a practical method called BERT-
Attack using MLM with BERT models to predict
sub-word expansion, ensuring the generation of
fluent and semantically preserved adversarial text
examples. These adversarial examples success-
fully fooled the state-of-the-art models, such as the
fine-tuned BERT models for various downstream
tasks in NLP in a black-box manner. The authors
evaluated the BERT-Attack’s effectiveness against
BERT models in various text classification tasks
and demonstrated its ability to reduce the accu-
racy of these models significantly. Lastly, Li et al.
(2021) proposed an attack method called CLARE,
a contextualized adversarial example generation
model that could generate fluent and grammatically
accurate outputs through a fill-in-mask procedure
using MLM with RoBERTa models. CLEAR intro-
duced three contextualized perturbations: replace,
insert, and merge, which permit generating outputs
of varying lengths, where it could flexibly integrate

these perturbations and apply them at any position
in the inputs and then use them to attack the BERT
models. The authors finally evaluated CLARE’s
effectiveness against BERT models and demon-
strated that CLARE achieved the best performance
with the least modifications by combining all these
three perturbations.

3 Methodology
3.1 Datasets Used

In this work, we select two large Arabic datasets
designed for text classification tasks: hotel reviews
and sentiment analysis. We purposely chose one
dataset written mostly in Modern Standard Arabic
(MSA) and another written in Dialectical Arabic
(DA) to observe how the models would behave
when trained on different Arabic dialects.

e Hotel Arabic Reviews Dataset (HARD) is a
balanced dataset with 93K hotel reviews written
mostly in MSA, collected from Booking.com, and
has four classes (Elnagar et al., 2018), which we
remap to Poor, Fair, Good, and Excellent, instead
of the original numerical labels (1, 2, 4, and 5).1

e Sentiment Analysis for Social Media Posts in
Arabic Dialect (MSDA) is a balanced dataset that
includes 50K posts written mostly in DA, collected
from the X platform (formerly Twitter), and has
three classes (Boujou et al., 2021): Positive, Neu-
tral, and Negative.

Dataset Avg Length STD Max Length
HARD 19.50 19.77 503
MSDA 9.99 9.46 326

Table 1: The general statistics of the two used datasets
in terms of the Average Length (#words), Standard De-
viation (STD), and Maximum Length (#words).

3.2 Models Targeted

We train three deep learning classifiers/models
that are widely used for text classification tasks:
WordLSTM (Word-based Long Short-term Mem-
ory) (Hochreiter and Schmidhuber, 1997), Word-
CNN (Word-based Convolutional Neural Network)
(Kim, 2014), and BERT (Bidirectional Encoder
Representations from Transformers) (Devlin et al.,
2019), on the HARD and MSDA datasets.

!Originally, labels 1 and 2 were negative, and 4 and 5 were
positive. Notably, users were not given the choice of 3, only
5,4, 2, or 1. We found this labeling confusing and remapped
simply 1 to Poor, 2 to Fair, 4 to Good, and 5 to Excellent.
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We use the same hyperparameters as Jin et al.
(2020) used for the models in our study. We train
WordCNN and WordLSTM models from scratch.
For WordCNN models (Kim, 2014), we use three
window sizes of 3, 4, and 5, and 100 filters for
each window size. For the WordLSTM models, we
use one bidirectional LSTM layer with 150 hidden
states (Hochreiter and Schmidhuber, 1997). We
train a GloVe (Global Vectors for Word Represen-
tation) model on each dataset to generate word
vectors of size 200 dimensions for both models
(Pennington et al., 2014) and use these GloVe em-
bedding words to train the embedding layers in
the WordCNN, and WordLSTM models on each
dataset. For the BERT model, we begin with a pre-
trained Arabic BERT model called AraBERTgAsE
v22 (Antoun et al., 2020), which has 12 layers with
768 hidden states, 12 heads, resulting in 136M
trainable parameters, and we then fine-tune for text
classification tasks using each dataset. We use dif-
ferent levels of data preprocessing before training
WordLSTM and WordCNN models and fine-tuning
BERT models due to the differences in their archi-
tectures, like the utilization of contextual embed-
dings in BERT models.

Table 2 shows the original accuracy (evaluation
accuracy) of each model on each dataset. BERT
models score the highest evaluation accuracies:
83% and 86% on HARD and MSDA, respectively.
The WordLSTM model is not far behind, but the
WordCNN models perform substantially worse.

Dataset WordCNN WordLSTM BERT
HARD 75% 80% 83%
MSDA 77% 83% 86%

Table 2: Original accuracy (evaluation accuracy) of each
model on each dataset (a test set of 10% of each dataset).

3.3 Adversarial Text Generation

The adversarial text generation task involves work-
ing with a dataset D in the form of (X, Y), com-
posed of pairs examples X and labels Y in the form
of {(x1, y1), ..., (xn, yn)}, alongside a black-box
classifier C: X — Y. We assume a soft label (with
probability score) in a black-box setting, where the
attacker can only query the classifier C' for output
labels Y and probabilities P given specific inputs,
without access to any of the model’s parameters,
weights, gradients, architecture, or training data.

’AraBERTpase v2 model can be accessed here:
https://huggingface.co/aubmindlab/bert-base-arabertv?2.

Given an input example z, composed of W
words in the form of (z = [wy,ws,ws, ..., Wa], ),
our goal is to create adversarial examples Xapy,
in such a way that C(Xapv) # Y, meaning the
prediction labels Y of C'(X) do not equal the ad-
versarial labels Yapy returned by C'(Xapy). More-
over, we aim for the adversarial examples X Apy
to exhibit grammatical correctness and maintain
semantic similarity to the original inputs X .

3.3.1 Adversarial Text Generation Steps

Here, we present the steps we use for generating
adversarial examples Xspy. We randomly select
1000 samples (original examples X) from each
dataset and process them following these steps:

1) Word Importance Ranking: We use the
same scoring function ([,,,) as Jin et al. (2020) to
measure the influence of a word w;. Specifically,
we quantify the importance of each token/word w;
in a sentence by deleting the tokens (one token
each at a time) and calculating the prediction
scores’ change before and after deleting that word
w;. We also clean the input original example
x by removing the noise, emojis, stopwords,
and punctuation marks using the NLTK Python
library? before we feed the example x to the
scoring function (I,,,) to reduce the computational
overhead and ensure only words are fed to the
scoring function (/y,).

2) Word Replacement Strategy: We repetitively
replace the most important words (one important
word [, at a time) in the input original example z
using the MLM task with the BERT model to find
synonym words for that important word I, .

We use a different pre-trained version of
AraBERTgasg v02* as our MLM model (Antoun
et al., 2020) to generate the synonym words W
and assigned the top K value to 50. After that,
we use the CAMeLBERT-CA POS-EGY model®
(Inoue et al., 2021) as our Part-of-Speech (POS)
tagger to ensure that the generated synonym
words are grammatically correct. Next, we use a
Sentence-Transformers model® to ensure the newly
generated examples with the replaced synonym

3Natural Language Toolkit (NLTK): https://www.nltk.org.

*AraBERTgpase v02 model can be accessed here:
https://huggingface.co/aubmindlab/bert-base-arabertv02.

SCAMeLBERT-CA POS-EGY model can be accessed
here: https://huggingface.co/CAMeL-Lab/bert-base-arabic-
camelbert-ca-pos-egy.

®Sentence-Transformers model can be accessed here:
https://huggingface.co/sentence-transformers/paraphrase-
multilingual-mpnet-base-v2.
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words are semantically similar to the original
examples. We specifically used a multilingual pre-
trained MPNet (Masked and Permuted Pre-training
for Language Understanding) model (Song et al.,
2020) trained on parallel data for 50+ languages,
including Arabic (Reimers and Gurevych, 2020).
We calculate the similarity score using the cosine
similarity metric and set the similarity threshold to
0.80, as set by Jin et al. (2020). After the newly
generated example passes the POS and similarity
checkers, we finally have an attack candidate
example derived from the original example x.

3) Synonym BERT-based Attack: Finally, we
call an attack candidate example an ‘adversarial ex-
ample’ (x,4,) if it flips the prediction label y (the
prediction label of the original example y before
the attack = the prediction label of the attack candi-
date example y,q4, after the attack). In other words,
after replacing a word w with its synonym word
ws in the original example x using our synonym
attack, the adversarial example x4, force the tar-
geted model/classifier to change its classification.’

4 Automatic Evaluation

4.1 Evaluation Metrics

We evaluate our synonym BERT-based attack using
four metrics: Attack Success Rate (Att.sr), Accu-
racy Before Attack (Acc.pa), Accuracy After At-
tack (Acc.aa), and Attack Decrease Rate (Att.pRr).

1) Attack Success Rate (Att.gg) is a metric
designed to measure the successfulness of our
synonym attack on a specific model and dataset,
and it is calculated by dividing the number of
adversarial examples produced by a model from
a dataset by the total number of the randomly
selected samples (original examples) multiplied by
100 for percentage normalization.

2) Accuracy Before Attack (Acc.ga) is calculated
by taking the mean of prediction scores of the total
number of selected samples input to the targeted
model in a black box setting, meaning we only
use the prediction scores instead of the targeted
model’s original accuracy (evaluation accuracy).
We believe taking the original accuracy of the
model here is not a black-box manner because
attackers are not supposed to know anything about
the targeted model, including its original accuracy.

7 Appendix A provides some concrete examples of Arabic
adversarial text examples generated using our synonym attack,
along with their labels and their English translations.

3) Accuracy After Attack (Acc.ay) is calculated
by taking the mean of prediction scores of the total
number of selected samples input to the targeted
model in a black box setting after applying our
synonym attack.

4) Attack Decrease Rate (Att.pgr) is a metric de-
signed to measure the effectiveness of our synonym
attack on a specific model and dataset, and it is cal-
culated simply by taking the difference between
the Accuracy Before Attack (Acc.pa) and Accu-
racy After Attack (Acc.aa).

4.2 Evaluation Results

We first choose 1000 randomly selected examples
form each dataset: HARD and MSDA, following
Jin et al. (2020) and Li et al. (2021). Next, we
evaluate our proposed synonym attack using met-
rics defined in subsection 4.1 above. The results of
the automatic evaluations of our attack on each tar-
geted model (WordCNN, WordLSTM, and BERT)
and each dataset (HARD and MSDA) are displayed
in Table 3. We find that our attack has successfully
decreased the accuracies of the targeted models on
each dataset, measured by the Acc.ga and Acc.aa
metrics. For the 1000 randomly chosen examples,
the BERT models fine-tuned on the MSDA and
HARD datasets scored 90.55% and 88.59% as ac-
curacies before our attack, and their accuracies af-
ter our attack have dropped to 63.62% and 73.90%
on both datasets, respectively. It is clear that our
attack strategy of substituting a word with a syn-
onym works well because it creates a new example
(adversarial example) that the targeted model has
not encountered or seen before, forcing the targeted
model to misclassify and cause a drop in its accu-
racy after the attack. Yet, we believe that the num-
ber of the evaluated examples, the different levels
of data preprocessing, and the prediction misclassi-
fication rate of the block-box models are possible
interpretations of the noticeable difference between
the original accuracy mentioned in Table 2 and the
Acc.gp in Table 3. Regardless of these constraints,
our results demonstrate that all three models are
indeed susceptible to our synonym attacks.
Furthermore, Table 3 summarizes the success-
fulness and effectiveness of our synonym BERT-
based attack, measured by the Att.sr and Att.pr
metrics, respectively. On the models level, our find-
ings confirm that the DNN models (WordCNN and
WordLSTM) are less susceptible to our attack than
the BERT models. For instance, the attack decrease
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WordCNN

WordLSTM BERT

Metric " HARD MSDA  HARD MSDA  HARD  MSDA
Attack Success Rate (Att.gR) 50.00% 30.00% 51.00% 25.00% 51.00% 26.00%
Accuracy Before Attack (Acc.ga) 32.09% 45.15% 34.82% 47.48 % 88.59% 90.55%
Accuracy After Attack (Acc.aa) 32.05% 39.31% 33.90% 41.73% 73.90% 63.62%
Attack Decrease Rate (Att.pR) 00.04% 05.84% 00.92% 05.75% 14.69% 26.93%

Table 3: Results of the attack success rate, accuracy before and after our attack, and attack decrease rate on each
model and each dataset (the accuracies reported above are only for 1000 randomly selected examples).

rates of the WordCNN and WordLSTM models are
both nearly 6% on the MSDA dataset, whereas the
Att.pr of the BERT model on the same dataset is
approximately 27%.

On the other hand, on the datasets level, we
observe that our synonym attack is more success-
ful and less effective on the HARD dataset than
the MSDA dataset, meaning our attack on the
HARD dataset produced more adversarial exam-
ples than on the MSDA dataset, but at the same
time, these newly produced adversarial examples
exhibit less impact on the targeted models trained
on the HARD dataset. In contrast, our synonym
attack generates fewer adversarial examples from
the MSDA dataset, but those that succeed prove
more potent. Notably, it is easier to successfully
craft adversarial examples from the HARD dataset
than the MSDA dataset since the MSDA dataset
is a Dialectal Arabic (DA) dataset, and HARD is
mostly a Modern Standard Arabic (MSA) dataset.
Dialects in Arabic have fewer syntactic, morpho-
logic, and orthographic rules than official Modern
Standard Arabic (Grosvald et al., 2019).

5 Human Evaluation

5.1 Setup of Human Evaluation

We invite four human evaluators (all native Arabic
speakers) to evaluate the naturalness of the Arabic
adversarial text examples generated by our syn-
onym attack. We randomly select 150 adversarial
text examples (50 examples for each model from
the HARD dataset)® to be evaluated by our human
evaluators in terms of two major criteria: gram-
matical similarity and semantic similarity. As an
inner-level evaluation, we ensure that two of these
native Arabic evaluators have college degrees in
the Arabic language (linguists), while the other two
do not (non-linguists), to study the inner difference

8We only select generated adversarial examples from the
HARD dataset because it is mostly written in Modern Standard
Arabic, which can be easily evaluated in terms of Arabic
grammar. MSA has syntactic, morphologic, and orthographic
rules, not like the Dialectical Arabic (Grosvald et al., 2019).

in assessing the naturalness of our adversarial text
examples between linguists and non-linguists, and
ask them to evaluate all the selected examples.

For grammatical similarity assessment, we first
retrieve the corresponding original examples to the
randomly selected adversarial examples and sep-
arately group them into two groups: original and
adversarial. We then task all the human evaluators
to rate both groups anonymously, meaning we do
not tell them which group is which to guarantee that
the original examples do not influence human eval-
uators’ judgment. Inspired by Gagnon-Marchand
et al. (2019), we use a 5-point Likert scale, where
one represents strongly incorrect, two represents
incorrect, three represents correct to some extent,
four represents correct, and five represents strongly
correct (Likert, 1932). Following Jin et al. (2020),
we calculate the average score of the Likert scale
measurements for each group (original and adver-
sarial) and lastly divide the average score of the
adversarial examples by the average score of the
original examples of each human evaluator (lin-
guists and non-linguists) to measure the precise
grammatical similarity ratio between the original
and adversarial examples.

For semantic similarity assessment, we accom-
pany the randomly selected adversarial examples
with their corresponding original examples and ask
the human evaluators to rate whether the adversar-
ial examples convey the same semantic meaning
as the original examples. We use the same 5-point
Likert scale, with different rating labels, ranging
from one representing strongly dissimilar to five
representing strongly similar. We then calculate the
percentage of the average score of the Likert scale
numbers (average score/number of rating labels)
for each evaluator (linguists and non-linguists).

5.2 Human Evaluation Results

We observe in the grammatical similarity assess-
ment that the non-linguist evaluators rated our
adversarial examples and their original examples
slightly higher than the linguist evaluators (except
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Evaluation Criteria Human Evaluator WordCNN WordLSTM BERT
Linguists 92.00% 94.00% 98.00%

Grammatical Similarity Non-linguists 99.00% 95.00% 98.00%
Overall Average 95.50% 94.50% 98.00%

Linguists 89.00% 87.00% 91.00%

Semantic Similarity Non-linguists 87.00% 86.00% 86.00%
Overall Average 88.00% 86.50% 88.50%

Table 4: Results of human evaluation of our generated adversarial text examples from each targeted model
(WordCNN, WordLSTM, and BERT) on the HARD dataset; no examples used from the dialectical MSDA dataset.

for the BERT model), whereas we have exactly the
opposite results in the semantic similarity assess-
ment (the linguists rated the examples higher than
the non-linguists), as shown in Table 4. We assume
that the gap in the background knowledge of the
two human evaluators’ groups led to such results,
where the non-linguists lack knowledge of Arabic
syntax, making them rate the examples higher than
the linguists in the grammatical similarity assess-
ment. On the other hand, the deep understanding of
the language and its semantics makes the linguists
rate the examples higher than the non-linguists in
the semantic similarity assessment.

Overall, as shown in Table 4, the human evalu-
ation results (across all 4 evaluators) demonstrate
that the adversarial text examples generated by
our synonym attack is acceptable to Arabic native
speakers, meaning that our adversarial examples
preserve a similar level of grammatical correctness
and convey similar semantic meaning. For exam-
ple, the overall average scores ranged from 94.50%
to 98% for grammatical similarity, whereas the av-
erage scores ranged from 86.50% to 88.50% for
semantic similarity.

6 Transferability

6.1 Setup of Transferability

The transferability of an adversarial attack refers
to its ability to reduce the accuracy of the targeted
models (victim models) to a certain extent when
attacked by the newly generated adversarial exam-
ples from other models (source models), where all
the victim and source models trained on the same
dataset (Szegedy et al., 2014; Goodfellow et al.,
2015). To closely examine the transferability, we
examine 245 adversarial examples from each of
the HARD and MSDA datasets along with their
corresponding original examples. Initially, we pre-
dict the accuracy of both the original examples and
their corresponding adversarial examples using the
victim models. We then calculate the difference
(delta A) between the prediction accuracy of the

original examples and the adversarial examples, ul-
timately determining the transferability score for
each model. We have not seen any other researcher
using this delta difference method for the transfer-
ability of adversarial text attacks, even in English.

6.2 Transferability Results

Overall, first, we see that BERT (as the victim)
has higher transferability scores than WordCNN
or WordLSTM models, as shown in Table 5. This
indicates that BERT is more vulnerable to trans-
ferred attacks. This result is similar to what Jin et al.
(2020) saw in English. Second, we see that mod-
els trained in Dialectal Arabic (DA) are more vul-
nerable to transferred attacks than models trained
in Modern Standard Arabic (MSA). Again, fewer
generated adversarial examples from the dialecti-
cal MSDA dataset satisfy the synonym rules, but
those that succeed prove more potent in the attack
transferability between models.

7 Defense Mechanism

7.1 Setup of Defense Mechanism

We utilize adversarial training as a defense mech-
anism against our synonym attack, similar to Jin
et al. (2020), and follow the approach introduced
by Shrivastava et al. (2017). This method is widely
adopted in image classification to enhance mod-
els’ robustness. To assess whether the employment
of adversarial training enhances the robustness of
these models, we add the generated adversarial ex-
amples to the original datasets. Then, we retrain the
models and evaluate the robustness of these newly
adversarially trained models. We only study the
effectiveness of the adversarial training on BERT
models. We collect adversarial examples from both
datasets that successfully fooled BERT models and
incorporate them into the original datasets to train
the models adversarially. We then refine-tune these
BERT models using the augmented datasets with
adversarial examples and subject these adversari-
ally fine-tuned models to our attacks again.
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Transferability Scores

WordCNN (source) WordLSTM (source) BERT (source)
Datasets Models < Xany A X XADY A X XADV A
WordCNN (victim) — — — 52.65 47.34 5.31 65.71 34.28 31.43
HARD WordLSTM (victim) 56.32 43.67 12.65 — — — 60.81 39.18 21.63
BERT (victim) 75.51 24.48 51.03 74.28 25.71 48.57 — — —
WordCNN (victim) — — — 87.34 12.65 74.69 86.53 13.46 73.07
MSDA WordLSTM (victim) 83.26 16.73 66.53 — — — 82.04 17.95 64.09
BERT (victim) 89.38 10.61 78.77 88.16 11.83 76.33 — — —

Table 5: Transferability of adversarial examples between victim and source models. Here, X refers to original
examples, and X apy refers to adversarial examples. Let rows be [NV and columns be M, then cells N M are the
accuracies of adversarial examples generated from the source model M and evaluated on the victim model N. A
higher delta A score indicates higher transferability between models.

7.2 Defense Mechanism Results

We find that BERT models’ adversarial training
accuracies increased on both datasets, compared
to their accuracies after the attack with no defense
mechanism in place, as seen in Table 6. In other
words, BERT models regain at least 2% in accu-
racy after applying adversarial training as a de-
fense mechanism. These results agree with Jin et al.
(2020)’s adversarial training results and provide
further evidence that adversarial training is a good
starting point for enhancing models’ robustness.

Metric HARD MSDA

Acc. Before Attack 88.59% 90.55%
Acc. After Attack 73.9%  63.62%
Adversarial Training Acc. 76.51% 65.69%

Table 6: Adversarial training results on BERT models.
8 Limitations

Due to the lack of availability of strong foundation
models in Arabic and our lack of computational
resources, one limitation of our attack is that it
fundamentally depends on the pre-trained Arabic
and multilingual models like the AraBERT model
for retrieving synonym words, the CAMeLBERT
model for grammatical similarity checking, and the
Sentence-Transformers model for semantic simi-
larity checking, where their performance creates
a bottleneck for the effectiveness of our text ad-
versarial attack and the quality of our produced
adversarial examples. Another limitation of our
work is that the successfulness of our attack in
generating adversarial examples is higher than its
impact on the targeted models because the evalu-
ation misclassification rate of the targeted models
is another bottleneck of our attack, meaning if a
model’s original (evaluation) accuracy score is 86%
(e.g., BERT model on the MSDA dataset), then the
misclassification rate of the model is 14%, which

undoubtedly affects the effectiveness of our attack
negatively, especially since our attack setting is
black-box, where it is impossible to remove these
misclassified examples without compromising the
attack setting (if we remove these misclassified
examples, the attack setting will be a white-box).

9 Conclusion

In this work, we introduce the first Arabic synonym
BERT-based adversarial attack using an MLM task
with pre-trained BERT models against the state-
of-the-art text classification models. We utilize
two large Arabic datasets, namely HARD and
MSDA, in a black-box manner. We find that BERT
and other DNN models are generally susceptible
to these Arabic adversarial examples, especially
BERT models. We ask human evaluators to eval-
uate our produced adversarial examples using our
attack in terms of grammatical similarity and se-
mantic similarity and find that our attack gener-
ates examples that preserve semantic similarity and
maintain Arabic grammar. We also study the trans-
ferability of these Arabic adversarial text examples
by various source models on different victim mod-
els and observe that fine-tuned BERT models ex-
hibit higher transferability when attacked by the
other DNN models’ generated adversarial exam-
ples. Lastly, we investigate the effectiveness of the
adversarial training defense mechanism on BERT
models and find that the BERT models successfully
regain at least 2% of their accuracies after applying
the adversarial training as a defense mechanism.

Reproducibility

We share our code scripts and trained mod-
els on GitHub at https://www.github.com/
NorahAlshahrani/bert_synonym_attack.
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Dataset Labels Arabic Example

Translated Example

Original Label: Excellent

.Mgvgcyﬂ»éfgukg‘mu

Exceptional , very comfortable hotel and everything was beautiful.

Attack Label: Good

e O 8 s b g Bl

Excellent , very comfortable hotel and everything was beautiful.

gy Bllaiy Loldy fop Jliiad ¢ 4

Good , beautiful reception, luxury, cleanliness, easy

HARD Original Label: Good O \fbl‘j Jua“ o0 s J J gyl access, and close to the airport and shopping centers.
Attack Label: Excellent Ugvy Bllaly Lal2y S Jlaal ¢ S Excellent , beautiful reception, luxury, cleanliness, easy
ack Label: Excellen .[;)—";U\J{LJBJU‘“ o0 o iy 4 Jj-“’j“ access, and close to the airport and shopping centers.
.. . . . . s " AL T May God have mercy on Nadine and keep
Original Label: Negative Ao 98 G il Wl g 0L e al your family. I know how difficult it is.
. o . . . s Aol e L L R May God protect Nadine and keep
MSDA Attack Label: Positive lome 52 Opm lilee U”'jb JA‘ ol your family. I know how difficult it is.

Original Label: Positive

Lo b yLA b LA ogld ! rli\“

Many good days! My friend, may God perpetuate them.

Attack Label: Neutral

Dy aa b E5\>La b LA ogld ! r\_;_\“

Many good days! My friend, God is always there.

Appendix A: Examples of the original Arabic and adversarial Arabic that are generated from the HARD and
MSDA datasets and produced by the BERT models, along with their prediction labels and their English translations.
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Abstract

The self-rationalising capabilities of LLMs are
appealing because the generated explanations
can give insights into the plausibility of the
predictions. However, how faithful the expla-
nations are to the predictions is questionable,
raising the need to explore the patterns be-
hind them further. To this end, we propose
a hypothesis-driven statistical framework. We
use a Bayesian network to implement a hypoth-
esis about how a task (in our example, natural
language inference) is solved, and its internal
states are translated into natural language with
templates. Those explanations are then com-
pared to LLM-generated free-text explanations
using automatic and human evaluations. This
allows us to judge how similar the LLM’s and
the Bayesian network’s decision processes are.
We demonstrate the usage of our framework
with an example hypothesis and two realisa-
tions in Bayesian networks. The resulting mod-
els do not exhibit a strong similarity to GPT-3.5.
We discuss the implications of this as well as
the framework’s potential to approximate LLM
decisions better in future work.

1 Introduction

With the increasing capabilities of large language
models (LLMs), more and more tasks that were
traditionally solved using human experts and statis-
tical models are now aided by LLMs. Understand-
ing how a model produces its output is an essential
factor in the human acceptance of machine learning
systems (Shin, 2021). However, understanding the
connection between input and output in LLMs is
not easily possible (Adadi and Berrada, 2018).
Recent advances in LLMs generating longer co-
herent text have popularised self-rationalising mod-
els, which produce a natural language explanation
(NLE) alongside their output (Hase et al., 2020;
Marasovic et al., 2021). NLEs have numerous ben-
efits over other, non-textual explanations: NLEs
are valued more highly by human users (Forrest

Jenny Kunz
Linkoping University
jenny.kunz@liu.se

et al., 2018), they can be applied to a broad range
of problems and they can combine external knowl-
edge with the model input. However, even though
the NLEs can give insights into how plausible the
predictions made by LLMs are, the faithfulness of
the explanations to the prediction process remains
at best uncertain (Wiegreffe et al., 2021; Atanasova
et al., 2023; Turpin et al., 2023).

In this work, we propose exploring the patterns
behind generated NLEs using a hypothesis-driven
framework, with the ultimate goal of deriving a sur-
rogate model. Our framework is centred around a
hypothetical global explanation (HGE): A hypoth-
esis about how the LLM solves a specific task on a
global, structural level. While we start off with an
obviously oversimplified hypothesis to introduce
and test the framework, we envision that it can be
incrementally adapted to more refined hypotheses
in the future. The patterns captured by each refine-
ment step can then serve to measure their coverage,
or e-recall (Goldberg, 2023), in the LLM.

The core component of our framework is a sta-
tistical surrogate model (SSM) that reflects the
HGE. We propose using a Bayesian Network (Pearl,
1988) with a manually designed structure as a
framework for the SSM, as the Bayesian Network
allows us to visualise the independencies among
the random variables used in the SSM via a directed
acyclic graph (DAG). This allows us to define the
variables in the SSM and the relationships among
them such that they reflect the HGE. Furthermore,
since the structure of the SSM is based on the HGE,
each variable of the Bayesian Network is assigned a
specific, semantically interpretable meaning. This
allows us to generate local NLEs for individual
inputs based on the internal state of the Bayesian
Network. In the last step, we compare both the pre-
dicted labels and the NLEs produced by the SSM
to those produced by the LLM in order to gain
insights about the faithfulness of the HGE.

We demonstrate the usage of this framework
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with an exemplary HGE for how the behaviour
of the LLM GPT-3.5 (Brown et al., 2020) can be
explained when performing English-language natu-
ral language inference (NLI). We discuss the chal-
lenges when designing, implementing and training
the Bayesian Networks based on the HGE and out-
line the next steps on the way to a surrogate that
models LLM predictions more accurately.

2 Related Work

Self-rationalising models have received increasing
attention as the generation abilities of NLP models
have improved in recent years. Human-annotated
datasets such as e-SNLI (Camburu et al., 2018)
for NLI, CoS-E (Rajani et al., 2019) and ECQA
(Aggarwal et al., 2021) for commonsense question
answering and ComVE (Wang et al., 2020) for com-
monsense validation are the basis for much NLE
work (Wiegreffe and Marasovic, 2021). However,
the role of LLMs in the annotation process itself
is likely increasing (Wiegreffe et al., 2022), as it
reduces the significant cost of human annotation
(Belinkov and Glass, 2019).

A concern, however, is that the generation of
the NLEs is as opaque as the prediction process.
To address this, some recent work explores the
faithfulness of NLEs: Wiegreffe et al. (2021) show
that prediction and explanation exhibit correlated
responses to input noise. Atanasova et al. (2023)
propose analysing NLEs after counterfactual inter-
ventions on the input that alter the prediction, and
testing the sufficiency of the reasons provided in
the NLE. Turpin et al. (2023) show that biased fea-
tures in the input lead to obviously unfaithful NLEs
as those features affect the predictions heavily but
are never mentioned in the generated NLEs.

Similar concerns have been raised for model-
agnostic surrogates such as LIME (Ribeiro et al.,
2016) and SHAP (Lundberg and Lee, 2017), which
are widely used for highlighting input features as a
form of explanation. They approximate a complex
model by training a simpler, interpretable model on
the original model’s predictions. Whether such sur-
rogates are helpful for understanding complex mod-
els is subject to discussion. Rudin (2019) makes
the case against their usage in high-stake decisions
and argues for the deployment of models with an
interpretable decision process. However, from a
more practical perspective, Jacovi and Goldberg
(2020) point out that faithfulness is not a binary fea-
ture but should be seen as a scale. They argue that

Premise Hypothesis
S Vi 0, L, S, v,

A 