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Introduction

The EMNLP 2011 Workshop on Statistical Machine Translation (WMT-2011) took place on Saturday
and Sunday, July 30–31 in Edinburgh, Scotland, immediately following the Conference on Empirical
Methods on Natural Language Processing (EMNLP) 2011, which was hosted by the University of
Edinburgh.

This is the seventh time this workshop has been held. The first time was in 2005 as part of the ACL 2005
Workshop on Building and Using Parallel Texts. In the following years the Workshop on Statistical
Machine Translation was held at HLT-NAACL 2006 in New York City, US, ACL 2007 in Prague,
Czech Republic, ACL 2008, Columbus, Ohio, US, EACL 2009 in Athens, Greece, and ACL 2010 in
Uppsala, Sweden.

The focus of our workshop was to use parallel corpora for machine translation. Recent experimentation
has shown that the performance of SMT systems varies greatly with the source language. In this
workshop we encouraged researchers to investigate ways to improve the performance of SMT systems
for diverse languages, including morphologically more complex languages, languages with partial free
word order, and low-resource languages.

Prior to the workshop, in addition to soliciting relevant papers for review and possible presentation,
we conducted a shared task that brought together machine translation systems for an evaluation on
previously unseen data. The results of the shared task were announced at the workshop, and these
proceedings also include an overview paper for the shared task that summarizes the results, as well
as provides information about the data used and any procedures that were followed in conducting or
scoring the task. In addition, there are short papers from each participating team that describe their
underlying system in some detail.

Like in previous years, we have received a far larger number of submission than we could accept
for presentation. This year we have received 42 full paper submissions (not counting withdrawn
submissions) and 47 shared task submissions. In total WMT-2011 featured 18 full paper oral
presentations and 47 shared task poster presentations.

The invited talk was given by William Lewis (Microsoft Research), Robert Munro (Stanford
University), and Stephan Vogel (Carnegie Mellon University).

We would like to thank the members of the Program Committee for their timely reviews. We also
would like to thank the participants of the shared task and all the other volunteers who helped with the
evaluations.

Chris Callison-Burch, Philipp Koehn, Christof Monz, and Omar F. Zaidan
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WMT 5-year Retrospective Best Paper Award

Since this is the Sixth Workshop on Statistical Machine Translation, we have decided to create a WMT
5-year Retrospective Best Paper Award, to be given to the best paper that was published at the first
Workshop on Statistical Machine Translation, which was held at HLT-NAACL 2006 in New York. The
goals of this retrospective award are to recognize high-quality work that has stood the test of time, and
to highlight the excellent work that appears at WMT.

The WMT11 program committee voted on the best paper from a list of six nominated papers. Five of
these were nominated by high citation counts, which we defined as having 10 or more citations in the
ACL anthology network (excluding self-citations), and more than 30 citations on Google Scholar. We
also opened the nomination process to the committee, which yielded one further nomination for a paper
that did not reach the citation threshold but was deemed to be excellent.

The program committee decided to award the WMT 5-year Retrospective Best Paper Award to:

Andreas Zollmann and Ashish Venugopal. 2006. Syntax Augmented Machine Translation via Chart
Parsing. In Proceedings of the Workshop on Statistical Machine Translation. Pages 138–141.

This short paper described Zollmann and Venugopal’s entry into the WMT06 shared translation
task. Their system introduced a parsing-based machine translation system. Like David Chiang’s
Hiero system, Zollmann and Venugopal’s system used synchronous context free grammars (SCFGs).
Instead of using a single non-terminal symbol, X, Zollmann and Venugopal’s SCFG rules contained
linguistically informed non-terminal symbols that were extracted from a parsed parallel corpus.

This paper was one of the first publications to demonstrate that syntactically-informed approaches
to statistical machine translation could achieve translation quality that was comparable to – or even
better than – state-of-the-art phrase-based and and hierarchical phrase-based approaches to machine
translation. Zollmann and Venugopal’s approach has influenced a number of researchers, and has been
integrated into open source translation software like the Joshua and Moses decoders.

In many ways this paper represents the ideals of the WMT workshops. It introduced a novel approach
to machine translation and demonstrated its value empirically by comparing it to other state-of-the-art
systems on a public data set.

Congratulations to Andreas Zollmann and Ashish Venugopal for their excellent work!
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Nicola Bertoldi (FBK)
Graeme Blackwood (University of Cambridge)
Michael Bloodgood (University of Maryland)
Ondrej Bojar (Charles University)
Thorsten Brants (Google)
Chris Brockett (Microsoft)
Nicola Cancedda (Xerox)
Marine Carpuat (National Research Council Canada)
Simon Carter (University of Amsterdam)
Francisco Casacuberta (University of Valencia)
Daniel Cer (Stanford University)
Mauro Cettolo (FBK)
Boxing Chen (National Research Council Canada)
Colin Cherry (National Research Council Canada)
David Chiang (ISI)
Jon Clark (Carnegie Mellon University)
Stephen Clark (University of Cambridge)
Christophe Costa Florencio (University of Amsterdam)
Michael Denkowski (Carnegie Mellon University)
Kevin Duh (NTT)
Chris Dyer (Carnegie Mellon University)
Marc Dymetman (Xerox)
Marcello Federico (FBK)

v



Andrew Finch (NICT)
Jose Fonollosa (University of Catalonia)
George Foster (National Research Council Canada)
Alex Fraser (University of Stuttgart)
Michel Galley (Microsoft)
Niyu Ge (IBM)
Dmitriy Genzel (Google)
Ulrich Germann (University of Toronto)
Kevin Gimpel (Carnegie Mellon University)
Adria de Gispert (University of Cambridge)
Spence Green (Stanford University)
Nizar Habash (Columbia University)
Keith Hall (Google)
Greg Hanneman (Carnegie Mellon University)
Kenneth Heafield (Carnegie Mellon University)
John Henderson (MITRE)
Howard Johnson (National Research Council Canada)
Doug Jones (Lincoln Labs MIT)
Damianos Karakos (Johns Hopkins University)
Maxim Khalilov (University of Amsterdam)
Roland Kuhn (National Research Council Canada)
Shankar Kumar (Google)
Philippe Langlais (Univeristy of Montreal)
Adam Lopez (Johns Hopkins University)
Wolfgang Macherey (Google)
Nitin Madnani (Educational Testing Service)
Daniel Marcu (Language Weaver)
Yuval Marton (IBM)
Lambert Mathias (Nuance)
Spyros Matsoukas (Raytheon BBN Technologies)
Arne Mauser (RWTH Aachen)
Arul Menezes (Microsoft)
Bob Moore (Google)
Smaranda Muresan (Rutgers University)
Kemal Oflazer (Carnegie Mellon University)
Miles Osborne (University of Edinburgh)
Matt Post (Johns Hopkins University)
Chris Quirk (Microsoft)
Antti-Veikko Rosti (Raytheon BBN Technologies)
Salim Roukos (IBM)
Anoop Sarkar (Simon Fraser University)
Holger Schwenk (University of Le Mans)

vi



Jean Senellart (Systran)
Khalil Simaan (University of Amsterdam)
Michel Simard (National Research Council Canada)
David Smith (University of Massachusetts Amherst)
Matthew Snover (Raytheon BBN Technologies)
Joerg Tiedemann (Uppsala University)
Christoph Tillmann (IBM)
Dan Tufis (Romanian Academy)
Jakob Uszkoreit (Google)
Masao Utiyama (NICT)
David Vilar (RWTH Aachen)
Clare Voss (Army Research Labs)
Taro Watanabe (NTT)
Andy Way (Dublin City University)
Jinxi Xu (Raytheon BBN Technologies)
Sirvan Yahyaei (Queen Mary, University of London)
Daniel Zeman (Charles University)
Richard Zens (Google)
Bing Zhang (Raytheon BBN Technologies)

vii





Table of Contents

A Grain of Salt for the WMT Manual Evaluation
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Maja Popović, David Vilar, Eleftherios Avramidis and Aljoscha Burchardt

xv



Saturday, July 30, 2011 (continued)

Morphemes and POS tags for n-gram based evaluation metrics
Maja Popović
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Verónica López-Ludeña and Rubén San-Segundo

Two-step translation with grammatical post-processing
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Abstract

The Workshop on Statistical Machine
Translation (WMT) has become one of
ACL’s flagship workshops, held annually
since 2006. In addition to soliciting pa-
pers from the research community, WMT
also features a shared translation task for
evaluating MT systems. This shared task
is notable for having manual evaluation as
its cornerstone. The Workshop’s overview
paper, playing a descriptive and adminis-
trative role, reports the main results of the
evaluation without delving deep into ana-
lyzing those results. The aim of this paper
is to investigate and explain some interest-
ing idiosyncrasies in the reported results,
which only become apparent when per-
forming a more thorough analysis of the
collected annotations. Our analysis sheds
some light on how the reported results
should (and should not) be interpreted, and
also gives rise to some helpful recommen-
dation for the organizers of WMT.

1 Introduction

The Workshop on Statistical Machine Translation
(WMT) has become an annual feast for MT re-
searchers. Of particular interest is WMT’s shared
translation task, featuring a component for man-
ual evaluation of MT systems. The friendly com-
petition is a source of inspiration for participating
teams, and the yearly overview paper (Callison-
Burch et al., 2010) provides a concise report of the
state of the art. However, the amount of interest-
ing data collected every year (the system outputs

∗ This work has been supported by the grants EuroMa-
trixPlus (FP7-ICT-2007-3-231720 of the EU and 7E09003 of
the Czech Republic), P406/10/P259, MSM 0021620838, and
DARPA GALE program under Contract No. HR0011-06-2-
0001. We are grateful to our students, colleagues, and the
three reviewers for various observations and suggestions.

and, most importantly, the annotator judgments)
is quite large, exceeding what the WMT overview
paper can afford to analyze with much depth.

In this paper, we take a closer look at the data
collected in last year’s workshop, WMT101, and
delve a bit deeper into analyzing the manual judg-
ments. We focus mainly on the English-to-Czech
task, as it included a diverse portfolio of MT sys-
tems, was a heavily judged language pair, and also
illustrates interesting “contradictions” in the re-
sults. We try to explain such points of interest,
and analyze what we believe to be the positive and
negative aspects of the currently established eval-
uation procedure of WMT.

Section 2 examines the primary style of man-
ual evaluation: system ranking. We discuss how
the interpretation of collected judgments, the com-
putation of annotator agreement, and document
that annotators’ individual preferences may render
two systems effectively incomparable. Section 3
is devoted to the impact of embedding reference
translations, while Section 4 and Section 5 discuss
some idiosyncrasies of other WMT shared tasks
and manual evaluation in general.

2 The System Ranking Task

At the core of the WMT manual evaluation is the
system ranking task. In this task, the annotator
is presented with a source sentence, a reference
translation, and the outputs of five systems over
that source sentence. The instructions are kept
minimal: the annotator is to rank the presented
translations from best to worst. Ties are allowed,
but the scale provides five rank labels, allowing the
annotator to give a total order if desired.

The five assigned rank labels are submitted at
once, making the 5-tuple a unit of annotation. In
the following, we will call this unit a block. The
blocks differ from each other in the choice of the

1http://www.statmt.org/wmt10
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Language Pair Systems Blocks Labels Comparisons Ref ≥ others Intra-annot. κ Inter-annot. κ
German-English 26 1,050 5,231 10,424 0.965 0.607 0.492
English-German 19 1,407 6,866 13,694 0.976 0.560 0.512
Spanish-English 15 1,140 5,665 11,307 0.989 0.693 0.508
English-Spanish 17 519 2,591 5,174 0.935 0.696 0.594
French-English 25 837 4,156 8,294 0.981 0.722 0.452
English-French 20 801 3,993 7,962 0.917 0.636 0.449
Czech-English 13 543 2,691 5,375 0.976 0.700 0.504
English-Czech 18 1,395 6,803 13,538 0.959 0.620 0.444
Average 19 962 4,750 9,471 0.962 0.654 0.494

Table 1: Statistics on the collected rankings, quality of references and kappas across language pairs. In
general, a block yields a set of five rank labels, which yields a set of

(
5
2

)
= 10 pairwise comparisons.

Due to occasional omitted labels, the Comparisons/Blocks ratio is not exactly 10.

source sentence and the choice of the five systems
being compared. A couple of tricks are introduced
in the sampling of the source sentences, to en-
sure that a large enough number of judgments is
repeated across different screens for meaningful
computation of inter- and intra-annotator agree-
ment. As for the sampling of systems, it is done
uniformly – no effort is made to oversample or un-
dersample a particular system (or a particular pair
of systems together) at any point in time.

In terms of the interface, the evaluation utilizes
the infrastructure of Amazon’s Mechanical Turk
(MTurk)2, with each MTurk HIT3 containing three
blocks, corresponding to three consecutive source
sentences.

Table 1 provides a brief comparison of the vari-
ous language pairs in terms of number of MT sys-
tems compared (including the reference), number
of blocks ranked, the number of pairwise com-
parisons extracted from the rankings (one block
with 5 systems ranked gives 10 pairwise compar-
isons, but occasional unranked systems are ex-
cluded), the quality of the reference (the percent-
age of comparisons where the reference was better
or equal than another system), and the κ statistic,
which is a measure of agreement (see Section 2.2
for more details).4

We see that English-to-Czech, the language pair
on which we focus, is not far from the average in
all those characteristics except for the number of
collected comparisons (and blocks), making it the
second most evaluated language pair.

2http://www.mturk.com/
3“HIT” is an acronym for human intelligence task, which

is the MTurk term for a single screen presented to the anno-
tator.

4We only use the “expert” annotations of WMT10, ignor-
ing the data collected from paid annotators on MTurk, since
they were not part of the official evaluation.

2.1 Interpreting the Rank Labels

The description in the WMT overview paper says:
“Relative ranking is our official evaluation met-
ric. [Systems] are ranked based on how frequently
they were judged to be better than or equal to
any other system.” (Emphasis added.) The WMT
overview paper refers to this measure as “≥ oth-
ers”, with a variant of it called “> others” that does
not reward ties.

We first note that this description is somewhat
ambiguous, and an uninformed reader might in-
terpret it in one of two different ways. For some
system A, each block in which A appears includes
four implicit pairwise comparisons (against the
other presented systems). How is A’s score com-
puted from those comparisons?

The correct interpretation is that A is re-
warded once for each of the four comparisons in
which A wins (or ties).5 In other words, A’s score
is the number of pairwise comparisons in which
A wins (or ties), divided by the total number of
pairwise comparisons involving A. We will use
“≥ others” (resp. “> others”) to refer to this inter-
pretation, in keeping with the terminology of the
overview paper.

The other interpretation is that A is rewarded
only if A wins (or ties) all four comparisons. In
other words, A’s score is the number of blocks in
whichA wins (or ties) all comparisons, divided by
the number of blocks in which A appears. We will
use “≥ all in block” (resp. “> all in block”) to
refer to this interpretation.6

5Personal communication with WMT organizers.
6There is yet a third interpretation, due to a literal read-

ing of the description, where A is rewarded at most once per
block if it wins (or ties) any one of its four comparisons. This
is probably less useful: it might be good at identifying the
bottom tier of systems, but would fail to distinguish between
all other systems.
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≥ others 95.9 65.6 60.1 54.0 70.4 62.1 62.2
> others 90.5 45.0 44.1 39.3 49.1 49.4 39.6
≥ all in block 93.1 32.3 30.7 23.4 37.5 32.5 28.1
> all in block 81.3 13.6 19.0 13.3 15.6 18.7 10.6

Table 2: Sentence-level ranking scores for the
WMT10 English-Czech language pair. The “≥
others” and “> others” scores reproduced here
exactly match numbers published in the WMT10
overview paper. A boldfaced score marks the best
system in a given row (besides the reference).

For quality control purposes, the WMT organiz-
ers embed the reference translations as a ‘system’
alongside the actual entries (the idea being that an
annotator clicking randomly would be easy to de-
tect, since they would not consistently rank the
reference ‘system’ highly). This means that the
reference is as likely as any other system to ap-
pear in a block, and when the score for a system A
is computed, pairwise comparisons with the refer-
ence are included.

We use the publicly released human judgments7

to compute the scores of systems participating in
the English-Czech subtask, under both interpreta-
tions. Table 2 reports the scores, with our “≥ oth-
ers” (resp. “> others”) scores reproduced exactly
matching those reported in Table 21 of the WMT
overview paper. (For clarity, Table 2 is abbreviated
to include only the top six systems of twelve.)

Our first suggestion is that both measures could
be reported in future evaluations, since each tells
us something different. The first interpretation
gives partial credit for an MT system, hence distin-
guishing systems from each other at a finer level.
This is especially important for a language pair
with relatively few annotations, since “≥ others”
would produce a larger number of data points (four
per system per block) than “≥ all in block” (one
per system per block). Another advantage of the
official “≥ others” is greater robustness towards
various factors like the number of systems in the
competition, the number of systems in one block
or the presence of the reference in the block (how-
ever, see Section 3).

As for the second interpretation, it helps iden-
tify whether or not a single system (or a small
group of systems) is strongly dominant over the
other systems. For the systems listed in Table 2,

7http://statmt.org/wmt10/results.html
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Figure 1: “≥ all in block” and “≥ others” provide
very similar ordering of systems.

“> all in block” suggests its potential in the con-
text of system combination: CU-TECTO and PC-
TRANS win almost one fifth of the blocks in which
they appear, despite the fact that either a refer-
ence translation or a combination system already
appears alongside them. (See also Table 4 below.)

Also, note that if the ranking task were designed
specifically to cater to the “≥ all in block” inter-
pretation, it would only have two ‘rank’ labels (ba-
sically, “top” and “non-top”). In that case, an-
notators would spend considerably less time per
block than they do now, since all they need to do
is identify the top system(s) per block, without dis-
tinguishing non-top systems from each other.

Even for those interested in distinguishing non-
state-of-the-art systems from each other, we point
out that the “≥ all in block” interpretation ulti-
mately gives a system ordering that is very simi-
lar to that of the official “≥ others” interpretation,
even for the lower-tier systems (Figure 1).

2.2 Annotator Agreement
The WMT10 overview paper reports inter- and
intra-annotator agreement over the pairwise com-
parisons, to show the validity of the evaluation
setup and the “≥ others” metric. Agreement is
quantified using the following formula:

κ =
P (A)− P (E)

1− P (E)
(1)

where P (A) is the proportion of times two anno-
tators are observed to agree, and P (E) is the ex-
pected proportion of times two annotators would
agree by chance. Note that κ has a value of at most
1, with higher κ values indicating higher rates of
agreement. The κ measure is more meaningful

3
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Figure 2: Intra-/inter-annotator agreement
with/without references, across various source
sentence lengths (lengths of n and n + 1 are used
to plot the point at x = n). This figure is based on
all language pairs.

than reporting P (A) as is, since it takes into ac-
count, via P (E), how ‘surprising’ it is for annota-
tors to agree in the first place.

In the context of pairwise comparisons, an
agreement between two annotators occurs when
they compare the same pair of systems (S1,S2),
and both agree on their relative ranking: either
S1 > S2, S1 = S2, or S1 < S2. P (E) is then:

P (E) = P 2(S1>S2)+P 2(S1=S2)+P 2(S1<S2) (2)

In the WMT overview paper, all three cate-
gories are assumed equally likely, giving P (E) =
1
9 + 1

9 + 1
9 = 1

3 . For consistency with the WMT
overview paper, and unless otherwise noted, we
also use P (E) = 1

3 whenever a κ value is re-
ported. (Though see Section 2.2.2 for a discussion
about P (E).)

2.2.1 Observed Agreement for Different
Sentence Lengths

In Figure 2 we plot the κ values across different
source sentence lengths. We see that the inter-
annotator agreement (when excluding references)
is reasonably high only for sentences up to 10
words in length – according to Landis and Koch
(1977), and as cited by the WMT overview paper,
not even ‘moderate’ agreement can be assumed if
κ is less than 0.4. Another popular (and controver-
sial) rule of thumb (Krippendorff, 1980) is more
strict and says that κ < 0.67 is not suitable even
for tentative conclusions.

For this reason, and given that a majority of sen-
tences are indeed more than 10 words in length
(the median is 20 words), we suggest that future
evaluations either include fewer outputs per block,
or divide longer sentences into shorter segments
(e.g. on clause boundaries), so these segments are
more easily and reliably comparable. The latter
suggestions assumes word alignment as a prepro-
cessing and presenting the annotators the context
of the judged segment.

2.2.2 Estimating P (E), the Expected
Agreement by Chance

Several agreement measures (usually called kap-
pas) were designed based on the Equation 1 (see
Artstein and Poesio (2008) and Eugenio and Glass
(2004) for an overview and a discussion). Those
measures differ from each other in how to de-
fine the individual components of Equation 2, and
hence differ in what the expected agreement by
chance (P (E)) would be:8

• The S measure (Bennett et al., 1954) assumes
a uniform distribution over the categories.

• Scott’s π (Scott, 1955) estimates the distribu-
tion empirically from actual annotation.

• Cohen’s κ (Cohen, 1960) estimates the dis-
tribution empirically as well, and further as-
sumes a separate distribution for each anno-
tator.

Given that the WMT10 overview paper assumes
that the three categories (S1 > S2, S1 = S2, and
S1 < S2) are equally likely, it is using the S mea-
sure version of Equation 1, though it does not ex-
plicitly say so – it simply calls it “the kappa coef-
ficient” (K).

Regardless of what the measure should be
called, we believe that the uniform distribution it-
self is not appropriate, even though it seems to
model a “random clicker” adequately. In partic-
ular, and given the design of the ranking inter-
face, 1

3 is an overestimate of P (S1 = S2) for
a random clicker, and should in fact be 1

5 : each
system receives one of five rank labels, and for
two systems to receive the same rank label, there
are only five (out of 25) label pairs that satisfy
S1 = S2. Therefore, with P (S1 = S2) = 1

5 ,
8These three measures were later generalized to more than

two annotators (Fleiss, 1971; Bartko and Carpenter, 1976),
Thus, without loss of generality, our examples involve two
annotators.
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“≥ Others” S π

Inter incl. ref. 0.487 0.454
excl. ref. 0.439 0.403

Intra incl. ref. 0.633 0.609
excl. ref. 0.601 0.575

Table 3: Summary of two variants of kappa: S
(or K as it is reported in the WMT10 paper) and
our proposed Scott’s π. We report inter- vs. intra-
annotator agreement and collected from all com-
parisons (“incl. ref.”) vs. collected only from
comparisons without the reference (“excl. ref.”)
because it is generally easier to agree that the ref-
erence is better than the other systems. This table
is based on all language pairs.

we have P (S1 > S2) = P (S1 < S2) = 2
5 , and

therefore P (E) = 0.36 rather than 0.333.
Taking the discussion a step further, we actually

advocate following the idea of Scott’s π, whereby
the distribution of each category is estimated em-
pirically from the actual annotation, rather than
assuming a random annotator – these frequencies
are easy to compute, and reflect a more meaning-
ful P (E).9

Under this interpretation, P (S1 = S2) is cal-
culated to be 0.168, reflecting the fraction of pair-
wise comparisons that correspond to a tie. (Note
that this further supports the claim that setting
P (S1 = S2) = 1

3 for a random clicker, as used
in the WMT overview paper, is an overestimate.)
This results in P (E) = 0.374, yielding, for in-
stance, π = 0.454 for “≥ others” inter-annotator
agreement, somewhat lower than κ = 0.487 (re-
ported in Table 3).

We do note that the difference is rather small,
and that our aim is to be mathematically sound
above all. Carefully defining P (E) would be im-
portant when comparing kappas across different
tasks with different P (E), or when attempting
to satisfy certain thresholds (as the cited 0.4 and
0.67). Furthermore, if one is interested in mea-
suring agreement for individual annotators, such
as identifying those who have unacceptably low
intra-annotator agreement, the question of P (E) is
quite important, since annotation behavior varies
noticeably from one annotator to another. A ‘con-
servative’ annotator who prefers to rank systems
as being tied most of the time would have a high

9We believe that P (E) should not reflect the chance that
two random annotators would agree, but the chance that two
actual annotators would agree randomly. The two sound sub-
tly related but are actually quite different.

P (E), whereas an annotator using ties moderately
would have a low P (E). Hence, two annotators
with equal agreement rates (P (A)) are not neces-
sarily equally proficient, since their P (E) might
differ considerably.10

2.3 The ≥ variant vs. the > variant

Even within the same interpretation of how sys-
tems could be scored, there is a question of
whether or not to reward ties. The overview paper
reports both variants of its measure, but does not
note that there are non-trivial differences between
the two orderings. Compare for example the “≥
others” ordering vs. the “> others” ordering of
CU-BOJAR and PC-TRANS (Table 2), showing an
unexpected swing of 7.9%:

≥ others > others
CU-BOJAR 65.6 45.0
PC-TRANS 62.1 49.4

CU-BOJAR seems better under the≥ variant, but
loses out when only strict wins are rewarded. The-
oretically, this could be purely due to chance, but
the total number of pairwise comparisons in “≥
others” is relatively large (about 1,500 pairwise
comparisons for each system), and ought to can-
cel such effects.

A similar pattern could be seen under the “all in
block” interpretation as well (e.g. for CU-TECTO

and ONLINEB). Table 4 documents this effect by
looking at how often a system is the sole winner
of a block. Comparing PC-TRANS and CU-BOJAR

again, we see that PC-TRANS is up there with CU-
TECTO and DCU-COMBO as the most frequent sole
winners, winning 71 blocks, whereas CU-BOJAR

is the sole winner of only 53 blocks. This is in
spite of the fact that PC-TRANS actually appeared
in slightly fewer blocks than CU-BOJAR (385 vs.
401).

One possible explanation is that the two vari-
ants (“≥” and “>”) measure two subtly different
things about MT systems. Digging deeper into Ta-
ble 2’s values, we find that CU-BOJAR is tied with
another system 65.6 − 45.0 = 20.4% of the time,
while PC-TRANS is tied with another system only
62.1− 49.4 = 12.7% of the time. So it seems that
PC-TRANS’s output is noticeably different from
another system more frequently than CU-BOJAR,
which reduces the number of times that annotators

10Who’s more impressive: a psychic who correctly pre-
dicts the result of a coin toss 50% of the time, or a psychic
who correctly predicts the result of a die roll 50% of the time?
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Blocks Sole Winner
305 Reference

73 CU-TECTO
71 PC-TRANS
70 DCU-COMBO
57 RWTH-COMBO
54 ONLINEB
53 CU-BOJAR
46 EUROTRANS
41 UEDIN
41 UPV-COMBO

175 One of eight other systems
409 No sole winner

1395 Total English-to-Czech Blocks

Table 4: A breakdown of the 1,395 blocks for the
English-Czech task, according to which system (if
any) is the sole winner. On average, a system ap-
pears in 388 blocks.

mark PC-TRANS as tied with another system.11 In
that sense, the “≥” ranking is hurting PC-TRANS,
since it does not benefit from its small number of
ties. On the other hand, the “>” variant would not
reward CU-BOJAR for its large number of ties.

The “≥ others” score may be artificially boosted
if several very similar systems (and therefore
likely to be “tied”) take part in the evaluation.12

One possible solution is to completely disregard
ties and calculate the final score as wins

wins+losses . We
recommend to use this score instead of “≥ others”
( wins+ties

wins+ties+losses ) which is biased toward often tied
systems, and “> others” ( wins

wins+ties+losses ) which is
biased toward systems with few ties.

2.4 Surprise? Does the Number of
Evaluations Affect a System’s Score?

When examining the system scores for the
English-Czech task, we noticed a surprising pat-
tern: it seemed that the more times a system is
sampled to be judged, the lower its “≥ others”
score (“≥ all in block” behaving similarly). A
scatter plot of a system’s score vs. the number of
blocks in which it appears (Figure 3) makes the
pattern obvious.

We immediately wondered if the pattern holds
in other language pairs. We measured Pearson’s
correlation coefficient within each language pair,
reported in Table 5. As it turns out, English-

11Indeed, PC-TRANS is a commercial system (manually)
tuned over a long period of time and based on resources very
different from what other participants in WMT use.

12In the preliminary WMT11 results, this seems to hap-
pen to four Moses-like systems (UEDIN, CU-BOJAR, CU-
MARECEK and CU-TAMCHYNA) which have better “≥ oth-
ers” score but worse “> others” score than CU-TECTO.

Correlation of Block Count
Source Target vs. “≥ Others”
English Czech -0.558
English Spanish -0.434
Czech English -0.290
Spanish English -0.240
English French -0.227
English German -0.161
French English -0.024
German English 0.146
Overall -0.092

Table 5: Pearson’s correlation between the num-
ber of blocks where a system was ranked and the
system’s “≥ others” score. (The reference itself is
not included among the considered systems).
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Figure 3: A plot of “≥ others” system score vs.
times judged, for English-Czech.

Czech happened to be the one language pair where
the ‘correlation’ is strongest, with only English-
Spanish also having a somewhat strong correla-
tion. Overall, though, there is a consistent trend
that can be seen across the language pairs. Could
it really be the case that the more often a system is
judged, the worse its score gets?

Examining plots for the other language pairs
makes things a bit clearer. Consider for example
the plot for English-Spanish (Figure 4). As one
would hope, the data points actually come together
to form a cloud, indicating a lack of correlation.
The reason that a hint of a correlation exists is the
presence of two outliers in the bottom right cor-
ner. In other words, the very worst systems are,
indeed, the ones judged quite often. We observed
this pattern in several other language pairs as well.

The correlation naturally does not imply cau-
sation. We are still not sure how to explain the
artifact. A subtle possibility lies in the MTurk
interface: annotators have the choice to accept a
HIT or skip it before actually providing their la-

6



 10

 20

 30

 40

 50

 60

 70

 80

 130  135  140  145  150  155  160  165  170

>
=

 O
th

er
s

Number of judgments

cambridge

cmu-heafield-combo

cu-zeman

dcu

dfkijhu

koc

koc-combo

onlineA
onlineB

rwth-combo

sfu

uedinupb-combo

upv upv-nnlm

a*x+b

Figure 4: A plot of “≥ others” system score vs.
times judged, for English-Spanish.

bels. It might be the case that some annotators are
more willing to accept HITs when there is an ob-
viously poor system (since that would make their
task somewhat easier), and who are more prone
to skipping HITs where the systems seem hard to
distinguish from each other. So there might be a
causation effect after all, but in the reverse order:
a system gets judged more often if it is a bad sys-
tem.13 A suggestion from the reviewers is to run a
pilot annotation with deliberate inclusion of a poor
system among the ranked ones.

2.5 Issues of Pairwise Judgments

The WMT overview paper also provides pairwise
system comparisons: each cell in Table 6 indicates
the percentage of pairwise comparisons between
the two systems where the system in the column
was ranked better (>) than the system in the row.
For instance, there are 81 ranking responses where
both CU-TECTO and CU-BOJAR were present and
indeed ranked14 among the 5 systems in the block.
In 37 (45.7%) of the cases, CU-TECTO was ranked
better, in 29 (35.8%), CU-BOJAR was ranked better
and there was a tie in the remaining 15 (18.5%)
cases. The ties are not explicitly shown in Table 6
but they are implied by the total of 100%. The cell
is in bold where there was a win in the pairwise
comparison, so 45.7 is bold in our example.

An interesting “discrepancy” in Table 6 is that
CU-TECTO wins pairwise comparisons with CU-
BOJAR and UEDIN but it scores worse than them
in the official “≥ others”, cf. Table 2. Simi-
larly, UEDIN outperformed ONLINEB in the pair-

13No pun intended!
14The users sometimes did not fill any rank for a system.

Such cases are ignored.
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REF - 4.3 4.3 5.1 3.8 3.6 2.3
CU-BOJAR 87.1 - 45.7 28.3 44.4 39.5 41.1
CU-TECTO 88.2 35.8 - 38.0 55.8 44.0 36.0
EUROTRANS 88.5 60.9 46.8 - 50.7 53.8 48.6
ONLINEB 91.2 31.1 29.1 32.8 - 43.8 39.3
PC-TRANS 88.0 45.3 42.9 28.6 49.3 - 36.6
UEDIN 94.3 39.3 44.2 31.9 32.1 49.5 -

Table 6: Pairwise comparisons extracted from
sentence-level rankings of the WMT10 English-
Czech News Task. Re-evaluated to reproduce the
numbers published in WMT10 overview paper.
Bold in column A and row B means that system
A is pairwise better than system B.

wise comparisons but it was ranked worse in both
> and ≥ official comparison.

In the following, we focus on the CU-BOJAR

(B) and CU-TECTO (T) pair because they are in-
teresting competitors on their own. They both use
the same parallel corpus for lexical mapping but
operate very differently: CU-BOJAR is based on
Moses while CU-TECTO transfers at a deep syn-
tactic layer and generates target text which is more
or less grammatically correct but suffers in lexical
choice.

2.5.1 Different Set of Sentences
The mismatch in the outcomes of “≥ others” and
pairwise comparisons could be caused by different
set of sentences. The pairwise ranking is collected
from the set of blocks where both CU-BOJAR and
CU-TECTO appeared (and were indeed ranked).
Each of the systems however competes in other
blocks as well, which contributes to the official “≥
others”.

The set of sentences underlying the comparison
is very different and more importantly that the ba-
sis for pairwise comparisons is much smaller than
the basis of the official “≥ others” interpretation.
The outcome of the official interpretation however
depends on the random set of systems your system
was compared to. In our case, it is impossible to
distinguish, whether CU-TECTO had just bad luck
on sentences and systems it was compared to when
CU-BOJAR was not in the block and/or whether the
81 blocks do not provide a reliable picture.

2.5.2 Pairwise Judgments Unreliable
To complement WMT10 rankings for the two sys-
tems and avoid the possible lower reliability due
to 5-fold ranking instead of a targeted compari-
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Author of B says:
both both

B>T T>B fine wrong Total

T
sa

ys
:

B>T 9 - 1 1 11
T>B 2 13 - 3 18
both fine 2 - 2 3 7
both wrong 10 5 1 11 27
Total 23 18 4 18 63

Table 7: Additional annotation of 63 CU-BOJAR

(B) vs. CU-TECTO (T) sentences by two annota-
tors.

Better Both
Annotator B T fine wrong
A 24 23 5 11
C 10 12 5 36
D 32 20 2 9
M 11 18 7 27
O 23 18 4 18
Z 25 27 2 9
Total 125 118 25 110

Table 8: Blurry picture of pairwise rankings of
CU-BOJAR vs. CU-TECTO. Wins in bold.

son, we asked the main authors of both CU-BOJAR

and CU-TECTO to carry out a blind pairwise com-
parison on the exact set of 63 sentences appearing
across the 81 blocks in which both systems were
ranked. As the totals in Table 7 would suggest,
each author unwittingly recognized his system and
slightly preferred it. The details however reveal a
subtler reason for the low agreement: one of the
annotators was less picky about MT quality and
accepted 10+5 sentences completely rejected by
the other annotator. In total, these two annotators
agreed on 9 + 13 + 2 + 11 = 35 (56%) of cases
and their pairwise κ is 0.387.

A further annotation of these 63 sentences by
four more people completes the blurry picture:
the pairwise κ for each pair of our five annota-
tors ranges from 0.242 to 0.615 with the aver-
age 0.407±0.106. The multi-annotator κ (Fleiss,
1971) is 0.394 and all six annotators agree on a
single label only in 24% of cases. The agree-
ment is not better even if we merge the categories
“Both fine” and “Both wrong” into a single one:
The pairwise κ ranges from 0.212 to 0.620 with
the average 0.405±0.116, the multi-annotator κ is
0.391. Individual annotations are given in Table 8.

Naturally, the set of these 63 sentences is not a
representative sample. Even if one of the systems

SRC It’s not completely ideal.
REF Nenı́ to úplně ideálnı́. Ranks
PC-TRANS To nenı́ úplně ideálnı́. 2 5
CU-BOJAR To nenı́ úplně ideálnı́. 5 4

Table 9: Two rankings by the same annotator.

SRC FCC awarded a tunnel in Slovenia for 64 million
REF FCC byl přidělen tunel ve Slovinsku za 64 milionů
Gloss FCC was awarded a tunnel in Slovenia for 64 million

HYP1 FCC přidělil tunel ve Slovinsku za 64 miliónů
HYP2 FCC přidělila tunel ve Slovinsku za 64 milionů
Gloss FCC awardedmasc

/fem a tunnel in Slovenia for 64 million

Figure 5: A poor reference translation confuses
human judges. The SRC and REF differ in the ac-
tive/passive form, attributing completely different
roles to “FCC”.

actually won, such an observation could not have
been generalized to other test sets. The purpose
of the exercise was to check whether we are at all
able to agree which of the systems translates this
specific set of sentences better. As it turns out,
even a simple pairwise ranking can fail to pro-
vide an answer because different annotators sim-
ply have different preferences.

Finally, Table 9 illustrates how poor the
WMT10 rankings can be. The exact same string
produced by two systems was ranked differently
each time – by the same annotator. (The hypothe-
sis is a plausible translation, only the information
structure of the sentence is slightly distorted so the
translation may not fit well it the surrounding con-
text.)

3 The Impact of the Reference
Translation

3.1 Bad Reference Translations

Figure 5 illustrates the impact of poor reference
translation on manual ranking as carried out in
Section 2.5.2. Of our six independent annotations,
three annotators marked the hypotheses as “both
fine” given the match with the source and three
annotators marked them as “both wrong” due to
the mismatch with the reference. Given the con-
struction of the WMT test set, this particular sen-
tence comes from a Spanish original and it was
most likely translated directly to both English and
Czech.
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Correlation of
Source Target Reference vs. “≥ others”
Spanish English 0.341
English French 0.164
French English 0.098
German English 0.088
Czech English -0.041
English Czech -0.145
English Spanish -0.411
English German -0.433
Overall -0.107

Table 10: Pearson’s correlation of the relative per-
centage of blocks where the reference was in-
cluded in the ranking and the final “≥ others”
of the system (the reference itself is not included
among the considered systems).
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Figure 6: Correlation of the presence of the ref-
erence and the official “≥ others” for English-
German evaluation.

3.2 Reference Can Skew Pairwise
Comparisons

The exact set of competing systems in each 5-fold
ranking in WMT10 evaluation is random. The “≥
others” however is affected by this: a system may
suffer more losses if often compared to the refer-
ence, and similarly it may benefit from being com-
pared to a poor competitor.

To check this, we calculate the correlation be-
tween the relative presence of the reference among
the blocks where a system was judged and the
system’s official “≥ others” score. Across lan-
guage, there is almost no correlation (Pearson’s
coefficient: −0.107). However, for some language
pairs, the correlation is apparent, as listed in Ta-
ble 10. Negative correlation means: the more of-
ten the system was compared along with the refer-
ence, the worse the score of the system.

Figure 6 plots the extreme case of English-
German evaluation.

Source Target Min Avg±StdDev Max
English Czech 40 65±19 115
English French 40 66±17 110
English German 10 40±16 80
English Spanish 30 54±15 85
Czech English 5 38±13 60
French English 5 37±15 70
German English 10 32±12 65
Spanish English 35 56±11 70

Table 11: The number of post-edits per system for
each language pair to complement Figure 3 (page
12) of the WMT10 overview paper.

4 Other WMT10 Tasks

4.1 Blind Post-Editing Unreliable
WMT often carries out one more type of manual
evaluation: “Editing the output of systems without
displaying the source or a reference translation,
and then later judging whether edited translations
were correct.” (Callison-Burch et al., 2010). We
call the evaluation “blind post-editing” for short.

We feel that blind post-editing is more infor-
mative than system ranking. First, it constitutes
a unique comprehensibility test, and after all, MT
should aim at comprehensible output in the first
place. Second, blind post-editing can be further
analyzed to search for specific errors in system
output, see Bojar (2011) for a preliminary study.

Unfortunately, the amount of post-edits col-
lected in WMT10 varied a lot across systems and
language pairs. Table 11 provides the minimum,
average and maximum number of post-edits of
outputs of a particular MT system. We see that
e.g. while English-to-Czech has many judgments
of this kind per system, Czech-to-English is one of
the worst supported directions.

It is not surprising that conclusions based on 5
observations can be extremely deceiving. For in-
stance CU-BOJAR seems to produce 60% of out-
puts comprehensible (and thus wins in Figure 3 on
page 12 in the WMT overview paper), far better
than CMU. This is not in line with the ranking re-
sults where both rank equally (Table 5 on page 10
in the WMT overview paper). In fact, CU-BOJAR

was post-edited 5 times and 3 of these post-edits
were acceptable while CMU was post-edited 30
times and 5 of these post-edits were acceptable.

4.2 A Remark on System Combination Task
One results of WMT10 not observed in previous
years was that system combinations indeed per-
formed better than individual systems. Previous
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Dev Set Test Set
Sententes 455 2034 Diff
GOOGLE 17.32±1.25 16.76±0.60 ↘
BOJAR 16.00±1.15 16.90±0.61 ↗
TECTOMT 11.48±1.04 13.19±0.58 ↗
PC-TRANS 10.24±0.92 10.84±0.46 ↗
EUROTRAN 9.64±0.92 11.04±0.48 ↗

Table 12: BLEU scores of sample five systems in
English-to-Czech combination task.

years failed to show this clearly, because Google
Translate used to be included among the combined
systems, making it hard to improve. In WMT10,
Google Translate was excluded from system com-
bination task (except for translations involving
Czech, where it was accidentally included).

Our Table 12 provides an additional explanation
why the presence of Google among combined sys-
tems leads to inconclusive results. While the test
set was easier (based on BLEU) than the develop-
ment set for most systems, it was much harder for
Google. All system combinations were thus likely
to overfit and select Google n-grams most often.
Without access to Google powerful language mod-
els, the combination systems were likely to under-
perform Google in final fluency of the output.

5 Further Issues of Manual Evaluation

We have already seen that the comprehensibility
test by blind post-editing provides a different pic-
ture of the systems than the official ranking. Berka
et al. (2011) introduced a third “quiz-based evalu-
ation”. The quiz-like evaluation used the English-
to-Czech WMT10 systems, applied to different
texts: short text snippets were translated and an-
notators were asked to answer three yes/no ques-
tions complementing each snippet. The order of
the systems was rather different from the official
WMT10 results: CU-TECTO won the quiz-based
evaluation despite being the fourth in WMT10.

Because the texts were different in WMT10 and
the quiz-based evaluation, we asked a small group
of annotators to apply the ranking technique on the
text snippets. While not exactly comparable to the
WMT10 ranking, the WMT10 ranking was con-
firmed: CU-TECTO was again among the lowest-
scoring systems and Google won the ranking.

Bojar (2011) applies the error-flagging manual
evaluation by Vilar et al. (2006) to four systems
of WMT09 English-to-Czech task. Again, the
overall order of the systems is somewhat differ-
ent when ranked by the number of errors flagged.

Mireia Farrús and Fonollosa (2010) use a coarser
but linguistically motivated error classification for
Catalan-Spanish and suggest that differences in
ranking are caused by annotators treating some
types of errors as more serious.

In short, different types of manual evaluations
lead to different results even when identical sys-
tems and texts are evaluated.

6 Conclusion

We took a deeper look at the results of the WMT10
manual evaluation, and based on our observations,
we have some recommendations for future evalu-
ations:

• We propose to use a score which ignores
ties instead of the official “≥ others” metric
which rewards ties and “> others” which pe-
nalizes ties. Another score, “≥ all in block”,
could help identify which systems are more
dominant.

• Inter-annotator agreement decreases dramat-
ically with sentence length; we recommend
including fewer sentences per block, at least
for longer sentences.

• We suggest agreement be measured based on
an empirical estimate of P (E), or at least us-
ing a more correct random clicking P (E) =
0.36.

• There is evidence of a negative correlation
between the number of times a system is
judged and its score; we recommend a deeper
analysis of this issue.

• We recommend the reference be sampled at
a lower rate than other systems, so as to play
a smaller role in the evaluation. We also rec-
ommend better quality control over the pro-
duction of the references.

And to the readers of the WMT overview paper,
we point out:

• Pairwise comparisons derived from 5-fold
rankings are sometimes unreliable. Even a
targeted pairwise comparison of two systems
can shed little light as to which is superior.

• The acceptability of post-edits is sometimes
very unreliable due to the low number of ob-
servations.
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Abstract

Reordering is a major challenge for machine
translation between distant languages. Recent
work has shown that evaluation metrics that
explicitly account for target language word or-
der correlate better with human judgments of
translation quality. Here we present a simple
framework for evaluating word order indepen-
dently of lexical choice by comparing the sys-
tem’s reordering of a source sentence to ref-
erence reordering data generated from manu-
ally word-aligned translations. When used to
evaluate a system that performs reordering as
a preprocessing step our framework allows the
parser and reordering rules to be evaluated ex-
tremely quickly without time-consuming end-
to-end machine translation experiments. A
novelty of our approach is that the translations
used to generate the reordering reference data
are generated in an alignment-oriented fash-
ion. We show that how the alignments are
generated can significantly effect the robust-
ness of the evaluation. We also outline some
ways in which this framework has allowed our
group to analyze reordering errors for English
to Japanese machine translation.

1 Introduction

Statistical machine translation systems can perform
poorly on distant language pairs such as English
and Japanese. Reordering errors are a major source
of poor or misleading translations in such systems
(Isozaki et al., 2010). Unfortunately the stan-
dard evaluation metrics used by the statistical ma-
chine translation community are relatively insensi-

tive to the long-distance reordering phenomena en-
countered when translating between such languages
(Birch et al., 2010).

The ability to rapidly evaluate the impact of
changes on a system can significantly accelerate the
experimental cycle. In a large statistical machine
translation system, we should ideally be able to ex-
periment with separate components without retrain-
ing the complete system. Measures such as per-
plexity have been successfully used to evaluate lan-
guage models independently in speech recognition
eliminating some of the need for end-to-end speech
recognition experiments. In machine translation,
alignment error rate has been used with some mixed
success to evaluate word-alignment algorithms but
no standard evaluation frameworks exist for other
components of a machine translation system (Fraser
and Marcu, 2007).

Unfortunately, BLEU (Papineni et al., 2001) and
other metrics that work with the final output of a ma-
chine translation system are both insensitive to re-
ordering phenomena and relatively time-consuming
to compute: changes to the system may require the
realignment of the parallel training data, extraction
of phrasal statistics and translation of a test set. As
training sets grow in size, the cost of end-to-end ex-
perimentation can become significant. However, it is
not clear that measurements made on any single part
of the system will correlate well with human judg-
ments of the translation quality of the whole system.

Following Collins et al. (2005a) and Wang (2007),
Xu et al. (2009) showed that when translating from
English to Japanese (and to other SOV languages
such as Korean and Turkish) applying reordering as
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a preprocessing step that manipulates a source sen-
tence parse tree can significantly outperform state-
of-the-art phrase-based and hierarchical machine
translation systems. This result is corroborated by
Birch et al. (2009) whose results suggest that both
phrase-based and hierarchical translation systems
fail to capture long-distance reordering phenomena.

In this paper we describe a lightweight framework
for measuring the quality of the reordering compo-
nents in a machine translation system. While our
framework can be applied to any translation sys-
tem in which it is possible to derive a token-level
alignment from the input source tokens to the out-
put target tokens, it is of particular practical interest
when applied to a system that performs reordering
as a preprocessing step (Xia and McCord, 2004). In
this case, as we show, it allows for extremely rapid
and sensitive analysis of changes to parser, reorder-
ing rules and other reordering components.

In our framework we evaluate the reordering pro-
posed by a system separately from its choice of tar-
get words by comparing it to a reference reordering
of the sentence generated from a manually word-
aligned translation. Unlike previous work (Isozaki
et al., 2010), our approach does not rely on the sys-
tem’s output matching the reference translation lexi-
cally. This makes the evaluation more robust as there
may be many ways to render a source phrase in the
target language and we would not wish to penalize
one that simply happens not to match the reference.

In the next section we review related work on
reordering for translation between distant language
pairs and automatic approaches to evaluating re-
ordering in machine translation. We then describe
our evaluation framework including certain impor-
tant details of how our reference reorderings were
created. We evaluate the framework by analyz-
ing how robustly it is able to predict improvements
in subjective translation quality for an English to
Japanese machine translation system. Finally, we
describe ways in which the framework has facili-
tated development of the reordering components in
our system.

2 Related Work

2.1 Evaluating Reordering

The ability to automatically evaluate machine trans-
lation output has driven progress in statistical ma-
chine translation; however, shortcomings of the
dominant metric, BLEU (Papineni et al., 2001) , par-
ticularly with respect to reordering, have long been
recognized (Callison-burch and Osborne, 2006).
Reordering has also been identified as a major fac-
tor in determining the difficulty of statistical ma-
chine translation between two languages (Birch et
al., 2008) hence BLEU scores may be most unreli-
able precisely for those language pairs for which sta-
tistical machine translation is most difficult (Isozaki
et al., 2010).

There have been many results showing that met-
rics that account for reordering are better correlated
with human judgements of translation quality (Lavie
and Denkowski, 2009; Birch and Osborne, 2010;
Isozaki et al., 2010). Examples given in Isozaki et
al. (2010) where object and subject arguments are
reversed in a Japanese to English statistical machine
translation system demonstrate how damaging re-
ordering errors can be and it should therefore not
come as a surprise that word order is a strong pre-
dictor of translation quality; however, there are other
advantages to be gained by focusing on this specific
aspect of the translation process in isolation.

One problem for all automatic evaluation metrics
is that multiple equally good translations can be con-
structed for most input sentences and typically our
reference data will contain only a small fraction of
these. Equally good translations for a sentence may
differ both in terms of lexical choice and word or-
der. One of the potential advantages of designing a
metric that looks only at word order, is that it may,
to some extent, factor out variability along the di-
mension of the lexical choice. Previous work on au-
tomatic evaluation metrics that focus on reordering,
however, has not fully exploited this.

The evaluation metrics proposed in Isozaki et al.
(2010) compute a reordering score by comparing
the ordering of unigrams and bigrams that appear
in both the system’s translation and the reference.
These scores are therefore liable to overestimate
the reordering quality of sentences that were poorly
translated. While Isozaki et al. (2010) does propose
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a work-around to this problem which combines the
reordering score with a lexical precision term, this
clearly introduces a bias in the metric whereby poor
translations are evaluated primarily on their lexical
choice and good translations are evaluated more on
the basis of their word order. In our experience
word order is particularly poor in those sentences
that have the lowest lexical overlap with reference
translations; hence we would like to be able to com-
pute the quality of reordering in all sentences inde-
pendently of the quality of their lexical choice.

Birch and Osborne (2010) are closer to our ap-
proach in that they use word alignments to induce a
permutation over the source sentence. They com-
pare a source-side permutation generated from a
word alignment of the reference translation with one
generated from the system’s using various permuta-
tion distances. However, Birch and Osborne (2010)
only demonstrate that these metrics are correlated
with human judgements of translation quality when
combined with BLEU score and hence take lexical
choice into account.

Birch et al. (2010) present the only results we
are aware of that compute the correlation be-
tween human judgments of translation quality and
a reordering-only metric independently of lexical
choice. Unfortunately, the experimental set-up there
is somewhat flawed. The authors ‘undo’ reorderings
in their reference translations by permuting the ref-
erence tokens and presenting the permuted transla-
tions to human raters. While many machine trans-
lation systems (including our own) assume that re-
ordering and translation can be factored into sepa-
rate models, e.g. (Xia and McCord, 2004), and per-
form these two operations in separate steps, the lat-
ter conditioned on the former, Birch et al. (2010) are
making a much stronger assumption when they per-
form these simulations: they are assuming that lexi-
cal choice and word order are entirely independent.
It is easy to find cases where this assumption does
not hold and we would in general be very surprised
if a similar change in the reordering component in
our system did not also result in a change in the lex-
ical choice of the system; an effect which their ex-
periments are unable to model.

Another minor difference between our evaluation
framework and (Birch et al., 2010) is that we use
a reordering score that is based on the minimum

number of chunks into which the candidate and ref-
erence permutations can be concatenated similar to
the reordering component of METEOR (Lavie and
Denkowski, 2009). As we show, this is better cor-
related with human judgments of translation quality
than Kendall’s τ . This may be due to the fact that
it counts the number of ‘jumps’ a human reader has
to make in order to parse the system’s order if they
wish to read the tokens in the reference word order.
Kendall’s τ on the other hand penalizes every pair
of words that are in the wrong order and hence has
a quadratic (all-pairs) flavor which in turn might ex-
plain why Birch et al. (2010) found that the square-
root of this quantity was a better predictor of trans-
lation quality.

2.2 Evaluation Reference Data

To create the word-aligned translations from which
we generate our reference reordering data, we used
a novel alignment-oriented translation method. The
method (described in more detail below) seeks
to generate reference reorderings that a machine
translation system might reasonably be expected to
achieve. Fox (2002) has analyzed the extent to
which translations seen in a parallel corpus can be
broken down into clean phrasal units: they found
that most sentence pairs contain examples of re-
ordering that violate phrasal cohesion, i.e. the cor-
responding words in the target language are not
completely contiguous or solely aligned to the cor-
responding source phrase. These reordering phe-
nomena are difficult for current statistical transla-
tion models to learn directly. We therefore deliber-
ately chose to create reference data that avoids these
phenomena as much as possible by having a single
annotator generate both the translation and its word
alignment. Our word-aligned translations are cre-
ated with a bias towards simple phrasal reordering.

Our analysis of the correlation between reorder-
ing scores computed on reference data created from
such alignment-oriented translations with scores
computed on references generated from standard
professional translations of the same sentences sug-
gests that the alignment-oriented translations are
more useful for evaluating a current state-of-the-art
system. We note also that while prior work has con-
jectured that automatically generated alignments are
a suitable replacement for manual alignments in the
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context of reordering evaluation (Birch et al., 2008),
our results suggest that this is not the case at least for
the language pair we consider, English-Japanese.

3 A Lightweight Reordering Evaluation

We now present our lightweight reordering evalu-
ation framework; this consists of (1) a method for
generating reference reordering data from manual
word-alignments; and (2) a reordering metric for
scoring a sytem’s proposed reordering against this
reference data; and (3) a stand-alone evaluation tool.

3.1 Generating Reference Reordering Data

We follow Birch and Osborne (2010) in using ref-
erence reordering data that consists of permuations
of source sentences in a test set. We generate these
from word alignments of the source sentences to
reference translations. Unlike previous work, how-
ever, we have the same annotator generate both the
reference translation and the word alignment. We
also explicitly encourage the translators to generate
translations that are easy to align even if this does
result in occasionally unnatural translations. For in-
stance in English to Japanese translation we require
that all personal pronouns are translated; these are
often omitted in natural Japanese. We insist that
all but an extremely small set of words (articles and
punctuation for English to Japanese) be aligned. We
also disprefer non-contiguous alignments of a sin-
gle source word and require that all target words be
aligned to at least one source token. In Japanese
this requires deciding how to align particles that
mark syntactic roles; we choose to align these to-
gether with the content word (jiritsu-go) of the cor-
responding constituent (bunsetsu). Asking annota-
tors to translate and perform word alignment on the
same sentence in a single session does not necessar-
ily increase the annotation burden over stand-alone
word alignment since it encourages the creation of
alignment-friendly translations which can be aligned
more rapidly. Annotators need little special back-
ground or training for this task, as long as they can
speak both the source and target languages.

To generate a permutation from word alignments
we rank the source tokens by the position of the first
target token to which they are aligned. If multiple
source tokens are aligned to a single target word

or span we ignore the ordering within these source
spans; this is indicated by braces in Table 2. We
place unaligned source words immediately before
the next aligned source word or at the end of the
sentence if there is none. Table 2 shows the ref-
erence reordering derived from various translations
and word alignments.

3.2 Fuzzy Reordering Score
To evaluate the quality of a system’s reordering
against this reference data we use a simple reorder-
ing metric related to METEOR’s reordering compo-
nent (Lavie and Denkowski, 2009) . Given the refer-
ence permutation of the source sentence σref and the
system’s reordering of the source sentence σsys ei-
ther generated directly by a reordering component or
inferred from the alignment between source and tar-
get phrases used in the decoder, we align each word
in σsys to an instance of itself in σref taking the first
unmatched instance of the word if there is more than
one. We then define C to be the number chunks of
contiguously aligned words. If M is the number of
words in the source sentence then the fuzzy reorder-
ing score is computed as,

FRS(σsys, σref) = 1− C − 1

M − 1
. (1)

This metric assigns a score between 0 and 1 where
1 indicates that the system’s reordering is identical
to the reference. C has an intuitive interpretation as
the number of times a reader would need to jump in
order to read the system’s reordering of the sentence
in the order proposed by the reference.

3.3 Evaluation Tool
While the framework we propose can be applied to
any machine translation system in which a reorder-
ing of the source sentence can be inferred from the
translation process, it has proven particularly use-
ful applied to a system that performs reordering as
a separate preprocessing step. Such pre-ordering
approaches (Xia and McCord, 2004; Collins et al.,
2005b) can be criticized for greedily committing to
a single reordering early in the pipeline but in prac-
tice they have been shown to perform extremely well
on language pairs that require long distance reorder-
ing and have been successfully combined with other
more integrated reordering models (Xu et al., 2009).
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The performance of a parser-based pre-ordering
component is a function of the reordering rules and
parser; it is therefore desirable that these can be eval-
uated efficiently. Both parser and reordering rules
may be evaluated using end-to-end automatic met-
rics such as BLEU score or in human evaluations.
Parsers may also be evaluated using intrinsic tree-
bank metrics such as labeled accuracy. Unfortu-
nately these metrics are either expensive to compute
or, as we show, unpredictive of improvements in hu-
man perceptions of translation quality.

Having found that the fuzzy reordering score pro-
posed here is well-correlated with changes in human
judgements of translation quality, we established a
stand-alone evaluation tool that takes a set of re-
ordering rules and a parser and computes the re-
ordering scores on a set of reference reorderings.
This has become the most frequently used method
for evaluating changes to the reordering component
in our system and has allowed teams working on
parsing, for instance, to contribute significant im-
provements quite independently.

4 Experimental Set-up

We wish to determine whether our evaluation frame-
work can predict which changes to reordering com-
ponents will result in statistically significant im-
provements in subjective translation quality of the
end-to-end system. To that end we created a num-
ber of systems that differ only in terms of reorder-
ing components (parser and/or reordering rules). We
then analyzed the corpus- and sentence-level corre-
lation of our evaluation metric with judgements of
human translation quality.

Previous work has compared either quite separate
systems, e.g. (Isozaki et al., 2010), or systems that
are artificially different from each other (Birch et al.,
2010). There has also been a tendency to measure
corpus-level correlation. We are more interested in
comparing systems that differ in a realistic manner
from one another as would typically be required in
development. We also believe sentence-level cor-
relation is more important than corpus-level corre-
lation since good sentence-level correlation implies
that a metric can be used for detailed analysis of a
system and potentially to optimize it.

4.1 Systems
We carried out all our experiments using a state-of-
the-art phrase-based statistical English-to-Japanese
machine translation system (Och, 2003). Dur-
ing both training and testing, the system reorders
source-language sentences in a preprocessing step
using a set of rules written in the framework pro-
posed by (Xu et al., 2009) that reorder an English
dependency tree into target word order. During de-
coding, we set the reordering window to 4 words.
In addition to the regular distance distortion model,
we incorporate a maximum entropy based lexical-
ized phrase reordering model (Zens and Ney, 2006).
For parallel training data, we use an in-house collec-
tion of parallel documents. These come from vari-
ous sources with a substantial portion coming from
the web after using simple heuristics to identify po-
tential document pairs. We trained our system on
about 300 million source words.

The reordering rules applied to the English de-
pendency tree define a precedence order for the chil-
dren of each head category (a coarse-grained part of
speech). For example, a simplified version of the
precedence order for child labels of a verbal head
HEADVERB is: advcl, nsubj, prep, [other children],
dobj, prt, aux, neg, HEADVERB, mark, ref, compl.

The dependency parser we use is an implementa-
tion of a transition-based dependency parser (Nivre,
2008). The parser is trained using the averaged per-
ceptron algorithm with an early update strategy as
described in Zhang and Clark (2008).

We created five systems using different parsers;
here targeted self-training refers to a training pro-
cedure proposed by Katz-Brown et al. (2011) that
uses our reordering metric and separate reference re-
ordering data to pick parses for self-training: an n-
best list of parses is generated for each English sen-
tence for which we have reference reordering data
and the parse tree that results in the highest fuzzy
reordering score is added to our parser’s training set.
Parsers P3, P4 and P5 differ in how that framework
is applied and how much data is used.

• P1 Penn Treebank, perceptron, greedy search

• P2 Penn Treebank, perceptron, beam search

• P3 Penn Treebank, perceptron, beam search,
targeted self-training on web data
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• P4 Penn Treebank, perceptron, beam search,
targeted self-training on web data

• P5 Penn Treebank, perceptron, beam search,
targeted self-training on web data, case insen-
sitive

We also created five systems using the fifth parser
(P5) but with different sets of reordering rules:

• R1 No reordering

• R2 Reverse reordering

• R3 Head final reordering with reverse reorder-
ing for words before the head

• R4 Head final reordering with reverse reorder-
ing for words after the head

• R5 Superset of rules from (Xu et al., 2009)

Reverse reordering places words in the reverse of the
English order. Head final reordering moves the head
of each dependency after all its children. Rules in R3
and R4 overlap significantly with the rules for noun
and verb subtrees respectively in R5. Otherwise all
systems were identical. The rules in R5 have been
extensively hand-tuned while R1 and R2 are rather
naive. System P5R5 was our best performing system
at the time these experiments were conducted.

We refer to systems by a combination of parser
and reordering rules set identifiers, for instance, sys-
tem P2R5, uses parser P2 with reordering rules R5.
We conducted two subjective evaluations in which
bilingual human raters were asked to judge trans-
lations on a scale from 0 to 6 where 0 indicates
nonsense and 6 is perfect. The first experiment
(Parsers) contrasted systems with different parsers
and the second (Rules) varied the reordering rules.
In each case three bilingual evaluators were shown
the source sentence and the translations produced by
all five systems.

4.2 Meta-analysis

We perform a meta-analysis of the following metrics
and the framework by computing correlations with
the results of these subjective evaluations of transla-
tion quality:

1. Evaluation metrics: BLEU score on final trans-
lations, Kendall’s τ and fuzzy reordering score
on reference reordering data

2. Evaluation data: both manually-generated and
automatically-generated word alignments on
both standard professional and alignment-
oriented translations of the test sentences

The automatic word alignments were generated us-
ing IBM Model 1 in order to avoid directional biases
that higher-order models such as HMMs have.

Results presented in square parentheses are 95
percent confidence intervals estimated by bootstrap
resampling on the test corpus (Koehn, 2004).

Our test set contains 500 sentences randomly
sampled from the web. We have both professional
and alignment-friendly translations for these sen-
tences. We created reference reorderings for this
data using the method described in Section 3.1.
The lack of a broad domain and publically avail-
able Japanese test corpus makes the use of this non-
standard test set unfortunately unavoidable.

The human raters were presented with the source
sentence, the human reference translation and the
translations of the various systems simultaneously,
blind and in a random order. Each rater was allowed
to rate no more than 3 percent of the sentences and
three ratings were elicited for each sentence. Rat-
ings were a single number between 0 and 6 where 0
indicates nonsense and 6 indicates a perfectly gram-
matical translation of the source sentence.

5 Results

Table 2 shows four reference reorderings generated
from various translations and word alignments. The
automatic alignments are significantly sparser than
the manual ones but in these examples the refer-
ence reorderings still seem reasonable. Note how the
alignment-oriented translation includes a pronoun
(translation for ‘I’) that is dropped in the slightly
more natural standard translation to Japanese.

Table 1 shows the human judgements of transla-
tion quality for the 10 systems (note that P5R5 ap-
pears in both experiments but was scored differently
as human judgments are affected by which other
translations are present in an experiment). There is a
clear ordering of the systems in each experiment and
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1. Parsers Subjective Score (0-6) 2. Rules Subjective Score (0-6)
P1R5 2.173 [2.086, 2.260] P5R1 1.258 [1.191, 1.325]
P2R5 2.320 [2.233, 2.407] P5R2 1.825 [1.746, 1.905]
P3R5 2.410 [2.321, 2.499] P5R3 1.849 [1.767, 1.931]
P4R5 2.453 [2.366, 2.541] P5R4 2.205 [2.118, 2.293]
P5R5 2.501 [2.413, 2.587] P5R5 2.529 [2.441, 2.619]

Table 1: Human judgements of translation quality for 1. Parsers and 2. Rules.

Metric Sentence-level correlation
r ρ

Fuzzy reordering 0.435 0.448
Kendall’s τ 0.371 0.450
BLEU 0.279 0.302

Table 6: Pearson’s correlation (r) and Spearman’s rank
correlation (ρ) with subjective translation quality at
sentence-level.

we see that both the choice of parser and reordering
rules clearly effects subjective translation quality.

We performed pairwise significance tests using
bootstrap resampling for each pair of ‘improved’
systems in each experiment. Tables 3, 4 and 5
shows which pairs were judged to be statistically
significant improvements at either 95 or 90 percent
level under the different metrics. These tests were
computed on the same 500 sentences. All pairs
but one are judged to be statistically significant im-
provements in subjective translation quality. Sig-
nificance tests performed using the fuzzy reorder-
ing metric are identical to the subjective scores for
the Parsers experiment but differ on one pairwise
comparison for the Rules experiment. According to
BLEU score, however, none of the parser changes
are significant at the 95 percent level and only one
pairwise comparison (between the two most differ-
ent systems) was significant at the 90 percent level.
BLEU score appears more sensitive to the larger
changes in the Rules experiment but is still in dis-
agreement with the results of the human evaluation
on four pairwise comparisons.

Table 6 shows the sentence-level correlation of
different metrics with human judgments of transla-
tion quality. Here both the fuzzy reordering score
and Kendall’s τ are computed on the reference
reordering data generated as described in Section
3.1. Both metrics are computed by running our

Translation Alignment Sentence-level
r ρ

Alignment-oriented Manual 0.435 0.448
Alignment-oriented Automatic 0.234 0.252
Standard Manual 0.271 0.257
Standard Automatic 0.177 0.159

Table 7: Pearson’s correlation (r) and Spearman’s rank
correlation (ρ) with subjective translation quality at the
sentence-level for different types of reordering reference
data: (i) alignment-oriented translation vs. standard, (ii)
manual vs. automatic alignment.

lightweight evaluation tool and involve no transla-
tion whatsoever. These lightweight metrics are also
more correlated with subjective quality than BLEU
score at the sentence level.

Table 7 shows how the correlation between fuzzy
reordering score and subjective translation quality
degrades as we move from manual to automatic
alignments and from alignment-oriented translations
to standard ones. The automatically aligned refer-
ences, in particular, are less correlated with subjec-
tive translation scores then BLEU; we believe this
may be due to the poor quality of word alignments
for languages such as English and Japanese due to
the long-distance reordering between them.

Finally we present some intrinsic evaluation met-
rics for the parsers used in the first of our experi-
ments. Table 8 demonstrates that certain changes
may not be best captured by standard parser bench-
marks. While the first four parser models improve
on the WSJ benchmarks as they improve subjective
translation quality the best parser according to sub-
jective translation qualtiy (P5) is actually the worst
under both metrics on the treebank data. We con-
jecture that this is due to the fact that P5 (unlike the
other parsers) is case insensitive. While this helps us
significantly on our test set drawn from the web, it
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Standard / ManualStandard / Manual
Source              How Can I Qualify For A Mortgage Tax Deduction ?
Reordering        A Mortgage {{ Tax Deduction }} For I Qualify How Can ?
Translation                        住宅 ローン 減税 に 必要 な 資格 を 得る に は どう すれ ば よい です か ?
Alignment          6,6,7_8,4,3,3,3,3,3,0,0,0,0,0,1,1,9,9

Alignment-oriented / ManualAlignment-oriented / Manual
Source              How Can I Qualify For A Mortgage Tax Deduction ?
Reordering        I How A Mortgage {{ Tax Deduction }} For Qualify Can ?
Translation                         私 は どう し たら 住宅 ローン の 減税 の 資格 に 値する こと が でき ます か ？
Alignment         2,2,0,0,0,6,6,6,7_8,4,3,3,3,1,1,1,1,1,9

Standard / AutomaticStandard / Automatic
Source              We do not claim to cure , prevent or treat any disease .
Reordering        any disease cure , prevent or treat claim to We do not .
Translation           いかなる 病気 の 治癒 ,  防止 ,            または 治療 も 断言 する もの で は あり ませ ん .
Alignment         10,11,,5,6,7,,8,9,,,4,,,,2,2,2,12

Alignment-oriented / AutomaticAlignment-oriented / Automatic
Source            We do not claim to cure , prevent or treat any disease .
Reordering        We any disease cure , prevent or treat claim to do not .
Translation              私 達 は あらゆる 疾患 の 治癒 ,           予防 あるいは 治療 を 行う と 主張 し ませ ん .
Alignment          0,0,,10,11,,5,6,7,8,9,,,,3,4,2,2,12

Table 2: Reference reordering data generated via various methods: (i) alignment-oriented vs. standard translation, (ii)
manual vs. automatic word alignment

Exp. 1 Parsers Exp. 2 Reordering Rules
P2R5 P3R5 P4R5 P5R5 P5R2 P5R3 P5R4 P5R5

P1R5 +** +** +** +** P5R1 +** +** +** +**
P2R5 +** +** +** P5R2 0 +** +**
P3R5 +** P5R3 +** +**
P4R5 0 P5R4 +**

Table 3: Pairwise significance in subjective evaluation (0 = not significant, * = 90 percent, ** = 95 percent).

Exp. 1 Parsers Exp. 2 Reordering Rules
P2R5 P3R5 P4R5 P5R5 P5R2 P5R3 P5R4 P5R5

P1R5 +** +** +** +** P5R1 0 +** +** +**
P2R5 +** +** +** P5R2 +** +** +**
P3R5 +** +** P5R3 +** +**
P4R5 0 P5R4 +**

Table 4: Pairwise significance in fuzzy reordering score (0 = not significant, * = 90 percent, ** = 95 percent).

Exp. 1 Parsers Exp. 2 Reordering Rules
P2R5 P3R5 P4R5 P5R5 P5R2 P5R3 P5R4 P5R5

P1R5 0 0 +* +* P5R1 +** +** +** +**
P2R5 0 0 0 P5R2 0 +** +**
P3R5 0 0 P5R3 0 +*
P4R5 0 P5R4 0

Table 5: Pairwise significance in BLEU score (0 = not significant, * = 90 percent, ** = 95 percent).
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Parser Labeled attachment POS accuracy
P1 0.807 0.954
P2 0.822 0.954
P3 0.827 0.955
P4 0.830 0.955
P5 0.822 0.944

Table 8: Intrinsic parser metrics on WSJ dev set.

Figure 1: P1 and P5’s parse trees and automatic reorder-
ing (using R5 ruleset) and fuzzy score.

hurts parsing performance on cleaner newswire.

6 Discussion

We have found that in practice this evaluation frame-
work is sufficiently correlated with human judg-
ments of translation quality to be rather useful for
performing detailed error analysis of our English-to-
Japanese system. We have used it in the following
ways in simple error analysis sessions:

• To identify which words are most frequently re-
ordered incorrectly

• To identify systematic parser and/or POS errors

• To identify the worst reordered sentences

• To evaluate individual reordering rules

Figures 1 and 2 show pairs of parse trees together
with their resulting reorderings and scores against

Figure 2: P1 and P5’s parse trees and automatic reorder-
ing (using R5 ruleset) and fuzzy score.

the reference. These are typical of the parser er-
rors that impact reordering and which are correctly
identified by our framework. In related joint work
(Katz-Brown et al., 2011) and (Hall et al., 2011), it
is shown that the framework can be used to optimize
reordering components automatically.

7 Conclusions

We have presented a lightweight framework for eval-
uating reordering in machine translation and demon-
strated that this is able to accurately distinguish sig-
nificant changes in translation quality due to changes
in preprocessing components such as the parser or
reordering rules used by the system. The sentence-
level correlation of our metric with judgements of
human translation quality was shown to be higher
than other standard evaluation metrics while our
evaluation has the significant practical advantage of
not requiring an end-to-end machine translation ex-
periment when used to evaluate a separate reorder-
ing component. Our analysis has also highlighted
the benefits of creating focused evaluation data that
attempts to factor out some of the phenomena found
in real human translation. While previous work has
provided meta-analysis of reordering metrics across
quite independent systems, ours is we believe the
first to provide a detailed comparison of systems
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that differ only in small but realistic aspects such as
parser quality. In future work we plan to use the
framework to provide a more comprehensive analy-
sis of the reordering capabilities of a broad range of
machine translation systems.
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Abstract

This paper presents the results of the WMT11
shared tasks, which included a translation
task, a system combination task, and a task for
machine translation evaluation metrics. We
conducted a large-scale manual evaluation of
148 machine translation systems and 41 sys-
tem combination entries. We used the rank-
ing of these systems to measure how strongly
automatic metrics correlate with human judg-
ments of translation quality for 21 evaluation
metrics. This year featured a Haitian Creole
to English task translating SMS messages sent
to an emergency response service in the af-
termath of the Haitian earthquake. We also
conducted a pilot ‘tunable metrics’ task to test
whether optimizing a fixed system to differ-
ent metrics would result in perceptibly differ-
ent translation quality.

1 Introduction

This paper presents the results of the shared tasks
of the Workshop on statistical Machine Translation
(WMT), which was held at EMNLP 2011. This
workshop builds on five previous WMT workshops
(Koehn and Monz, 2006; Callison-Burch et al.,
2007; Callison-Burch et al., 2008; Callison-Burch
et al., 2009; Callison-Burch et al., 2010). The work-
shops feature three shared tasks: a translation task
between English and other languages, a task to com-
bine the output of multiple machine translation sys-
tems, and a task to predict human judgments of
translation quality using automatic evaluation met-
rics. The performance for each of these shared tasks
is determined through a comprehensive human eval-

uation. There were a two additions to this year’s
workshop that were not part of previous workshops:

• Haitian Creole featured task – In addition to
translation between European language pairs,
we featured a new translation task: translating
Haitian Creole SMS messages that were sent
to an emergency response hotline in the im-
mediate aftermath of the 2010 Haitian earth-
quake. The goal of this task is to encourage re-
searchers to focus on challenges that may arise
in future humanitarian crises. We invited Will
Lewis, Rob Munro and Stephan Vogel to pub-
lish a paper about their experience developing
translation technology in response to the crisis
(Lewis et al., 2011). They provided the data
used in the Haitian Creole featured translation
task. We hope that the introduction of this new
dataset will provide a testbed for dealing with
low resource languages and the informal lan-
guage usage found in SMS messages.

• Tunable metric shared task – We conducted
a pilot of a new shared task to use evaluation
metrics to tune the parameters of a machine
translation system. Although previous work-
shops have shown evaluation metrics other than
BLEU are more strongly correlated with human
judgments when ranking outputs from multiple
systems, BLEU remains widely used by system
developers to optimize their system parameters.
We challenged metric developers to tune the
parameters of a fixed system, to see if their met-
rics would lead to perceptibly better translation
quality for the system’s resulting output.
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The primary objectives of WMT are to evaluate
the state of the art in machine translation, to dissem-
inate common test sets and public training data with
published performance numbers, and to refine eval-
uation methodologies for machine translation. As
with previous workshops, all of the data, transla-
tions, and collected human judgments are publicly
available.1 We hope these datasets form a valuable
resource for research into statistical machine transla-
tion, system combination, and automatic evaluation
of translation quality.

2 Overview of the Shared Translation and
System Combination Tasks

The recurring task of the workshop examines trans-
lation between English and four other languages:
German, Spanish, French, and Czech. We created a
test set for each language pair by translating newspa-
per articles. We additionally provided training data
and two baseline systems.

2.1 Test data
The test data for this year’s task was created by
hiring people to translate news articles that were
drawn from a variety of sources from early Decem-
ber 2010. A total of 110 articles were selected, in
roughly equal amounts from a variety of Czech, En-
glish, French, German, and Spanish news sites:2

Czech: aktualne.cz (4), Novinky.cz (7), iH-
Ned.cz (4), iDNES.cz (4)

French: Canoe (5), Le Devoir (5), Le Monde (5),
Les Echos (5), Liberation (5)

Spanish: ABC.es (6), Cinco Dias (6), El Period-
ico (6), Milenio (6), Noroeste (7)

English: Economist (4), Los Angeles Times (6),
New York Times (4), Washington Post (4)

German: FAZ (3), Frankfurter Rundschau (2), Fi-
nancial Times Deutschland (3), Der Spie-
gel (5), Süddeutsche Zeitung (3)

The translations were created by the professional
translation agency CEET.3 All of the translations

1http://statmt.org/wmt11/results.html
2For more details see the XML test files. The docid tag

gives the source and the date for each document in the test set,
and the origlang tag indicates the original source language.

3http://www.ceet.eu/

were done directly, and not via an intermediate lan-
guage.

Although the translations were done profession-
ally, in some cases errors still cropped up. For in-
stance, in parts of the English-French translations,
some of the English source remains in the French
reference as if the translator forgot to delete it.

2.2 Training data

As in past years we provided parallel corpora to train
translation models, monolingual corpora to train lan-
guage models, and development sets to tune system
parameters. Some statistics about the training mate-
rials are given in Figure 1.

2.3 Baseline systems

To lower the barrier of entry for newcomers to
the field, we provided two open source toolkits for
phrase-based and parsing-based statistical machine
translation (Koehn et al., 2007; Li et al., 2010).

2.4 Submitted systems

We received submissions from 56 groups across 37
institutions, as listed in Tables 1, 2 and 3. We also
included two commercial off-the-shelf MT systems,
two online statistical MT systems, and five online
rule-based MT systems. (Not all systems supported
all language pairs.) We note that these nine compa-
nies did not submit entries themselves, and are there-
fore anonymized in this paper. Rather, their entries
were created by translating the test data via their web
interfaces.4 The data used to construct these systems
is not subject to the same constraints as the shared
task participants. It is possible that part of the refer-
ence translations that were taken from online news
sites could have been included in the online systems’
models, for instance. We therefore categorize all
commercial systems as unconstrained when evalu-
ating the results.

2.5 System combination

In total, we had 148 primary system entries (includ-
ing the 46 entries crawled from online sources), and
60 contrastive entries. These were made available to

4We would like to thank Ondřej Bojar for harvesting the
commercial entries (2), Christian Federmann for the statistical
MT entries (14), and Hervé Saint-Amand for the rule-based MT
entries (30)!
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Europarl Training Corpus

Spanish↔ English French↔ English German↔ English Czech↔ English
Sentences 1,786,594 1,825,077 1,739,154 462,351

Words 51,551,370 49,411,045 54,568,499 50,551,047 45,607,269 47,978,832 10,573,983 12,296,772
Distinct words 171,174 113,655 137,034 114,487 362,563 111,934 152,788 56,095

News Commentary Training Corpus

Spanish↔ English French↔ English German↔ English Czech↔ English
Sentences 132,571 115,562 136,227 122,754

Words 3,739,293 3,285,305 3,290,280 2,866,929 3,401,766 3,309,619 2,658,688 2,951,357
Distinct words 73,906 53,699 59,911 50,323 120,397 53,921 130,685 50,457

United Nations Training Corpus

Spanish↔ English French↔ English
Sentences 10,662,993 12,317,600

Words 348,587,865 304,724,768 393,499,429 344,026,111
Distinct words 578,599 564,489 621,721 729,233

109 Word Parallel Corpus

French↔ English
Sentences 22,520,400

Words 811,203,407 668,412,817
Distinct words 2,738,882 2,861,836

CzEng Training Corpus

Czech↔ English
Sentences 7,227,409

Words 72,993,427 84,856,749
Distinct words 1,088,642 522,770

Europarl Language Model Data

English Spanish French German Czech
Sentence 2,032,006 1,942,761 2,002,266 1,985,560 479,636
Words 54,720,731 55,105,358 57,860,307 48,648,697 10,770,230

Distinct words 119,315 176,896 141,742 376,128 154,129

News Language Model Data

English Spanish French German Czech
Sentence 30,888,595 3,416,184 11,767,048 17,474,133 12,333,268
Words 777,425,517 107,088,554 302,161,808 289,171,939 216,692,489

Distinct words 2,020,549 595,681 1,250,259 3,091,700 2,068,056

News Test Set

English Spanish French German Czech
Sentences 3003

Words 75,762 79,710 85,999 73,729 65,427
Distinct words 10,088 11,989 11,584 14,345 16,922

Figure 1: Statistics for the training and test sets used in the translation task. The number of words and the number of
distinct words (case-insensitive) is based on the provided tokenizer.
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ID Participant
ALACANT University of Alicante (Sánchez-Cartagena et al., 2011)
CEU-UPV CEU University Cardenal Herrera

& Polytechnic University of Valencia (Zamora-Martinez and Castro-Bleda, 2011)
CMU-DENKOWSKI Carnegie Mellon University - Denkowski (Denkowski and Lavie, 2011b)
CMU-DYER Carnegie Mellon University - Dyer (Dyer et al., 2011)
CMU-HANNEMAN Carnegie Mellon University - Hanneman (Hanneman and Lavie, 2011)
COPENHAGEN Copenhagen Business School
CST Centre for Language Technology @ Copenhagen University (Rishøj and Søgaard, 2011)
CU-BOJAR Charles University - Bojar (Mareček et al., 2011)
CU-MARECEK Charles University - Mareček (Mareček et al., 2011)
CU-POPEL Charles University - Popel (Popel et al., 2011)
CU-TAMCHYNA Charles University - Tamchyna (Bojar and Tamchyna, 2011)
CU-ZEMAN Charles University - Zeman (Zeman, 2011)
DFKI-FEDERMANN Deutsches Forschungszentrum für Künstliche Intelligenz - Federmann

(Federmann and Hunsicker, 2011)
DFKI-XU Deutsches Forschungszentrum für Künstliche Intelligenz - Xu (Xu et al., 2011b)
HYDERABAD IIIT-Hyderabad
ILLC-UVA Institute for Logic, Language and Computation @ University of Amsterdam

(Khalilov and Sima’an, 2011)
JHU Johns Hopkins University (Weese et al., 2011)
KIT Karlsruhe Institute of Technology (Herrmann et al., 2011)
KOC Koc University (Bicici and Yuret, 2011)
LATL-GENEVA Language Technology Laboratory @ University of Geneva (Wehrli et al., 2009)
LIA-LIG Laboratoire Informatique d’Avignon @ The University of Avignon

& Laboratoire d’Informatique de Grenoble @ University of Grenoble (Potet et al., 2011)
LIMSI LIMSI (Allauzen et al., 2011)
LINGUATEC Linguatec Language Technologies (Aleksic and Thurmair, 2011)
LIU Linköping University (Holmqvist et al., 2011)
LIUM University of Le Mans (Schwenk et al., 2011)
PROMT ProMT
RWTH-FREITAG RWTH Aachen - Freitag (Huck et al., 2011)
RWTH-HUCK RWTH Aachen - Huck (Huck et al., 2011)
RWTH-WUEBKER RWTH Aachen - Wübker (Huck et al., 2011)
SYSTRAN SYSTRAN
UEDIN University of Edinburgh (Koehn et al., 2007)
UFAL-UM Charles University and University of Malta (Corbı́-Bellot et al., 2005)
UOW University of Wolverhampton (Aziz et al., 2011)
UPM Technical University of Madrid (López-Ludeña and San-Segundo, 2011)
UPPSALA Uppsala University (Koehn et al., 2007)
UPPSALA-FBK Uppsala University

& Fondazione Bruno Kessler (Hardmeier et al., 2011)
ONLINE-[A,B] two online statistical machine translation systems
RBMT-[1–5] five online rule-based machine translation systems
COMMERCIAL-[1,2] two commercial machine translation systems

Table 1: Participants in the shared translation task (European language pairs; individual system track). Not all teams
participated in all language pairs. The translations from commercial and online systems were crawled by us, not
submitted by the respective companies, and are therefore anonymized.
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ID Participant
BBN-COMBO Raytheon BBN Technologies (Rosti et al., 2011)
CMU-HEAFIELD-COMBO Carnegie Mellon University (Heafield and Lavie, 2011)
JHU-COMBO Johns Hopkins University (Xu et al., 2011a)
KOC-COMBO Koc University (Bicici and Yuret, 2011)
LIUM-COMBO University of Le Mans (Barrault, 2011)
QUAERO-COMBO Quaero Project∗ (Freitag et al., 2011)
RWTH-LEUSCH-COMBO RWTH Aachen (Leusch et al., 2011)
UOW-COMBO University of Wolverhampton (Specia et al., 2010)
UPV-PRHLT-COMBO Polytechnic University of Valencia (González-Rubio and Casacuberta, 2011)
UZH-COMBO University of Zurich (Sennrich, 2011)

Table 2: Participants in the shared system combination task. Not all teams participated in all language pairs.
∗ The Quaero Project entry combined outputs they received directly from LIMSI, KIT, SYSTRAN, and RWTH.

participants in the system combination shared task.
Continuing our practice from last year’s workshop,
we separated the test set into a tuning set and a final
held-out test set for system combinations. The tun-
ing portion was distributed to system combination
participants along with reference translations, to aid
them set any system parameters.

In the European language pairs, the tuning set
consisted of 1,003 segments taken from 37 docu-
ments, whereas the test set consisted of 2,000 seg-
ments taken from 73 documents. In the Haitian Cre-
ole task, the split was 674 segments for tuning and
600 for testing.

Table 2 lists the 10 participants in the system com-
bination task.

3 Featured Translation Task

The featured translation task of WMT11 was to
translate Haitian Creole SMS messages into En-
glish. These text messages were sent by people in
Haiti in the aftermath of the January 2010 earth-
quake. In the wake of the earthquake, much of the
country’s conventional emergency response services
failed. Since cell phone towers remained stand-
ing after the earthquake, text messages were a vi-
able mode of communication. Munro (2010) de-
scribes how a text-message-based emergency report-
ing system was set up by a consortium of volunteer
organizations named “Mission 4636” after a free
SMS short code telephone number that they estab-
lished. The SMS messages were routed to a system
for reporting trapped people and other emergencies.

Search and rescue teams within Haiti, including the
US Military, recognized the quantity and reliabil-
ity of actionable information in these messages and
used them to provide aid.

The majority of the SMS messages were writ-
ten in Haitian Creole, which was not spoken by
most of first responders deployed from overseas.
A distributed, online translation effort was estab-
lished, drawing volunteers from Haitian Creole- and
French-speaking communities around the world.
The volunteers not only translated messages, but
also categorized them and pinpointed them on a
map.5 Collaborating online, they employed their lo-
cal knowledge of locations, regional slang, abbre-
viations and spelling variants to process more than
40,000 messages in the first six weeks alone. First
responders indicated that this volunteer effort helped
to save hundreds of lives and helped direct the first
food and aid to tens of thousands. Secretary of State
Clinton described one success of the Mission 4636
program:“The technology community has set up in-
teractive maps to help us identify needs and target
resources. And on Monday, a seven-year-old girl
and two women were pulled from the rubble of a
collapsed supermarket by an American search-and-
rescue team after they sent a text message calling
for help.” Ushahidi@Tufts described another:“The
World Food Program delivered food to an informal
camp of 2500 people, having yet to receive food or
water, in Diquini to a location that 4636 had identi-

5A detailed map of Haiti was created by a crowdsourcing
effort in the aftermath of the earthquake (Lacey-Hall, 2011).
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ID Participant
BM-I2R Barcelona Media

& Institute for Infocomm Research (Costa-jussà and Banchs, 2011)
CMU-DENKOWSKI Carnegie Mellon University - Denkowski (Denkowski and Lavie, 2011b)
CMU-HEWAVITHARANA Carnegie Mellon University - Hewavitharana (Hewavitharana et al., 2011)
HYDERABAD IIIT-Hyderabad
JHU Johns Hopkins University (Weese et al., 2011)
KOC Koc University (Bicici and Yuret, 2011)
LIU Linköping University (Stymne, 2011)
UMD-EIDELMAN University of Maryland - Eidelman (Eidelman et al., 2011)
UMD-HU University of Maryland - Hu (Hu et al., 2011)
UPPSALA Uppsala University (Hardmeier et al., 2011)

Table 3: Participants in the featured translation task (Haitian Creole SMS into English; individual system track). Not
all teams participated in both the ‘Clean’ and ‘Raw’ tracks.

fied for them.”

In parallel with Rob Munro’s crowdsourcing
translation efforts, the Microsoft Translator team de-
veloped a Haitian Creole statistical machine transla-
tion engine from scratch in a compressed timeframe
(Lewis, 2010). Despite the impressive number
of translations completed by volunteers, machine
translation was viewed as a potentially useful tool
for higher volume applications or to provide trans-
lations of English medical documents into Haitian
Creole. The Microsoft Translator team quickly as-
sembled parallel data from a number of sources,
including Mission 4636 and from the archives of
Carnegie Mellon’s DIPLOMAT project (Frederking
et al., 1997). Through a series of rapid prototyp-
ing efforts, the team improved their system to deal
with non-standard orthography, reduced pronouns,
and SMS shorthand. They deployed a functional
translation system to relief workers in the field in
less than 5 days – impressive even when measured
against previous rapid MT development efforts like
DARPA’s surprise language exercise (Oard, 2003;
Oard and Och, 2003).

We were inspired by the efforts of Rob Munro and
Will Lewis on translating Haitian Creole in the af-
termath of the disaster, so we worked with them to
create a featured task at WMT11. We thank them for
generously sharing the data they assembled in their
own efforts. We invited Rob Munro, Will Lewis,
and Stephan Vogel to speak at the workshop on the
topic of developing translation technology for future

crises, and they recorded their thoughts in an invited
publication (Lewis et al., 2011).

3.1 Haitian Creole Data

For the WMT11 featured translation task, we
anonymized the SMS Haitian Creole messages
along with the translations that the Mission 4636
volunteers created. Examples of these messages are
given in Table 4. The goal of anonymizing the SMS
data was so that it may be shared with researchers
who are developing translation and mapping tech-
nologies to support future emergency relief efforts
and social development. We ask that any researcher
working with these messages to be aware that they
are actual communications sent by people in need in
a time of crisis. Researchers who use this data are
asked to be cognizant of the following:

• Some messages may be distressing in content.

• The people who sent the messages (and who
are discussed in them) were victims of a natural
disaster and a humanitarian crisis. Please treat
the messages with the appropriate respect for
these individuals.

• The primary motivation for using this data
should be to understand how we can better re-
spond to future crises.

Participants who received the Haitian Creole data
for WMT11 were given anonymization guidelines
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mwen se [FIRSTNAME] mwen gen twaset ki mouri mwen
mande nou ed pou nou edem map tan repons

I am [FIRSTNAME], I have three sisters who have died. I
ask help for us, I await your response.

Ki kote yap bay manje Where are they giving out food?
Eske lekol kolej marie anne kraze?mesi Was the College Marie Anne school destroyed? Thank you.
Nou pa ka anpeche moustik yo mòde nou paske yo anpil. We can’t prevent the mosquitoes from biting because there

are so many.
tanpri kèm ap kase mwen pa ka pran nouvel manmanm. Please heart is breaking because I have no news of my

mother.
4636:Opital Medesen san Fwontiè delmas 19 la fèmen.
Opital sen lwi gonzag nan delma 33 pran an chaj gratwit-
man tout moun ki malad ou blese

4636: The Doctors without Borders Hospital in Delmas 19
is closed. The Saint Louis Gonzaga hospital in Delmas 33
is taking in sick and wounded people for free

Mwen résévoua mesaj nou yo 5 sou 5 men mwen ta vle di
yon bagay kilè e koman nap kapab fèm jwin èd sa yo pou
moune b la kay mwen ki sinistwé adrès la sé

I received your message 5/5 but I would like to ask one
thing when and how will you be able to get the aid to me for
the people around my house who are victims of the earth-
quake? The address is

Sil vous plait map chehe [LASTNAME][FIRSTNAME].di
yo relem nan [PHONENUMBER].mwen se [LAST-
NAME] [FIRSTNAME]

I’m looking for [LASTNAME][FIRSTNAME]. Tell him
to call me at [PHONENUMBER] I am [LASTNAME]
[FIRSTNAME]

Bonswa mwen rele [FIRSTNAME] [LASTNAME] kay
mwen krase mwen pagin anyin poum mange ak fanmi-m
tampri di yon mo pou mwen fem jwen yon tante tou ak
mange. .mrete n

Hello my name is [FIRSTNAME] [LASTNAME]my house
fell down, I’ve had nothing to eat and I’m hungry. Please
help me find food. I live

Mwen viktim kay mwen kraze èskem ka ale sendomeng
mwen gen paspò

I’m a victim. My home has been destroyed. Am I allowed
to go to the Dominican Republic? I have a Passport.

KISAM DWE FE LEGEN REPLIK,ESKE MOUN SAINT
MARC AP JWENN REPLIK.

What should I do when there is an aftershock? Will the
people of Saint Marc have aftershocks?

MWEN SE YON JEN ETIDYAN AN ASYANS ENFO-
MATIK KI PASE ANPIL MIZE NAN TRANBLEMAN
DE TE 12 JANVYE A TOUT FANMIM FIN MOURI
MWEN SANTIM SEL MWEN TE VLE ALE VIV

I’m a young student in computer science, who has suffered
a lot during and after the earthquake of January 12th. All
my family has died and I feel alone. I wanted to go live.

Mw rele [FIRSTNAME], mw fè mason epi mw abite
laplèn. Yo dim minustah ap bay djob mason ki kote pou
mw ta pase si mw ta vle jwenn nan djob sa yo.

My name is [FIRSTNAME], I’m a construction worker and
I live in La Plaine. I heard that the MINUSTAH was giving
jobs to construction workers. What do I have to go to find
one of these jobs?

Souple mande lapolis pou fe on ti pase nan magloire am-
broise prolonge zone muler ak cadet jeremie ginyin jen ga-
son ki ap pase nan zone sa yo e ki agresi

please ask the police to go to magloire ambroise going to-
wards the ”muler” area and cadet jeremie because there are
very aggressive young men in these areas

KIBO MOUN KA JWENN MANJE POU YO MANJE
ANDEYO KAPITAL PASKE DEPI 12 JANVYE YO
VOYE MANJE POU PEP LA MEN NOU PA JANM
JWENN ANYEN. NAP MOURI AK GRANGOU

Where can people get food to eat outside of the capital be-
cause since January 12th, they’ve sent food for the people
but we never received anything. We are dying of hunger

Mwen se [FIRSTNAME][LASTNAME] mwen nan aken
mwen se yon jèn ki ansent mwen te genyen yon paran ki tap
ede li mouri pòtoprens, mwen pral akouye nan kòmansman
feviye

I am [FIRSTNAME][LASTNAME] I am in Aquin I am a
pregnant young person I had a parent who was helping me,
she died in Port-au-Prince, I’m going to give birth at the
start of February

Table 4: Examples of some of the Haitian Creole SMS messages that were sent to the 4636 short code along with
their translations into English. Translations were done by volunteers who wanted to help with the relief effort. Prior
to being distributed, the messages were anonymized to remove names, phone numbers, email addresses, etc. The
anonymization guidelines specified that addresses be retained to facilitate work on mapping technologies.
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Training set Parallel Words
sentences per lang

In-domain SMS data 17,192 35k
Medical domain 1,619 10k
Newswire domain 13,517 30k
Glossary 35,728 85k
Wikipedia parallel sentence 8,476 90k
Wikipedia named entities 10,499 25k
The bible 30,715 850k
Haitisurf dictionary 3,763 4k
Krengle dictionary 1,687 3k
Krengle sentences 658 3k

Table 5: Training data for the Haitian Creole-English fea-
tured translation task. The in-domain SMS data consists
primarily of raw (noisy) SMS data. The in-domain data
was provided by Mission 4636. The other data is out-of-
domain. It comes courtesy of Carnegie Mellon Univer-
sity, Microsoft Research, Haitisurf.com, and Krengle.net.

alongside the SMS data. The WMT organizers re-
quested that if they discovered messages with incor-
rect or incomplete anonymization, that they notify
us and correct the anonymization using the version
control repository.

To define the shared translation task, we divided
the SMS messages into an in-domain training set,
along with designated dev, devtest, and test sets. We
coordinated with Microsoft and CMU to make avail-
able additional out-of-domain parallel corpora. De-
tails of the data are given in Table 5. In addition
to this data, participants in the featured task were
allowed to use any of the data provided in the stan-
dard translation task, as well as linguistic tools such
as taggers, parsers, or morphological analyzers.

3.2 Clean and Raw Test Data

We provided two sets of testing and development
data. Participants used their systems to translate two
test sets consisting of 1,274 unseen Haitian Creole
SMS messages. One of the test sets contains the
“raw” SMS messages as they were sent, and the
other contains messages that were cleaned up by hu-
man post-editors. The English side is the same in
both cases, and the only difference is the Haitian
Creole input sentences.

The post-editors were Haitian Creole language
informants hired by Microsoft Research. They pro-

vided a number of corrections to the SMS messages,
including expanding SMS shorthands, correcting
spelling/grammar/capitalization, restoring diacritics
that were left out of the original message, and
cleaning up accented characters that were lost when
the message was transmitted in the wrong encoding.

Original Haitian Creole messages:

Sil vou plé éde mwen avek moun ki vik-
tim yo nan tranbleman de té a,ki kité poto-
prins ki vini nan provins- mwen ede ak ti
kob mwen te ginyin kounié a
4636: Manje vin pi che nan PaP apre tran-
bleman te-a. mamit diri ap van’n 250gd
kounye, sete 200gd avan. Mayi-a 125gd,
avan sete 100gd

Edited Haitian Creole messages:

Silvouple ede mwen avèk moun ki viktim
yo nan tranblemanntè a, ki kite Pòtoprens
ki vini nan pwovens, mwen ede ak ti kòb
mwen te genyen kounye a
4636: Manje vin pi chè nan PaP apre tran-
blemanntè a. Mamit diri ap vann 250gd
kounye a, sete 200gd avan. Mayi-a 125gd,
avan sete 100gd.

For the test and development sets the informants
also edited the English translations. For instance,
there were cases where the original crowdsourced
translation summarized the content of the message
instead of translating it, instances where parts of
the source were omitted, and where explanatory
notes were added. The editors improved the trans-
lations so that they were more suitable for machine
translation, making them more literal, correcting
disfluencies on the English side, and retranslating
them when they were summaries.

Crowdsourced English translation:

We are in the area of Petit Goave, we
would like .... we need tents and medi-
cation for flu/colds...

Post-edited translation:

We are in the area of Petit Goave, we
would like to receive assistance, however,
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it should not be the way I see the Minus-
tah guys are handling the people. We need
lots of tents and medication for flu/colds,
and fever

The edited English is provided as the reference for
both the “clean” and the “raw” sets, since we intend
that distinction to refer to the form that the source
language comes in, rather than the target language.

Tables 47 and 48 in the Appendix show a signifi-
cant difference in the translation quality between the
clean and the raw test sets. In most cases, systems’
output for the raw condition was 4 BLEU points
lower than for the clean condition. We believe that
the difference in performance on the raw vs. cleaned
test sets highlight the importance of handling noisy
input data.

All of the in-domain training data is in the raw for-
mat. The original SMS messages are unaltered, and
the translations are just as the volunteered provided
them. In some cases, the original SMS messages are
written in French or English instead of Haitian Cre-
ole, or contain a mixture of languages. It may be
possible to further improve the quality of machine
translation systems trained from this data by improv-
ing the quality of the data itself.

3.3 Goals and Challenges

The goals of the Haitian Creole to English transla-
tion task were:

• To focus researchers on the problems presented
by low resource languages

• To provide a real-world data set consisting of
SMS messages, which contain abbreviations,
non-standard spelling, omitted diacritics, and
other noisy character encodings

• To develop techniques for building translation
systems that will be useful in future crises

There are many challenges in translating noisy
data in a low resource language, and there are a vari-
ety of strategies that might be considered to attempt
to tackle them. For instance:

• Automated cleaning of the raw (noisy) SMS
data in the training set.

• Leveraging a larger French-English model to
translate out of vocabulary Haitian words, by
creating a mapping from Haitian words onto
French.

• Incorporation of morphological and/or syntac-
tic models to better cope with the low resource
language pair.

It is our hope that by introducing this data as a
shared challenge at WMT11 that we will establish a
useful community resource so that researchers may
explore these challenges and publish about them in
the future.

4 Human Evaluation

As with past workshops, we placed greater empha-
sis on the human evaluation than on the automatic
evaluation metric scores. It is our contention that
automatic measures are an imperfect substitute for
human assessment of translation quality. Therefore,
we define the manual evaluation to be primary, and
use the human judgments to validate automatic met-
rics.

Manual evaluation is time consuming, and it re-
quires a large effort to conduct on the scale of
our workshop. We distributed the workload across
a number of people, including shared-task partici-
pants, interested volunteers, and a small number of
paid annotators (recruited by the participating sites).
More than 130 people participated in the manual
evaluation, with 91 people putting in more than an
hour’s worth of effort, and 29 putting in more than
four hours. There was a collective total of 361 hours
of labor.

We asked annotators to evaluate system outputs
by ranking translated sentences relative to each
other. This was our official determinant of trans-
lation quality. The total number of judgments col-
lected for the different ranking tasks is given in Ta-
ble 6.

We performed the manual evaluation of the indi-
vidual systems separately from the manual evalua-
tion of the system combination entries, rather than
comparing them directly against each other. Last
year’s results made it clear that there is a large (ex-
pected) gap in performance between the two groups.
This year, we opted to reduce the number of pairwise
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comparisons with the hope that we would be more
likely to find statistically significant differences be-
tween the systems in the same groups. To that same
end, we also eliminated the editing/acceptability
task that was featured in last year’s evaluation, in-
stead we had annotators focus solely on the system
ranking task.

4.1 Ranking translations of sentences

Ranking translations relative to each other is a rea-
sonably intuitive task. We therefore kept the instruc-
tions simple:

You are shown a source sentence followed
by several candidate translations.
Your task is to rank the translations from
best to worst (ties are allowed).

Each screen for this task involved judging trans-
lations of three consecutive source segments. For
each source segment, the annotator was shown the
outputs of five submissions, and asked to rank them.

With the exception of a few tasks in the system
combination track, there were many more than 5
systems participating in any given task—up to 23
for the English-German individual systems track.
Rather than attempting to get a complete ordering
over the systems, we instead relied on random se-
lection and a reasonably large sample size to make
the comparisons fair.

We use the collected rank labels to assign each
system a score that reflects how highly that system
was usually ranked by the annotators. The score for
some systemA reflects how frequently it was judged
to be better than or equal to other systems. Specif-
ically, each block in which A appears includes four
implicit pairwise comparisons (against the other pre-
sented systems). A is rewarded once for each of the
four comparisons in which A wins or ties. A’s score
is the number of such winning (or tying) pairwise
comparisons, divided by the total number of pair-
wise comparisons involving A.

The system scores are reported in Section 5. Ap-
pendix A provides detailed tables that contain pair-
wise head-to-head comparisons between pairs of
systems.

4.2 Inter- and Intra-annotator agreement in
the ranking task

We were interested in determining the inter- and
intra-annotator agreement for the ranking task, since
a reasonable degree of agreement must exist to sup-
port our process as a valid evaluation setup. To en-
sure we had enough data to measure agreement, we
purposely designed the sampling of source segments
and translations shown to annotators in a way that
ensured some items would be repeated, both within
the screens completed by an individual annotator,
and across screens completed by different annota-
tors.

We did so by ensuring that 10% of the generated
screens are exact repetitions of previously gener-
ated screen within the same batch of screens. Fur-
thermore, even within the other 90%, we ensured
that a source segment appearing in one screen ap-
pears again in two more screens (though with differ-
ent system outputs). Those two details, intentional
repetition of source sentences and intentional repeti-
tion of system outputs, ensured we had enough data
to compute meaningful inter- and intra-annotator
agreement rates.

We measured pairwise agreement among anno-
tators using Cohen’s kappa coefficient (κ) (Cohen,
1960), which is defined as

κ =
P (A)− P (E)

1− P (E)

where P (A) is the proportion of times that the anno-
tators agree, and P (E) is the proportion of time that
they would agree by chance. Note that κ is basically
a normalized version of P (A), one which takes into
account how meaningful it is for annotators to agree
with each other, by incorporating P (E). Note also
that κ has a value of at most 1 (and could possibly
be negative), with higher rates of agreement result-
ing in higher κ.

The above definition of κ is actually used by sev-
eral definitions of agreement measures, which differ
in how P (A) and P (E) are computed.

We calculate P (A) by examining all pairs of
systems which had been judged by two or more
judges, and calculating the proportion of time that
they agreed that A > B, A = B, or A < B. In
other words, P (A) is the empirical, observed rate at
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Inividual System Track System Combination Track
Language Pair # Systems Label Labels # Systems Label Labels

Count per System Count per System
Czech-English 8 2,490 276.7 4 1,305 261.0
English-Czech 10 8,985 816.8 2 2,700 900.0
German-English 20 4,620 220.0 8 1,950 216.7
English-German 22 6,540 284.4 4 2,205 441.0
Spanish-English 15 2,850 178.1 6 2,115 302.1
English-Spanish 15 5,595 349.7 4 3,000 600.0
French-English 18 3,540 186.3 6 1,500 214.3
English-French 17 4,590 255.0 2 900 300.0
Haitian (Clean)-English 9 3,360 336.0 3 1,200 300.0
Haitian (Raw)-English 6 1,875 267.9 2 900 300.0
Urdu-English 8 3,165 351.7 N/A N/A N/A
(tunable metrics task)
Overall 148 47,610 299.4 41 17,775 348.5

Table 6: A summary of the WMT11 ranking task, showing the number of systems and number of labels collected in
each of the individual and system combination tracks. The system count does not include the reference translation,
which was included in the evaluation, and so a value under “Labels per System” can be obtained only after adding 1
to the system count, before dividing the label count (e.g. in German-English, 4, 620/21 = 220.0).

which annotators agree, in the context of pairwise
comparisons. P (A) is computed similarly for intra-
annotator agreement (i.e. self-consistency), but over
pairwise comparisons that were annotated more than
once by a single annotator.

As for P (E), it should capture the probability that
two annotators would agree randomly. Therefore:

P (E) = P (A>B)2 + P (A=B)2 + P (A<B)2

Note that each of the three probabilities in P (E)’s
definition are squared to reflect the fact that we are
considering the chance that two annotators would
agree by chance. Each of these probabilities is com-
puted empirically, by observing how often annota-
tors actually rank two systems as being tied. We
note here that this empirical computation is a depar-
ture from previous years’ analyses, where we had
assumed that the three categories are equally likely
(yielding P (E) = 1

9 + 1
9 + 1

9 = 1
3 ). We believe that

this is a more principled approach, which faithfully
reflects the motivation of accounting for P (E) in the
first place.6

6Even if we wanted to assume a “random clicker” model,
setting P (E) = 1

3
is still not entirely correct. Given that

Table 7 gives κ values for inter-annotator and
intra-annotator agreement across the various evalu-
ation tasks. These give an indication of how often
different judges agree, and how often single judges
are consistent for repeated judgments, respectively.

There are some general and expected trends that
can be seen in this table. First of all, intra-annotator
agreement is higher than inter-annotator agreement.
Second, reference translations are noticeably better
than other system outputs, which means that anno-
tators have an artificially high level of agreement on
pairwise comparisons that include a reference trans-
lation. For this reason, we also report the agreement
levels when such comparisons are excluded.

The exact interpretation of the kappa coefficient is
difficult, but according to Landis and Koch (1977),
0−0.2 is slight, 0.2−0.4 is fair, 0.4−0.6 is moder-
ate, 0.6− 0.8 is substantial, and 0.8− 1.0 is almost
perfect. Based on these interpretations, the agree-
ment for sentence-level ranking is moderate to sub-
stantial for most tasks.

annotators rank five outputs at once, P (A = B) = 1
5

, not
1
3

, since there are only five (out of 25) label pairs that satisfy
A = B. Working this back into P (E)’s definition, we have
P (A > B) = P (A < B) = 2

5
, and therefore P (E) = 0.36

rather than 0.333.
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INTER-ANNOTATOR AGREEMENT (I.E. ACROSS ANNOTATORS)
ALL COMPARISONS NO REF COMPARISONS

P (A) P (E) κ P (A) P (E) κ

European languages, individual systems 0.601 0.362 0.375 0.561 0.355 0.320
European languages, system combinations 0.671 0.335 0.505 0.598 0.342 0.389
Haitian-English, individual systems 0.691 0.362 0.516 0.639 0.350 0.446
Haitian-English, system combinations 0.761 0.358 0.628 0.674 0.335 0.509
Tunable metrics task (Urdu-English) 0.692 0.337 0.535 0.641 0.363 0.437
WMT10 (European languages, all systems) 0.658 0.374 0.454 0.626 0.367 0.409

INTRA-ANNOTATOR AGREEMENT (I.E. SELF-CONSISTENCY)
ALL COMPARISONS NO REF COMPARISONS

P (A) P (E) κ P (A) P (E) κ

European languages, individual systems 0.722 0.362 0.564 0.685 0.355 0.512
European languages, system combinations 0.787 0.335 0.680 0.717 0.342 0.571
Haitian-English, individual systems 0.763 0.362 0.628 0.700 0.350 0.539
Haitian-English, system combinations 0.882 0.358 0.816 0.784 0.335 0.675
Tunable metrics task (Urdu-English) 0.857 0.337 0.784 0.856 0.363 0.774
WMT10 (European languages, all systems) 0.755 0.374 0.609 0.734 0.367 0.580

Table 7: Inter- and intra-annotator agreement rates, for the various manual evaluation tracks of WMT11. See Tables 49
and 50 below for a detailed breakdown by language pair.

However, one result that is of concern is that
agreement rates are noticeably lower for European
language pairs, in particular for the individual sys-
tems track. When excluding reference comparisons,
the inter- and intra-annotator agreement levels are
0.320 and 0.512, respectively. Not only are those
numbers lower than for the other tasks, but they
are also lower than last year’s numbers, which were
0.409 and 0.580.

We investigated this result a bit deeper. Tables 49
and 50 in the Appendix break down the results fur-
ther, by reporting agreement levels for each lan-
guage pair. One observation is that the agreement
level for some language pairs deviates in a non-
trivial amount from the overall agreement rate.

Let us focus on inter-annotator agreement rates
in the individual track (excluding reference compar-
isons), in the top right portion of Table 49. The over-
all κ is 0.320, but it ranges from 0.264 for German-
English, to 0.477 for Spanish-English.

What distinguishes those two language pairs from
each other? If we examine the results in Table 8,
we see that Spanish-English had two very weak sys-
tems, which were likely easy for annotators to agree

on comparisons involving them. (This is the con-
verse of annotators agreeing more often on com-
parisons involving the reference.) English-French is
similar in that regard, and it too has a relatively high
agreement rate.

On the other hand, the participants in German-
English formed a large pool of more closely-
matched systems, where the gap separating the bot-
tom system is not as pronounced. So it seems that
the low agreement rates are indicative of a more
competitive evaluation and more closely-matched
systems.

5 Results of the Translation Tasks

We used the results of the manual evaluation to an-
alyze the translation quality of the different systems
that were submitted to the workshop. In our analy-
sis, we aimed to address the following questions:

• Which systems produced the best translation
quality for each language pair?

• Which of the systems that used only the pro-
vided training materials produced the best
translation quality?
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Czech-English
1023–1166 comparisons/system
System C? ≥others
UEDIN •? Y 0.69
ONLINE-B • N 0.68
CU-BOJAR N 0.60
JHU N 0.57
UPPSALA Y 0.57
SYSTRAN N 0.51
CST Y 0.47
CU-ZEMAN Y 0.44

Spanish-English
583–833 comparisons/system

System C? ≥others
ONLINE-B • N 0.72
ONLINE-A • N 0.72
KOC ? Y 0.67
SYSTRAN • N 0.66
ALACANT • N 0.66
RBMT-1 N 0.63
RBMT-3 N 0.61
RBMT-2 N 0.60
RBMT-4 N 0.60
RBMT-5 N 0.51
UEDIN Y 0.51
UPM Y 0.50
UFAL-UM Y 0.47
HYDERABAD Y 0.17
CU-ZEMAN Y 0.16

French-English
608–883 comparisons/system

System C? ≥others
ONLINE-A • N 0.66
LIMSI •? Y+G 0.66
ONLINE-B • N 0.66
LIA-LIG Y 0.64
KIT •? Y+G 0.64
LIUM Y+G 0.63
CMU-DENKOWSKI ? Y 0.62
JHU Y+G 0.61
RWTH-HUCK Y+G 0.58
RBMT-1 • N 0.58
CMU-HANNEMAN Y+G 0.58
RBMT-3 N 0.55
SYSTRAN N 0.54
RBMT-4 N 0.53
RBMT-2 N 0.52
UEDIN Y 0.50
RBMT-5 N 0.45
CU-ZEMAN Y 0.37

English-Czech
3126–3397 comparisons/system

System C? ≥others
ONLINE-B • N 0.65
CU-BOJAR N 0.64
CU-MARECEK • N 0.63
CU-TAMCHYNA N 0.62
UEDIN ? Y 0.59
CU-POPEL ? Y 0.58
COMMERCIAL2 N 0.51
COMMERCIAL1 N 0.51
JHU N 0.49
CU-ZEMAN Y 0.43

English-Spanish
1300–1480 comparisons/system
System C? ≥others
ONLINE-B • N 0.74
ONLINE-A • N 0.72
RBMT-3 • N 0.71
PROMT • N 0.70
CEU-UPV ? Y 0.65
UEDIN ? Y 0.64
UPPSALA ? Y 0.61
RBMT-4 N 0.61
RBMT-1 N 0.60
UOW Y 0.59
RBMT-2 N 0.57
KOC Y 0.56
RBMT-5 N 0.54
CU-ZEMAN Y 0.49
UPM Y 0.34

English-French
868–1121 comparisons/system

System C? ≥others
LIMSI •? Y+G 0.73
ONLINE-B • N 0.70
KIT •? Y+G 0.69
RWTH-HUCK Y+G 0.65
LIUM Y+G 0.64
RBMT-1 N 0.61
ONLINE-A N 0.60
UEDIN Y 0.58
RBMT-3 N 0.58
RBMT-5 N 0.55
UPPSALA Y 0.55
JHU Y 0.55
UPPSALA-FBK Y 0.54
RBMT-4 N 0.49
RBMT-2 N 0.46
LATL-GENEVA N 0.39
CU-ZEMAN Y 0.20

German-English
741–998 comparisons/system

System C? ≥others
ONLINE-B • N 0.72
CMU-DYER •? Y+G 0.66
ONLINE-A • N 0.66
RBMT-3 N 0.64
LINGUATEC N 0.63
RBMT-4 N 0.61
RBMT-1 N 0.60
DFKI-XU N 0.60
RWTH-WUEBKER ? Y+G 0.59
KIT Y+G 0.57
LIU Y 0.57
LIMSI Y+G 0.56
RBMT-5 N 0.56
UEDIN Y 0.55
RBMT-2 N 0.54
CU-ZEMAN Y 0.47
UPPSALA Y 0.47
KOC Y 0.45
JHU Y+G 0.43
CST Y 0.37

English-German
1051–1230 comparisons/system

System C? ≥others
RBMT-3 • N 0.73
ONLINE-B • N 0.73
RBMT-1 • N 0.70
DFKI-FEDERMANN • N 0.68
DFKI-XU N 0.67
RBMT-4 • N 0.66
RBMT-2 • N 0.66
ONLINE-A • N 0.65
LIMSI ? Y+G 0.65
KIT ? Y 0.64
UEDIN Y 0.60
LIU Y 0.59
RBMT-5 N 0.58
RWTH-FREITAG Y 0.56
COPENHAGEN ? Y 0.56
JHU Y 0.54
KOC Y 0.53
UOW Y 0.53
CU-TAMCHYNA Y 0.50
UPPSALA Y 0.49
ILLC-UVA Y 0.48
CU-ZEMAN Y 0.38

C? indicates whether system is constrained: trained only using supplied training data, standard monolingual linguis-
tic tools, and, optionally, LDC’s English Gigaword. Eentries that used the Gigaword are marked with +G.
• indicates a win: no other system is statistically significantly better at p-level≤0.10 in pairwise comparison.
? indicates a constrained win: no other constrained system is statistically better.

Table 8: Official results for the WMT11 translation task. Systems are ordered by their ≥others score, reflecting how
often their translations won or tied pairwise comparisons. For detailed head-to-head comparisons, see Appendix A.
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Czech-English
1036–1042 comparisons/combo

System ≥others
CMU-HEAFIELD-COMBO • 0.64
BBN-COMBO • 0.62
JHU-COMBO 0.58
UPV-PRHLT-COMBO 0.47

English-Czech
1788–1792 comparisons/combo

System ≥others
CMU-HEAFIELD-COMBO • 0.48
UPV-PRHLT-COMBO 0.41

German-English
811–927 comparisons/combo

System ≥others
CMU-HEAFIELD-COMBO • 0.70
RWTH-LEUSCH-COMBO 0.65
BBN-COMBO 0.61
UZH-COMBO • 0.60
JHU-COMBO 0.56
UPV-PRHLT-COMBO 0.52
QUAERO-COMBO 0.46
KOC-COMBO 0.45

English-German
1746–1752 comparisons/combo

System ≥others
CMU-HEAFIELD-COMBO • 0.61
UZH-COMBO • 0.58
UPV-PRHLT-COMBO 0.56
KOC-COMBO 0.46

Spanish-English
1132–1249 comparisons/combo

System ≥others
RWTH-LEUSCH-COMBO • 0.71
CMU-HEAFIELD-COMBO • 0.67
BBN-COMBO • 0.64
UPV-PRHLT-COMBO 0.64
JHU-COMBO 0.62
KOC-COMBO 0.56

English-Spanish
2360–2378 comparisons/combo

System ≥others
CMU-HEAFIELD-COMBO • 0.69
UOW-COMBO 0.63
UPV-PRHLT-COMBO 0.59
KOC-COMBO 0.58

French-English
820–916 comparisons/combo

System ≥others
BBN-COMBO • 0.67
RWTH-LEUSCH-COMBO • 0.63
CMU-HEAFIELD-COMBO 0.62
JHU-COMBO • 0.59
LIUM-COMBO 0.53
UPV-PRHLT-COMBO 0.53

English-French
586–587 comparisons/combo

System ≥others
CMU-HEAFIELD-COMBO • 0.51
UPV-PRHLT-COMBO 0.43

• indicates a win: no other system combination is statistically significantly better at p-level≤0.10 in pairwise
comparison.

Table 9: Official results for the WMT11 system combination task. Systems are ordered by their ≥others score,
reflecting how often their translations won or tied pairwise comparisons. For detailed head-to-head comparisons, see
Appendix A.
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Haitian Creole (Clean)-English
(individual systems)

1256–1435 comparisons/system
System ≥others
BM-I2R • 0.71
CMU-DENKOWSKI 0.66
CMU-HEWAVITHARANA 0.64
UMD-EIDELMAN 0.63
UPPSALA 0.57
LIU 0.55
UMD-HU 0.52
HYDERABAD 0.43
KOC 0.31

Haitian Creole (Raw)-English
(individual systems)

1065–1136 comparisons/system
System ≥others
BM-I2R • 0.65
CMU-HEWAVITHARANA 0.60
CMU-DENKOWSKI 0.59
LIU 0.55
UMD-EIDELMAN 0.52
JHU 0.41

Haitian Creole (Clean)-English
(system combinations)

896–898 comparisons/combo
System ≥others
CMU-HEAFIELD-COMBO • 0.52
UPV-PRHLT-COMBO 0.48
KOC-COMBO 0.38

Haitian Creole (Raw)-English
(system combinations)

600–600 comparisons/combo
System ≥others
CMU-HEAFIELD-COMBO 0.47
UPV-PRHLT-COMBO 0.43

• indicates a win: no other system is statistically significantly better at p-level≤0.10 in pairwise comparison.

Table 10: Official results for the WMT11 featured translation task (Haitian Creole SMS into English). Systems are
ordered by their ≥others score, reflecting how often their translations won or tied pairwise comparisons. For detailed
head-to-head comparisons, see Appendix A.
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Tables 8–10 show the system ranking for each
of the translation tasks. For each language pair,
we define a system as ‘winning’ if no other system
was found statistically significantly better (using the
Sign Test, at p ≤ 0.10). In some cases, multiple sys-
tems are listed as winners, either due to a large num-
ber of participants or a low number of judgments per
system pair, both of which are factors that make it
difficult to achieve statistical significance.

We start by examining the results for the individ-
ual system track for the European languages (Ta-
ble 8). In Spanish↔English and German↔English,
unconstrained systems are observed to perform bet-
ter than constrained systems. In other language
pairs, particularly French↔English, constrained
systems are found to be able to be on the same level
or outperform unconstrained systems. It also seems
that making use of the Gigaword corpora is likely
to yield better systems, even when translating out of
English, as in English-French and English-German.
For English-German the rule-based MT systems per-
formed well.

Of the participating teams, there is no individ-
ual system clearly outperforming all other systems
across the different language pairs. However, one
of the crawled systems, ONLINE-B, performs con-
sistently well, being one of the winners in all eight
language pairs.

As for the system combination track (Table 9),
the CMU-HEAFIELD-COMBO entry performed quite
well, being a winner in seven out of eight language
pairs. This performance is carried over to the Haitian
Creole task, where it again comes out on top (Ta-
ble 10). In the individual track of the Haitian Creole
task, BM-I2R is the sole winner in both the ‘clean’
and ‘raw’ tracks.

6 Evaluation Task

In addition to allowing us to analyze the translation
quality of different systems, the data gathered during
the manual evaluation is useful for validating auto-
matic evaluation metrics. Our evaluation shared task
is similar to the MetricsMATR workshop (Metrics
for MAchine TRanslation) that NIST runs (Przy-
bocki et al., 2008; Callison-Burch et al., 2010). Ta-
ble 11 lists the participants in this task, along with
their metrics.

A total of 21 metrics and their variants were sub-
mitted to the evaluation task by 9 research groups.
We asked metrics developers to score the outputs of
the machine translation systems and system com-
binations at the system-level and at the segment-
level. The system-level metrics scores are given in
the Appendix in Tables 39–48. The main goal of the
evaluation shared task is not to score the systems,
but instead to validate the use of automatic metrics
by measuring how strongly they correlate with hu-
man judgments. We used the human judgments col-
lected during the manual evaluation for the transla-
tion task and the system combination task to calcu-
late how well metrics correlate at system-level and
at the segment-level.

This year the strongest metric was a new metric
developed by Columbia and ETS called MTeRater-
Plus. MTeRater-Plus is a machine-learning-based
metric that use features from ETS’s e-rater, an auto-
mated essay scoring engine designed to assess writ-
ing proficiency (Attali and Burstein, 2006). The fea-
tures include sentence-level and document-level in-
formation. Some examples of the e-rater features
include:

• Preposition features that calculate the proba-
bility of prepositions appearing in the given
context of a sentence (Tetreault and Chodorow,
2008)

• Collocation features that indicate whether the
collocations in the document are typical of na-
tive use (Futagi et al., 2008).

• A sentence fragment feature that counts the
number of ill-formed sentences in a document.

• A feature that counts the number of words with
inflection errors

• A feature that counts the the number of article
errors in the sentence citeHan2006.

MTeRater uses only the e-rater features, and mea-
sures fluency without any need for reference transla-
tions. MTeRater-Plus is a meta-metric that incorpo-
rates adequacy by combining MTeRater with other
MT evaluation metrics and heuristics that take the
reference translations into account.

Please refer to the proceedings for papers provid-
ing detailed descriptions of all of the metrics.
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Metric IDs Participant
AMBER, AMBER-NL, AMBER-IT National Research Council Canada (Chen and Kuhn, 2011)
F15, F15G3 Koç University (Bicici and Yuret, 2011)
METEOR-1.3-ADQ, METEOR-1.3-RANK Carnegie Mellon University (Denkowski and Lavie, 2011a)
MTERATER, MTERATER-PLUS Columbia / ETS (Parton et al., 2011)
MP4IBM1, MPF, WMPF DFKI (Popović, 2011; Popović et al., 2011)
PARSECONF DFKI (Avramidis et al., 2011)
ROSE, ROSE-POS The University of Sheffield (Song and Cohn, 2011)
TESLA-B, TESLA-F, TESLA-M National University of Singapore (Dahlmeier et al., 2011)
TINE University of Wolverhampton (Rios et al., 2011)
BLEU provided baseline (Papineni et al., 2002)
TER provided baseline (Snover et al., 2006)

Table 11: Participants in the evaluation shared task. For comparison purposes, we include the BLEU and TER metrics
as baselines.
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System-level correlation for translation out of English
TESLA-M .90 .95 .96 .94
TESLA-B .81 .90 .91 .87

MPF .72 .63 .87 .89 .78 .80
WMPF .72 .61 .87 .89 .77 .79

MP4IBM1 -.76 -.91 -.71 -.61 .75 .74
ROSE .65 .41 .90 .86 .71 .73
BLEU .65 .44 .87 .86 .70 .72

AMBER-TI .56 .54 .88 .84 .70 .75
AMBER .56 .53 .87 .84 .70 .74

AMBER-NL .56 .45 .88 .83 .68 .72
F15G3 .50 .30 .89 .84 .63 .68

METEORrank .65 .30 .74 .85 .63 .63
F15 .52 .19 .86 .85 .60 .63

TER -.50 -.12 -.81 -.84 .57 .59
TESLA-F .86 .80 -.83 .28

Table 12: System-level Spearman’s rho correlation of the
automatic evaluation metrics with the human judgments
for translation out of English, ordered by average abso-
lute value. We did not calculate correlations with the hu-
man judgments for the system combinations for the out of
English direction, because none of them had more than 4
items.

6.1 System-Level Metric Analysis
We measured the correlation of the automatic met-
rics with the human judgments of translation quality
at the system-level using Spearman’s rank correla-
tion coefficient ρ. We converted the raw scores as-
signed to each system into ranks. We assigned a hu-
man ranking to the systems based on the percent of
time that their translations were judged to be better
than or equal to the translations of any other system
in the manual evaluation. The reference was not in-
cluded as an extra translation.

When there are no ties, ρ can be calculated using
the simplified equation:

ρ = 1− 6
∑
d2

i

n(n2 − 1)

where di is the difference between the rank for
systemi and n is the number of systems. The pos-
sible values of ρ range between 1 (where all systems
are ranked in the same order) and−1 (where the sys-
tems are ranked in the reverse order). Thus an auto-
matic evaluation metric with a higher absolute value
for ρ is making predictions that are more similar to
the human judgments than an automatic evaluation
metric with a lower absolute ρ.

The system-level correlations are shown in Ta-
ble 13 for translations into English, and Table 12
out of English, sorted by average correlation across
the language pairs. The highest correlation for
each language pair and the highest overall average
are bolded. This year, nearly all of the metrics
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System-level correlation for metrics scoring translations into English
MTERATER-PLUS -.95 -.90 -.93 -.91 -.94 -.93 -.77 .90 -.82 -.54 .85
TINE-SRL-MATCH .95 .69 .95 .95 1.00 .87 .66 .87

TESLA-F .95 .70 .98 .96 .94 .90 .60 .86 .93 .83 .87
TESLA-B .98 .88 .98 .91 .94 .91 .31 .84 .93 .83 .85

MTERATER -.91 -.88 -.91 -.88 -.89 -.79 -.60 .83 .13 .77 .55
METEOR-1.3-ADQ .93 .68 .91 .91 .83 .93 .66 .83 .95 .77 .84

TESLA-M .95 .94 .95 .82 .94 .87 .31 .83 .95 .83 .84
METEOR-1.3-RANK .91 .71 .91 .88 .77 .93 .66 .82 .95 .83 .84

AMBER-NL .88 .58 .91 .88 .94 .94 .60 .82
AMBER-TI .88 .63 .93 .85 .83 .94 .60 .81

AMBER .88 .59 .91 .86 .83 .95 .60 .80
MPF .95 .69 .91 .83 .60 .87 .54 .77 .95 .77 .79

WMPF .95 .66 .86 .83 .60 .87 .54 .76 .93 .77 .78
F15 .93 .45 .88 .96 .49 .87 .60 .74

F15G3 .93 .48 .83 .94 .49 .88 .60 .74
ROSE .88 .59 .83 .92 .60 .86 .26 .70 .93 .77 .74
BLEU .88 .48 .83 .90 .49 .85 .43 .69 .90 .83 .73

TER -.83 -.33 -.64 -.89 -.37 -.77 -.89 .67 -.93 -.83 .72
MP4IBM1 -.91 -.56 -.50 -.12 -.43 -.08 .14 .35

DFKI-PARSECONF .31 .52

Table 13: System-level Spearman’s rho correlation of the automatic evaluation metrics with the human judgments
for translation into English, ordered by average absolute value for the European languages. We did not calculate
correlations with the human judgments for the system combinations for Czech to English and for Haitian Creole to
English, because they had too few items (≤ 4) for reliable statistics.
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Segment-level correlation for translations into English
MTERATER-PLUS .30 .36 .45 .36 .37

TESLA-F .28 .24 .39 .32 .31
TESLA-B .28 .26 .36 .29 .30

METEOR-1.3-RANK .23 .25 .38 .28 .29
METEOR-1.3-ADQ .24 .25 .37 .27 .28

MPF .25 .23 .34 .28 .28
AMBER-TI .24 .26 .33 .27 .28

AMBER .24 .25 .33 .27 .27
WMPF .24 .23 .34 .26 .27

AMBER-NL .24 .24 .30 .27 .26
MTERATER .19 .26 .33 .24 .26

TESLA-M .21 .23 .29 .23 .24
TINE-SRL-MATCH .20 .19 .30 .24 .23

F15G3 .17 .15 .29 .21 .21
F15 .16 .14 .27 .22 .20

MP4IBM1 .15 .16 .18 .12 .15
DFKI-PARSECONF n/a .24 n/a n/a

Table 14: Segment-level Kendall’s tau correlation of the
automatic evaluation metrics with the human judgments
for translation into English, ordered by average correla-
tion.

had stronger correlation with human judgments than
BLEU. The metrics that had the strongest correlation
this year included two metrics, MTeRater and TINE,
as well as metrics that have demonstrated strong cor-
relation in previous years like TESLA and Meteor.

6.2 Segment-Level Metric Analysis
We measured the metrics’ segment-level scores with
the human rankings using Kendall’s tau rank corre-
lation coefficient. The reference was not included as
an extra translation.

We calculated Kendall’s tau as:

τ =
num concordant pairs - num discordant pairs

total pairs

where a concordant pair is a pair of two translations
of the same segment in which the ranks calculated
from the same human ranking task and from the cor-
responding metric scores agree; in a discordant pair,
they disagree. In order to account for accuracy- vs.
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Segment-level correlation for translations out of English
AMBER-TI .32 .22 .31 .21 .27

AMBER .31 .21 .31 .22 .26
MPF .31 .22 .30 .20 .26

WMPF .31 .22 .29 .19 .25
AMBER-NL .30 .19 .29 .20 .25

METEOR-1.3-RANK .31 .14 .26 .19 .23
F15G3 .26 .08 .22 .13 .17

F15 .26 .07 .22 .12 .17
MP4IBM1 .21 .13 .13 .06 .13
TESLA-B .29 .20 .28 n/a
TESLA-M .25 .18 .27 n/a
TESLA-F .30 .19 .26 n/a

Table 15: Segment-level Kendall’s tau correlation of the
automatic evaluation metrics with the human judgments
for translation out of English, ordered by average corre-
lation.

error-based metrics correctly, counts of concordant
vs. discordant pairs were calculated specific to these
two metric types. The possible values of τ range
between 1 (where all pairs are concordant) and −1
(where all pairs are discordant). Thus an automatic
evaluation metric with a higher value for τ is mak-
ing predictions that are more similar to the human
judgments than an automatic evaluation metric with
a lower τ .

We did not include cases where the human rank-
ing was tied for two systems. As the metrics produce
absolute scores, compared to five relative ranks in
the human assessment, it would be potentially un-
fair to the metric to count a slightly different met-
ric score as discordant with a tie in the relative hu-
man rankings. A tie in automatic metric rank for
two translations was counted as discordant with two
corresponding non-tied human judgments.

The correlations are shown in Table 14 for trans-
lations into English, and Table 15 out of English,
sorted by average correlation across the four lan-
guage pairs. The highest correlation for each lan-
guage pair and the highest overall average are
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ID Participant Metric Name
CMU-METEOR Carnegie Mellon University METEOR (Denkowski and Lavie, 2011a)
CU-SEMPOS-BLEU Charles University SemPOS/BLEU (Macháček and Bojar, 2011)
NUS-TESLA-F National University of Singapore TESLA-F (Dahlmeier et al., 2011)
RWTH-CDER RWTH Aachen CDER (Leusch and Ney, 2009)
SHEFFIELD-ROSE The University of Sheffield ROSE (single reference) (Song and Cohn, 2011)
STANFORD-DCP Stanford DCP (based on Liu and Gildea (2005))
BLEU provided baseline BLEU
BLEU-SINGLE provided baseline BLEU (single reference)

Table 16: Participants in the tunable-metric shared task. For comparison purposes, we included two BLEU-optimized
systems in the evaluation as baselines.

bolded. There is a clear winner for the metrics that
score translations into English: the MTeRater-Plus
metric (Parton et al., 2011) has the highest segment
level correlation across the board. For metrics that
score translation into other languages, there is not
such a clear-cut winner. The AMBER metric variants
do well, as do MPF and WMPF.

7 Tunable Metrics Task

This year we introduced a new shared task that fo-
cuses on using evaluation metrics to tune the param-
eters of a statistical machine translation system. The
intent of this task was to get researchers who de-
velop automatic evaluation metrics for MT to work
on the problem of using their metric to optimize
the parameters of MT systems. Previous workshops
have demonstrated that a number of metrics perform
better than BLEU in terms of having stronger cor-
relation with human judgments about the rankings
of multiple machine translation systems. However,
most MT system developers still optimize the pa-
rameters of their systems to BLEU. Here we aim
to investigate the question of whether better metrics
will result in better quality output when a system is
optimized to them.

Because this was the first year that we ran the
tunable metrics task, participation was limited to a
few groups on an invitation-only basis. Table 16
lists the participants in this task. Metrics developers
were invited to integrate their evaluation metric into
a MERT optimization routine, which was then used
to tune the parameters of a fixed statistical machine
translation system. We evaluated whether the sys-
tem tuned on their metrics produced higher-quality

output than the baseline system that was tuned to
BLEU, as is typically done. In order to evaluate
whether the quality was better, we conducted a man-
ual evaluation, in the same fashion that we evalu-
ate the different MT systems submitted to the shared
translation task.

We provide the participants with a fixed MT sys-
tem for Urdu-English, along with a small parallel
set to be used for tuning. Specifically, we provide
developers with the following components:

• Decoder - the Joshua decoder was used in this
pilot.

• Decoder configuration file - a Joshua configu-
ration file that ensures all systems use the same
search parameters.

• Translation model - an Urdu-to-English trans-
lation model, with syntax-based SCFG rules
(Baker et al., 2010).

• Language model - a large 5-gram language
model trained on the English Gigaword corpus

• Development set - a development set, with 4
English reference sets, to be used to optimize
the system parameters.

• Test set - a test set consisting of 883 Urdu sen-
tences, to be translated by the tuned system (no
references provided).

• Optimization routine - we provide an imple-
mentation of minimum error rate training that
allows new metrics to be easily integrated as
the objective function.
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Tunable Metrics Task
1324–1484 comparisons/system

System ≥others >others
BLEU • 0.79 0.28
BLEU-SINGLE • 0.77 0.27
CMU-METEOR • 0.76 0.27
RWTH-CDER 0.76 0.26
CU-SEMPOS-BLEU • 0.74 0.29
STANFORD-DCP • 0.73 0.27
NUS-TESLA-F 0.68 0.28
SHEFFIELD-ROSE 0.05 0.00

• indicates a win: no other system combination is sta-
tistically significantly better at p-level≤0.10 in pair-
wise comparison.

Table 17: Official results for the WMT11 tunable-metric
task. Systems are ordered by their ≥others score, re-
flecting how often their translations won or tied pairwise
comparisons. The > column reflects how often a system
strictly won a pairwise comparison.

We provided the metrics developers with Omar
Zaidan’s Z-MERT software (Zaidan, 2009), which
implements Och (2003)’s minimum error rate train-
ing procedure. Z-MERT is designed to be modular
with respect to the objective function, and allows
BLEU to be easily replaced with other automatic
evaluation metrics. Metric developers incorporated
their metrics into Z-MERT by subclassing the Eval-
uationMetric.java abstract class. They ran Z-MERT
on the dev set with the provided decoder/models,
and created a weight vector for the system param-
eters.

Each team produced a distinct final weight vec-
tor, which was used to produce English translations
of sentences in the test set. The different transla-
tions produced by tuning the system to different met-
rics were then evaluated using the manual evaluation
pipeline.7

7.1 Results of the Tunable Metrics Task

The results of the evaluation are in Table 18. The
scores show that the entries were quite close to each
other, with the notable exception of the SHEFFIELD-
ROSE-tuned system, which produced overly-long

7We also recased and detokenized each system’s output, to
ensure the outputs are more readable and easier to evaluate.
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REF – .15‡ .11‡ .13‡ .09‡ .09‡ .10‡ .00‡ .11‡

BLEU .78‡ – .15 .11 .20 .19† .13? .01‡ .14
BLEU-SINGLE .82‡ .20 – .11 .16 .21 .11 .00‡ .20
CMU-METEOR .84‡ .09 .15 – .21 .20 .19 .00‡ .19

CU-SEMPOS-BLEU .82‡ .23 .21 .21 – .12‡ .18 .00‡ .21
NUS-TESLA-F .80‡ .32† .31 .28 .28‡ – .31 .00‡ .28

RWTH-CDER .79‡ .22? .16 .16 .22 .23 – .00‡ .15
SHEFFIELD-ROSE .98‡ .93‡ .93‡ .96‡ .95‡ .95‡ .93‡ – .94‡

STANFORD-DCP .82‡ .17 .18 .26 .27 .28 .15 .00‡ –
> others .83 .28 .27 .27 .29 .28 .26 .00 .27

>= others .90 .79 .77 .76 .74 .68 .76 .05 .73

Table 18: Head to head comparisons for the tunable met-
rics task. The numbers indicate how often the system in
the column was judged to be better than the system in
the row. The difference between 100 and the sum of the
corresponding cells is the percent of time that the two
systems were judged to be equal.

and erroneous output (possibly due to an implemen-
tation issue). This is also evident from the fact that
38% of pairwise comparisons indicated a tie be-
tween the two systems, with the tie rate increasing
to a full 47% when excluding comparisons involving
the reference. This is a very high tie rate – the cor-
responding figure in, say, European language pairs
(individual systems) is only 21%.

What makes the different entries appear even
more closely-matched is that the ranking changes
significantly when ordering systems by their
>others score rather than the ≥others score (i.e.
when rewarding only wins, and not rewarding ties).
NUS-TESLA-F goes from being a bottom entry to be-
ing a top entry, with CU-SEMPOS-BLEU also bene-
fiting, changing from the middle to the top rank.

Either way, we see that a BLEU -tuned system
is performing just as well as systems tuned to the
other metrics. This might be an indication that some
work remains to be done before a move away from
BLEU-tuning is fully justified. On the other hand,
the close results might be an artifact of the language
pair choice. Urdu-English translation is still a rel-
atively difficult problem, and MT outputs are still
of a relatively low quality. It might be the case that
human annotators are simply not very good at distin-
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guishing one bad translation from another bad trans-
lation, especially at such a fine-grained level.

It is worth noting that the designers of the TESLA

family replicated the setup of this tunable metric task
for three European language pairs, and found that
human judges did perceive a difference in quality
between a TESLA-tuned system and a BLEU -tuned
system (Liu et al., 2011).

7.2 Anticipated Changes Next Year
This year’s effort was a pilot of the task, so we in-
tentionally limited the task to some degree, to make
it easier to iron out the details. Possible changes for
next year include:

• More language pairs / translations into lan-
guages other than English. This year we fo-
cus on Urdu-English because the language pair
requires a lot of reordering, and our syntactic
model has more parameters to optimize than
the standard Hiero and phrase-based models.

• Provide some human judgments about the
model’s output, so that people can experiment
with regression models.

• Include a single reference track along with the
multiple reference track. Some metrics may be
better at dealing with the (more common) case
of there being only a single reference transla-
tion available for every source sentence.

• Allow for experimentation with the MIRA op-
timization routine instead of MERT. MIRA can
scale to a greater number of features, but re-
quires that metrics be decomposable.

8 Summary

As in previous editions of this workshop we car-
ried out an extensive manual and automatic evalua-
tion of machine translation performance for translat-
ing from European languages into English, and vice
versa.

The number of participants grew slightly com-
pared to previous editions of the WMT workshop,
with 36 groups from 27 institutions participating in
the translation task of WMT11, 10 groups from 10
institutions participating in the system combination
task, and 10 groups from 8 institutions participating

in the featured translation task (Haitian Creole SMS
into English).

This year was also the first time that we included a
language pair (Haitian-English) with non-European
source language and with very limited resources for
the source language side. Also the genre of the
Haitian-English task differed from previous WMT
tasks as the Haitian-English translations are SMS
messages.

WMT11 also introduced a new shared task focus-
ing on evaluation metrics to tune the parameters of
a statistical machine translation system in which 6
groups have participated.

As in previous years, all data sets generated by
this workshop, including the human judgments, sys-
tem translations and automatic scores, are publicly
available for other researchers to analyze.8
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Verónica López-Ludeña and Rubén San-Segundo. 2011.
UPM system for the translation task. In Proceedings
of the Sixth Workshop on Statistical Machine Transla-
tion.

Matouš Macháček and Ondřej Bojar. 2011. Approxi-
mating a deep-syntactic metric for MT evaluation and
tuning. In Proceedings of the Sixth Workshop on Sta-
tistical Machine Translation.

45
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A Pairwise System Comparisons by Human Judges

Tables 19–38 show pairwise comparisons between systems for each language pair. The numbers in each of
the tables’ cells indicate the percentage of times that the system in that column was judged to be better than
the system in that row. Bolding indicates the winner of the two systems. The difference between 100 and
the sum of the complementary cells is the percent of time that the two systems were judged to be equal.

Because there were so many systems and data conditions the significance of each pairwise comparison
needs to be quantified. We applied the Sign Test to measure which comparisons indicate genuine differences
(rather than differences that are attributable to chance). In the following tables ? indicates statistical signif-
icance at p ≤ 0.10, † indicates statistical significance at p ≤ 0.05, and ‡ indicates statistical significance at
p ≤ 0.01, according to the Sign Test.

B Automatic Scores

Tables 39–48 give the automatic scores for each of the systems.

C Meta-evaluation

Tables 49 and 50 give a detailed breakdown of intra- and inter-annotator agreement rates for all of manual
evaluation tracks of WMT11, broken down by language pair.
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REF – .02‡ .04‡ .01‡ .04‡ .04‡ .04‡ .05‡ .04‡

CST .88‡ – .49‡ .36 .49† .59‡ .41 .58‡ .44†
CU-BOJAR .91‡ .27‡ – .27‡ .30 .48‡ .28‡ .41† .41

CU-ZEMAN .94‡ .31 .49‡ – .47‡ .67‡ .47† .64‡ .49‡
JHU .89‡ .29† .39 .28‡ – .47‡ .36 .41† .36

ONLINE-B .84‡ .20‡ .27‡ .19‡ .28‡ – .24‡ .30 .27‡

SYSTRAN .91‡ .31 .49‡ .30† .39 .59‡ – .56‡ .37
UEDIN .89‡ .16‡ .25† .16‡ .27† .36 .23‡ – .25†

UPPSALA .84‡ .28† .40 .24‡ .37 .49‡ .38 .45† –
> others .89 .23 .36 .23 .33 .46 .31 .43 .33

>= others .96 .47 .60 .44 .57 .68 .51 .69 .57

Table 19: Ranking scores for entries in the Czech-English task (individual system track).
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COMMERCIAL-1 .91‡ – .36 .53‡ .50‡ .47‡ .44? .33‡ .33† .55‡ .45†
COMMERCIAL-2 .87‡ .42 – .52‡ .47? .47‡ .50‡ .30‡ .40 .50‡ .43

CU-BOJAR .89‡ .31‡ .31‡ – .29 .41 .21† .19‡ .27‡ .42? .31?

CU-MARECEK .88‡ .31‡ .37? .27 – .35† .28 .21‡ .30‡ .39 .28†

CU-POPEL .85‡ .33‡ .29‡ .43 .45† – .41 .27‡ .31‡ .50‡ .39
CU-TAMCHYNA .87‡ .34? .35‡ .30† .32 .40 – .22‡ .25‡ .45‡ .32

CU-ZEMAN .91‡ .47‡ .52‡ .56‡ .56‡ .55‡ .55‡ – .44‡ .64‡ .54‡
JHU .91‡ .43† .41 .50‡ .47‡ .51‡ .51‡ .31‡ – .52‡ .48‡

ONLINE-B .86‡ .27‡ .32‡ .33? .39 .33‡ .29‡ .18‡ .23‡ – .31‡

UEDIN .85‡ .34† .40 .40? .37† .42 .36 .24‡ .25‡ .44‡ –
> others .88 .33 .34 .39 .39 .40 .36 .23 .28 .44 .35

>= others .96 .51 .51 .64 .63 .58 .62 .43 .49 .65 .59

Table 20: Ranking scores for entries in the English-Czech task (individual system track).
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CMU-DYER .95‡ – .18‡ .17‡ .33 .26? .22‡ .12‡ .29? .43 .23? .43 .54 .32 .20† .40 .43 .48 .31 .19† .18‡

CST .96‡ .74‡ – .42 .62‡ .35 .68‡ .44‡ .47? .78‡ .62‡ .77‡ .73‡ .81‡ .70‡ .74‡ .67‡ .53? .65‡ .47 .51
CU-ZEMAN .97‡ .67‡ .22 – .56† .26† .41 .22? .48 .66‡ .46 .60‡ .62‡ .73‡ .57† .60† .62‡ .53? .40 .44 .48

DFKI-XU .94‡ .44 .06‡ .24† – .10‡ .26 .17‡ .49† .47 .21? .42 .45 .52 .42 .45 .51 .39 .40 .48 .29
JHU 1.00‡.61? .33 .55† .64‡ – .59† .45 .51? .59 .52? .68‡ .63† .62‡ .64† .65‡ .58† .46 .61‡ .44 .38
KIT .87‡ .65‡ .12‡ .21 .44 .23† – .34 .40 .54 .30 .43 .57† .44 .43 .47 .50 .53 .40 .28 .17‡

KOC .96‡ .64‡ .09‡ .49? .66‡ .36 .43 – .43 .69‡ .57† .69‡ .63‡ .62† .41 .63‡ .59 .52? .51 .59? .40
LIMSI .96‡ .54? .24? .30 .22† .25? .38 .27 – .63† .52 .43 .55† .43 .43 .59† .47 .40 .41 .32 .44

LINGUATEC .91‡ .45 .13‡ .24‡ .38 .32 .34 .18‡ .27† – .26† .45 .62† .46 .20‡ .49 .53 .36 .41 .32? .29†

LIU .89‡ .49? .14‡ .29 .54? .25? .48 .24† .31 .64† – .47 .61† .52 .46 .48 .50 .23‡ .48 .37 .36
ONLINE-A .88‡ .47 .12‡ .25‡ .42 .18‡ .41 .19‡ .39 .39 .30 – .32 .26† .28 .46 .36 .35 .42 .19‡ .27‡

ONLINE-B .78‡ .38 .16‡ .23‡ .33 .28† .26† .16‡ .26† .29† .22† .38 – .23‡ .23† .29? .29? .22‡ .27 .22† .18‡

RBMT-1 .96‡ .42 .09‡ .18‡ .35 .21‡ .51 .23† .43 .41 .38 .56† .62‡ – .31 .46 .39 .13 .48 .50 .30?

RBMT-2 .86‡ .54† .15‡ .28† .48 .29† .43 .41 .39 .55‡ .44 .51 .64† .43 – .55? .47 .54? .44 .41 .29?

RBMT-3 .92‡ .42 .11‡ .27† .32 .23‡ .47 .18‡ .19† .34 .38 .49 .55? .38 .26? – .36 .29? .34 .33 .28†

RBMT-4 .88‡ .36 .19‡ .24‡ .38 .29† .43 .38 .45 .32 .37 .44 .56? .33 .34 .45 – .35 .29? .51 .24†

RBMT-5 .92‡ .45 .27? .27? .45 .32 .37 .27? .47 .47 .61‡ .55 .67‡ .26 .24? .53? .46 – .45 .47 .39
RWTH-WUEBKER .93‡ .50 .23‡ .26 .33 .20‡ .24 .36 .41 .44 .39 .47 .55 .44 .38 .53 .56? .45 – .21 .39

UEDIN .88‡ .59† .24 .28 .28 .33 .50 .24? .45 .65? .40 .67‡ .62† .34 .39 .52 .41 .36 .43 – .48
UPPSALA .92‡ .64‡ .27 .29 .39 .44 .58‡ .32 .41 .66† .53 .68‡ .69‡ .59? .59? .58† .61† .54 .36 .31 –
> others .92 .50 .17 .28 .40 .26 .40 .26 .38 .51 .40 .51 .57 .43 .38 .49 .47 .39 .41 .36 .32

>= others .95 .66 .37 .47 .60 .43 .57 .45 .56 .63 .57 .66 .72 .60 .54 .64 .61 .56 .59 .55 .47

Table 21: Ranking scores for entries in the German-English task (individual system track).
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COPENHAGEN .85‡ – .31 .09‡ .60‡ .39 .25 .32 .41 .27 .36 .34 .49† .61‡ .56‡ .61‡ .64‡ .64‡ .60 .26 .49 .30 .16
CU-TAMCHYNA .92‡ .37 – .13† .61‡ .48† .30 .38 .58† .33 .39 .41? .55† .57‡ .72‡ .69‡ .81‡ .49 .59† .47 .39 .40 .43

CU-ZEMAN 1.00‡.60‡ .41† – .76‡ .78‡ .51† .47? .64‡ .53‡ .66‡ .49? .77‡ .68‡ .69‡ .64‡ .70‡ .64‡ .72‡ .55‡ .47 .44 .50
DFKI-FEDERMANN .72‡ .19‡ .17‡ .16‡ – .39 .25‡ .38 .38 .24‡ .32 .29 .35 .40 .43 .33 .39 .19 .33? .22† .31 .11‡ .30

DFKI-XU .84‡ .31 .21† .08‡ .37 – .25† .32 .34 .12‡ .37 .30 .35 .47 .54? .30 .51? .43 .37 .20† .22† .25† .14‡
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RBMT-1 .80‡ .23‡ .11‡ .20‡ .37 .28? .18‡ .29 .38 .25† .36 .30† .41 .38 – .34 .45 .36 .02‡ .17‡ .17‡ .28? .24†

RBMT-2 .80‡ .20‡ .10‡ .16‡ .43 .38 .20‡ .27† .45 .22† .36 .30? .38 .51 .43 – .48 .40 .42 .31? .28? .16‡ .25‡

RBMT-3 .65‡ .18‡ .14‡ .15‡ .37 .29? .17‡ .22‡ .25† .20‡ .27 .33 .33 .29 .30 .31 – .34 .16‡ .24† .35 .20‡ .11‡

RBMT-4 .80‡ .21‡ .28 .22‡ .19 .26 .09‡ .32 .29 .27‡ .39 .27? .43 .44 .38 .38 .45 – .42 .29? .36 .27‡ .31?

RBMT-5 .88‡ .35 .31† .15‡ .54? .51 .26† .34 .36 .36 .44 .35 .44 .59‡ .37‡ .33 .62‡ .38 – .29 .45 .38 .30
RWTH-FREITAG .80‡ .31 .27 .17‡ .62† .55† .19 .25? .56‡ .30 .49‡ .41 .53? .59‡ .56‡ .53? .62† .57? .45 – .36 .38 .24

UEDIN .82‡ .27 .27 .27 .46 .47† .17‡ .28 .36 .33 .48† .27 .47 .43 .75‡ .55? .52 .50 .43 .21 – .35 .27
UOW .86‡ .39 .21 .23 .74‡ .53† .36 .38 .64‡ .20 .38 .41 .74‡ .61‡ .56? .64‡ .57‡ .65‡ .38 .26 .41 – .31

UPPSALA .79‡ .32 .35 .29 .54 .57‡ .34 .51† .51‡ .45† .53‡ .43 .73‡ .70‡ .55† .64‡ .77‡ .57? .55 .43 .33 .41 –
> others .84 .29 .24 .17 .48 .42 .24 .31 .42 .27 .40 .34 .46 .51 .51 .47 .56 .46 .41 .29 .34 .29 .25

>= others .91 .56 .50 .38 .68 .67 .48 .54 .64 .53 .65 .59 .65 .730 .70 .66 .732 .66 .58 .56 .60 .53 .49

Table 22: Ranking scores for entries in the English-German task (individual system track).
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REF – .03‡ .02‡ .00‡ .02‡ .03‡ .12‡ .15‡ .04‡ .07‡ .05‡ .02‡ .03‡ .03‡ .03‡ .07‡

ALACANT .86‡ – .07‡ .08‡ .30 .52 .31 .27? .29? .54 .49 .32? .51 .27† .26† .26?

CU-ZEMAN .98‡ .89‡ – .48 .84‡ .85‡ .94‡ .90‡ .83‡ .87‡ .85‡ .78‡ .97‡ .79‡ .79‡ .91‡
HYDERABAD .98‡ .86‡ .27 – .88‡ .95‡ .92‡ .85‡ .96‡ .74‡ .82‡ .80‡ .88‡ .91‡ .80‡ .86‡

KOC .93‡ .48 .06‡ .06‡ – .28 .39 .40 .34 .44 .38 .26† .59† .22‡ .20‡ .18‡

ONLINE-A .90‡ .28 .02‡ .02‡ .48 – .32 .34 .34 .26? .34 .19‡ .35 .20‡ .11‡ .20‡

ONLINE-B .79‡ .33 .04‡ .00‡ .47 .30 – .24† .31? .31? .27† .25‡ .33 .27† .21‡ .07‡

RBMT-1 .81‡ .52? .05‡ .11‡ .50 .57 .62† – .50 .36 .34 .17 .40 .39 .34 .30?

RBMT-2 .96‡ .61? .09‡ .04‡ .52 .47 .59? .37 – .39 .46 .27 .58† .29† .24† .45
RBMT-3 .88‡ .31 .09‡ .13‡ .44 .56? .60? .53 .37 – .47 .14‡ .52 .40 .23† .31
RBMT-4 .90‡ .38 .08‡ .16‡ .50 .53 .60† .41 .43 .38 – .43 .52 .33? .18‡ .22‡

RBMT-5 .94‡ .61? .06‡ .10‡ .54† .70‡ .63‡ .37 .45 .59‡ .41 – .66‡ .42 .50 .43
SYSTRAN .92‡ .33 .02‡ .10‡ .25† .53 .53 .42 .30† .36 .38 .27‡ – .21‡ .41 .24‡

UEDIN .95‡ .63† .13‡ .02‡ .63‡ .67‡ .59† .47 .61† .53 .59? .42 .53‡ – .32† .45
UFAL-UM .94‡ .63† .10‡ .11‡ .56‡ .70‡ .74‡ .51 .61† .59† .74‡ .36 .47 .61† – .44

UPM .85‡ .54? .02‡ .03‡ .62‡ .61‡ .81‡ .59? .45 .55 .68‡ .40 .60‡ .42 .38 –
> others .91 .51 .07 .10 .52 .56 .59 .48 .48 .47 .48 .35 .54 .39 .34 .36

>= others .96 .66 .16 .17 .67 .723 .723 .63 .60 .61 .60 .51 .66 .51 .47 .50

Table 23: Ranking scores for entries in the Spanish-English task (individual system track).
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REF – .06‡ .03‡ .09‡ .09‡ .09‡ .05‡ .03‡ .06‡ .04‡ .08‡ .02‡ .08‡ .02‡ .03‡ .04‡

CEU-UPV .84‡ – .21‡ .20† .43 .36 .42 .37 .34? .50† .31 .34 .32 .21† .13‡ .22
CU-ZEMAN .87‡ .56‡ – .38? .56‡ .56‡ .58‡ .46? .40 .70‡ .46? .49† .51‡ .45‡ .19‡ .49‡

KOC .84‡ .41† .22? – .56‡ .51‡ .48† .54‡ .39 .55‡ .42 .35 .51‡ .44 .11‡ .34
ONLINE-A .72‡ .31 .24‡ .15‡ – .36 .37 .28† .23‡ .35 .25‡ .20‡ .29? .25† .08‡ .09‡

ONLINE-B .72‡ .30 .17‡ .18‡ .26 – .29 .23‡ .20‡ .37 .20‡ .19‡ .19‡ .22‡ .02‡ .23?

PROMT .76‡ .29 .21‡ .25† .42 .43 – .24‡ .24 .19 .27? .26† .32 .25‡ .18‡ .21‡

RBMT-1 .85‡ .37 .29? .23‡ .51† .54‡ .48‡ – .35 .45‡ .40† .05‡ .47 .39 .25‡ .39
RBMT-2 .86‡ .50? .35 .38 .51‡ .48‡ .35 .39 – .41† .34 .36 .45 .36 .23‡ .41
RBMT-3 .86‡ .26† .18‡ .22‡ .40 .35 .19 .20‡ .22† – .25† .23‡ .24‡ .33 .10‡ .22†

RBMT-4 .80‡ .45 .29? .34 .53‡ .51‡ .43? .21† .38 .43† – .24‡ .34 .30 .20‡ .45?

RBMT-5 .96‡ .43 .29† .42 .57‡ .61‡ .46† .22‡ .38 .49‡ .47‡ – .50 .46 .27† .47
UEDIN .74‡ .28 .20‡ .21‡ .46? .48‡ .43 .37 .31 .49‡ .45 .35 – .20† .14‡ .23

UOW .90‡ .44† .18‡ .32 .46† .52‡ .56‡ .39 .39 .44 .45 .36 .38† – .10‡ .32
UPM .93‡ .65‡ .53‡ .67‡ .74‡ .71‡ .69‡ .59‡ .51‡ .74‡ .60‡ .51† .64‡ .68‡ – .62‡

UPPSALA .84‡ .36 .21‡ .32 .49‡ .42? .45‡ .39 .35 .45† .29? .41 .35 .30 .15‡ –
> others .83 .38 .24 .30 .47 .46 .41 .33 .32 .43 .35 .29 .38 .33 .14 .31

>= others .94 .65 .49 .56 .72 .74 .70 .60 .57 .71 .61 .54 .64 .59 .34 .61

Table 24: Ranking scores for entries in the English-Spanish task (individual system track).
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REF – .10‡ .18‡ .06‡ .03‡ .14‡ .15‡ .14‡ .14‡ .12‡ .05‡ .12‡ .09‡ .05‡ .06‡ .05‡ .05‡ .07‡ .02‡

CMU-DENKOWSKI .79‡ – .35 .12‡ .34 .32 .41 .35 .21? .47? .46 .49 .32 .33 .36 .35 .25 .45 .29
CMU-HANNEMAN .79‡ .35 – .17‡ .29 .44? .43 .52? .45 .45 .49 .51 .39 .44 .38 .35 .35 .43 .37

CU-ZEMAN .94‡ .61‡ .67‡ – .54† .66‡ .66† .58† .60‡ .59† .88‡ .62‡ .59? .63‡ .60† .56 .68‡ .64† .40
JHU .82‡ .34 .29 .22† – .26 .54? .40 .36 .43 .40 .49 .42 .40 .34 .35 .36 .47 .20†

KIT .79‡ .39 .20? .16‡ .40 – .26? .46 .34 .38 .52 .38 .35 .39 .28 .38 .15† .32 .30
LIA-LIG .75‡ .24 .31 .28† .24? .59? – .49 .27 .40 .46 .35 .26 .31? .29 .32 .32 .33? .35

LIMSI .86‡ .30 .25? .21† .31 .26 .26 – .38 .40 .42 .35 .18† .43 .34 .16‡ .34 .34 .33
LIUM .78‡ .45? .33 .16‡ .38 .34 .44 .40 – .38 .30 .44 .26† .33? .38 .28 .29 .33 .28

ONLINE-A .80‡ .23? .21 .22† .37 .35 .36 .33 .46 – .43 .35 .16‡ .33 .24† .20‡ .26 .34 .27†

ONLINE-B .86‡ .37 .31 .04‡ .46 .22 .36 .33 .43 .26 – .40 .20† .16‡ .44 .20‡ .41 .38 .22†

RBMT-1 .87‡ .44 .35 .23‡ .46 .44 .54 .48 .44 .53 .54 – .39 .37 .33 .11† .39 .17† .35
RBMT-2 .84‡ .47 .37 .26? .40 .50 .45 .52† .54† .58‡ .67† .45 – .51 .35 .22† .51 .57 .41
RBMT-3 .89‡ .44 .42 .19‡ .40 .43 .54? .46 .61? .50 .71‡ .37 .32 – .42 .35 .42 .47 .40
RBMT-4 .85‡ .53 .36 .26† .51 .47 .55 .52 .46 .59† .40 .43 .50 .42 – .34 .46 .44 .41
RBMT-5 .93‡ .58 .55 .33 .54 .54 .59 .70‡ .56 .66‡ .65‡ .36† .54† .46 .37 – .50 .54? .54

RWTH-HUCK .92‡ .43 .38 .14‡ .36 .59† .41 .44 .29 .53 .48 .46 .30 .46 .32 .38 – .37 .17†

SYSTRAN .93‡ .39 .38 .24† .44 .48 .60? .50 .40 .55 .57 .45† .36 .29 .44 .21? .49 – .36
UEDIN .93‡ .48 .41 .40 .51† .48 .54 .49 .46 .60† .57† .52 .37 .47 .39 .39 .51† .52 –

> others .85 .39 .36 .21 .39 .41 .46 .46 .41 .46 .50 .41 .33 .39 .35 .28 .37 .39 .32
>= others .91 .62 .58 .37 .61 .64 .64 .661 .63 .661 .66 .58 .52 .55 .53 .45 .58 .54 .50

Table 25: Ranking scores for entries in the French-English task (individual system track).
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REF – .07‡ .06‡ .25‡ .07‡ .13‡ .20‡ .15‡ .20‡ .10‡ .09‡ .18‡ .11‡ .12‡ .14‡ .18‡ .16‡ .16‡

CU-ZEMAN .92‡ – .83‡ .86‡ .63† .85‡ .90‡ .86‡ .81‡ .89‡ .70‡ .75‡ .75‡ .61‡ .78‡ .79‡ .81‡ .81‡
JHU .91‡ .07‡ – .55† .30? .60‡ .50? .55? .59‡ .45 .41 .34? .30† .50 .40 .42 .42 .44
KIT .63‡ .04‡ .29† – .18‡ .47 .37 .30? .37 .38 .30† .37 .24‡ .34 .28 .34 .24† .13‡

LATL-GENEVA .86‡ .29† .54? .73‡ – .77‡ .67‡ .71‡ .79‡ .55† .39 .66‡ .52 .58‡ .58‡ .51 .52 .58†
LIMSI .75‡ .04‡ .21‡ .29 .13‡ – .23? .28? .37 .27† .27‡ .24‡ .24‡ .21‡ .27† .28? .25† .31
LIUM .76‡ .04‡ .26? .44 .24‡ .46? – .33 .52 .48 .25‡ .36 .25‡ .28† .43 .40 .35 .32

ONLINE-A .78‡ .10‡ .31? .51? .22‡ .51? .46 – .44 .39 .36 .41 .30? .41 .41 .32? .46 .33
ONLINE-B .70‡ .06‡ .27‡ .41 .13‡ .39 .32 .30 – .47 .22‡ .26† .13‡ .28† .32 .26† .33 .27†

RBMT-1 .83‡ .07‡ .38 .46 .23† .56† .39 .41 .42 – .17‡ .34 .36 .13 .52 .33? .40 .40
RBMT-2 .88‡ .25‡ .47 .59† .37 .65‡ .63‡ .51 .57‡ .54‡ – .58‡ .39 .54? .63‡ .61† .47 .42
RBMT-3 .80‡ .19‡ .54? .42 .20‡ .60‡ .47 .44 .52† .42 .18‡ – .21† .43 .51 .55 .41 .39
RBMT-4 .82‡ .22‡ .54† .63‡ .33 .63‡ .64‡ .54? .59‡ .41 .44 .46† – .47 .68‡ .53 .42 .39
RBMT-5 .86‡ .18‡ .46 .53 .20‡ .62‡ .56† .46 .61† .22 .33? .40 .34 – .43 .52 .40 .53?

RWTH-HUCK .76‡ .08‡ .33 .38 .21‡ .60† .40 .38 .43 .36 .18‡ .37 .21‡ .38 – .39 .22‡ .29
UEDIN .78‡ .15‡ .37 .46 .34 .49? .38 .53? .58† .56? .33† .35 .36 .37 .47 – .38 .31

UPPSALA .77‡ .07‡ .36 .53† .36 .49† .46 .46 .56 .46 .38 .42 .39 .55 .57‡ .39 – .47
UPPSALA-FBK .80‡ .10‡ .40 .71‡ .27† .50 .47 .51 .53† .42 .48 .41 .52 .29? .50 .47 .40 –

> others .80 .12 .39 .51 .25 .55 .48 .45 .52 .43 .32 .41 .33 .39 .46 .43 .39 .38
>= others .86 .20 .55 .69 .39 .73 .64 .60 .70 .61 .46 .58 .49 .55 .65 .58 .55 .54

Table 26: Ranking scores for entries in the English-French task (individual system track).

R
E

F

B
M

-I
2R

C
M

U
-D

E
N

K
O

W
S

K
I

C
M

U
-H

E
W

A
V

IT
H

A
R

A
N

A

H
Y

D
E

R
A

B
A

D

K
O

C

L
IU

U
M

D
-E

ID
E

L
M

A
N

U
M

D
-H

U

U
P

P
S

A
L

A

REF – .03‡ .01‡ .03‡ .02‡ .01‡ .00‡ .01‡ .01‡ .02‡

BM-I2R .91‡ – .28† .27† .13‡ .08‡ .19‡ .30† .30‡ .24‡

CMU-DENKOWSKI .93‡ .44† – .25 .22‡ .15‡ .28† .33 .29‡ .31†

CMU-HEWAVITHARANA .91‡ .40† .31 – .21‡ .16‡ .29† .35 .39 .30
HYDERABAD .96‡ .71‡ .59‡ .58‡ – .27‡ .56‡ .57‡ .42 .52‡

KOC .94‡ .78‡ .75‡ .64‡ .55‡ – .65‡ .69‡ .62‡ .64‡
LIU .92‡ .56‡ .42† .44† .27‡ .24‡ – .43 .41 .39

UMD-EIDELMAN .94‡ .44† .35 .35 .17‡ .17‡ .34 – .37 .31?

UMD-HU .90‡ .50‡ .57‡ .45 .35 .21‡ .46 .45 – .42
UPPSALA .93‡ .48‡ .47† .39 .31‡ .20‡ .40 .43? .37 –
> others .93 .49 .42 .39 .25 .17 .35 .40 .36 .35

>= others .98 .71 .66 .64 .43 .31 .55 .63 .52 .57

Table 27: Ranking scores for entries in the Haitian Creole (Clean)-English task (individual system track).
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REF – .05‡ .03‡ .04‡ .02‡ .02‡ .03‡

BM-I2R .83‡ – .29† .25‡ .22‡ .30‡ .30‡

CMU-DENKOWSKI .89‡ .44† – .37? .23‡ .37 .30†

CMU-HEWAVITHARANA .86‡ .43‡ .26? – .27‡ .37 .32
JHU .96‡ .62‡ .53‡ .49‡ – .52‡ .47‡
LIU .92‡ .48‡ .38 .34 .31‡ – .36

UMD-EIDELMAN .92‡ .48‡ .44† .42 .29‡ .41 –
> others .90 .43 .34 .33 .23 .34 .30

>= others .97 .65 .59 .60 .41 .55 .52

Table 28: Ranking scores for entries in the Haitian Creole (Raw)-English task (individual system track).
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REF – .01‡ .02‡ .01‡ .01‡

BBN-COMBO .91‡ – .25 .18? .16‡

CMU-HEAFIELD-COMBO .90‡ .24 – .17‡ .12‡

JHU-COMBO .92‡ .27? .29‡ – .20‡

UPV-PRHLT-COMBO .94‡ .41‡ .42‡ .36‡ –
> others .92 .23 .24 .18 .12

>= others .99 .62 .64 .58 .47

Table 29: Ranking scores for entries in the Czech-English task (system combination track).
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REF – .04‡ .04‡

CMU-HEAFIELD-COMBO .86‡ – .17‡

UPV-PRHLT-COMBO .88‡ .30‡ –
> others .87 .17 .11

>= others .96 .48 .41

Table 30: Ranking scores for entries in the English-Czech task (system combination track).
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REF – .11‡ .09‡ .04‡ .09‡ .10‡ .14‡ .05‡ .09‡

BBN-COMBO .79‡ – .45‡ .32 .21‡ .28† .39 .31? .36
CMU-HEAFIELD-COMBO .84‡ .23‡ – .21‡ .17‡ .19‡ .25? .19‡ .31

JHU-COMBO .85‡ .42 .55‡ – .25† .28† .40† .28? .47?

KOC-COMBO .83‡ .56‡ .62‡ .45† – .41 .54‡ .40? .51†
QUAERO-COMBO .86‡ .52† .64‡ .45† .36 – .54‡ .49† .48

RWTH-LEUSCH-COMBO .83‡ .28 .41? .22† .20‡ .22‡ – .22‡ .38
UPV-PRHLT-COMBO .85‡ .47? .57‡ .42? .25? .26† .48‡ – .49†

UZH-COMBO .86‡ .34 .38 .31? .29† .32 .41 .30† –
> others .84 .36 .46 .30 .22 .26 .39 .27 .39

>= others .91 .61 .70 .56 .45 .46 .65 .52 .60

Table 31: Ranking scores for entries in the German-English task (system combination track).
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REF – .11‡ .09‡ .10‡ .11‡

CMU-HEAFIELD-COMBO .81‡ – .19‡ .23‡ .32
KOC-COMBO .84‡ .48‡ – .38‡ .47‡

UPV-PRHLT-COMBO .81‡ .36‡ .23‡ – .37?

UZH-COMBO .80‡ .34 .24‡ .31? –
> others .81 .320 .19 .25 .318

>= others .90 .61 .46 .56 .58

Table 32: Ranking scores for entries in the English-German task (system combination track).
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REF – .05‡ .09‡ .05‡ .07‡ .06‡ .08‡

BBN-COMBO .81‡ – .34 .27 .21‡ .27 .26
CMU-HEAFIELD-COMBO .84‡ .31 – .18‡ .15‡ .29 .20

JHU-COMBO .83‡ .25 .32‡ – .27 .35‡ .25
KOC-COMBO .84‡ .39‡ .39‡ .32 – .39‡ .31?

RWTH-LEUSCH-COMBO .81‡ .24 .23 .16‡ .17‡ – .14‡

UPV-PRHLT-COMBO .77‡ .30 .26 .27 .22? .35‡ –
> others .82 .25 .27 .21 .18 .28 .21

>= others .93 .64 .67 .62 .56 .71 .64

Table 33: Ranking scores for entries in the Spanish-English task (system combination track).
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CMU-HEAFIELD-COMBO .70‡ – .15‡ .21‡ .17‡

KOC-COMBO .76‡ .35‡ – .36‡ .19
UOW-COMBO .72‡ .29‡ .22‡ – .25‡

UPV-PRHLT-COMBO .76‡ .35‡ .16 .35‡ –
> others .73 .27 .15 .25 .17

>= others .91 .69 .58 .63 .59

Table 34: Ranking scores for entries in the English-Spanish task (system combination track).
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BBN-COMBO .82‡ – .35 .25 .18‡ .21? .21‡

CMU-HEAFIELD-COMBO .90‡ .29 – .30 .20‡ .29 .25†

JHU-COMBO .83‡ .35 .40 – .31? .36 .21†

LIUM-COMBO .83‡ .42‡ .40‡ .44? – .38† .35
RWTH-LEUSCH-COMBO .83‡ .34? .29 .30 .22† – .21‡

UPV-PRHLT-COMBO .91‡ .49‡ .40† .34† .30 .40‡ –
> others .85 .32 .31 .28 .21 .28 .21

>= others .95 .67 .62 .59 .53 .63 .53

Table 35: Ranking scores for entries in the French-English task (system combination track).
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CMU-HEAFIELD-COMBO .74‡ – .23‡

UPV-PRHLT-COMBO .77‡ .38‡ –
> others .76 .24 .17

>= others .89 .51 .43

Table 36: Ranking scores for entries in the English-French task (system combination track).
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CMU-HEAFIELD-COMBO .94‡ – .29‡ .21‡

KOC-COMBO .96‡ .48‡ – .41†
UPV-PRHLT-COMBO .94‡ .34‡ .29† –

> others .95 .28 .20 .21
>= others .99 .52 .38 .48

Table 37: Ranking scores for entries in the Haitian Creole (Clean)-English task (system combination track).
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CMU-HEAFIELD-COMBO .83‡ – .24
UPV-PRHLT-COMBO .86‡ .29 –

> others .84 .16 .13
>= others .98 .47 .43

Table 38: Ranking scores for entries in the Haitian Creole (Raw)-English task (system combination track).
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Czech-English News Task
BBN-COMBO 0.24 0.24 0.25 0.29 0.31 0.19 –9627 –10667 1.97 0.53 0.49 0.61 0.34 –65 44 0.48 0.03 0.51 43

CMU-HEAFIELD-COMBO 0.24 0.24 0.24 0.28 0.3 0.18 –9604 –10933 1.97 0.54 0.5 0.60 0.33 –65 43 0.48 0.03 0.52 42
CST 0.19 0.19 0.2 0.16 0.21 0.10 –27410 –27880 1.94 0.64 0.40 0.5 0.28 –65 34 0.38 0.02 0.42 33

CU-BOJAR 0.21 0.21 0.22 0.19 0.24 0.13 –23441 –22289 1.95 0.64 0.44 0.55 0.30 –65 37 0.42 0.02 0.46 36
CU-ZEMAN 0.20 0.2 0.21 0.14 0.21 0.11 –33520 –30938 1.93 0.66 0.38 0.52 0.29 –66 31 0.37 0.02 0.40 30

JHU 0.22 0.21 0.22 0.2 0.25 0.13 –21278 –20480 1.95 0.60 0.43 0.55 0.30 –65 37 0.42 0.02 0.46 36
JHU-COMBO 0.24 0.23 0.24 0.29 0.31 0.19 –12563 –12688 1.97 0.53 0.5 0.60 0.33 –65 44 0.48 0.03 0.52 43

ONLINE-B 0.24 0.23 0.24 0.29 0.31 0.19 –10673 –11506 1.97 0.52 0.50 0.60 0.33 –65 44 0.49 0.03 0.52 43
SYSTRAN 0.20 0.2 0.21 0.18 0.22 0.11 –23996 –24570 1.94 0.63 0.42 0.52 0.29 –65 36 0.4 0.02 0.45 34

UEDIN 0.22 0.22 0.23 0.22 0.26 0.14 –14958 –15342 1.96 0.59 0.45 0.57 0.31 –65 40 0.44 0.03 0.48 39
UPPSALA 0.21 0.20 0.21 0.20 0.23 0.12 –22233 –22509 1.95 0.62 0.43 0.53 0.29 –65 37 0.41 0.02 0.46 36

UPV-PRHLT-COMBO 0.24 0.23 0.24 0.29 0.31 0.19 –13904 –15260 1.97 0.54 0.49 0.60 0.33 –65 44 0.48 0.03 0.52 43

Table 39: Automatic evaluation metric scores for systems in the WMT11 Czech-English News Task
(newssyscombtest2011)
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German-English News Task
BBN-COMBO 0.23 0.22 0.23 0.25 0.28 0.16 –17103 –17837 1.97 0.56 0.46 0.06 0.59 0.32 –43 42 0.46 0.03 0.49 41

CMU-DYER 0.21 0.21 0.22 0.22 0.25 0.13 –26089 –29214 1.95 0.59 0.44 0.04 0.56 0.31 –45 39 0.43 0.03 0.47 38
CMU-HEAFIELD-COMBO 0.23 0.22 0.23 0.24 0.27 0.15 –12868 –16156 1.96 0.57 0.47 0.07 0.58 0.32 –44 41 0.46 0.03 0.51 40

CST 0.19 0.18 0.19 0.17 0.22 0.11 –61131 –60157 1.94 0.63 0.39 0.03 0.5 0.27 –46 34 0.37 0.02 0.41 33
CU-ZEMAN 0.2 0.19 0.20 0.14 0.22 0.11 –64860 –61329 1.93 0.65 0.37 0.06 0.51 0.28 –47 31 0.37 0.02 0.4 30

DFKI-XU 0.21 0.20 0.21 0.21 0.25 0.14 –40171 –39455 1.95 0.58 0.44 0.03 0.54 0.3 –45 38 0.42 0.02 0.46 37
JHU 0.19 0.19 0.2 0.17 0.22 0.11 –62997 –58673 1.94 0.64 0.39 0.03 0.51 0.28 –45 34 0.38 0.02 0.41 33

JHU-COMBO 0.22 0.22 0.23 0.24 0.27 0.15 –30492 –27016 1.96 0.57 0.46 0.04 0.57 0.31 –44 41 0.45 0.03 0.48 39
KIT 0.21 0.21 0.22 0.22 0.25 0.13 –31064 –31930 1.95 0.6 0.44 0.05 0.55 0.31 –44 39 0.43 0.02 0.47 37

KOC 0.2 0.2 0.20 0.18 0.23 0.12 –52337 –50231 1.94 0.63 0.41 0.05 0.52 0.29 –45 35 0.39 0.02 0.43 34
KOC-COMBO 0.21 0.21 0.21 0.22 0.26 0.14 –40002 –38374 1.96 0.59 0.44 0.03 0.54 0.3 –44 38 0.42 0.02 0.46 37

LIMSI 0.21 0.20 0.21 0.20 0.24 0.13 –39419 –38297 1.95 0.61 0.43 0.04 0.54 0.3 –44 38 0.42 0.02 0.46 36
LINGUATEC 0.19 0.19 0.2 0.16 0.22 0.11 –26064 –31116 1.94 0.68 0.42 0.15 0.53 0.29 –46 35 0.42 0.02 0.47 34

LIU 0.21 0.20 0.21 0.2 0.24 0.13 –40281 –40496 1.95 0.62 0.43 0.04 0.53 0.29 –44 37 0.41 0.02 0.45 36
ONLINE-A 0.22 0.21 0.22 0.21 0.26 0.14 –25411 –25675 1.95 0.6 0.45 0.06 0.57 0.31 –44 39 0.45 0.03 0.48 38
ONLINE-B 0.22 0.22 0.23 0.23 0.27 0.15 –15149 –19578 1.96 0.58 0.46 0.06 0.57 0.32 –44 41 0.46 0.03 0.5 39

QUAERO-COMBO 0.21 0.21 0.22 0.22 0.26 0.14 –34486 –33449 1.96 0.58 0.45 0.03 0.55 0.30 –44 39 0.43 0.03 0.47 38
RBMT-1 0.20 0.2 0.21 0.16 0.21 0.11 –32960 –34972 1.94 0.67 0.42 0.08 0.52 0.29 –45 36 0.42 0.02 0.46 34
RBMT-2 0.19 0.19 0.2 0.15 0.2 0.1 –40842 –43413 1.94 0.69 0.4 0.11 0.50 0.28 –45 34 0.4 0.02 0.44 33
RBMT-3 0.20 0.2 0.21 0.17 0.22 0.11 –32476 –33417 1.94 0.65 0.42 0.09 0.53 0.29 –44 36 0.42 0.02 0.47 35
RBMT-4 0.20 0.2 0.21 0.17 0.22 0.11 –34287 –34604 1.94 0.66 0.42 0.08 0.52 0.29 –45 36 0.42 0.02 0.47 35
RBMT-5 0.19 0.19 0.20 0.15 0.20 0.10 –49097 –46635 1.94 0.68 0.40 0.07 0.50 0.28 –46 34 0.4 0.02 0.44 33

RWTH-LEUSCH-COMBO 0.22 0.22 0.23 0.24 0.28 0.16 –22878 –22089 1.96 0.56 0.46 0.03 0.58 0.32 –44 41 0.45 0.03 0.49 40
RWTH-WUEBKER 0.21 0.20 0.21 0.21 0.24 0.13 –35973 –37140 1.95 0.60 0.44 0.04 0.54 0.3 –45 38 0.42 0.02 0.45 37

UEDIN 0.21 0.20 0.21 0.19 0.23 0.12 –32791 –34633 1.95 0.63 0.43 0.07 0.54 0.3 –45 37 0.42 0.02 0.46 36
UPPSALA 0.20 0.2 0.21 0.2 0.23 0.12 –40448 –41548 1.95 0.63 0.42 0.06 0.53 0.29 –45 37 0.41 0.02 0.44 36

UPV-PRHLT-COMBO 0.22 0.21 0.22 0.23 0.27 0.15 –33413 –31778 1.96 0.58 0.45 0.03 0.57 0.31 –44 40 0.44 0.03 0.48 39
UZH-COMBO 0.22 0.21 0.22 0.23 0.27 0.15 –16326 –20831 1.96 0.58 0.45 0.07 0.57 0.31 –44 40 0.45 0.03 0.48 39

Table 40: Automatic evaluation metric scores for systems in the WMT11 German-English News Task
(newssyscombtest2011)
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French-English News Task
BBN-COMBO 0.25 0.25 0.26 0.31 0.32 0.21 –19552 –22107 1.98 0.48 0.51 0.64 0.36 –43 47 0.49 0.03 0.54 46

CMU-DENKOWSKI 0.24 0.24 0.24 0.26 0.29 0.17 –34357 –37807 1.97 0.53 0.48 0.61 0.34 –45 43 0.46 0.03 0.50 42
CMU-HANNEMAN 0.24 0.23 0.24 0.27 0.29 0.17 –33662 –37698 1.97 0.52 0.49 0.60 0.33 –45 44 0.46 0.03 0.51 42

CMU-HEAFIELD-COMBO 0.25 0.25 0.25 0.30 0.31 0.2 –18365 –22937 1.98 0.5 0.51 0.63 0.35 –44 46 0.49 0.03 0.54 45
CU-ZEMAN 0.22 0.22 0.23 0.17 0.24 0.13 –67586 –64688 1.94 0.6 0.41 0.56 0.31 –47 34 0.39 0.02 0.42 33

JHU 0.24 0.24 0.24 0.25 0.29 0.17 –41567 –39578 1.96 0.53 0.47 0.61 0.34 –45 42 0.46 0.03 0.5 41
JHU-COMBO 0.25 0.25 0.25 0.31 0.32 0.20 –32785 –31712 1.98 0.49 0.50 0.63 0.35 –43 47 0.48 0.03 0.53 45

KIT 0.25 0.24 0.25 0.29 0.31 0.19 –22678 –28283 1.98 0.51 0.50 0.63 0.35 –44 46 0.49 0.03 0.53 44
LIA-LIG 0.25 0.24 0.25 0.29 0.3 0.18 –34063 –34716 1.97 0.52 0.49 0.62 0.34 –44 45 0.48 0.03 0.52 44

LIMSI 0.25 0.24 0.25 0.28 0.29 0.18 –26269 –29363 1.97 0.52 0.5 0.62 0.34 –44 45 0.48 0.03 0.52 44
LIUM 0.25 0.24 0.25 0.29 0.30 0.19 –29288 –36137 1.98 0.52 0.49 0.62 0.34 –44 45 0.48 0.03 0.53 44

LIUM-COMBO 0.25 0.24 0.25 0.31 0.31 0.2 –30678 –35365 1.98 0.50 0.5 0.62 0.34 –44 46 0.48 0.03 0.53 45
ONLINE-A 0.25 0.24 0.25 0.27 0.3 0.18 –38761 –34096 1.97 0.52 0.49 0.62 0.34 –44 44 0.48 0.03 0.52 43
ONLINE-B 0.25 0.24 0.25 0.29 0.31 0.19 –19157 –25284 1.98 0.50 0.51 0.62 0.35 –45 46 0.49 0.03 0.54 44

RBMT-1 0.24 0.23 0.24 0.23 0.26 0.15 –49115 –39153 1.96 0.59 0.46 0.60 0.33 –43 42 0.46 0.03 0.51 41
RBMT-2 0.23 0.22 0.23 0.21 0.24 0.13 –59549 –50466 1.95 0.63 0.44 0.57 0.32 –43 40 0.43 0.02 0.48 39
RBMT-3 0.23 0.23 0.23 0.22 0.25 0.14 –52047 –45073 1.96 0.59 0.46 0.58 0.32 –44 41 0.45 0.02 0.50 40
RBMT-4 0.23 0.22 0.24 0.22 0.25 0.14 –54507 –42933 1.96 0.63 0.45 0.59 0.33 –43 40 0.44 0.02 0.49 39
RBMT-5 0.23 0.22 0.23 0.21 0.24 0.13 –55545 –48332 1.95 0.62 0.45 0.57 0.32 –44 40 0.44 0.02 0.49 38

RWTH-HUCK 0.24 0.24 0.25 0.28 0.3 0.18 –44018 –42549 1.97 0.52 0.49 0.61 0.34 –44 44 0.47 0.03 0.51 43
RWTH-LEUSCH-COMBO 0.26 0.25 0.26 0.31 0.32 0.20 –21914 –21746 1.98 0.49 0.51 0.64 0.35 –43 47 0.50 0.03 0.54 46

SYSTRAN 0.24 0.23 0.24 0.25 0.27 0.16 –34321 –40119 1.96 0.54 0.48 0.59 0.33 –44 43 0.46 0.03 0.51 41
UEDIN 0.23 0.23 0.24 0.25 0.27 0.16 –47202 –47955 1.96 0.56 0.47 0.59 0.33 –45 42 0.45 0.03 0.49 40

UPV-PRHLT-COMBO 0.25 0.25 0.26 0.31 0.32 0.20 –26947 –28689 1.98 0.5 0.51 0.63 0.35 –43 47 0.49 0.03 0.54 46

Table 41: Automatic evaluation metric scores for systems in the WMT11 French-English News Task
(newssyscombtest2011)
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Spanish-English News Task
ALACANT 0.24 0.23 0.24 0.27 0.28 0.17 –30135 –29622 1.97 0.53 0.46 0.61 0.34 –45 43 0.46 0.03 0.50 42

BBN-COMBO 0.25 0.25 0.25 0.32 0.33 0.21 –15284 –16192 1.98 0.48 0.5 0.64 0.35 –44 47 0.49 0.03 0.53 46
CMU-HEAFIELD-COMBO 0.25 0.25 0.25 0.32 0.31 0.20 –13456 –16113 1.98 0.5 0.5 0.64 0.35 –44 47 0.5 0.03 0.54 46

CU-ZEMAN 0.20 0.20 0.21 0.16 0.22 0.12 –49428 –48440 1.93 0.61 0.36 0.51 0.28 –49 32 0.35 0.02 0.38 31
HYDERABAD 0.20 0.20 0.21 0.17 0.21 0.11 –47754 –47059 1.94 0.61 0.39 0.50 0.28 –47 34 0.36 0.02 0.41 33
JHU-COMBO 0.25 0.25 0.25 0.32 0.32 0.20 –23939 –22685 1.98 0.49 0.49 0.63 0.35 –44 47 0.48 0.03 0.52 46

KOC 0.24 0.24 0.24 0.26 0.29 0.17 –22724 –25857 1.96 0.53 0.46 0.61 0.34 –45 42 0.46 0.03 0.49 41
KOC-COMBO 0.25 0.24 0.25 0.28 0.30 0.19 –22678 –22267 1.97 0.52 0.48 0.62 0.34 –44 44 0.48 0.03 0.52 43

ONLINE-A 0.25 0.24 0.25 0.28 0.3 0.18 –19017 –20120 1.97 0.52 0.48 0.63 0.35 –44 45 0.48 0.03 0.52 43
ONLINE-B 0.24 0.24 0.24 0.29 0.30 0.19 –11980 –18589 1.97 0.50 0.49 0.62 0.34 –45 45 0.49 0.03 0.53 44

RBMT-1 0.24 0.24 0.25 0.28 0.28 0.17 –31202 –26151 1.97 0.57 0.46 0.61 0.34 –44 45 0.47 0.03 0.51 43
RBMT-2 0.23 0.23 0.24 0.24 0.25 0.15 –35157 –31405 1.96 0.6 0.44 0.59 0.33 –44 42 0.44 0.02 0.49 41
RBMT-3 0.23 0.23 0.24 0.25 0.26 0.15 –28289 –26082 1.97 0.59 0.45 0.6 0.33 –43 43 0.46 0.03 0.51 42
RBMT-4 0.24 0.23 0.24 0.25 0.26 0.16 –27892 –25546 1.97 0.59 0.46 0.60 0.33 –43 43 0.46 0.03 0.52 42
RBMT-5 0.24 0.23 0.24 0.27 0.26 0.16 –36770 –31613 1.96 0.58 0.45 0.6 0.33 –45 43 0.45 0.03 0.50 42

RWTH-LEUSCH-COMBO 0.25 0.25 0.26 0.32 0.32 0.21 –15172 –15261 1.98 0.49 0.5 0.64 0.35 –43 48 0.50 0.03 0.54 47
SYSTRAN 0.24 0.23 0.24 0.27 0.28 0.17 –20129 –26051 1.97 0.53 0.47 0.60 0.33 –46 44 0.46 0.03 0.51 42

UEDIN 0.22 0.22 0.23 0.22 0.25 0.14 –25462 –31678 1.96 0.58 0.45 0.57 0.32 –47 40 0.44 0.03 0.48 39
UFAL-UM 0.23 0.22 0.23 0.23 0.24 0.14 –42123 –37765 1.96 0.60 0.43 0.58 0.32 –43 41 0.43 0.02 0.48 40

UPM 0.22 0.22 0.23 0.22 0.24 0.14 –39748 –38433 1.95 0.58 0.43 0.57 0.32 –45 40 0.42 0.02 0.46 38
UPV-PRHLT-COMBO 0.25 0.25 0.26 0.32 0.32 0.20 –16094 –17723 1.98 0.50 0.49 0.64 0.35 –43 47 0.5 0.03 0.54 46

Table 42: Automatic evaluation metric scores for systems in the WMT11 Spanish-English News Task
(newssyscombtest2011)
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English-Czech News Task
CMU-HEAFIELD-COMBO 0.2 0.19 0.20 0.19 0.22 0.12 2.03 0.62 0.24 –62 29 27

COMMERCIAL1 0.16 0.15 0.16 0.11 0.16 0.08 2.01 0.70 0.19 –65 22 21
COMMERCIAL2 0.12 0.10 0.13 0.09 0.15 0.06 2.00 0.73 0.18 –65 21 19

CU-BOJAR 0.18 0.17 0.18 0.16 0.2 0.1 2.02 0.65 0.23 –63 26 24
CU-MARECEK 0.18 0.17 0.18 0.16 0.2 0.1 2.02 0.65 0.22 –63 26 24

CU-POPEL 0.17 0.16 0.18 0.14 0.19 0.1 2.02 0.66 0.21 –64 25 23
CU-TAMCHYNA 0.18 0.17 0.18 0.15 0.2 0.1 2.02 0.65 0.22 –63 26 24

CU-ZEMAN 0.17 0.16 0.17 0.13 0.18 0.09 2.02 0.66 0.21 –63 23 22
JHU 0.18 0.18 0.18 0.16 0.21 0.11 2.02 0.63 0.22 –63 26 24

ONLINE-B 0.2 0.19 0.20 0.2 0.22 0.12 2.03 0.62 0.24 –63 29 27
UEDIN 0.19 0.18 0.19 0.17 0.21 0.11 2.03 0.63 0.23 –63 27 26

UPV-PRHLT-COMBO 0.2 0.19 0.20 0.20 0.23 0.13 2.03 0.61 0.24 –63 29 28

Table 43: Automatic evaluation metric scores for systems in the WMT11 English-Czech News Task
(newssyscombtest2011)
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English-German News Task
CMU-HEAFIELD-COMBO 0.19 0.18 0.19 0.17 0.21 0.11 1.96 0.66 0.39 –46 36 0.41 0.03 0.45 35

COPENHAGEN 0.17 0.17 0.18 0.14 0.18 0.09 1.95 0.69 0.36 –47 33 0.38 0.02 0.42 32
CU-TAMCHYNA 0.17 0.17 0.18 0.11 0.18 0.09 1.94 0.70 0.36 –48 31 0.36 0.02 0.4 30

CU-ZEMAN 0.16 0.15 0.16 0.05 0.17 0.08 1.92 0.71 0.34 –51 25 0.31 0.02 0.34 25
DFKI-FEDERMANN 0.17 0.16 0.17 0.13 0.17 0.08 1.95 0.71 0.34 –47 33 0.38 0.03 0.44 32

DFKI-XU 0.18 0.17 0.18 0.15 0.19 0.1 1.96 0.68 0.37 –47 35 0.39 0.03 0.43 34
ILLC-UVA 0.15 0.14 0.15 0.12 0.18 0.08 1.95 0.68 0.33 –49 32 0.36 0.02 0.4 31

JHU 0.17 0.17 0.18 0.14 0.18 0.09 1.95 0.68 0.35 –47 33 0.37 0.02 0.42 32
KIT 0.18 0.17 0.18 0.15 0.19 0.09 1.96 0.68 0.37 –47 35 0.39 0.03 0.43 34

KOC 0.17 0.16 0.17 0.12 0.17 0.08 1.95 0.69 0.35 –47 32 0.36 0.02 0.40 31
KOC-COMBO 0.18 0.17 0.18 0.15 0.2 0.1 1.95 0.67 0.37 –47 34 0.38 0.02 0.42 33

LIMSI 0.18 0.17 0.18 0.15 0.19 0.09 1.96 0.67 0.36 –47 35 0.39 0.03 0.44 33
LIU 0.17 0.17 0.18 0.15 0.19 0.09 1.95 0.68 0.36 –47 34 0.38 0.02 0.43 33

ONLINE-A 0.18 0.17 0.18 0.15 0.19 0.09 1.96 0.67 0.37 –47 35 0.40 0.03 0.45 33
ONLINE-B 0.19 0.18 0.19 0.17 0.21 0.11 1.96 0.65 0.38 –46 36 0.42 0.03 0.46 35

RBMT-1 0.17 0.17 0.18 0.13 0.18 0.08 1.95 0.7 0.35 –46 34 0.39 0.03 0.45 33
RBMT-2 0.16 0.16 0.17 0.12 0.16 0.08 1.94 0.73 0.33 –47 32 0.37 0.03 0.43 31
RBMT-3 0.18 0.17 0.18 0.14 0.18 0.09 1.95 0.69 0.36 –46 35 0.39 0.03 0.46 34
RBMT-4 0.17 0.16 0.17 0.13 0.17 0.08 1.95 0.70 0.34 –47 33 0.38 0.03 0.45 32
RBMT-5 0.17 0.16 0.17 0.12 0.17 0.08 1.95 0.71 0.34 –47 33 0.38 0.03 0.44 32

RWTH-FREITAG 0.17 0.17 0.17 0.15 0.19 0.09 1.95 0.68 0.36 –47 34 0.37 0.02 0.41 33
UEDIN 0.17 0.17 0.18 0.14 0.18 0.09 1.95 0.69 0.36 –47 34 0.38 0.02 0.42 33

UOW 0.17 0.16 0.17 0.13 0.17 0.08 1.95 0.7 0.35 –47 33 0.37 0.02 0.42 32
UPPSALA 0.17 0.16 0.17 0.14 0.18 0.09 1.95 0.68 0.35 –47 33 0.37 0.02 0.42 32

UPV-PRHLT-COMBO 0.18 0.18 0.19 0.17 0.20 0.10 1.96 0.66 0.38 –46 36 0.4 0.03 0.44 35
UZH-COMBO 0.19 0.18 0.19 0.17 0.21 0.11 1.96 0.66 0.38 –46 36 0.40 0.03 0.44 35

Table 44: Automatic evaluation metric scores for systems in the WMT11 English-German News Task
(newssyscombtest2011)
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English-French News Task
CMU-HEAFIELD-COMBO 0.25 0.25 0.26 0.34 0.35 0.23 2.02 0.5 0.57 –41 52 0.54 –0.01 0.60 50

CU-ZEMAN 0.18 0.17 0.18 0.13 0.19 0.09 1.96 0.68 0.39 –46 35 0.34 –0.03 0.40 33
JHU 0.23 0.23 0.24 0.27 0.31 0.19 2.01 0.53 0.52 –43 47 0.49 –0.01 0.55 45
KIT 0.24 0.23 0.24 0.29 0.31 0.19 2.01 0.52 0.53 –42 49 0.51 –0.01 0.57 47

LATL-GENEVA 0.20 0.2 0.21 0.19 0.23 0.12 1.99 0.62 0.44 –43 41 0.44 –0.02 0.51 39
LIMSI 0.24 0.24 0.24 0.3 0.31 0.19 2.01 0.53 0.53 –41 49 0.51 –0.01 0.58 48
LIUM 0.24 0.23 0.24 0.29 0.31 0.19 2.01 0.53 0.53 –42 49 0.51 –0.01 0.57 47

ONLINE-A 0.24 0.23 0.24 0.27 0.3 0.18 2.01 0.53 0.52 –42 47 0.5 –0.01 0.56 46
ONLINE-B 0.25 0.25 0.25 0.33 0.35 0.23 2.02 0.5 0.56 –42 51 0.53 –0.01 0.59 50

RBMT-1 0.23 0.22 0.23 0.24 0.27 0.16 2.00 0.56 0.5 –41 45 0.48 –0.02 0.56 44
RBMT-2 0.22 0.21 0.22 0.22 0.25 0.14 1.99 0.58 0.47 –42 44 0.46 –0.02 0.53 42
RBMT-3 0.23 0.22 0.23 0.25 0.28 0.16 2.00 0.56 0.5 –41 46 0.48 –0.02 0.56 44
RBMT-4 0.22 0.21 0.22 0.23 0.26 0.15 1.99 0.58 0.47 –42 43 0.45 –0.02 0.51 42
RBMT-5 0.22 0.22 0.23 0.23 0.27 0.15 2 0.57 0.49 –41 45 0.47 –0.02 0.55 43

RWTH-HUCK 0.23 0.23 0.24 0.29 0.30 0.18 2.01 0.54 0.52 –42 48 0.5 –0.01 0.56 47
UEDIN 0.23 0.22 0.23 0.27 0.3 0.18 2.01 0.54 0.51 –42 47 0.49 –0.01 0.55 46

UPPSALA 0.23 0.22 0.23 0.27 0.29 0.17 2.00 0.55 0.51 –42 46 0.48 –0.01 0.55 45
UPPSALA-FBK 0.23 0.23 0.23 0.28 0.29 0.18 2.01 0.55 0.51 –42 47 0.49 –0.01 0.55 46

UPV-PRHLT-COMBO 0.25 0.24 0.25 0.32 0.34 0.22 2.02 0.50 0.55 –41 51 0.53 –0.01 0.59 49

Table 45: Automatic evaluation metric scores for systems in the WMT11 English-French News Task
(newssyscombtest2011)
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English-Spanish News Task
CEU-UPV 0.24 0.24 0.24 0.29 0.3 0.18 2.01 0.51 0.55 –45 46 0.45 0.01 0.45 45

CMU-HEAFIELD-COMBO 0.26 0.25 0.26 0.35 0.34 0.22 2.02 0.47 0.58 –44 50 0.49 0.01 0.49 49
CU-ZEMAN 0.23 0.22 0.23 0.22 0.27 0.15 1.99 0.55 0.52 –48 39 0.41 0.00 0.41 38

KOC 0.23 0.23 0.23 0.25 0.27 0.16 2 0.54 0.52 –46 43 0.42 0.00 0.43 42
KOC-COMBO 0.25 0.24 0.25 0.31 0.32 0.2 2.01 0.5 0.56 –44 47 0.46 0.01 0.47 46

ONLINE-A 0.25 0.24 0.25 0.31 0.32 0.2 2.01 0.49 0.56 –44 48 0.46 0.01 0.47 46
ONLINE-B 0.25 0.25 0.25 0.33 0.32 0.2 2.02 0.50 0.57 –44 49 0.47 0.01 0.47 48

PROMT 0.24 0.23 0.24 0.28 0.28 0.17 2.00 0.53 0.52 –45 45 0.44 0.01 0.46 43
RBMT-1 0.23 0.23 0.23 0.25 0.27 0.16 2 0.55 0.51 –45 43 0.42 0.00 0.44 42
RBMT-2 0.23 0.22 0.23 0.25 0.26 0.15 1.99 0.55 0.5 –44 43 0.41 0.00 0.42 41
RBMT-3 0.24 0.23 0.24 0.28 0.28 0.17 2.00 0.53 0.52 –44 45 0.43 0.00 0.45 43
RBMT-4 0.23 0.22 0.23 0.26 0.26 0.16 1.99 0.54 0.51 –44 44 0.42 0.00 0.43 42
RBMT-5 0.23 0.22 0.23 0.24 0.26 0.15 1.99 0.57 0.49 –45 42 0.41 0.00 0.43 41

UEDIN 0.24 0.24 0.24 0.31 0.3 0.18 2.01 0.51 0.55 –45 47 0.45 0.01 0.45 46
UOW 0.23 0.23 0.24 0.28 0.28 0.16 2.00 0.53 0.53 –45 45 0.42 0.01 0.43 44

UOW-COMBO 0.25 0.25 0.25 0.33 0.32 0.2 2.01 0.50 0.56 –44 49 0.47 0.01 0.47 47
UPM 0.21 0.21 0.21 0.21 0.22 0.12 1.98 0.61 0.47 –47 39 0.37 0.00 0.37 38

UPPSALA 0.24 0.24 0.24 0.3 0.29 0.18 2.01 0.51 0.54 –45 46 0.44 0.01 0.44 45
UPV-PRHLT-COMBO 0.25 0.25 0.25 0.33 0.32 0.21 2.02 0.49 0.57 –44 49 0.47 0.01 0.48 48

Table 46: Automatic evaluation metric scores for systems in the WMT11 English-Spanish News Task
(newssyscombtest2011)

61



B
L

E
U

M
T

E
R

A
T

E
R

M
T

E
R

A
T

E
R

-P
L

U
S

R
O

S
E

T
E

R

M
E

T
E

O
R

-1
.3

-A
D

Q

M
E

T
E

O
R

-1
.3

-R
A

N
K

M
P
F

T
E

S
L

A
-B

T
E

S
L

A
-F

T
E

S
L

A
-M

W
M

P
F

Haitian Creole (clean)-English Haitian Creole SMS Emergency Response Featured Translation Task
BM-I2R 0.33 –6798 –4575 1.96 0.51 0.62 0.34 43 0.44 0.03 0.46 43

CMU-DENKOWSKI 0.29 –6849 –6172 1.95 0.53 0.58 0.32 40 0.39 0.02 0.40 39
CMU-HEAFIELD-COMBO 0.32 –6188 –4347 1.96 0.51 0.61 0.34 42 0.43 0.03 0.45 42
CMU-HEWAVITHARANA 0.28 –6523 –6341 1.95 0.57 0.57 0.32 39 0.38 0.02 0.40 38

HYDERABAD 0.14 –7548 –8502 1.92 0.66 0.50 0.28 26 0.3 0.02 0.30 26
KOC 0.23 –6490 –9020 1.94 0.67 0.49 0.27 36 0.32 0.02 0.34 35

KOC-COMBO 0.29 –4901 –5349 1.95 0.57 0.56 0.31 39 0.38 0.02 0.4 39
LIU 0.27 –6526 –6078 1.95 0.59 0.56 0.31 38 0.38 0.02 0.39 37

UMD-EIDELMAN 0.26 –4407 –6215 1.95 0.57 0.55 0.31 38 0.37 0.02 0.4 37
UMD-HU 0.22 –6379 –7460 1.94 0.59 0.51 0.28 35 0.36 0.02 0.39 34

UPPSALA 0.27 –5497 –6754 1.95 0.59 0.54 0.3 38 0.36 0.02 0.39 37
UPV-PRHLT-COMBO 0.32 –6896 –5968 1.96 0.53 0.6 0.33 42 0.41 0.02 0.43 41

Table 47: Automatic evaluation metric scores for systems in the WMT11 Haitian Creole (clean)-English Haitian
Creole SMS Emergency Response Featured Translation Task (newssyscombtest2011)
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Haitian Creole (raw)-English Haitian Creole SMS Emergency Response Featured Translation Task
BM-I2R 0.29 –3885 –3017 1.96 0.57 0.57 0.32 39 0.42 0.02 0.44 38

CMU-DENKOWSKI 0.25 –3965 –3905 1.95 0.60 0.53 0.3 35 0.38 0.02 0.4 35
CMU-HEAFIELD-COMBO 0.28 –3057 –2588 1.96 0.57 0.57 0.32 39 0.42 0.02 0.44 38
CMU-HEWAVITHARANA 0.25 –3701 –3824 1.95 0.61 0.53 0.3 35 0.37 0.02 0.39 35

JHU 0.14 –3207 –4279 1.92 0.74 0.43 0.24 26 0.30 0.02 0.32 26
LIU 0.25 –3447 –3445 1.95 0.60 0.54 0.30 36 0.38 0.02 0.4 35

UMD-EIDELMAN 0.24 –2826 –3754 1.94 0.64 0.52 0.29 34 0.36 0.02 0.39 34
UPV-PRHLT-COMBO 0.28 –3591 –3370 1.95 0.58 0.56 0.32 38 0.4 0.02 0.42 38

Table 48: Automatic evaluation metric scores for systems in the WMT11 Haitian Creole (raw)-English Haitian Creole
SMS Emergency Response Featured Translation Task (newssyscombtest2011)
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INTER-ANNOTATOR AGREEMENT (I.E. ACROSS ANNOTATORS)
ALL COMPARISONS NO REF COMPARISONS
P (A) P (E) κ P (A) P (E) κ

Czech-English, individual systems 0.591 0.354 0.367 0.535 0.343 0.293
English-Czech, individual systems 0.608 0.359 0.388 0.552 0.350 0.312
German-English, individual systems 0.562 0.377 0.298 0.536 0.370 0.264
English-German, individual systems 0.564 0.352 0.327 0.528 0.348 0.276
Spanish-English, individual systems 0.695 0.398 0.493 0.683 0.393 0.477
English-Spanish, individual systems 0.574 0.343 0.352 0.548 0.339 0.317
French-English, individual systems 0.616 0.367 0.393 0.584 0.361 0.349
English-French, individual systems 0.631 0.382 0.403 0.603 0.376 0.363
European languages, individual systems 0.601 0.362 0.375 0.561 0.355 0.320
Czech-English, system combinations 0.700 0.334 0.549 0.577 0.369 0.329
English-Czech, system combinations 0.812 0.348 0.711 0.696 0.392 0.500
German-English, system combinations 0.675 0.353 0.498 0.629 0.341 0.437
English-German, system combinations 0.608 0.346 0.401 0.547 0.334 0.320
Spanish-English, system combinations 0.638 0.335 0.456 0.604 0.359 0.382
English-Spanish, system combinations 0.657 0.335 0.485 0.603 0.371 0.369
French-English, system combinations 0.654 0.336 0.479 0.608 0.336 0.410
English-French, system combinations 0.678 0.352 0.503 0.595 0.339 0.388
European languages, system combinations 0.671 0.335 0.505 0.598 0.342 0.389
Haitian (Clean)-English, individual systems 0.693 0.364 0.517 0.640 0.353 0.443
Haitian (Raw)-English, individual systems 0.689 0.357 0.517 0.639 0.344 0.450
Haitian-English, individual systems 0.691 0.362 0.516 0.639 0.350 0.446
Haitian (Clean)-English, system combinations 0.770 0.367 0.636 0.645 0.333 0.468
Haitian (Raw)-English, system combinations 0.745 0.345 0.611 0.753 0.361 0.613
Haitian-English, system combinations 0.761 0.358 0.628 0.674 0.335 0.509
Tunable metrics task (Urdu-English) 0.692 0.337 0.535 0.641 0.363 0.437
WMT10 (European languages, individual vs. individual) 0.663 0.394 0.445 0.620 0.385 0.382
WMT10 (European languages, combo vs. combo) 0.728 0.344 0.586 0.629 0.334 0.443
WMT10 (European languages, individual vs. combo) N/A N/A N/A 0.634 0.360 0.428
WMT10 (European languages, all systems) 0.658 0.374 0.454 0.626 0.367 0.409

Table 49: Inter-annotator agreement rates, for the various manual evaluation tracks of WMT11, broken down by
language pair. The highlighted rows correspond to rows in the top half of Table 7. See Table 50 below for detailed
intra-annotator agreement rates.
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INTRA-ANNOTATOR AGREEMENT (I.E. SELF-CONSISTENCY)
ALL COMPARISONS NO REF COMPARISONS
P (A) P (E) κ P (A) P (E) κ

Czech-English, individual systems 0.762 0.354 0.632 0.713 0.343 0.564
English-Czech, individual systems 0.743 0.359 0.598 0.700 0.350 0.539
German-English, individual systems 0.675 0.377 0.478 0.670 0.370 0.475
English-German, individual systems 0.704 0.352 0.543 0.700 0.348 0.541
Spanish-English, individual systems 0.750 0.398 0.585 0.719 0.393 0.537
English-Spanish, individual systems 0.644 0.343 0.458 0.601 0.339 0.396
French-English, individual systems 0.829 0.367 0.730 0.816 0.361 0.712
English-French, individual systems 0.716 0.382 0.541 0.681 0.376 0.488
European languages, individual systems 0.722 0.362 0.564 0.685 0.355 0.512
Czech-English, system combinations 0.756 0.334 0.633 0.657 0.369 0.457
English-Czech, system combinations 0.923 0.348 0.882 0.842 0.392 0.740
German-English, system combinations 0.732 0.353 0.586 0.716 0.341 0.569
English-German, system combinations 0.722 0.346 0.575 0.676 0.334 0.513
Spanish-English, system combinations 0.783 0.335 0.673 0.720 0.359 0.562
English-Spanish, system combinations 0.741 0.335 0.610 0.711 0.371 0.540
French-English, system combinations 0.772 0.336 0.657 0.659 0.336 0.487
English-French, system combinations 0.841 0.352 0.755 0.714 0.339 0.568
European languages, system combinations 0.787 0.335 0.680 0.717 0.342 0.571
Haitian (Clean)-English, individual systems 0.758 0.364 0.619 0.686 0.353 0.515
Haitian (Raw)-English, individual systems 0.783 0.357 0.663 0.756 0.344 0.628
Haitian-English, individual systems 0.763 0.362 0.628 0.700 0.350 0.539
Haitian (Clean)-English, system combinations 0.882 0.367 0.813 0.778 0.333 0.667
Haitian (Raw)-English, system combinations 0.882 0.345 0.820 0.802 0.361 0.690
Haitian-English, system combinations 0.882 0.358 0.816 0.784 0.335 0.675
Tunable metrics task (Urdu-English) 0.857 0.337 0.784 0.856 0.363 0.774
WMT10 (European languages, individual vs. individual) 0.757 0.394 0.599 0.728 0.385 0.557
WMT10 (European languages, combo vs. combo) 0.783 0.344 0.670 0.719 0.334 0.578
WMT10 (European languages, individual vs. combo) N/A N/A N/A 0.746 0.360 0.603
WMT10 (European languages, all systems) 0.755 0.374 0.609 0.734 0.367 0.580

Table 50: Intra-annotator agreement rates, for the various manual evaluation tracks of WMT11, broken down by
language pair. The highlighted rows correspond to rows in the bottom half of Table 7. See Table 49 above for detailed
inter-annotator agreement rates.
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Abstract

We present a pilot study on an evaluation
method which is able to rank translation out-
puts with no reference translation, given only
their source sentence. The system employs a
statistical classifier trained upon existing hu-
man rankings, using several features derived
from analysis of both the source and the tar-
get sentences. Development experiments on
one language pair showed that the method
has considerably good correlation with human
ranking when using features obtained from a
PCFG parser.

1 Introduction

Automatic evaluation metrics for Machine Transla-
tion (MT) have mainly relied on analyzing both the
MT output against (one or more) reference transla-
tions. Though, several paradigms in Machine Trans-
lation Research pose the need to estimate the quality
through many translation outputs, when no reference
translation is given (n-best rescoring of SMT sys-
tems, system combination etc.). Such metrics have
been known as Confidence Estimation metrics and
quite a few projects have suggested solutions on this
direction. With our submission to the Shared Task,
we allow such a metric to be systematically com-
pared with the state-of-the-art reference-aware MT
metrics.

Our approach suggests building a Confidence Es-
timation metric using already existing human judg-
ments. This has been motivated by the existence
of human-annotated data containing comparisons of
the outputs of several systems, as a result of the

evaluation tasks run by the Workshops on Statistical
Machine Translation (WMT) (Callison-Burch et al.,
2008; Callison-Burch et al., 2009; Callison-Burch
et al., 2010). This amount of data, which has been
freely available for further research, gives an op-
portunity for applying machine learning techniques
to model the human annotators’ choices. Machine
Learning methods over previously released evalua-
tion data have been already used for tuning com-
plex statistical evaluation metrics (e.g. SVM-Rank
in Callison-Burch et al. (2010)). Our proposition
is similar, but works without reference translations.
We develop a solution of applying machine learning
in order to build a statistical classifier that performs
similar to the human ranking: it is trained to rank
several MT outputs, given analysis of possible qual-
itative criteria on both the source and the target side
of every given sentence. As qualitative criteria, we
use statistical features indicating the quality and the
grammaticality of the output.

2 Automatic ranking method

2.1 From Confidence Estimation to ranking

Confidence estimation has been seen from the Nat-
ural Language Processing (NLP) perspective as a
problem of binary classification in order to assess
the correctness of a NLP system output. Previ-
ous work focusing on Machine Translation includes
statistical methods for estimating correctness scores
or correctness probabilities, following a rich search
over the spectrum of possible features (Blatz et al.,
2004a; Ueffing and Ney, 2005; Specia et al., 2009;
Raybaud and Caroline Lavecchia, 2009; Rosti et al.,
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2007).
In this work we slightly transform the binary clas-

sification practice to fit the standard WMT human
evaluation process. As human annotators have pro-
vided their evaluation in the form of ranking of five
system outputs at a sentence level, we build our eval-
uation mechanism with similar functionality, aim-
ing to training from and evaluating against this data.
Evaluation scores and results can be then calculated
based on comparative analysis of the performance of
each system.

Whereas latest work, such as Specia et al. (2010),
has focused on learning to assess segment perfor-
mance independently for each system output, our
contribution measures the performance by compar-
ing the system outputs with each other and con-
sequently ranking them. The exact method is de-
scribed below.

2.2 Internal pairwise decomposition
We build one classifier over all input sentences.
While the evaluation mechanism is trained and eval-
uated on a multi-class (ranking) basis as explained
above, the classifier is expected to work on a binary
level: we provide the features from the analysis of
the two system outputs and the source, and the clas-
sifier should decide if the first system output is better
than the second one or not.

In order to accomplish such training, the n sys-
tems’ outputs for each sentence are broken down to
n × (n − 1) pairs, of all possible comparisons be-
tween two system outputs, in both directions (sim-
ilar to the calculation of the Spearman correlation).
For each pair, the classifier is trained with a class
value c, for the pairwise comparison of system out-
puts ti and tj with respective ranks ri and rj , deter-
mined as:

c(ri, rj) =

{
1 ri < rj
−1 ri > rj

At testing time, after the classifier has made all
the pairwise decisions, those need to be converted
back to ranks. System entries are ordered, according
to how many times each of them won in the pair-
wise comparison, leading to rank lists similar to the
ones provided by human annotators. Note that this
kind of decomposition allows for ties when there are
equal times of winnings.

2.3 Acquiring features

In order to obtain features indicating the quality of
the MT output, automatic NLP analysis tools are ap-
plied on both the source and the two target (MT-
generated) sentences of every pairwise comparison.
Features considered can be seen in the following cat-
egories, according to their origin:

• Sentence length: Number of words of source
and target sentences, source-length to target-
length ratio.

• Target language model: Language models
provide statistics concerning the correctness of
the words’ sequence on the target language.
Such language model features include:

– the smoothed n-gram probability of the
entire target sentence for a language
model of order 5, along with

– uni-gram, bi-gram, tri-gram probabilities
and a

– count of unknown words

• Parsing: Processing features acquired from
PCFG parsing (Petrov et al., 2006) for both
source and target side include:

– parse log likelihood,
– number of n-best trees,
– confidence for the best parse,
– average confidence of all trees.

Ratios of the above target features to their re-
spective source features were included.

• Shallow grammatical match: The number of
occurences of particular node tags on both the
source and the target was counted on the PCFG
parses. In particular, NPs, VPs, PPs, NNs and
punctuation occurences were counted. Then
the ratio of the occurences of each tag in the
target sentence by its occurences on the source
sentence was also calculated.

2.4 Classifiers

The machine learning core of the system was built
supporting two classification approaches.
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• Naïve Bayes allows prediction of a binary
class, given the assumption that the features are
statistically independent.

p(C,F1, . . . , Fn) = p(C)
i=1∏
n

p(Fi|C)

p(C) is estimated by relative frequencies of
the training pairwise examples, while p(Fi|C)
for our continuous features are estimated with
LOESS (locally weighted linear regression
similar to Cleveland (1979))

• k-nearest neighbour (knn) algorithm allows
classifying based on the closest training exam-
ples in the feature space.

3 Experiment

3.1 Experiment setup

A basic experiment was designed in order to deter-
mine the exact setup and the feature set of the metric
prior to the shared task submission. The classifiers
for the task were learnt using the German-English
testset of the WMT 2008 and 2010 (about 700 sen-
tences)1. For testing, the classifiers were used to per-
form ranking on a test set of 184 sentences which
had been kept apart from the 2010 data, with the cri-
terion that they do not contain contradictions among
human judgments.

In order to allow further comparison with other
evaluation metrics, we performed an extended ex-
periment: we trained the classifiers over the WMT
2008 and 2009 data and let them perform automatic
ranking on the full WMT 2010 test set, this time
without any restriction on human evaluation agree-
ment.

In both experiments, tokenization was performed
with the PUNKT tokenizer (Kiss et al., 2006; Gar-
rette and Klein, 2009), while n-gram features were
generated with the SRILM toolkit (Stolcke, 2002).
The language model was relatively big and had been
built upon all lowercased monolingual training sets
for the WMT 2011 Shared Task, interpolated on
the 2007 test set. As a PCFG parser, the Berkeley
Parser (Petrov and Klein, 2007) was preferred, due

1data acquired from http://www.statmt.org/wmt11

to the possibility of easily obtaining complex inter-
nal statistics, including n-best trees. Unfortunately,
the time required for parsing leads to significant de-
lays at the overall processing. The machine learn-
ing algorithms were implemented with the Orange
toolkit (Demšar et al., 2004).

3.2 Feature selection

Although the automatic NLP tools provided a lot of
features (section 2.3), the classification methods we
used (and particularly naïve Bayes were the develop-
ment was focused on) would be expected to perform
better given a smaller group of statistically inde-
pendent features. Since exhaustive training/testing
of all possible feature subsets was not possible,
we performed feature selection based on the Reli-
eff method (Kononenko, 1994; Kira and Rendell,
1992). Automatic ranking was performed based on
the most promising feature subsets. The results are
examined below.

3.3 Results

The performance of the classifier is measured after
the classifier output has been converted back to rank
lists, similar to the WMT 2010 evaluation. We there-
fore calculated two types of rank coefficients: aver-
aged Kendall’s tau on a segment level, and Spear-
man’s rho on a system level, based on the percentage
that the each system’s translations performed better
than or equal to the translations of any other system.

The results for the various combinations of fea-
tures and classifiers are depicted on Table 1. Naïve
Bayes provides the best score on the test set, with
ρ = 0.81 on a system level and τ = 0.26 on a
segment level, trained with features including the
number of the unknown words, the source-length
by target-length ratio, the VP count ratio and the
source-target ratio of the parsing log-likelihood. The
number of unknown words particularly appears to be
a strong indicator for the quality of the sentence. On
the first part of the table we can also observe that
language model features do not perform as well as
the features deriving from the processing informa-
tion delivered by the parser. On the second part of
the table we compare the use of various grammatical
combinations. The third part contains the correlation
obtained by various similar internal parsing-related
features.
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features naïve Bayes knn
rho tau rho tau

basic experiment
ngram 0.19 0.05 0.13 0.01
unk, len 0.67 0.20 0.73 0.24
unk, len, bigram 0.61 0.21 0.74 0.21
unk, len, ngram 0.63 0.19 0.59 0.21
unk, len, trigram 0.67 0.20 0.76 0.21
unk, len, logparse 0.75 0.21 0.74 0.25
unk, len, nparse, VP 0.67 0.24 0.61 0.20
unk, len, nparse, VP, confbestparse 0.78 0.25 0.75 0.24
unk, len, nparse, NP, confbestparse 0.78 0.23 0.74 0.23
unk, len, nparse, VP, confavg 0.75 0.21 0.78 0.23
unk, len, nparse, VP, confbestparse 0.78 0.25 0.75 0.24
unk, len, nparse, VP, logparse 0.81 0.26 0.75 0.23

extended experiment
unk, len, nparse, VP, logparse 0.60 0.23 0.28 0.02

Table 1: System-level Spearman’s rho and segment-level Kendall’s tau correlation coefficients achieved on automatic
ranking (average absolute value)

The correlation coefficients of the extended exper-
iment, allowing comparison with last year’s shared
task, are shown on the last line of the table. With
coefficients ρ = 0.60 and τ = 0.23, our metric
performs relatively low compared to the other met-
rics of WMT10 (indicatively iBLEU: ρ = 0.95,
τ = 0.39 according to Callison-Burch et al. (2010).
Though, it still has a position in the list, scoring bet-
ter than several other reference-aware metrics (e.g.
of ρ = 0.47 and τ = 0.12 respectively) for the par-
ticular language pair.

4 Discussion

A concern on the use of Confidence Estimation for
MT evaluation has to do with the possibility of a
system “tricking” such metrics. This would for ex-
ample be the case when a system offers a well-
formed candidate translation and gets a good score,
despite having no relation to the source sentence
in terms of meaning. We should note that we are
not capable of fully investigating this case based
on the current set of experiments, because all of
the systems in our data sets have shown acceptable
scores (11-25 BLEU and 0.58-0.78 TERp accord-
ing to Callison-Burch et al. (2010)), when evaluated
against reference translations. Though, we would

assume that we partially address this problem by us-
ing ratios of source to target features (length, syn-
tactic constituents), which means that in order for a
sentence to trick the metric, it would need a com-
parable sentence length and a grammatical structure
that would allow it to achieve feature ratios similar
to the other systems’ outputs. Previous work (Blatz
et al., 2004b; Ueffing and Ney, 2005) has used fea-
tures based on word alignment, such as IBM Mod-
els, which would be a meaningful addition from this
aspect.

Although k-nearest-neighbour is considered to be
a superior classifier, best results are obtained by
naïve Bayes. This may have been due of the fact
that feature selection has led to small sets of uncor-
related features, where naïve Bayes is known to per-
form well. K-nearest-neighbour and other complex
classification methods are expected to prove useful
when more complex feature sets are employed.

5 Conclusion and Further work

The experiments presented in this article indicate
that confidence metrics trained over human rankings
can be possibly used for several tasks of evaluation,
given particular conditions, where e.g. there is no
reference translation given. Features obtained from
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a PCFG parser seem to be leading to better correla-
tions, given our basic test set. Although correlation
is not particularly high, compared to other reference-
aware metrics in WMT 10, there is clearly a poten-
tial for further improvement.

Nevertheless this is still a small-scale experiment,
given the restricted data size and the single transla-
tion direction. The performance of the system on
broader training and test sets will be evaluated in the
future. Feature selection is also subject to change
if other language pairs are introduced, while more
sophisticated machine learning algorithms, allowing
richer feature sets, may also lead to better results.
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TaraXŰ Project2, financed by TSB Technologie-
stiftung Berlin–Zukunftsfonds Berlin, co-financed
by the European Union–European fund for regional
development.

References
John Blatz, Erin Fitzgerald, George Foster, Simona Gan-

drabur, Cyril Goutte, Alex Kulesza, Alberto Sanchis,
and Nicola Ueffing. 2004a. Confidence estimation for
machine translation. In Proceedings of the 20th in-
ternational conference on Computational Linguistics,
COLING ’04, Stroudsburg, PA, USA. Association for
Computational Linguistics.

John Blatz, Erin Fitzgerald, George Foster, Simona Gan-
drabur, Cyril Goutte, Alex Kulesza, Alberto Sanchis,
and Nicola Ueffing. 2004b. Confidence estimation for
machine translation. In M. Rollins (Ed.), Mental Im-
agery. Yale University Press.

Chris Callison-Burch, Cameron Fordyce, Philipp Koehn,
Christof Monz, and Josh Schroeder. 2008. Further
meta-evaluation of machine translation. In Proceed-
ings of the Third Workshop on Statistical Machine
Translation, pages 70–106, Columbus, Ohio, June.
Association for Computational Linguistics.

Chris Callison-Burch, Philipp Koehn, Christof Monz,
and Josh Schroeder. 2009. Findings of the 2009
Workshop on Statistical Machine Translation. In
Proceedings of the Fourth Workshop on Statistical
Machine Translation, pages 1–28, Athens, Greece,
March. Association for Computational Linguistics.

Chris Callison-Burch, Philipp Koehn, Christof Monz,
Kay Peterson, Mark Przybocki, and Omar Zaidan.

2http://taraxu.dfki.de

2010. Findings of the 2010 joint workshop on sta-
tistical machine translation and metrics for machine
translation. In Proceedings of the Joint Fifth Workshop
on Statistical Machine Translation and MetricsMATR,
pages 17–53, Uppsala, Sweden, July. Association for
Computational Linguistics. Revised August 2010.

William S. Cleveland. 1979. Robust locally weighted
regression and smoothing scatterplots. Journal of the
American statistical association, 74(368):829–836.

Janez Demšar, Blaz Zupan, Gregor Leban, and Tomaz
Curk. 2004. Orange: From experimental machine
learning to interactive data mining. In Principles of
Data Mining and Knowledge Discovery, pages 537–
539.

Dan Garrette and Ewan Klein. 2009. An extensi-
ble toolkit for computational semantics. In Proceed-
ings of the Eighth International Conference on Com-
putational Semantics, IWCS-8 ’09, pages 116–127,
Stroudsburg, PA, USA. Association for Computational
Linguistics.

Kenji Kira and Larry A. Rendell. 1992. The feature se-
lection problem: traditional methods and a new algo-
rithm. In Proceedings of the tenth national conference
on Artificial intelligence, AAAI’92, pages 129–134.
AAAI Press.

Tibor Kiss, Jan Strunk, Ruhr universität Bochum, and
Ruhr universität Bochum. 2006. Unsupervised mul-
tilingual sentence boundary detection. In Proceedings
of IICS-04, Guadalajara, Mexico and Springer LNCS
3473.

Igor Kononenko. 1994. Estimating attributes: analy-
sis and extensions of relief. In Proceedings of the
European conference on machine learning on Ma-
chine Learning, pages 171–182, Secaucus, NJ, USA.
Springer-Verlag New York, Inc.

Slav Petrov and Dan Klein. 2007. Improved inference
for unlexicalized parsing. In In HLT-NAACL ’07.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning accurate, compact, and inter-
pretable tree annotation. In In ACL ’06, pages 433–
440.

Sylvain Raybaud and Kamel Smaili Caroline Lavecchia,
David Langlois. 2009. Word-and sentence-level con-
fidence measures for machine translation. In Euro-
pean Association of Machine Translation 2009.

Antti-Veikko Rosti, Necip Fazil Ayan, Bing Xiang, Spy-
ros Matsoukas, Richard Schwartz, and Bonnie J. Dorr.
2007. Combining outputs from multiple machine
translation systems. In Proceedings of the North
American Chapter of the Association for Compu-
tational Linguistics Human Language Technologies,
pages 228–235.

69



Lucia Specia, Marco Turchi, Zhuoran Wang, John
Shawe-Taylor, and Craig Saunders. 2009. Improv-
ing the confidence of machine translation quality es-
timates. In Machine Translation Summit XII, Ottawa,
Canada.

Lucia Specia, Dhwaj Raj, and Marco Turchi. 2010. Ma-
chine translation evaluation versus quality estimation.
Machine Translation, 24:39–50, March.

Andreas Stolcke. 2002. Srilm—an extensible language
modeling toolkit. In Proceedings of the 7th Inter-
national Conference on Spoken Language Processing
(ICSLP 2002, pages 901–904.

Nicola Ueffing and Hermann Ney. 2005. Word-level
confidence estimation for machine translation using
phrase-based translation models. Computational Lin-
guistics, pages 763–770.

70



Proceedings of the 6th Workshop on Statistical Machine Translation, pages 71–77,
Edinburgh, Scotland, UK, July 30–31, 2011. c©2011 Association for Computational Linguistics

AMBER: A Modified BLEU, Enhanced Ranking Metric 

 

Boxing Chen and Roland Kuhn 

National Research Council of Canada, Gatineau, Québec, Canada 

First.Last@nrc.gc.ca 

 

  
  

Abstract 

This paper proposes a new automatic ma-

chine translation evaluation metric: 

AMBER, which is based on the metric 

BLEU but incorporates recall, extra penal-

ties, and some text processing variants. 

There is very little linguistic information in 

AMBER. We evaluate its system-level cor-

relation and sentence-level consistency 

scores with human rankings from the 

WMT shared evaluation task; AMBER 

achieves state-of-the-art performance. 

1 Introduction 

Automatic evaluation metrics for machine transla-

tion (MT) quality play a critical role in the devel-

opment of statistical MT systems. Several metrics 

have been proposed in recent years.  Metrics such 

as BLEU (Papineni et al., 2002), NIST (Dodding-

ton, 2002), WER, PER, and TER (Snover et al., 

2006) do not use any linguistic information - they 

only apply surface matching. METEOR (Banerjee 

and Lavie, 2005), METEOR-NEXT (Denkowski 

and Lavie 2010), TER-Plus (Snover et al., 2009), 

MaxSim (Chan and Ng, 2008), and TESLA (Liu et 

al., 2010) exploit some limited linguistic resources, 

such as synonym dictionaries, part-of-speech tag-

ging or paraphrasing tables. More sophisticated 

metrics such as RTE (Pado et al., 2009) and DCU-

LFG (He et al., 2010) use higher level syntactic or 

semantic analysis to score translations. 

Though several of these metrics have shown bet-

ter correlation with human judgment than BLEU, 

BLEU is still the de facto standard evaluation me-

tric. This is probably due to the following facts: 

1. BLEU is language independent (except for 

word segmentation decisions).  

2. BLEU can be computed quickly. This is im-

portant when choosing a metric to tune an 

MT system. 

3. BLEU seems to be the best tuning metric 

from a quality point of view - i.e., models 

trained using BLEU obtain the highest 

scores from humans and even from other 

metrics (Cer et al., 2010). 

When we developed our own metric, we decided 

to make it a modified version of BLEU whose 

rankings of translations would (ideally) correlate 

even more highly with human rankings. Thus, our 

metric is called AMBER: “A Modified Bleu, En-

hanced Ranking” metric. Some of the AMBER 

variants use an information source with a mild lin-

guistic flavour – morphological knowledge about 

suffixes, roots and prefixes – but otherwise, the 

metric is based entirely on surface comparisons.  

2 AMBER 

Like BLEU, AMBER is composed of two parts: a 

score and a penalty. 
 

penaltyscoreAMBER ×=                 (1)  

 

To address weaknesses of BLEU described in 

the literature (Callison-Burch et al., 2006; Lavie 

and Denkowski, 2009), we use more sophisticated 

formulae to compute the score and penalty. 

2.1 Enhancing the score 

First, we enrich the score part with geometric av-

erage of n-gram precisions (AvgP), F-measure de-

rived from the arithmetic averages of precision and 

recall (Fmean), and arithmetic average of F-

measure of precision and recall for each n-gram 

(AvgF). Let us define n-gram precision and recall 

as follows: 
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where T = translation, R = reference.  

Then the geometric average of n-gram preci-

sions AvgP, which is also the score part of the 

BLEU metric, is defined as: 
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The arithmetic averages for n-gram precision 

and recall are: 
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 The F-measure that is derived from P(N) and 

R(M), (Fmean), is given by: 
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The arithmetic average of F-measure of preci-

sion and recall for each n-gram (AvgF) is given by: 
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The score is the weighted average of the three 

values: AvgP, Fmean, and AvgF. 
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The free parameters N, M,α , 
1θ  and 

2θ  were  

manually tuned on a dev set.  

2.2 Various penalties 

Instead of the original brevity penalty, we experi-

mented with a product of various penalties: 

∏
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                  (10) 

where wi is the weight of each penalty peni.  

Strict brevity penalty (SBP): (Chiang et al., 

2008) proposed this penalty. Let ti be the transla-

tion of input sentence i, and let ri be its reference 

(or if there is more than one, the reference whose 

length in words || ir  is closest to length || it ). Set 


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Strict redundancy penalty (SRP): long sen-

tences are preferred by recall. Since we rely on 

both recall and precision to compute the score, it is 

necessary to punish the sentences that are too long.  
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Character-based strict brevity penalty 
(CSBP) and Character-based strict redundancy 

penalty (CSRP) are defined similarly. The only 

difference with the above two penalties is that 

here, length is measured in characters. 

Chunk penalty (CKP): the same penalty as in 

METEOR: 
β

γ 







×−=

)(#

#
1

wordmatches

chunks
CKP       (13) 

γ and β  are free parameters. We do not compute 

the word alignment between the translation and 

reference; therefore, the number of chunks is com-

puted as )(#)(## wordmatchesbigrammatcheschunks −= . 

For example, in the following two-sentence trans-

lation (references not shown), let “mi” stand for a 

matched word, “x” stand for zero, one or more 

unmatched words:  

S1: m1 m2 x m3 m4 m5 x m6  

S2: m7 x m8 m9 x m10 m11 m12 x m13 

If we consider only unigrams and bigrams, there 

are 13 matched words and 6 matched bigrams (m1 

m2, m3 m4, m4 m5, m8 m9, m10 m11, m11 m12), so there 

are 13-6=7 chunks (m1 m2, m3 m4 m5, m6, m7, m8 m9, 

m10 m11 m12, m13).  

Continuity penalty (CTP): if all matched 

words are continuous, then 

segmentRTgramsn

RTngrams

#)()1(#

)(#

−∩−

∩
 equals 1.  

Example: 

S3: m1 m2 m3 m4 m5m6  

S4: m7 m8 m9m10 m11 m12 m13 

There are 13 matched unigrams, and 11 matched 

bi-grams; we get 11/(13-2)=1. Therefore, a conti-

nuity penalty is computed as: 
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Short word difference penalty (SWDP): a 

good translation should have roughly the same 

number of stop words as the reference. To make 

AMBER more portable across all Indo-European 

languages, we use short words (those with fewer 

than 4 characters) to approximate the stop words.   

)
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exp(

runigram
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−
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where a and b are the number of short words in the 

translation and reference respectively. 

Long word difference penalty (LWDP): is de-

fined similarly to SWDP.  

)
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where c and d  are the number of long words (those 

longer than 3 characters) in the translation and ref-

erence respectively. 

Normalized Spearman’s correlation penalty 
(NSCP): we adopt this from (Isozaki et al., 2010). 

This penalty evaluates similarity in word order be-

tween the translation and reference. We first de-

termine word correspondences between the 

translation and reference; then, we rank words by 

their position in the sentences. Finally, we compute 

Spearman’s correlation between the ranks of the n 

words common to the translation and reference. 

)1()1(
1

2

−+
−=

∑
nnn

d
i i

ρ                (16) 

where di indicates the distance between the ranks 

of the i-th element. For example: 

T: Bob reading book likes 

R: Bob likes reading book  

The rank vector of the reference is [1, 2, 3, 4], 

while the translation rank vector is [1, 3, 4, 2]. The 

Spearman’s correlation score between these two 

vectors is 
)14(4)14(

)42()34()23(0
1

222

−⋅⋅+

−+−+−+
− =0.90. 

In order to avoid negative values, we normalized 

the correlation score, obtaining the penalty NSCP: 

2)1( /ρNSCP +=                     (17) 

Normalized Kendall’s correlation penalty 
(NKCP):  this is adopted from (Birch and Os-

borne, 2010) and (Isozaki et al., 2010). In the pre-

vious example, where the rank vector of the 

translation is [1, 3, 4, 2], there are 62

4 =C  pairs of 

integers. There are 4 increasing pairs: (1,3), (1,4), 

(1,2) and (3,4). Kendall’s correlation is defined by:  

1
#

#
2 −×=

pairsall

pairsasingincre
τ         (18) 

Therefore, Kendall’s correlation for the transla-

tion “Bob reading book likes” is 16/42 −× =0.33. 

Again, to avoid negative values, we normalized 

the coefficient score, obtaining the penalty NKCP: 

2)1( /NKCP τ+=                     (19) 

2.3 Term weighting 

The original BLEU metric weights all n-grams 

equally; however, different n-grams have different 

amounts of information. We experimented with 

applying tf-idf to weight each n-gram according to 

its information value. 

2.4 Four matching strategies 

In the original BLEU metric, there is only one 

matching strategy: n-gram matching. In AMBER, 

we provide four matching strategies (the best 

AMBER variant used three of these): 

1. N-gram matching: involved in computing 

precision and recall. 

2. Fixed-gap n-gram: the size of the gap be-

tween words “word1 [] word2” is fixed; 

involved in computing precision only. 

3. Flexible-gap n-gram:  the size of the gap 

between words “word1 * word2” is flexi-

ble; involved in computing precision only. 

4. Skip n-gram: as used ROUGE (Lin, 2004); 

involved in computing precision only. 

2.5 Input preprocessing 

The AMBER score can be computed with different 

types of preprocessing. When using more than one 

type, we computed the final score as an average 

over runs, one run per type (our default AMBER 

variant used three of the preprocessing types): 

∑
=

=
T

t

tAMBER
T

AMBERFinal
1

)(
1

_
 

We provide 8 types of possible text input: 

0. Original - true-cased and untokenized. 
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1. Normalized - tokenized and lower-cased.  

(All variants 2-7 below also tokenized and 

lower-cased.)  

2. “Stemmed” - each word only keeps its first 

4 letters. 

3. “Suffixed” - each word only keeps its last 

4 letters. 

4. Split type 1 - each longer-than-4-letter 

word is segmented into two sub-words, 

with one being the first 4 letters and the 

other the last 2 letters. If the word has 5 

letters, the 4
th
 letter appears twice: e.g., 

“gangs” becomes “gang” + “gs”. If the 

word has more than 6 letters, the middle 

part is thrown away 

5. Split type 2 - each word is segmented into 

fixed-length (4-letter) sub-word sequences, 

starting from the left.  

6. Split type 3 - each word is segmented into 

prefix, root, and suffix. The list of English 

prefixes, roots, and suffixes used to split 

the word is from the Internet
1
; it is used to 

split words from all languages. Linguistic 

knowledge is applied here (but not in any 

other aspect of AMBER).  

7. Long words only - small words (those with 

fewer than 4 letters) are removed. 

3 Experiments 

3.1 Experimental data 

We evaluated AMBER on WMT data, using WMT 

2008 all-to-English submissions as the dev set. 

Test sets include WMT 2009 all-to-English, WMT 

2010 all-to-English and 2010 English-to-all sub-

missions. Table 1 summarizes the dev and test set 

statistics. 
Set Dev Test1 Test2 Test3 

Year 2008 2009 2010 2010 

Lang. xx-en xx-en xx-en en-xx 

#system 43 39 53 32 

#sent-pair 7,861 13,912 14,212 13,165 

Table 1: statistics of the dev and test sets. 

                                                           
1http://en.wikipedia.org/wiki/List_of_Greek_and_Latin_roots_

in_English 

3.2 Default settings 

Before evaluation, we manually tuned all free pa-

rameters on the dev set to maximize the system-

level correlation with human judgments and de-

cided on the following default settings for 

AMBER:   

1. The parameters in the formula  

),()1(

),,(

)()(

21

2

1

αθθ

αθ

θ

NAvgF

MNFmean

NAvgPNscore

×−−+

×+
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are set as  N=4, M=1, α =0.9, 1θ = 0.3 

and 
2θ = 0.5.  

2. All penalties are applied; the manually set 

penalty weights are shown in Table 2. 

3. We took the average of runs over input text 

types 1, 4, and 6 (i.e. normalized text, 

split type 1 and split type 3).  

4. In Chunk penalty (CKP), 3=β , and 

γ =0.1. 

5. By default, tf-idf is not applied.  

6. We used three matching strategies: n-gram, 

fixed-gap n-gram, and flexible-gap n-

gram; they are equally weighted. 

 

Name of penalty Weight value 

SBP 0.30 

SRP 0.10 

CSBP 0.15 

CSRP 0.05 

SWDP 0.10 

LWDP 0.20 

CKP 1.00 

CTP 0.80 

NSCP 0.50 

NKCP 2.00 
Table 2: Weight of each penalty 

3.3 Evaluation metrics 

We used Spearman’s rank correlation coefficient to 

measure the correlation of AMBER with the hu-

man judgments of translation at the system level. 

The human judgment score we used is based on the 

“Rank” only, i.e., how often the translations of the 

system were rated as better than the translations 

from other systems (Callison-Burch et al., 2008). 

Thus, AMBER and the other metrics were eva-

luated on how well their rankings correlated with 
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the human ones. For the sentence level, we use 

consistency rate, i.e., how consistent the ranking of 

sentence pairs is with the human judgments. 

3.4 Results 

All test results shown in this section are averaged 

over all three tests described in 3.1. First, we com-

pare AMBER with two of the most widely used 

metrics: original IBM BLEU and METEOR v1.0. 

Table 3 gives the results; it shows both the version 

of AMBER with basic preprocessing, AMBER(1) 

(with tokenization and lowercasing) and the default 

version used as baseline for most of our experi-

ments (AMBER(1,4,6)). Both versions of AMBER 

perform better than BLEU and METEOR on both 

system and sentence levels. 
 

Metric   Dev     3 tests average   ∆ tests 

BLEU_ibm 

(baseline) 

sys 

sent 

0.68            0.72               N/A 

0.37            0.40               N/A 

METEOR 

     v1.0 

sys 

sent 

0.80            0.80              +0.08 

0.58            0.56              +0.17 

AMBER(1) 

(basic preproc.) 

sys 

sent 

0.83            0.83              +0.11 

0.61            0.58              +0.19 

AMBER(1,4,6) 

(default)  

sys 

sent 

0.84            0.86              +0.14 

0.62            0.60              +0.20 

 

 Table 3: Results of AMBER vs BLEU and METEOR 

 

Second, as shown in Table 4, we evaluated the 

impact of different types of preprocessing, and 

some combinations of preprocessing (we do one 

run of evaluation for each type and average the 

results). From this table, we can see that splitting 

words into sub-words improves both system- and 

sentence-level correlation. Recall that input 6 pre-

processing splits words according to a list of Eng-

lish prefixes, roots, and suffixes: AMBER(4,6) is 

the best variant. Although test 3 results, for target 

languages other than English, are not broken out 

separately in this table,  they are as follows: input 1 

yielded 0.8345  system-level correlation and 

0.5848 sentence-level consistency, but input 6 

yielded 0.8766 (+0.04 gain) and 0.5990 (+0.01) 

respectively. Thus, surprisingly, splitting non-

English words up according to English morpholo-

gy helps performance, perhaps because French, 

Spanish, German, and even Czech share some 

word roots with English. However, as indicated by 

the underlined results, if one wishes to avoid the 

use of any linguistic information, AMBER(4) per-

forms almost as well as AMBER(4,6). The default 

setting, AMBER(1,4,6), doesn’t perform quite as 

well as AMBER(4,6) or AMBER(4), but is quite 

reasonable.  

Varying the preprocessing seems to have more 

impact than varying the other parameters we expe-

rimented with.  In Table 5, “none+tf-idf” means 

we do one run without tf-idf and one run for “tf-idf 

only”, and then average the scores. Here, applying 

tf-idf seems to benefit performance slightly. 

 
Input   Dev     3 tests average     ∆ tests 

0  

(baseline) 

sys 

sent 

0.84            0.79                 N/A 

0.59            0.58                 N/A 

1 sys 

sent 

0.83            0.83               +0.04 

0.61            0.58               +0.00 

2 sys 

sent 

0.83            0.84               +0.05 

0.61            0.59               +0.01 

3 sys 

sent 

0.83            0.84               +0.05 

0.61            0.58               +0.00 

4 sys 

sent 

0.84            0.87               +0.08 

0.62            0.60               +0.01 

5 sys 

sent 

0.82            0.86               +0.07 

0.61            0.56               +0.01 

6 sys 

sent 

0.83            0.88               +0.09 

0.62            0.60               +0.02 

7 sys 

sent 

0.34            0.56               -0.23 

0.58            0.53               -0.05 

1,4 sys 

sent 

0.84            0.85               +0.07 

0.62            0.60               +0.01 

4,6 sys 

sent 

0.83            0.88               +0.09 

0.62            0.60               +0.02 

1,4,6 sys 

sent 

0.84            0.86               +0.07 

0.62            0.60               +0.02 

 
Table 4: Varying AMBER preprocessing (best  

linguistic = bold, best non-ling. = underline) 

 
tf-idf    Dev     3 tests average    ∆ tests 

none 

(baseline) 

sys 

sent 

0.84             0.86                N/A 

0.62             0.60                N/A 

tf-idf 

only 

sys 

sent 

0.81             0.88              +0.02 

0.62             0.61              +0.01 

none+tf-

idf 

sys 

sent 

0.82             0.87              +0.01 

0.62             0.61              +0.01 

 

Table 5: Effect of tf-idf on AMBER(1,4,6) 

 

Table 6 shows what happens if you disable one 

penalty at a time (leaving the weights of the other 

penalties at their original values). The biggest sys-

tem-level performance degradation occurs when 

LWDP is dropped, so this seems to be the most 
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useful penalty. On the other hand, dropping CKP, 

CSRP, and SRP may actually improve perfor-

mance. Firm conclusions would require retuning of 

weights each time a penalty is dropped; this is fu-

ture work.  

 
Penalties    Dev     3 tests average    ∆ tests 

All 

(baseline) 

sys 

sent 

0.84            0.86               N/A 

0.62            0.60               N/A 

-SBP sys 

sent 

0.82            0.84               -0.02 

0.62            0.60               -0.00 

-SRP sys 

sent 

0.83            0.88              +0.01 

0.62            0.60              +0.00 

-CSBP sys 

sent 

0.84            0.85               -0.01 

0.62            0.60              +0.00 

-CSRP sys 

sent 

0.83            0.87              +0.01 

0.62            0.60               -0.00 

-SWDP sys 

sent 

0.84            0.86               -0.00 

0.62            0.60              +0.00 

-LWDP sys 

sent 

0.83            0.83               -0.03 

0.62            0.60               -0.00 

-CTP sys 

sent 

0.82            0.84               -0.02 

0.62            0.60               -0.00 

-CKP sys 

sent 

0.83            0.87              +0.01 

0.62            0.60               -0.00 

-NSCP sys 

sent 

0.83            0.86               -0.00 

0.62            0.60              +0.00 

-NKCP sys 

sent 

0.82            0.85               -0.01 

0.62            0.60              +0.00 

 
Table 6: Dropping penalties from AMBER(1,4,6) – 

biggest drops on test in bold 

 
Matching   Dev     3 tests avg     ∆ tests 

n-gram + fxd-

gap+ flx-gap 

(default) 

sys 

sent 

0.84             0.86         N/A 

0.62             0.60         N/A 

n-gram sys 

sent 

0.84             0.86         -0.00 

0.62             0.60         -0.00 

fxd-gap+ 

 n-gram 

sys 

sent 

0.84             0.86         -0.00 

0.62             0.60         -0.00 

flx-gap+ 

 n-gram 

sys 

sent 

0.83             0.86         -0.00 

0.62             0.60         -0.00 

skip+ 

 n-gram 

sys 

sent 

0.83             0.85         -0.01 

0.62             0.60         -0.00 

All four 

matchings 

sys 

sent 

0.83             0.86         -0.01 

0.62             0.60          0.00 

Table 7: Varying matching strategy for AMBER(1,4,6) 

 

Finally, we evaluated the effect of the matching 

strategy. According to the results shown in Table 

7, our default strategy, which uses three of the four 

types of matching (n-grams, fixed-gap n-grams, 

and flexible-gap n-grams) is close to optimal;  the 

use of skip n-grams (either by itself or in combina-

tion) may hurt performance at both system and 

sentence levels.  

4 Conclusion 

This paper describes AMBER, a new machine 

translation metric that is a modification of the 

widely used BLEU metric. We used more sophisti-

cated formulae to compute the score, we developed 

several new penalties to match the human judg-

ment, we tried different preprocessing types, we 

tried tf-idf, and we tried four n-gram matching 

strategies. The choice of preprocessing type 

seemed to have the biggest impact on performance. 

AMBER(4,6) had the best performance of any va-

riant we tried. However, it has the disadvantage of 

using some light linguistic knowledge about Eng-

lish morphology (which, oddly, seems to be help-

ful for other languages too). A purist may prefer 

AMBER(1,4) or AMBER(4), which use no linguis-

tic information and still match human judgment 

much more closely than either BLEU or 

METEOR. These variants of AMBER share 

BLEU’s virtues: they are language-independent 

and can be computed quickly. 

Of course, AMBER could incorporate more lin-

guistic information: e.g., we could use linguistical-

ly defined stop word lists in the SWDP and LWDP 

penalties, or use synonyms or paraphrasing in the 

n-gram matching.  

AMBER can be thought of as a weighted com-

bination of dozens of computationally cheap fea-

tures based on word surface forms for evaluating 

MT quality. This paper has shown that combining 

such features can be a very effective strategy for 

attaining better correlation with human judgment. 

Here, the weights on the features were manually 

tuned; in future work, we plan to learn weights on 

features automatically. We also plan to redesign 

AMBER so that it becomes a metric that is highly 

suitable for tuning SMT systems. 

References 

S. Banerjee and A. Lavie. 2005. METEOR: An auto-

matic metric for MT evaluation with improved corre-

lation with human judgments. In Proceedings of ACL 

Workshop on Intrinsic & Extrinsic Evaluation Meas-

ures for Machine Translation and/or Summarization. 

76



A. Birch and M. Osborne. 2010. LRscore for evaluating 

lexical and reordering quality in MT. In Proceedings 

of the Joint Fifth Workshop on Statistical Machine 

Translation and MetricsMATR, pages 302–307.  

C. Callison-Burch, C. Fordyce, P. Koehn, C. Monz and 

J. Schroeder. 2008. Further Meta-Evaluation of Ma-

chine Translation. In Proceedings of WMT. 

C. Callison-Burch, M. Osborne, and P. Koehn. 2006. 

Re-evaluating the role of BLEU in machine transla-

tion research. In Proceedings of EACL. 

D. Cer, D. Jurafsky and C. Manning. 2010. The Best 

Lexical Metric for Phrase-Based Statistical MT Sys-

tem Optimization. In Proceedings of NAACL. 

Y. S. Chan and H. T. Ng. 2008. MAXSIM: A maximum 

similarity metric for machine translation evaluation. 

In Proceedings of ACL. 

D. Chiang, S. DeNeefe, Y. S. Chan, and H. T. Ng. 2008. 

Decomposability of translation metrics for improved 

evaluation and efficient algorithms. In Proceedings 

of EMNLP, pages 610–619. 

M. Denkowski and A. Lavie. 2010. Meteor-next and the 

meteor paraphrase tables: Improved evaluation sup-

port for five target languages. In Proceedings of the 

Joint Fifth Workshop on Statistical Machine Transla-

tion and MetricsMATR, pages 314–317. 

George Doddington. 2002. Automatic evaluation of 

machine translation quality using n-gram co-

occurrence statistics. In Proceedings of HLT. 

Y. He, J. Du, A. Way, and J. van Genabith. 2010. The 

DCU dependency-based metric in WMT-

MetricsMATR 2010. In Proceedings of the Joint 

Fifth Workshop on Statistical Machine Translation 

and MetricsMATR, pages 324–328.  

H. Isozaki, T. Hirao, K. Duh, K. Sudoh, H. Tsukada. 

2010. Automatic Evaluation of Translation Quality 

for Distant Language Pairs. In Proceedings of 

EMNLP.  

A. Lavie and M. J. Denkowski. 2009. The METEOR 

metric for automatic evaluation of machine transla-

tion. Machine Translation, 23. 

C.-Y. Lin. 2004. ROUGE: a Package for Automatic 

Evaluation of Summaries. In Proceedings of the 

Workshop on Text Summarization Branches Out 

(WAS 2004), Barcelona, Spain.  

C. Liu, D. Dahlmeier, and H. T. Ng. 2010. Tesla: Trans-

lation evaluation of sentences with linear-

programming-based analysis. In Proceedings of the 

Joint Fifth Workshop on Statistical Machine Transla-

tion and MetricsMATR, pages 329–334. 

S. Pado, M. Galley, D. Jurafsky, and C.D. Manning. 

2009. Robust machine translation evaluation with en-

tailment features. In Proceedings of ACL-IJCNLP. 

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. 2002. 

BLEU: a method for automatic evaluation of ma-

chine translation. In Proceedings of ACL. 

M. Snover, B. Dorr, R. Schwartz, L. Micciulla, and J. 

Makhoul. 2006. A Study of Translation Edit Rate 

with Targeted Human Annotation. In Proceedings of 

Association for Machine Translation in the Americas. 

M. Snover, N. Madnani, B. Dorr, and R. Schwartz. 

2009. Fluency, Adequacy, or HTER? Exploring Dif-

ferent Human Judgments with a Tunable MT Metric. 

In Proceedings of the Fourth Workshop on Statistical 

Machine Translation, Athens, Greece. 

77



Proceedings of the 6th Workshop on Statistical Machine Translation, pages 78–84,
Edinburgh, Scotland, UK, July 30–31, 2011. c©2011 Association for Computational Linguistics

TESLA at WMT 2011: Translation Evaluation and Tunable Metric

Daniel Dahlmeier1 and Chang Liu2 and Hwee Tou Ng1,2

1NUS Graduate School for Integrative Sciences and Engineering
2Department of Computer Science, National University of Singapore

{danielhe,liuchan1,nght}@comp.nus.edu.sg

Abstract

This paper describes the submission from the
National University of Singapore to the WMT
2011 Shared Evaluation Task and the Tunable
Metric Task. Our entry is TESLA in three dif-
ferent configurations: TESLA-M, TESLA-F,
and the new TESLA-B.

1 Introduction

TESLA (Translation Evaluation of Sentences with
Linear-programming-based Analysis) was first pro-
posed in Liu et al. (2010). The simplest variant,
TESLA-M (M stands for minimal), is based on N-
gram matching, and utilizes light-weight linguis-
tic analysis including lemmatization, part-of-speech
tagging, and WordNet synonym relations. TESLA-
B (B stands for basic) additionally takes advan-
tage of bilingual phrase tables to model phrase syn-
onyms. It is a new configuration proposed in this pa-
per. The most sophisticated configuration TESLA-F
(F stands for full) additionally uses language mod-
els and a ranking support vector machine instead of
simple averaging. TESLA-F was called TESLA in
Liu et al. (2010). In this paper, we rationalize the
naming convention by using TESLA to refer to the
whole family of metrics.

The rest of this paper is organized as follows. Sec-
tions 2 to 4 describe the TESLA variants TESLA-M,
TESLA-B, and TESLA-F, respectively. Section 5
describes MT tuning with TESLA. Section 6 shows
experimental results for the evaluation and the tun-
able metric task. The last section concludes the pa-
per.

2 TESLA-M

The version of TESLA-M used in WMT 2011 is ex-
actly the same as in Liu et al. (2010). The descrip-
tion is reproduced here for completeness.

We consider the task of evaluating machine trans-
lation systems in the direction of translating a source
language to a target language. We are given a refer-
ence translation produced by a professional human
translator and a machine-produced system transla-
tion. At the highest level, TESLA-M is the arith-
metic average of F-measures between bags of N-
grams (BNGs). A BNG is a multiset of weighted
N-grams. Mathematically, a BNG B consists of tu-
ples (bi, b

W
i ), where each bi is an N-gram and bW

i is
a positive real number representing the weight of bi.
In the simplest case, a BNG contains every N-gram
in a translated sentence, and the weights are just the
counts of the respective N-grams. However, to em-
phasize the content words over the function words,
we discount the weight of an N-gram by a factor of
0.1 for every function word in the N-gram. We de-
cide whether a word is a function word based on its
POS tag.

In TESLA-M, the BNGs are extracted in the target
language, so we call them bags of target language
N-grams (BTNGs).

2.1 Similarity functions
To match two BNGs, we first need a similarity mea-
sure between N-grams. In this section, we define
the similarity measures used in our experiments. We
adopt the similarity measure from MaxSim (Chan
and Ng, 2008; Chan and Ng, 2009) as sms. For uni-
grams x and y,
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• If lemma(x) = lemma(y), then sms = 1.

• Otherwise, let

a = I(synsets(x) overlap with synsets(y))
b = I(POS(x) = POS(y))

where I(·) is the indicator function, then sms =
(a + b)/2.

The synsets are obtained by querying WordNet
(Fellbaum, 1998). For languages other than English,
a synonym dictionary is used instead.

We define two other similarity functions between
unigrams:

slem(x, y) = I(lemma(x) = lemma(y))
spos(x, y) = I(POS(x) = POS(y))

All the three unigram similarity functions generalize
to N-grams in the same way. For two N-grams x =
x1,2,...,n and y = y1,2,...,n,

s(x, y) =

{
0 if ∃i, s(xi, yi) = 0
1
n

∑n
i=1 s(xi, yi) otherwise

2.2 Matching two BNGs
Now we describe the procedure of matching two
BNGs. We take as input BNGs X and Y and a sim-
ilarity measure s. The i-th entry in X is xi and has
weight xW

i (analogously for yj and yW
j ).

Intuitively, we wish to align the entries of the two
BNGs in a way that maximizes the overall similar-
ity. An example matching problem for bigrams is
shown in Figure 1a, where the weight of each node
is shown, along with the hypothetical similarity for
each edge. Edges with a similarity of zero are not
shown. Note that for each function word, we dis-
count the weight by a factor of ten. The solution to
the matching problem is shown in Figure 1b, and the
overall similarity is 0.5× 0.01 + 0.8× 0.1 + 0.8×
0.1 = 0.165.

Mathematically, we formulate this as a (real-
valued) linear programming problem1. The vari-
ables are the allocated weights for the edges

w(xi, yj) ∀i, j
1While integer linear programming is NP-complete, real-

valued linear programming can be solved efficiently.

w=1.0 w=0.1 w=0.1 w=0.1

w=0.01 w=0.1 w=0.1

w=0.1

s=0.1
s=0.8

s=0.5
s=0.8

w=1.0

Good morning morning , , sir sir .

Hello , , Querrien Querrien .

s=0.4

(a) The matching problem

w=1.0 w=0.1 w=0.1 w=0.1

w=0.01 w=0.1 w=0.1

w=0.1

w=0.1w=0.01 w=0.1

w=1.0

Good morning morning , , sir sir .

Hello , , Querrien Querrien .

(b) The solution

Figure 1: A BNG matching problem

We maximize ∑
i,j

s(xi, yj)w(xi, yj)

subject to

w(xi, yj) ≥ 0 ∀i, j∑
j

w(xi, yj) ≤ xW
i ∀i

∑
i

w(xi, yj) ≤ yW
j ∀j

The value of the objective function is the overall
similarity S. Assuming X is the reference and Y
is the system translation, we have

Precision =
S∑
j yW

j

Recall =
S∑
i x

W
i

The F-measure is derived from the precision and the
recall:

F =
Precision× Recall

α× Precision + (1− α)× Recall

In this work, we set α = 0.8, following MaxSim.
The value gives more importance to the recall than
the precision.
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If the similarity function is binary-valued and
transitive, such as slem and spos, then we
can use a much simpler and faster greedy
matching procedure: the best match is simply∑

g min(
∑

xi=g xW
i ,

∑
yi=g yW

i ).

2.3 Scoring
The TESLA-M sentence-level score for a reference
and a system translation is the arithmetic average of
the BTNG F-measures for unigrams, bigrams, and
trigrams based on similarity functions sms and spos.
We thus have 3 × 2 = 6 BTNG F-measures for
TESLA-M.

We can compute a system-level score for a ma-
chine translation system by averaging its sentence-
level scores over the complete test set.

3 TESLA-B

TESLA-B uses the average of two types of F-
measures: (1) BTNG F-measures as in TESLA-M
and (2) F-measures between bags of N-grams in one
or more pivot languages, called bags of pivot lan-
guage N-grams (BPNGs), The rest of this section fo-
cuses on the generation of the BPNGs. Their match-
ing is done in the same way as described for BTNGs
in the previous section.

3.1 Phrase level semantic representation
Given a sentence-aligned bitext between the target
language and a pivot language, we can align the
text at the word level using well known tools such
as GIZA++ (Och and Ney, 2003) or the Berkeley
aligner (Liang et al., 2006; Haghighi et al., 2009).

We observe that the distribution of aligned
phrases in a pivot language can serve as a seman-
tic representation of a target language phrase. That
is, if two target language phrases are often aligned
to the same pivot language phrase, then they can be
inferred to be similar in meaning. Similar observa-
tions have been made by previous researchers (Ban-
nard and Callison-Burch, 2005; Callison-Burch et
al., 2006; Snover et al., 2009).

We note here two differences from WordNet syn-
onyms: (1) the relationship is not restricted to the
word level only, and (2) the relationship is not bi-
nary. The degree of similarity can be measured by
the percentage of overlap between the semantic rep-
resentations.

3.2 Segmenting a sentence into phrases

To extend the concept of this semantic representa-
tion of phrases to sentences, we segment a sentence
in the target language into phrases. Given a phrase
table, we can approximate the probability of a phrase
p by:

Pr(p) =
N(p)∑
p′ N(p′)

(1)

where N(·) is the count of a phrase in the phrase
table. We then define the likelihood of seg-
menting a sentence S into a sequence of phrases
(p1, p2, . . . , pn) by:

Pr(p1, p2, . . . , pn|S) =
1

Z(S)

n∏
i=1

Pr(pi) (2)

where Z(S) is a normalizing constant. The segmen-
tation of S that maximizes the probability can be de-
termined efficiently using a dynamic programming
algorithm. The formula has a strong preference for
longer phrases, as every Pr(p) is a small fraction.
To deal with out-of-vocabulary (OOV) words, we
allow any single word w to be considered a phrase,
and if N(w) = 0, we set N(w) = 0.5 instead.

3.3 BPNGs as sentence level semantic
representation

Simply merging the phrase-level semantic represen-
tation is insufficient to produce a sensible sentence-
level semantic representation. As an example, we
consider two target language (English) sentences
segmented as follows:

1. ||| Hello , ||| Querrien ||| . |||

2. ||| Good morning , sir . |||

A naive comparison of the bags of aligned pivot lan-
guage (French) phrases would likely conclude that
the two sentences are completely unrelated, as the
bags of aligned phrases are likely to be completely
disjoint. We tackle this problem by constructing
a confusion network representation of the aligned
phrases, as shown in Figures 2 and 3. A confusion
network is a compact representation of a potentially
exponentially large number of weighted and likely
malformed French sentences. We can collect the N-
gram statistics of this ensemble of French sentences
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Bonjour , / 0.9

Salut , / 0.1

Querrien / 1.0 . / 1.0

Figure 2: A confusion network as a semantic repre-
sentation

Bonjour , monsieur . / 1.0

Figure 3: A degenerate confusion network as a se-
mantic representation

efficiently from the confusion network representa-
tion. For example, the trigram Bonjour , Querrien 2

would receive a weight of 0.9 × 1.0 = 0.9 in Fig-
ure 2. As with BTNGs, we discount the weight of an
N-gram by a factor of 0.1 for every function word in
the N-gram, so as to place more emphasis on the
content words.

The collection of all such N-grams and their cor-
responding weights forms the BPNG of a sentence.
The reference and system BPNGs are then matched
using the algorithm outlined in Section 2.2.

3.4 Scoring

The TESLA-B sentence-level score is a linear com-
bination of (1) BTNG F-measures for unigrams,
bigrams, and trigrams based on similarity func-
tions sms and spos, and (2) BPNG F-measures for
unigrams, bigrams, and trigrams based on sim-
ilarity functions slem and spos. We thus have
3 × 2 F-measures from the BTNGs and 3 × 2 ×
#pivot languages F-measures from the BPNGs. We
average the BTNG and BPNG scores to obtain
sBTNG and sBPNG, respectively. The sentence-
level TESLA-B score is then defined as 1

2(sBTNG +
sBPNG). The two-step averaging process prevents
the BPNG scores from overwhelming the BTNG
scores, especially when we have many pivot lan-
guages. The system-level TESLA-B score is the
arithmetic average of the sentence-level TESLA-B
scores.

2Note that an N-gram can span more than one segment.

4 TESLA-F

Unlike the simple arithmetic averages used in
TESLA-M and TESLA-B, TESLA-F uses a gen-
eral linear combination of three types of scores: (1)
BTNG F-measures as in TESLA-M and TESLA-B,
(2) BPNG F-measures as in TESLA-B, and (3) nor-
malized language model scores of the system trans-
lation, defined as 1

n log P , where n is the length of
the translation, and P the language model probabil-
ity. The method of training the linear model depends
on the development data. In the case of WMT, the
development data is in the form of manual rankings,
so we train SVM rank (Joachims, 2006) on these in-
stances to build the linear model. In other scenarios,
some form of regression can be more appropriate.

The BTNG and BPNG scores are the same as
used in TESLA-B. In the WMT campaigns, we use
two language models, one generated from the Eu-
roparl dataset and one from the news-train dataset.
We thus have 3 × 2 features from the BTNGs,
3 × 2 × #pivot languages features from the BPNGs,
and 2 features from the language models. Again, we
can compute system-level scores by averaging the
sentence-level scores.

4.1 Scaling of TESLA-F Scores

While machine translation evaluation is concerned
only with the relative order of the different trans-
lations but not with the absolute scores, there are
practical advantages in normalizing the evaluation
scores to a range between 0 and 1. For TESLA-M
and TESLA-B, this is already the case, since every
F-measure has a range of [0, 1] and so do their av-
erages. In contrast, the SVM rank -produced model
typically gives scores very close to zero.

To remedy that, we note that we have the free-
dom to scale and shift the linear SVM model with-
out changing the metric. We observe that the F-
measures have a range of [0, 1], and studying the
data reveals that [−15, 0] is a good approximation of
the range for normalized language model scores, for
all languages involved in the WMT campaign. Since
we know the range of values of an F-measure feature
(between 0 and 1) and assuming that the range of
the normalized LM score is between –15 and 0, we
can find the maximum and minimum possible score
given the weights. Then we linearly scale the range
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of scores from [min, max] to [0, 1]. We provide an
option of scaling TESLA-F scores in the new release
of TESLA.

5 MT tuning with TESLA

All variants of TESLA can be used for automatic
MT tuning using Z-MERT (Zaidan, 2009). Z-
MERT’s modular design makes it easy to integrate a
new metric. As TESLA already computes scores at
the sentence level, integrating TESLA into Z-MERT
was straightforward. First, we created a “streaming”
version of each TESLA metric which reads trans-
lation candidates from standard input and prints the
sentence-level scores to standard output. This allows
Z-MERT to easily query the metric for sentence-
level scores during MT tuning. Second, we wrote
a Java wrapper that calls the TESLA code from Z-
MERT. The resulting metric can be used for MERT
tuning in the standard fashion. All that a user has
to do is to change the metric in the Z-MERT config-
uration file to TESLA. All the necessary code for
Z-MERT tuning is included in the new release of
TESLA.

6 Experiments

6.1 Evaluation Task
We evaluate TESLA using the publicly available
data from WMT 2009 for into-English and out-
of-English translation. The pivot language phrase
tables and language models are built using the
WMT 2009 training data. The SVM rank model for
TESLA-F is trained on manual rankings from WMT
2008. The results for TESLA-M and TESLA-F have
previously been reported in Liu et al. (2010)3. We
add results for the new variant TESLA-B here.

Tables 1 and 2 show the sentence-level consis-
tency and system-level Spearman’s rank correlation,
respectively for into-English translation. For com-
parison, we include results for some of the best per-
forming metrics in WMT 2009. Tables 3 and 4 show
the same results for out-of-English translation. We
do not include the English-Czech language pair in
our experiments, as we unfortunately do not have
good linguistic resources for the Czech language.

3The English-Spanish system correlation differs from our
previous result after fixing a minor mistake in the language
model.

cz-en fr-en de-en es-en hu-en Overall
TESLA-M 0.60 0.61 0.61 0.59 0.63 0.61
TESLA-B 0.63 0.64 0.63 0.62 0.63 0.63
TESLA-F 0.63 0.65 0.64 0.62 0.66 0.63

ulc 0.63 0.64 0.64 0.61 0.60 0.63
maxsim 0.60 0.63 0.63 0.61 0.62 0.62

meteor-0.6 0.47 0.51 0.52 0.49 0.48 0.50

Table 1: Into-English sentence-level consistency on
WMT 2009 data

cz-en fr-en de-en es-en hu-en Avg
TESLA-M 1.00 0.86 0.85 0.99 0.66 0.87
TESLA-B 1.00 0.92 0.67 0.95 0.83 0.87
TESLA-F 1.00 0.92 0.68 0.94 0.94 0.90

ulc 1.00 0.92 0.78 0.86 0.60 0.83
maxsim 0.70 0.91 0.76 0.98 0.66 0.80

meteor-0.6 0.70 0.93 0.56 0.87 0.54 0.72

Table 2: Into-English system-level Spearman’s rank
correlation on WMT 2009 data

The new TESLA-B metric proves to be competi-
tive to its siblings and is often on par with the more
sophisticated TESLA-F metric. The exception is
the English-German language pair, where TESLA-
B has very low system-level correlation. We have
two possible explanations for this. First, the system-
level correlation is computed on a very small sample
size (the ranked list of MT systems). This makes the
system-level correlation score more volatile com-
pared to the sentence-level consistency score which
is computed on thousands of sentence pairs. Sec-
ond, German has a relatively free word order which
potentially makes word alignment and phrase table
extraction more noisy. Interestingly, all participating
metrics in WMT 2009 had low system-level correla-
tion for the English-German language pair.

en-fr en-de en-es Overall
TESLA-M 0.64 0.59 0.59 0.60
TESLA-B 0.65 0.59 0.60 0.61
TESLA-F 0.68 0.57 0.60 0.61

wpF 0.66 0.60 0.61 0.61
wpbleu 0.60 0.47 0.49 0.51

Table 3: Out-of-English sentence-level consistency
on WMT 2009 data
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en-fr en-de en-es Avg
TESLA-M 0.93 0.86 0.79 0.86
TESLA-B 0.91 0.05 0.63 0.53
TESLA-F 0.85 0.78 0.67 0.77

wpF 0.90 -0.06 0.58 0.47
wpbleu 0.92 0.07 0.63 0.54

Table 4: Out-of-English system-level Spearman’s
rank correlation on WMT 2009 data

6.2 Tunable Metric Task

The goal of the new tunable metric task is to explore
MT tuning with metrics other than BLEU (Papineni
et al., 2002). To allow for a fair comparison, the
WMT organizers provided participants with a com-
plete Joshua MT system for an Urdu-English trans-
lation task. We tuned models for each variant of
TESLA, using Z-MERT in the default configuration
provided by the organizers. There are four reference
translations for each Urdu source sentence. The size
of the N-best list is set to 300.

For our own experiments, we randomly split the
development set into a development portion (781
sentences) and a held-out test portion (200 sen-
tences). We run the same Z-MERT tuning process
for each TESLA variant on this reduced develop-
ment set and evaluate the resulting models on the
held out test set. We include a model trained with
BLEU as an additional reference point. The results
are shown in Table 5. We observe that the model
trained with TESLA-F achieves the best results
when evaluated with any of the TESLA metrics, al-
though the differences between the scores are small.
We found that TESLA produces slightly longer
translations than BLEU: 22.4 words (TESLA-M),
21.7 words (TESLA-B), and 22.5 words (TESLA-
F), versus 18.7 words (BLEU). The average refer-
ence length is 19.8 words.

The official evaluation for the tunable metric task
is performed using manual rankings. The score of
a system is calculated as the percentage of times
the system is judged to be either better or equal
(score1) or strictly better (score2) compared to each
other system in pairwise comparisons. Although
we submit results for all TESLA variants, only our
primary submission TESLA-F is included in the
manual evaluation. The results for TESLA-F are
mixed. When evaluated with score1, TESLA-F is

Tune\Test BLEU TESLA-M TESLA-B TESLA-F
BLEU 0.2715 0.3756 0.3129 0.3920

TESLA-M 0.2279 0.4056 0.3279 0.3981
TESLA-B 0.2370 0.4001 0.3257 0.3977
TESLA-F 0.2432 0.4076 0.3299 0.4007

Table 5: Automatic evaluation scores on held out
test portion for the tunable metric task. The best re-
sult in each column is printed in bold.

ranked 7th out of 8 participating systems, but when
evaluated with score2, TESLA-F is ranked second
best. These findings differ from previous results
that we reported in Liu et al. (2011) where MT
systems tuned with TESLA-M and TESLA-F con-
sistently outperform two other systems tuned with
BLEU and TER for translations from French, Ger-
man, and Spanish into English on the WMT 2010
news data set. A manual inspection of the references
in the tunable metric task shows that the translations
are of lower quality compared to the news data sets
used in WMT. As the SVM model in TESLA-F is
trained with rankings from WMT 2008, it is possible
that the model is less robust when applied to Urdu-
English translations. This could explain the mixed
performance of TESLA-F in the tunable metric task.

7 Conclusion

We introduce TESLA-B, a new variant of the
TESLA machine translation metric and present ex-
perimental results for all TESLA variants in the set-
ting of the WMT evaluation task and tunable met-
ric task. All TESLA variants are integrated into Z-
MERT for automatic machine translation tuning.
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Abstract

This paper describes Meteor 1.3, our submis-
sion to the 2011 EMNLP Workshop on Sta-
tistical Machine Translation automatic evalua-
tion metric tasks. New metric features include
improved text normalization, higher-precision
paraphrase matching, and discrimination be-
tween content and function words. We include
Ranking and Adequacy versions of the metric
shown to have high correlation with human
judgments of translation quality as well as a
more balanced Tuning version shown to out-
perform BLEU in minimum error rate training
for a phrase-based Urdu-English system.

1 Introduction

The Meteor1 metric (Banerjee and Lavie, 2005;
Denkowski and Lavie, 2010b) has been shown to
have high correlation with human judgments in eval-
uations such as the 2010 ACL Workshop on Statisti-
cal Machine Translation and NIST Metrics MATR
(Callison-Burch et al., 2010). However, previous
versions of the metric are still limited by lack of
punctuation handling, noise in paraphrase matching,
and lack of discrimination between word types. We
introduce new resources for all WMT languages in-
cluding text normalizers, filtered paraphrase tables,
and function word lists. We show that the addition of
these resources to Meteor allows tuning versions of
the metric that show higher correlation with human
translation rankings and adequacy scores on unseen

1The metric name has previously been stylized as “ME-
TEOR” or “METEOR”. As of version 1.3, the official stylization
is simply “Meteor”.

test data. The evaluation resources are modular, us-
able with any other evaluation metric or MT soft-
ware.

We also conduct a MT system tuning experiment
on Urdu-English data to compare the effectiveness
of using multiple versions of Meteor in minimum
error rate training. While versions tuned to various
types of human judgments do not perform as well
as the widely used BLEU metric (Papineni et al.,
2002), a balanced Tuning version of Meteor consis-
tently outperforms BLEU over multiple end-to-end
tune-test runs on this data set.

The versions of Meteor corresponding to the
translation evaluation task submissions, (Ranking
and Adequacy), are described in Sections 3 through
5 while the submission to the tunable metrics task,
(Tuning), is described in Section 6.

2 New Metric Resources

2.1 Meteor Normalizer

Whereas previous versions of Meteor simply strip
punctuation characters prior to scoring, version 1.3
includes a new text normalizer intended specifi-
cally for translation evaluation. The normalizer first
replicates the behavior of the tokenizer distributed
with the Moses toolkit (Hoang et al., 2007), includ-
ing handling of non-breaking prefixes. After tok-
enization, we add several rules for normalization,
intended to reduce meaning-equivalent punctuation
styles to common forms. The following two rules
are particularly helpful:

• Remove dashes between hyphenated words.
(Example: far-off → far off)
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• Remove full stops in acronyms/initials. (Exam-
ple: U.N. → UN)

Consider the behavior of the Moses tokenizer
and Meteor normalizers given a reference trans-
lation containing the phrase “U.S.-based
organization”:

Moses: U.S.-based organization

Meteor ≤1.2: U S based organization

Meteor 1.3: US based organization

Of these, only the Meteor 1.3 normalization
allows metrics to match all of the following
stylizations:

U.S.-based organization

US-based organization

U.S. based organization

US based organization

While intended for Meteor evaluation, use of this
normalizer is a suitable preprocessing step for other
metrics to improve accuracy when reference sen-
tences are stylistically different from hypotheses.

2.2 Filtered Paraphrase Tables

The original Meteor paraphrase tables (Denkowski
and Lavie, 2010b) are constructed using the phrase
table “pivoting” technique described by Bannard
and Callison-Burch (2005). Many paraphrases suf-
fer from word accumulation, the appending of un-
aligned words to one or both sides of a phrase rather
than finding a true rewording from elsewhere in par-
allel data. To improve the precision of the para-
phrase tables, we filter out all cases of word accumu-
lation by removing paraphrases where one phrase is
a substring of the other. Table 1 lists the number of
phrase pairs found in each paraphrase table before
and after filtering. In addition to improving accu-
racy, the reduction of phrase table sizes also reduces
the load time and memory usage of the Meteor para-
phrase matcher. The tables are a modular resource
suitable for other MT or NLP software.

2.3 Function Word Lists

Commonly used metrics such as BLEU and ear-
lier versions of Meteor make no distinction between
content and function words. This can be problem-
atic for ranking-based evaluations where two system

Language Phrase Pairs After Filtering
English 6.24M 5.27M
Czech 756K 684K
German 3.52M 3.00M
Spanish 6.35M 5.30M
French 3.38M 2.84M

Table 1: Sizes of paraphrase tables before and after filter-
ing

Language Corpus Size (sents) FW Learned
English 836M 93
Czech 230M 68
French 374M 85
German 309M 92
Spanish 168M 66

Table 2: Monolingual corpus size (words) and number of
function words learned for each language

outputs can differ by a single word, such as mistrans-
lating either a main verb or a determiner. To improve
Meteor’s discriminative power in such cases, we in-
troduce a function word list for each WMT language
and a new δ parameter to adjust the relative weight
given to content words (any word not on the list) ver-
sus function words (see Section 3). Function word
lists are estimated according to relative frequency in
large monolingual corpora. For each language, we
pool freely available WMT 2011 data consisting of
Europarl (Koehn, 2005), news (sentence-uniqued),
and news commentary data. Any word with relative
frequency of 10−3 or greater is added to the func-
tion word list. Table 2 lists corpus size and number
of function words learned for each language. In ad-
dition to common words, punctuation symbols con-
sistently rise to the tops of function word lists.

3 Meteor Scoring

Meteor evaluates translation hypotheses by align-
ing them to reference translations and calculating
sentence-level similarity scores. This section de-
scribes our extended version of the metric.

For a hypothesis-reference pair, the search space
of possible alignments is constructed by identifying
all possible matches between the two sentences ac-
cording to the following matchers:
Exact: Match words if their surface forms are iden-
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tical.
Stem: Stem words using a language-appropriate
Snowball Stemmer (Porter, 2001) and match if the
stems are identical.
Synonym: Match words if they share member-
ship in any synonym set according to the Word-
Net (Miller and Fellbaum, 2007) database.
Paraphrase: Match phrases if they are listed as
paraphrases in the paraphrase tables described in
Section 2.2.

All matches are generalized to phrase matches
with a start position and phrase length in each sen-
tence. Any word occurring less than length posi-
tions after a match start is considered covered by
the match. The exact and paraphrase matchers sup-
port all five WMT languages while the stem matcher
is limited to English, French, German, and Spanish
and the synonym matcher is limited to English.

Once matches are identified, the final alignment is
resolved as the largest subset of all matches meeting
the following criteria in order of importance:

1. Require each word in each sentence to be cov-
ered by zero or one matches.

2. Maximize the number of covered words across
both sentences.

3. Minimize the number of chunks, where a chunk
is defined as a series of matches that is contigu-
ous and identically ordered in both sentences.

4. Minimize the sum of absolute distances be-
tween match start positions in the two sen-
tences. (Break ties by preferring to align words
and phrases that occur at similar positions in
both sentences.)

Given an alignment, the metric score is calculated
as follows. Content and function words are iden-
tified in the hypothesis (hc, hf ) and reference (rc,
rf ) according to the function word lists described in
Section 2.3. For each of the matchers (mi), count
the number of content and function words covered
by matches of this type in the hypothesis (mi(hc),
mi(hf )) and reference (mi(rc), mi(rf )). Calculate
weighted precision and recall using matcher weights
(wi...wn) and content-function word weight (δ):

P =

∑
iwi · (δ ·mi(hc) + (1− δ) ·mi(hf ))

δ · |hc|+ (1− δ) · |hf |

Target WMT09 WMT10 Combined
English 20,357 24,915 45,272
Czech 11,242 9,613 20,855
French 2,967 5,904 7,062
German 6,563 10,892 17,455
Spanish 3,249 3,813 7,062

Table 3: Human ranking judgment data from 2009 and
2010 WMT evaluations

R =

∑
iwi · (δ ·mi(rc) + (1− δ) ·mi(rf ))

δ · |rc|+ (1− δ) · |rf |
The parameterized harmonic mean of P and R (van
Rijsbergen, 1979) is then calculated:

Fmean =
P ·R

α · P + (1− α) ·R

To account for gaps and differences in word order,
a fragmentation penalty is calculated using the total
number of matched words (m, average over hypoth-
esis and reference) and number of chunks (ch):

Pen = γ ·
(
ch

m

)β
The Meteor score is then calculated:

Score = (1− Pen) · Fmean

The parameters α, β, γ, δ, and wi...wn are tuned
to maximize correlation with human judgments.

4 Parameter Optimization

4.1 Development Data
The 2009 and 2010 WMT shared evaluation data
sets are made available as development data for
WMT 2011. Data sets include MT system outputs,
reference translations, and human rankings of trans-
lation quality. Table 3 lists the number of judgments
for each evaluation and combined totals.

4.2 Tuning Procedure
To evaluate a metric’s performance on a data set, we
count the number of pairwise translation rankings
preserved when translations are re-ranked by met-
ric score. We then compute Kendall’s τ correlation
coefficient as follows:

τ =
concordant pairs−discordant pairs

total pairs
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Tune τ (WMT09) Test τ (WMT10)
Lang Met1.2 Met1.3 Met1.2 Met1.3
English 0.258 0.276 0.320 0.343
Czech 0.148 0.162 0.220 0.215
French 0.414 0.437 0.370 0.384
German 0.152 0.180 0.170 0.155
Spanish 0.216 0.240 0.310 0.326

Table 5: Meteor 1.2 and 1.3 correlation with ranking
judgments on tune and test data

For each WMT language, we learn Meteor pa-
rameters that maximize τ over the combined 2009
and 2010 data sets using an exhaustive parametric
sweep. The resulting parameters, listed in Table 4,
are used in the default Ranking version of Meteor
1.3.

For each language, the δ parameter is above 0.5,
indicating a preference for content words over func-
tion words. In addition, the fragmentation penalties
are generally less severe across languages. The ad-
ditional features in Meteor 1.3 allow for more bal-
anced parameters that distribute responsibility for
penalizing various types of erroneous translations.

5 Evaluation Experiments

To compare Meteor 1.3 against previous versions of
the metric on the task of evaluating MT system out-
puts, we tune a version for each language on 2009
WMT data and evaluate on 2010 data. This repli-
cates the 2010 WMT shared evaluation task, allow-
ing comparison to Meteor 1.2. Table 5 lists correla-
tion of each metric version with ranking judgments
on tune and test data. Meteor 1.3 shows significantly
higher correlation on both tune and test data for En-
glish, French, and Spanish while Czech and German
demonstrate overfitting with higher correlation on
tune data but lower on test data. This overfitting ef-
fect is likely due to the limited number of systems
providing translations into these languages and the
difficulty of these target languages leading to sig-
nificantly noisier translations skewing the space of
metric scores. We believe that tuning to combined
2009 and 2010 data will counter these issues for the
official Ranking version.

Meteor-1.2 r Meteor-1.3 r
Tune / Test MT08 MT09 MT08 MT09
MT08 0.620 0.625 0.650 0.636
MT09 0.612 0.630 0.642 0.648
Tune / Test P2 P3 P2 P3
P2 -0.640 -0.596 -0.642 -0.594
P3 -0.638 -0.600 -0.625 -0.612

Table 6: Meteor 1.2 and 1.3 correlation with adequacy
and H-TER scores on tune and test data

5.1 Generalization to Other Tasks
To evaluate the impact of new features on other
evaluation tasks, we follow Denkowski and Lavie
(2010a), tuning versions of Meteor to maximize
length-weighted sentence-level Pearson’s r correla-
tion coefficient with adequacy and H-TER (Snover
et al., 2006) scores of translations. Data sets in-
clude 2008 and 2009 NIST Open Machine Trans-
lation Evaluation adequacy data (Przybocki, 2009)
and GALE P2 and P3 H-TER data (Olive, 2005).
For each type of judgment, metric versions are tuned
and tested on each year and scores are compared.
We compare Meteor 1.3 results with those from ver-
sion 1.2 with results shown in Table 6. For both
adequacy data sets, Meteor 1.3 significantly outper-
forms version 1.2 on both tune and test data. The
version tuned on MT09 data is selected as the official
Adequacy version of Meteor 1.3. H-TER versions
either show no improvement or degradation due to
overfitting. Examination of the optimal H-TER pa-
rameter sets reveals a mismatch between evalua-
tion metric and human judgment type. As H-TER
evaluation is ultimately limited by the TER aligner,
there is no distinction between content and function
words, and words sharing stems are considered non-
matches. As such, these features do not help Meteor
improve correlation, but rather act as a source of ad-
ditional possibility for overfitting.

6 MT System Tuning Experiments

The 2011 WMT Tunable Metrics task consists of
using Z-MERT (Zaidan, 2009) to tune a pre-built
Urdu-English Joshua (Li et al., 2009) system to a
new evaluation metric on a tuning set with 4 refer-
ence translations and decoding a test set using the re-
sulting parameter set. As this task does not provide a
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Language α β γ δ wexact wstem wsyn wpar
English 0.85 0.20 0.60 0.75 1.00 0.60 0.80 0.60
Czech 0.95 0.20 0.60 0.80 1.00 – – 0.40
French 0.90 1.40 0.60 0.65 1.00 0.20 – 0.40
German 0.95 1.00 0.55 0.55 1.00 0.80 – 0.20
Spanish 0.65 1.30 0.50 0.80 1.00 0.80 – 0.60

Table 4: Optimal Meteor parameters for WMT target languages on 2009 and 2010 data (Meteor 1.3 Ranking)

devtest set, we select a version of Meteor by explor-
ing the effectiveness of using multiple versions of
the metric to tune phrase-based translation systems
for the same language pair.

We use the 2009 NIST Open Machine Transla-
tion Evaluation Urdu-English parallel data (Przy-
bocki, 2009) plus 900M words of monolingual data
from the English Gigaword corpus (Parker et al.,
2009) to build a standard Moses system (Hoang et
al., 2007) as follows. Parallel data is word aligned
using the MGIZA++ toolkit (Gao and Vogel, 2008)
and alignments are symmetrized using the “grow-
diag-final-and” heuristic. Phrases are extracted us-
ing standard phrase-based heuristics (Koehn et al.,
2003) and used to build a translation table and lex-
icalized reordering model. A standard SRI 5-gram
language model (Stolke, 2002) is estimated from
monolingual data. Using Z-MERT, we tune this sys-
tem to baseline metrics as well as the versions of
Meteor discussed in previous sections. We also tune
to a balanced Tuning version of Meteor designed to
minimize bias. This data set provides a single set
of reference translations for MERT. To account for
the variance of MERT, we run end-to-end tuning 3
times for each metric and report the average results
on two unseen test sets: newswire and weblog. Test
set translations are evaluated using BLEU, TER, and
Meteor 1.2. The parameters for each Meteor version
are listed in Table 7 while the results are listed in
Table 8.

The results are fairly consistent across both test
sets: the Tuning version of Meteor outperforms
BLEU across all metrics while versions of Meteor
that perform well on other tasks perform poorly in
tuning. This illustrates the differences between eval-
uation and tuning tasks. In evaluation tasks, metrics
are engineered to score 1-best translations from sys-
tems most often tuned to BLEU. As listed in Table 7,

Newswire
Tuning Metric BLEU TER Met1.2
BLEU 23.67 72.48 50.45
TER 25.35 59.72 48.60
TER-BLEU/2 26.25 61.66 49.69
Meteor-tune 24.89 69.54 51.29
Meteor-rank 19.28 94.64 49.78
Meteor-adq 22.86 77.27 51.40
Meteor-hter 25.23 66.71 50.90

Weblog
Tuning Metric BLEU TER Met1.2
BLEU 17.10 76.28 41.86
TER 17.07 64.32 39.75
TER-BLEU/2 18.14 65.77 40.68
Meteor-tune 18.07 73.83 42.78
Meteor-rank 14.34 98.86 42.75
Meteor-adq 16.76 81.63 43.43
Meteor-hter 18.12 70.47 42.28

Table 8: Average metric scores for Urdu-English systems
tuned to baseline metrics and versions of Meteor

these parameters are often skewed to emphasize the
differences between system outputs. In the tuning
scenario, MERT optimizes translation quality with
respect to the tuning metric. If a metric is biased (for
example, assigning more weight to recall than preci-
sion), it will guide the MERT search toward patho-
logical translations that receive lower scores across
other metrics. Balanced between precision and re-
call, content and function words, and word choice
versus fragmentation, the Tuning version of Meteor
is significantly less susceptible to gaming. Chosen
as the official submission for WMT 2011, we be-
lieve that this Tuning version of Meteor will further
generalize to other tuning scenarios.

89



Task α β γ δ wexact wstem wsyn wpar
Ranking 0.85 0.20 0.60 0.75 1.00 0.60 0.80 0.60
Adequacy 0.75 1.40 0.45 0.70 1.00 1.00 0.60 0.80
H-TER 0.40 1.50 0.35 0.55 1.00 0.20 0.60 0.80
Tuning 0.50 1.00 0.50 0.50 1.00 0.50 0.50 0.50

Table 7: Parameters for Meteor 1.3 tasks

7 Conclusions

We have presented Ranking, Adequacy, and Tun-
ing versions of Meteor 1.3. The Ranking and Ad-
equacy versions are shown to have high correlation
with human judgments except in cases of overfitting
due to skewed tuning data. We believe that these
overfitting issues are lessened when tuning to com-
bined 2009 and 2010 data due to increased variety
in translation characteristics. The Tuning version of
Meteor is shown to outperform BLEU in minimum
error rate training of a phrase-based system on small
Urdu-English data and we believe that it will gener-
alize well to other tuning scenarios. The source code
and all resources for Meteor 1.3 and the version of
Z-MERT with Meteor integration will be available
for download from the Meteor website.
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Abstract

SemPOS is an automatic metric of machine
translation quality for Czech and English fo-
cused on content words. It correlates well
with human judgments but it is computation-
ally costly and hard to adapt to other lan-
guages because it relies on a deep-syntactic
analysis of the system output and the refer-
ence. To remedy this, we attempt at approxi-
mating SemPOS using only tagger output and
a few heuristics. At a little expense in corre-
lation to human judgments, we can evaluate
MT systems much faster. Additionally, we de-
scribe our submission to the Tunable Metrics
Task in WMT11.

1 Introduction

SemPOS metric for machine translation quality was
introduced by Kos and Bojar (2009). It is inspired
by a set of metrics relying on various linguistic fea-
tures on syntactic and semantic level introduced by
Giménez and Márquez (2007). One of their best
performing metrics was Semantic role overlapping:
the candidate and the reference translation are rep-
resented as bags of words and their semantic roles.
The similarity between the candidate and the refer-
ence is calculated using a general similarity measure
called Overlapping. The formal definition may be
found in Section 4.

∗ This work has been supported by the grants EuroMa-
trixPlus (FP7-ICT-2007-3-231720 of the EU and 7E09003 of
the Czech Republic), P406/10/P259, P406/11/1499, and MSM
0021620838.

Instead of semantic role labels (not available for
Czech), Kos and Bojar (2009) use TectoMT frame-
work (Žabokrtský et al., 2008) to assign a seman-
tic part of speech defined by Sgall et al. (1986). In
addition they use t-lemmas (deep-syntactic lemmas)
instead of surface word forms, which most impor-
tantly means that the metric considers content words
only. In the following, we will use “sempos” to de-
note the semantic part of speech and “SemPOS” to
denote the whole metric by Kos and Bojar (2009).

SemPOS correlates well with human judgments
on system level, see Section 2 for a brief summary
of how the correlation is computed. The main draw-
back of SemPOS is its computational cost because
it requires full parsing up to the deep syntactic level
to obtain t-lemmas and semposes. In Section 3 we
propose four methods which approximate t-lemmas
and semposes without the deep syntactic analysis.
These methods require only part-of-speech tagging
and therefore they are not only faster but also eas-
ier to adapt for other languages, not requiring more
advanced linguistic tools.

Giménez and Márquez (2007) and Bojar et al.
(2010) used different formulas to calculate the final
overlapping.1 In Section 4, we examine variations
of the formula, adding one version of our own.

By combining one of the approximation tech-
niques with one of the overlapping formulas, we ob-

1In fact, Giménez and Márquez (2007) released two versions
of the paper. Both of them are nearly identical except for the
formula for overlapping, so we asked the authors which of the
two versions is correct. It turns out that Bojar et al. (2010),
unaware of the second version of the paper, used the wrong one
but still obtained good results. We therefore (re-)examine both
versions.
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Workshop Filename Sentences To English from To Czech from
WMT08 test2008 2000 de, es, fr –
WMT08 nc-test2008 2028 cs en
WMT08 newstest2008 2051 cs, de, es, fr en
WMT09 newstest2009 2525 cs, de, es, fr en
WMT10 newssyscombtest2010 2034 cs, de, es, fr en

Table 1: Datasets used to evaluate the correlation with human judgments. For example: the testset “test2008” was
used for translation to English from German, Spanish and French and it was not used for any translation to Czech.

tain a variant of our metric. The performance of the
individual variants is reported in Section 5.

Section 6 is devoted to our submission to the Tun-
able Metrics shared task of the Sixth Workshop on
Statistical Machine Translation (WMT11).

2 Method of Evaluation

Our primary objective is to create a good metric
for automatic MT evaluation and possibly also tun-
ing. We are not interested much in how close is our
proposed approximation to the (automatic or man-
ual) semposes and t-lemmas. Therefore, we evaluate
only how well do our metrics (the pair of a chosen
approximation and a chosen formula for the overlap-
ping) correlate with human judgments.

2.1 Test Data

We use the data collected during three Workshops on
Statistical Machine Translation: WMT08 (Callison-
Burch et al., 2008), WMT09 (Callison-Burch et al.,
2009) and WMT10 (Callison-Burch et al., 2010). So
far, we study only Czech and English as the target
languages. Our test sets are summarized in Table 1:
we have four sets with Czech as the target language
and 16 sets with English as the target language.

Each testset in each translation direction gives us
for each sentence one hypothesis for each participat-
ing MT system. Human judges (repeatedly) ranked
subsets of these hypotheses comparing at most 5 hy-
potheses at once and indicating some ordering of
the hypotheses. The ordering may include ties. In
WMT, these 5-fold rankings are interpreted as “sim-
ulated pairwise comparisons”: all pairwise compar-
isons are extracted from each ranking. The HUMAN

SCORE for each system is then the percentage of
pairs where the system was ranked better or equal
to its competitor.

2.2 Correlation with Human Judgments

For each metric we examine, the correlation to hu-
man judgments is calculated as follows: given one
of the test sets (the hypotheses and reference transla-
tions), the examined metric provides a single-figure
score for each system. We use Spearman’s rank cor-
relation coefficient between the human scores and
the scores of the given metric to see how well the
metric matches human judgments. Because tied
ranks do not exist, the correlation coefficient is given
by:

ρ = 1−
6

∑
i

(pi − qi)2

n(n2 − 1)
(1)

Human scores across different test sets are not
comparable, so we compute correlations for each
test set separately and average them.

3 Approximations of SemPOS

We would like to obtain t-lemmas and semantic parts
of speech without deep syntactic analysis, assuming
only automatic tagging and lemmatization.

Except for one option (Section 3.4), we approxi-
mate t-lemmas simply by surface lemmas. For the
majority of content words, this works perfectly, but
there are several regular classes of words where the
t-lemma differs. In such cases, the t-lemma usu-
ally consists of the lemma of the main content word
and an auxiliary word that significantly changes the
meaning of the content word. These are e.g. English
phrasal verbs (“blow up” should have the t-lemma
“blow up”) and Czech reflexive verbs (“smát se”).

The approximation of semantic part of speech de-
serves at least some minimal treatment. The follow-
ing sections describe four variations of the approxi-
mation.
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Morph. Tag Sempos Rel. Freq.
NN n.denot 0.989
VBZ v 0.766
VBN v 0.953
JJ adj.denot 0.975
NNP n.denot 0.999
PRP n.pron.def.pers 0.999
VB v 0.875
VBP v 0.663
VBD v 0.810
WP n.pron.indef 1.000
NNS n.denot 0.996
JJR adj.denot 0.813

Table 2: A sample of the mapping from English morpho-
logical tags to semposes, including the relative frequency,
e.g. count(NN,n.denot)

count(NN) .

3.1 Sempos from Tag

We noticed that the morphological tag determines
almost uniquely the semantic part of speech. We use
the Czech-English sentence-parallel corpus CzEng
(Bojar and Žabokrtský, 2009) to create a simple dic-
tionary which maps morphological tags to most fre-
quent semantic parts of speech. Some morpholog-
ical tags belong almost always to auxiliary words
which do not have a corresponding deep-syntactic
node at all, so the t-lemma and sempos are not de-
fined for them. We include these morphological tags
in the dictionary and map them to a special sempos
value “-”. Ultimately, words with such sempos are
not included in the overlapping at all.

Table 2 shows a sample of this dictionary. The
high relative frequencies indicate that we are not los-
ing too much of the accuracy: overall 93.6 % for
English and 88.4 % for Czech on CzEng e-test.

The first approximation relies just on this
(language-specific) dictionary. The input text is au-
tomatically tagged, the morphological tags are de-
terministically mapped to semposes using the dictio-
nary and words where the mapping led to the special
value of “-” are removed.

In the following, we label this method as APPROX.

3.2 Exclude Stop-Words

By definition, the deep syntactic layer we use repre-
sents more or less only content words. Most aux-
iliary words become only attributes of the deep-

syntactic nodes and play no role in the overlapping
between the hypothesis and the reference.

Our first approximation technique (Section 3.1)
identifies auxiliary words only on the basis of the
morphological tag. We attempt to refine the re-
call by excluding a certain number of most frequent
words in each language. The frequency list was ob-
tained from the Czech and English sides of the cor-
pus CzEng. We choose the exact cut-off for stop-
words in each language separately: 100 words in
English and 220 words in Czech. See Section 5.1
below.

In the following, the method is called APPROX-
STOPWORDS.

3.3 Restricting the Set of Examined Semposes
We noticed that the contribution of each sempos to
the overall performance of the metric in terms of cor-
relation to human judgments can differ a lot. One
of the underlying reasons may be e.g. greater or
lower tagging accuracy of certain word classes, an-
other reason may be that translation errors in certain
word classes may be more relevant for human judges
of MT quality.

Tables 3 and 4 report the correlation to human
judgments if only words in a given sempos are con-
sidered in the overlapping. Based on these obser-
vations, we assume that some sempos types raise
the correlation of the overlapping with human judg-
ments and some lower it. We therefore try one more
variant of the approximation which considers only
(language-specific) subset of semposes.

The approximation called APPROX-RESTR con-
siders only these sempos tags in Czech: v, n.denot,
adj.denot, n.pron.def.pers, n.pron.def.demon, adv.-
denot.ngrad.nneg, adv.denot.grad.nneg. The consid-
ered sempos tags for English are: v, n.denot, adj.-
denot, n.pron.indef.

3.4 T-lemma and Sempos Tagging
Our last approximation method differs a lot from the
previous three approximations. We use the sequence
labeling algorithm (Collins, 2002) as implemented
in Featurama2 to choose the t-lemma and sempos
tag. The CzEng corpus (Bojar and Žabokrtský,
2009) serves to train two taggers: one for Czech and

2http://sourceforge.net/projects/
featurama/
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Tag R. Fr. Min. Max. Avg.
v 0.236 0.403 1.000 0.735
n.denot 0.506 0.189 1.000 0.728
adj.denot 0.124 0.264 0.964 0.720
n.pron.indef 0.019 0.224 1.000 0.639
n.quant.def 0.039 -0.084 0.893 0.495
n.pron.def.pers 0.068 -0.500 0.975 0.493
adv.pron.indef 0.005 -0.382 1.000 0.432
adv.denot.grad.neg 0.003 -1.000 0.904 0.413

Table 3: English semposes and their performance in
terms of correlation with human judgments if only words
of the given sempos in APPROX are checked for match
with the reference. Averaged across all testsets. Over-
lapping CAP is used, see Section 4 below. Column R. Fr.
reports relative frequency of each sempos in the testsets.

Tag R. Fr. Min. Max. Avg.
n.pron.def.pers 0.030 0.406 0.800 0.680
n.pron.def.demon 0.026 0.308 1.000 0.651
adj.denot 0.156 0.143 0.874 0.554
adv.denot.ngrad.nneg 0.047 0.291 0.800 0.451
adv.denot.grad.nneg 0.001 0.219 0.632 0.445
adj.quant.def 0.004 -0.029 0.800 0.393
n.denot.neg 0.037 0.029 0.736 0.391
adv.denot.grad.neg 0.018 -0.371 0.800 0.313
n.denot 0.432 -0.200 0.720 0.280
adv.pron.def 0.000 -0.185 0.894 0.262
adj.pron.def.demon 0.000 0.018 0.632 0.241
n.pron.indef 0.027 -0.200 0.423 0.112
adj.quant.grad 0.006 -0.225 0.316 0.079
v 0.180 -0.600 0.706 0.076
adj.quant.indef 0.002 -0.105 0.200 0.052
adv.denot.ngrad.neg 0.000 -0.883 0.775 0.000
n.quant.def 0.000 -0.800 0.713 -0.085

Table 4: Czech semposes. See Table 3 for explanation.

one for English. At each token, each of the taggers
uses the word form, morphological tag and surface
lemma (of the current and the previous two tokens)
to choose one pair of t-lemma and sempos tag from
a given set.

The set of possible t-lemma and sempos pairs is
created as follows. At first the sempos set is ob-
tained. We simply use all semposes being seen with
the given morphological tag in the corpus. Then we
find possible t-lemmas for each sempos. For most
semposes we consider surface lemma as the only
t-lemma. For the sempos tag “v” we also add t-
lemmas composed of the surface lemma and some
auxiliary word present in the sentence (“blow up”,
“smát se”). For some other sempos tags we add spe-

cial t-lemmas for negation and personal pronouns
(“#Neg”, “#PersPron”).

The overall accuracy of the tagger on the e-test is
97.9 % for English and 94.9 % for Czech, a better re-
sult on a harder task (t-lemmas also predicted) than
the deterministic tagging in Section 3.1.

We call this approximation method TAGGER.

4 Variations of Overlapping

The original Overlapping defined by Giménez and
Márquez (2007) is given in Equations 2 and 3:

O(t) =

∑
w∈ri

cnt(w, t, ci)∑
w∈ri∪ci

max(cnt(w, t, ri), cnt(w, t, ci))

(2)
where ci and ri denotes the candidate and refer-
ence translation of sentence i and cnt(w, t, s) de-
notes number of times t-lemma w of type (sempos)
t appears in sentence s. For each sempos type t,
Overlapping O(t) calculates the proportion of cor-
rectly translated items of type t. In this paper we
will call this overlapping BOOST.

Equation 3 describes Overlapping of all types:

O(∗) =

∑
t∈T

∑
w∈ri

cnt(w, t, ci)∑
t∈T

∑
w∈ri∪ci

max(cnt(w, t, ri), cnt(w, t, ci))

(3)
where T denotes the set of all sempos types. We
will call this Overlapping BOOST-MICRO because it
micro-averages the overlappings of individual sem-
pos types.

Kos and Bojar (2009) used a slightly different
Overlapping formula, denoted CAP in this paper:

O(t) =

∑
w∈ri

min(cnt(w, t, ri), cnt(w, t, ci))∑
w∈ri

cnt(w, t, ri)
(4)

To calculate Overlapping of all types, Kos and
Bojar (2009) used ordinary macro-averaging. We
call the method CAP-MACRO:

O(∗) =
1

|T |
∑
t∈T

O(t) (5)

The difference between micro- and macro-
average is that in macro-average all types have
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Reduction Overlapping Min. Max. Avg.
approx cap-micro 0.409 1.000 0.804
orig cap-macro 0.536 1.000 0.801
approx cap-macro 0.420 1.000 0.799
approx-restr cap-macro 0.476 1.000 0.798
tagger cap-micro 0.409 1.000 0.790
orig cap-micro 0.391 1.000 0.784
approx-restr cap-micro 0.391 1.000 0.782
approx-stopwords cap-micro 0.391 1.000 0.754
sempos-bleu 0.374 1.000 0.754
approx-stopwords cap-macro 0.280 1.000 0.724
tagger boost-micro 0.306 1.000 0.717
orig boost-micro 0.324 1.000 0.711
approx-stopwords boost-micro 0.133 1.000 0.697
approx-restr boost-micro 0.126 1.000 0.688
approx boost-micro 0.224 1.000 0.686
tagger cap-macro 0.118 1.000 0.669
bleu -0.143 1.000 0.628

Table 5: Metric correlations for English as a target lan-
guage

the same weight regardless of count. For exam-
ple O(n.denot) and O(adv.denot.grad.nneg) would
have the same weight, however there are many
more items of type n.denot than items of type
adv.denot.grad.nneg (see Tables 3 and 4). We con-
sider this unnatural and we suggest a new Overlap-
ping formula CAP-MICRO:

O(∗) =

∑
t∈T

∑
w∈ri

min(cnt(w, t, ri), cnt(w, t, ci))∑
t∈T

∑
w∈ri

cnt(w, t, ri)

(6)
In sum, we have three Overlappings which should

be evaluated: BOOST-MICRO (Equation 3), CAP-
MACRO (Equation 5), and CAP-MICRO (Equation 6).

5 Experiments

Table 5 shows the results for English as the target
language. The first two columns denote the combi-
nation of an approximation method and an overlap-
ping formula. For conciseness, we report only the
minimum, maximum and average value among cor-
relations of all test sets.

To compare metrics to original SemPOS, the ta-
ble includes non-approximated variant ORIG where
the t-lemmas and semposes are assigned by the Tec-
toMT framework. For the purposes of compari-
son, we also report the correlations of BLEU (Pa-
pineni et al., 2002) and a linear combination of AP-

Reduction Overlapping Min. Max. Avg.
approx-restr cap-macro 0.400 0.800 0.608
tagger cap-macro 0.143 0.800 0.428
orig cap-macro 0.143 0.800 0.423
approx-restr cap-micro 0.086 0.769 0.413
tagger cap-micro 0.086 0.769 0.413
orig cap-micro 0.086 0.741 0.406
approx-stopwords cap-micro 0.086 0.790 0.368
approx cap-micro 0.086 0.734 0.354
approx-stopwords cap-macro 0.086 0.503 0.347
sempos-bleu 0.086 0.676 0.340
approx cap-macro 0.086 0.469 0.338
tagger boost-micro 0.086 0.664 0.337
bleu 0.029 0.490 0.279
orig boost-micro -0.200 0.692 0.273
approx-stopwords boost-micro -0.200 0.685 0.271
approx boost-micro -0.200 0.664 0.266
approx-restr boost-micro -0.200 0.664 0.266

Table 6: Metric correlations for Czech as a target lan-
guage

PROX+CAP-MICRO and BLEU (even weights) under
the name SEMPOS-BLEU since this metric was used
in Tunable Metric Task (Section 6).

The best performing metric is the combination
of approximation APPROX and overlapping CAP-
MICRO. It actually slightly outperforms all non-
approximated metrics. In general, the reductions
APPROX and ORIG combined with CAP-MICRO

or CAP-MACRO perform very well. Reductions
APPROX-STOPWORDS and APPROX-RESTR do not
improve on APPROX.

The TAGGER approximation correlates similarly
to ORIG when micro-average is used.

Table 6 contains the results for Czech as the target
language. The best performing metric for Czech is
APPROX-RESTR together with CAP-MACRO. In gen-
eral approximation APPROX-RESTR is better than
APPROX-STOPWORDS which is slightly better than
APPROX.

The success of overlapping CAP-MACRO in Czech
is due to the higher contribution of less frequent
semposes to the overall correlation. While in En-
glish the best correlating semposes are also very fre-
quent (Table 3), this does not hold for Czech (Ta-
ble 4). The underlying reasons have yet to be ex-
plained.

In both languages, the overlapping BOOST-
MICRO has a very low correlation. We therefore
consider this overlapping not suitable for any met-
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Figure 1: Correlation vs. the number of most frequent
words which are thrown away for English. The big drop
for lengths 109 and 110 is caused by the words ’who’ and
’how’.

ric based on semposes.
On the other hand, most of the examined com-

binations are on average better than the baseline
BLEU, sometimes by a very wide margin.

5.1 Dependency of Correlation on Stopwords
List Length

We tried various stopwords list lengths for the
approximation APPROX-STOPWORDS. Figure 5.1
shows the dependency of the correlation on stop-
words list length for all overlappings in English. We
see that the best correlation arises when no words
are thrown away. One possible explanation is that
auxiliary words are recognized by the morphologi-
cal tag well enough anyway and stopwords lists re-
move also important content words, decreasing the
overall accuracy of the overlapping.

6 Tunable Metric WMT11 Shared Task

The goal of the tunable metric task in WMT11 was
to use the custom metric in MERT optimization
(Och, 2003). The target language was English. We
choose APPROX + CAP-MICRO since this combina-
tion correlates best with human judgments.

Based on the experience of Bojar and Kos (2010),
we combine this metric with BLEU. In our opin-
ion, the SemPOS metric and its variants alone are
are good at comparing systems’ outputs where sen-
tence fluency has been already ensured. On the other
hand, they fail in ranking sentences in n-best lists

Weights Devset scores
BLEU APPROX BLEU APPROX

1 0 0.246 0.546
0.75 0.25 0.242 0.584
0.5 0.5 0.229 0.594
0.25 0.75 0.215 0.602

0 1 0.025 0.631

Table 7: Results of MERT optimization. The last two
columns contain metric scores of the last iteration of the
MERT process with given combination weights.

in MERT optimization because they observe only
t-lemmas and don’t penalize wrong morphological
forms of words. We thus use BLEU to establish
sentence fluency and our metrics to prefer sentences
with correctly translated content words.

We have tried several weights for the linear com-
bination of BLEU and the chosen approximation.
See Table 7 for details. We have submitted the vari-
ant with equal weights.

The preliminary results of manual evaluation (see
the WMT11 overview paper) indicate that our sys-
tem is fairly distinct from others: we won under the
“> others” metric but we were the fifth of 8 systems
in the official “≥ others” (the percentage of pairs
where the system was ranked better or equal to its
competitor).

7 Conclusions

We have introduced and evaluated several approx-
imations of a deep-syntactic MT evaluation metric
SEMPOS. This allows us to reduce the computa-
tional load by far, use only shallow tagging and still
reach reasonable correlation scores.

For English, our combination of APPROX and
CAP-MICRO performs even marginally better than
the original SEMPOS. For Czech, it is APPROX-
RESTR and TAGGER approximations with CAP-
MACRO that outperform the original SEMPOS.

The applicability of these metrics (in link with
BLEU) in model optimization was confirmed by
the manual judgments for the Tunable Metrics Task.
Our submission was surprisingly different from oth-
ers: the best one in the score excluding ties and
mediocre in the score where ties are rewarded.
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Abstract

Current metrics for evaluating machine trans-
lation quality have the huge drawback that
they require human-quality reference transla-
tions. We propose a truly automatic evalua-
tion metric based onIBM 1 lexicon probabili-
ties which does not need any reference transla-
tions. Several variants ofIBM 1 scores are sys-
tematically explored in order to find the most
promising directions. Correlations between
the new metrics and human judgments are cal-
culated on the data of the third, fourth and fifth
shared tasks of the Statistical Machine Trans-
lation Workshop. Five different European lan-
guages are taken into account: English, Span-
ish, French, German and Czech. The results
show that theIBM 1 scores are competitive
with the classic evaluation metrics, the most
promising beingIBM 1 scores calculated on
morphemes andPOS-4grams.

1 Introduction

Currently used evaluation metrics such asBLEU (Pa-
pineni et al., 2002),METEOR (Banerjee and Lavie,
2005), etc. are based on the comparison between
human reference translations and the automatically
generated hypotheses in the target language to be
evaluated. While this scenario helps in the design
of machine translation systems, it has two major
drawbacks. The first one is the practical criticism
that using reference translations is inefficient and ex-
pensive: in real-life situations, the quality of ma-
chine translation must be evaluated without having
to pay humans for producing reference translations
first. The second criticism is methodological: in

using reference translation, the problem of evalu-
ating translation quality (e.g., completeness, order-
ing, domain fit, etc.) is transformed into a kind of
paraphrase evaluation in the target language, which
is a very difficult problem itself. In addition, the
set of selected references always represents only a
small subset of all good translations. To remedy
these drawbacks, we propose a truly automatic eval-
uation metric which is based on theIBM 1 lexicon
scores (Brown et al., 1993).

The inclusion ofIBM 1 scores in translation sys-
tems has shown experimentally to improve transla-
tion quality (Och et al., 2003). They also have been
used for confidence estimation for machine transla-
tion (Blatz et al., 2003). To the best of our knowl-
edge, these scores have not yet been used as an eval-
uation metric.

We carry out a systematic comparison between
several variants ofIBM 1 scores. The Spearman’s
rank correlation coefficients on the document (sys-
tem) level between theIBM 1 metrics and the hu-
man ranking are computed on the English, French,
Spanish, German and Czech texts generated by var-
ious translation systems in the framework of the
third (Callison-Burch et al., 2008), fourth (Callison-
Burch et al., 2009) and fifth (Callison-Burch et al.,
2010) shared translation tasks.

2 IBM 1 scores

The IBM 1 model is a bag-of-word translation model
which gives the sum of all possible alignment proba-
bilities between the words in the source sentence and
the words in the target sentence. Brown et al. (1993)
defined theIBM 1 probability score for a translation
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1

is the source language sentence of length
J andeI

1
is the target language sentence of lengthI.

As it is a conditional probability distribution, we
investigated both directions as evaluation metrics. In
order to avoid frequent confusions about what is the
source and what the target language, we defined our
scores in the following way:

• source-to-hypothesis (sh) IBM 1 score:

IBM 1sh =
1

(H + 1)S

S∏

j=1

H∑

i=0

p(sj|hi) (2)

• hypothesis-to-source (hs) IBM 1 score:

IBM 1hs =
1

(S + 1)H

H∏

i=1

S∑

j=0

p(hi|sj) (3)

wheresj are the words of the original source lan-
guage sentence,S is the length of this sentence,hi
are the words of the target language hypothesis, and
H is the length of this hypothesis.

In addition to the standardIBM 1 scores calculated
on words, we also investigated:

• MIBM 1 scores –IBM 1 scores of word mor-
phemes in each direction;

• PnIBM 1 scores –IBM 1 scores ofPOSn-grams
in each direction.

A parallel bilingual corpus for the desired lan-
guage pair and a tool for training theIBM 1 model
are required in order to obtainIBM 1 probabilities
p(fj|ei). For the POS n-gram scores, appropriate
POStaggers for each of the languages are necessary.
The POS tags cannot be only basic but must have
all details (e.g. verb tenses, cases, number, gender,
etc.). For the morpheme scores, a tool for splitting
words into morphemes is necessary.

3 Experiments onWMT 2008,WMT 2009
and WMT 2010 test data

3.1 Experimental set-up

The IBM 1 probabilities necessary for theIBM 1
scores are learnt using theWMT 2010 News
Commentary bilingual corpora consisting of the
Spanish-English, French-English, German-English
and Czech-English parallel texts. Spanish, French,
German and EnglishPOS tags were produced using
the TreeTagger1, and the Czech texts are tagged us-
ing the COMPOST tagger (Spoustová et al., 2009).
The morphemes for all languages are obtained us-
ing the Morfessor tool (Creutz and Lagus, 2005).
The tool is corpus-based and language-independent:
it takes a text as input and produces a segmenta-
tion of the word forms observed in the text. The
obtained results are not strictly linguistic, however
they often resemble a linguistic morpheme segmen-
tation. Once a morpheme segmentation has been
learnt from some text, it can be used for segment-
ing new texts. In our experiments, the splitting are
learnt from the training corpus used for theIBM 1
lexicon probabilities. The obtained segmentation is
then used for splitting the corresponding source texts
and hypotheses. Detailed corpus statistics are shown
in Table 1.

Using the obtainedIBM 1 probabilities of words,
morphemes andPOS n-grams, the scores de-
scribed in Section 2 are calculated for the
Spanish-English, French-English, German-English
and Czech-English translation outputs from each
translation direction. For each of theIBM 1 scores,
the system level Spearman correlation coefficientsρ

with the human ranking are calculated for each doc-
ument. In total, 32 correlation coefficients are ob-
tained for each score – four English outputs from
the WMT 2010 task, four from theWMT 2009 and
eight from theWMT 2008 task, together with six-
teen outputs in other four target languages. The ob-
tained correlation results were then summarised into
the following three values:

• mean
a correlation coefficient averaged over all trans-
lation outputs;

1http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
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Spanish English French English German English Czech English
sentences 97122 83967 100222 94693
running words 2661344 2338495 2395141 2042085 2475359 2398780 2061422 2249365
vocabulary:

words 69620 53527 56295 50082 107278 54270 125614 52081
morphemes 14178 13449 12004 12485 22211 13499 18789 12961

POStags 69 44 33 44 54 44 611 44
POS-2grams 2459 1443 826 1443 1611 1454 27835 1457
POS-3grams 27350 20474 10409 19838 19928 20769 209481 20522
POS-4grams 135166 121182 62177 114555 114314 123550 637337 120646

Table 1: Statistics of the corpora for trainingIBM 1 lexicon models.

• rank>
percentage of documents where the particular
score has better correlation than the otherIBM 1
scores;

• rank≥
percentage of documents where the particular
score has better or equal correlation than the
otherIBM 1 scores.

3.2 Comparison ofIBM 1 scores

The first step towards deciding whichIBM 1 score
to submit to theWMT 2011 evaluation task was a
comparison of the average correlations i.e.mean
values. These values for each of theIBM 1 scores
are presented in Table 2. The left column shows
average correlations of the source-hypothesis (sh)
scores, and the right one of the hypothesis-source
(hs) scores.

mean IBM 1sh IBM 1hs

words 0.066 0.308
morphemes 0.227 0.445
POStags 0.006 0.337
POS-2grams 0.058 0.337
POS-3grams 0.172 0.376
POS-4grams 0.196 0.442

Table 2: Average correlations of source-hypothesis (left
column) and hypothesis-source (right column)IBM 1
scores.

It can be seen that the morpheme,POS-3gram and
POS-4gram scores have the best correlations in both
directions. Apart from that, it can be observed that
all the hs scores have better correlations thansh

scores. Therefore, all the further experiments will
deal only with thehs scores, and the subscripths is
omitted.

In the next step, all thehs scores are sorted ac-
cording to each of the three values described in
Section 3.1, i.e. average correlationmean, rank>
and rank≥, and the results are shown in Table 3.
The most promising scores according to each of
the three values are morpheme scoreMIBM 1, POS-
3gram scoreP3IBM 1 andPOS-4gram scoreP4IBM 1.

3.2.1 CombinedIBM 1 scores

The last experiment was to combine the most
promisingIBM 1 scores in order to see if the correla-
tion with human rankings can be further improved.
In general, a combinedIBM 1 score is defined as
arithmetic mean of various individualIBM 1hs scores
described in Section 2:

COMBIBM1 =
K∑

k=1

wk · IBM 1k (4)

The following combinations were investigated:

• P1234IBM 1
combination of allPOSn-gram scores;

• MP1234IBM 1
combination of allPOSn-gram scores and the
morpheme score;

• MP34IBM 1
combination of the most promising individual
scores, i.e.POS-3gram, POS-4gram and mor-
pheme scores;
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mean rank> rank≥
0.445 morphemes 60.6 POS-4grams 71.3 POS-4grams
0.442 POS-4grams 54.4 morphemes 61.3 POS-3grams
0.376 POS-3grams 50.6 POS-3grams 56.3 morphemes
0.337 POS-2grams 39.4 POStags 48.1 POStags
0.337 POStags 36.3 words 43.7 POS-2grams
0.308 words 35.6 POS-2grams 42.5 words

Table 3: IBM 1hs scores sorted by average correlation (column 1),rank> value (column 2) andrank≥ value (column
3). The most promising scores are those calculated on morphemes (MIBM 1), POS-3grams (P3IBM 1) andPOS-4grams
(P4IBM 1).

• MP4IBM 1
combination of the two most promising indi-
vidual scores, i.e.POS-4gram score and mor-
pheme score.

For each of the scores, two variants were investi-
gated, with and without (i.e. with uniform) weights
wk. The weigths were choosen proportionally to
the average correlation of each individual score. Ta-
ble 4 contains average correlations for all combined
scores, together with the weight values.

combined score mean
P1234IBM 1 0.403

+weights (0.15, 0.15, 0.3, 0.4) 0.414
MP1234IBM 1 0.466
+weights (0.2, 0.05, 0.05, 0.2, 0.5)0.486
MP34IBM 1 0.480

+weights (0.25, 0.25, 0.5) 0.498
MP4IBM 1 0.494

+weights (0.4, 0.6) 0.496

Table 4: Average correlations of the investigatedIBM 1hs

combinations. The weight values are choosen accord-
ing to the average correlation of the particular individual
IBM 1 score.

ThePOSn-gram combination alone does not yield
any improvement over the best individual scores.
Introduction of the morpheme score increases the
average correlation, especially when only the best
n-gram scores are chosen. Apart from that, intro-
ducing weights improves the average correlation for
each of the combined scores.

The final step in our experiments consists of rank-
ing the weighted combined scores. Therank> and
rank≥ values for these scores are presented in Ta-

ble 5. According to therank> values, theMP4IBM 1
score clearly outperforms all other scores. This
score also has the highestmean value together with
the MP34IBM 1 score. As forrank≥ values, all
morpheme-POS scores have similar values signifi-
cantly outperforming theP1234IBM 1 score.

combined score rank> rank≥
P1234IBM 1 25.0 36.4
MP1234IBM 1 44.8 68.7
MP34IBM 1 39.6 64.6
MP4IBM 1 55.2 65.7

Table 5:rank> (column 1) andrank≥ (column 2) values
of the weightedIBM 1hs combinations.

Following all these observations, we decided to
submit theMP4IBM 1 score to theWMT 2011 evalu-
ation task.

4 Conclusions and outlook

The results presented in this article show that the
IBM 1 scores have the potential to be used as replace-
ment of current evaluation metrics based on refer-
ence translations. Especially the scores abstracting
away from word surface particularities (i.e. vocabu-
lary, domain) based on morphemes,POS-3grams and
4grams show a high average correlation of about 0.5
(the average correlation of theBLEU score on the
same data is 0.566).

An important point for future optimisation is to
investigate effects of the selection of training data
for the IBM 1 models (and its similarity to the train-
ing data of the involved statistical translation sys-
tems). Furthermore, investigation of how to assign
the weights for combining the corresponding indi-
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vidual scores, as well as of the possible impact of
different morpheme splittings should be carried out.
Other direction for future work is combination with
other features (i.e.POSlanguage models).

This method is currently being tested and fur-
ther developed in the framework of theTARAXÜ
project2. In this project, three industry and one re-
search partners develop a hybrid machine transla-
tion architecture that satisfies current industry needs,
which includes a number of large-scale evalua-
tion rounds involving various languages: English,
French, German, Czech, Spanish, Russian, Chinese
and Japanese. By the time of writing this article, the
first human evaluation round inTARAXÜ on a pilot
set of about 7000 sentences is running. The metrics
proposed in this paper will be tested on theTARAXÜ
data as soon as they are available. First results will
be reported in the presentation of this paper.
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Abstract

We propose the use of morphemes for auto-
matic evaluation of machine translation out-
put, and systematically investigate a set of F
score andBLEU score based metrics calculated
on words, morphemes andPOStags along with
all corresponding combinations. Correlations
between the new metrics and human judg-
ments are calculated on the data of the third,
fourth and fifth shared tasks of the Statisti-
cal Machine Translation Workshop. Machine
translation outputs in five different European
languages are used: English, Spanish, French,
German and Czech. The results show that the
F scores which take into account morphemes
andPOStags are the most promising metrics.

1 Introduction

Recent investigations have shown that then-gram
based evaluation metrics calculated on Part-of-
Speech (POS) sequences correlate very well with
human judgments (Callison-Burch et al., 2008;
Callison-Burch et al., 2009; Popović and Ney, 2009)
clearly outperforming the widely used metricsBLEU

andTER. TheBLEU score measured on morphemes
is shown to be useful for evaluation of morpholog-
ically rich languages (Luong et al., 2010). We pro-
pose the use of morphemes for a set ofn-gram based
automatic evaluation metrics and investigate the cor-
relation of the novel metrics with human judgments.
We carry out a systematic comparison between the
F and BLEU based metrics calculated on various
combinations of words, morphemes andPOS tags.
The focus of this work is not a comparison of the

morpheme andPOSbased metrics with the standard
evaluation metrics1 as in (Popović and Ney, 2009),
but rather a comparison within the proposed set of
metrics in order to decide which score(s) should be
submitted to theWMT 2011 evaluation task. There
are fifteen evaluation metrics in total, which can be
divided in three groups: the metrics calculated on
single units, i.e. words, morphemes orPOS tags
alone, the metrics calculated on pairs, i.e. words
andPOStags, words and morphemes as well as mor-
phemes andPOStags, and the metrics which take ev-
erything into account – lexical, morphological and
syntactic information, i.e. words, morphemes and
POStags.

Spearman’s rank correlation coefficients on the
document (system) level between all the metrics
and the human ranking are computed on the En-
glish, French, Spanish, German and Czech texts
generated by various translation systems in the
framework of the third (Callison-Burch et al.,
2008), fourth (Callison-Burch et al., 2009) and
fifth (Callison-Burch et al., 2010) shared translation
tasks.

2 Evaluation metrics

We carried out a systematic comparison between the
following metrics:

• single unit (word/morpheme/POS) metrics:

– WORDF
Standard F score: takes into account all
word n-grams which have a counterpart

1Apart from the standardBLEU score which is tightly re-
lated.
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both in the corresponding reference and in
the hypothesis.

– MORPHF
Morpheme F score: takes into account all
morphemen-grams which have a counter-
part both in the corresponding reference
and in the hypothesis.

– POSF
POS F score: takes into account allPOS

n-grams which have a counterpart both in
the corresponding reference and in the hy-
pothesis.

– BLEU

The standardBLEU score (Papineni et al.,
2002).

– POSBLEU

The standardBLEU score calculated on
POStags.

– MORPHBLEU

The standardBLEU score calculated on
morphemes.

• pairwise metrics:

– WPF
F score of word andPOSn-grams.

– WMF
F score of word and morphemen-grams.

– MPF
F score of morpheme andPOSn-grams.

– WPBLEU

Arithmetic mean ofBLEU and POSBLEU

scores.

– WMBLEU

Arithmetic mean of BLEU and MOR-
PHBLEU scores.

– MPBLEU

Arithmetic mean of MORPHBLEU and
POSBLEU scores.

• metrics taking everything into account:

– WMPF
F score on word, morpheme andPOSn-
grams.

– WMPBLEU

Arithmetic mean ofBLEU, MORPHBLEU

andPOSBLEU scores.

– WMPFBLEU

Arithmetic mean of all F andBLEU scores.

The prerequisite forPOS based metrics is avail-
ability of an appropriatePOS tagger for the target
language. It should be noted that thePOS tags can-
not be only basic but must have all details (e.g. verb
tenses, cases, number, gender, etc.). For the mor-
pheme based metrics, a tool for splitting words into
morphemes is necessary.

All the F scores and theBLEU scores are based on
four-grams (i.e. the value of maximaln is 4). Pre-
liminary experiments on the morpheme based mea-
sures showed that there is no improvement by us-
ing six-grams, seven-grams or eight-grams. As for
the n-gram averaging,BLEU scores use geometric
mean. However, it is also argued not to be optimal
because the score becomes equal to zero even if only
one of then-gram counts is equal to zero. In ad-
dition, previous experiments on the syntax-oriented
n-gram metrics (Popović and Ney, 2009) showed
that there is no significant difference between arith-
metic and geometric mean in the terms of correlation
coefficients. Therefore, arithmetic averaging with-
out weights is used for all F-scores. For theWMPF
score, an additional experiment with weights is car-
ried out as well.

3 Experiments onWMT 2008,WMT 2009
and WMT 2010 test data

Experimental set-up

The evaluation metrics were compared with human
rankings by means of Spearman correlation coeffi-
cientsρ. Spearman’s rank correlation coefficient is
equivalent to Pearson correlation on ranks, and its
advantage is that it makes fewer assumptions about
the data. The possible values ofρ range between 1
(if all systems are ranked in the same order) and -1
(if all systems are ranked in the reverse order). Thus
the higher the value ofρ for an automatic metric, the
more similar is to the human metric.

The scores were calculated for outputs of transla-
tions from Spanish, French, German and Czech into
English and vice versa. Spanish, French, German
and EnglishPOStags were produced using the Tree-
Tagger2, and the Czech texts are tagged using the

2http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
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COMPOST tagger (Spoustová et al., 2009). In this
way, all references and hypotheses were provided
with detailedPOStags.

The words of all outputs were split into mor-
phemes using the Morfessor tool (Creutz and La-
gus, 2005). The tool is corpus-based and language-
independent: it takes a text as input and produces
a segmentation of the word forms observed in the
text. The obtained results are not strictly linguistic,
however they often resemble a linguistic morpheme
segmentation. Once a morpheme segmentation has
been learnt from some text, it can be used for seg-
menting new texts. In our experiments, for each doc-
ument, first a corresponding reference translation
has been split, and then this segmentation is used for
splitting all translation hypotheses. In this way, pos-
sible discrepancies between reference and hypothe-
sis segmentation of the same word are avoided. Ef-
fects of the training on the large(r) monolingual cor-
pora have not been investigated yet.

In Table 1, an English reference sentence can be
seen along with its morpheme andPOSequivalents.

words Another leading role in the film
is played by Matt Damon .

morphemes An other lead ing role in the film
is play ed by Ma tt Da mon .

POStags DT VBG NN IN DT NN
VBZ VBN IN NP NP SENT

Table 1: Example of an English sentence with its corre-
sponding morpheme andPOSsequences.

Comparison of metrics

For each evaluation metric described in Section 2,
the system level Spearman correlation coefficientsρ

were calculated for each document. In total, 33 cor-
relation coefficients were obtained for each metric –
four English outputs from theWMT 2010 task, five
from theWMT 2009 and eight from theWMT 2008
task, together with sixteen outputs in other four tar-
get languages. The obtained correlation results were
then summarised into the following three values:

• mean
a correlation coefficient averaged over all trans-
lation outputs;

• rank>
percentage of documents where the particular
metric has better correlation than the other met-
rics investigated in this work;

• rank≥
percentage of documents where the particular
metric has better or equal correlation than the
other metrics investigated in this work.

These values for each metric are presented in Ta-
ble 2.

metric mean rank> rank≥
WORDF 0.550 24.2 42.6
MORPHF 0.608 40.0 58.0
POSF 0.673 63.4 78.0
BLEU 0.566 20.6 38.6
MORPHBLEU 0.567 29.9 44.6
POSBLEU 0.674 54.7 66.9

WPF 0.627 44.0 66.9
WMF 0.587 37.0 53.9
MPF 0.669 51.9 77.4
WPBLEU 0.629 41.0 57.4
WMBLEU 0.557 23.6 41.0
MPBLEU 0.634 44.6 66.6

WMPF 0.645 46.3 71.1
WMPBLEU 0.610 32.7 54.7
WMPFBLEU 0.628 35.8 61.6
WMPF’ 0.668 51.9 78.8

Table 2: Average correlationmean (column 1),rank>
(column 2) andrank≥ (column 3) for each evaluation
metric. Bold represents the best value in the particu-
lar metric group. The most promising metrics are the
F scores containingPOS and morpheme information,
namelyWMPF’, MPF andPOSF, as well as thePOSBLEU

score. The standardBLEU score has very low values.

It can be observed that the morpheme based met-
rics outperform the word based metrics, however not
the POSbased metrics. As for pairwise metrics, the
MPF score seems to be very promising. Adding the
actual original words unfortunately deteriorates the
system level correlations, nevertheless omitting the
words can possibly lead to the poor sentence level
correlations. Therefore an additional experiment is
carried out with the most promising metric contain-
ing words, namely theWMPF score: a weighted
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WMPF’ score is introduced, with word weight of
0.2, morpheme weight of 0.3 andPOS weight of
0.5. WMPF’ clearly outperforms the simpleWMPF
score without weights, and it is comparable to the
morpheme-POS F scoreMPF as well asPOS-based
metricsPOSF andPOSBLEU. Apart from that, it can
be observed that, in general, the F scores are bet-
ter than theBLEU scores. The combination of all F
and allBLEU scores (WMPFBLEU) is better than the
WMPBLEU score, but does not yield any improve-
ments over theWMPF score.

The most promising metrics are the F scores con-
taining POS and morpheme information, namely
POSF, MPF and WMPF’ together with theWMPF,
as well as thePOSBLEU score. The standardBLEU

score has the third lowest average correlation and the
lowest rank values.

4 Conclusions

The results presented in this article show that the use
of morphemes improvesn-gram based automatic
evaluation metrics, particularly in combination with
syntactic information in the form of detailedPOS

tags. Especially promising are the weightedWMPF
and theMPF scores, which have been submitted to
the WMT 2011 evaluation task. Weights for these
two metrics should be further investigated in fu-
ture work, as well as the possible impact of differ-
ent morpheme splittings (such as training on larger
texts).
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Abstract

We describe our submissions to the WMT11
shared MT evaluation task: MTeRater and
MTeRater-Plus. Both are machine-learned
metrics that use features from e-rater R©, an au-
tomated essay scoring engine designed to as-
sess writing proficiency. Despite using only
features from e-rater and without comparing
to translations, MTeRater achieves a sentence-
level correlation with human rankings equiva-
lent to BLEU. Since MTeRater only assesses
fluency, we build a meta-metric, MTeRater-
Plus, that incorporates adequacy by combin-
ing MTeRater with other MT evaluation met-
rics and heuristics. This meta-metric has a
higher correlation with human rankings than
either MTeRater or individual MT metrics
alone. However, we also find that e-rater fea-
tures may not have significant impact on cor-
relation in every case.

1 Introduction

The evaluation of machine translation (MT) systems
has received significant interest over the last decade
primarily because of the concurrent rising interest in
statistical machine translation. The majority of re-
search on evaluating translation quality has focused
on metrics that compare translation hypotheses to a
set of human-authored reference translations. How-
ever, there has also been some work on methods that
are not dependent on human-authored translations.

One subset of such methods is task-based in that
the methods determine the quality of a translation in
terms of how well it serves the need of an extrin-
sic task. These tasks can either be downstream NLP

tasks such as information extraction (Parton et al.,
2009) and information retrieval (Fujii et al., 2009) or
human tasks such as answering questions on a read-
ing comprehension test (Jones et al., 2007).

Besides extrinsic evaluation, there is another set
of methods that attempt to “learn” what makes a
good translation and then predict the quality of new
translations without comparing to reference trans-
lations. Corston-Oliver et al. (2001) proposed the
idea of building a decision tree classifier to sim-
ply distinguish between machine and human transla-
tions using language model (LM) and syntactic fea-
tures. Kulesza and Shieber (2004) attempt the same
task using an support vector machine (SVM) classi-
fier and features derived from reference-based MT
metrics such as WER, PER, BLEU and NIST. They
also claim that the confidence score for the classi-
fier being used, if available, may be taken as an es-
timate of translation quality. Quirk (2004) took a
different approach and examined whether it is pos-
sible to explicitly compute a confidence measure for
each translated sentence by using features derived
from both the source and target language sides. Al-
brecht and Hwa (2007a) expanded on this idea and
conducted a larger scale study to show the viabil-
ity of regression as a sentence-level metric of MT
quality. They used features derived from several
other reference-driven MT metrics. In other work
(Albrecht and Hwa, 2007b), they showed that one
could substitute translations from other MT systems
for human-authored reference translations and de-
rive the regression features from them.

Gamon et al. (2005) build a classifier to distin-
guish machine-generated translations from human
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ones using fluency-based features and show that by
combining the scores of this classifier with LM per-
plexities, they obtain an MT metric that has good
correlation with human judgments but not better
than the baseline BLEU metric.

The fundamental questions that inspired our pro-
posed metrics are as follows:

• Can an operational English-proficiency mea-
surement system, built with absolutely no fore-
thought of using it for evaluation of translation
quality, actually be used for this purpose?

• Obviously, such a system can only assess the
fluency of a translation hypothesis and not the
adequacy. Can the features derived from this
system then be combined with metrics such
as BLEU, METEOR or TERp—measures of
adequacy—to yield a metric that performs bet-
ter?

The first metric we propose (MTeRater) is an
SVM ranking model that uses features derived from
the ETS e-rater R© system to assess fluency of trans-
lation hypotheses. Our second metric (MTeRater-
Plus) is a meta-metric that combines MTeRater fea-
tures with metrics such as BLEU, METEOR and
TERp as well as features inspired by other MT met-
rics.

Although our work is intimately related to some
of the work cited above in that it is a trained regres-
sion model predicting translation quality at the sen-
tence level, there are two important differences:

1. We do not use any human translations – ref-
erence or otherwise – for MTeRater, not even
when training the metric. The classifier is
trained using human judgments of translation
quality provided as part of the shared evalua-
tion task.

2. Most of the previous approaches use feature
sets that are designed to capture both transla-
tion adequacy and fluency. However, MTeRater
uses only fluency-based features.

The next section provides some background on
the e-rater system. Section 3 presents a discussion
of the differences between MT errors and learner er-
rors. Section 4 describes how we use e-rater to build

our metrics. Section 5 outlines our experiments and
Section 5 discusses the results of these experiments.
Finally, we conclude in Section 6.

2 E-rater

E-rater is a proprietary automated essay scoring
system developed by Educational Testing Service
(ETS) to assess writing quality.1 The system has
been used operationally for over 10 years in high-
stakes exams such as the GRE and TOEFL given
its speed, reliability and high agreement with human
raters.

E-rater combines 8 main features using linear re-
gression to produce a numerical score for an es-
say. These features are grammar, usage, mechan-
ics, style, organization, development, lexical com-
plexity and vocabulary usage. The grammar feature
covers errors such as sentence fragments, verb form
errors and pronoun errors (Chodorow and Leacock,
2000). The usage feature detects errors related to
articles (Han et al., 2006), prepositions (Tetreault
and Chodorow, 2008) and collocations (Futagi et al.,
2008). The mechanics feature checks for spelling,
punctuation and capitalization errors. The style fea-
ture checks for passive constructions and word rep-
etition, among others. Organization and develop-
ment tabulate the presence or absence of discourse
elements and the length of each element. Finally,
the lexical complexity feature details how complex
the writer’s words are based on frequency indices
and writing scales, and the vocabulary feature eval-
uates how appropriate the words are for the given
topic). Since many of the features are essay-specific,
there is certainly some mismatch between what e-
rater was intended for and the genres we are using it
for in this experiment (translated news articles).

In our work, we separate e-rater features into two
classes: sentence level and document level. The
sentence level features consist of all errors marked
by the various features for each sentence alone. In
contrast, the document level features are an aggre-
gation of the sentence level features for the entire
document.

1A detailed description of e-rater is outside the scope of this
paper and the reader is referred to (Attali and Burstein, 2006).
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3 Learner Errors vs. MT Errors

Since e-rater is trained on human-written text and
designed to look for errors in usage that are com-
mon to humans, one research question is whether it
is even useful for assessing the fluency of machine
translated text. E-rater is unaware of the transla-
tion context, so it does not look for common MT
errors, such as untranslated words, mistranslations
and deleted content words. However, these may get
flagged as other types of learner errors: spelling mis-
takes, confused words, and sentence fragments.

Machine translations do contain learner-like mis-
takes in verb conjugations and word order. In an
error analysis of SMT output, Vilar et al. (2006) re-
port that 9.9% - 11.7% of errors made by a Spanish-
English SMT system were incorrect word forms, in-
cluding incorrect tense, person or number. These
error types are also account for roughly 14% of er-
rors made by ESL (English as a Second Language)
writers in the Cambridge Learner Corpus (Leacock
et al., 2010).

On the other hand, some learner mistakes are un-
likely to be made by MT systems. The Spanish-
English SMT system made almost no mistakes in
idioms (Vilar et al., 2006). Idiomatic expressions
are strongly preferred by language models, but may
be difficult for learners to memorize (“kicked a
bucket”). Preposition usage is a common problem
in non-native English text, accounting for 29% of
errors made by intermediate to advanced ESL stu-
dents (Bitchener et al., 2005) but language models
are less likely to prefer local preposition errors e.g.,
“he went to outside”. On the other hand, a language
model will likely not prevent errors in prepositions
(or in other error types) that rely on long-distance
dependencies.

4 E-rating Machine Translation

The MTeRater metric uses only features from e-rater
to score translations. The features are produced di-
rectly from the MT output, with no comparison to
reference translations, unlike most MT evaluation
metrics (such as BLEU, TERp and METEOR).

An obvious deficit of MTeRater is a measure of
adequacy, or how much meaning in the source sen-
tence is expressed in the translation. E-rater was
not developed for assessing translations, and the

MTeRater metric never compares the translation to
the source sentence. To remedy this, we propose
the MTeRater-Plus meta-metric that uses e-rater fea-
tures plus all of the hybrid features described below.
Both metrics were trained on the same data using
the same machine learning model, and differ only in
their feature sets.

4.1 E-rater Features

Each sentence is associated with an e-rater sentence-
level vector and a document-level vector as previ-
ously described and each column in these vectors
was used a feature.

4.2 Features for Hybrid Models

We used existing automatic MT metrics as baselines
in our evaluation, and also as features in our hybrid
metric. The metrics we used were:

1. BLEU (Papineni et al., 2002): Case-insensitive
and case-sensitive BLEU scores were pro-
duced using mteval-v13a.pl, which calculates
smoothed sentence-level scores.

2. TERp (Snover et al., 2009): Translation Edit
Rate plus (TERp) scores were produced using
terp v1. The scores were case-insensitive and
edit costs from Snover et al. (2009) were used
to produce scores tuned for fluency and ade-
quacy.

3. METEOR (Lavie and Denkowski, 2009): Me-
teor scores were produced using Meteor-next
v1.2. All types of matches were allowed (ex-
act, stem, synonym and paraphrase) and scores
tuned specifically to rank, HTER and adequacy
were produced using the “-t” flag in the tool.

We also implemented features closely related to
or inspired by other MT metrics. The set of these
auxiliary features is referred to as “Aux”.

1. Character-level statistics: Based on the suc-
cess of the i-letter-BLEU and i-letter-recall
metrics from WMT10 (Callison-Burch et al.,
2010), we added the harmonic mean of preci-
sion (or recall) for character n-grams (from 1
to 10) as features.
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2. Raw n-gram matches: We calculated the pre-
cision and precision for word n-grams (up to
n=6) and added each as a separate feature (for
a total of 12). Although these statistics are also
calculated as part of the MT metrics above,
breaking them into separate features gives the
model more information.

3. Length ratios: The ratio between the lengths
of the MT output and the reference translation
was calculated on a character level and a word
level. These ratios were also calculated be-
tween the MT output and the source sentence.

4. OOV heuristic: The percentage of tokens in
the MT that match the source sentence. This
is a low-precision heuristic for counting out of
vocabulary (OOV) words, since it also counts
named entities and words that happen to be the
same in different languages.

4.3 Ranking Model

Following (Duh, 2008), we represent sentence-level
MT evaluation as a ranking problem. For a partic-
ular source sentence, there are N machine transla-
tions and one reference translation. A feature vector
is extracted from each {source, reference, MT} tu-
ple. The training data consists of sets of translations
that have been annotated with relative ranks. Dur-
ing training, all ranked sets are converted to sets of
feature vectors, where the label for each feature vec-
tor is the rank. The ranking model is a linear SVM
that predicts a relative score for each feature vector,
and is implemented by SVM-rank (Joachims, 2006).
When the trained classifier is applied to a set of N
translations for a new source sentence, the transla-
tions can then be ranked by sorting the SVM scores.

5 Experiments

All experiments were run using data from three
years of previous WMT shared tasks (WMT08,
WMT09 and WMT10). In these evaluations, anno-
tators were asked to rank 3-5 translation hypothe-
ses (with ties allowed), given a source sentence and
a reference translation, although they were only re-
quired to be fluent in the target language.

Since e-rater was developed to rate English sen-
tences only, we only evaluated tasks with English

as the target language. All years included source
languages French, Spanish, German and Czech.
WMT08 and WMT09 also included Hungarian and
multisource English. The number of MT systems
was different for each language pair and year, from
as few as 2 systems (WMT08 Hungarian-English) to
as many as 25 systems (WMT10 German-English).
All years had a newswire testset, which was divided
into stories. WMT08 had testsets in two additional
genres, which were not split into documents.

All translations were pre-processed and run
through e-rater. Each document was treated as an es-
say, although news articles are generally longer than
essays. Testsets that were not already divided into
documents were split into pseudo-documents of 20
contiguous sentences or less. Missing end of sen-
tence markers were added so that e-rater would not
merge neighboring sentences.

6 Results

For assessing our metrics prior to WMT11, we
trained on WMT08 and WMT09 and tested on
WMT10. The metrics we submitted to WMT11
were trained on all three years. One criticism of
machine-learned evaluation metrics is that they may
be too closely tuned to a few MT systems, and thus
not generalize well as MT systems evolve or when
judging new sets of systems. In this experiment,
WMT08 has 59 MT systems, WMT09 has 70 dif-
ferent MT systems, and WMT10 has 75 different
systems. Different systems participate each year,
and those that participate for multiple years often
improve from year to year. By training and test-
ing across years rather than within years, we hope
to avoid overfitting.

To evaluate, we measure correlation between each
metric and the human annotated rankings according
to (Callison-Burch et al., 2010): Kendall’s tau is cal-
culated for each language pair and the results are
averaged across language pairs. This is preferable
to averaging across all judgments because the num-
ber of systems and the number of judgments vary
based on the language pair (e.g., there were 7,911
ranked pairs for 14 Spanish-English systems, and
3,575 ranked pairs for 12 Czech-English systems).

It is difficult to calculate the statistical signifi-
cance of Kendall’s tau on these data. Unlike the
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Source language cz de es fr avg
Individual Metrics & Baselines
MTeRater .32 .31 .19 .23 .26
bleu-case .26 .27 .28 .22 .26
meteor-rank .33 .36 .33 .27 .32
TERp-fluency .30 .36 .28 .28 .30
Meta-Metric & Baseline
BMT+Aux+MTeRater .38 .42 .37 .38 .39
BMT .35 .40 .35 .34 .36
Additional Meta-Metrics
BMT+LM .36 .41 .36 .36 .37
BMT+MTeRater .38 .42 .36 .38 .38
BMT+Aux .38 .41 .38 .37 .39
BMT+Aux+LM .39 .42 .38 .36 .39

Table 1: Kendall’s tau correlation with human rankings.
BMT includes bleu, meteor and TERp; Aux includes aux-
iliary features. BMT+Aux+MTeRater is MTeRater-Plus.

Metrics MATR annotations (Przybocki et al., 2009),
(Peterson and Przybocki, 2010), the WMT judg-
ments do not give a full ranking over all systems for
all judged sentences. Furthermore, the 95% confi-
dence intervals of Kendall’s tau are known to be very
large (Carterette, 2009) – in Metrics MATR 2010,
the top 7 metrics in the paired-preference single-
reference into-English track were within the same
confidence interval.

To compare metrics, we use McNemar’s test
of paired proportions (Siegel and Castellan, 1988)
which is more powerful than tests of independent
proportions, such as the chi-square test for indepen-
dent samples.2 As in Kendall’s tau, each metric’s
relative ranking of a translation pair is compared to
that of a human. Two metrics, A and B, are com-
pared by counting the number of times both A and B
agree with the human ranking, the number of times
A disagrees but B agrees, the number of times A
agrees but B disagrees, and the number of times both
A and B disagree. These counts can be arranged in
a 2 x 2 contingency table as shown below.

A agrees A disagrees
B agrees a b
B disagrees c d

McNemar’s test determines if the cases of mis-
match in agreement between the metrics (cells b and
c) are symmetric or if there is a significant difference

2See http://faculty.vassar.edu/lowry/propcorr.html for an ex-
cellent description.

in favor of one of the metrics showing more agree-
ment with the human than the other. The two-tailed
probability for McNemar’s test can be calculated us-
ing the binomial distribution over cells b and c.

6.1 Reference-Free Evaluation with MTeRater
The first group of rows in Table 1 shows the
Kendall’s tau correlation with human rankings of
MTeRater and the best-performing version of the
three standard MT metrics. Even though MTeR-
ater is blind to the MT context and does not use the
source or references at all, MTeRater’s correlation
with human judgments is the same as case-sensitive
bleu (bleu-case). This indicates that a metric trained
to assess English proficiency in non-native speakers
is applicable to machine translated text.

6.2 Meta-Metrics
The second group in Table 1 shows the cor-
relations of our second metric, MTeRater-Plus
(BMT+Aux+MTeRater), and a baseline meta-metric
(BMT) that combined BLEU, METEOR and TERp.
MTeRater-Plus performs significantly better than
BMT, according to McNemar’s test.

We also wanted to determine whether the e-
rater features have any significant impact when used
as part of meta-metrics. To this end, we first
created two variants of MTeRater-Plus: one that
removed the MTeRater features (BMT+Aux) and
another that replaced the MTeRater features with
the LM likelihood and perplexity of the sentence
(BMT+Aux+LM).3 Both models perform as well
as MTeRater-Plus, i.e., adding additional fluency
features (either LM scores or MTeRater) to the
BMT+Aux meta-metric has no significant impact.

To determine whether this was generally the case,
we also created two variants of the BMT baseline
meta-metric that added fluency features to it: one in
the form of LM scores (BMT+LM) and another in
the form of the MTeRater score (BMT+MTeRater).
Based on McNemar’s test, both models are sig-
nificantly better than BMT, indicating that these
reference-free fluency features indeed capture an as-
pect of translation quality that is absent from the
standard MT metrics. However, there is no signfi-
cant difference between the two variants of BMT.

3The LM was trained on English Gigaword 3.0, and was
provided by WMT10 organizers.
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1) Ref: Gordon Brown has discovered yet another hole to fall into; his way out of it remains the same
MT+: Gordon Brown discovered a new hole in which to sink; even if it resigned, the position would not change.
Errors: None marked
MT-: Gordon Brown has discovered a new hole in which could, Even if it demissionnait, the situation does not change not.
Errors: Double negative, spelling, preposition
2) Ref: Jancura announced this in the Twenty Minutes programme on Radiozurnal.
MT+: Jancura said in twenty minutes Radiozurnal. Errors: Spelling
MT-: He said that in twenty minutes. Errors: none marked

Table 2: Translation pairs ranked correctly by MTeRater but not bleu-case (1) and vice versa (2).

6.3 Discussion
Table 2 shows two pairs of ranked translations (MT+
is better than MT-), along with some of the errors de-
tected by e-rater. In pair 1, the lower-ranked trans-
lation has major problems in fluency as detected by
e-rater, but due to n-gram overlap with the reference,
bleu-case ranks it higher. In pair 2, MT- is more
fluent but missing two named entities and bleu-case
correctly ranks it lower.

One disadvantage of machine-learned metrics is
that it is not always clear which features caused one
translation to be ranked higher than another. We
did a feature ablation study for MTeRater which
showed that document-level collocation features sig-
nificantly improve the metric, as do features for
sentence-level preposition errors. Discourse-level
features were harmful to MT evaluation. This is un-
surprising, since MT sentences are judged one at a
time, so any discourse context is lost.

Overall, a metric with only document-level fea-
tures does better than one with only sentence-level
features due to data sparsity – many sentences have
no errors, and we conjecture that the document-level
features are a proxy for the quality of the MT sys-
tem. Combining both document-level and sentence-
level e-rater features does significantly better than
either alone. Incorporating document-level features
into sentence-level evaluation had one unforeseen
effect: two identical translations can get different
scores depending on how the rest of the document
is translated. While using features that indicate the
relative quality of MT systems can improve overall
correlation, it fails when the sentence-level signal is
not strong enough to overcome the prior belief.

7 Conclusion

We described our submissions to the WMT11 shared
evaluation task: MTeRater and MTeRater-Plus.

MTeRater is a fluency-based metric that uses fea-
tures from ETS’s operational English-proficiency
measurement system (e-rater) to predict the qual-
ity of any translated sentence. MTeRater-Plus is a
meta-metric that combines MTeRater’s fluency-only
features with standard MT evaluation metrics and
heuristics. Both metrics are machine-learned mod-
els trained to rank new translations based on existing
human judgments of translation.

Our experiments showed that MTeRater, by it-
self, achieves a sentence-level correlation as high as
BLEU, despite not using reference translations. In
addition, the meta-metric MTeRater-Plus achieves
higher correlations than MTeRater, BLEU, ME-
TEOR, TERp as well as a baseline meta-metric com-
bining BLEU, METEOR and TERp (BMT). How-
ever, further analysis showed that the MTeRater
component of MTeRater-Plus does not contribute
significantly to this improved correlation. How-
ever, when added to the BMT baseline meta-metric,
MTeRater does make a significant contribution.

Our results, despite being a mixed bag, clearly
show that a system trained to assess English-
language proficiency can be useful in providing an
indication of translation fluency even outside of the
specific WMT11 evaluation task. We hope that this
work will spur further cross-pollination between the
fields of MT evaluation and grammatical error de-
tection. For example, we would like to explore using
MTeRater for confidence estimation in cases where
reference translations are unavailable, such as task-
oriented MT.
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Abstract

We describe TINE, a new automatic evalua-
tion metric for Machine Translation that aims
at assessing segment-level adequacy. Lexical
similarity and shallow-semantics are used as
indicators of adequacy between machine and
reference translations. The metric is based on
the combination of a lexical matching com-
ponent and an adequacy component. Lexi-
cal matching is performed comparing bags-
of-words without any linguistic annotation.
The adequacy component consists in: i) us-
ing ontologies to align predicates (verbs), ii)
using semantic roles to align predicate argu-
ments (core arguments and modifiers), and
iii) matching predicate arguments using dis-
tributional semantics. TINE’s performance
is comparable to that of previous metrics
at segment level for several language pairs,
with average Kendall’s tau correlation from
0.26 to 0.29. We show that the addition of
the shallow-semantic component improves the
performance of simple lexical matching strate-
gies and metrics such as BLEU.

1 Introduction

The automatic evaluation of Machine Translation
(MT) is a long-standing problem. A number of met-
rics have been proposed in the last two decades,
mostly measuring some form of matching between
the MT output (hypothesis) and one or more human
(reference) translations. However, most of these
metrics focus on fluency aspects, as opposed to ad-
equacy. Therefore, measuring whether the meaning
of the hypothesis and reference translation are the
same or similar is still an understudied problem.

The most commonly used metrics, BLEU (Pap-
ineni et al., 2002) and alike, perform simple exact
matching of n-grams between hypothesis and refer-
ence translations. Such a simple matching proce-
dure has well known limitations, including that the
matching of non-content words counts as much as
the matching of content words, that variations of
words with the same meaning are disregarded, and
that a perfect matching can happen even if the order
of sequences of n-grams in the hypothesis and ref-
erence translation are very different, changing com-
pletely the meaning of the translation.

A number of other metrics have been proposed
to address these limitations, for example, by allow-
ing for the matching of synonyms or paraphrases
of content words, such as in METEOR (Denkowski
and Lavie, 2010). Other attempts have been made
to capture whether the reference translation and hy-
pothesis translations share the same meaning us-
ing shallow semantics, i.e., Semantic Role Labeling
(Giménez and Márquez, 2007). However, these are
limited to the exact matching of semantic roles and
their fillers.

We propose TINE, a new metric that comple-
ments lexical matching with a shallow semantic
component to better address adequacy. The main
contribution of such a metric is to provide a more
flexible way of measuring the overlap between shal-
low semantic representations that considers both the
semantic structure of the sentence and the content
of the semantic elements. The metric uses SRLs
such as in (Giménez and Márquez, 2007). However,
it analyses the content of predicates and arguments
seeking for either exact or “similar” matches. The
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inexact matching is based on the use of ontologies
such as VerbNet (Schuler, 2006) and distributional
semantics similarity metrics, such as Dekang Lin’s
thesaurus (Lin, 1998) .

In the remainder of this paper we describe some
related work (Section 2), present our metric - TINE
- (Section 3) and its performance compared to pre-
vious work (Section 4) as well as some further im-
provements. We then provide an analysis of these
results and discuss the limitations of the metric (Sec-
tion 5) and present conclusions and future work
(Section 6).

2 Related Work

A few metrics have been proposed in recent years
to address the problem of measuring whether a hy-
pothesis and a reference translation share the same
meaning. The most well-know metric is probably
METEOR (Banerjee and Lavie, 2005; Denkowski
and Lavie, 2010). METEOR is based on a general-
ized concept of unigram matching between the hy-
pothesis and the reference translation. Alignments
are based on exact, stem, synonym, and paraphrase
matches between words and phrases. However, the
structure of the sentences is not considered.

Wong and Kit (2010) measure word choice and
word order by the matching of words based on
surface forms, stems, senses and semantic similar-
ity. The informativeness of matched and unmatched
words is also weighted.

Liu et al. (2010) propose to match bags of uni-
grams, bigrams and trigrams considering both recall
and precision and F-measure giving more impor-
tance to recall, but also using WordNet synonyms.

Tratz and Hovy (2008) use transformations in or-
der to match short syntactic units defined as Ba-
sic Elements (BE). The BE are minimal-length
syntactically well defined units. For example,
nouns, verbs, adjectives and adverbs can be con-
sidered BE-Unigrams, while a BE-Bigram could be
formed from a syntactic relation (e.g. subject+verb,
verb+object). BEs can be lexically different, but se-
mantically similar.

Padó et al. (2009) uses Textual Entailment fea-
tures extracted from the Standford Entailment Rec-
ognizer (MacCartney et al., 2006). The Textual En-
tailment Recognizer computes matching and mis-

matching features over dependency parses. The met-
ric then predicts the MT quality with a regression
model. The alignment is improved using ontologies.

He et al. (2010) measure the similarity between
hypothesis and reference translation in terms of
the Lexical Functional Grammar (LFG) represen-
tation. The representation uses dependency graphs
to generate unordered sets of dependency triples.
Calculating precision, recall, and F-score on the
sets of triples corresponding to the hypothesis and
reference segments allows measuring similarity at
the lexical and syntactic levels. The measure also
matches WordNet synonyms.

The closest related metric to the one proposed in
this paper is that by Giménez and Márquez (2007)
and Giménez et al. (2010), which also uses shallow
semantic representations. Such a metric combines a
number of components, including lexical matching
metrics like BLEU and METEOR, as well as com-
ponents that compute the matching of constituent
and dependency parses, named entities, discourse
representations and semantic roles. However, the se-
mantic role matching is based on exact matching of
roles and role fillers. Moreover, it is not clear what
the contribution of this specific information is for the
overall performance of the metric.

We propose a metric that uses a lexical similar-
ity component and a semantic component in order
to deal with both word choice and semantic struc-
ture. The semantic component is based on seman-
tic roles, but instead of simply matching the surface
forms (i.e. arguments and predicates) it is able to
match similar words.

3 Metric Description

The rationale behind TINE is that an adequacy-
oriented metric should go beyond measuring the
matching of lexical items to incorporate information
about the semantic structure of the sentence, as in
(Giménez et al., 2010). However, the metric should
also be flexible to consider inexact matches of se-
mantic components, similar to what is done with lex-
ical metrics like METEOR (Denkowski and Lavie,
2010). We experiment with TINE having English
as target language because of the availability of lin-
guistic processing tools for this language. The met-
ric is particularly dependent on semantic role label-
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ing systems, which have reached satisfactory perfor-
mance for English (Carreras and Márquez, 2005).
TINE uses semantic role labels (SRL) and lexical se-
mantics to fulfill two requirements by: (i) compare
both the semantic structure and its content across
matching arguments in the hypothesis and refer-
ence translations; and (ii) propose alternative ways
of measuring inexact matches for both predicates
and role fillers. Additionally, it uses an exact lexi-
cal matching component to reward hypotheses that
present the same lexical choices as the reference
translation. The overall score s is defined using the
simple weighted average model in Equation (1):

s(H,R) = max

{
αL(H,R) + βA(H,R)

α+ β

}
R∈R

(1)

where H represents the hypothesis translation, R
represents a reference translation contained in the set
of available references R; L defines the (exact) lex-
ical match component in Equation (2), A defines the
adequacy component in Equation (3); and α and β
are tunable weights for these two components. If
multiple references are provided, the score of the
segment is the maximum score achieved by compar-
ing the segment to each available reference.

L(H,R) =
|H
⋂
R|√

|H| ∗ |R|
(2)

The lexical match component measures the over-
lap between the two representations in terms of the
cosine similarity metric. A segment, either a hypoth-
esis or a reference, is represented as a bag of tokens
extracted from an unstructured representation, that
is, bag of unigrams (words or stems). Cosine sim-
ilarity was chosen, as opposed to simply checking
the percentage of overlapping words (POW) because
cosine does not penalize differences in the length of
the hypothesis and reference translation as much as
POW. Cosine similarity normalizes the cardinality
of the intersection |H∩R| using the geometric mean√
|H| ∗ |R| instead of the union |H∪R|. This is par-

ticularly important for the matching of arguments -
which is also based on cosine similarity. If an hy-
pothesized argument has the same meaning as its
reference translation, but differs from it in length,
cosine will penalize less the matching than POW.
That is specially interesting when core arguments

get merged with modifiers due to bad semantic role
labeling (e.g. [A0 I] [T bought] [A1 something to eat
yesterday] instead of [A0 I] [T bought] [A1 some-
thing to eat] [AM-TMP yesterday]).

A(H,R) =

∑
v∈V verb score(Hv, Rv)

|Vr|
(3)

In the adequacy component, V is the set of verbs
aligned between H and R, and |Vr| is the number of
verbs in R. Hereafter the indexes h and r stand for
hypothesis and reference translations, respectively.
Verbs are aligned using VerbNet (Schuler, 2006) and
VerbOcean (Chklovski and Pantel, 2004). A verb in
the hypothesis vh is aligned to a verb in the refer-
ence vr if they are related according to the follow-
ing heuristics: (i) the pair of verbs share at least one
class in VerbNet; or (ii) the pair of verbs holds a re-
lation in VerbOcean.

For example, in VerbNet the verbs spook and ter-
rify share the same class amuse-31.1, and in VerbO-
cean the verb dress is related to the verb wear.

verb score(Hv, Rv) =

∑
a∈Ar∩At

arg score(Ha, Ra)

|Ar|
(4)

The similarity between the arguments of a verb
pair (vh, vr) in V is measured as defined in Equa-
tion (4), where Ah and At are the sets of labeled
arguments of the hypothesis and the reference re-
spectively and |Ar| is the number of arguments of
the verb in R. In other words, we only measure the
similarity of arguments in a pair of sentences that are
annotated with the same role. This ensures that the
structure of the sentence is taken into account (for
example, an argument in the role of agent would not
be compared against an argument in a role of experi-
encer). Additionally, by restricting the comparison
to arguments of a given verb pair, we avoid argument
confusion in sentences with multiple verbs.

The arg score(Ha, Ra) computation is based on
the cosine similarity as in Equation (2). We treat
the tokens in the argument as a bag-of-words. How-
ever, in this case we change the representation of
the segments. If the two sets do not match exactly,
we expand both of them by adding similar words.
For every mismatch in a segment, we retrieve the
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20-most similar words from Dekang Lin’s distribu-
tional thesaurus (Lin, 1998), resulting in sets with
richer lexical variety.

The following example shows how the computa-
tion of A(H,R) is performed, considering the fol-
lowing hypothesis and reference translations:

H: The lack of snow discourages people from ordering
ski stays in hotels and boarding houses.

R: The lack of snow is putting people off booking ski
holidays in hotels and guest houses.

1. extract verbs from H: Vh = {discourages, ordering}

2. extract verbs from R: Vr = {putting, booking}

3. similar verbs aligned with VerbNet (shared class
get-13.5.1): V = {(vh = order,vr = book)}

4. compare arguments of (vh = order,vr = book):
Ah = {A0, A1, AM-LOC}
Ar = {A0, A1, AM-LOC}

5. Ah ∩Ar = {A0, A1, AM-LOC}

6. exact matches:
HA0 = {people} and RA0 = {people}
argument score = 1

7. different word forms: expand the representation:
HA1 = {ski, stays} and RA1 = {ski, holidays}
expand to:
HA1 = {{ski},{stays, remain... journey...}}
RA1 = {{ski},{holidays, vacations, trips... jour-
ney...}}
argument score = 0.5

8. similarly to HAM−LOC and RAM−LOC

argument score = 0.72

9. verb score (order, book) = 1+0.5+0.72
3 = 0.74

10. A(H,R) = 0.74
2 = 0.37

Different from previous work, we have not used
WordNet to measure lexical similarity for two main
reasons: problems with lexical ambiguity and lim-
ited coverage in WordNet (instances of named enti-
ties are not in WordNet, e.g. Barack Obama). For
example, in WordNet the aligned verbs (order/book)
from the previous hypothesis and reference trans-
lations have: 9 senses - order (e.g. give instruc-
tions to or direct somebody to do something with
authority, make a request for something, etc.) - and
4 senses - book (engage for a performance, arrange

for and reserve (something for someone else) in ad-
vance, etc.). Thus, a WordNet-based similarity mea-
sure would require disambiguating segments, an ad-
ditional step and a possible source of errors. Second,
a thresholds would need to be set to determine when
a pair of verbs is aligned. In contrast, the structure of
VerbNet (i.e. clusters of verbs) allows a binary deci-
sion, although the VerbNet heuristic results in some
errors, as we discuss in Section 5.

4 Results

We set the weights α and β by experimental test-
ing to α = 1 and β = 0.25. The lexical component
weight is prioritized because it has shown a good av-
erage Kendall’s tau correlation (0.23) on a develop-
ment dataset (Callison-Burch et al., 2010). Table 1
shows the correlation of the lexical component with
human judgments for a number of language pairs.

Table 1: Kendall’s tau segment-level correlation of the
lexical component with human judgments

Metric cz-en fr-en de-en es-en avg
Lexical 0.27 0.21 0.26 0.19 0.23

We use the SENNA1 SRL system to tag the
dataset with semantic roles. SENNA has shown to
have achieved an F-measure of 75.79% for tagging
semantic roles over the CoNLL 2005 2 benchmark.

We compare our metric against standard BLEU
(Papineni et al., 2002), METEOR (Denkowski and
Lavie, 2010) and other previous metrics reported in
(Callison-Burch et al., 2010) which also claim to use
some form of semantic information (see Section 2
for their description). The comparison is made in
terms of Kendall’s tau correlation against the human
judgments at a segment-level. For our submission to
the shared evaluation task, system-level scores are
obtained by averaging the segment-level scores.

TINE achieves the same average correlation with
BLUE, but outperforms it for some language pairs.
Additionally, TINE outperforms some of the previ-
ous which use WordNet to deal with synonyms as
part of the lexical matching.

The closest metric to TINE (Giménez et al.,
2010), which also uses semantic roles as one of its

1http://ml.nec-labs.com/senna/
2http://www.lsi.upc.edu/ srlconll/
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Table 2: Comparison with previous semantically-
oriented metrics using segment-level Kendall’s tau cor-
relation with human judgments

Metric cz-en fr-en de-en es-en avg
(Liu et al.,
2010)

0.34 0.34 0.38 0.34 0.35

(Giménez
et al., 2010)

0.34 0.33 0.34 0.33 0.33

(Wong and
Kit, 2010)

0.33 0.27 0.37 0.32 0.32

METEOR 0.33 0.27 0.36 0.33 0.32
TINE 0.28 0.25 0.30 0.22 0.26
BLEU 0.26 0.22 0.27 0.28 0.26
(He et al.,
2010)

0.15 0.14 0.17 0.21 0.17

(Tratz
and Hovy,
2008)

0.05 0.0 0.12 0.05 0.05

components, achieves better performance. However,
this metric is a rather complex combination of a
number of other metrics to deal with different lin-
guistic phenomena.

4.1 Further Improvements

As an additional experiment, we use BLEU as the
lexical component L(H,R) in order to test if the
shallow-semantic component can contribute to the
performance of this standard evaluation metric. Ta-
ble 3 shows the results of the combination of BLEU
and the shallow-semantic component using the same
parameter configuration as in Section 4. The addi-
tion of the shallow-semantic component increased
the average correlation of BLEU from 0.26 to 0.28.

Table 3: TINE-B: Combination of BLEU and the
shallow-semantic component

Metric cz-en fr-en de-en es-en avg
TINE-B 0.27 0.25 0.30 0.30 0.28

Finally, we improve the tuning of the weights of
the components (α and β parameters) by using a
simple genetic algorithm (Back et al., 1999) to se-
lect the weights that maximize the correlation with
human scores on a development set (we use the de-
velopment sets from WMT10 (Callison-Burch et al.,
2010)). The configuration of the genetic algorithm
is as follows:

• Fitness function: Kendall’s tau correlation

• Chromosome: two real numbers, α and β

• Number of individuals: 80

• Number of generations: 100

• Selection method: roulette

• Crossover probability: 0.9

• Mutation probability: 0.01

Table 4 shows the parameter values obtaining
from tuning for each language pair and the corre-
lation achieved by the metric with such parameters.
With such an optimization step the average correla-
tion of the metric increases to 0.29.

Table 4: Optimized values of the parameters using a ge-
netic algorithm and Kendall’s tau and final correlation of
the metric on the test sets

Language pair Correlation α β

cz-en 0.28 0.62 0.02
fr-en 0.25 0.91 0.03
de-en 0.30 0.72 0.1
es-en 0.31 0.57 0.02
avg 0.29 – –

5 Discussion

In what follows we discuss with a few examples
some of the common errors made by TINE. Over-
all, we consider the following categories of errors:

1. Lack of coverage of the ontologies.
R: This year, women were awarded the Nobel Prize in all

fields except physics

H: This year the women received the Nobel prizes in all

categories less physical

The lack of coverage in VerbNet prevented the
detection of the similarity between receive and
award.

2. Matching of unrelated verbs.
R: If snow falls on the slopes this week, Christmas will

sell out too, says Schiefert.

H: If the roads remain snowfall during the week, the dates

of Christmas will dry up, said Schiefert.

In VerbOcean remain and say are incorrectly
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said to be related. VerbOcean was cre-
ated by a semi-automatic extraction algorithm
(Chklovski and Pantel, 2004) with an average
accuracy of 65.5%.

3. Incorrect tagging of the semantic roles by
SENNA.
R: Colder weather is forecast for Thursday, so if anything

falls, it should be snow.

H: On Thursday , must fall temperatures and, if there is

rain, in the mountains should.

The position of the predicates affects the SRL
tagging. The predicate fall has the following
roles (A1, V, and S-A1) in the reference, and
the following roles (AM-ADV, A0, AM-MOD,
and AM-DIS) in the hypothesis. As a con-
sequence, the metric cannot attempt to match
the fillers. Also, SRL systems do not detect
phrasal verbs such as in the example of Section
3, where the action putting people off is similar
to discourages.

6 Conclusions and Future Work

We have presented an MT evaluation metric based
on the alignment of semantic roles and flexible
matching of role fillers between hypothesis and ref-
erence translations. To deal with inexact matches,
the metric uses ontologies and distributional seman-
tics, as opposed to lexical databases like WordNet,
in order to minimize ambiguity and lack of cover-
age. The metric also uses an exact lexical matching
component to reward hypotheses that present lexical
choices similar to those of the reference translation.

Given the simplicity of the metric, it has achieved
competitive results. We have shown that the addition
of the shallow-semantic component into a lexical
component yields absolute improvements in the cor-
relation of 3%-6% on average, depending on the lex-
ical component used (cosine similarity or BLEU).

In future work, in order to improve the perfor-
mance of the metric we plan to add components to
address a few other linguistic phenomena such as
in (Giménez and Márquez, 2007; Giménez et al.,
2010). In order to deal with the coverage problem
of an ontology, we plan to use distributional seman-
tics (i.e. word space models) also to align the pred-
icates. We consider using a backoff model for the

shallow-semantic component to deal with the very
frequent cases where there are no comparable pred-
icates between the reference and hypothesis transla-
tions, which result in a 0 score from the semantic
component. Finally, we plan to improve the lexical
component to better tackle fluency, for example, by
adding information about the word order.
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Abstract

Automatic evaluation metrics are fundamen-
tally important for Machine Translation, al-
lowing comparison of systems performance
and efficient training. Current evaluation met-
rics fall into two classes: heuristic approaches,
like BLEU, and those using supervised learn-
ing trained on human judgement data. While
many trained metrics provide a better match
against human judgements, this comes at the
cost of including lots of features, leading to
unwieldy, non-portable and slow metrics. In
this paper, we introduce a new trained met-
ric, ROSE, which only uses simple features
that are easy portable and quick to compute.
In addition, ROSE is sentence-based, as op-
posed to document-based, allowing it to be
used in a wider range of settings. Results show
that ROSE performs well on many tasks, such
as ranking system and syntactic constituents,
with results competitive to BLEU. Moreover,
this still holds when ROSE is trained on hu-
man judgements of translations into a different
language compared with that use in testing.

1 Introduction

Human judgements of translation quality are very
expensive. For this reason automatic MT evalu-
ation metrics are used to as an approximation by
comparing predicted translations to human authored
references. An early MT evaluation metric, BLEU
(Papineni et al., 2002), is still the most commonly
used metric in automatic machine translation evalu-
ation. However, several drawbacks have been stated
by many researchers (Chiang et al., 2008a; Callison-
Burch et al., 2006; Banerjee and Lavie, 2005), most

notably that it omits recall (substituting this with a
penalty for overly short output) and not being easily
applied at the sentence level. Later heuristic metrics
such as METEOR (Banerjee and Lavie, 2005) and
TER (Snover et al., 2006) account for both precision
and recall, but their relative weights are difficult to
determine manually.

In contrast to heuristic metrics, trained met-
rics use supervised learning to model directly hu-
man judgements. This allows the combination
of different features and can better fit specific
tasks, such as evaluation focusing more on flu-
ency/adequacy/relative ranks or post editing effort.
Previous work includes approaches using classifica-
tion (Corston-Oliver et al., 2001), regression (Alber-
cht and Hwa, 2008; Specia and Gimenez, 2010), and
ranking (Duh, 2008). Most of which achieved good
results and better correlations with human judg-
ments than heuristic baseline methods.

Overall automatic metrics must find a balance be-
tween several key issues: a) applicability to differ-
ent sized texts (documents vs sentences), b) easy
of portability to different languages, c) runtime re-
quirements and d) correlation with human judge-
ment data. Previous work has typically ignored at
least one of these issues, e.g., BLEU which applies
only to documents (A), trained metrics (Albercht
and Hwa, 2008; Specia and Gimenez, 2010) which
tend to ignore B and C.

This paper presents ROSE, a trained metric which
is loosely based on BLEU, but seeks to further sim-
plify its components such that it can be used for sen-
tence level evaluation. This contrasts with BLEU
which is defined over large documents, and must
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be coarsely approximated to allow sentence level
application. The increased flexibility of ROSE al-
lows the metric to be used in a wider range of situ-
ations, including during decoding. ROSE is a linear
model with a small number of simple features, and
is trained using regression or ranking against human
judgement data. A benefit of using only simple fea-
tures is that ROSE can be trivially ported between
target languages, and that it can be run very quickly.
Features include precision and recall over different
sized n-grams, and the difference in word counts
between the candidate and the reference sentences,
which is further divided into content word, func-
tion word and punctuation. An extended versions
also includes features over Part of Speech (POS) se-
quences.

The paper is structured as follows: Related work
on metrics for statistical machine translation is de-
scribed in Section 2. Four variations of ROSE and
their features will be introduced in Section 3. In sec-
tion 4 we presents the result, showing how ROSE
correlates well with human judgments on both sys-
tem and sentence levels. Conclusions are given at
the end of the paper.

2 Related Work

The defacto standard metric in machine translation
is BLEU (Papineni et al., 2002). This measures
n-gram precision (n normally equal to 1,2,3,4) be-
tween a document of candidate sentences and a
set of human authored reference documents. The
idea is that high quality translations share many n-
grams with the references. In order to reduce re-
peatedly generating the same word, BLEU clips the
counts of each candidate N-gram to the maximum
counts of that n-gram that in references, and with
a brevity penalty to down-scale the score for out-
put shorter than the reference. In BLEU, each n-
gram precision is given equal weight in geometric
mean, while NIST (Doddington and George, 2002)
extended BLEU by assigning more informative n-
grams higher weight.

However, BLEU and NIST have several draw-
backs, the first being that BLEU uses a geometric
mean over all n-grams which makes BLEU almost
unusable for sentence level evaluations 1. Secondly,

1Note that various approximations exits (Lin and Och, 2004;

BLEU and NIST both use the brevity penalty to re-
place recall, but Banerjee and Lavie (2005) in exper-
iments show that the brevity penalty is a poor sub-
stitute for recall.

Banerjee and Lavie (2005) proposed a METEOR
metric, which that uses recall instead of the BP.
Callison-Burch et al. (2007; Callison-Burch et al.
(2008) show that METEOR does not perform well in
out of English task. This may because that Stemmer
or WordNet may not available in some languages,
which unable to model synonyms in these cases. In
addition, the performance also varies when adjusting
weights in precision and recall.

Supervised learning approaches have been pro-
posed by many researchers (Corston-Oliver et al.,
2001; Duh, 2008; Albercht and Hwa, 2008; Spe-
cia and Gimenez, 2010). Corston-Oliver et al.
(2001) use a classification method to measure ma-
chine translation system quality at the sentence level
as being human-like translation (good) or machine
translated (bad). Features extracted from references
and machine translation include heavy linguistic fea-
tures (requires parser).

Quirk (2004) proposed a linear regression model
which is trained to match translation quality. Alber-
cht and Hwa (2008) introduced pseudo-references
when data driven regression does not have enough
training data. Most recently, Specia and Gimenez
(2010) combined confidence estimation (without
reference, just using the source) and reference-based
metrics together in a regression framework to mea-
sure sentence-level machine translation quality.

Duh (2008) compared the ranking with the re-
gression, with the results that with same feature set,
ranking and regression have similar performance,
while ranking can tolerate more training data noise.

3 Model

ROSE is a trained automatic MT evaluation metric
that works on sentence level. It is defined as a linear
model, and its weights will be trained by Support
Vector Machine. It is formulated as

S = −→w ·f(−→c ,−→r ) (1)

where −→w is the feature weights vector, f(−→c ,−→r ) is
the feature function which takes candidate transla-
Chiang et al., 2008b)
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tion (−→c ) and reference (−→c ), and returns the feature
vector. S is the response variable, measuring the
‘goodness’ of the candidate translation. A higher
score means a better translation, although the mag-
nitude is not always meaningful.

We present two different method for training:
a linear regression approach ROSE-reg, trained to
match human evaluation score, and a ranking ap-
proach ROSE-rank to match the relative ordering of
pairs of translations assigned by human judge. Un-
like ROSE-reg, ROSE-rank only gives relative score
between sentences, such as A is better than B. The
features that used in ROSE will be listed in section
3.1, and the regression and ranking training are de-
scribed in section 3.2

3.1 ROSE Features

Features used in ROSE listed in Table 1 include
string n-gram matching, Word count and Part of
Speech (POS). String N-gram matching features, are
used for measure how closely of the candidate sen-
tence resembles the reference. Both precision and
recall are considered. Word count features measure
length differences between the candidate and refer-
ence, which is further divided into function words,
punctuation and content words. POS features are
defined over POS n-gram matches between the can-
didate and reference.

3.1.1 String Matching Features
The string matching features include n-gram pre-

cision, n-gram recall and F1-measure. N-gram
precision measures matches between sequence of
words in the candidate sentence compared to the ref-
erences,

Pn =

∑
n-gram∈−→c Count(n-gram)Jn-gram ∈ −→r K∑

n-gram∈−→c Count(ngram)
(2)

where Count are the occurrence counts of n-grams
in the candidate sentence, the numerator measures
the number of predicted n-grams that also occur in
the reference.

Recall is also used in ROSE, so clipping was
deemed unnecessary in precision calculation, where
the repeating words will increasing precision but at
the expense of recall. F-measure is also included,
which is the harmonic mean of precision and recall.

ID Description
1-4 n-gram precision, n=1...4
5-8 n-gram recall, n=1...4
9-12 n-gram f-measure, n=1...4
13 Average n-gram precision
14 Words count
15 Function words count
16 Punctuation count
17 Content words count
18-21 n-gram POS precision, n=1...4
22-25 n-gram POS recall, n=1...4
26-29 n-gram POS f-measure, n=1...4
30-33 n-gram POS string mixed precision,

n=1...4

Table 1: ROSE Features. The first column is the feature
number. The dashed line separates the core features from
the POS extended features.

With there are multiple references, the n-gram preci-
sion error uses the same strategy as BLEU: n-grams
in candidate can match any of the references. For
recall, ROSE will match the n-grams in each refer-
ence separately, and then choose the recall for the
reference with minimum error.

3.1.2 Word Count Features
The word count features measure the length dif-

ference between a candidate sentence and reference
sentence. In a sentence, content words are more in-
formative than function words (grammatical words)
and punctuation. Therefore, the number of content
word candidate is a important indicator in evalua-
tion. In this case, besides measuring the length at
whole sentences, we also measure difference in the
number of function words, punctuation and content
words. We normalise by the length of the refer-
ence which allows comparability between short ver-
sus long sentences. In multiple reference cases we
choose the ratio that is closest to 1.

3.1.3 Part of Speech Features
The string matching features and word count fea-

tures only measure similarities on the lexical level,
but not over sentence structure or synonyms. To add
this capability we also include Part of Speech (POS)
features which work similar to the String Matching
features, but using POS instead of words. The fea-
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tures measure precision, recall and F-measure over
POS n-grams (n=1...4). In addition, we also include
features that mixed string and POS.

The string/POS mixed feature is used for handling
synonyms. One problem in string n-gram match-
ing is not being able to deal with the synonyms be-
tween the candidate translation and the reference.
One approach for doing so is to use an external re-
source such as WordNet (Banerjee and Lavie, 2005),
however this would limit the portability of the met-
ric. Instead we use POS as a proxy. In most of
the cases, synonyms share the same POS, so this
can be rewarded by forming n-grams over a mix-
ture of tokens and POS. During the matching pro-
cess, both words and its POS shall be considered, if
either matches between reference and candidate, the
n-gram matches will be counted.

Considering the example in table 2, candidate 1
has better translation than candidate 2 and 3. If only
the string N-gram matching is used, that will give the
same score to candidate 1, 2 and 3. The n-gram pre-
cision scores obtained by all candidate sentences in
this example are: 2-gram = 1, 3-gram = 0. However,
we can at least distinguish candidate 1 is better than
candidate 3 if string POS mixed precision is used ,
n-gram precision for candidate 1 will be: 2-gram =
2, 3-gram = 1, which ranks candidate 1 better than
candidate 3.

Example
reference: A/DT red/ADJ vehicle/NN

candidate 1: A/DT red/ADJ car/NN
candidate 2: A/DT red/ADJ rose/NN
candidate 3: A/DT red/ADJ red/ADJ

Table 2: Evaluation Example

3.2 Training

The model was trained on human evaluation data
in two different ways, regression and ranking.These
both used SVM-light (Joachims, 1999). In the rank-
ing model, the training data are candidate translation
and their relative rankings were ranked by human
judge for a given input sentence. The SVM finds
the minimum magnitude weights that are able to cor-
rectly rank training data which is framed as a series

of constraints reflecting all pairwise comparisons. A
soft-margin formulation is used to allow training er-
rors with a penalty (Joachims, 2002). For regres-
sion, the training data is human annotation of post-
edit effort (this will be further described in section
4.1). The Support vector Regression learns weights
with minimum magnitude that limit prediction er-
ror to within an accepted range, again with a soft-
margin formulation (Smola and Schlkopf, 2004).

A linear kernel function will be used, because
non-linear kernels are much slower to use and are
not decomposable. Our experiments showed that the
linear kernel performed at similar accuracy to other
kernel functions (see section 4.2).

4 Experimental Setup

Our experiments test ROSE performance on docu-
ment level with three different Kernel functions: lin-
ear, polynomial and radial basis function. Then we
compare four variants of ROSE with BLEU on both
sentence and system (document) level.

The BLEU version we used here is NIST Open
MT Evaluation tool mteval version 13a, smooth-
ing was disabled and except for the sentence level
evaluation experiment. The system level evalua-
tion procedure follows WMT08 (Callison-Burch et
al., 2008), which ranked each system submitted on
WMT08 in three types of tasks:

• Rank: Human judges candidate sentence rank
in order of quality. On the document level, doc-
uments are ranked according to the proportion
of candidate sentences in a document that are
better than all of the candidates.

• Constituent: The constituent task is the same
as for ranking but operates over chosen syntac-
tic constituents.

• Yes/No: WMT08 Yes/No task is to let human
judge decide whether the particular part of a
sentence is acceptable or not. Document level
Yes/No ranks a document according to their
number of YES sentences

Spearman’s rho correlation was used to measure
the quality of the metrics on system level. Four tar-
get languages (English, German, French and Span-
ish) were used in system level experiments. ROSE-
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reg and ROSE-rank were tested in all target lan-
guage sets, but ROSE-regpos was only tested in the
into-English set as it requires a POS tagger. On the
sentence level, we compare sentences ranking that
ranked by metrics against human ranking. The eval-
uation quality was examined by Kendall’s tau cor-
relation, and tied results from human judges were
excluded.

Rank es-en fr-en de-en avg
Linear 0.57 0.97 0.69 0.74
Polynomial 0.62 0.97 0.71 0.76
RBF 0.60 0.98 0.62 0.73
Constituent
Linear 0.79 0.90 0.39 0.69
Polynomial 0.80 0.89 0.41 0.70
RBF 0.83 0.93 0.34 0.70
Yes/No
Linear 0.92 0.93 0.67 0.84
Polynomial 0.86 0.90 0.66 0.81
RBF 0.87 0.93 0.65 0.82

Table 3: ROSE-reg in with SVM kernel functions

Metric Kendall’s tau
BLEU-smoothed 0.219
ROSE-reg 0.120
ROSE-regpos 0.164
ROSE-rank 0.206
ROSE-rankpos 0.172

Table 4: Sentence Level Evaluation

4.1 Data

Training data used for ROSE is from WMT10
(Callison-Burch et al., 2010) human judged sen-
tences. A regression model was trained by sentences
with human annotation for post editing effort. The
three levels used in WMT10 are ‘OK’, ‘EDIT’ and
‘BAD’, which we treat as response values of 3, 2
and 1. In total 2885 sentences were used in the re-
gression training. The ranking model was trained by
sentences with human annotating sentence ranking,
and tied results are allowed in training. In this exper-
iment, 1675 groups of sentences were used for train-
ing, and each group contains five sentences, which

are manually ranked from 5 (best) to 1 (worst). In or-
der to test the ROSE’s ability to adapt the language
without training data, ROSE was only trained with
English data.

The testing data on sentence level used in this
paper is human ranked sentences from WMT09
(Callison-Burch et al., 2009). Tied rankings were re-
moved, leaving 1702 pairs. We only consider trans-
lations into English sentences. On system level, the
testing data are the submissions for ’test2008’ test
set in WMT08 (Callison-Burch et al., 2008). ROSE,
and BLEU were compared with human ranked sub-
mitted system in ‘RANK’, ‘CONSTITUENT’ and
‘YES/NO’ tasks.

English punctuation and 100 common function
words list of four languages in this experiment were
generated. English POS was tagged by NLTK (Bird
and Loper, 2004).

4.2 Results and Discussion

Table 3 shows the results of ROSE-reg with three
different SVM Kernel functions. Performance are
similar among three different Kernel functions.
However, the linear kernel is the fastest and simplest
and there is no overall winner. Therefore, linear Ker-
nel function was used in ROSE.

The results of Kendall’s tau on sentence level
evaluation are shown in Table 4. According to Ta-
ble 4 ROSE-rank has the highest score in all ver-
sions of ROSE. The score is close to the smoothed
version of BLEU. Results also showed adding POS
feature helped in improving accuracy in the regres-
sion model, but not in ranking, The reason for this is
not clear, but it may be due to over fitting.

Table 5 and Table 6 are the Spearman’s rho in sys-
tem ranking. Table 5 is the task evaluation for trans-
lation into English. ROSE-rank performed the best
in the system ranking task. Also, ROSE-regpos is
the best in the syntactic constituents task. This may
because of ROSE-rank is a ranking based metric and
ROSE-regpos incorporates POS that contains more
linguistic information. Table 6 shows the results of
evaluating translations from English. According to
the table, ROSE performs less accurately than for
the into-English tasks, but overall the ROSE scores
are similar to those of BLEU.
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Rank es-en fr-en de-en avg
BLEU 0.66 0.97 0.69 0.77
ROSE-reg 0.57 0.97 0.69 0.74
ROSE-rank 0.85 0.96 0.76 0.86
ROSE-regpos 0.59 0.98 0.71 0.76
ROSE-rankpos 0.83 0.96 0.69 0.82
Constituent
BLEU 0.78 0.92 0.30 0.67
ROSE-reg 0.79 0.90 0.39 0.69
ROSE-rank 0.66 0.92 0.33 0.64
ROSE-regpos 0.79 0.90 0.41 0.70
ROSE-rankpos 0.64 0.93 0.31 0.63
Yes/No
BLEU 0.99 0.96 0.66 0.87
ROSE-reg 0.92 0.93 0.67 0.84
ROSE-rank 0.78 0.96 0.61 0.78
ROSE-regpos 0.97 0.93 0.66 0.85
ROSE-rankpos 0.81 0.96 0.57 0.78

Table 5: System Level evaluation that translation into En-
glish

5 Conclusion

We presented the ROSE metric to make up for sev-
eral drawbacks of BLEU and other trained metrics.
Features including string matching, words ratio and
POS were combined by the supervised learning ap-
proach. ROSE’s overall performance was close to
BLEU on system level and sentence level. However,
it is better on tasks ROSE was specifically trained,
such as ROSE-rank in the system level ranking task
and ROSE-regpos in the syntactic constituents task.
Results also showed that when training data is not
available in the right language ROSE produces rea-
sonable results.

Smoothed BLEU slightly outperformed ROSE in
sentence evaluation. This might be due to the train-
ing data not being expert judgments, and conse-
quently very noisy. In further work, we shall mod-
ify the training method to better tolerate noise. In
addition, we will modify ROSE by substitute less
informative features with more informative features
in order to improve its performance and reduce over
fitting.

Rank es-en fr-en de-en avg
BLEU 0.85 0.98 0.88 0.90
ROSE-reg 0.75 0.98 0.93 0.89
ROSE-rank 0.69 0.93 0.94 0.85
Constituent
BLEU 0.83 0.87 0.35 0.68
ROSE-reg 0.73 0.87 0.36 0.65
ROSE-rank 0.72 0.78 0.32 0.61
Yes/No
BLEU 0.75 0.97 0.89 0.87
ROSE-reg 0.72 0.97 0.93 0.87
ROSE-rank 0.82 0.96 0.87 0.88

Table 6: System Level evaluation that translation from
English
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Abstract

The past few years have seen an increasing
interest in using Amazon’s Mechanical Turk
for purposes of collecting data and perform-
ing annotation tasks. One such task is the
mass evaluation of system output in a variety
of tasks. In this paper, we present MAISE,
a package that allows researchers to evalu-
ate the output of their AI system(s) using hu-
man judgments collected via Amazon’s Me-
chanical Turk, greatly streamlining the pro-
cess. MAISE is open source, easy to run, and
platform-independent. The core of MAISE’s
codebase was used for the manual evaluation
of WMT10, and the completed package is be-
ing used again in the current evaluation for
WMT11. In this paper, we describe the main
features, functionality, and usage of MAISE,
which is now available for download and use.

1 Introduction

The ability to evaluate system output is one of the
most important aspects of system development. A
properly designed evaluation paradigm could help
researchers test and illustrate the effectiveness, or
lack thereof, of any changes made to their system.
The use of an automatic metric, whether it is a sim-
ple one such as classification accuracy, or a more
task-specific metric such as BLEU and TER for ma-
chine translation, has become a standard part of any
evaluation of empricial methods. There is also ex-
tensive interest in exploring manual evaluation of
system outputs, and in making such a process fea-
sible and efficient, time- and cost-wise. Such human
feedback would also be valuable because it would
help identify systematic errors and guide future sys-
tem development.

Amazon’s Mechanical Turk (MTurk) is a virtual
marketplace that allows anyone to create and post
tasks to be completed by human workers around the
globe. Each instance of those tasks, called a Human
Intelligence Task (HIT) in MTurk lingo, typically
requires human understanding and perception that
machines are yet to achieve, hence making MTurk
an example of “artificial artificial intelligence,” as
the developers of MTurk aptly put it. Arguably, the
most attractive feature of MTurk is the low cost asso-
ciated with completing HITs and the speed at which
they are completed.

Having discovered this venue, many researchers
in the fields of artificial intelligence and machine
learning see MTurk as a valuable and effective
source of annotations, labels, and data, namely the
kind requiring human knowledge.

One such kind of data is indeed human evalua-
tion of system outputs. For instance, if you construct
several speech recognition systems, and would like
to know how well each of the systems performs,
you could create HITs on MTurk that ‘showcase’ the
transcriptions obtained by the different systems, and
ask annotators to indicate which systems are supe-
rior and which ones are inferior. The same can be
applied to a variety of tasks, such as machine trans-
lation, object recognition, emotion detection, etc.

The aim of the MAISE package is to stream-
line the process of creating those evaluation tasks
and uploading the relevant content to MTurk to be
judged, without having to familiarize and involve
oneself with the mechanics, if you will, of Mechan-
ical Turk. This would allow you to spend more
time worrying about improving your system rather
than dealing with file input and output and MTurk’s
sometimes finicky interface.
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2 Overview

MAISE is a collection of tools for Mass AI System
Evaluation. MAISE allows you to evaluate the out-
put of different systems (and/or different variations
of a system) using the workforce of Amazon’s Me-
chanical Turk (MTurk). MAISE can be used to com-
pare two simple variants of the same system, work-
ing with a couple of variations of your task, or it can
be used to perform complete evaluation campaigns
involving tens of systems and many variations.

The core of MAISE’s codebase was written to
run the manual component of WMT10’s evaluation
campaign. In the manual evaluation, various MT
systems are directly compared to each other, by an-
notators who indicate which systems produce better
outputs (i.e. better translations). Starting in 2010,
the evaluation moved from using a locally hosted
web server, and onto MTurk, taking advantage of
MTurk’s existing infrastructure, and making avail-
able the option to collect data from a large pool of
annotators, if desired, rather than relying solely on
recruited volunteers. That evaluation campaign in-
volved around 170 submissions over eight different
language pairs. In 2011, the number increased to
190 submissions over ten language pairs.

We note here that although MAISE was written
with MT in mind, it can be used for other ML/AI
tasks as well. Some of the supported features are
meant to make MT evaluation easier (e.g. MAISE is
aware of which language is being translated to and
from), but those could simply be ignored for other
tasks. As long as the task has some concept of ‘in-
put’ and some concept of ‘output’ (e.g. a foreign
sentence and a machine translation), then MAISE is
appropriate.

Given this paper’s venue of publication, the re-
mainder of the paper assumes the task at hand is ma-
chine translation.

3 The Mechanics of MAISE

The components of MAISE have been designed to
completely eliminate the need to write any data
processing code, and to minimize the need for the
user to perform any manual tasks on MTurk’s inter-
face, since MAISE facilitates communication with
MTurk. Whenever MAISE needs to communicate
with MTurk, it will rely on MTurk’s Java SDK,

which is already included in the MAISE release
(allowed under the SDK’s license, Apache License
V2.0).

Once you create your evaluation tasks and upload
the necessary content to MTurk, workers will begin
to complete the corresponding HITs. On a regular
(e.g. daily) basis, you will tell MAISE to retrieve the
new judgments that workers provided since the last
time MAISE checked. The process continues until
either all your tasks are completed, or you decide
you have enough judgments.

You can use MAISE with any evaluation setup
you like, as long as you design the user interface
for it. Currently, MAISE comes with existing sup-
port for a particular evaluation setup that asks anno-
tators to rank the outputs of different systems rela-
tive to each other. When we say “existing support”
we mean the user interface is included, and so is an
analysis tool that can make sense of the judgments.
This way, you don’t need to do anything extra to ob-
tain rankings of the systems. You can read more
about this evaluation setup in the overview papers
of the Workshop on Statistical Machine Translation
(WMT) for the past two years.

3.1 Requirements and Setup
MAISE is quite easy to use. Beyond compiling
a few Java programs, there is no need to install
anything, modify environment variables, etc. Fur-
thermore, since it is Java-based, it is completely
platform-independent.

To use MAISE, you will need:

• Java 6

• Apache Ant

• A hosting location (where you place certain
HTML files)

• An MTurk Requester account

You will also need an active Internet connection
whenever new tasks need to be uploaded to MTurk,
and whenever judgments need to be collected from
MTurk. The setup details are beyond the scope
of this paper, but are straightforward, and can be
found in MAISE’s documentation, including guid-
ance with all the MTurk-related administrative is-
sues (e.g. the last point in the above list).
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3.2 Essential Files

MAISE will assume that the user has a certain set of
“essential files” that contain all the needed informa-
tion to perform an evaluation. These files are:

1) The system outputs should be in plain
text format, one file per system. The
filenames should follow the pattern
PROJECT.xx-yy.sysname, where
PROJECT is any identifying string cho-
sen by the user, xx is a short name for the
source language, and yy is a short name for
the the target language.

2) The source files should be in plain text
as well, one file per language pair. The
source filenames should follow the pattern
PROJECT.xx-yy.src, where PROJECT
matches the identifying string used in the sub-
mission filenames. (The contents of such a file
are in the xx language.)

3) The reference files, also one per language pair,
with filenames PROJECT.xx-yy.ref. (The
contents of such a file are in the yy language.)

4) A specification file that contains values for var-
ious parameters about the project (e.g. the lo-
cation of the above files).

5) A batch details file that contains information
about the desired number of MTurk tasks and
their particular properties.

As one could see, the user need only provide the
bare minimum to get their evaluation started. More
details about items (4) and (5) are provided in the
documentation. Essentially, they are easily readable
and editable files, and all the user needs to do to cre-
ate them is to fill out the provided templates.

3.3 The Components of MAISE

There are three main steps necessary to perform an
evaluation on MTurk: create the evaluation tasks,
upload them to MTurk, and retrieve answers for
them. Each of those three steps corresponds to a
single component in MAISE.

3.3.1 The BatchCreator
The first step is to create some input files for

MTurk: the files that contain actual instantiations of
our tasks, with actual sentences. This will be the first
step that requires you to make some real executive
decisions regarding your tasks. Among other things,
you will decide how many judgments to collect and
who to allow to give you those judgments.

Each batch corresponds to a single task on
MTurk. Typically, each batch corresponds to a sin-
gle language pair. So, if you are performing a
full evaluation campaign, you would be creating as
many batches as there are language pairs. If you are
merely comparing several variants of the same sys-
tem, say, for Arabic-English, you would probably
have just one batch.

That said, you may have more than one batch for
the same language pair, that nonetheless differ in
other properties. In fact, each batch has a number
of settings that need to be specified, including:

1) what language pair does this batch involve?

2) how many HITs does this batch include?

3) how many times should each HIT be com-
pleted?

4) what is the reward per assignment?

5) what are the qualifications necessary for an an-
notator to be allowed to perform the task (e.g.
location, approval rating)?

Those settings are all specified in a single file,
the abovementioned batch details file. The user
them simply runs the BatchCreator component,
which processes all this information and creates the
necessary files for each batch.

3.3.2 The Uploader
After the BatchCreator creates the different

files for the different batches, those files must be
uploaded to MTurk in order to create the various
batches. There will be a single file, called the up-
load info file, that contains the locations of the files
to be uploaded. The upload info file is created au-
tomatically, and all the user needs to do is pass it
as a parameter to the next MAISE component, the
Uploader.
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The Uploader communicates with MTurk via
a web connection. Once it has completed execution,
HITs for your tasks will start to appear on the MTurk
website, available for MTurk’s workers to view and
complete them.

3.3.3 The Retriever
At this point, you would be waiting for Turkers to

find your task and start accepting HITs and complet-
ing them. You can retrieve those answers by using
another MAISE component that communicates with
MTurk called the Retriever. It can be instructed
to retrieve all answers for your HITs or only a subset
of them. It retrieves all the answers for those HITs,
and appends those answers to an answer log file.

Note that the Retriever does not necessarily
approve any of the newly submitted assignments. It
can be instructed to explicitly retrieve those answers
without approving them, giving you the chance to
first review them for quality. Alternatively, it can be
instructed to approve the assignments as it retrieves
them, and also to reject certain assignments or cer-
tain annotators that you have identified as being of
sub-par quality. All this information is placed in
plain text files, easy to create and maintain.

When you use MAISE to perform an actual eval-
uation on MTurk, you should run the Retriever
fairly regularly, perhaps once every day or two.
Each time, review the retrieved results, and rerun
the Retriever in “decision mode” enabled, to
aprove/reject the pending submissions.

4 Analyzing the Results: An Example

Once the tasks have been completed, all the an-
swers will have been written into an answers log file.
The log file is in plain format, and contains exten-
sive information about each HIT completed, includ-
ing a worker ID, time required to complete, and, of
course, the answers themselves. Naturally, analyz-
ing the results of the evaluation depends on what the
task was, and what the interface you designed looks
like. You can write your own code to read the log
file and make sense out of them.

MAISE already comes equipped with an analy-
sis tool for one particular task: the ranking task. In
this setup, the annotator evaluates system outputs by
ranking them from best to worst. The rank labels
are interpreted as pairwise comparisons (e.g. 5 rank

labels correspond to
(
5
2

)
= 10 pairwise compar-

isons), and each system is assigned a score reflect-
ing how often it wins those pairwise comparisons.
This is the setup used in the evaluation campaigns
of WMT10 and WMT11.

The analysis tool takes as input the answers log
file as is, and extracts from it all the rank labels.
Each system’s score is computed, and the tool pro-
duces a table for each language pair displaying the
participating systems, in descending order of their
scores. It also creates an additional head-to-head ta-
ble, that summarizes for a specific pair of systems
how often each system outranked the other. The out-
put is created in HTML format, for easy viewing in
a browser.

Furthermore, the tool produces a detailed worker
profile table. Each row in this table corresponds to
one worker, identified by their Amazon worker ID,
and includes certain measures that can help guide
you identify bad workers, who are either clicking
randomly, or perhaps simply not doing the task prop-
erly. Those measures include:

• Average time required per HIT: a suspi-
ciously fast annotator might not be performing
the task diligently.

• The reference preference rate (RPR): how of-
ten did the annotator correctly prefer an em-
bedded reference translation; a low RPR almost
certainly indicates random clicking, with typi-
cal good values at 0.97 and up.

• Prevalence of tied rank labels: an overly high
percentage of tied comparisons indicates an
overly ‘conservative’ worker, hesitant to distin-
guish between outputs.

• The annotator’s intra-annotator agreement:
i.e. the annotator’s consistency with them-
selves, based on how often they repeated the
same judgment when comparing the same sys-
tem pair.

To appreciate the tool’s output, the reader is en-
couraged to view the results of a real-life evaluation
campaign at http://bit.ly/jJYzkO. These
are results of analyzing 85,000+ rank labels in an
evaluation campaign of 40+ MT systems over six
language pairs.
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5 Download and Licensing

MAISE can be obtained from the author’s webpage:
http://cs.jhu.edu/˜ozaidan/maise/.
The release includes MAISE’s source code, in-
structions, documentation, and a tutorial. MAISE
is an open-source tool, licensed under the terms of
the GNU Lesser General Public License (LGPL).
Therefore, it is free for personal and scientific use
by individuals and/or research groups. It may not
be modified or redistributed, publicly or privately,
unless the licensing terms are observed. If in doubt,
contact the author for clarification and/or an explicit
permission. The distribution also includes the
MTurk Java SDK v1.2.2, which is licensed under
the terms of the Apache License V2.0.

Acknowledgments

I developed MAISE while I was funded by DARPA’s
GALE Program, and in part by the EuroMatrixPlus
Project. I would like to thank Chris Callison-Burch,
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Abstract

This paper describes the development op-
erated into MANY for the 2011 WMT
system combination evaluation campaign.
Hypotheses from French/English and En-
glish/French MT systems were combined
with a new version of MANY, an open
source system combination software based
on confusion networks decoding currently
developed at LIUM. MANY has been up-
dated in order to optimize decoder pa-
rameters with MERT, which proves to
find better weights. The system combi-
nation yielded significant improvements in
BLEU score when applied on system com-
bination data from two languages.

1 Introduction

This year, the LIUM computer science laboratory
participated in the French-English system combi-
nation task at WMT’11 evaluation campaign. The
system used for this task is MANY1 (Barrault,
2010), an open source system combination soft-
ware based on Confusion Networks (CN).

For this year evaluation, rather more technical
than scientific improvements have been added to
MANY. The tuning process has been improved
by using MERT (Och, 2003) as a replacement
of the numerical optimizer Condor (Berghen and
Bersini, 2005). The impact of such change is de-
tailed in section 3.

After the evaluation period, some experiments
have been performed on the English-French sys-
tem combination task. The results are presented
in the section 5. Before that, a quick description
of MANY, including recent developments, can be
found in section 2.

1MANY is available at the following address http://
www-lium.univ-lemans.fr/˜barrault/MANY

2 System description

MANY is a system combination software (Bar-
rault, 2010) based on the decoding of a lattice
made of several Confusion Networks (CN). This
is a widespread approach in MT system combina-
tion (Rosti et al., 2007; Shen et al., 2008; Karakos
et al., 2008; Rosti et al., 2009). MANY can be
decomposed in two main modules. The first one
is the alignment module which actually is a modi-
fied version of TERp (Snover et al., 2009). Its role
is to incrementally align the hypotheses against a
backbone in order to create a confusion network.
Those confusion networks are then connected to-
gether to create a lattice. This module uses dif-
ferent costs (which corresponds to a match, an in-
sertion, a deletion, a substitution, a shift, a syn-
onym and a stem) to compute the best alignment
and incrementally build a confusion network. In
the case of confusion network, the match (substi-
tution, synonyms, and stems) costs are considered
when the word in the hypothesis matches (is a sub-
stitution, a synonyms or a stems of) at least one
word of the considered confusion sets in the CN.

System 0

System 1

TERp 
alignment LM

output

1-best 
output

1-best 
output

TERp 
alignment DECODEMerge

System M
1-best 
output

TERp 
alignment

{best hypo
nbest listLattice

CN

CN

CN

Figure 1: System combination based on confusion
network decoding.

The second module is the decoder. This decoder
is based on the token pass algorithm and it accepts
as input the lattice previously created. The proba-
bilities computed in the decoder can be expressed
as follow :
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log(PW ) =
∑

i

αi log
(
hi(t)

)
(1)

where t is the hypothesis, the αi are the weights
of the feature functions hi. The following features
are considered for decoding:

• The language model probability: the proba-
bility given by a 4-gram language model.

• The word penalty: penalty depending on the
size (in words) of the hypothesis.

• The null-arc penalty: penalty depending on
the number of null-arcs crossed in the lattice
to obtain the hypothesis.

• System weights: each word receive a weight
corresponding to the sum of the weights of all
systems which proposed it.

3 Tuning

As mentioned before, MANY is made of two main
modules: the alignment module based on a modi-
fied version of TERp and the decoder. Considering
a maximum of 24 systems for this year evaluation,
33 parameters in total have to be optimized. By
default, TERp costs are set to 0.0 for match and
1.0 for everything else. These costs are not correct,
since a shift in that case will hardly be possible.
TERp costs are tuned with Condor (a numerical
optimizer based on Powell’s algorithm, (Berghen
and Bersini, 2005)). Decoder feature functions
weights are optimized with MERT (Och, 2003).
The 300-best list created at each MERT iteration
is appended to the n-best lists created at previous
iterations. This proves to be a more reliable tuning
as shown in the following experiments.

During experiments, data from WMT’09 eval-
uation campaign are used for testing the tuning
approach. news-dev2009a is used as development
set, and news-dev2009b as internal test, these cor-
pora are described in Table 1.

NAME #sent. #words #tok
news-dev2009a 1025 21583 24595
news-dev2009b 1026 21837 24940

Table 1: WMT’09 corpora : number of sentences,
words and tokens calculated on the reference.

For the sake of simplicity, the five best systems
(ranking given by score on dev) are considered

only. Baseline systems performances on dev and
test are presented in Table 2.

Corpus Sys0 Sys1 Sys2 Sys3 Sys4
Dev 18.20 17.83 20.14 21.06 17.72
Test 18.53 18.33 20.43 21.35 18.15

Table 2: Baseline systems performance on
WMT’09 data (%BLEU).

The 2-step tuning protocol applied on news-
dev2009a, when using MERT to optimize decoder
feature functions weights provides the set of pa-
rameters presented in Table 3.

Costs: Del Stem Syn Ins Sub Shift
0.87 0.91 0.94 0.90 0.98 1.21

Dec.: LM weight Word pen. Null pen.
0.056 0.146 0.042

Wghts.: Sys0 Sys1 Sys2 Sys3 Sys4
-0.03 -0.21 -0.23 -0.28 -0.02

Table 3: Parameters obtained with tuning decoder
parameters with MERT.

Results on development corpus of WMT’09
(used as test set) are presented in Table 4. We can

System Dev Test
Best single 21.06 21.35
MANY (2010) 22.08 22.28
MANY-2steps (2010) 21.94 22.09
MANY-2steps/MERT (2011) 23.05 23.07

Table 4: System Combination results on WMT’09
data (%BLEU-cased).

observe that 2-step tuning provides almost +0.9
BLEU point improvement on development corpus
which is well reflected on test set with a gain of
more than 0.8 BLEU. By using MERT, this im-
provement is increased to reach almost +2 BLEU
point on dev corpus and +1.7 BLEU on test.

There are two main reasons for this improve-
ment. The first one is the use of MERT which
make use of specific heuristics to better opti-
mize toward BLEU score. The second one is the
fully log-linear interpolation of features functions
scores operated into the decoder (previously, the
word and null penalties were applied linearly).
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4 2011 evaluation campaign

A development corpus, newssyscombtune2011,
and a test set, newssyscombtest2011, described in
Table 5, were provided to participants.

NAME #sent. #words #tok
newssyscombtune2011 1003 23108 26248
newssyscombtest2011 2000 42719 48502

Table 5: Description of WMT’11 corpora.

Language model: The English target language
models has been trained on all monolingual data
provided for the translation tasks. In addition,
LDC’s Gigaword collection was used for both lan-
guages. Data corresponding to the development
and test periods were removed from the Gigaword
collections.

Sys. # BLEU TER Sys. # BLEU TER
Sys0 29.86 52.46 Sys11 27.23 53.48
Sys1 29.74 51.74 Sys12* 26.82 54.23
Sys2 29.73 52.90 Sys13 26.25 55.60
Sys3 29.58 52.73 Sys14* 26.13 55.65
Sys4* 29.39 52.91 Sys15 25.90 55.69
Sys5 28.89 53.74 Sys16 25.45 56.92
Sys6 28.53 53.27 Sys17 25.23 56.09
Sys7* 28.31 54.22 Sys18 23.63 60.25
Sys8* 28.08 54.47 Sys19 21.90 63.65
Sys9* 27.98 53.92 Sys20 21.77 60.78
Sys10 27.46 54.60 Sys21 20.97 64.00

Sys22 16.63 65.83
MANY-5sys 31.83 51.27

MANY-10sys 31.75 51.91
MANY-allsys 30.75 54.33

Table 6: Systems performance on newssyscomb-
tune2011 development data (%BLEU-cased). (*
indicate a contrastive run)

Choosing the right number of systems to com-
bine: Table 6 shows the performance of the in-
put systems (ordered by BLEU score computed on
newssyscombtune2011) and the result of 3 system
combination setups. The difference in these se-
tups only reside on the number of inputs to use for
combination (5, 10 and all system outputs). Notice
that the contrastive runs have not been used when
combining 5 and 10 systems. The motivation for
this is to benefit from the multi-site systems de-

velopment which more likely provide varied out-
puts (i.e. different ngrams and word choice). The
results show that combining 5 systems is slightly
better than 10, but give more than 1 BLEU point
improvement compared to combining all systems.
Still, the combination always provide an improve-
ment, which was not the case in last year evalua-
tion.

The results obtained by combining 5 and 10 sys-
tems are presented in Table 7.

Sys. # BLEU TER Sys. # BLEU TER
Sys0 29.43 52.01 Sys6 28.08 53.19
Sys1 29.15 51.30 Sys11 27.24 53.74
Sys2 28.87 52.82 Sys13 26.74 52.92
Sys3 28.82 52.57 Sys15 26.31 54.61
Sys5 28.08 53.19 Sys16 25.23 55.38

MANY (5sys) 30.74 51.17
MANY (10sys) 30.60 51.39

Table 7: Baseline systems performance on
WMT’11 syscomb test data (%BLEU-cased).

Optimizing MANY on newssyscombtune2011
corpus produced the parameter set presented in Ta-
ble 8. We can see that the weights of all system are
not proportional to the BLEU score obtained on
the development corpus. This suggest that a bet-
ter system selection could be found. This is even
more probable since the weight of system Sys2 is
positive (which imply a negative impact on each
word proposed by this system), which means that
when an hypothesis contains a word coming from
this system, then its score is decreased.

Costs: Del Stem Syn Ins Sub Shift
0.90 0.88 0.96 0.97 1.01 1.19

Dec.: LM weight Null pen. Len pen.
0.0204 0.26 0.005

Wghts.:Sys0 Sys1 Sys2 Sys3 Sys5
-0.16 -0.30 0.008 -0.16 -0.09

Table 8: Parameters obtained after tuning the sys-
tem parameter using 5 hypotheses.

Table 9 contains the BLEU scores computed be-
tween the outputs of the five systems used during
combination. An interesting observation is that the
system which receive the bigger weight is the one
which ”distance”2 against all other system outputs

2This ”distance” is expressed in terms of ngrams agree-
ment
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Sys0 Sys1 Sys2 Sys3 Sys5 mean
Sys0 - 53.59 62.67 64.60 62.50 60.84
Sys1 53.51 - 54.19 52.42 51.69 52.95
Sys2 62.72 54.28 - 65.49 63.09 61.40
Sys3 64.63 52.51 65.47 - 61.35 60.99
Sys5 62.55 51.78 63.10 61.37 - 59.70
mean 60.85 53.04 61.36 60.97 59.66

Table 9: Cross-system BLEU scores computed
on WMT’11 French-English test corpus outputs
(%BLEU-cased).

is the highest, whereas the ”closest” system get the
smallest weight. This suggests that systems closer
to other systems tends to be less useful for sys-
tem combination. This is an interesting behaviour
which has to be explored deeper and validated on
other tasks and corpora.

5 MANY for french outputs

After the evaluation period, some experiments
have been conducted in order to combine french
outputs. The main difference lie in the fact that
linguistic resources are not easily or freely avail-
able for that kind of language. Therefore, instead
of using TERp with relax3 shift constraint, the
strict constraint was used (shifts occur only when
a match is found).

The available data are detailed in the Table 10.

NAME #sent. #words #tok
syscombtune 1003 24659 29171
syscombtest 2000 45372 53970

Table 10: Description of WMT’11 corpora for
system combination in french.

The results obtained are presented in Table 11.
The BLEU score increase by more than 0.8 point
but the TER score decrease by 0.58. The metric
targeted during tuning is BLEU, which can ex-
plain the improvement in that metric. When deal-
ing with english text, the only case where such be-
haviour is observed is when combining all systems
(see Table 6.

6 MANY technical news

Several improvements have been performed on
MANY. The decoder is now based on a fully log-

3Shifts can occur when a match, a stem, a synonym or a
paraphrase is found.

Corpus syscombtune2011 syscombtest2011
BLEU TER BLEU TER

Sys0 35.99 49.16 34.36 49.78
Sys1 32.99 51.90 30.73 52.52
Sys2 32.41 52.77 29.85 53.61
Sys3 32.40 51.26 30.48 52.20
Sys4 32.30 52.21 31.02 52.49
MANY 36.81 49.74 34.51 50.54

Table 11: Systems and combination performance
on WMT’11 french data (%BLEU-cased).

linear model (whereas before, the word and null
penalties were applied linearly). Using MERT to
tune the decoder parameters is therefore possible
and allows to reach bigger improvement compared
to using Condor. This is probably due to the fact
that MERT uses several heuristics useful for tun-
ing on BLEU score.

In order to facilitate the use of MANY, it has
been integrated in the Experiment Management
System, EMS - (Koehn, 2010). An experiment can
now be setup/modified/re-run easily by modifying
a single configuration file. The default behavior of
this framework is to perform 3 runs of MERT in
parallel (using torque) and take the best optimiza-
tion run. Apart from avoiding local maximum, the
procedure allows to see the variability of the opti-
mization process and report more realistic results
(for example, by taking the average).

7 Conclusion and future work

For WMT’11 system combination evaluation cam-
paign, several rather technical improvements have
been performed into MANY. By homogenizing
the log-linear model used by the decoder and uti-
lizing MERT for tuning, MANY achieves im-
provements of more than 2 BLEU points on
WMT’09 data and about 1.3 BLEU point on
newssyscombtest2011 relatively to the best single
system. Moreover, a dry-run operated on french
data shows a promising result with an improve-
ment of more than 0.8 BLEU points. This will be
further explored in the future.

MANY can benefit from various information.
At the moment, the decision taken by the decoder
mainly depends on a target language model. This
is clearly not enough to achieve greater perfor-
mances. The next issues which will be addressed
within the MANY framework is to estimate good
confidence measure to use in place of the systems
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priors. These confidences measures have to be re-
lated to the system performances, but also to the
complementarity of the systems considered.
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Abstract

This paper presents the submissions of the pat-
tern recognition and human language technol-
ogy (PRHLT) group to the system combina-
tion task of the sixth workshop on statistical
machine translation (WMT 2011). Each sub-
missions is generated by a multi-system mini-
mum Bayes risk (MBR) technique. Our tech-
nique uses the MBR decision rule and a linear
combination of the component systems’ prob-
ability distributions to search for the minimum
risk translation among all the sentences in the
target language.

1 Introduction

The UPV-PHRLT approach to machine translation
(MT) system combination is based on the mini-
mum Bayes risk system combination (MBRSC) al-
gorithm (Gonzlez-Rubio et al., 2011). A multi-
system MBR technique that computes consensus
translations over multiple component systems.

MBRSC operates directly on the outputs of the
component models. We perform an MBR decod-
ing using a linear combination of the component
models’ probability distributions. Instead of re-
ranking the translations provided by the component
systems, we search for the hypothesis with the min-
imum expected translation error among all the pos-
sible finite-length strings in the target language. By
using a loss function based on BLEU (Papineni et
al., 2002), we avoid the hypothesis alignment prob-
lem that is central to standard system combination
approaches (Rosti et al., 2007). MBRSC assumes
only that each translation model can produce expec-
tations of n-gram counts; the latent derivation struc-
tures of the component systems can differ arbitrary.
This flexibility allows us to combine a great variety
of MT systems.

2 Minimum Bayes risk Decoding

SMT can be described as a mapping of a word se-
quence f in a source language to a word sequence
e in a target language; this mapping is produced by
the MT decoder D(f). If the reference translation
e is known, the decoder performance can be mea-
sured by the loss function L(e,D(f)). Given such a
loss function L(e, e′) between an automatic transla-
tion e′ and a reference e, and an underlying proba-
bility model P (e|f), MBR decoding has the follow-
ing form (Goel and Byrne, 2000; Kumar and Byrne,
2004):

ê = arg min
e′∈E

R(e′) (1)

= arg min
e′∈E

∑
e∈E

P (e|f) · L(e, e′) , (2)

where R(e′) denotes the Bayes risk of candidate
translation e′ under loss function L, and E repre-
sents the space of translations.

If the loss function between any two hypotheses
can be bounded: L(e, e′) ≤ Lmax, the MBR de-
coder can be rewritten in term of a similarity func-
tion S(e, e′) = Lmax − L(e, e′). In this case, in-
stead of minimizing the Bayes risk, we maximize
the Bayes gain G(e′):

ê = arg max
e′∈E

G(e′) (3)

= arg max
e′∈E

∑
e∈E

P (e|f) · S(e, e′) . (4)

MBR decoding can use different spaces for hy-
pothesis selection and gain computation (arg max
and sum in Eq. (4)). Therefore, the MBR decoder
can be more generally written as follows:

ê = arg max
e′∈Eh

∑
e∈Ee

P (e|f) · S(e, e′) , (5)
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where Eh refers to the hypotheses space form where
the translations are chosen and Ee refers to the evi-
dences space that is used to compute the Bayes gain.
We will investigate the expansion of the hypotheses
space while keeping the evidences space as provided
by the decoder.

3 MBR System Combination

MBRSC is a multi-system generalization of MBR
decoding. It uses the MBR decision rule on a linear
combination of the probability distributions of the
component systems. Unlike existing MBR decoding
methods that re-rank translation outputs, MBRSC
search for the minimum risk hypotheses on the com-
plete set of finite-length hypotheses over the out-
put vocabulary. We assume the component systems
to be statistically independent and define the Bayes
gain as a linear combination of the Bayes gains
of the components. Each system provides its own
space of evidences Dn(f) and its posterior distribu-
tion over translations Pn(e|f). Given a sentence f in
the source language, MBRSC is written as follows:

ê = arg max
e′∈Eh

G(e′) (6)

≈ arg max
e′∈Eh

N∑
n=1

αn · Gn(e′) (7)

= arg max
e′∈Eh

N∑
n=1

αn ·
∑

e∈Dn(f)

Pn(e|f) · S(e, e′) , (8)

where N is the total number of component systems,
Eh represents the hypotheses space where the search
is performed, Gn(e′) is the Bayes gain of hypothe-
sis e′ given by the nth component system and αn is
a scaling factor introduced to take into account the
differences in quality of the component models. It is
worth mentioning that by using a linear combination
instead of a mixture model, we avoid the problem
of component systems not sharing the same search
space (Duan et al., 2010).

3.1 Computing BLEU-based Gain

We are interested in performing MBRSC under
BLEU. Therefore, we rewrite the gain function G(·)
using single evidence (or reference) BLEU (Pap-

ineni et al., 2002) as the similarity function:

Gn(e′) =
∑

e∈Dn(f)

Pn(e|f) · BLEU(e, e′) (9)

BLEU =
4∏

k=1

(
mk

ck

) 1
4

·min
(
e1−

r
c , 1.0

)
, (10)

where r is the length of the evidence, c the length of
the hypothesis, mk the number of n-gram matches
of size k, and ck the count of n-grams of size k in
the hypothesis.

The evidences space Dn(f) may contain a huge
number of hypotheses1 which often make impracti-
cal to compute Eq. (9) directly. To avoid this prob-
lem, Tromble et al. (2008) propose linear BLEU, an
approximation to the BLEU score to efficiently per-
form MBR decoding on the lattices provided by the
component systems. However, we want to explore a
hypotheses space not restricted to the evidences pro-
vided by the systems.

In Eq. (9), we have one hypothesis e′ that is to be
compared to a set of evidences e ∈ Dn(f) which
follow a probability distribution Pn(e|f). Instead
of computing the expected BLEU score by calcu-
lating the BLEU score with respect to each of the
evidences, our approach will be to use the expected
n-gram counts and sentence length of the evidences
to compute a single-reference BLEU score. We re-
place the reference statistics (r and mn in Eq. (10))
by the expected statistics (r′ and m′n) given the pos-
terior distribution Pn(e|f) over the evidences:

Gn(e′) =
4∏

k=1

(
m′k
ck

) 1
4

·min
(
e1−

r′
c , 1.0

)
(11)

r′ =
∑

e∈Dn(f)

|e| · Pn(e|f) (12)

m′k =
∑

ng∈Nk(e′)

min(Ce′(ng), C ′(ng)) (13)

C ′(ng) =
∑

e∈Dn(f)

Ce(ng) · Pn(e|f) , (14)

where Nk(e′) is the set of n-grams of size k in the
hypothesis, Ce′(ng) is the count of the n-gram ng in

1For example, in a lattice the number of hypotheses may be
exponential in the size of its state set.
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the hypothesis and C ′(ng) is the expected count of
ng in the evidences. To compute the n-gram match-
ings m′k, the count of each n-gram is truncated, if
necessary, to not exceed the expected count for that
n-gram in the evidences.

We have replaced a summation over a possibly ex-
ponential number of items (e′ ∈ Dn(f) in Eq. (9))
with a summation over a polynomial number of n-
grams that occur in the evidences2. Both, the ex-
pected length of the evidences r′ and their expected
n-gram counts m′k can be pre-computed efficiently
from N -best lists and translation lattices (Kumar et
al., 2009; DeNero et al., 2010).

3.2 Model Training

The scaling factors in Eq. (8) denote the “quality” of
each system with respect to the rest of them, i.e. the
relative importance of each system in the Bayes gain
computation. This scaling factors must be carefully
tuned to obtain good translations.

We compute the scaling factor of each system as
the number of times the hypothesis of the system is
the best TER-scoring translation in the tuning cor-
pora. Previous works show that this measure ob-
tains the best translation results among other heuris-
tic measures (González-Rubio et al., 2010) and even
as good results as more complex methods such as
MERT (Och, 2003). A normalization is performed
to transform these counts into the range [0.0, 1.0].
After the normalization, a weight value of 0.0 is as-
signed to the lowest-scoring system, i.e. the lowest-
scoring system is discarded and not taken into ac-
count in the computation of the Bayes gain.

3.3 Model Decoding

In most MBR algorithms, the hypotheses space is
equal to the evidences space. However, we are inter-
ested in extend the hypotheses space by including
new sentences created using fragments of the hy-
potheses in the evidences spaces of the component
models. We perform the search (argmax opera-
tion in Eq. (8)) using the approximate median string
(AMS) algorithm (Martı́nez et al., 2000). AMS
algorithm perform a hill-climbing search on a hy-
potheses space equal to the free monoid Σ∗ of the
vocabulary of the evidences Σ = V oc(Ee).

2IfDn(f) is represented by a lattice, the number of n-grams

Algorithm 1 MBRSC decoding algorithm.
Require: Initial hypothesis e
Require: Vocabulary the evidences Σ

1: ê← e
2: repeat
3: ecur ← ê
4: for j = 1 to |ecur| do
5: ês ← ecur

6: for a ∈ Σ do
7: e′s ← Substitute(ecur, a, j)
8: if G(e′s) > G(ês) then
9: ês ← e′s

10: êd ← Delete(ecur, j)
11: êi ← ecur

12: for a ∈ Σ do
13: e′i ← Insert(ecur, a, j)
14: if G(e′i) > G(êi) then
15: êi ← e′i
16: ê← arg maxe′∈{ecur,ês,êd,êi} G(e′)
17: until G(ê) 6> G(ecur)
18: return ecur

Ensure: G(ecur) ≥ G(e)

The AMS algorithm is shown in Algorithm 1.
AMS starts with an initial hypothesis e3 that is mod-
ified using edit operations until there is no improve-
ment in the Bayes gain (Lines 3–16). On each posi-
tion j of the current solution ecur, we apply all the
possible single edit operations: substitution of the
jth word of ecur by each word a in the vocabulary
(Lines 5–9), deletion of the jth word of ecur (Line
10) and insertion of each word a in the vocabulary in
the jth position of ecur (Lines 11–15). If the Bayes
gain of any of the new edited hypotheses is higher
than the Bayes gain of the current hypothesis (Line
17), we repeat the loop with this new hypotheses ê,
in other case, we return the current hypothesis.

AMS algorithm takes as input an initial hypothe-
sis e and the combined vocabulary of the evidences
spaces Σ. Its output is a possibly new hypothesis
whose Bayes gain is assured to be higher or equal
than the Bayes gain of the initial hypothesis.

The complexity of the main loop (lines 2-17) is
O(|ecur| · |Σ| · CG), where CG is the cost of com-

is polynomial in the number of edges in the lattice.
3In the experimentation we use the evidence with minimum

Bayes’ risk as the initial hypothesis of the algorithm.
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cz→en en→cz de→en en→de es→en en→es fr→en en→fr

#systems 12 14 25 34 15 22 23 21

de
v Worst 15.6 8.8 12.8 4.5 15.1 20.3 15.8 13.9

Best 25.9 16.9 22.2 16.3 27.8 32.7 28.6 35.5
MBRSC 26.7 15.9 22.2 17.1 30.5 33.3 30.2 34.7

te
st

Worst 13.3 9.1 12.9 5.1 14.7 20.7 16.1 13.0
Best 27.2 18.6 21.9 16.7 27.4 32.5 28.1 33.5

MBRSC 27.9 17.7 22.1 16.5 30.4 32.9 29.6 32.7

Table 1: BLEU scores (case-sensitive) on the shared translation task development and test corpora of the best and
worst single systems and MBRSC. For each translation direction, we show the number of systems being combined.
Best translation results are in bold.

puting the gain of a hypothesis, and usually only a
moderate number of iterations (< 10) is needed to
converge (Martı́nez et al., 2000).

4 Results

Experiments were conducted on all the 8 translation
directions of the shared translation task Czech–
English (cz↔en), German–English (de↔en),
Spanish–English (es↔en) and French–English
(fr↔en) and also on the raw and clean versions
of the Haitian creole–English featured translation
task (ht→en). All the experiments were carried
out with the true-cased, detokenized version of the
tuning and test corpora, following the WMT 2011
submission guidelines.

4.1 Shared translation task

Table 1 shows the BLEU scores of MBRSC on the
development and test corpora in comparison with
the score of the best and worst individual systems.
In most of the translation directions, MBRSC im-
proved the results of the best individual system,
e.g. +2.7/+3.0 BLEU point in es→en. However,
in en→cz and en→fr, MBRSC performs worse than
the best individual system. One thing we noticed is
that for these translation directions, the translations
from one provided single system (online-B) were
much better in terms of BLEU than those of all other
systems (in the former case by more than 14% rel-
ative in development). In our experience, MBRSC
requires “comparably good” systems to be able to
achieve significant improvements (particularly if us-
ing heuristic scaling factors). On the other hand, we
would have achieved improvements over all remain-

ing systems leaving out online-B.

4.2 Featured translation task
Regarding the ht→en featured translation task,
MBRSC is not able to improve the results of the
best individual system in any case. As in the en→cz
and en→fr translation directions, one of the systems
(bm-i2r) perform much much better than all other
systems. We can notice the surprisingly low score
of one of the systems (umd-hu) in the clean task.
The translations of this system are all equal (“N /
A”) so we suppose that some error occurred during
the translation or submission processes.

ht→en
raw clean

#systems 8 16
worst 15.4 2.9
best 29.6 33.1

MBRSC 28.6 32.2

Table 2: BLEU scores (case-sensitive) on the featured
translation task development corpora of the best and
worst single systems and MBRSC. Best translation re-
sults are in bold.

5 summary

The UPV-PRHLT submissions for WMT 2011 sys-
tem combination task were described in this paper.
The combination was based on a multi-system MBR
technique that uses the MBR decision rule and a lin-
ear combination of the component systems’ proba-
bility distributions to search for the minimum risk
translation among all the finite-length strings in the
output vocabulary. We introduced expected BLEU,
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an approximation to the BLEU score that allows to
efficiently apply MBR in these conditions. In most
of the translation directions we were able to obtain
BLEU gains over the best individual systems.
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Abstract

This paper describes our submissions,
cmu-heafield-combo, to the ten tracks
of the 2011 Workshop on Machine Transla-
tion’s system combination task. We show how
the combination scheme operates by flexibly
aligning system outputs then searching a
space constructed from the alignments.
Humans judged our combination the best on
eight of ten tracks.

1 Introduction

We participated in all ten tracks of the 2011 Work-
shop on Machine Translation system combination
task as cmu-heafield-combo. This uses a sys-
tem combination scheme that builds on our prior
work (Heafield and Lavie, 2010), especially with
respect to language modeling and handling non-
English languages. We present a summary of
the system, describe improvements, list the data
used (all of the constrained monolingual data), and
present automatic results in anticipation of human
evaluation by the workshop.

2 Our Combination Scheme

Given single-best outputs from each system, the
scheme aligns system outputs then searches a space
based on these alignments. The scheme is a contin-
uation of our previous system (Heafield and Lavie,
2010) so we describe unchanged parts of the sys-
tem in less detail, preferring instead to focus on new
components.

2.1 Alignment
We run the METEOR matcher (Denkowski and
Lavie, 2010) on every pair of system outputs for a
given sentence. It identifies exact matches, identi-
cal stems (Porter, 2001) except for Czech, WordNet
synonym matches for English (Fellbaum, 1998), and
automatically extracted matches for all five target
languages. The automatic matches come from piv-
oting (Bannard and Callison-Burch, 2005) on con-
strained data. An example METEOR alignment is
shown in Figure 1, though it need not be monotone.

Twice that produced by nuclear plants

Double that that produce nuclear power stations

Figure 1: Alignment generated by METEOR showing
exact (that–that and nuclear–nuclear), stem (produced–
produce), synonym (twice–double), and unigram para-
phrase (plants–stations) alignments.

2.2 Search
The search space is unchanged from Heafield and
Lavie (2010), so we give a summary here. The gen-
eral idea is to generate a combined sentence one
word at a time, going from left to right. As the
scheme creates an output, it also steps through the
system outputs from left to right. Stepping through
systems is synchronized with the partial output, so
that words to the left are already captured in the hy-
pothesis and the next word from any of the systems
represents a meaningful extension of the partial out-
put. All of these options are considered by hypothe-
sis branching.
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Thus far, we have assumed that system outputs are
monotone: they agree on word order, so it is possi-
ble to step through all of them simultaneously. On
the left are words captured in the partial output and
on the right are the words whose meaning remains
to be captured in the output. When systems disagree
on word order, the partial output corresponds to dis-
joint pieces of a system’s output. We still retain that
notion that a word is either captured in the partial
output or not captured, but do not have a single di-
viding line between them. In this case, we still pro-
ceed from left to right, considering the first uncap-
tured word for extension. Then, we skip over parts
of a system’s output that have already been captured.

Here, we have used the informal notion of words
whose meaning is “captured” or “uncaptured” by the
partial output. The system interprets words aligned
to the partial output as captured while those not
aligned to the hypothesis are considered uncaptured.
A heuristic also cleans up excess words in order
to keep the stepping process loosely synchronized
across system outputs.

2.3 Features

We use three feature categories to guide search:

Length The length of the hypothesis in tokens.

Language Model Log probability and OOV count
from an N -gram language model. Details are
in Section 4.1.

Match Counts Counts of n-gram matches between
systems outputs and the hypothesis.

The match count features report n-gram matches
between each system and the hypothesis. Specifi-
cally, feature ms,n reports n-gram overlap between
the hypothesis and system s. We track n-gram
counts up to length N , typically 2 or 3, finding that
tracking longer lengths adds little. An example is
shown in Figure 2.

These match counts may be exact, in which case
every word of the n-gram must be the same (up
to case) or approximate, in which case any aligned
word found by METEOR may be substituted. Be-
cause exact matches handle lexical choice and in-
exact matches collect more votes that better handle
word order, we use both sets of features. However,

the limit N may be different i.e. Ne = 2 counts
exact matches up to length 2 and Na = 3 counts
inexact matches up to length 3.

System 1: Supported Proposal of France

System 2: Support for the Proposal of France

Candidate: Support for Proposal of France

Unigram Bigram Trigram
System 1 4 2 1
System 2 5 3 1

Figure 2: Example match feature values with two systems
and matches up to length three. Here, “Supported” counts
because it aligns with “Support”.

3 Related Work

Hypothesis selection (Hildebrand and Vogel, 2009)
selects an entire sentence at a time instead of picking
and merging words. This makes the approach less
flexible, in that it cannot synthesize new sentences,
but also less risky by avoiding matching and related
problems entirely.

While our alignment is based on METEOR, other
techniques are based on TER (Snover et al., 2006),
Inversion Transduction Grammars (Narsale, 2010),
and other alignment methods. These use exact
alignments and positional information to infer align-
ments, ignoring the content-based method used by
METEOR. This means they might align content
words to function words, while we never do. In prac-
tice, using both signals would likely work better.

Confusion networks (Rosti et al., 2010; Narsale,
2010) are the dominant method for system combi-
nation. These base their word order on one system,
dubbed the backbone, and have all systems vote on
editing the backbone. Word order is largely fixed to
that of one system; by contrast, ours can piece to-
gether word orders taken from multiple systems. In
a loose sense, our approach is a confusion network
where the backbone is permitted to switch after each
word.

Interestingly, BBN (Rosti et al., 2010) this year
added a novel-bigram penalty that penalizes bigrams
in the output if they do not appear in one of the sys-
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tem outputs. This is the complement of our bigram
match count features (and, since, we have a length
feature, the same up to rearranging weights). How-
ever, they threshold it to indicate whether the bigram
appears at all instead of how many systems support
the bigram.

4 Resources

The resources we use are constrained to those pro-
vided for the shared task.

For the paraphrase matches described in Sec-
tion 2.1, METEOR (Denkowski and Lavie, 2010)
trains its paraphrase tables via pivoting (Bannard
and Callison-Burch, 2005). The phrase tables are
trained using parallel data from Europarl v6 (Koehn,
2005) (fr-en, es-en, de-en, and es-de), news com-
mentary (fr-en, es-en, de-en, and cz-en), United Na-
tions (fr-en and es-en), and CzEng (cz-en) (Bojar
and Žabokrtský, 2009) sections 0–8.

4.1 Language Modeling

As with previous versions of the system, we use
language model log probability as a feature to bias
translations towards fluency. We add a second fea-
ture per language model that counts OOVs, allow-
ing MERT to independently tune the OOV penalty.
Language models often have poor OOV estimates
for translation because they come not from new text
in the same language but from new text in a differ-
ent language. The distribution is even more biased
in system combination, where most systems have al-
ready applied a language model. The new OOV fea-
ture replaces a previous feature that reported the av-
erage n-gram length matched by the model.

We added support for multiple language mod-
els so that their probabilities, OOV penalties, and
all other features are dynamically interpolated using
MERT. This we use for the Haitian Creole-English
tasks, where the first language model is a large
model built on the monolingual data except SMS
messages and the second small language model is
built on the SMS messages. The OOV features play
an important role here because frequent anonymiza-
tion markers such as “[firstname]” do not appear in
the large language model.

To scale to larger language models, we use

BigFatLM1, an open-source builder of large un-
pruned models with modified Kneser-Ney smooth-
ing. Then, we filter the models to the system out-
puts. In order for an n-gram to be queried, all of the
words must appear in system outputs for the same
sentence. This enables a filtering constraint stronger
than normal vocabulary filtering, which permits n-
grams supported only by words in different sen-
tences. Finally, we use KenLM (Heafield, 2011) for
inference at runtime.

Our primary use of data is for language model-
ing. We used essientially every constrained resource
available and appended them together to build one
large model. For every language, we used the pro-
vided Europarl v6 (Koehn, 2005), News Crawl, and
News Commentary corpora. In addition, we used:

English Gigaword Fourth Edition (Parker et al.,
2009) and the English parts of United Na-
tions documents, Giga-FrEn, and CzEng (Bojar
and Žabokrtský, 2009) sections 0–7. For the
Haitian Creole-English tasks, we built a sepa-
rate language model on the SMS messages and
used it alongside the large English model.

Czech CzEng (Bojar and Žabokrtský, 2009) sec-
tions 0–7

French Gigaword Second Edition (Mendonça et
al., 2009a) and the French parts of Giga-FrEn
and United Nations documents.

German There were no additional corpora avail-
able.

Spanish Gigaword Second Edition (Mendonça et
al., 2009b) and the Spanish parts of United Na-
tions documents.

4.2 Preprocessing

Many corpora contained excessive duplicate text.
We wrote a deduplicator that removes all but the
first instance of each line. Clean corpora generally
reduced line count by 10-25% when deduplicated,
resulting from naturally-occuring duplicates such as
“yes .” We left the duplicate lines in these corpora.
The News Crawl corpus showed a 72.6% reduction
in line count due mainly to boilerplace, such as the

1https://github.com/jhclark/bigfatlm
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Reuters comment section header and Fark headlines
that appear in a box on many pages. We dedupli-
cated the News Crawl corpus, United Nations docu-
ments, and New York Times and LA Times portions
of English Gigaword.

The Giga-FrEn corpus is noisy. We removed lines
from Giga-FrEn if any of the following conditions
held:

• Invalid UTF8 or control characters.

• Less than 90% of characters are in the Latin
alphabet (including diacritics) or punctuation.
We did not count “<” and “>” as punctuation
to limit the amount of HTML code.

• Less than half the characters are Latin letters.

System outputs and language model training data
were normalized using the provided punctuation
normalization script, Unicode codepoint collaps-
ing, the provided Moses (Koehn et al., 2007) to-
kenizer, and several custom rules. These remove
formatting-related tokens from Gigaword, rejoin
some French words with internal apostrophes, and
threshold repetitive punctuation. In addition, Ger-
man words were segmented as explained in Section
4.3. Text normalization is more difficult for system
combination because the system outputs, while theo-
retically detokenized, contain errors that result from
different preprocessing at each site.

4.3 German Segmentation
German makes extensive use of compounding, cre-
ating words that do not cleanly align to English and
have less reliable statistics. German-English trans-
lation systems therefore typically segment German
compounds as a preprocessing step. In our case,
we are concerned with combining translations into
German that may be segmented differently. These
can be due to stylistic choices; for example both
“jahrzehnte lang” and “jahrzehntelang” appear with
approximately equal frequency as shown in Table 1.
Translation systems add additional biases due to the
various preprocessing approaches taken by individ-
ual sites and inherent biases in models such as word
alignment.

In order to properly align differently segmented
words, we normalize by segmenting all system out-
puts and our language model training data using

Words Separate Compounded
jahrzehnte lang 554 542

klar gemacht 840 802
unter anderem 49538 4

wieder herzustellen 513 1532

Table 1: Counts of separate or compounded versions of
select words in the lowercased German monolingual data.
Compounding can be optional or biased in either way.

the single-best segmentation from cdec (Dyer et
al., 2010). Running our system therefore produces
segmented German output. Internally, we tuned
towards segmented references but for final output
it is desirable to rejoin compound words. Since
the cdec segmentation was designed for German-
English translation, no corresponding desegmenter
was provided.

We created a German desegmenter in the natural
way: segment German words then invert the map-
ping to identify words that should be rejoined. To do
so, we ran every word from the German monolingual
data and system outputs through the cdec segmenter,
counted both the compounded and segmented ver-
sions in the monolingual data, and removed those
that appear segmented more often. Desegmenting is
a mildly ambiguous process because n-grams to re-
join may overlap. When an n-gram compounded to
one word, we gave that a score of n2. The total score
is a sum of these squares, favoring compounds that
cover more words. Maximizing the score is a fast
and exact dynamic programming algorithm. Casing
of unchanged words comes from equally-weighted
system votes at the character level while casing of
rejoined words is based on the majority appearance
in the corpus; this is almost always initial capital.
We ran our desegmenter followed by the workshop’s
provided detokenizer to produce the submitted out-
put.

5 Results

We tried many variations on the scheme, such as se-
lecting different systems, tuning to BLEU (Papineni
et al., 2002) or METEOR (Denkowski and Lavie,
2010), and changing the structure of the match count
features from Section 2.3. To try these, we ran
MERT 242 times, or about 24 times for each of the
ten tasks in which we participated. Then we selected
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the best performing systems on the tuning set and
submitted them, with the secondary system chosen
to meaningfully differ from the primary while still
scoring well. Once the evaluation released refer-
ences, we scored against them to generate Table 2.

On the featured Haitian Creole task, we show no
and sometimes even negative improvement. This we
attribute to the gap between the top system, bm-i2r,
and the second place system. For htraw-en, where
training data is noisy, the bm-i2r is 3.65 BLEU
higher than the second place system at 28.53 BLEU.
On htclean-en, the gap is 4.44 points to the second
place cmu-denkowski-contrastive.

The main tasks were quite competitive and many
systems were within a BLEU point of the top. This
is an ideal scenario for system combination, and we
show corresponding improvements. The English-
Czech task is difficult for our scheme because we do
not properly handle Czech morpology in alignment.
On Czech-English, online-B beat other systems by
a substantial (6.21 BLEU) margin, so we see little
gain. On English-German, the gain is small but this
is consistent with a general observation that more
improvement is seen on higher-quality systems. Fur-
ther, strength in this year’s submission comes from
language modeling, but only limited German data
was available; segmenting German improved our
scores. Translations into Spanish and French show
the impact of Gigaword in those languages.

The evaluation’s official metric is human rank-
ing judgments. On this metric, our submissions
score highest on eight of ten tracks: Czech-English,
German-English, English-Czech, English-German,
English-Spanish, English-French, the clean Haitian
Creole-English task, and the raw Haitian Creole-
English task. For Spanish-English, humans pre-
ferred RWTH’s submission. For French-English,
humans preferred RWTH and BBN. However, sys-
tem combinations were ranked against other system
combinations, but not against underlying systems,
so we suspect that the bm-i2r submission still per-
forms better than combinations on the Haitian Cre-
ole tasks. The human judges also preferred our
translations more than BLEU (where we lead on
three language pairs: English to German, Span-
ish, and French). We attribute this to the tendency
of confusion networks to drop words supported by
many systems due to position-based alignment er-

Track Entry BLEU TER MET

htraw-en
primary 32.30 56.57 61.05
contrast 31.76 56.69 60.81
bm-i2r 32.18 57.01 60.85

htclean-en
primary 36.39 51.16 63.72
contrast 36.49 51.15 63.78
bm-i2r 36.97 51.06 64.01

cz-en
primary 29.85 53.20 62.50
contrast 29.88 53.19 62.40

online-B 29.59 52.15 61.77

de-en
primary 26.21 56.19 60.56
contrast 26.11 56.42 60.54

online-B 24.30 57.95 59.63

es-en
primary 33.90 48.88 65.72
contrast 33.47 49.41 66.41

online-A 30.26 51.56 63.83

fr-en
primary 32.41 48.93 65.72
contrast 32.15 49.12 65.71

kit 30.36 50.74 64.32

en-cz
primary 20.80 61.17 41.68
contrast 20.74 61.29 41.69

online-B 20.37 61.38 41.40

en-de
primary 18.45 64.15 22.91
contrast 18.27 64.48 22.75

online-B 17.92 64.01 22.95

en-es
primary 36.47 47.08 34.96
contrast 35.82 47.52 34.64

online-B 33.85 50.09 33.96

en-fr
primary 36.42 48.28 24.29
contrast 36.31 48.56 24.12

online-B 35.34 48.68 23.53

Table 2: Automatic scores for our submissions. For com-
parison, the top individual system by BLEU is shown
in the third row of each track. Test data and references
were preprocessed prior to scoring. Metrics are uncased
and METEOR 1.0 uses adequacy-fluency parameters. We
show improvement on all tasks except Haitian Creole-
English.

149



rors; our content-based alignment method avoids
many of these errors. BLEU penalizes the missing
word the same as missing punctuation while human
judges will penalize heavily for missing content. For
full results, we refer to the simultaneously published
Workshop on Machine Translation findings paper.

6 Conclusion

We participated in the all ten tracks of the sys-
tem combination, prioritizing participation and lan-
guage support over optimizing for one particular
language pair. Nonetheless, we show improvement
on several tasks, including wins by BLEU on three
tracks. The Haitian Creole and Czech-English tasks
proved challenging due to the gap between top sys-
tems. However, other tracks show a variety of
high-performing systems that make our scheme per-
form well. Unlike most other system combination
schemes, our code is open source2 so that these re-
sults may be replicated and brought to bear on simi-
lar problems.
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Abstract

RWTH participated in the System Combi-
nation task of the Sixth Workshop on Sta-
tistical Machine Translation (WMT 2011).

For three language pairs, we combined
6 to 14 systems into a single consen-
sus translation. A three-level meta-
combination scheme combining six dif-
ferent system combination setups with
three different engines was applied on the
French–English language pair. Depend-
ing on the language pair, improvements
versus the best single system are in the
range of +1.9% and +2.5% abs. on
BLEU, and between −1.8% and −2.4%
abs. on TER. Novel techniques compared
with RWTH’s submission to WMT 2010
include two additional system combina-
tion engines, an additional word alignment
technique, meta combination, and addi-
tional optimization techniques.

1 Introduction

RWTH’s main approach to System Combination
(SC) for Machine Translation (MT) is a refined
version of the ROVER approach in Automatic
Speech Recognition (ASR) (Fiscus, 1997), with
additional steps to cope with reordering between
different hypotheses, and to use true casing infor-
mation from the input hypotheses. The basic con-
cept of the approach has been described by Ma-
tusov et al. (2006). Several improvements have
been added later (Matusov et al., 2008). This ap-
proach includes an enhanced alignment and re-
ordering framework. In contrast to existing ap-
proaches (Jayaraman and Lavie, 2005; Rosti et
al., 2007b), the context of the whole corpus rather
than a single sentence is considered in this itera-
tive, unsupervised procedure, yielding a more reli-
able alignment. Majority voting on the generated
lattice is performed using prior weights for each
system as well as other statistical models such

as a special n-gram language model. True cas-
ing is considered a separate step in RWTH’s ap-
proach, which also takes the input hypotheses into
account. The pipeline, and consequently the de-
scription of the main pipeline given in this paper, is
based on our pipeline for WMT 2010 (Leusch and
Ney, 2010), with extensions as described. When
necessary, we denote this pipeline as Align-to-
Lattice, or A2L .

For the French–English task, we used two ad-
ditional system combination engines for the first
time: The first one uses the same alignments as
A2L, but generates lattices in the OpenFST frame-
work (Allauzen et al., 2007). The OpenFST de-
coder (fstshortestpath) is then used to find
the best path (consensus translation) in this lattice.
Analogously, we call this engine A2FST . The sec-
ond additional engine, which we call SCUNC, uses
a TER-based alignment, similar to the approach by
Rosti et al. (2007b). Instead of a lattice rescor-
ing, finding the consensus translation is consid-
ered a per-node classification problem: For each
slot, which one is the “correct” one (i.e. will give
the “best” output)? This approach is inspired by
iROVER (Hillard et al., 2007). Consensus trans-
lations from different settings of these approaches
could then be combined again by an additional ap-
plication of system combination – which we refer
to as meta combination (Rosti et al., 2007a). These
three approaches are described in more detail in
Section 2. In Section 3 we describe how we tuned
the parameters and decisions of our system combi-
nation approaches for WMT 2011. Section 4 then
lists our experimental setup as well as the experi-
mental results we obtained on the WMT 2011 sys-
tem combination track. We conclude this paper in
Section 5.

2 System Combination Algorithm (A2L)
In this section we present the details of our main
system combination method, A2L. The upper part
of Figure 1 gives an overview of the system combi-
nation architecture described in this section. After
preprocessing the MT hypotheses, pairwise align-

152



ments between the hypotheses are calculated. The
hypotheses are then reordered to match the word
order of a selected primary (skeleton) hypothesis.
From this, we create a confusion network (CN)
which we then rescore using system prior weights
and a language model (LM). The single best path
in this CN then constitutes the consensus transla-
tion. The consensus translation is then true cased
and post processed.

2.1 Word Alignment

The main proposed alignment approach is a statis-
tical one. It takes advantage of multiple transla-
tions for a whole corpus to compute a consensus
translation for each sentence in this corpus. It also
takes advantage of the fact that the sentences to be
aligned are in the same language.

For each of the K source sentences in the test
corpus, we select one of its N translations from
different MT systems E,m=1, . . . , N, as the pri-
mary hypothesis. Then we align the secondary hy-
potheses En(n=1, . . . , ; n 6=m) with En to match
the word order in En. Since it is not clear which
hypothesis should be primary, i. e. has the “best”
word order, we let several or all hypothesis play
the role of the primary translation, and align all
pairs of hypotheses (En, Em); n 6= m.

The word alignment is trained in analogy to
the alignment training procedure in statistical MT.
The difference is that the two sentences that have
to be aligned are in the same language. We use the
IBM Model 1 (Brown et al., 1993) and the Hid-
den Markov Model (HMM, (Vogel et al., 1996))
to estimate the alignment model.

The alignment training corpus is created from a
test corpus of effectively N ·(N−1) ·K sentences
translated by the involved MT engines. Model pa-
rameters are trained iteratively using the GIZA++

toolkit (Och and Ney, 2003). The training is per-
formed in the directions Em → En and En →
Em. The final alignments are determined using
a cost matrix C for each sentence pair (Em, En).
Elements of this matrix are the local costs C(j, i)
of aligning a word em,j from Em to a word en,i

from En. Following Matusov et al. (2004), we
compute these local costs by interpolating the
negated logarithms of the state occupation proba-
bilities from the “source-to-target” and “target-to-
source” training of the HMM model.

A different approach that has e.g. been pro-
posed by Rosti et al. (2007b) is the utilization of a
TER alignment (Snover et al., 2006) for this pur-
pose. Because the original TER is insensitive to
small changes in spellings, synonyms etc., it has
been proposed to use more complex variants, e.g.

TERp. For our purposes, we utilized “poor-man’s-
stemming”, i.e. shortening each word to its first
four characters when calculating the TER align-
ment. Since a TER alignment already implies a
reordering between the primary and the secondary
hypothesis, an explicit reordering step is not nec-
essary.

2.2 Word Reordering and Confusion
Network Generation

After reordering each secondary hypothesis Em

and the rows of the corresponding alignment cost
matrix, we determine N − 1 monotone one-to-one
alignments between En as the primary translation
and Em, m = 1, . . . , N ; m 6= n. We then con-
struct the confusion network.

We consider words without a correspondence to
the primary translation (and vice versa) to have a
null alignment with the empty word ε, which will
be transformed to an ε-arc in the corresponding
confusion network.

The N−1 monotone one-to-one alignments can
then be transformed into a confusion network, as
described by Matusov et al. (2008).

2.3 Voting in the Confusion Network (A2L,
A2FST)

Instead of choosing a fixed sentence to define the
word order for the consensus translation, we gen-
erate confusion networks for N possible hypothe-
ses as primary, and unite them into a single lattice.
In our experience, this approach is advantageous
in terms of translation quality compared to a min-
imum Bayes risk primary (Rosti et al., 2007b).

Weighted majority voting on a single confu-
sion network is straightforward and analogous to
ROVER (Fiscus, 1997). We sum up the probabil-
ities of the arcs which are labeled with the same
word and have the same start state and the same
end state.

Compared to A2L, our new A2FST engine al-
lows for a higher number of features for each arc.
Consequently, we add a binary system feature for
each system in addition to the logarithm of the sum
of system weights, as before. The advantage of
these features is that the weights are linear within
a log-linear model, as opposed to be part of a loga-
rithmic sum. Consequently they can later be opti-
mized using techniques designed for linear feature
weights, such as MERT, or MIRA.

2.4 Language Models
The lattice representing a union of several confu-
sion networks can then be directly rescored with
an n-gram language model (LM). When regarding
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the lattice as a weighted Finite State Transducer
(FST), this can be regarded (and implemented) as
composition with a LM FST.

In our approach, we train a trigram LM on the
outputs of the systems involved in system combi-
nation. For LM training, we take the system hy-
potheses for the same test corpus for which the
consensus translations are to be produced. Using
this “adapted” LM for lattice rescoring thus gives
bonus to n-grams from the original system hy-
potheses, in most cases from the original phrases.
Presumably, many of these phrases have a correct
word order. Previous experimental results show
that using this LM in rescoring together with a
word penalty notably improves translation quality.
This even results in better translations than using
a “classical” LM trained on a monolingual train-
ing corpus. We attribute this to the fact that most
of the systems we combine already include such
general LMs. Nevertheless, one of the SC systems
we use for the French–English task (IV in Sec-
tion 4.1) uses a filtered fourgram LM trained on
GigaWord and other constrained training data sets
for this WMT tasks as an additional LM.

2.5 Extracting Consensus Translations
To generate our consensus translation, we ex-
tract the single-best path from the rescored lat-
tice, using “classical” decoding as in MT. In A2L,
this is implemented as shortest-path decoder on a
pruned lattice. In A2FST, we use the OpenFST
fstshortestpath decoder, which does not re-
quire a pruning step for lattices of the size and den-
sity produced here.

2.6 Classification in the Confusion Network
(SCUNC)

Instead of considering the selection of the con-
sensus problem as a shortest-path problem in a
rescored confusion network, we can treat it instead
as a classification problem: For each slot (set of
outgoing arcs from one node in a CN), we consider
one or more arcs to be “correct”, and train a clas-

sifier to identify these certain arcs. This is the idea
of the iROVER approach in ASR (Hillard et al.,
2007). We call our implementation System Com-
bination Using N-gram Classifiers, or SCUNC.

For the WMT evaluation, we used the ICSI-
Boost framework (Favre et al., 2007) as classifier
(in binary mode, i.e. giving a yes/no-decision for
each single arc). We generated 109 features from
8 families: Pairwise equality of words from dif-
ferent systems, Number of votes for a word, word
that would win a simple majority voting, empty
word (also in previous two arcs), position at be-
ginning or end of sentence, cross-BLEU-S score
of hypothesis, equality of system with system of
last slot, and SRILM uni- to trigram scores. As
this approach requires strict CN instead of lattices,
a union of CNs for different primary hypotheses
was no longer possible. We decided to select
a fixed single primary system; other approaches
would have been to train an additional classifier
for this purpose, or to select a minimum-Bayes-
risk (MBR) skeleton.

2.7 Consensus True Casing

Previous approaches to achieve true cased output
in system combination operated on true-cased lat-
tices, used a separate input-independent true caser,
or used a general true-cased LM to differentiate
between alternative arcs in the lattice, as described
by Leusch et al. (2009). For WMT 2011, we use
per-sentence information from the input systems
to determine the consensus case of each output
word. Lattice generation, rescoring, and rerank-
ing are performed on lower-cased input, with a
lower-cased consensus hypothesis as their result.
For each word in this hypothesis, we count how
often each casing variant occurs in the input hy-
potheses for this sentence. We then use the vari-
ant with the highest support for the final consensus
output.
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Table 1: Corpus and Task statistics.

avg. # words #sys
TUNE DEV TEST

FR–EN 15670 11410 49832 25
DE–EN 15508 10878 49395 24
ES–EN 15989 11234 50612 15
# sent 609 394 2000

3 Tuning

3.1 Feature weights
For lattice rescoring, we selected a linear combi-
nation of BLEU (Papineni et al., 2002) and TER
(Snover et al., 2006) as optimization criterion,
Θ̂ := argmaxΘ {BLEU − TER} for the A2L
engine, based on previous experience (Mauser et
al., 2008). To achieve more stable results, we use
the case-insensitive variants for both measures, de-
spite the explicit use of case information in the
pipeline. System weights were tuned to this cri-
terion using the Downhill Simplex method.

In the A2FST setup, we were able to generate
full lattices, with separate costs for each individual
feature on all arcs (Power Semiring). This allowed
us to run Lattice MERT (Macherey et al., 2008)
on the full lattice, with no need for pruning (and
thus additional outer iterations for re-generating
lattices). We tried different strategies – random
lines vs axis-parallel lines, regularization, random
restarts, etc, and selected the most stable results
on TUNE and DEV for this engine. Optimization
criterion here was BLEU.

3.2 Training a classifier for SCUNC
In MT system combination, even with given refer-
ence translations, there is no simple way to iden-
tify the “correct” arc in a slot. This renders a
classifier-based approach even more difficult than
iROVER in ASR. The problem is even aggravated
because both the alignment of words, and their or-
der, can be incorrect already in the CN. We thus
consider an arc to be “correct” within this task ex-
actly if it gives us the best possible total BLEU-S
score.1 These “correct” arcs, which lie on such an
“oracle path” for BLEU-S, were therefore used as
reference classes when training the classifier.

3.3 System Selection
With the large numbers of input systems – e.g.,
25 for FR–EN – and their large spread in transla-
tion quality – e.g. from 22.2 to 31.4% in BLEU
– not all systems should participate in the system

1We are looking at the sentence level, so we use BLEU-
S (Lin and Och, 2004) instead of BLEU

combination process. This is especially the case
since several of these e.g. 25 systems are often
only small variants of each other (contrastive vs.
primary submissions), which leads to a low vari-
ability of these translations. We considered several
variants of the set of input systems, often starting
from the top, and either replacing some of the sys-
tems very similar to others with systems further
down the list, or not considering those as primary,
adding further systems as additional secondaries.
Depending on the engine we were using, we se-
lected between 6 and 14 different systems as input.

4 Experimental Results

Each language pair in WMT 2011 had its own set
of systems, so we selected and tuned separately for
each language pair . Due to time constraints, we
only participated in tasks with English as the target
language. In preliminary experiments, it turned
out that System Combination was not able to get
a better result than the best single system on the
Czech–English task. Consequently, we focused
on the language pairs French–English, German–
English, and Spanish–English.

We split the available tuning data document-
wise into a 609-line TUNE set (for tuning), and a
394-line DEV set (to verify tuning results). More
statistics on these sets can be found in Table 1.

Unfortunately, late in the evaluation campaign
it turned out that the quality of several reference
sentences used in TUNE and DEV was rather low:
Many reference sentences contained spelling er-
rors, a few dozen lines even contained French
phrases or sentences within or after the English
text. We corrected many of these errors manually
in the references. In total 101 of 690 lines (16.6%)
in TUNE and 58 of 394 lines (14.7%) in DEV
were affected by this. While it was too late to re-
run all of the optimization runs, we re-optimized
at least a few final systems. All scores within this
section were calculated on the corrected reference
translations.

4.1 FR–EN
For French–English, we built in total seven differ-
ent system combination setups to generate a single
consensus translation and two contrastive transla-
tions. Figure 2 shows the structure and the data
flow of our setup for FR–EN. Table 2 lists more
details about the individual engines.

Our primary submission was focused on our ex-
perience that while rule-based MT systems (such
as RBMT-1..5 and systran) tend to have
lower BLEU scores than statistical (SMT) sys-
tems, they usually give considerable improve-
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Figure 2: System combination pipelines for FR–EN

Table 2: Engines and input systems for FR–EN.

Engine # Input submitted?
I A2L 6 RBMT

II A2L I + 6 primary

II’ A2L fix I + 6 for VII
III SCUNC 6
IV A2FST GW, 8
V A2L 10 contrastive-2

VI A2FST 14
VII A2L II’–VI contrastive-1

“GW” means a 4-gram LM trained on GigaWord.
II uses all skeletons, II’ uses I as fixed skeleton.

Table 3: Results for FR–EN.
TUNE DEV

BLEU TER BLEU TER
kit 31.56 50.15 30.25 52.88

systran 28.18 53.32 26.50 56.07
I 27.37 54.73 26.72 57.73

II 33.69 48.47 32.45 51.09
II’ 33.39 48.77 31.81 51.57
III 32.74 48.06 31.88 50.87
IV 34.16 48.31 31.95 51.64
V 33.17 48.95 32.60 51.14

VI 33.86 48.69 31.56 52.25
VII 34.41 48.20 32.15 51.49

kit is the best single system.
systran is the best single rule-based system.
All scores are case insensitive, and were calculated on the
corrected reference translations.

ments to the latter in a SC setup. Here, though,
the number of such systems was too high to sim-
ply add them to a reasonable set of SMT systems.
Consequently, we first built a SC system (I) com-
bining all RBMT/Systran systems, and then a sec-
ond SC system (II) which combines the output
of I, and 6 SMT systems. As further experi-
ments showed, allowing all hypotheses as primary
(or skeleton) gave significantly better scores than
forcing SC to use the output of I as primary only.
But vice versa, when looking at the meta combi-
nation scheme, VII, using I as primary only (a
setup which we will now denote as II’) gave
measurable improvements in the overall transla-
tion quality. We assume this is due to the similarity
of the output of II with that of the other setups.

Setup III is a SCUNC setup, that is, we built
a single CN for each sentence using poor-man’s-
stemming-TER, with rwth-huck as primary hy-
pothesis. We then generated a large number of fea-
tures for each arc, and trained an ICSIBoost clas-
sifier to recognize the arc (or system) that gave the
best BLEU-S score. This then gave us the consen-
sus translation.

For IV, we built an OpenFST lattice out of eight
systems, and rescored it with both the Hypothe-
sis LM (3-gram), and a 4-gram LM trained on Gi-
gaWord and other WMT constrained training data
for this task. The log-linear weights were trained
using lattice MERT for BLEU. Setup V is a clas-
sical A2L setup, using ten different input systems.
This setup was tuned on BLEU – TER using the
Downhill-Simplex algorithm. In setup VI, again
the A2FST engine was used, this time using the
Hyp LM only, without an additional LM. Tuning
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Table 4: Results for DE–EN.
TUNE DEV

BLEU TER BLEU TER
online-B 23.13 60.15 26.20 57.20

Primary 24.57 58.51 28.11 54.83
4 best sys 23.85 58.22 27.47 54.96
6 best sys 24.46 57.74 27.82 54.50

online-B is the best single system.

was also performed using lattice MERT towards
BLEU. And finally, setup VII combines the out-
put of II’ to IV using the A2L engine again.

All the results of system combination on TUNE
and DEV are listed in Table 3. It turns out that
with the exception of I, all system combination
approaches were able to achieve a significant im-
provement of at least +1.8% abs. in BLEU com-
pared to the best input system. For I, we need
to keep in mind that all other systems were sev-
eral BLEU points worse than the best one – a sce-
nario where we can expect system combination,
which is based on the consensus translation after
all, to underperform. We also see that both A2FST
and SCUNC, with their large number of features,
show a tendency to overfitting – we see large im-
provements on TUNE, but significantly smaller
improvements on DEV. This tendency is, unfortu-
nately, also the case for meta combination: While
we see an additional +0.3% abs. in BLEU over
the best first-level system combination on TUNE,
this improvement does not reflect in the scores on
DEV: While we still see a +0.2% abs. improve-
ment in BLEU over the setup that performed best
on TUNE, there is even a small deterioration of
−0.4% in BLEU over the setup that performed
best on DEV. Because of this effect, we decided to
submit our meta combination output only as first
contrastive, and the output that performed well
both on TUNE and DEV as our primary submis-
sion for WMT. As second contrastive submission,
we selected the setup that performed best on DEV.

4.2 DE–EN

24 systems were available in the German–English
language pair, but incorporating only 7 of them
turned out to deliver optimal results on DEV. We
ran experiments on several settings of systems,
but only in our tried and tested A2L framework.
We settled for a combination of seven systems
(online-B,cmu-dyer,dfki-xu,limsi,
online-A,rwth-wuebker,kit) as primary
submission. Table 4 also lists two different set-
tings. One setting consists of the four best systems

Table 5: Results for ES–EN.
TUNE DEV

BLEU TER BLEU TER
online-A 30.58 51.69 30.77 51.95

Primary 34.29 48.47 33.41 49.71
Contrastive 34.23 48.27 33.30 49.51

online-A is the best single system.

(online-B,cmu-dyer,rwth-wuebker,
kit) and the other setting contains the six best
systems (online-B,cmu-dyer,dfki-xu,
rwth-wuebker,online-A,kit). When we
added more systems to system combination, we
lost performance in both TUNE and DEV.

4.3 ES–EN
For Spanish–English, we tried several settings
of systems. We sticked to our tried and tested
A2L framework. We settled for a combination
of six systems (alacant,koc,online-A,
online-B,rbmt-1,systran) as contrastive
submission, and a combination of ten systems
(+rbmt-2,rbmt-3,rbmt-4,udein) as pri-
mary submission. Table 5 lists the results for this
task. The difference between our primary setup
(10 systems) and our contrastive setup (6 systems)
is rather small, less than 0.1% abs. in BLEU. Nev-
ertheless, we see significant improvements over
the best single system of +2.4% abs. in BLEU,
and −2.2% in TER.

5 Conclusions
We have shown that our system combination ap-
proach leads to significant improvements over sin-
gle best MT output where a significant number of
comparably good translations is available on a sin-
gle language pair. A meta combination can give
additional improvement, but can be sensitive to
overfitting; so in some cases, using one of its in-
put system combination hypothesis may be a bet-
ter choice. In any way, both of our new engines
have shown that they can compete with our present
approach, so we hope to make good use of the new
possibilities they may offer.
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Abstract

BBN submitted system combination outputs
for Czech-English, German-English, Spanish-
English, and French-English language pairs.
All combinations were based on confusion
network decoding. The confusion networks
were built using incremental hypothesis align-
ment algorithm with flexible matching. A
novel bi-gram count feature, which can penal-
ize bi-grams not present in the input hypothe-
ses corresponding to a source sentence, was
introduced in addition to the usual decoder
features. The system combination weights
were tuned using a graph based expected
BLEU as the objective function while incre-
mentally expanding the networks to bi-gram
and 5-gram contexts. The expected BLEU
tuning described in this paper naturally gen-
eralizes to hypergraphs and can be used to
optimize thousands of weights. The com-
bination gained about 0.5-4.0 BLEU points
over the best individual systems on the official
WMT11 language pairs. A 39 system multi-
source combination achieved an 11.1 BLEU
point gain.

1 Introduction

The confusion networks for the BBN submissions
to the WMT11 system combination task were built
using incremental hypothesis alignment algorithm

∗This work was supported by DARPA/I2O Contract No.
HR0011-06-C-0022 under the GALE program (Approved for
Public Release, Distribution Unlimited). The views, opinions,
and/or findings contained in this article/presentation are those of
the author/presenter and should not be interpreted as represent-
ing the official views or policies, either expressed or implied,
of the Defense Advanced Research Projects Agency or the De-
partment of Defense.

with flexible matching (Rosti et al., 2009). A novel
bi-gram count feature was used in addition to the
standard decoder features. The N-best list based ex-
pected BLEU tuning (Rosti et al., 2010), similar to
the one proposed by Smith and Eisner (2006), was
extended to operate on word lattices. This method is
closely related to the consensus BLEU (CoBLEU)
proposed by Pauls et al. (2009). The minimum oper-
ation used to compute the clipped counts (matches)
in the BLEU score (Papineni et al., 2002) was re-
placed by a differentiable function, so there was
no need to use sub-gradient ascent as in CoBLEU.
The expected BLEU (xBLEU) naturally generalizes
to hypergraphs by simply replacing the forward-
backward algorithm with inside-outside algorithm
when computing the expected n-gram counts and
sufficient statistics for the gradient.

The gradient ascent optimization of the xBLEU
appears to be more stable than the gradient-free di-
rect 1-best BLEU tuning or N -best list based min-
imum error rate training (Och, 2003), especially
when tuning a large number of weights. On the of-
ficial WMT11 language pairs with up to 30 weights,
there was no significant benefit from maximizing
xBLEU. However, on a 39 system multi-source
combination (43 weights total), it yielded a signif-
icant gain over gradient-free BLEU tuning and N -
best list based expected BLEU tuning.

2 Hypothesis Alignment and Features

The incremental hypothesis alignment with flexible
matching (Rosti et al., 2009) produces a confusion
network for each system output acting as a skele-
ton hypothesis for the ith source sentence. A con-
fusion network is a graph where all paths visit all
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vertices. Consecutive vertices are connected by one
or more edges representing alternatives. Each edge
l is associated with a token and a set of scores. A to-
ken may be a word, punctuation symbol, or special
NULL token indicating a deletion in the alignment.
The set of scores includes a vector of Ns system spe-
cific confidences, siln, indicating whether the token
was aligned from the output of the system n.1 Other
scores may include a language model (LM) score
as well as non-NULL and NULL token indicators
(Rosti et al., 2007). As Rosti et al. (2010) described,
the networks for all skeletons are connected to a start
and end vertex with NULL tokens in order to form
a joint lattice with multiple parallel networks. The
edges connecting the start vertex to the initial ver-
tices in each network have a heuristic prior estimated
from the alignment statistics at the confidence cor-
responding to the skeleton system. The edges con-
necting the final vertices of each network to the end
vertex have all system confidences set to one, so the
final edge does not change the score of any path.

A single word confidence is produced from the
confidence vector by taking an inner product with
the system weights σn which are constrained to sum
to one,2

∑
n σn = 1. The total edge score is pro-

duced by a log-linear interpolation of the word con-
fidence with other features film:

sil = log
( Ns∑

n=1

σnsiln

)
+
∑
m

λmfilm (1)

The usual features film include the LM score as well
as non-NULL and NULL token indicators. Based
on an analysis of the system combination outputs, a
large number of bi-grams not present in any input
hypothesis are often produced, some of which are
clearly ungrammatical despite the LM. These novel
bi-grams are due to errors in hypothesis alignment
and the confusion network structure where any word
from the incoming edges of a vertex can be followed
by any word from the outgoing edges. After expand-
ing and re-scoring the joint lattice with a bi-gram, a
new feature indicating the presence of a novel bi-
gram may be added on the edges. A negative weight

1The confidences are binary when aligning 1-best outputs.
More elaborate confidences may be estimated from N -best lists;
see for example Rosti et al. (2007).

2See (Rosti et al., 2010) for a differentiable constraint.

for this feature discourages novel bi-grams in the
output during decoding.

3 Weight Optimization

The most common objective function used in ma-
chine translation is the BLEU-N score (Papineni et
al., 2002) defined as follows:3

BLEU =
N∏

n=1

(∑
i m

n
i∑

i h
n
i

) 1
N

φ

(
1−

∑
i ri∑
i h

1
i

)
(2)

where N is the maximum n-gram order (typically
N = 4), mn

i is the number of n-gram matches
(clipped counts) between the hypothesis ei and ref-
erence êi for segment i, hn

i is the number of n-grams
in the hypothesis, ri is the reference length,4 and
φ(x) = min(1.0, ex) is the brevity penalty. Using
gn to represent an arbitrary n-gram, cign to repre-
sent the count of gn in hypothesis ei, and ĉign to
represent the count of gn in reference êi, the BLEU
statistics can be defined as follows:

mn
i =

∑
gn

min(cign , ĉign) (3)

hn
i =

∑
gn

cign (4)

The unigram count h1
i is simply the hypothesis

length and higher order n-gram counts can be ob-
tained by hn

i = hn−1
i − 1. The reference n-gram

counts for each sentence can be stored in an n-gram
trie for efficient scoring.5

The BLEU score is not differentiable due to the
minimum operations on the matches mn

i and brevity
penalty φ(x). Therefore gradient-free optimization
algorithms, such as Powell’s method or downhill
simplex (Press et al., 2007), are often employed in
weight tuning (Och, 2003). System combination
weights tuned using the downhill simplex method
to directly optimize 1-best BLEU score of the de-
coder outputs served as the first baseline in the ex-
periments. The distributed optimization approach
used here was first described in (Rosti et al., 2010).

3Superscripts indicate the n-gram order in all variables in
this paper. They are used as exponents only for the constant e.

4If multiple references are available, ri is the reference
length closest to the hypothesis length, h1

i .
5If multiple references are available, the maximum n-gram

counts are stored.
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A set of system combination weights was first tuned
for unpruned lattices re-scored with a bi-gram LM.
Another set of re-scoring weights was tuned for 300-
best lists re-scored with a 5-gram LM.

3.1 Graph expected BLEU
Gradient-free optimization algorithms work well
with a relatively small number of weights. Weight
optimization for a 44 system combination in Rosti
et al. (2010) was shown to be unstable with down-
hill simplex algorithm. Instead, an N-best list based
expected BLEU tuning with gradient ascent yielded
better results. This served as the second baseline in
the experiments. The objective function is defined
by replacing the n-gram statistics with expected n-
gram counts and matches as in (Smith and Eisner,
2006), and brevity penalty with a differentiable ap-
proximation:

ϕ(x) =
ex − 1

1 + e1000x
+ 1 (5)

An N-best list represents a subset of the search space
and multiple decoding iterations with N-best list
merging is required to improve convergence. In this
work, expected BLEU tuning is extended for lat-
tices by replacing the minimum operation in n-gram
matches with another differentiable approximation.
The expected n-gram statistics for path j, which cor-
respond to the standard statistics in Equations 3 and
4, are defined as follows:

m̄n
i =

∑
gn

µ
( ∑

j∈Ji

Pijcijgn , ĉign

)
(6)

h̄n
i =

∑
gn

∑
j∈Ji

Pijcijgn (7)

where Ji is the set of all paths in a lattice or all
derivations in a hypergraph for the ith source sen-
tence, Pij is the posterior of path j, and cijgn is
the count of n-grams gn in hypothesis eij on path
j. The path posterior and approximate minimum are
defined by:

Pij =
∏

l∈j eγsil∑
j′∈Ji

∏
l∈j′ e

γsil
(8)

µ(x, c) =
x− c

1 + e1000(x−c)
+ c (9)

where sil is the total score on edge l defined in Equa-
tion 1 and γ is an edge score scaling factor. The

scaling factor affects the shape of the edge posterior
distribution; γ > 1.0 makes the edge posteriors on
the 1-best path higher than edge posteriors on other
paths and γ < 1.0 makes the posteriors on all paths
more uniform.

The graph expected BLEU can be factored as
xBLEU = eP B where:

P =
1
N

N∑
n=1

(
log

∑
i

m̄n
i − log

∑
i

h̄n
i

)
(10)

B = ϕ
(
1−

∑
i ri∑
i h̄

1
i

)
(11)

and ri is the reference length.6 This objective func-
tion is closely related to CoBLEU (Pauls et al.,
2009). Unlike CoBLEU, xBLEU is differentiable
and standard gradient ascent algorithms can be used
to find weights that maximize the objective.

Note, the expected counts can be expressed in
terms of edge posteriors as:∑

j∈Ji

Pijcijgn =
∑
l∈Li

pilδ(cn
il, g

n) (12)

where Li is the set of all edges for the ith sentence,
pil is the edge posterior, δ(x, c) is the Kronecker
delta function which is 1 if x = c and 0 if x 6= c, and
cn
il is the n-gram context of edge l. The edge posteri-

ors can be computed via standard forward-backward
algorithm for lattices or inside-outside algorithm for
hypergraphs. As with the BLEU statistics, only ex-
pected unigram counts h̄1

i need to be accumulated
for the hypothesis n-gram counts in Equation 7 as
h̄n

i = h̄n−1
i − 1 for n > 1. Also, the expected

n-gram counts for each graph can be stored in an
n-gram trie for efficient gradient computation.

3.2 Gradient of graph expected BLEU
The gradient of the xBLEU with respect to weight λ
can be factored as:
∂xBLEU

∂λ
=
∑

i

∑
l∈Li

∂sil

∂λ

∑
j∈Ji

∂xBLEU
∂ log Pij

∂ log Pij

∂sil

(13)
where the gradient of the log-path-posterior with re-
spect to the edge score is given by:

∂ log Pij

∂sil
= γ

(
δ(l ∈ j)− pil

)
(14)

6If multiple reference are available, ri is the reference length
closest to the expected hypothesis length h̄1

i .
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∂xBLEU
∂λ

= γeP

(
B

N

N∑
n=1

∑
i

(
m̂n

ik −mn
ik

mn
− ĥn

ik − hn
ik

hn

))
+ Cϕ′(1− C)

∑
i

ĥ1
ik − h1

ik

h1
(15)

and δ(l ∈ j) is one if edge l is on path j, and zero
otherwise. Using the factorization xBLEU = eP B,
Equation 13 can be expressed using sufficient statis-
tics as shown in Equation 15, where ϕ′(x) is the
derivative of ϕ(x) with respect to x, mn =

∑
i m̄

n
i ,

hn =
∑

i h̄
n
i , C =

∑
ri/
∑

i h̄
1
i , and the remaining

sufficient statistics are given by:

µ′ign = µ′
( ∑

j∈Ji

Pijcijgn , ĉign

)
mn

ik =
(∑

l∈Li

pil
∂sil

∂λ

)( ∑
j∈Ji

Pij

∑
gn

µ′igncijgn

)

m̂n
ik =

∑
l∈Li

∂sil

∂λ

∑
j:l∈Ji

Pij

∑
gn

µ′igncijgn

hn
ik =

(∑
l∈Li

pil
∂sil

∂λ

)( ∑
j∈Ji

Pij

∑
gn

cijgn

)

ĥn
ik =

∑
l∈Li

∂sil

∂λ

∑
j:l∈Ji

Pij

∑
gn

cijgn

where µ′(x, c) is the derivative of µ(x, c) with re-
spect to x, and the parentheses in the equations for
mn

ik and hn
ik signify that the second terms do not de-

pend on the edge l.

3.3 Forward-backward algorithm under
expectation semiring

The sufficient statistics for graph expected BLEU
can be computed using expectation semirings (Li
and Eisner, 2009). Instead of computing single
forward/backward or inside/outside scores, addi-
tional n-gram elements are tracked for matches and
counts. For example in a bi-gram graph, the ele-
ments for edge l are represented by a 5-tuple7 sl =
〈pl, r

1
lh, r2

lh, r1
lm, r2

lm〉 where pl = eγsil and:

rn
lh =

∑
gn

δ(cn
il, g

n)eγsil (16)

rn
lm =

∑
gn

µ′igneγsil (17)

Assuming the lattice is topologically sorted, the for-
ward algorithm8 under expectation semiring for a 3-

7The sentence index i is dropped for brevity.
8For inside-outside algorithm, see (Li and Eisner, 2009).

tuple9 sl = 〈pl, r
1
lh, r1

lm〉 is defined by:

α0 = 〈1, 0, 0〉 (18)

αv =
⊕
l∈Iv

αu(l) ⊗ sl (19)

where Iv is the set of all edges with target vertex
v and u(l) is the source vertex for edge l, and the
operations are defined by:

s1 ⊕ s2 = 〈p1 + p2, r
1
1h + r1

2h, r1
1m + r1

2m〉
s1 ⊗ s2 = 〈p1p2, p1r

1
2h + p2r

1
1h, p1r

1
2m + p2r

1
1m〉

The backward algorithm for βu can be implemented
via the forward algorithm in reverse through the
graph. The sufficient statistics for the gradient can
be accumulated during the backward pass noting
that: ∑

j∈Ji

Pij

∑
gn

µ′igncijgn =
rn
m(β0)
p(β0)

(20)

∑
j∈Ji

Pij

∑
gn

cijgn =
rn
h(β0)
p(β0)

(21)

where rn
m(·) and rn

h(·) extract the nth order r ele-
ments from the tuple for matches and counts, respec-
tively, and p(·) extracts the p element. The statistics
for the paths traveling via edge l can be computed
by:

∑
j:l∈Ji

Pij

∑
gn

µ′igncijgn =
rn
m(αu ⊗ sl ⊗ βv)

p(β0)
(22)

∑
j:l∈Ji

Pij

∑
gn

cijgn =
rn
h(αu ⊗ sl ⊗ βv)

p(β0)
(23)

where the u and v subscripts in αu and βv are the
start and end vertices for edge l. To avoid under-
flow, all the computations can be carried out in log
domain.

9A 3-tuple for uni-gram counts is used as an example in or-
der to save space. In a 5-tuple for bi-gram counts, all r elements
are computed independently of other r elements with the same
operations. Similarly, tri-gram counts require 7-tuples and four-
gram counts require 9-tuples.
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tune cz-en de-en es-en fr-en
System TER BLEU TER BLEU TER BLEU TER BLEU
worst 66.03 18.09 69.03 16.28 60.56 21.02 62.75 21.83
best 53.75 28.36 58.39 24.28 50.26 30.55 50.48 30.87
latBLEU 53.99 29.25 56.70 26.49 48.34 34.55 48.90 33.90
nbExpBLEU 54.43 29.04 56.36 27.33 48.44 34.73 48.58 34.23
latExpBLEU 53.89 29.37 56.24 27.36 48.27 34.93 48.53 34.24

test cz-en de-en es-en fr-en
System TER BLEU TER BLEU TER BLEU TER BLEU
worst 65.35 17.69 69.03 15.83 61.22 19.79 62.36 21.36
best 52.21 29.54 58.00 24.16 50.15 30.14 50.15 30.32
latBLEU 52.80 29.89 55.87 26.22 48.29 33.91 48.51 32.93
nbExpBLEU 52.97 29.93 55.77 26.52 48.39 33.86 48.25 32.94
latExpBLEU 52.68 29.99 55.74 26.62 48.30 34.10 48.17 32.91

Table 1: Case insensitive TER and BLEU scores on newssyscombtune (tune) and newssyscombtest (test)
for combinations of outputs from four source languages. Three tuning methods were used: lattice BLEU (latBLEU),
N-best list based expected BLEU (nbExpBLEU), and lattice expected BLEU (latExpBLEU).

3.4 Entropy on a graph

Expanding the joint lattice to n-gram orders above
n = 2 is often impractical without pruning. If the
edge posteriors are not reliable, which is usually
the case for unoptimized weights, pruning might re-
move good quality paths from the graph. As a com-
promise, an incremental expansion strategy may be
adopted by first expanding and re-scoring the lattice
with a bi-gram, optimizing weights for xBLEU-2,
and then expanding and re-scoring the lattice with
a 5-gram. Pruning should be more reliable with the
edge posteriors computed using the tuned bi-gram
weights. A second set of weights may be tuned with
the 5-gram graph to maximize xBLEU-4.

When the bi-gram weights are tuned, it may be
beneficial to increase the edge score scaling factor
to focus the edge posteriors to the 1-best path. On
the other hand, a lower scaling factor may be bene-
ficial when tuning the 5-gram weights. Rosti et al.
(2010) determined the scaling factor automatically
by fixing the perplexity of the merged N -best lists
used in tuning. Similar strategy may be adopted in
incremental n-gram expansion of the lattices.

Entropy on a graph can also be computed using
the expectation semiring formalism (Li and Eisner,
2009) by defining sl = 〈pl, rl〉 where pl = eγsil and

rl = log pl. The entropy is given by:

Hi = log p(β0)−
r(β0)
p(β0)

(24)

where p(β0) and r(β0) extract the p and r elements
from the 2-tuple β0, respectively. The average target
entropy over all sentences was set manually to 3.0
in the experiments based on the tuning convergence
and size of the pruned 5-gram lattices.

4 Experimental Evaluation

System outputs for all language pairs with En-
glish as the target were combined (cz-en,
de-en, es-en, and fr-en). Unpruned English
bi-gram and 5-gram language model compo-
nents were trained using the WMT11 corpora:
EuroParl, GigaFrEn, UNDoc Es, UNDoc Fr,
NewsCommentary, News2007, News2008,
News2009, News2010, and News2011.
Additional six Gigaword v4 components in-
cluded: AFP, APW, XIN+CNA, LTW, NYT, and
Headlines+Datelines. The total number
of words used to train the LMs was about 6.4
billion. Interpolation weights for the sixteen
components were tuned to minimize perplexity on
the newstest2010-ref.en development set.
The modified Kneser-Ney smoothing (Chen and
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Goodman, 1998) was used in training. Experiments
using a LM trained on the system outputs and inter-
polated with the general LM were also conducted.
The interpolation weights between 0.1 and 0.9 were
tried, and the weight yielding the highest BLEU
score on the tuning set was selected. A tri-gram true
casing model was trained on all the LM training
data. This model was used to restore the case of the
lower-case system combination output.

All twelve 1-best system outputs on cz-en, 26
outputs on de-en, 16 outputs on es-en, and 24
outputs on fr-en were combined. Three different
weight optimization methods were tried. First, lat-
tice based 1-best BLEU optimization of the bi-gram
decoding weights followed by N-best list based
BLEU optimization of 5-gram re-scoring weights
using 300-best lists, both using downhill simplex.
Second, N-best list based expected BLEU optimiza-
tion of the bi-gram and 5-gram weights using 300-
best lists with merging between bi-gram decoding
iterations. Third, lattice based expected BLEU opti-
mization of bi-gram and 5-gram decoding weights.
The L-BFGS (Liu and Nocedal, 1989) algorithm
was used in gradient ascent. Results for all four sin-
gle source experiments are shown in Table 1, includ-
ing case insensitive TER (Snover et al., 2006) and
BLEU scores for the worst and best systems, and
the system combination outputs for the three tuning
methods. The gains on tuning and test sets were con-
sistent, though relatively smaller on cz-en due to
a single system (online-B) dominating the other
systems by about 5-6 BLEU points. The tuning
method had very little influence on the test set scores
apart from de-en where the lattice BLEU opti-
mization yields slightly lower BLEU scores. This
seems to suggest that the gradient free optimization
is not as stable with a larger number of weights.10

The novel bi-gram feature did not have significant
influence on the TER or BLEU scores, but the num-
ber of novel bi-grams was reduced by up to 100%.

Finally, experiments combining 39 system out-
puts by taking the top half of the outputs from each
language pair were performed. The selection was
based on case insensitive BLEU scores on the tun-
ing set. Table 2 shows the scores for seven combi-

10A total number of 30 weights, 26 system and 4 feature
weights, were tuned for de-en.

xx-en tune test
System TER BLEU TER BLEU
worst 62.81 21.19 62.92 20.29
best 51.11 30.87 50.80 30.32
latBLEU 40.95 40.75 41.06 39.81
+biasLM 41.18 40.90 41.16 39.90
nbExpBLEU 40.81 41.36 41.05 40.15
+biasLM 40.72 41.99 40.65 40.89
latExpBLEU 40.57 41.68 40.62 40.60
+biasLM 40.42 42.23 40.52 41.38
-nBgF 40.85 41.41 40.88 40.55

Table 2: Case insensitive TER and BLEU scores on
newssyscombtune (tune) and newssyscombtest
(test) for xx-en combination. Combinations using lat-
tice BLEU tuning (latBLEU), N-best list based expected
BLEU tuning (nbExpBLEU), and lattice expected BLEU
tuning (latExpBLEU) with and without the system out-
put biased LM (biasLM) are shown. Final row, marked
nBgF, corresponds to the above tuning without the novel
bi-gram feature.

nations using the three tuning methods with or with-
out the system output biased LM, and finally without
the novel bi-gram count feature. There is a clear ad-
vantage from the expected BLEU tuning on the tun-
ing set, and lattice tuning yields better scores than
N-best list based tuning. The difference between
latBLEU and nbExpBLEU without biasLM is
not quite as large on the test set but latExpBLEU
yields significant gains over both. The biasLM also
yields significant gains on all but latBLEU tuning.
Finally, removing the novel bi-gram count feature
results in a significant loss, probably due to the large
number of input hypotheses. The number of novel
bi-grams in the test set output was reduced to zero
when using this feature.

5 Conclusions

The BBN submissions for WMT11 system combi-
nation task were described in this paper together
with a differentiable objective function, graph ex-
pected BLEU, which scales well for a large number
of weights and can be generalized to hypergraphs.
System output biased language model and a novel
bi-gram count feature also gave significant gains on
a 39 system multi-source combination.

164



References
Stanley F. Chen and Joshua Goodman. 1998. An empir-

ical study of smoothing techniques for language mod-
eling. Technical Report TR-10-98, Computer Science
Group Harvard University.

Zhifei Li and Jason Eisner. 2009. First- and second-order
expectation semirings with applications to minimum-
risk training on translation forests. In Proceedings of
the 2009 Conference on Empirical Methods in Natural
Language Processing, pages 40–51.

Dong C. Liu and Jorge Nocedal. 1989. On the limited
memory BFGS method for large scale optimization.
Mathematical Programming, 45(3):503–528.

Franz J. Och. 2003. Minimum error rate training in sta-
tistical machine translation. In Proceedings of the 41st
Annual Meeting of the Association for Computational
Linguistics, pages 160–167.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Adam Pauls, John DeNero, and Dan Klein. 2009. Con-
sensus training for consensus decoding in machine
translation. In Proceedings of the 2009 Conference on
Empirical Methods in Natural Language Processing,
pages 1418–1427.

William H. Press, Saul A. Teukolsky, William T. Vetter-
ling, and Brian P. Flannery. 2007. Numerical recipes:
the art of scientific computing. Cambridge University
Press, 3rd edition.

Antti-Veikko I. Rosti, Spyros Matsoukas, and Richard
Schwartz. 2007. Improved word-level system combi-
nation for machine translation. In Proceedings of the
45th Annual Meeting of the Association of Computa-
tional Linguistics, pages 312–319.

Antti-Veikko I. Rosti, Bing Zhang, Spyros Matsoukas,
and Richard Schwartz. 2009. Incremental hypothe-
sis alignment with flexible matching for building con-
fusion networks: BBN system description for WMT09
system combination task. In Proceedings of the Fourth
Workshop on Statistical Machine Translation, pages
61–65.

Antti-Veikko I. Rosti, Bing Zhang, Spyros Matsoukas,
and Richard Schwartz. 2010. BBN system description
for WMT10 system combination task. In Proceedings
of the Fifth Workshop on Statistical Machine Transla-
tion, pages 321–326.

David A. Smith and Jason Eisner. 2006. Minimum risk
annealing for training log-linear models. In Proceed-
ings of the 21st International Conference on Computa-
tional Linguistics and 44th Annual Meeting of the As-
sociation for Computational Linguistics, pages 787–
794.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciula, and John Makhoul. 2006. A study of
translation edit rate with targeted human annotation.
In Proceedings of the 7th Conference of the Associa-
tion for Machine Translation in the Americas, pages
223–231.

165



Proceedings of the 6th Workshop on Statistical Machine Translation, pages 166–170,
Edinburgh, Scotland, UK, July 30–31, 2011. c©2011 Association for Computational Linguistics

The UZH System Combination System for WMT 2011

Rico Sennrich
Institute of Computational Linguistics

University of Zurich
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Abstract
This paper describes the UZH system that was
used for the WMT 2011 system combination
shared task submission. We participated in
the system combination task for the translation
directions DE–EN and EN–DE. The system
uses Moses as a backbone, with the outputs
of the 2–3 best individual systems being inte-
grated through additional phrase tables. The
system compares well to other system com-
bination submissions, with no other submis-
sion being significantly better. A BLEU-based
comparison to the individual systems, how-
ever, indicates that it achieves no significant
gains over the best individual system.

1 Introduction

For our submission to the WMT 2011 shared task,
we built a system with the multi-engine MT ap-
proach described in (Sennrich, 2011), which builds
on the idea by (Chen et al., 2007). A Moses SMT
system (Koehn et al., 2007) is used as a backbone,
trained on the WMT 2011 training data. Translation
hypotheses by other systems are integrated through
a second phrase table. In this second phrase ta-
ble, the phrase translation probabilities and lexical
weights are computed based on the word and phrase
frequencies in both the translation hypotheses and a
parallel training corpus. On the evaluation data in
(Sennrich, 2011), this system significantly outper-
formed MEMT (Heafield and Lavie, 2010), which
was among the best-performing system combination
tools at WMT 2010 (Callison-Burch et al., 2010).

In this paper, we apply the same approach to a dif-
ferent translation scenario, namely the WMT 2011

shared task. We fail to significantly outperform the
best individual system in terms of BLEU score. In
section 2, we describe our system combination ap-
proach. In section 3, we present the results, and dis-
cuss possible reasons why the system fails to show
the same performance gains as in the translation task
on which it was evaluated initially.

2 System Description

We participated in the system combination task DE–
EN and EN–DE. Since the combination is achieved
by integrating translation hypotheses into an existing
Moses system, which we will call the primary sys-
tem, we first describe the methods and data used for
training this primary system. Then, we describe how
the translation hypotheses are selected out of the in-
dividual system submissions and integrated into the
Moses system.

2.1 Primary System
For the training of the primary systems, we mostly
followed the baseline instructions for the transla-
tion task1. We use news-commentary and Europarl
as parallel training data. The language models are
a linear interpolation of the news-commentary, Eu-
roparl and news corpora, optimized for minimal
cross-entropy on the newstest2008 data sets in the
respective target language.

Additionally, we prune the primary phrase table
using statistical significance tests, as described by
(Johnson et al., 2007). For the translation direction
DE–EN, the German source text is reordered based

1described at http://www.statmt.org/wmt11/
baseline.html
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on syntactic parsing with Pro3GresDE (Sennrich et
al., 2009), and reordering rules similar to those de-
scribed by (Collins et al., 2005).

The Moses phrase table consists of five fea-
tures: phrase translation probabilities in both trans-
lation directions (p(t|s) and p(s|t)), lexical weights
(lex(t|s) and lex(s|t)), and a constant phrase
penalty (Koehn et al., 2003). The computation of the
phrase translation probabilities and lexical weights
is based on the word, phrase and word/phrase pair
frequencies that are extracted from the parallel cor-
pus. We modified the Moses training scripts to col-
lect and store these frequencies for later re-use.

We did not submit the primary system outputs to
the Machine Translation shared task, since we did
not experiment with new techniques. Instead, the
primary system forms the backbone of the system
combination system.

2.2 Integrating Secondary Phrase Tables

To combine the output of several systems, we train a
second phrase table on the translation hypotheses of
these systems. For this, we create a parallel corpus
consisting of n translation hypotheses and n copies
of the corresponding source text, both lowercased
and detokenized.2

We compute the word alignment with MGIZA++
(Gao and Vogel, 2008), based on the word alignment
model from the primary corpus that we have previ-
ously saved to disk.

After training a phrase table from the word-
aligned corpus with Moses, the lexical weights and
translation probabilities are rescored, using the suffi-
cient statistics (i.e. the word, phrase and word/phrase
pair counts) of both the primary and the secondary
corpus. This rescoring step has been shown to
markedly improve performance in (Sennrich, 2011).
We will discuss its effects in section 3.1. The re-
scored phrase table is integrated into the primary
Moses system as an alternative decoding path, and
tuned for maximal BLEU score on newssyscomb-
tune2011 with MERT.

2For convenience and speed, we combined the
translation hypotheses for newssyscombtune2011 and
newssyscombtest2011 into a single corpus. In principle,
we could train separate phrase tables for each data set, or even
for arbitrarily low numbers of sentences, without significant
loss in performance (see (Sennrich, 2011)).

System BLEU
Primary 21.11
Best individual 24.16
Submission 24.44
Vanilla scoring 24.42

Table 1: DE–EN results. Case-insensitive BLEU scores.

2.3 Hypothesis Selection

For the secondary phrase table, we chose to se-
lect the n best individual systems according to their
BLEU score on the tuning set. We determined the
optimal n empirically by trying different n, measur-
ing each system’s BLEU score on the tuning set and
selecting the highest-scoring one. For the DE–EN
translation task, n = 2 turned out to be optimal, for
EN–DE, n = 3.

Chen et al. (2009) propose additional, tunable fea-
tures in the phrase table to indicate the origin of
phrase translations. For better comparability with
the results described in (Sennrich, 2011), we did
not add such features. This means that there are
no a priori weights that bias the phrase selection
for or against certain systems, but that decoding
is purely driven by the usual Moses features: two
phrase tables – the primary one and the re-scored,
secondary one – the language model, the primary
reordering model, and the corresponding parameters
established through MERT.

3 Results

In the manual evaluation, the system combination
submissions are only compared to each other, not
to the individual systems. According to the manual
evaluation, no other system combination submission
outperforms ours by a statistically significant mar-
gin. In a comparison to individual systems, however,
BLEU scores indicate that our system fails to yield a
significant performance gain over the best individual
system in this translation scenario.

In tables 1 and 2, we present case-insensitive
BLEU scores (Papineni et al., 2002). As statisti-
cal significance test, we applied bootstrap resam-
pling (Riezler and Maxwell, 2005). Tables 1 and
2 show the BLEU scores for the translation direc-
tions DE–EN and EN–DE, respectively. Systems in-
cluded are the primary translation system described
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System BLEU
Primary 14.99
Best individual 17.44
Submission 17.51
Vanilla scoring 17.32

Table 2: EN–DE results. Case insensitive BLEU scores.

in section 2.1, the best individual system (online-B
in both cases) and the submitted combination sys-
tem. In terms of BLEU score, we achieved no sta-
tistically significant improvement over the best indi-
vidual system.

As contrastive systems, we trained systems with-
out the rescoring step described in section 2.2; we
found no statistically significant difference from the
submission system. In this translation task, the
statistics from the parallel corpus seem to be inef-
fective at improving decoding, contrary to our find-
ings in (Sennrich, 2011), where rescoring the phrase
table improved BLEU scores by 0.7 points. We will
address possible reasons for this discrepancy in the
following section.

3.1 Interpretation

The main characteristic that sets our approach apart
from other system combination software such as
MANY (Barrault, 2010) and MEMT (Heafield and
Lavie, 2010) is its reliance on word and phrase fre-
quencies in a parallel corpus to guide decoding,
whereas MANY and MEMT operate purely on the
target side, without requiring/exploiting the source
text or parallel data. We integrate the information
from a parallel corpus into the decoding process by
extracting phrase translations from the translation
hypotheses and scoring these phrase translations on
the basis of the frequencies from the parallel corpus.

The properties of this re-scored phrase table
proved attractive for the translation task in (Sen-
nrich, 2011), but less so for the WMT 2011 trans-
lation task. To explain why, let us look at p(t|s),
i.e. the probability of a target phrase given a source
phrase, as an example. It is computed as follows,
cprim and csec being the phrase count in the primary
and secondary corpus, respectively.

p(t|s) =
cprim(s, t) + csec(s, t)

cprim(s) + csec(s)
(1)

We can assume that csec(s) and csec(s, t) are
mostly fixed, having values between 1 and the num-
ber of translation hypotheses.3 If cprim(s) is high,
the phrase translation probabilities in the secondary
phrase table will only be marginally different from
those in the primary phrase table (e.g. 500

1000 = 0.5 vs.
500+2
1000+2 = 0.501), whereas the secondary corpus has
a stronger effect for phrases that are rare or unseen in
the primary corpus (e.g. 1

3 = 0.333 vs. 1+2
3+2 = 0.6).

Analogously, the same reasoning applies to p(s|t),
lex(t|s) and lex(s|t).45

In short: the more frequent the phrases and phrase
pairs in the primary corpus, the less effect does the
secondary corpus have on the final feature values.
This is a desirable behaviour if we can “trust” the
phrase pairs extracted from the primary corpus. In
(Sennrich, 2011), the primary corpus consisted of
in-domain texts, whereas the translation hypothe-
ses came from an out-of-domain SMT system and a
rule-based one. There, it proved an effective strategy
to only consider those translation hypotheses that ei-
ther agreed with the data from the primary corpus, or
for which the primary corpus had insufficient data,
i.e. unknown or rare source words. With a primary
system achieving a BLEU score of 17.18 and two
translation hypotheses, scoring 13.29 and 12.94, we
obtained a BLEU score of 20.06 for the combined
system.

In the WMT 2011 system combination task, the
statistics from the primary corpus failed to effec-
tively improve translation quality. We offer these
explanations based on an analysis of the results.

First, the 2–3 systems whose translation hypothe-
ses we combine obtain higher scores than the pri-
mary system. This casts doubt on whether we should
trust the scores from the primary system more than
the translation hypotheses. And in fact, the results
in table 1 and 2 show that the submission system

3Strictly speaking, this is only true if we build separate
phrase tables for each sentence that is translated, and if there
are no repeated phrases. This slight simplification serves illus-
trative purposes.

4For long phrases, phrase counts are typically low. Still, the
primary corpus plays an important role in the computation of
the lexical weights, which are computed from word frequencies,
and thus typically less sparse than phrase frequencies.

5Rare target words may obtain a undesirably high probabil-
ity, but are penalized in the language model. We set the LM
log-probability of unknown words to -100.
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(whose phrase table features take into account the
primary corpus) is not better than a contrastive com-
bination system with vanilla scoring, i.e. one that
is solely based on the secondary corpus. We can
also show why the primary corpus does not improve
decoding by way of example. The German phrase
Bei der Wahl [der Matratze] (English: In the choice
[of a mattress]), is translated by the three systems
as in the selection, when choosing and in the elec-
tion. In this context, the last translation hypothesis
is the least correct, but since the political domain
is strongly represented in the training data, it is the
most frequent one in the primary corpus, and the one
being chosen by both the primary and the combined
system.

Second, there seems to be a significant overlap in
training data between the systems that we combine
and our primary system6. We only saw few cases
in which a system produced a translation against
which there was evidence in our primary corpus.
One instance is the German word Kindergarten (En-
glish: kindergarten; nursery), which is translated
as children’s garden by one system. In the com-
bined system, this translation is dispreferred. (Chen
et al., 2009) argue that a combination of dissimi-
lar systems might yield better results. Rule-based
systems could fulfill this role; they are also an at-
tractive choice given their high quality (as judged by
human evaluators) in earlier evaluations (e.g. WMT
2009 (Callison-Burch et al., 2009)). We did not pur-
sue this idea, since we optimized for highest BLEU
score, both during MERT and for the selection of the
submission system, a scoring method that has been
shown to undervalue rule-based systems (Callison-
Burch et al., 2006).

The failure to outperform the individual best sys-
tem in this translation task does not invalidate our
approach. It merely highlights that different con-
ditions call for different tools. Our approach re-
lies strongly on parallel training data, in contrast
to system combination tools such as MANY (Bar-
rault, 2010) and MEMT (Heafield and Lavie, 2010).
In this setting, this brought no benefit. However,
when developing a SMT system for a specific do-
main and when combining an in-domain primary

6This is especially true for all shared task participants build-
ing constrained systems. The amount of overlap between the
anonymous online systems is unknown.

system with out-of-domain translation hypotheses,
we expect that this strong dependence on the pri-
mary SMT system becomes an advantage. It allows
the system to discriminate between source phrases
that are well-documented in the primary training
data, which will give other systems’ hypotheses lit-
tle effect, and those that occur rarely or not at all in
the primary data, for which other systems may still
produce a useful translation.

4 Conclusion

We described the UZH system combination submis-
sion to the Workshop of Machine Translation 2011.
It uses the Moses architecture and includes transla-
tion hypotheses through a second phrase table. Its
central characteristic is the extraction of phrase pairs
from translations hypotheses and the scoring thereof
on the basis of another parallel corpus. We find
that, in the WMT 2011 system combination shared
task, this approach fails to result in a significant im-
provement over the best individual system in terms
of BLEU score. However, we argue that it is well
suited for other translation tasks, such as the one de-
scribed in (Sennrich, 2011).
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Abstract

This paper describes the JHU system combi-
nation scheme used in WMT-11. The JHU
system combination is based on confusion
network alignment, and inherited the frame-
work developed by (Karakos et al., 2008).
We improved our core system combination al-
gorithm by making use of TER-plus, which
was originally designed for string alignment,
for alignment of confusion networks. Exper-
imental results on French-English, German-
English, Czech-English and Spanish-English
combination tasks show significant improve-
ments on BLEU and TER by up to 2 points on
average, compared to the best individual sys-
tem output, and improvements compared with
the results produced by ITG which we used in
WMT-10.

1 Introduction

System combination aims to improve the translation
quality by combining the outputs from multiple in-
dividual MT systems. The state-of-the-art system
combination methodologies can be roughly catego-
rized as follows (Karakos et al., 2010):

1. Confusion network based: confusion network
is a form of lattice with the constraint that all
paths need to pass through all nodes. An exam-
ple of a confusion network is shown in Figure
1.

Here, the set of arcs between two consecutive
nodes represents a bin, the number following a
word is the count of this word in its bin, and

0 1
this/10

2
is/7

was/3
3

a/8

one/2
4

dog/9

cat/1
5/0

./10

Figure 1: Example confusion network. The total count in
each bin is 10.

each bin has the same size. The basic method-
ology of system combination based on confu-
sion network includes the following steps: (a)
Choose one system output as the “skeleton”,
which roughly decides the word order. (b)
Align further system outputs to the skeleton,
thus forming a confusion network. (c) Rescore
the final confusion network using a language
model, then pick the best path as the output of
combination.

A textual representation (where each line con-
tains the words and counts of each bin) is usu-
ally the most convenient for machine process-
ing.

2. Joint optimization based: unlike building con-
fusion network, this method considers all sys-
tem outputs at once instead of incrementally.
Then a log-linear model is used to derive costs,
followed by a search algorithm to explore the
combination space (Jayaraman et al., 2005;
Heafield et al., 2009; He et al., 2009).

3. Hypothesis selection based: this method only
includes algorithms that output one of the input
translations, and no word selection from mul-
tiple systems is performed. Typical algorithms
can be found in (Rosti et al., 2007).
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This paper describes the JHU system com-
bination submitted to the Sixth Workshop
on Statistical Machine Translation (WMT-11)
(http://statmt.org/wmt11/index.html ). The JHU
system combination is confusion network based
as described above, following the basic system
combination framework described in (Karakos et
al., 2008). However, instead of ITG alignments
that were used in (Karakos et al., 2008), alignments
based on TER-plus (Snover et al., 2009) were used
now as the core system alignment algorithm.

The rest of the paper is organized as follows:
Section 2 introduces the application of TER-plus in
system combination. Section 3 introduces the JHU
system combination pipeline. Section 4 presents the
combination results and concluding remarks appear
in Section 5.

2 Word Reordering for Hypothesis
Alignment

Given the outputs of multiple MT systems, we
would like to reorder and align the words of different
hypothesis in a way such that an objective function is
optimized, thus reaching better translations by mak-
ing use of more information. In our system combi-
nation scheme, the objective function was based on
Translation-Edit-Rate Plus (TER-plus).

2.1 Introduction to TER-plus

TER-plus is an extension of Translation Error Rate
(TER) (Snover et al., 2006). TER is an evaluation
metric for machine translation; it generalizes Word
Error Rate (WER) by allowing block shifts in addi-
tion to the edit distance operations. However, one
problem with TER is that only exact match of word
blocks are allowed for shifting; this constraint might
be too strict as it sometimes prevents reasonable
shifts if two blocks have similar meanings.

TER-plus remedies this problem by introducing
new flexible matches between words, thus allowing
word substitutions and block shifts with costs much
lower than that of TER. Specifically, substitution
costs are now dependent on whether the words have
the same stem (stem matches) or are synonyms (syn-
onym matches). These operations relax the shift-
ing constraints of TER; shifts are now allowed if the

words of one string are synonyms or share the same
stem as the words of the string they are compared to
(Snover et al., 2009).

TER-plus identifies words with the same stem us-
ing the Porter stemming algorithm (Porter et al.,
1980), and identifies synonyms using the WordNet
database (Miller et al., 1995).

2.2 TER-plus for system combination

Originally, TER-plus was designed for aligning to-
gether word strings. However, similar to the work
of (Karakos et al., 2010), who extended ITG to al-
low bilingual parsing of two confusion networks (by
treating each confusion network bin as a multi-word
entity), we converted the basic TER-plus code to
take into account multiple words present in confu-
sion network bins. Specifically, we define the cost
of aligning two confusion network bins as (Karakos
et al., 2010)

cost(b1, b2) =
1

|b1||b2|
∑

w1∈b1

∑
w2∈b2

C(w1, w2)

in which b1,b2 are the confusion network bins which
are candidates for alignment, | · | is the size of a
bin, w1, w2 are words in b1 and b2 respectively, and
C(w1, w2) is defined as follows:

C(w1, w2) =



0 w1 matches w2

0.5 w2 is deleted
0.6 w2 is inserted
0.2 w1 and w2 are synonyms
0.2 w1 and w2 share stems

1 none of the above

Furthermore, the bin shift cost is set to 1.5. These
numbers are empirically determined based on exper-
imental results.

Similar to (Karakos et al., 2010), when a bin gets
“deleted”, it gets replaced with a NULL arc, which
simply encodes the empty string, and is otherwise
treated as a regular token in the alignments.

3 The JHU System Combination Pipeline

We now describe the JHU system combination
pipeline in which TER-plus is used as the core con-
fusion network alignment algorithm as introduced in
the previous section.
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3.1 Combination procedure overview

The JHU system combination scheme is based on
confusion network as introduced in section 1. The
confusion networks are built in two stages:

1. Within-system combination: (optional, only
applicable in the case where per-system n-best
lists are available.) the within-system combi-
nation generates system-specific confusion net-
works based on the alignment of the n-best
translations.

2. Between-system combination: incremental
alignment of the confusion networks of differ-
ent systems generated in step 1, starting from
2-system combination up to the combination of
all systems. The order with which the systems
are selected is based on the individual BLEU
scores (i.e., the best two systems are first com-
bined, then the 3rd best is aligned to the result-
ing confusion network, etc.)

For the between-system combination we made
use of TER-plus as described in section 2.2.

3.2 Language model Rescoring with
Finite-State Transducer Operations

Once the between-system confusion networks are
ready (one confusion network per sentence), a path
through each of them has to be selected as the com-
bination output. In order to pick out the the most flu-
ent word sequence as the final translation, we need
to rescore the confusion networks using a language
model. This task can be performed efficiently via fi-
nite state transducer (FST) operations (Allauzen et
al., 2002). First, we build an FST for each confu-
sion network, called CN-FST. Since the confusion
network is just a sequence of bins and each bin is a
superposition of single words, the CN-FST can be
built as a linear FST in a straightforward way (see
Figure 1).

A 5-gram language model FST (LM-FST) is then
built for each sentence. To build the LM-FST, we
refer to the methodology described in (Allauzen et
al., 2003). In brief, the LM-FST is constructed in
the following way:

1. Extract the vocabulary of each segment.

2. Each state of the FST encodes an n-gram his-
tory (n − 1 words). Each (non-null) arc that
originates from that state corresponds uniquely
to a word type (i.e., word that follows that his-
tory in the training data).

3. The cost of each word arc is the corre-
sponding language model score (negative log-
probability, based on the modified Kneser-Ney
formula (Kneser, 1995) for that n-gram).

4. Extra arcs are added for backing-off to lower-
order histories, thus allowing all possible word
strings to receive a non-zero probability.

In order to deal with the situation where a word
in the confusion network is not in the vocabulary of
the language model, we need to build another sim-
ple transducer, namely, the “unknown word” FST
(UNK-FST), to map this word to the symbol <unk>
that encodes the out-of-vocabulary (OOV) words.
Note that this is useful only if one builds open-
vocabulary language models which always give a
non-zero probability to OOV words; e.g., check
out the option -unk of the SRILM toolkit (Stolcke,
2002). (Obviously, the UNK-FST leaves all other
words unmodified.)

After all these three transducers have been built,
they are composed in the following manner (for each
sentence):

CN-FST .o. UNK-FST .o. LM-FST

Note that a possible re-weighting of the arc costs
of the CN-FST can be done in order to better account
for the different dynamic ranges between the CN
costs and the LM-FST costs. Furthermore, to avoid
too many word deletions (especially in regions of the
confusion network where the words disagree most)
an additive word deletion penalty can be added to all
NULL arcs. The best (minimum-cost) path from this
resulting FST is selected as the output translation of
the system combination for that sentence.

3.3 System combination pipeline summary
We now summarize the JHU system combination
end-to-end pipeline as follows(since BLEU score is
a key metric in the WMT11 translation evaluation,
we use BLEU score as the system ranking criteria.
The BLEU score we computed for the experiments
below are all case-insensitive):
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1. Process and re-format (lowercase, tokenize,
romanize, etc.) all individual system out-
puts. Note that we compute the case-insensitive
BLEU score in our experiments.

2. Build LM-FST and UNK-FST for each sen-
tence.

3. Decide the between-system combination order
according to the 1-best output BLEU score of
individual systems.

4. Do between-system combination based on the
order decided in step 3 using TER-plus.

5. Rescore the confusion network and start tuning
on the parameters: convert the between-system
confusion network into FST, compose it with
the UNK-FST and with the LM-FST. When
composing with LM-FST, try different CN arc
coefficients (we tried the range {5, . . . , 21}),
and unknown word insertion penalties (we tried
the values {0.3, 0.5, 0.7, 1}).

6. Compute the BLEU score for all m-syst x y
outputs, where m is the number of systems for
combination, x is the weight and y is the inser-
tion penalty.

7. Among all the scores computed in step 6, find
the best BLEU score, and keep the correspond-
ing parameter setting(m, x, y).

8. Apply the best parameter setting to the test
dataset for evaluation.

Obviously, if n-best outputs from systems are avail-
able, an extra step of producing within-system com-
binations (and searching for the best n-best size) will
also be executed.

4 Results

In WMT11, we participated in French-English,
German-English, Czech-English and Spanish-
English system combination tasks. Although we
followed the general system combination pipeline
introduced in 3.3, we did not do the within-system
combination since we received only 1-best outputs
from all systems.

We built both primary and contrastive systems,
and they differ in the way the 5-gram language mod-
els were trained. The language model for the pri-
mary system was trained with the monolingual Eu-
roparl, news commentary and news crawl corpus
provided by WMT11. The language model for the
contrastive system was trained using only the 1-
best outputs from all individual systems (sentence-
specific language model).

The number of systems used for combination
tuning in each language pair was: 24 for French-
English, 26 for German-English, 12 for Czech-
English, and 16 for Spanish-English. The best re-
sults for the combination in the primary system
made use of 23 systems for French-English, 5 sys-
tems for German-English, 10 systems for Czech-
English, 10 systems for Spanish-English. In the con-
trastive system, the number of systems were 20, 5,
6, 10 respectively.

The TER and BLEU scores on the development
set for the best individual system, the primary and
contrastive combinations are given in Table 1, and
the scores for test set are given in Table 2. From the
results we see that, compared with the best individ-
ual system outputs, system combination results in
significantly improved BLEU scores and remarkable
reductions on TER, for all language pairs. More-
over, we observe that the primary system performs
slightly better than the contrastive system in most
cases.

We also did the experiment of xx-English which
made combinations of all English outputs available
across different source languages. We used 35 sys-
tems in this experiment for both primary and con-
trastive combination, and best result made use of 15
and 16 systems respectively. The development and
test set results are shown in the “xx-en” column in
table 1 and 2 respectively. From the results we see
the improvements on TER and BLEU scores of both
development and test sets almost doubled compared
with the best results of single language pairs.

To make a comparison with the old technique
we used in WMT10 system combination task, we
ran the WMT11 system combination task using ITG
with surface matching. The detailed implementation
is described in (Narsale, 2010). Table 3 and 4 show
the WMT11 results using ITG for alignment respec-
tively. It can be seen that TER-plus outperforms ITG
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System
fr-en de-en cz-en es-en xx-en

TER BLEU TER BLEU TER BLEU TER BLEU TER BLEU
Best single system 56.2 28.1 60.1 23.6 54.9 27.9 51.8 30.2 51.8 30.2
Primary combination 49.2 32.6 58.1 25.7 55.1 28.7 48.3 33.7 44.9 35.5
Contrastive combination 49.8 32.3 58.2 25.6 54.9 28.9 49.1 33.3 45.0 37.2

Table 1: Results for all language pairs on development set. The best number in each column is shown in bold.

System
fr-en de-en cz-en es-en xx-en

TER BLEU TER BLEU TER BLEU TER BLEU TER BLEU
Best single system 58.2 30.5 65.1 23.5 59.7 29.1 60.0 28.9 58.2 30.5
Primary combination 55.9 31.9 64.4 25.0 60.1 29.6 55.4 33.5 51.7 36.3
Contrastive combination 56.5 31.6 65.7 24.4 59.9 29.8 56.5 33.4 52.5 36.5

Table 2: Results for all language pairs on test set. The best number in each column is shown in bold.

System
fr-en de-en cz-en es-en xx-en

TER BLEU TER BLEU TER BLEU TER BLEU TER BLEU
Best single system 56.2 28.1 60.1 23.6 54.9 27.9 51.8 30.2 51.8 30.2
Primary combination 49.0 32.5 57.6 25.0 54.6 28.1 48.8 33.1 45.3 35.7
Contrastive combination 56.1 31.7 58.0 24.9 55.0 28.0 49.4 33.0 45.6 35.9

Table 3: Results for all language pairs on development set using ITG. The best number in each column is shown in
bold.

System
fr-en de-en cz-en es-en xx-en

TER BLEU TER BLEU TER BLEU TER BLEU TER BLEU
Best single system 58.2 30.5 65.1 23.5 59.7 29.1 60.0 28.9 58.2 30.5
Primary combination 55.9 31.9 64.5 24.7 60.1 29.4 55.8 33.0 52.2 35.0
Contrastive combination 56.6 31.4 64.7 24.4 60.7 29.6 56.6 33.0 52.9 35.3

Table 4: Results for all language pairs on test set using ITG. The best number in each column is shown in bold.
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almost in all results. We will experiment with ITG
and flexible match costs and will report results in a
subsequent publication.

5 Conclusion

We described the JHU system combination scheme
that was used in WMT-11. The JHU system com-
bination system is confusion network based, and
we demonstrated the successful application of TER-
plus (which was originally designed for string align-
ment) to confusion network alignment. The WMT-
11 submission results show that significant improve-
ments on the TER and BLEU scores (over the best
individual system) were achieved.
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Abstract

We consider using online language models for
translating multiple streams which naturally
arise on the Web. After establishing that us-
ing just one stream can degrade translations
on different domains, we present a series of
simple approaches which tackle the problem
of maintaining translation performance on all
streams in small space. By exploiting the dif-
fering throughputs of each stream and how
the decoder translates prior test points from
each stream, we show how translation perfor-
mance can equal specialised, per-stream lan-
guage models, but do this in a single language
model using far less space. Our results hold
even when adding three billion tokens of addi-
tional text as a background language model.

1 Introduction

There is more natural language data available today
than there has ever been and the scale of its produc-
tion is increasing quickly. While this phenomenon
provides the Statistic Machine Translation (SMT)
community with a potentially extremely useful re-
source to learn from, it also brings with it nontrivial
computational challenges of scalability.

Text streams arise naturally on the Web where
millions of new documents are published each day in
many different languages. Examples in the stream-
ing domain include the thousands of multilingual
websites that continuously publish newswire stories,
the official proceedings of governments and other
bureaucratic organisations, as well as the millions
of “bloggers” and host of users on social network
services such as Facebook and Twitter.

Recent work has shown good results using an in-
coming text stream as training data for either a static
or online language model (LM) in an SMT setting
(Goyal et al., 2009; Levenberg and Osborne, 2009).
A drawback of prior work is the oversimplified sce-
nario that all training and test data is drawn from the
same distribution using a single, in-domain stream.
In a real world scenario multiple incoming streams
are readily available and test sets from dissimilar do-
mains will be translated continuously. As we show,
using stream data from one domain to translate an-
other results in poor average performance for both
streams. However, combining streams naively to-
gether hurts performance further still.

In this paper we consider this problem of multiple
stream translation. Since monolingual data is very
abundant, we focus on the subtask of updating an on-
line LM using multiple incoming streams. The chal-
lenges in multiple stream translation include dealing
with domain differences, variable throughput rates
(the size of each stream per epoch), and the need
to maintain constant space. Importantly, we impose
the key requirement that our model match transla-
tion performance reached using the single stream ap-
proach on all test domains.

We accomplish this using then-gram history of
prior translations plus subsampling to maintain a
constant bound on memory required for language
modelling throughout all stream adaptation. In par-
ticular, when considering two test streams, we are
able to improve performance on both streams from
an average (per stream) BLEU score of39.71 and
37.09 using a single stream approach (Tables 2 and
3) to an average BLEU score of41.28 and42.73 us-
ing multiple streams within a single LM using equal
memory (Tables 6 and 7). We also show additive im-
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provements using this approach when using a large
background LM consisting of over one billionn-
grams. To our knowledge our approach is the first
in the literature to deal with adapting an online LM
to multiple streams in small space.

2 Previous Work

2.1 Randomised LMs

Randomised techniques for LMs from Talbot and
Osborne (2007) and Talbot and Brants (2008) are
currently industry state-of-the-art for fitting very
large datasets into much smaller amounts of mem-
ory than lossless representations for the data. Instead
of representing then-grams exactly, the randomised
representation exchanges a small, one-sided error of
false positives for massive space savings.

2.2 Stream-based LMs

An unbounded text stream is an input source of natu-
ral language documents that is received sequentially
and so has an implicit timeline attached. In Leven-
berg and Osborne (2009) a text stream was used to
initially train and subsequently adapt an online, ran-
domised LM (ORLM) with good results. However,
a weakness of Levenberg and Osborne (2009) is that
the experiments were all conducted over a single in-
put stream. It is an oversimplification to assume that
all test material for a SMT system will be from a sin-
gle domain. No work was done on the multi-stream
case where we have more than one incoming stream
from arbitrary domains.

2.3 Domain Adaptation for SMT

Within MT there has been a variety of approaches
dealing with domain adaptation (for example (Wu et
al., 2008; Koehn and Schroeder, 2007)). Our work
is related to domain adaptation but differs in that we
are not skewing the distribution of an out-of-domain
LM to accommodate some test data for which we
have little or no training data for. Rather, we have
varying amounts of training data from all the do-
mains via the incoming streams and the LM must
account for each domain appropriately. However,
known domain adaptation techniques are potentially
applicable to multi-stream translation as well.

3 Multiple Streams and their Properties

Any source that provides a continuous sequence
of natural language documents over time can be
thought of as anunbounded stream which is time-
stamped and access to it is given in strict chronolog-
ical order. The ubiquity of technology and the In-
ternet means there are many such text streams avail-
able already and their number is increasing quickly.
For SMT, multiple text streams provide a potentially
abundant source of new training data that may be
useful for combating model sparsity.

Of primary concern is building models whose
space complexity is independent of the size of the
incoming stream. Allowing unbounded memory to
handle unbounded streams is unsatisfactory. When
dealing with more than one stream we must also
consider how the properties of single streams inter-
act in a multiple stream setting.

Every text stream is associated with a particular
domain. For example, we may draw a stream from
a newswire source, a daily web crawl of new blogs,
or the output of a company or organisation. Obvi-
ously the distribution over the text contained in these
streams will be very different from each other. As
is well-known from the work on domain adaptation
throughout the SMT literature, using a model from
one domain to translate a test document from an-
other domain would likely produce poor results.

Each stream source will also have a different
rate of production, orthroughput, which may vary
greatly between sources. Blog data may be received
in abundance but the newswire data may have a sig-
nificantly lower throughput. This means that the text
stream with higher throughput may dominate and
overwhelm the more nuanced translation options of
the stream with less data in the LM during decod-
ing. This is bad if we want to translate well for all
domains in small space using a single model.

4 Multi-Stream Retraining

In a stream-based translation setting we can expect
to translate test points from various domains on any
number of incoming streams. Our goal is a single
unified LM that obtains equal performance in less
space than when using a separate LM per stream.
The underlying LMs could be exact, but here we use
randomised versions based on the ORLM.
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…input stream 1

input stream 2

input stream K

LM 1
LM 2

LM 3

Naive Combination Approach

new epoch new epoch

Figure 1: In the naive approach allK streams are simply
combined into a single LM for each new epoch encoun-
tered.

Given an incoming numberK of unbounded
streams over a potentially infinite timelineT , with
t ⊂ T anepoch or windowed subset of the timeline,
the full set ofn-grams in allK streams over allT
is denoted withS. By St we denoten-grams from
all K streams andSkt, k ∈ [1,K], as then-grams
in the kth stream over epocht. Since the streams
are unbounded, we do not have access to all then-
grams inS at once. Instead we selectn-grams from
each streamSkt ⊂ S. We define the collection of
n-grams encoded in the LM at timet over all K
streams asCt. Initially, at time t = 0 the LM is
composed of then-grams in the stream soC0 = S0.

Since it is unsatisfactory to allow unbounded
memory usage for the model and more bits are
needed as we see more noveln-grams from the
streams, we enforce a memory constraint and use
an adaptation scheme to deleten-grams from the
LM Ct−1 before adding any newn-grams from the
streams to get the currentn-gram setCt. Below
we describe various approaches of updating the LM
with data from the streams.

4.1 Naive Combinations

Approach The first obvious approach for an online
LM using multiple input streams is to simply store
all the streams in one LM. That is,n-grams from
all the streams are only inserted into the LM once
and their stream specific counts are combined into a
single value in the composite LM.
Modelling the Stream In the naive case we retrain
the LM Ct in full at epocht using all the new data
from the streams. We have simply

Ct =
K
⋃

k=1

Skt (1)

stream 1 LM 1
stream 1 LM 2

stream 1 LM 3

input stream 1

stream 2 LM 1
stream 2 LM 2

stream 2 LM 3

input stream 2…
stream K LM 1

stream K LM 2
stream K LM 3

input stream K

Multiple LM Approach

new epoch new epoch

Figure 2: Each stream1 . . . K gets its own stream-based
LM using the multiple LM approach.

where each of theK streams is combined into a sin-
gle model and then-grams counts are merged lin-
early. Here we carry non-grams over from the LM
Ct−1 from the previous epoch. The space needed is
the number of uniquen-grams present in the com-
bined streams for each epoch.

Resulting LM To query the resulting LMCt dur-
ing decoding with a testn-gramwn

i
= (wi, . . . , wn)

we use a simple smoothing algorithm called Stupid
Backoff (Brants et al., 2007). This returns the
probability of ann-gram as

P (wi|w
i−1
i−n+1) :=







Ct(wi

i−n+1
)

Ct(w
i−1

i−n+1
)

if Ct(w
i
i−n+1) > 0

αP (wi|w
i−1
i−n+2) otherwise

(2)

whereCt(.) denotes the frequency count returned by
the LM for ann-gram andα is a backoff parameter.
The recursion ends once the unigram is reached in
which case the probability isP (wi) := wi/N where
N is the size of the current training corpus.

Each stream provides a distribution over then-
grams contained in it and, for SMT, if aseparate
LM was constructed for each domain it would most
likely cause the decoder to derive different 1-best
hypotheses than using a LM built from all the stream
data. Using the naive approach blurs the distribution
distinctions between streams and negates any stream
specific differences when the decoder produces a 1-
best hypothesis. It has been shown that doing lin-
ear combinations of this type produces poor perfor-
mance in theory (Mansour et al., 2008).
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4.2 Weighted Interpolation

Approach An improved approach to using multi-
ple streams is to build a separate LM for each stream
and using a weighted combination of each during
decoding. Each stream is stored in isolation and we
interpolate the information contained within each
during decoding using a weighting on each stream.
Modelling the Stream Here we model the streams
by simply storing each stream at timet in its own
LM so Ckt = Skt for each streamSk. Then the LM
after epocht is

Ct = {C1t, . . . , CKt}.

We use more space here than all other approaches
since we must store eachn-gram/count occurring in
each stream separately as well as the overhead in-
curred for each separate LM in memory.
Resulting LM During decoding, the probability of
a testn-gramwn

i
is a weighted combination of all

the individual stream LMs. We can write

P (wn
i ) :=

K
∑

k=1

fkPCkt
(wn

i ) (3)

where we query each of the individual LMsCkt to
get a score from each LM using Equation 2 and
combine them together using a weightingfk spe-
cific to each LM. Here we impose the restriction on
the weights that

∑

K

k=1 fk = 1. (We discuss specific
weight selections in the next section.)

By maintaining multiple stream specific LMs we
maintain the particular distribution of the individual
streams. This keeps the more nuanced translations
from the lower throughput streams available during
decoding without translations being dominated by a
stream with higher throughput. However using mul-
tiple distinct LMs is wasteful of memory.

4.3 Combining Models via History

Approach We want to combine the streams into
a single LM using less memory than when storing
each stream separately but still achieve at least as
good a translation for each test point. Naively com-
bining the streams removes stream specific transla-
tions but using the history ofn-grams selected by the
decoder during the previous test point in the stream
was done in Levenberg and Osborne (2009) for the

single stream case with good results. This is appli-
cable to the multi-stream case as well.
Modelling the Stream For multiple streams and
epocht > 0 we model the stream combination as

Ct = fT (Ct−1) ∪
K
⋃

k=1

(Skt). (4)

where for each epoch a selected subset of the previ-
ousn-grams in the LMCt−1 is merged with all the
newly arrived stream data to create the new LM set
Ct. The parameterfT denotes a function that filters
over the previous set ofn-grams in the model. It
represents the specific adaptation scheme employed
and stays constant throughout the timelineT . In this
work we consider anyn-grams queried by the de-
coder in the last test point as potentially useful to
the next point. Since all of then-gramsSt in the
stream at timet are used the space required is of the
same order of complexity as the naive approach.
Resulting LM Since all then-grams from the
streams are now encoded in a single LMCt we can
query it using Equation 2 during decoding. The goal
of retraining using decoding history is to keep use-
ful n-grams in the current model so a better model
is obtained and performance for the next transla-
tion point is improved. Note that making use of the
history for hypothesis combination is theoretically
well-founded and is the same approach used here for
history based combination. (Mansour et al., 2008)

4.4 Subsampling

Approach The problem of multiple streams with
highly varying throughput rates can be seen as a type
of class imbalance problem in the machine learning
literature. Given a binary prediction problem with
two classes, for instance, the imbalance problem oc-
curs when the bulk of the examples in the training
data are instances of one class and only a much
smaller proportion of examples are available from
the other class. A frequently used approach to bal-
ancing the distribution for the statistical model is to
userandom under sampling and select only a sub-
set of the dominant class examples during training
(Japkowicz and Stephen, 2002).

This approach is applicable to the multiple stream
translation problem with imbalanced throughput
rates between streams. Instead of storing then-
grams from each stream separately, we can apply a
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…input stream 1

input stream 2

input stream K

LM 1
LM 2 + (subset of LM 1)

LM 3 + (subset of LM 2)

History Combination Approach
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SMT Decoder

Figure 3: Using decoding history all the streams are com-
bined into a unified LM.

subsampling selection scheme directly to the incom-
ing streams to balance each stream’s contribution in
the final LM. Note that subsampling is also related
to weighting interpolation. Since all returned LM
scores are based on frequency counts of then-grams
and their prefixes, taking a weighting on a full prob-
ability of ann-gram is akin to having fewer counts
of then-grams in the LM to begin with.

Modelling the Stream To this end we use the
weighted function parameterfk from Equation 3 to
serve as the sampling probability rate for accepting
an n-gram from a given streamk. The sampling
rate serves to limit the amount of stream data from
a stream that ends up in the model. ForK > 1 we
have

Ct = fT (Ct−1) ∪
K
⋃

k=1

fk(Skt) (5)

wherefk is the probability a particularn-gram from
streamSk at epocht will be included inCt. The
adaptation functionfT remains the same as in Equa-
tion 4. The space used in this approach is now de-
pendent on the ratefk used for each stream.

Resulting LM Again, since we obtain a single LM
from all the streams, we use Equation 2 to get the
probability of ann-gram during decoding.

The subsampling method is applicable to all of the
approaches discussed in this section. However, since
we are essentially limiting the amount of data that
we store in the final LM we can expect to take a per-
formance hit based on the rate of acceptance given
by the parametersfk. By using subsampling with
the history combination approach we obtain good
performance for all streams in small space.

Stream 1-grams 3-grams 5-grams
EP 19K 520K 760K
GW (xie) 120K 3M 5M
RCV1 630K 21M 42M

Table 1: Sample statistics of uniquen-gram counts from
the streams from epoch 2 of our timeline. Thethroughput
rate varies a lot between streams.

5 Experiments

Here we report on our SMT experiments with multi-
ple streams for translation using the approaches out-
lined in the previous section.

5.1 Experimental Setup

The SMT setup we employ is standard and all re-
sources used are publicly available. We translate
from Spanish into English using phrase-based de-
coding with Moses (Koehn and Hoang, 2007) as our
decoder. Our parallel data came from Europarl.

We use three streams (all are timestamped):
RCV1 (Rose et al., 2002), Europarl (EP) (Koehn,
2003), and Gigaword (GW) (Graff et al., 2007). GW
is taken from six distinct newswire sources but in
our initial experiments we limit the incoming stream
from Gigaword to one of the sources (xie). GW and
RCV1 are both newswire domain streams with high
rates of incoming data whereas EP is a more nu-
anced, smaller throughput domain of spoken tran-
scripts taken from sessions of the European Parlia-
ment. The RCV1 corpus only spans one calender
year from October, 1996 through September, 1997
so we selected only data in this time frame from
the other two streams so our timeline consists of the
same full calendar year for all streams.

For this work we use the ORLM. The crux of the
ORLM is an online perfect hash function that pro-
vides the ability to insert and delete from the data
structure. Consequently the ORLM has the abil-
ity to adapt to an unbounded input stream whilst
maintaining both constant memory usage and error
rate. All the ORLMs were 5-gram models built with
training data from the streams discussed above and
used Stupid Backoff smoothing forn-gram scoring
(Brants et al., 2007). All results are reported using
the BLEU metric (Papineni et al., 2001).

For testing we held-out three random test points
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LM Type Test 1 Test 2 Test 3
RCV1 (Static) 39.30 38.28 33.06
RCV1 (Online) 39.30 40.64 39.19
EP (Online) 30.22 30.31 26.66
RCV1+EP (Online) 39.00 40.15 39.46
RCV1+EP+GW (Online) 41.29 41.73 40.41

Table 2: Results for the RCV1 test points. RCV1 and GW
streams are in-domain and EP is out-of-domain. Transla-
tion results are improved using more stream data since
mostn-grams are in-domain to the test points.

from both the RCV1 and EP stream’s timeline for
a total of six test points. This divided the streams
into threeepochs, and we updated the online LM
using the data encountered in the epoch prior to each
translation point. Then-grams and their counts from
the streams are combined in the LM using one of the
approaches from the previous section.

Using the notation from Section 4 we have the
RCV1, EP, and GW streams described above and
K = 3 as the number of incoming streams from two
distinct domains (newswire and spoken dialogue).
Our timelineT is one year’s worth of data split into
three epochs,t ∈ {1, 2, 3}, with test points at the
end of each epocht. Since we have no test points
from the GW stream it acts as a background stream
for these experiments.1

5.2 Baselines and Naive Combinations

In this section we report on our translation exper-
iments using a single stream and the naive linear
combination approach with multiple incoming data
streams from Section 4.1.

Using the RCV1 corpus as our input stream we
tested single stream translation first. Here we are
replicating the experiments from Levenberg and Os-
borne (2009) so both training and test data comes
from a single in-domain stream. Results are in Table
2 where each row represents a different LM type.
RCV1 (Static) is the traditional baseline with no
adaptation where we use the training data for the first
epoch of the stream.RCV1 (Online) is the online
LM adapted with data from the in-domain stream.
Confirming the previous work we get improvements

1A background stream is one that only serves as training
data for all other test domains.

LM Type Test 1 Test 2 Test 3
EP (Static) 42.09 44.15 36.42
EP (Online) 42.09 45.94 37.22
RCV1 (Online) 36.46 42.10 32.73
EP+RCV1 (Online) 40.82 44.07 35.01
EP+RCV1+GW (Online) 40.91 44.05 35.56

Table 3: EP results using in and out-of-domain streams.
The last two rows show that naive combination gets poor
results compared to single stream approaches.

when using an online LM that incorporates recent
data against a static baseline.

We then ran the same experiments using a stream
generated from the EP corpus. EP consists of the
proceedings of the European Parliament and is a sig-
nificantly different domain than the RCV1 newswire
stream. We updated the online LM usingn-grams
from the latest stream epoch before translating each
in-domain EP test set. Results are in Table 3 and fol-
low the same naming convention as Table 2 (except
now in-domain is EP and out-of-domain is RCV1).

Using a single stream we also cross tested and
translated each test point using the online LM
adapted on the out-of-domain stream. As expected,
translation performance decreases (sometimes dras-
tically) in this case since the data of the out-of-
domain stream are not suited to the domain of the
current test point being translated.

We then tested the naive approach and combined
both streams into a single LM by taking the union of
then-grams and adding their counts together. This
is theRCV1+EP (Online) row in Tables 2 and 3 and
clearly, though it contains more data compared to
each single stream LM, the naively combined LM
does not help the RCV1 test points much and de-
grades the performance of the EP translation results.
This translation hit occurs as the throughput of each
stream is significantly different. The EP stream con-
tains far less data per epoch than the RCV1 counter-
part (see Table 1) hence using a naive combination
means that the more abundant newswire data from
the RCV1 stream overrides the probabilities of the
more domain specific EPn-grams during decoding.

When we added a third newswire stream from a
portion of GW, shown in the last row of Tables 2
and 3, improvements are obtained for the RCV1 test
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Weighting Test 1 Test 2 Test 3
.33R + .33E + .33G 38.97 39.78 35.66
.50R + .25E + .25G 39.59 40.40 37.22
.25R + .50E + .25G 36.57 38.03 34.23
.70R + 0.0E + .30G 40.54 41.46 39.23

Table 4: Weighted LM interpolation results for the RCV1
test points whereE = Europarl,R = RCV1, andG =
Gigaword (xie).

points due to the addition of in-domain data but the
EP test performance still suffers.

This highlights why naive combination is unsat-
isfactory. While using more in-domain data aids
in the translation of the newswire tests, for the EP
test sets, naively combining then-grams from all
streams means the hypotheses the decoder selects
are weighted heavily in favor of the out-of-domain
data. As the out-of-domain stream’s throughput is
significantly larger it swamps the model.

5.3 Interpolating Weighted Streams

Straightforward linear stream combination into a
single LM results in degradation of translations for
test points whose in-domain training data is drawn
from a stream with lower throughput than the other
data streams. We could maintain a separate MT sys-
tem for each streaming domain but intuitively some
combination of the streams may benefit average per-
formance since using all the data available should
benefit test points from streams with low through-
put. To test this we used an alternative approach de-
scribed in Section 4.2 and used a weighted combi-
nation of the single stream LMs during decoding.

We tested this approach using our three streams:
RCV1, EP and GW (xie). We used a separate
ORLM for each stream and then, during testing, the
result returned for ann-gram queried by the decoder
was a value obtained from some weighted interpola-
tion of each individual LM’s score for thatn-gram.
To get the interpolation weights for each streaming
LM we minimised the perplexity of all the mod-
els on held-out development data from the streams.
2 Then we used the corresponding stream specific

2Due to the lossy nature of the encoding of the ORLM
means that the perplexity measures were approximations.
Nonetheless the weighting from this approach had the best per-
formance.

Weighting Test 1 Test 2 Test 3
.33E + .33R + .33G 40.75 45.65 35.77
.50E + .25R + .25G 41.46 46.37 36.94
.25E + .50R + .25G 40.57 44.90 35.77
.70E + .20R + .10G 42.47 46.83 38.08

Table 5: EP results in BLEU for the interpolated LMs.

weights to decode the test points from that domain.
Results are shown in Tables 4 and 5 using the

weighting scheme described above plus a selec-
tion of random parameter settings for comparison.
Using the notation from Section 4.2, a caption of
“ .5R+ .25E+ .25G”, for example, denotes a weight-
ing of fRCV 1 = 0.5 for the scores returned from the
RCV1 stream LM whilefEP andfGW = 0.25 for
the EP and GW stream LMs.

The weighted interpolation results suggest that
while naive combination of the streams may be mis-
guided, average translation performance can be im-
proved upon when using more than a single in-
domain stream. Comparing the best results in Tables
2 and 3 to the single stream baselines in Tables 4 and
5 we achieve comparable, if not improved, transla-
tion performance forboth domains. This is espe-
cially true for test domains such as EP which have
low training data throughput from the stream. Here
adding some information from the out-of-domain
stream that contains a lot more data aids signifi-
cantly in the translation of in-domain test points.

However, the optimal weighting differs between
each test domain. For instance, the weighting that
gives the best results for the EP tests results in much
poorer translation performance for the RCV1 test
points requiring us to track which stream we are
decoding and then select the appropriate weighting.
This adds unnecessary complexity to the SMT sys-
tem. And, since we store each stream separately,
memory usage is not optimal using this scheme.

5.4 History and Subsampling

For space efficiency we want to represent multi-
ple streams non-redundantly instead of storing each
stream/domain in its own LM. Here we report on
experiments using both the history combination and
subsampling approaches from Sections 4.3 and 4.4.

Results are in Tables 6 and 7 for the RCV1 and
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LM Type Test 1 Test 2 Test 3
Multi-fk 41.19 41.73 39.23
Multi-fT 41.29 42.23 40.51
Multi-fk + fT 41.19 42.52 40.12

Table 6: RCV1 test results using history and subsampling
approaches.

LM Type Test 1 Test 2 Test 3
Multi-fk 40.91 43.50 36.11
Multi-fT 40.91 47.84 39.29
Multi-fk + fT 40.91 48.05 39.23

Table 7: Europarl test results with history and subsam-
pling approaches.

EP test sets respectively with the column headers
denoting the test point. The rowMulti-fk shows
results using only the random subsampling param-
eterfk and the rowsMulti-fT show results with just
the time-based adaptation parameter without sub-
sampling. The final rowMulti-fk + fT uses both
thef parameters with random subsampling as well
as taking decoding history into account.

Multi-fk uses the random subsampling parame-
ter fk to filter out higher ordern-grams from the
streams. Alln-grams that are sampled from the
streams are then combined into the joint LM. The
counts ofn-grams sampled from more than one
stream are added together in the composite LM. The
parameterfk is set dependent on a stream’s through-
put rate, we only subsample from the streams with
high throughput, and the rate was chosen based on
the weighted interpolation results described previ-
ously. In Tables 6 and 7 the subsampling ratefk =
0.3 for the combined newswire streams RCV1 and
GW and we kept all of the EP data. We experi-
mented with various other values for thefk sampling
rates and found translation results only minorly im-
pacted. Note that the subsampling is truly random
so two adaptation runs with equal subsampling rates
may produce different final translations. Nonethe-
less, in our experiments we saw expected perfor-
mance, observing slight variation in performance for
all test points that correlated to the percentage of in-
domain data residing in the model.

The next row,Multi-fT , uses recency criteria to
keep potentially usefuln-grams but uses no subsam-

pling and accepts alln-grams from all streams into
the LM. Here we get better results than naive combi-
nation or plain subsampling at the expense of more
memory for the same error rate for the ORLM.

The final row,Multi-fk + fT uses both the sub-
sampling functionfk andfT so maintains a history
of then-grams queried by the decoder for the prior
test points. This approach achieves significantly bet-
ter results than naive adaptation and compares to us-
ing all the data in the stream. Combining translation
history as well as doing random subsampling over
the stream means we match the performance of but
use far less memory than when using multiple online
LMs whilst maintaining the same error rate.

5.5 Experiments Summary

We have shown that using data from multiple
streams benefits SMT performance. Our best ap-
proach, using history based combination along with
subsampling, combines all incoming streams into a
single, succinct LM and obtains translation perfor-
mance equal to single stream, domain specific LMs
on all test domains. Crucially we do this in bounded
space, require less memory than storing each stream
separately, and do not incur translation degradations
on any single domain.

A note on memory usage. The multiple LM ap-
proach uses the most memory since this requires
all overlappingn-grams in the streams to be stored
separately. The naive and history combination ap-
proaches use less memory since they store alln-
grams from all the streams in a unified LM. For the
sampling the exact amount of memory is of course
dependent on the sampling rate used. For the results
in Tables 6 and 7 we used significantly less memory
(300MB) but still achieved comparable performance
to approaches that used more memory by storing the
full streams (600MB).

6 Scaling Up

The experiments described in the preceding section
used combinations of relatively small (compared to
current industry standards) input streams. The ques-
tion remains if using such approaches aids in the per-
formance of translation if used in conjunction with
large static LMs trained on large corpora. In this
section we describe scaling up the previous stream-
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Order Count
1-grams 3.7M
2-grams 46.6M
3-grams 195.5M
4-grams 366.8M
5-grams 454.2M

Total 1067M

Table 8: Singleton-prunedn-gram counts (in millions)
for the GW3 background LM.

LM Type Test 1 Test 2 Test 3
GW (static) 41.69 42.40 35.48
+ RCV1 (online) 42.44 43.83 40.55
+ EP (online) 42.80 43.94 38.82

Table 9: Test results for the RCV1 stream using the large
background LM. Using stream data benefits translation.

based translation experiments using a large back-
ground LM trained on a billionn-grams.

We used the same setup described in Section 5.1.
However, instead of using only a subset of the GW
corpus as one of our incoming streams, we trained
a static LM using thefull GW3 corpus of over three
billion tokens and used it as a background LM. As
then-gram statistics for this background LM show
in Table 8, it contains far more data than each of the
stream specific LMs (Table 1). We tested whether
using streams atop this large background LM had a
positive effect on translation for a given domain.

Baseline results for all test points using only the
GW background LM are shown in the top row in
Tables 9 and 10. We then interpolated the ORLMs
with this LM. For each stream test point we interpo-
lated with the big GW LM an online LM built with
the most recent epoch’s data. Here we used sepa-
rate models per stream so the RCV1 test points used
the GW LM along with a RCV1 specific ORLM. We
used the same mechanism to obtain the interpolation
weights as described in Section 5.3 and minimised
the perplexity of the static LM along with the stream
specific ORLM. Interestingly, the tuned weights re-
turned gave approximately a 50-50 weighting be-
tween LMs and we found that simply using a 50-50
weighting for all test points resulted had no negative
effect on BLEU. In the third row of the Tables 9 and
10 we show the results of interpolating the big back-

LM Type Test 1 Test 2 Test 3
GW (static) 40.78 44.26 34.36
+ EP (online) 43.94 47.82 38.71
+ RCV1 (online) 43.07 47.72 39.15

Table 10: EP test results using the background GW LM.

ground LM with ORLMs built using the approach
described in Section 4.4. In this case all streams
were combined into a single LM using a subsam-
pling rate for higher ordern-grams. As before our
sampling rate for the newswire streams was 30%
chosen by the perplexity reduction weights.

The results show that even with a large amount
of static data adding small amounts of stream spe-
cific data relevant to a given test point has an im-
pact on translation quality. Compared to only us-
ing the large background model we obtain signifi-
cantly better results when using a streaming ORLM
to compliment it for all test domains. However the
large amount of data available to the decoder in
the background LM positively impacts translation
performance compared to single-stream approaches
(Tables 2 and 3). Further, when we combine the
streams into a single LM using the subsampling ap-
proach we get, on average, comparable scores for all
test points. Thus we see that the patterns for multi-
ple stream adaptation seen in previous sections hold
in spite of big amounts of static data.

7 Conclusions and Future Work

We have shown how multiple streams can be effi-
ciently incorporated into a translation system. Per-
formance need not degrade on any of the streams.
As well, these results can be additive. Even when
using large amounts of additional background data,
adding stream specific data continues to improve
translation. Further, we achieve all results in
bounded space. Future work includes investigating
more sophisticated adaptation for multiple streams.
We also plan to explore alternative ways of sampling
the stream when incorporating data.
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Abstract

We present KenLM, a library that imple-
ments two data structures for efficient lan-
guage model queries, reducing both time and
memory costs. The PROBING data structure
uses linear probing hash tables and is de-
signed for speed. Compared with the widely-
used SRILM, our PROBING model is 2.4
times as fast while using 57% of the mem-
ory. The TRIE data structure is a trie with
bit-level packing, sorted records, interpola-
tion search, and optional quantization aimed
at lower memory consumption. TRIE simul-
taneously uses less memory than the small-
est lossless baseline and less CPU than the
fastest baseline. Our code is open-source1,
thread-safe, and integrated into the Moses,
cdec, and Joshua translation systems. This
paper describes the several performance tech-
niques used and presents benchmarks against
alternative implementations.

1 Introduction

Language models are widely applied in natural lan-
guage processing, and applications such as machine
translation make very frequent queries. This pa-
per presents methods to query N -gram language
models, minimizing time and space costs. Queries
take the form p(wn|wn−1

1 ) where wn
1 is an n-gram.

Backoff-smoothed models estimate this probability
based on the observed entry with longest matching

1http://kheafield.com/code/kenlm

history wn
f , returning

p(wn|wn−1
1 ) = p(wn|wn−1

f )
f−1∏
i=1

b(wn−1
i ). (1)

where the probability p(wn|wn−1
f ) and backoff

penalties b(wn−1
i ) are given by an already-estimated

model. The problem is to store these two values for a
large and sparse set of n-grams in a way that makes
queries efficient.

Many packages perform language model queries.
Throughout this paper we compare with several
packages:

SRILM 1.5.12 (Stolcke, 2002) is a popular toolkit
based on tries used in several decoders.

IRSTLM 5.60.02 (Federico et al., 2008) is a sorted
trie implementation designed for lower mem-
ory consumption.

MITLM 0.4 (Hsu and Glass, 2008) is mostly de-
signed for accurate model estimation, but can
also compute perplexity.

RandLM 0.2 (Talbot and Osborne, 2007) stores
large-scale models in less memory using ran-
domized data structures.

BerkeleyLM revision 152 (Pauls and Klein, 2011)
implements tries based on hash tables and
sorted arrays in Java with lossy quantization.

Sheffield Guthrie and Hepple (2010) explore sev-
eral randomized compression techniques, but
did not release code.

TPT Germann et al. (2009) describe tries with bet-
ter locality properties, but did not release code.

These packages are further described in Section 3.
We substantially outperform all of them on query

187



speed and offer lower memory consumption than
lossless alternatives. Performance improvements
transfer to the Moses (Koehn et al., 2007), cdec
(Dyer et al., 2010), and Joshua (Li et al., 2009)
translation systems where our code has been inte-
grated. Our open-source (LGPL) implementation is
also available for download as a standalone package
with minimal (POSIX and g++) dependencies.

2 Data Structures

We implement two data structures: PROBING, de-
signed for speed, and TRIE, optimized for mem-
ory. The set of n-grams appearing in a model is
sparse, and we want to efficiently find their associ-
ated probabilities and backoff penalties. An impor-
tant subproblem of language model storage is there-
fore sparse mapping: storing values for sparse keys
using little memory then retrieving values given keys
using little time. We use two common techniques,
hash tables and sorted arrays, describing each before
the model that uses the technique.

2.1 Hash Tables and PROBING

Hash tables are a common sparse mapping technique
used by SRILM’s default and BerkeleyLM’s hashed
variant. Keys to the table are hashed, using for ex-
ample Austin Appleby’s MurmurHash2, to integers
evenly distributed over a large range. This range is
collapsed to a number of buckets, typically by tak-
ing the hash modulo the number of buckets. Entries
landing in the same bucket are said to collide.

Several methods exist to handle collisions; we use
linear probing because it has less memory overhead
when entries are small. Linear probing places at
most one entry in each bucket. When a collision oc-
curs, linear probing places the entry to be inserted
in the next (higher index) empty bucket, wrapping
around as necessary. Therefore, a populated probing
hash table consists of an array of buckets that contain
either one entry or are empty. Non-empty buckets
contain an entry belonging to them or to a preceding
bucket where a conflict occurred. Searching a prob-
ing hash table consists of hashing the key, indexing
the corresponding bucket, and scanning buckets un-
til a matching key is found or an empty bucket is

2http://sites.google.com/site/murmurhash/

encountered, in which case the key does not exist in
the table.

Linear probing hash tables must have more buck-
ets than entries, or else an empty bucket will never
be found. The ratio of buckets to entries is controlled
by space multiplier m > 1. As the name implies,
space is O(m) and linear in the number of entries.
The fraction of buckets that are empty is m−1

m , so av-

erage lookup time is O
(

m
m−1

)
and, crucially, con-

stant in the number of entries.
When keys are longer than 64 bits, we conserve

space by replacing the keys with their 64-bit hashes.
With a good hash function, collisions of the full 64-
bit hash are exceedingly rare: one in 266 billion
queries for our baseline model will falsely find a key
not present. Collisions between two keys in the table
can be identified at model building time. Further, the
special hash 0 suffices to flag empty buckets.

The PROBING data structure is a rather straight-
forward application of these hash tables to store N -
gram language models. Unigram lookup is dense so
we use an array of probability and backoff values.
For 2 ≤ n ≤ N , we use a hash table mapping from
the n-gram to the probability and backoff3. Vocab-
ulary lookup is a hash table mapping from word to
vocabulary index. In all cases, the key is collapsed
to its 64-bit hash. Given counts cn1 where e.g. c1 is
the vocabulary size, total memory consumption, in
bits, is

(96m+ 64)c1 + 128m
N−1∑
n=2

cn + 96mcN .

Our PROBING data structure places all n-grams
of the same order into a single giant hash table.
This differs from other implementations (Stolcke,
2002; Pauls and Klein, 2011) that use hash tables
as nodes in a trie, as explained in the next section.
Our implementation permits jumping to any n-gram
of any length with a single lookup; this appears to
be unique among language model implementations.

2.2 Sorted Arrays and TRIE

Sorted arrays store key-value pairs in an array sorted
by key, incurring no space overhead. SRILM’s com-
pact variant, IRSTLM, MITLM, and BerkeleyLM’s

3N -grams do not have backoff so none is stored.
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sorted variant are all based on this technique. Given
a sorted array A, these other packages use binary
search to find keys in O(log |A|) time. We re-
duce this to O(log log |A|) time by evenly distribut-
ing keys over their range then using interpolation
search4 (Perl et al., 1978). Interpolation search for-
malizes the notion that one opens a dictionary near
the end to find the word “zebra.” Initially, the algo-
rithm knows the array begins at b ← 0 and ends at
e← |A|−1. Given a key k, it estimates the position

pivot← k −A[b]
A[e]−A[b]

(e− b).

If the estimate is exact (A[pivot] = k), then the al-
gorithm terminates succesfully. If e < b then the
key is not found. Otherwise, the scope of the search
problem shrinks recursively: if A[pivot] < k then
this becomes the new lower bound: l ← pivot; if
A[pivot] > k then u ← pivot. Interpolation search
is therefore a form of binary search with better esti-
mates informed by the uniform key distribution.

If the key distribution’s range is also known (i.e.
vocabulary identifiers range from 0 to the number
of words), then interpolation search can use this in-
formation instead of reading A[0] and A[|A| − 1] to
estimate pivots; this optimization alone led to a 24%
speed improvement. The improvement is due to the
cost of bit-level reads and avoiding reads that may
fall in different virtual memory pages.

Vocabulary lookup is a sorted array of 64-bit word
hashes. The index in this array is the vocabulary
identifier. This has the effect of randomly permuting
vocabulary identifiers, meeting the requirements of
interpolation search when vocabulary identifiers are
used as keys.

While sorted arrays could be used to implement
the same data structure as PROBING, effectively
making m = 1, we abandoned this implementation
because it is slower and larger than a trie implemen-
tation. The trie data structure is commonly used for
language modeling. Our TRIE implements the pop-
ular reverse trie, in which the last word of an n-gram
is looked up first, as do SRILM, IRSTLM’s inverted
variant, and BerkeleyLM except for the scrolling
variant. Figure 1 shows an example. Nodes in the

4Not to be confused with interpolating probabilities, which
is outside the scope of this paper.

Australia <s>

are

one
are

is Australia
is Australia <s>

<s>

of one
are

is

Figure 1: Lookup of “is one of” in a reverse trie. Children
of each node are sorted by vocabulary identifier so order
is consistent but not alphabetical: “is” always appears be-
fore “are”. Nodes are stored in column-major order. For
example, nodes corresponding to these n-grams appear in
this order: “are one”, “<s> Australia”, “is one of”, “are
one of”, “<s> Australia is”, and “Australia is one”.

trie are based on arrays sorted by vocabulary identi-
fier.

We maintain a separate array for each length n
containing all n-gram entries sorted in suffix order.
Therefore, for n-gram wn

1 , all leftward extensions
wn

0 are an adjacent block in the n + 1-gram array.
The record for wn

1 stores the offset at which its ex-
tensions begin. Reading the following record’s off-
set indicates where the block ends. This technique
was introduced by Clarkson and Rosenfeld (1997)
and is also implemented by IRSTLM and Berke-
leyLM’s compressed option. SRILM inefficiently
stores 64-bit pointers.

Unigram records store probability, backoff, and
an index in the bigram table. Entries for 2 ≤ n < N
store a vocabulary identifier, probability, backoff,
and an index into the n+1-gram table. The highest-
order N -gram array omits backoff and the index,
since these are not applicable. Values in the trie are
minimally sized at the bit level, improving memory
consumption over trie implementations in SRILM,
IRSTLM, and BerkeleyLM. Given n-gram counts
{cn}Nn=1, we use dlog2 c1e bits per vocabulary iden-
tifier and dlog2 cne per index into the table of n-
grams.

When SRILM estimates a model, it sometimes re-
moves n-grams but not n + 1-grams that extend it
to the left. In a model we built with default set-
tings, 1.2% of n + 1-grams were missing their n-
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gram suffix. This causes a problem for reverse trie
implementations, including SRILM itself, because it
leaves n+1-grams without an n-gram node pointing
to them. We resolve this problem by inserting an en-
try with probability set to an otherwise-invalid value
(−∞). Queries detect the invalid probability, using
the node only if it leads to a longer match. By con-
trast, BerkeleyLM’s hash and compressed variants
will return incorrect results based on an n− 1-gram.

2.2.1 Quantization
Floating point values may be stored in the trie ex-

actly, using 31 bits for non-positive log probability
and 32 bits for backoff5. To conserve memory at
the expense of accuracy, values may be quantized
using q bits per probability and r bits per backoff6.
We allow any number of bits from 2 to 25, unlike
IRSTLM (8 bits) and BerkeleyLM (17−20 bits). To
quantize, we use the binning method (Federico and
Bertoldi, 2006) that sorts values, divides into equally
sized bins, and averages within each bin. The cost
of storing these averages, in bits, is

[32(N − 1)2q + 32(N − 2)2r

Because there are comparatively few unigrams,
we elected to store them byte-aligned and unquan-
tized, making every query faster. Unigrams also
have 64-bit overhead for vocabulary lookup. Using
cn to denote the number of n-grams, total memory
consumption of TRIE, in bits, is

(32 + 32 + 64 + 64)c1+
N−1∑
n=2

(dlog2 c1e+ q + r + dlog2 cn+1e)cn+

(dlog2 c1e+ q)cN

plus quantization tables, if used. The size of TRIE

is particularly sensitive to dlog2 c1e, so vocabulary
filtering is quite effective at reducing model size.

3 Related Work

SRILM (Stolcke, 2002) is widely used within
academia. It is generally considered to be fast (Pauls

5Backoff “penalties” are occasionally positive in log space.
6One probability is reserved to mark entries that SRILM

pruned. Two backoffs are reserved for Section 4.1. That leaves
2q − 1 probabilities and 2r − 2 non-zero backoffs.

and Klein, 2011), with a default implementation
based on hash tables within each trie node. Each trie
node is individually allocated and full 64-bit point-
ers are used to find them, wasting memory. The
compact variant uses sorted arrays instead of hash
tables within each node, saving some memory, but
still stores full 64-bit pointers. With some minor API
changes, namely returning the length of the n-gram
matched, it could also be faster—though this would
be at the expense of an optimization we explain in
Section 4.1. The PROBING model was designed
to improve upon SRILM by using linear probing
hash tables (though not arranged in a trie), allocat-
ing memory all at once (eliminating the need for full
pointers), and being easy to compile.

IRSTLM (Federico et al., 2008) is an open-source
toolkit for building and querying language models.
The developers aimed to reduce memory consump-
tion at the expense of time. Their default variant im-
plements a forward trie, in which words are looked
up in their natural left-to-right order. However, their
inverted variant implements a reverse trie using less
CPU and the same amount of memory7. Each trie
node contains a sorted array of entries and they use
binary search. Compared with SRILM, IRSTLM
adds several features: lower memory consumption,
a binary file format with memory mapping, caching
to increase speed, and quantization. Our TRIE im-
plementation is designed to improve upon IRSTLM
using a reverse trie with improved search, bit level
packing, and stateful queries. IRSTLM’s quantized
variant is the inspiration for our quantized variant.
Unfortunately, we were unable to correctly run the
IRSTLM quantized variant. The developers sug-
gested some changes, such as building the model
from scratch with IRSTLM, but these did not resolve
the problem.

Our code has been publicly available and inter-
grated into Moses since October 2010. Later, Berke-
leyLM (Pauls and Klein, 2011) described ideas sim-
ilar to ours. Most similar is scrolling queries,
wherein left-to-right queries that add one word at
a time are optimized. Both implementations em-
ploy a state object, opaque to the application, that
carries information from one query to the next; we

7Forward tries are faster to build with IRSTLM and can effi-
ciently return a list of rightward extensions, but this is not used
by the decoders we consider.
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discuss both further in Section 4.2. State is imple-
mented in their scrolling variant, which is a trie an-
notated with forward and backward pointers. The
hash variant is a reverse trie with hash tables, a
more memory-efficient version of SRILM’s default.
While the paper mentioned a sorted variant, code
was never released. The compressed variant uses
block compression and is rather slow as a result. A
direct-mapped cache makes BerkeleyLM faster on
repeated queries, but their fastest (scrolling) cached
version is still slower than uncached PROBING, even
on cache-friendly queries. For all variants, we found
that BerkeleyLM always rounds the floating-point
mantissa to 12 bits then stores indices to unique
rounded floats. The 1-bit sign is almost always neg-
ative and the 8-bit exponent is not fully used on the
range of values, so in practice this corresponds to
quantization ranging from 17 to 20 total bits.

Lossy compressed models RandLM (Talbot and
Osborne, 2007) and Sheffield (Guthrie and Hepple,
2010) offer better memory consumption at the ex-
pense of CPU and accuracy. These enable much
larger models in memory, compensating for lost
accuracy. Typical data structures are generalized
Bloom filters that guarantee a customizable prob-
ability of returning the correct answer. Minimal
perfect hashing is used to find the index at which
a quantized probability and possibly backoff are
stored. These models generally outperform our
memory consumption but are much slower, even
when cached.

4 Optimizations

In addition to the optimizations specific to each data-
structure described in Section 2, we implement sev-
eral general optimizations for language modeling.

4.1 Minimizing State

Applications such as machine translation use lan-
guage model probability as a feature to assist in
choosing between hypotheses. Dynamic program-
ming efficiently scores many hypotheses by exploit-
ing the fact that an N -gram language model condi-
tions on at most N − 1 preceding words. We call
these N − 1 words state. When two partial hy-
potheses have equal state (including that of other
features), they can be recombined and thereafter ef-

ficiently handled as a single packed hypothesis. If
there are too many distinct states, the decoder prunes
low-scoring partial hypotheses, possibly leading to a
search error. Therefore, we want state to encode the
minimum amount of information necessary to prop-
erly compute language model scores, so that the de-
coder will be faster and make fewer search errors.

We offer a state function s(wn
1 ) = wn

m where
substring wn

m is guaranteed to extend (to the right)
in the same way that wn

1 does for purposes of
language modeling. The state function is inte-
grated into the query process so that, in lieu of
the query p(wn|wn−1

1 ), the application issues query
p(wn|s(wn−1

1 )) which also returns s(wn
1 ). The re-

turned state s(wn
1 ) may then be used in a follow-

on query p(wn+1|s(wn
1 )) that extends the previous

query by one word. These make left-to-right query
patterns convenient, as the application need only
provide a state and the word to append, then use the
returned state to append another word, etc. We have
modified Moses (Koehn et al., 2007) to keep our
state with hypotheses; to conserve memory, phrases
do not keep state. Syntactic decoders, such as cdec
(Dyer et al., 2010), build state from null context then
store it in the hypergraph node for later extension.

Language models that contain wk
1 must also con-

tain prefixes wi
1 for 1 ≤ i ≤ k. Therefore, when

the model is queried for p(wn|wn−1
1 ) but the longest

matching suffix is wn
f , it may return state s(wn

1 ) =
wn

f since no longer context will be found. IRSTLM
and BerkeleyLM use this state function (and a limit
of N − 1 words), but it is more strict than necessary,
so decoders using these packages will miss some re-
combination opportunities.

State will ultimately be used as context in a sub-
sequent query. If the context wn

f will never extend to
the right (i.e. wn

f v is not present in the model for all
words v) then no subsequent query will match the
full context. If the log backoff of wn

f is also zero
(it may not be in filtered models), then wf should
be omitted from the state. This logic applies recur-
sively: if wn

f+1 similarly does not extend and has
zero log backoff, it too should be omitted, termi-
nating with a possibly empty context. We indicate
whether a context with zero log backoff will extend
using the sign bit: +0.0 for contexts that extend and
−0.0 for contexts that do not extend. RandLM and
SRILM also remove context that will not extend, but
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SRILM performs a second lookup in its trie whereas
our approach has minimal additional cost.

4.2 Storing Backoff in State
Section 4.1 explained that state s is stored by appli-
cations with partial hypotheses to determine when
they can be recombined. In this section, we ex-
tend state to optimize left-to-right queries. All lan-
guage model queries issued by machine translation
decoders follow a left-to-right pattern, starting with
either the begin of sentence token or null context for
mid-sentence fragments. Storing state therefore be-
comes a time-space tradeoff; for example, we store
state with partial hypotheses in Moses but not with
each phrase.

To optimize left-to-right queries, we extend state
to store backoff information:

s(wn−1
1 ) =

(
wn−1

m ,
{
b(wn−1

i )
}n−1

i=m

)
where m is the minimal context from Section 4.1
and b is the backoff penalty. Because b is a function,
no additional hypothesis splitting happens.

As noted in Section 1, our code finds the longest
matching entry wn

f for query p(wn|s(wn−1
1 )) then

computes

p(wn|wn−1
1 ) = p(wn|wn−1

f )
f−1∏
i=1

b(wn−1
i ).

The probability p(wn|wn−1
f ) is stored with wn

f and
the backoffs are immediately accessible in the pro-
vided state s(wn−1

1 ).
When our code walks the data structure to find

wn
f , it visits wn

n, w
n
n−1, . . . , w

n
f . Each visited entry

wn
i stores backoff b(wn

i ). These are written to the
state s(wn

1 ) and returned so that they can be used for
the following query.

Saving state allows our code to walk the data
structure exactly once per query. Other packages
walk their respective data structures once to find wn

f

and again to find {b(wn−1
i )}f−1

i=1 if necessary. In
both cases, SRILM walks its trie an additional time
to minimize context as mentioned in Section 4.1.

BerkeleyLM uses states to optimistically search
for longer n-gram matches first and must perform
twice as many random accesses to retrieve back-
off information. Further, it needs extra pointers

in the trie, increasing model size by 40%. This
makes memory usage comparable to our PROBING

model. The PROBING model can perform optimistic
searches by jumping to any n-gram without needing
state and without any additional memory. However,
this optimistic search would not visit the entries nec-
essary to store backoff information in the outgoing
state. Though we do not directly compare state im-
plementations, performance metrics in Table 1 indi-
cate our overall method is faster.

4.3 Threading

Only IRSTLM does not support threading. In our
case multi-threading is trivial because our data struc-
tures are read-only and uncached. Memory mapping
also allows the same model to be shared across pro-
cesses on the same machine.

4.4 Memory Mapping

Along with IRSTLM and TPT, our binary format is
memory mapped, meaning the file and in-memory
representation are the same. This is especially effec-
tive at reducing load time, since raw bytes are read
directly to memory—or, as happens with repeatedly
used models, are already in the disk cache.

Lazy mapping reduces memory requirements by
loading pages from disk only as necessary. How-
ever, lazy mapping is generally slow because queries
against uncached pages must wait for the disk. This
is especially bad with PROBING because it is based
on hashing and performs random lookups, but it
is not intended to be used in low-memory scenar-
ios. TRIE uses less memory and has better locality.
However, TRIE partitions storage by n-gram length,
so walking the trie reads N disjoint pages. TPT
has theoretically better locality because it stores n-
grams near their suffixes, thereby placing reads for a
single query in the same or adjacent pages.

We do not experiment with models larger than
physical memory in this paper because TPT is un-
released, factors such as disk speed are hard to repli-
cate, and in such situations we recommend switch-
ing to a more compact representation, such as Ran-
dLM. In all of our experiments, the binary file
(whether mapped or, in the case of most other pack-
ages, interpreted) is loaded into the disk cache in ad-
vance so that lazy mapping will never fault to disk.
This is similar to using the Linux MAP POPULATE
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Figure 2: Speed in lookups per microsecond by data
structure and number of 64-bit entries. Performance dips
as each data structure outgrows the processor’s 12 MB L2
cache. Among hash tables, indicated by shapes, probing
is initially slower but converges to 43% faster than un-
ordered or hash set. Interpolation search has a more ex-
pensive pivot function but does less reads and iterations,
so it is initially slower than binary search and set, but be-
comes faster above 4096 entries.

flag that is our default loading mechanism.

5 Benchmarks

This section measures performance on shared tasks
in order of increasing complexity: sparse lookups,
evaluating perplexity of a large file, and translation
with Moses. Our test machine has two Intel Xeon
E5410 processors totaling eight cores, 32 GB RAM,
and four Seagate Barracuda disks in software RAID
0 running Linux 2.6.18.

5.1 Sparse Lookup
Sparse lookup is a key subproblem of language
model queries. We compare three hash tables:
our probing implementation, GCC’s hash set, and
Boost’s8 unordered. For sorted lookup, we compare
interpolation search, standard C++ binary search,
and standard C++ set based on red-black trees.
The data structure was populated with 64-bit inte-
gers sampled uniformly without replacement. For
queries, we uniformly sampled 10 million hits and

8http://boost.org

10 million misses. The same numbers were used for
each data structure. Time includes all queries but ex-
cludes random number generation and data structure
population. Figure 2 shows timing results.

For the PROBING implementation, hash table
sizes are in the millions, so the most relevant val-
ues are on the right size of the graph, where linear
probing wins. It also uses less memory, with 8 bytes
of overhead per entry (we store 16-byte entries with
m = 1.5); linked list implementations hash set and
unordered require at least 8 bytes per entry for point-
ers. Further, the probing hash table does only one
random lookup per query, explaining why it is faster
on large data.

Interpolation search has a more expensive pivot
but performs less pivoting and reads, so it is slow on
small data and faster on large data. This suggests
a strategy: run interpolation search until the range
narrows to 4096 or fewer entries, then switch to bi-
nary search. However, reads in the TRIE data struc-
ture are more expensive due to bit-level packing, so
we found that it is faster to use interpolation search
the entire time. Memory usage is the same as with
binary search and lower than with set.

5.2 Perplexity
For the perplexity and translation tasks, we used
SRILM to build a 5-gram English language model
on 834 million tokens from Europarl v6 (Koehn,
2005) and the 2011 Workshop on Machine Trans-
lation News Crawl corpus with duplicate lines re-
moved. The model was built with open vocabulary,
modified Kneser-Ney smoothing, and default prun-
ing settings that remove singletons of order 3 and
higher. Unlike Germann et al. (2009), we chose a
model size so that all benchmarks fit comfortably in
main memory. Benchmarks use the package’s bi-
nary format; our code is also the fastest at building a
binary file. As noted in Section 4.4, disk cache state
is controlled by reading the entire binary file before
each test begins. For RandLM, we used the settings
in the documentation: 8 bits per value and false pos-
itive probability 1

256 .
We evaluate the time and memory consumption

of each data structure by computing perplexity on
4 billion tokens from the English Gigaword corpus
(Parker et al., 2009). Tokens were converted to vo-
cabulary identifiers in advance and state was carried
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from each query to the next. Table 1 shows results
of the benchmark. Compared to decoding, this task
is cache-unfriendly in that repeated queries happen
only as they naturally occur in text. Therefore, per-
formance is more closely tied to the underlying data
structure than to the cache. In fact, we found that
enabling IRSTLM’s cache made it slightly slower,
so results in Table 1 use IRSTLM without caching.
Moses sets the cache size parameter to 50 so we did
as well; the resulting cache size is 2.82 GB.

The results in Table 1 show PROBING is 81%
faster than TRIE, which is in turn 31% faster than the
fastest baseline. Memory usage in PROBING is high,
though SRILM is even larger, so where memory is of
concern we recommend using TRIE, if it fits in mem-
ory. For even larger models, we recommend Ran-
dLM; the memory consumption of the cache is not
expected to grow with model size, and it has been
reported to scale well. Another option is the closed-
source data structures from Sheffield (Guthrie and
Hepple, 2010). Though we are not able to calculate
their memory usage on our model, results reported
in their paper suggest lower memory consumption
than TRIE on large-scale models, at the expense of
CPU time.

5.3 Translation

This task measures how well each package performs
in machine translation. We run the baseline Moses
system for the French-English track of the 2011
Workshop on Machine Translation,9 translating the
3003-sentence test set. Based on revision 4041, we
modified Moses to print process statistics before ter-
minating. Process statistics are already collected
by the kernel (and printing them has no meaning-
ful impact on performance). SRILM’s compact vari-
ant has an incredibly expensive destructor, dwarfing
the time it takes to perform translation, and so we
also modified Moses to avoiding the destructor by
calling exit instead of returning normally. Since
our destructor is an efficient call to munmap, by-
passing the destructor favors only other packages.
The binary language model from Section 5.2 and
text phrase table were forced into disk cache before
each run. Time starts when Moses is launched and
therefore includes model loading time. These con-

9http://statmt.org/wmt11/baseline.html

Package Variant Queries/ms RAM (GB)

Ken
PROBING 1818 5.28
TRIE 1139 2.72
TRIE 8 bitsa 1127 1.59

SRI
Default 750 9.19
Compact 238 7.27

IRSTb Invert 426 2.91
Default 368 2.91

MIT Default 410 7.72+1.34c

Rand Backoff 8 bitsa 56 1.30+2.82c

Berkeley
Hash+Scrolla 913 5.28+2.32d

Hasha 767 3.71+1.72d

Compresseda 126 1.73+0.71d

Estimates for unreleased packages
Sheffield C-MPHRa 607e

TPT Default 357f

Table 1: Single-threaded speed and memory use on the
perplexity task. The PROBING model is fastest by a sub-
stantial margin but generally uses more memory. TRIE is
faster than competing packages and uses less memory than
non-lossy competitors. The timing basis for Queries/ms in-
cludes kernel and user time but excludes loading time; we
also subtracted time to run a program that just reads the
query file. Peak virtual memory is reported; final resident
memory is similar except for BerkeleyLM. We tried both
aggressive reading and lazy memory mapping where appli-
cable, but results were much the same.

aUses lossy compression.
bThe 8-bit quantized variant returned incorrect probabilities as

explained in Section 3. It did 402 queries/ms using 1.80 GB.
cMemory use increased during scoring due to batch processing

(MIT) or caching (Rand). The first value reports use immediately
after loading while the second reports the increase during scoring.

dBerkeleyLM is written in Java which requires memory be
specified in advance. Timing is based on plentiful memory. Then
we ran binary search to determine the least amount of memory
with which it would run. The first value reports resident size af-
ter loading; the second is the gap between post-loading resident
memory and peak virtual memory. The developer explained that
the loading process requires extra memory that it then frees.

eBased on the ratio to SRI’s speed reported in Guthrie and
Hepple (2010) under different conditions. Memory usage is likely
much lower than ours.

fThe original paper (Germann et al., 2009) provided only 2s of
query timing and compared with SRI when it exceeded available
RAM. The authors provided us with a ratio between TPT and SRI
under different conditions.
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Time (m) RAM (GB)
Package Variant CPU Wall Res Virt

Ken

PROBING-L 72.3 72.4 7.83 7.92
PROBING-P 73.6 74.7 7.83 7.92
TRIE-L 80.4 80.6 4.95 5.24
TRIE-P 80.1 80.1 4.95 5.24
TRIE-L 8a 79.5 79.5 3.97 4.10
TRIE-P 8a 79.9 79.9 3.97 4.10

SRI Default 85.9 86.1 11.90 11.94
Compact 155.5 155.7 9.98 10.02

IRST

Cache-Invert-L 106.4 106.5 5.36 5.84
Cache-Invert-R 106.7 106.9 5.73 5.84
Invert-L 117.2 117.3 5.27 5.67
Invert-R 117.7 118.0 5.64 5.67
Default-L 126.3 126.4 5.26 5.67
Default-R 127.1 127.3 5.64 5.67

Rand Backoffa 277.9 278.0 4.05 4.18
Backoffb 247.6 247.8 4.06 4.18

Table 2: Single-threaded time and memory consumption
of Moses translating 3003 sentences. Where applicable,
models were loaded with lazy memory mapping (-L),
prefaulting (-P), and normal reading (-R); results differ
by at most than 0.6 minute.

aLossy compression with the same weights.
bLossy compression with retuned weights.

ditions make the value appropriate for estimating re-
peated run times, such as in parameter tuning. Table
2 shows single-threaded results, mostly for compar-
ison to IRSTLM, and Table 3 shows multi-threaded
results.

Part of the gap between resident and virtual mem-
ory is due to the time at which data was collected.
Statistics are printed before Moses exits and after
parts of the decoder have been destroyed. Moses
keeps language models and many other resources in
static variables, so these are still resident in mem-
ory. Further, we report current resident memory and
peak virtual memory because these are the most ap-
plicable statistics provided by the kernel.

Overall, language modeling significantly impacts
decoder performance. In line with perplexity results
from Table 1, the PROBING model is the fastest fol-
lowed by TRIE, and subsequently other packages.
We incur some additional memory cost due to stor-
ing state in each hypothesis, though this is minimal
compared with the size of the model itself. The
TRIE model continues to use the least memory of

Time (m) RAM (GB)
Package Variant CPU Wall Res Virt

Ken

PROBING-L 130.4 20.2 7.91 8.53
PROBING-P 132.6 21.7 7.91 8.41
TRIE-L 132.1 20.6 5.03 5.85
TRIE-P 132.2 20.5 5.02 5.84
TRIE-L 8a 137.1 21.2 4.03 4.60
TRIE-P 8a 134.6 20.8 4.03 4.72

SRI Default 153.2 26.0 11.97 12.56
Compact 243.3 36.9 10.05 10.55

Rand Backoffa 346.8 49.4 5.41 6.78
Backoffb 308.7 44.4 5.26 6.81

Table 3: Multi-threaded time and memory consumption
of Moses translating 3003 sentences on eight cores. Our
code supports lazy memory mapping (-L) and prefault-
ing (-P) with MAP POPULATE, the default. IRST is not
threadsafe. Time for Moses itself to load, including load-
ing the language model and phrase table, is included.
Along with locking and background kernel operations
such as prefaulting, this explains why wall time is not
one-eighth that of the single-threaded case.

aLossy compression with the same weights.
bLossy compression with retuned weights.

the non-lossy options. For RandLM and IRSTLM,
the effect of caching can be seen on speed and mem-
ory usage. This is most severe with RandLM in
the multi-threaded case, where each thread keeps a
separate cache, exceeding the original model size.
As noted for the perplexity task, we do not ex-
pect cache to grow substantially with model size, so
RandLM remains a low-memory option. Caching
for IRSTLM is smaller at 0.09 GB resident mem-
ory, though it supports only a single thread. The
BerkeleyLM direct-mapped cache is in principle
faster than caches implemented by RandLM and by
IRSTLM, so we may write a C++ equivalent imple-
mentation as future work.

5.4 Comparison with RandLM

RandLM’s stupid backoff variant stores counts in-
stead of probabilities and backoffs. It also does not
prune, so comparing to our pruned model would
be unfair. Using RandLM and the documented
settings (8-bit values and 1

256 false-positive prob-
ability), we built a stupid backoff model on the
same data as in Section 5.2. We used this data
to build an unpruned ARPA file with IRSTLM’s
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RAM (GB)
Pack Variant Time (m) Res Virt BLEU

Ken
TRIE 82.9 12.16 14.39 27.24
TRIE 8 bits 82.7 8.41 9.41 27.22
TRIE 4 bits 83.2 7.74 8.55 27.09

Rand Stupid 8 bits 218.7 5.07 5.18 25.54
Backoff 8 bits 337.4 7.17 7.28 25.45

Table 4: CPU time, memory usage, and uncased BLEU
(Papineni et al., 2002) score for single-threaded Moses
translating the same test set. We ran each lossy model
twice: once with specially-tuned weights and once with
weights tuned using an exact model. The difference in
BLEU was minor and we report the better result.

improved-kneser-ney option and the default
three pieces. Table 4 shows the results. We elected
run Moses single-threaded to minimize the impact
of RandLM’s cache on memory use. RandLM is the
clear winner in RAM utilization, but is also slower
and lower quality. However, the point of RandLM
is to scale to even larger data, compensating for this
loss in quality.

6 Future Work

There any many techniques for improving language
model speed and reducing memory consumption.
For speed, we plan to implement the direct-mapped
cache from BerkeleyLM. Much could be done to fur-
ther reduce memory consumption. Raj and Whit-
taker (2003) show that integers in a trie implemen-
tation can be compressed substantially. Quantiza-
tion can be improved by jointly encoding probability
and backoff. For even larger models, storing counts
(Talbot and Osborne, 2007; Pauls and Klein, 2011;
Guthrie and Hepple, 2010) is a possibility. Beyond
optimizing the memory size of TRIE, there are alter-
native data structures such as those in Guthrie and
Hepple (2010). Finally, other packages implement
language model estimation while we are currently
dependent on them to generate an ARPA file.

While we have minimized forward-looking state
in Section 4.1, machine translation systems could
also benefit by minimizing backward-looking state.
For example, syntactic decoders (Koehn et al., 2007;
Dyer et al., 2010; Li et al., 2009) perform dynamic
programming parametrized by both backward- and
forward-looking state. If they knew that the first four
words in a hypergraph node would never extend to

the left and form a 5-gram, then three or even fewer
words could be kept in the backward state. This in-
formation is readily available in TRIE where adja-
cent records with equal pointers indicate no further
extension of context is possible. Exposing this in-
formation to the decoder will lead to better hypoth-
esis recombination. Generalizing state minimiza-
tion, the model could also provide explicit bounds
on probability for both backward and forward ex-
tension. This would result in better rest cost esti-
mation and better pruning.10 In general, tighter, but
well factored, integration between the decoder and
language model should produce a significant speed
improvement.

7 Conclusion

We have described two data structures for language
modeling that achieve substantial reductions in time
and memory cost. The PROBING model is 2.4
times as fast as the fastest alternative, SRILM, and
uses less memory too. The TRIE model uses less
memory than the smallest lossless alternative and is
still faster than SRILM. These performance gains
transfer to improved system runtime performance;
though we focused on Moses, our code is the best
lossless option with cdec and Joshua. We attain
these results using several optimizations: hashing,
custom lookup tables, bit-level packing, and state
for left-to-right query patterns. The code is open-
source, has minimal dependencies, and offers both
C++ and Java interfaces for integration.
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Abstract

In past Evaluations for Machine Translation of
European Languages, it could be shown that
the translation performance of SMT systems
can be increased by integrating a bilingual lan-
guage model into a phrase-based SMT system.
In the bilingual language model, target words
with their aligned source words build the to-
kens of an n-gram based language model. We
analyzed the effect of bilingual language mod-
els and show where they could help to bet-
ter model the translation process. We could
show improvements of translation quality on
German-to-English and Arabic-to-English. In
addition, for the Arabic-to-English task, train-
ing an extra bilingual language model on the
POS tags instead of the surface word forms
led to further improvements.

1 Introduction

In many state-of-the art SMT systems, the phrase-
based (Koehn et al., 2003) approach is used. In
this approach, instead of building the translation by
translating word by word, sequences of source and
target words, so-called phrase pairs, are used as the
basic translation unit. A table of correspondences
between source and target phrases forms the transla-
tion model in this approach. Target language fluency
is modeled by a language model storing monolin-
gual n-gram occurrences. A log-linear combination
of these main models as well as additional features
is used to score the different translation hypotheses.
Then the decoder searches for the translation with
the highest score.

A different approach to SMT is to use a stochas-
tic finite state transducer based on bilingual n-
grams (Casacuberta and Vidal, 2004). This ap-
proach was for example successfully applied by Al-
lauzen et al. (2010) on the French-English trans-
lation task. In this so-called n-gram approach the
translation model is trained by using an n-gram lan-
guage model of pairs of source and target words,
called tuples. While the phrase-based approach cap-
tures only bilingual context within the phrase pairs,
in the n-gram approach the n-gram model trained on
the tuples is used to capture bilingual context be-
tween the tuples. As in the phrase-based approach,
the translation model can also be combined with ad-
ditional models like, for example, language models
using log-linear combination.

Inspired by the n-gram-based approach, we in-
troduce a bilingual language model that extends
the translation model of the phrase-based SMT ap-
proach by providing bilingual word context. In ad-
dition to the bilingual word context, this approach
enables us also to integrate a bilingual context based
on part of speech (POS) into the translation model.
When using phrase pairs it is complicated to use
different kinds of bilingual contexts, since the con-
text of the POS-based phrase pairs should be bigger
than the word-based ones to make the most use of
them. But there is no straightforward way to inte-
grate phrase pairs of different lengths into the trans-
lation model in the phrase-based approach, while it
is quite easy to use n-gram models with different
context lengths on the tuples. We show how we can
use bilingual POS-based language models to capture
longer bilingual context in phrase-based translation
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systems.
This paper is structured in the following way: In

the next section, we will present some related work.
Afterwards, in Section 3, a motivation for using the
bilingual language model will be given. In the fol-
lowing section the bilingual language model is de-
scribed in detail. In Section 5, the results and an
analysis of the translation results is given, followed
by a conclusion.

2 Related Work

The n-gram approach presented in Mariño et al.
(2006) has been derived from the work of Casacu-
berta and Vidal (2004), which used finite state trans-
ducers for statistical machine translation. In this ap-
proach, units of source and target words are used as
basic translation units. Then the translation model is
implemented as an n-gram model over the tuples. As
it is also done in phrase-based translations, the dif-
ferent translations are scored by a log-linear combi-
nation of the translation model and additional mod-
els.

Crego and Yvon (2010) extended the approach to
be able to handle different word factors. They used
factored language models introduced by Bilmes and
Kirchhoff (2003) to integrate different word factors
into the translation process. In contrast, we use a
log-linear combination of language models on dif-
ferent factors in our approach.

A first approach of integrating the idea presented
in the n-gram approach into phrase-based machine
translation was described in Matusov et al. (2006).
In contrast to our work, they used the bilingual units
as defined in the original approach and they did not
use additional word factors.

Hasan et al. (2008) used lexicalized triplets to in-
troduce bilingual context into the translation pro-
cess. These triplets include source words from out-
side the phrase and form and additional probability
p(f |e, e′) that modifies the conventional word prob-
ability of f given e depending on trigger words e′ in
the sentence enabling a context-based translation of
ambiguous phrases.

Other approaches address this problem by inte-
grating word sense disambiguation engines into a
phrase-based SMT system. In Chan and Ng (2007)
a classifier exploits information such as local col-

locations, parts-of-speech or surrounding words to
determine the lexical choice of target words, while
Carpuat and Wu (2007) use rich context features
based on position, syntax and local collocations to
dynamically adapt the lexicons for each sentence
and facilitate the choice of longer phrases.

In this work we present a method to extend the
locally limited context of phrase pairs and n-grams
by using bilingual language models. We keep the
phrase-based approach as the main SMT framework
and introduce an n-gram language model trained in a
similar way as the one used in the finite state trans-
ducer approach as an additional feature in the log-
linear model.

3 Motivation

To motivate the introduction of the bilingual lan-
guage model, we will analyze the bilingual context
that is used when selecting the target words. In a
phrase-based system, this context is limited by the
phrase boundaries. No bilingual information outside
the phrase pair is used for selecting the target word.
The effect can be shown in the following example
sentence:

Ein gemeinsames Merkmal aller extremen
Rechten in Europa ist ihr Rassismus
und die Tatsache, dass sie das Einwan-
derungsproblem als politischen Hebel be-
nutzen.

Using our phrase-based SMT system, we get the
following segmentation into phrases on the source
side: ein gemeinsames, Merkmal, aller, extremen
Rechten. That means, that the translation of Merk-
mal is not influenced by the source words gemein-
sames or aller.

However, apart from this segmentation, other
phrases could have been conceivable for building a
translation:
ein, ein gemeinsames, ein gemeinsames Merk-
mal, gemeinsames, gemeinsames Merkmal, Merk-
mal aller, aller, extremen, extremen Rechten and
Rechten.

As shown in Figure 1 the translation for the
first three words ein gemeinsames Merkmal into a
common feature can be created by segmenting it
into ein gemeinsames and Merkmal as done by the
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Figure 1: Alternative Segmentations

phrase-based system or by segmenting it into ein and
gemeinsames Merkmal. In the phrase-based system,
the decoder cannot make use of the fact that both
segmentation variants lead to the same translation,
but has to select one and use only this information
for scoring the hypothesis.

Consequently, if the first segmentation is cho-
sen, the fact that gemeinsames is translated to com-
mon does effect the translation of Merkmal only by
means of the language model, but no bilingual con-
text can be carried over the segmentation bound-
aries.

To overcome this drawback of the phrase-based
approach, we introduce a bilingual language model
into the phrase-based SMT system. Table 1 shows
the source and target words and demonstrates how
the bilingual phrases are constructed and how the
source context stays available over segment bound-
aries in the calculation of the language model score
for the sentence. For example, when calculating the
language model score for the word feature P ( fea-
ture_Merkmal | common_gemeinsames) we can see
that through the bilingual tokens not only the previ-
ous target word but also the previous source word is
known and can influence the translation even though
it is in a different segment.

4 Bilingual Language Model

The bilingual language model is a standard n-gram-
based language model trained on bilingual tokens in-
stead of simple words. These bilingual tokens are
motivated by the tuples used in n-gram approaches
to machine translation. We use different basic units
for the n-gram model compared to the n-gram ap-
proach, in order to be able to integrate them into a
phrase-based translation system.

In this context, a bilingual token consists of a tar-
get word and all source words that it is aligned to.
More formally, given a sentence pair eI

1 = e1...eI

and fJ
1 = f1...fJ and the corresponding word align-

ment A = {(i, j)} the following tokens are created:

tj = {fj} ∪ {ei|(i, j) ∈ A} (1)

Therefore, the number of bilingual tokens in a
sentence equals the number of target words. If a
source word is aligned to two target words like the
word aller in the example sentence, two bilingual to-
kens are created: all_aller and the_aller. If, in con-
trast, a target word is aligned to two source words,
only one bilingual token is created consisting of the
target word and both source words.

The existence of unaligned words is handled in
the following way. If a target word is not aligned
to any source word, the corresponding bilingual to-
ken consists only of the target word. In contrast, if a
source word is not aligned to any word in the target
language sentence, this word is ignored in the bilin-
gual language model.

Using this definition of bilingual tokens the trans-
lation probability of source and target sentence and
the word alignment is then defined by:

p(eI
1, f

J
1 , A) =

J∏
j=1

P (tj |tj−1...tj−n) (2)

This probability is then used in the log-linear com-
bination of a phrase-based translation system as an
additional feature. It is worth mentioning that al-
though it is modeled like a conventional language
model, the bilingual language model is an extension
to the translation model, since the translation for the
source words is modeled and not the fluency of the
target text.

To train the model a corpus of bilingual tokens can
be created in a straightforward way. In the genera-
tion of this corpus the order of the target words de-
fines the order of the bilingual tokens. Then we can
use the common language modeling tools to train
the bilingual language model. As it was done for
the normal language model, we used Kneser-Ney
smoothing.

4.1 Comparison to Tuples

While the bilingual tokens are motivated by the tu-
ples in the n-gram approach, there are quite some
differences. They are mainly due to the fact that the

200



Source Target Bi-word LM Prob
ein a a_ein P(a_ein | <s>)

gemeinsames common common_gemeinsames P(common_gemeinsames | a_ein, <s>)
Merkmal feature feature_Merkmal P(feature_Merkmal | common_gemeinsames)

of of_ P(of_ | feature_Merkmal)
aller all all_aller P(all_aller | of_)
aller the the_aller P(the_aller | all_aller, of_)

extremen extreme extreme_extremen P(extreme_extremen)
Rechten right right_Rechten P(right_Rechten | extreme_extremen)

Table 1: Example Sentence: Segmentation and Bilingual Tokens

tuples are also used to guide the search in the n-gram
approach, while the search in the phrase-based ap-
proach is guided by the phrase pairs and the bilin-
gual tokens are only used as an additional feature in
scoring.

While no word inside a tuple can be aligned to
a word outside the tuple, the bilingual tokens are
created based on the target words. Consequently,
source words of one bilingual token can also be
aligned to target words inside another bilingual to-
ken. Therefore, we do not have the problems of em-
bedded words, where there is no independent trans-
lation probability.

Since we do not create a a monotonic segmenta-
tion of the bilingual sentence, but only use the seg-
mentation according to the target word order, it is
not clear where to put source words, which have no
correspondence on the target side. As mentioned be-
fore, they are ignored in the model.

But an advantage of this approach is that we have
no problem handling unaligned target words. We
just create bilingual tokens with an empty source
side. Here, the placing order of the unaligned tar-
get words is guided by the segmentation into phrase
pairs.

Furthermore, we need no additional pruning of
the vocabulary due to computation cost, since this is
already done by the pruning of the phrase pairs. In
our phrase-based system, we allow only for twenty
translations of one source phrase.

4.2 Comparison to Phrase Pairs

Using the definition of the bilingual language model,
we can again have a look at the introductory example
sentence. We saw that when translating the phrase

ein gemeinsames Merkmal using a phrase-based sys-
tem, the translation of gemeinsames into common
can only be influenced by either the preceeding ein
# a or by the succeeding Merkmal # feature, but
not by both of them at the same time, since either
the phrase ein gemeinsames or the phrase gemein-
sames Merkmal has to be chosen when segmenting
the source sentence for translation. If we now look
at the context that can be used when translating this
segment applying the bilingual language model, we
see that the translation of gemeinsames into com-
mon is on the one hand influenced by the translation
of the token ein # a within the bilingual language
model probability P (common_gemeinsames | a_ein,
<s>).

On the other hand, it is also influenced by the
translation of the word Merkmal into feature en-
coded into the probability P (feature_Merkmal |
common_gemeinsames). In contrast to the phrase-
based translation model, this additional model is ca-
pable of using context information from both sides
to score the translation hypothesis. In this way,
when building the target sentence, the information
of aligned source words can be considered even be-
yond phrase boundaries.

4.3 POS-based Bilingual Language Models

When translating with the phrase-based approach,
the decoder evaluates different hypotheses with dif-
ferent segmentations of the source sentence into
phrases. The segmentation depends on available
phrase pair combinations but for one hypothesis
translation the segmentation into phrases is fixed.
This leads to problems, when integrating parallel
POS-based information. Since the amount of differ-
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ent POS tags in a language is very small compared to
the number of words in a language, we could man-
age much longer phrase pairs based on POS tags
compared to the possible length of phrase pairs on
the word level.

In a phrase-based translation system the average
phrase length is often around two words. For POS
sequences, in contrast, sequences of 4 tokens can
often be matched. Consequently, this information
can only help, if a different segmentation could be
chosen for POS-based phrases and for word-based
phrases. Unfortunately, there is no straightforward
way to integrate this into the decoder.

If we now look at how the bilingual language
model is applied, it is much easier to integrate the
POS-based information. In addition to the bilin-
gual token for every target word we can generate a
bilingual token based on the POS information of the
source and target words. Using this bilingual POS
token, we can train an additional bilingual POS-
based language model and apply it during transla-
tion. In this case it is no longer problematic if the
context of the POS-based bilingual language model
is longer than the one based on the word informa-
tion, because word and POS sequences are scored
separately by two different language models which
cover different n-gram lengths.

The training of the bilingual POS language model
is straightforward. We can build the corpus of bilin-
gual POS tokens based on the parallel corpus of
POS tags generated by running a POS tagger over
both source and target side of the initial parallel cor-
pus and the alignment information for the respective
words in the text corpora.

During decoding, we then also need to know the
POS tag for every source and target word. Since
we build the sentence incrementally, we cannot use
the tagger directly. Instead, we store also the POS
source and target sequences during the phrase ex-
traction. When creating the bilingual phrase pair
with POS information, there might be different pos-
sibilities of POS sequences for the source and target
phrases. But we keep only the most probable one for
each phrase pair. For the Arabic-to-English trans-
lation task, we compared the generated target tags
with the tags created by the tagger on the automatic
translations. They are different on less than 5% of
the words.

Using the alignment information as well as the
source and target POS sequences we can then create
the POS-based bilingual tokens for every phrase pair
and store it in addition to the normal phrase pairs.
At decoding time, the most frequent POS tags in the
bilingual phrases are used as tags for the input sen-
tence and the translation is done based on the bilin-
gual POS tokens built from these tags together with
their alignment information.

5 Results

We evaluated and analyzed the influence of the bilin-
gual language model on different languages. On
the one hand, we measured the performance of the
bilingual language model on German-to-English on
the News translation task. On the other hand, we
evaluated the approach on the Arabic-to-English di-
rection on News and Web data. Additionally, we
present the impact of the bilingual language model
on the English-to-German, German-to-English and
French-to-English systems with which we partici-
pated in the WMT 2011.

5.1 System Description

The German-to-English translation system was
trained on the European Parliament corpus, News
Commentary corpus and small amounts of addi-
tional Web data. The data was preprocessed and
compound splitting was applied. Afterwards the dis-
criminative word alignment approach as described
in (Niehues and Vogel, 2008) was applied to gener-
ate the alignments between source and target words.
The phrase table was built using the scripts from the
Moses package (Koehn et al., 2007). The language
model was trained on the target side of the paral-
lel data as well as on additional monolingual News
data. The translation model as well as the language
model was adapted towards the target domain in a
log-linear way.

The Arabic-to-English system was trained us-
ing GALE Arabic data, which contains 6.1M sen-
tences. The word alignment is generated using
EMDC, which is a combination of a discriminative
approach and the IBM Models as described in Gao
et al. (2010). The phrase table is generated using
Chaski as described in Gao and Vogel (2010). The
language model data we trained on the GIGAWord
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V3 data plus BBN English data. After splitting the
corpus according to sources, individual models were
trained. Then the individual models were interpo-
lated to minimize the perplexity on the MT03/MT04
data.

For both tasks the reordering was performed as a
preprocessing step using POS information from the
TreeTagger (Schmid, 1994) for German and using
the Amira Tagger (Diab, 2009) for Arabic. For Ara-
bic the approach described in Rottmann and Vogel
(2007) was used covering short-range reorderings.
For the German-to-English translation task the ex-
tended approach described in Niehues et al. (2009)
was used to cover also the long-range reorderings
typical when translating between German and En-
glish.

For both directions an in-house phrase-based de-
coder (Vogel, 2003) was used to generate the transla-
tion hypotheses and the optimization was performed
using MER training. The performance on the test-
sets were measured in case-insensitive BLEU and
TER scores.

5.2 German to English

We evaluated the approach on two different test sets
from the News Commentary domain. The first con-
sists of 2000 sentences with one reference. It will
be referred to as Test 1. The second test set consists
of 1000 sentences with two references and will be
called Test 2.

5.2.1 Translation Quality
In Tables 2 and 3 the results for translation per-

formance on the German-to-English translation task
are summarized.

As it can been seen, the improvements of transla-
tion quality vary considerably between the two dif-
ferent test sets. While using the bilingual language
model improves the translation by only 0.15 BLEU
and 0.21 TER points on Test 1, the improvement on
Test 2 is nearly 1 BLEU point and 0.5 TER points.

5.2.2 Context Length
One intention of using the bilingual language

model is its capability to capture the bilingual con-
texts in a different way. To see, whether additional
bilingual context is used during decoding, we ana-
lyzed the context used by the phrase pairs and by

the n-gram bilingual language model.
However, a comparison of the different context

lengths is not straightforward. The context of an n-
gram language model is normally described by the
average length of applied n-grams. For phrase pairs,
normally the average target phrase pair length (avg.
Target PL) is used as an indicator for the size of the
context. And these two numbers cannot be com-
pared directly.

To be able to compare the context used by the
phrase pairs to the context used in the n-gram lan-
guage model, we calculated the average left context
that is used for every target word where the word
itself is included, i.e. the context of a single word
is 1. In case of the bilingual language model the
score for the average left context is exactly the aver-
age length of applied n-grams in a given translation.
For phrase pairs the average left context can be cal-
culated in the following way: A phrase pair of length
1 gets a left context score of 1. In a phrase pair of
length 2, the first word has a left context score of 1,
since it is not influenced by any target word to the
left. The second word in that phrase pair gets a left
context count of 2, because it is influenced by the
first word in the phrase. Correspondingly, the left
context score of a phrase pair of length 3 is 6 (com-
posed of the score 1 for the first word, score 2 for
the second word and score 3 for the third word). To
get the average left context for the whole translation,
the context scores of all phrases are summed up and
divided by the number of words in the translation.

The scores for the average left contexts for the two
test sets are shown in Tables 2 and 3. They are called
avg. PP Left Context. As it can be seen, the con-
text used by the bilingual n-gram language model is
longer than the one by the phrase pairs. The average
n-gram length increases from 1.58 and 1.57, respec-
tively to 2.21 and 2.18 for the two given test sets.

If we compare the average n-gram length of the
bilingual language model to the one of the target
language model, the n-gram length of the first is of
course smaller, since the number of possible bilin-
gual tokens is higher than the number of possible
monolingual words. This can also be seen when
looking at the perplexities of the two language mod-
els on the generated translations. While the perplex-
ity of the target language model is 99 and 101 on
Test 1 and 2, respectively, the perplexity of the bilin-
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gual language model is 512 and 538.

Metric No BiLM BiLM
BLEU 30.37 30.52
TER 50.27 50.06
avg. Target PL 1.66 1.66
avg. PP Left Context 1.57 1.58
avg. Target LM N-Gram 3.28 3.27
avg. BiLM N-Gram 2.21

Table 2: German-to-English results (Test 1)

Metric No BiLM BiLM
BLEU 44.16 45.09
TER 41.02 40.52
avg. Target PL 1.65 1.65
avg. PP Left Context 1.56 1.57
avg. Target LM N-Gram 3.25 3.23
avg. BiLM N-Gram 2.18

Table 3: German-to-English results (Test 2)

5.2.3 Overlapping Context
An additional advantage of the n-gram-based ap-

proach is the possibility to have overlapping con-
text. If we would always use phrase pairs of length
2 only half of the adjacent words would influence
each other in the translation. The others are only
influenced by the other target words through the lan-
guage model. If we in contrast would have a bilin-
gual language model which uses an n-gram length
of 2, this means that every choice of word influences
the previous and the following word.

To analyze this influence, we counted how many
borders of phrase pairs are covered by a bilingual
n-gram. For Test 1, 16783 of the 27785 borders
between phrase pairs are covered by a bilingual n-
gram. For Test 2, 9995 of 16735 borders are cov-
ered. Consequently, in both cases at around 60 per-
cent of the borders additional information can be
used by the bilingual n-gram language model.

5.2.4 Bilingual N-Gram Length
For the German-to-English translation task we

performed an additional experiment comparing dif-
ferent n-gram lengths of the bilingual language

BiLM Length aNGL BLEU TER
No 30.37 50.27
1 1 29.67 49.73
2 1.78 30.36 50.05
3 2.11 30.47 50.08
4 2.21 30.52 50.06
5 2.23 30.52 50.07
6 2.24 30.52 50.07

Table 4: Different N-Gram Lengths (Test 1)

BiLM Length aNGL BLEU TER
No 44.16 41.02
1 1 44.22 40.53
2 1.78 45.11 40.38
3 2.09 45.18 40.51
4 2.18 45.09 40.52
5 2.21 45.10 40.52
6 2.21 45.10 40.52

Table 5: Different N-Gram Lengths (Test 2)

model. To ensure comparability between the exper-
iments and avoid additional noise due to different
optimization results, we did not perform separate
optimization runs for for each of the system vari-
ants with different n-gram length, but used the same
scaling factors for all of them. Of course, the sys-
tem using no bilingual language model was trained
independently. In Tables 4 and 5 we can see that the
length of the actually applied n-grams as well as the
BLEU score increased until the bilingual language
model reaches an order of 4. For higher order bilin-
gual language models, nearly no additional n-grams
can be found in the language models. Also the trans-
lation quality does not increase further when using
longer n-grams.

5.3 Arabic to English

The Arabic-to-English system was optimized on the
MT06 data. As test set the Rosetta in-house test set
DEV07-nw (News) and wb (Web Data) was used.

The results for the Arabic-to-English translation
task are summarized in Tables 6 and 7. The perfor-
mance was tested on two different domains, transla-
tion of News and Web documents. On both tasks,
the translation could be improved by more than 1
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BLEU point. Measuring the performance in TER
also shows an improvement by 0.7 and 0.5 points.

By adding a POS-based bilingual language
model, the performance could be improved further.
An additional gain of 0.2 BLEU points and decrease
of 0.3 points in TER could be reached. Conse-
quently, an overall improvement of up to 1.7 BLEU
points could be achieved by integrating two bilin-
gual language models, one based on surface word
forms and one based on parts-of-speech.

System
Dev Test

BLEU TER BLEU
NoBiLM 48.42 40.77 52.05
+ BiLM 49.29 40.04 53.51
+ POS BiLM 49.56 39.85 53.71

Table 6: Results on Arabic to English: Translation of
News

System
Dev Test

BLEU TER BLEU
NoBiLM 48.42 47.14 41.90
+ BiLM 49.29 46.66 43.12
+ POS BiLM 49.56 46.40 43.28

Table 7: Results on Arabic to English: Translation of
Web documents

As it was done for the German-to-English system,
we also compared the context used by the different
models for this translation direction. The results are
summarized in Table 8 for the News test set and in
Table 9 for the translation of Web data. It can be seen
like it was for the other language pair that the context
used in the bilingual language model is bigger than
the one used by the phrase-based translation model.

Furthermore, it is worth mentioning that shorter
phrase pairs are used, when using the POS-based
bilingual language model. Both bilingual language
models seem to model the context quite good, so that
less long phrase pairs are needed to build the trans-
lation. Instead, the more frequent short phrases can
be used to generate the translation.

5.4 Shared Translation Task @ WMT2011
The bilingual language model was included in 3
systems built for the WMT2011 Shared Translation

Metric No BiLM POS BiLM
BLEU 52.05 53.51 53.71
avg. Target PL 2.12 2.03 1.79
avg. PP Left Context 1.92 1.85 1.69
avg. BiLM N-Gram 2.66 2.65
avg. POS BiLM 4.91

Table 8: Bilingual Context in Arabic-to-English results
(News)

Metric No BiLM POS BiLM
BLEU 41.90 43.12 43.28
avg. Target PL 1.82 1.80 1.57
avg. PP Left Context 1.72 1.69 1.53
avg. BiLM N-Gram 2.33 2.31
avg. POS BiLM 4.49

Table 9: Bilingual Context in Arabic-to-English results
(Web data)

Task evaluation. A phrase-based system similar to
the one described before for the German-to-English
results was used. A detailed system description can
be found in Herrmann et al. (2011). The results are
summarized in Table 10. The performance of com-
petitive systems could be improved in all three lan-
guages by up to 0.4 BLEU points.

Language Pair No BiLM BiLM
German-English 24.12 24.52
English-German 16.89 17.01
French-English 28.17 28.34

Table 10: Preformance of Bilingual language model at
WMT2011

6 Conclusion

In this work we showed how a feature of the n-gram-
based approach can be integrated into a phrase-
based statistical translation system. We performed
a detailed analysis on how this influences the scor-
ing of the translation system. We could show im-
provements on a variety of translation tasks cover-
ing different languages and domains. Furthermore,
we could show that additional bilingual context in-
formation is used.

Furthermore, the additional feature can easily be
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extended to additional word factors such as part-of-
speech, which showed improvements for the Arabic-
to-English translation task.
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Abstract 

We describe an approach for generating a 
ranked list of candidate document transla-
tion pairs without the use of bilingual dic-
tionary or machine translation system. We 
developed this approach as an initial, filter-
ing step, for extracting parallel text from 
large, multilingual—but non-parallel—
corpora. We represent bilingual documents 
in a vector space whose basis vectors are 
the overlapping tokens found in both lan-
guages of the collection. Using this repre-
sentation, weighted by tf·idf, we compute 
cosine document similarity to create a 
ranked list of candidate document transla-
tion pairs. Unlike cross-language informa-
tion retrieval, where a ranked list in the 
target language is evaluated for each source 
query, we are interested in, and evaluate, 
the more difficult task of finding translated 
document pairs. We first perform a feasi-
bility study of our approach on parallel col-
lections in multiple languages, representing 
multiple language families and scripts. The 
approach is then applied to a large bilingual 
collection of around 800k books. To avoid 

the computational cost of )( 2nO document 
pair comparisons, we employ locality sen-
sitive hashing (LSH) approximation algo-
rithm for cosine similarity, which reduces 
our time complexity to )log( nnO . 

1 Introduction 

A dearth of parallel data has been, and still is, a 
major problem for developing highly reliable sta-
tistical machine translation systems in many lan-
guages and domains. There have been many 
proposed approaches for alleviating this problem 
by utilizing techniques for creating and extracting 
parallel documents, sentences or phrases from 
comparable bilingual data available on the open 
web (Resnik and Smith, 2003), such as Wikipedia 
articles (Smith et. al, 2010), to name a few, or 
through digitized archives from various sources 
(Zhao and Vogel, 2002), (Munteanu and Marcu, 
2005). 
In general, in the process of utilizing comparable 
corpora to obtain sentence-aligned bilingual text, 
the first step involves performing initial filtering 
where text entities from both language collections 
are compared to each other and based on compari-
son score they are matched and grouped as poten-
tial translation candidate pairs. After this initial 
step, text entity pairs or tuples are further analyzed 
in order to extract parallel sentence pairs. In this 
paper we only focus on this initial step. We present 
a novel exploration of approaches that retrieve ac-
tual document translation pairs without the use of 
any bilingual resources such as lexicons or sen-
tence aligned bitext. 
Rather than solving separate retrieval or translation 
problems for each source language document, we 
retrieve translation pairs from the space of all pos-
sible bilingual document pairs. Most machine 
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translation (MT) and information retrieval (IR) 
systems rely on conditional probabilities; in con-
trast, we require comparable scores or probabilities 
over all document pairs. To avoid directly comput-
ing the similarity of all pairs, we use a randomized 
approximation algorithm based on locality sensi-
tive hashing (LSH).  
For this joint approach, we represent each docu-
ment in both languages using an n-dimensional 
feature vector template which consists of the set of 
intersecting words which are found across all 
documents in both language collections. For each 
dimension i.e. word, in the feature vector template 
we calculate tf·idf score for the given document. 
Unlike other approaches, where documents or their 
word representations are first translated from for-
eign language to English using bilingual dictionary 
(Fung and Cheung, 2004), (Munteanu and Marcu, 
2005) and (Uszkoreit et. al., 2010) in our approach 
we don’t utilize any existing MT type artifact. In 
other words, for a given language pair we don’t use 
translation lexicon by training an existing statisti-
cal machine translation system using sentence 
aligned parallel bilingual data in the same language 
or existing translation lexicon. Earlier work done 
by Enright and Kondrak (2007) uses only hapax 
words to represent and rank (based on the overlap 
number) translation documents pair in a parallel 
bilingual collection which is an easier task to 
evaluation due to the presence of a one-to-one 
matching among the bilingual documents. Most 
recently, Patry and Langlais (2011) show an im-
provement over this method by using an IR system 
to first retrieve translation document candidates 
and then identify translation document pairs by 
training a classifier.  
We start off by giving detailed explanation of the 
above mentioned data representation. We then test 
the feasibility of our approach using aligned paral-
lel document data from three different bilingual 
collections in several languages and writing sys-
tems. Results from these tests are given in section 
3. The goal of developing our approach was to util-
ize it as an initial filtering step in developing paral-
lel corpora from large, multilingual collections, 
such as the collection of more than 800K English 
and German books we describe in section 4. Since 
we start with no information on the possible trans-
lation pairs in our large collection and in order to 
verify the potential of our method, we first show 
results on retrieving 17 known parallel book pairs 

embedded in a small randomly selected subset of 
1K books (section 4.1). Since performing cosine 
similarity across all document pairs is computa-
tionally expensive with time complexity of 

)( 2nO we utilize the LSH based approximation 
algorithm for the cosine similarity measurement 
based on the work by Ravichandran et. al (2005). 
A brief overview of this approach is given in Sec-
tion 5, which is followed by our implementation 
results explained and analyzed in section 6. To 
conclude the paper, we give a brief outlook on fu-
ture work. 

2 Document Representation 

In Figure 1, we depict the process that we use to 
represent documents from bilingual collections in 
vector space and perform similarity measurements. 
We start by computing a word frequency count for 
each of the documents in our collection and creat-
ing a word frequency list. For each language, we 
take a union of the words in each document’s fre-
quency list to construct a global word list for the 
given language. The two global word lists are then 
intersected, and a list of overlapping words is cre-
ated. From the initial list of overlapping words in 
both languages, we remove stop words by using 
stop word lists (words with high document fre-
quency). The space-separated tokens extracted in 
this process are not necessarily words in the lin-
guistic sense; therefore, we further refine the over-
lapping word list by removing tokens that contain 
non-alphanumeric characters. We make one excep-
tion for tokens (such as might appear in a time/date 
format) that contain hyphens, backslashes, apos-
trophes, and periods so long as these characters do 
not occur at the beginning or at the end of the to-
ken.  
We call this list of overlapping tokens a feature 
vector template, where each token in the list is one 
feature. Using this feature vector template we go 
back and represent each document in the bilingual 
collection using the template vector by computing 
the tf·idf value for each token in the template vec-
tor over each particular document. Now that we 
have the original documents from both languages 
represented in a language-independent space, we 
compute vector similarity across all document 
pairs in order to come up with a single ranked list. 
We talk more in detail about the similarity metrics 
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that we have considered and decided to use in the 
following section.  
 

 
 
Figure 1. Process of creating and representing each 
document of a bilingual collection in an independ-
ent vector space.  

3 Motivational Experiments 

3.1 Evaluation Collections 

We start off by evaluating the above proposed ap-
proach of determining candidate document transla-
tion pairs using three different parallel collections: 
Europarl, created by Koehn (2005), UN Arabic 
English Parallel Text (LDC2004E13) and the Ara-
bic News Translation Part 1 (LDC2004T17). The 
purposes of first testing our approach using the 
Europarl corpus were twofold: This collection con-
tains parallel documents (sessions of the European 
Parliament) that are further aligned at the speech 
and sentence level, which allows us to test align-
ment accuracy at several levels of granularity. Sec-
ond, this collection contains parallel data from 

different groups of languages (Germanic, Ro-
mance, Slavic, Hellenic, etc.) and therefore is use-
ful to observe the performance of our approach 
across different language families, which in turn 
are important to observe the difference in the cog-
nate rates and the size of the overlapping words. In 
addition to the Europarl corpus we use the two 
English-Arabic parallel collections to test our ap-
proach across various alphabets (Arabic in addition 
to the Latin, Greek and Cyrillic found in the Eu-
roparl collection). Shown in Table 1 are basic sta-
tistics for all 3 corpora on the language pairs 
considered. We give min, max and median values 
over the number of words in each document. 
 

Collection
# doc. 
Pairs

Lang. Min Max  Median

En 92 109030 46800.5Europarl 
en-de 654 

De 95 99753 43161.0
En 4872 59284 10706.5Europarl 

en-bg 430 
Bg 4771 56907 10167.0
En 92 109793 46790.5Europarl 

en-es 642 
Es 104 114770 48989.0
En 92 93886 21290.0Europarl 

en-gr 412 
Gr 103 93304 21122.0
En 66 47784 691.5Newswire 

en-ar 230 
Ar 62 34272 560.0
En 17672 71594 23027.0

UN en-ar 430 
Ar 15478 62448 19682.0

 
Table 1. Document length statistics over 6 Parallel 
Collections. 
 
From the Europarl collection we sentence aligned 
sessions in the following four language pairs where 
the English language is the source language: Eng-
lish-German, English-Spanish, English-Bulgarian 
and English-Greek. The foreign language in all 
four language pairs is selected from a different 
language group (Germanic, Romanic, Slavic), with 
Greek being a more isolated branch. For the Arabic 
language we used two parallel document collec-
tions in different domains – newswire and docu-
ments published by the United Nations. The 
Newswire parallel collection consisted of 1526 
news stories which we combined based on the 
news story publication date and obtained 230 par-
allel documents. The purpose of combining the 
news articles is to increase the number of words 
present in each document since the original size of 
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the news articles was not at a level to be treated as 
a document as in the case of the remaining two 
collections. The UN parallel collection consists of 
34,575 document pairs.  

3.2 Similarity Metrics 

We considered five similarity metrics proposed at 
one time or another for vector space models in IR: 
Cosine (shown below), Dice, Product, Jaccard and 
Euclidean. 
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Document similarity using the cosine metric relies 
on the angle between the vector representations 
and it is length invariant. The Dice metric relies on 
the number of common tokens between the two 
documents. Euclidean computes the similarity as a 
point distance between the two vector representa-
tions and is not normalized by the vector length 
which does not make it vector invariant. Jaccard 
distance is the ratio of the intersection and the un-
ion of the two vector representations while the 
product coefficient is simply the inner product of 
the two vectors. While there is no clear evidence 
across the literature whether one similarity metric 
is more useful across a range of tasks compared to 
another, the cosine similarity metric is mostly pre-
ferred. Shown in Figure 2 are the precision vs. re-
call plots of the above similarity measurements 
when used with our method. Tests were done on 
our set of 654 English-German sessions from the 
Europarl collections. To test the impact of the 
document length on the performance of the metric 
we performed two types of tests across all 5 met-
rics. In the first type we performed similarity 
analysis on the full document length (marked as 
100%) and on the final 10% of each document 
(marked as 10%). We deliberately omitted the top 
part of the document to avoid any inadvertent in-
clusion of session date, topic, title, etc. (As it 
turned out, this was not a problem in our data.) We 
perform similarity measurements across all docu-
ment pairs, and we generate a single ranked list. As 
can be seen from the plot, all five metrics yield 
better performance when all words in documents 
are considered compared to only considering 10%. 
The performance ranking of all five metrics was 

identical on both versions of the document set. 
Even though depicted in the above plot, the Jac-
card distance performed pretty much the same as 
the Dice distance and therefore there is no visible 
difference between the two. While on the 10% ver-
sion of the collection, the Euclidean distance has 
the worst precision, it could still be explored as a 
metric to obtain document translation pairs with 
the original collection with a modest to moderate 
recall range for P=1. The Jaccard distance along 
with the Dice distance yield the highest precision 
values across all recall values but they achieve the 
same recall range for P=1 as the Cosine metric. 
Since we are only interested in top-N document 
pairs that have P=1 and furthermore there are ap-
proximate algorithms for the Cosine similarity 
metrics we decided to further utilize this metric. 
The same metric has been previously used in de-
termining potential translation candidates on sen-
tence level by Munteanu and Marcu (2005) and in 
our case we are extending it to perform pair-wise 
document similarity.  
 

 
 
Figure 2. Precision vs. recall plot using various 
similarity measurements on the Europarl English-
German collection. 
 
When run on the same English-German collection, 
Enright’s and Kondrak’s (2007) approach achieves 
mean reciprocal rank (MRR) of 0.989 when using 
document specific hapax words and MRR=0.795 
when using collection specific hapax words. With 
the above explained approach we obtain 
MRR=0.995. 
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3.3 Post Filtering Approaches 

To further improve the precision of our approach 
we tested out two types of filtering the initial re-
sults. Since we threat documents as “bag of words” 
and since the Cosine metric uses the angle between 
the vector representations and is length invariant 
there may be instances of source documents that 
would yield high cosine coefficients over all target 
documents. In these instances, multiple document 
pairs with the same source document may be 
ranked high. To alleviate this problem, we consider 
two types of filtering the initial results. We go over 
the single ranked list and we only keep the top five 
document pairs for a given source document, thus 
introducing “diversity” in the ranked list. The sec-
ond filter is motivated by the basic assumption 
used in the machine translation field that the length 
of the target sentence is in a given length range of 
the source sentence. We extend this assumption on 
a document level and we filter out all document 
pairs from the ranked list that are not in the ±20% 
range of the source document length. Both of the 
above values were selected based on empirical 
evidence without detailed explanation. Shown in 
Figure 3 are the effects of these two simple filter-
ing techniques.  
 

 
 

Figure 3. Diversity and length based filtering ef-
fects on the English-German Europarl collection. 
 
Compared to the diversity filter, the length based 
filter yields better gain in precision while a combi-
nation of both methods achieves the highest recall 
range for P=1. 

3.4 Target Languages and Writing Systems 

Shown in Figure 4 are the precision/recall results 
on all six collections explained in Section 3.1. 
Post-filtering steps explained in the previous sec-
tion were not utilized on these results. Our ap-
proach yields best precision on the Arabic News 
Translation Part 1 collection while the worst per-
formance is on the UN Arabic English Parallel 
Text. While the performance on the English-
German and English-Spanish collections is some-
what the same, out of all 4 Europarl collections we 
achieve best results on the Greek collection and 
worst results on the Bulgarian target language.  
 

 
 
Figure 4. Precision vs. recall on 5 different lan-
guage pairs using cosine similarity distance metric.  
 
In Table 2, we give the vector template length for 
each collection. 
 

Collection # of overlapping tokens 
Europarl en-de 37785
Europarl en-es 36476
Europarl en-bg 29360
Europarl en-gr 17220
UN en-ar 3945
Newswire en-ar 1262

 
Table 2. Number of overlapping words (vector 
template length) in the six parallel collections. 
 
Unsurprisingly, due to the difference in script and 
language family, the feature vector templates for 
the English-Arabic collections have the smallest 
lengths. 
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Shown in Figure 5 are effects of the trivial diver-
sity and length based filtering on the above preci-
sion vs. recall results. Bulgarian has improve 
substantially and so has the UN Arabic, but recall 
on the Arabic newswire is truncated on reaching 
P=0.4. 
 

 
 
Figure 5. Precision vs. recall on 6 collections using 
div=5 and length filtering with ±20%. 

3.5 Randomly Selected Documents 

While useful to evaluate the feasibility of our ap-
proach, the previous parallel bilingual collections 
are unrealistic because there is, by the corpus’ de-
sign, a translation for each document. To observe 
the performance on a bilingual document collec-
tion where there is no a priori information on trans-
lation pairs we created ten random subsets from the 
Europarl English-German collection. These subsets 
were created by randomly selecting 50% (328 
documents) of the English and 5% (33 documents) 
of the German documents for each subset collec-
tion. Shown in  is interpolated average precision 
over the ten subsets. The Mean Average Precision 
(MAP) obtained was 0.986. 

4 Multilingual Book Collection 

Our multilingual book collection consists of 
around 800k books in German and English lan-
guages. It is a subset of a larger Internet Archive1 
collection of books in over 200 languages. The 
whole collection consists of OCRed books incor-
porating a small number of human transcribed 
                                                           
1 http://www.archive.org/details/texts/ 

books from Project Gutenberg2. The collection was 
initially annotated with author and language infor-
mation using the existing database obtained from 
the Internet Archive. This database originally con-
tained incorrect language metadata. Using the 
freely available language identifier TextCat (Cav-
nar and Trenkle, 2005) we tagged the whole book 
collection and extracted 705692 English and 96752 
German books. This process had the additional 
benefit of cleaning the German book collection of 
books written in the Fraktur script due to the bad 
OCR output. (Incredibly noisy OCR was simply 
recognized as “not German” by the character n-
gram models.) Shown in Table 3 are word length 
statistics over the books in the collection.  
 

Language
# of 

books
# of uniq. 

words 
Min Max 

Me-
dian 

German 96752 5030095 33 2372278 109820

English 705692 20001702 37 5155032 75016

 
Table 3. Bilingual book collection statistics. 

 

 
 
Figure 6. Average precision interpolated at 11 
points over ten randomly created subsets consisting 
of 50% English and 10% German documents from 
the English-German Europarl collection. 

4.1 Development Set 

Moving onto our book collection, we start off by 
evaluating the method on a smaller randomly se-
lected subset of 1000 books in both languages. 
Since it is not feasible to perform a full recall 

                                                           
2 http://www.gutenberg.org 
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evaluation on the whole book set we include 17 
known book translation pairs in the 1000 random 
bilingual book collection. The 17 book translation 
pairs were constructed by hand by running a previ-
sion version of our full algorithm and indentifying 
translation pairs. Shown in Figure 7 is the preci-
sion vs. recall plot on the 17 book pairs. As in the 
case of the 10 randomly selected Europarl subsets, 
we also performed diversity and length based fil-
tering of the initial results prior to computing pre-
cision vs. recall. 
 

 
 
Figure 7. Precision vs. recall running our method 
on a 1000 randomly selected bilingual book subset 
with 17 book translation pairs inserted. 

5 LSH Based Approximate Algorithm for 
Cosine Similarity 

Due to the collection size and length of each book 
it is infeasible to perform cosine similarity over all 
possible book pairs, i.e. approximately 68.2B com-
parisons. This brute force approach has time com-

plexity of )( 2knO  where n is the number of books 
in the collection and k is the vector template 
length. We therefore employ a fast cosine similar-
ity calculation approach developed by Charikar 
(2002) and utilized by Ravichandran et. al (2005) 
for creating similarity lists of nouns in  large col-
lection. In this section we give a summary of this 
approach and explain how it was applied for our 
task.  
Locality Sensitive Hashing (LSH), initially intro-
duced by Idyik and Motwani (1998), is used for 
finding approximate nearest neighbors in high di-
mensional spaces. In general, their approach 

hashes query vectors into bins where the probabil-
ity of collision is higher due to the fact that vectors 
in the same bin share the same locality. Their ap-
proach reduces the approximate nearest neighbor 
problem on the Hamming space.  
Charikar expanded this approach and showed that 
the probability of collision of hashed vectors for 
appropriately chosen hash function h is related to 
the angle between the vectors as: 
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This is closely related to the cosine function. From 
the above equation we thus have: 
 

})])()(Pr[1cos{()),(cos(  yhxhyx    (3) 
 
Charikar uses a hash function based on random 
hyperplanes and creates a fingerprint for each 
original vector using the following approach: 
Generate d, k-dimensional random vectors from a 
standard normal (Gaussian) distribution: 
{ 1r , 2r ,….. }dr . For each original vector x use the 

following hash function to generate a fingerprint of 
d bits: 
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By doing this we represent each vector in our 
original vector set into a bit stream that reduces our 
vector space representation from k to d dimensions, 
where d << k. Having bit stream as our data repre-
sentation, the probability of hash collision, i.e. the 
probability of two vectors being equal 

)]()(Pr[ yhxh  , is equivalent to the Hamming 
distance between the two bit streams: 
 

         Pr[h(x)  h(y)] 
HD

d
  (5) 

  
Therefore, performing fast cosine similarity boils 
down to finding the Hamming distance between 
the two bit streams.  
Now that we have an approximate method of find-
ing the cosine similarity between two vectors, we 
use Ravichandran’s (2005) formulation of the fast 
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search algorithm developed by Charikar, which in 
turn used Indyk and Motwani’s orginal PLEB 
(Point Location in Equal Balls) algorithm as a 
starting point. The steps of this algorithm are out-
lined in the next subsection. For more detailed ex-
planation of this algorithm the reader is referred to 
Section 5 of Charikar’s work (2002).  

5.1 Nearest Neighbor Search Algorithm 

We now outline the steps of the fast search algo-
rithm. For more detailed explanation of the algo-
rithmic implementation users are referred to 
Section 3 of Ravichandran’s work (2005): 
 
 For all m documents represented in the vector 

space using the template vector, compute LSH 
d-bit signature using the formula given in (4).  

 Generate q permutations of length d.  
 For each of the q permutations, generate m 

permuted LSH signatures. 
 For each of the q permutation bins, 

lexicographically sort the m permutated bit 
vectors.  

 For each lexicographically sorted bin, go over 
the m bit streams and compute the Hamming 
distance between the current bit stream and the 
subsequent b bit streams in the sorted list start-
ing from the top. 

 If the Hamming distance is above a previously 
set threshold, output the book pair along with 
the Hamming distance result. 

 
Compared to Ravichandran’s algorithm for creat-
ing noun similarity lists, in our approach we deal 
with two distinct groups of documents: those in 
each language. We start off by creating a single list 
of documents and we represent each document in 
this list using the LSH based fingerprint. We then 
generate q permutation vector bins, and we 
lexicographically sort each bin. In our beam search 
approach, since we have documents in two differ-
ent languages, we only consider documents that 
have a different language. The results of the beam 
search for each bin are then combined. Since in 
each beam the same permutation is performed over 
all fingerprints, the Hamming distance across all 
bins for a given document pair would be the same. 
Therefore after combining the results we remove 
duplicate document pairs and sort by the Hamming 
distance to obtain the final ranked list.  The run-

time of this algorithm is dominated by the 
O(qn logn)  step of sorting the permuted bit vec-
tors in each of the bins. 

6 Detecting and Ranking Book Transla-
tion Pairs in a Large Book Collection 

Using the previously explained method we proc-
essed the large book collection by first computing 
the vector template. For the large book collection, 
the vector template size k, i.e. the number of over-
lapping tokens obtained, was 638,005. After re-
moving stop words and unwanted tokens 
(explained in Section 2) the template vector length 
was reduced to 563,053. Shown in Table 4 are sta-
tistics over the number of vector template tokens 
whose tf·idf values are greater than zero across the 
two languages.  
 

Language Min Max Median

German 7 7212 229

English 11 6637 585

 
Table 4. Statistics over the number of tokens in the 
vector representation of each book whose tf·idf are 
greater than zero. 
 
Once processed and represented in vector space, 
we proceed with computing the approximate co-
sine similarity across the bilingual collection. We 
precompute the Hamming distance based on a co-
sine similarity threshold of 0.18 which is equiva-
lent to different Hamming distance values 
depending on the length of the LSH based finger-
print. For the book collection we experimented 
with 4 different sets of values for the number of 
hyperplane based hash functions, the number of 
permutations and the length of the beam search. 
For each of these parameters in our setup we cre-
ated ranked lists as explained in Section 5.1. We 
then went over the top 300 book pairs in each list 
and annotated the correct book translations. Based 
on the human annotation we then computed aver-
age precision over the ranked list. Shown in Table 
5 are the results for LSH based fingerprint of size 
d=500. Due to the randomness introduced by the 
permutations, there is not a monotonic increase in 
accuracy, but in general more permutations and 
wider beams show substantial improvements. 
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q\b AP Time [hrs] 

b=25 0.307 24.9

b=50 0.213 41.1q=25 

b=100 0.280 67.2
b=25 0.488 99.6
b=50 0.388 164.4q=100 

b=100 0.461 269.1
b=25 0.357 199.2
b=50 0.412 328.8q=200 

b=100 0.455 538.2
b=25 0.489 498.1
b=50 0.490 822.0q=500 

b=100 0.493 1345.5

 
Table 5. Average precision on the large English-
German book collection across various parameters 
of the LSH based search algorithm. 
 
For the above given results for d=500, we calcu-
lated an estimated time that it would take to per-
form the fast cosine similarity if the algorithm 
were to be run in serial fashion. Shown in Figure 8 
is a scatter plot of the time vs. the average preci-
sion obtained. 
 

 
 
Figure 8. Estimated serial time vs. average preci-
sion with d=500 dimensional LSH based finger-
prints. 
 
In summary, while increasing the number of per-
mutations and the beam search over different val-
ues increases the average precision the time cost 
required is significantly larger especially for in-
creasing the number of permutations. 

7 Future Work 

In the future we plan on experimenting with larger 
dimensionality d for the LSH fingerprint, the num-
ber of random permutations q i.e. bins and the 
beam search parameter b. In order to further im-
prove the average precision we would also like to 
experiment with different longest common subse-
quence (LCS) based approaches for re-ranking the 
cosine based ranked lists. Furthermore, we plan on 
exploring more accurate joint models of transla-
tion. It would also be interesting to observe the 
performance of our system on other language pairs, 
such as English-Chinese and languages with 
resource-poor bilingual collections.  

8 Conclusion 

This paper presents and evaluates a new approach 
to detecting and ranking document translation 
pairs. We showed that this simple method achieves 
high precision vs. recall on parallel bilingual col-
lections where there is one document translation 
for each source document. We also showed that the 
method is capable of detecting document transla-
tions in random subsets where no known document 
translation information is available. Using an ap-
proximation algorithm for cosine similarity, we 
showed that this method is useful for detecting and 
ranking document translation pairs in a large 
bilingual collection with hundreds of thousands of 
books and billions of possible book pairs. This 
method is conceivable to be used for other lan-
guages and collection genres and also on other 
types of translation methods such as transliteration. 
While in some instances other simple methods of 
aligning the dictionaries might be needed, as in the 
case of the Chinese language. 
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Abstract

Languages with rich inflectional morphology
pose a difficult challenge for statistical ma-
chine translation. To address the problem of
morphologically inconsistent output, we add
unification-based constraints to the target-side
of a string-to-tree model. By integrating con-
straint evaluation into the decoding process,
implausible hypotheses can be penalised or
filtered out during search. We use a sim-
ple heuristic process to extract agreement con-
straints for German and test our approach on
an English-German system trained on WMT
data, achieving a small improvement in trans-
lation accuracy as measured by BLEU.

1 Introduction

Historically, most work in statistical machine trans-
lation (SMT) has focused on translation into En-
glish. Languages with richer inflectional mor-
phologies pose additional challenges for translation
and conventional SMT approaches tend to perform
poorly when either source or target language has rich
morphology (Koehn, 2005).

For complex source inflection, a successful ap-
proach has been to cluster inflectional variants into
equivalence classes. This removes information that
is redundant for translation and can be performed as
a preprocessing step for input to a conventional sur-
face form based translation model (Nießen and Ney,
2001; Goldwater and McClosky, 2005; Talbot and
Osborne, 2006).

For complex target inflection,
Minkov et al. (2007) investigate how post-
processing can be used to generate inflection for a

system that produces uninflected output. Their ap-
proach is successfully applied to English-Arabic and
English-Russian systems by Toutanova et al. (2008).

Another promising line of research involves the
direct integration of linguistic information into SMT
models. Koehn and Hoang (2007) generalise the
phrase-based model’s representation of the word
from a string to a vector, allowing additional features
such as part-of-speech and morphology to be asso-
ciated with, or even to replace, surface forms dur-
ing search. Luong et al. (2010) decompose words
into morphemes and use this extended represen-
tation throughout the training, tuning, and testing
pipeline.

Departing further from traditional SMT mod-
els, the transfer-based systems of Riezler and
Maxwell (2006), Bojar and Hajič (2008), and Gra-
ham et al. (2009) employ rich feature structure
representations for linguistic attributes, but have
so far been limited by their dependence on non-
stochastic parsers with limited coverage. The Stat-
XFER transfer-based framework (Lavie, 2008) is
neutral with regard to the rule acquisition method
and the author describes a manually developed
Hebrew-English transfer grammar, which includes a
small number of constraints between agreement fea-
tures. In Hanneman et al. (2009) the framework is
used with a large automatically-extracted grammar,
though this does not use feature constraints.

In this paper we propose a model that retains the
use of surface forms during decoding whilst also
checking linguistic constraints defined over asso-
ciated feature structures. Specifically, we extend
a string-to-tree model by adding unification-based
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constraints to the target-side of the synchronous
grammar. We suggest that such a constraint system
can:

• improve the model by enforcing inflectional
consistency in combinations unseen by the lan-
guage model

• improve search by allowing the early elimina-
tion of morphologically-inconsistent hypothe-
ses

To evaluate the approach, we develop a system for
English-German with constraints to enforce intra-
NP/PP and subject-verb agreement, and with a sim-
ple probabilistic model for NP case.

2 Preliminaries

There is an extensive literature on constraint-based
approaches to grammar, employing a rich variety
of terminology and linguistic devices. We use only
a few of the core ideas, which we briefly describe
in this section. We borrow the terminology and
notation of PATR-II (Shieber, 1984), a minimal
constraint-based formalism that extends context-free
grammar.

Central to our model are the concepts offeature
structuresandunification. Feature structures are of
two kinds:

• atomicfeature structures are untyped, indivisi-
ble values, such asNP, nom, orsg

• complexfeature structures are partial functions
mapping features to values, the values them-
selves being feature structures.

Complex feature structures are conventionally writ-
ten as attribute-value matrices. For example, the fol-
lowing might represent lexical entries for the Ger-
man definite article,die, and the German noun,
Katze, meaningcat:

die →
















POS ART

AGR











CASE acc

DECL weak

GENDER fem

NUMBER sg



























Katze → 









POS NN

AGR







CASE acc

GENDER fem

NUMBER sg

















An equivalent representation, and the one we use
for implementation, is that of a rooted, labelled, di-
rected acyclic graph.

A value belonging to a complex feature structure
can be specified using a path notation that describes
the chain of features in enclosing feature structures.
In the examples above, the path〈 AGR GENDER 〉
specifies the atomic valuefem.

Informally, unificationis a merging operation that
given two feature structures, yields the minimal fea-
ture structure containing all information from both
inputs. A unification failure results if the input
feature structures have mutually-conflicting values.
The subject of unification, both in the context of nat-
ural language processing and more generally, is sur-
veyed in Knight (1989). In this work, we use de-
structive graph-based unification, which results in
the source feature structures sharing values upon
unification.

For example, the result of unifying the agreement
values for the feature structures above would be:

die →
















POS ART

AGR 1











CASE acc

DECL weak

GENDER fem

NUMBER sg



























Katze →
[

POS NN

AGR 1

]

The index boxes are used to indicate that a value is
shared.

3 Grammar

In this section we describe the synchronous gram-
mar used in our string-to-tree model. Rule extraction
is similar to the syntax-augmented model of Zoll-
mann and Venugopal (2006), though we do not use
extended categories in this work. We then describe
how we extend the grammar with target-side con-
straints.

3.1 Synchronous Grammar

Our translation model is based on a synchronous
context-free grammar (SCFG) learned from a par-
allel corpus. Rule extraction follows the hierarchi-
cal phrase-based algorithm of Chiang (2005; 2007).
Source non-terminals are given the undistinguished
label X, whereas the target non-terminals are given
part-of-speech and constituent labels obtained from
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a parse of the target-side of the parallel corpus.
Rules in which the target span is not covered by a
parse tree constituent are discarded.

Compared with the hierarchical phrase-based
model, the restriction to constituent target phrases
reduces the total grammar size and the addition of
linguistic labels reduces the problem of spurious am-
biguity. We therefore relax Chiang’s (2007) rule fil-
tering in the following ways:

1. Up to seven source-side terminal / non-terminal
elements are allowed.

2. Rules with scope greater than three are filtered
out (Hopkins and Langmead, 2010).

3. Consecutive source non-terminals are permit-
ted.

4. Single-word lexical phrases are allowed for hi-
erarchical subphrase subtraction.

3.2 Constraint Grammar

We extend the synchronous grammar by adding con-
straints to the target-side. A constraint is an identity
between either:

i) feature structure values belonging to two rule
elements,

ii) a feature structure value belonging to a rule el-
ement and a constant value, or

iii) a feature structure value belonging to a rule ele-
ment and a random variable with an associated
probability function

For example, the following synchronous rule:

NP-SB→ theX1 cat | die AP1 Katze

might have the target constraint rule shown in Fig-
ure 1.

The first three constraints ensure that anyAP has
agreement values consistent with the lexical items
dieandKatze. The next provides a probability based
on the resulting case value. The final two are used to
disambiguate between possible parts-of-speech.

Constraints are evaluated by attempting to unify
the specified feature structures. A rule element may
have more than one associated feature structure, so

NP-SB→ die AP Katze
〈 NP-SB AGR〉 = 〈 die AGR〉
〈 NP-SB AGR〉 = 〈 AP AGR〉
〈 NP-SB AGR〉 = 〈 KatzeAGR〉
〈 NP-SB AGR CASE〉 = C

〈 die POS〉 = ART

〈 KatzePOS〉 = NN

P (C = c) =















0.990, c = NOM

0.005, c = DAT

0.004, c = GEN

0.001, c = ACC

Figure 1: Example target constraint rule

unification is attempted between all combinations. If
no combination can be successfully unified then the
constraint fails.

Ultimately, all feature structures originate in the
lexicon, which maps a surface form word to a set of
zero or more complex feature structures.

3.3 Some Constraints for German

We now describe the German constraints that we use
in this paper. Whilst the constraint model described
above is language-independent, the actual form of
the constraints will largely be language- and corpus-
specific.

In this work, the linguistic annotation is obtained
from a statistical parser and a morphological anal-
yser. We use the BitPar parser (Schmid, 2004)
trained on the TIGER treebank (Brants et al., 2002)
and the Morphisto morphological analyser (Zielin-
ski and Simon, 2009). We find that we can extract
useful constraints for German based on a minimal
set of simple manually-developed heuristics.

Base NP/PP Agreement

German determiners and adjectives are inflected
to agree in gender and number with the nouns that
they modify. As in English, a distinction is made be-
tween singular and plural number, with most nouns
having separate forms for each. Grammatical gender
has three values: masculine, feminine, and neuter.

A noun phrase’s case is usually determined by its
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{

ADJA, ART, NN, PDAT,

PIAT, PPOSAT, PWAT

}

→ {NP, PP}

{APPR, APPRART} → {PP}
{ADJA} → {AP, CAP}
{AP} → {CAP}

{AP, CAP} → {NP, PP}

Figure 2: Propagation rules used to captureNP/PPagree-
ment relations

role in the clause. For example, nominative case
usually indicates the subject of a verb. The case of
a prepositional phrase is usually determined by the
choice of preposition.

We model these grammatical properties by i) as-
sociating, via the lexicon, a set of possible agree-
ment values with each preposition, determiner, ad-
jective, and noun, and ii) enforcingagreement rela-
tions through pairwise identities between rule ele-
ments (as in the example in Figure 1).

For constraint extraction, we first group parse tree
nodes into agreement relations. We use the parse
tree labels to determine whether a parent shares
agreement information with a child. Figure 2 shows
the rules that we used in experiments. These should
be read as saying that if a child node has a label that
appears on the left-hand side of a rule,r, and its par-
ent node has a label that appears on the right-hand
side ofr then the parent and child share agreement
information.

These rules are applied bottom-up from the
preterminal nodes of the training data trees. Agree-
ment relations are merged if they share a common
parent. Finally, relations are extended to include
child words. Figure 3 shows a sentence pair in which
the target-side tree has been annotated to show two
NP agreement relations found according to the rules
of Figure 2.

Of course, this process is not perfect and finds
many spurious relations. We guard against the most
frequent errors by:

i) Filtering out relations based on label-patterns
found during error analysis (for example, rela-
tions containing multipleNN nodes)

ii) Attempting to unify the agreement feature

structures of the words and rejecting relations
for which this fails

Having annotated the training data trees with
agreement relations, rule extraction is extended to
accept annotated trees and to generate constraint
rules of the form shown in Figure 1. Constraints are
produced where any two target-side rule elements
belong to a common agreement relation. The result-
ing constraints are grouped by relation into distinct
constraint sets.

Subject-Verb Agreement

We add limited subject-verb agreement in a sim-
ilar manner. The additional propagation rules are
given in Figure 4. To determine the subject we rely
upon the TIGER treebank’s grammatical function
labels, which the parser affixes to constituent labels.
These are otherwise ignored in all propagation rules.

Probabilistic Constraints for NP Case

We make further use of the treebank’s grammat-
ical function labels in order to define probabilistic
constraints for noun phrase case. Many of the func-
tion labels are strongly biased towards a particu-
lar case (NP-TOP uses nominative case in 91.5% of
unambiguous occurrences, for example). We esti-
mate probabilities by evaluating NP agreement rela-
tions in the training data and counting case-label co-
occurrences. Ambiguous case values are ignored.
The training data uses only 23 distinct NP labels,
most of which occur very frequently, so no smooth-
ing is applied. Table 1 shows the 10 most common
labels and their case frequencies.

4 Model

As is standard, we frame the decoding problem as a
search for the most probable target language treet̂

given a source language strings:

t̂ = argmax
t
p(t|s)

The functionp(t|s) is modelled by a log-linear
sum of weighted feature functions:

p(t|s) =
1

Z

n
∑

i=1

λihi(s, t)
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TOP

S-TOP

NP-SB

PIAT

beide

NN

Vers̈aumnisse

VAFIN

haben

VP-OC

NP-OA

ADJA

terroristische

NN

Gruppen

PP-MNR

APPR

in

NE

Pakistan

VVPP

gesẗarkt

PUNC.

.

both failures have strengthened domestic terrorist groups .

Figure 3: Sentence pair from training data. The two NP agreement relations used for constraint extraction are indicated
by the rectangular and elliptical node borders.

{VAFIN, VMFIN, VVFIN} → {S}
{NP-SB} → {S}

Figure 4: Propagation rules used to capture subject-verb
agreement relations

Label Nom Acc Gen Dat Freq
AG 0.1 0.0 99.9 0.0 308156
CJ 10.9 10.3 32.4 46.4 77198
OA 1.6 91.5 0.7 6.2 67686
SB 99.0 0.1 0.4 0.5 60245
DA 1.9 0.2 1.4 96.5 41624
PD 98.2 0.2 1.4 0.3 19736
APP 39.4 7.3 8.7 44.6 7739
MO 18.6 17.3 56.9 7.2 7591
PNC 30.6 0.0 47.4 22.0 4888
OG 0.1 0.0 97.9 2.0 2060

Table 1: The 10 most freqently occurring NP labels with
their case frequencies (shown as percentages)

4.1 String-to-Tree Features

Our feature functions include then-gram language
model probability oft’s yield, a count of the words
in t’s yield, and various scores for the synchronous
derivation. We score grammar rules according to the
following functions:

• p(RHSs|RHSt,LHS), the noisy-channel trans-
lation probability.

• p(RHSt|RHSs,LHS), the direct translation
probability, which we further condition on the
root label of the target tree fragment.

• plex (RHSt|RHSs) andplex (RHSs|RHSt), the
direct and indirect lexical weights (Koehn et al.,
2003).

• ppcfg(FRAGt), the monolingual PCFG proba-
bility of the tree fragment from which the rule
was extracted. This is defined as

∏

n

i=1
p(ri),

wherer1 . . . rn are the constituent CFG rules
of the fragment. The PCFG parameters are esti-
mated from the parse of the target-side training
data. All lexical rules are given the probabil-
ity 1. This is similar to thepcfg feature used in
Marcu et al. (2006) and is intended to encour-
age the production of syntactically well-formed
derivations.

• exp(1), a rule penalty.
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4.2 Constraint Model Features

In addition to the string-to-tree features, we add two
features related to constraint evaluation:

• exp(f), wheref is the derivation’s constraint
set failure count. This serves as a penalty fea-
ture in a soft constraint variant of the model:
for each constraint set in which a unification
failure occurs, this count is increased and an
empty feature structure is produced, permitting
decoding to continue.

•
∏

n
pcase(cn), the product of the derivation’s

case model probabilities. Where the case value
is ambiguous we take the highest possible prob-
ability.

5 Decoding

We use the Moses (Koehn et al., 2007) decoder, a
bottom-up synchronous parser that implements the
CYK+ algorithm (Chappelier and Rajman, 1998)
with cube pruning (Chiang, 2007).

The constraint model requires some changes to
decoding, which we briefly describe here:

5.1 Hypothesis State

Bottom-up constraint evaluation requires a feature
structure set for every rule element that participates
in a constraint. For lexical rule elements these are
obtained from the lexicon. For non-lexical rule ele-
ments these are obtained from predecessor hypothe-
ses. After constraint evaluation, each hypothesis
therefore stores the resulting, possibly empty, set of
feature structures corresponding to its root rule ele-
ment.

Hypothesis recombination must take these feature
structure states into account. We take the simplest
approach of requiring sets to be equal for recombi-
nation.

5.2 Cube Pruning

At each chart cell, the decoder determines which
rules can be applied to the span and which com-
binations of subspans they can cover (the applica-
tion contexts). Ann-dimensional cube is created for
each application context of a rule, wheren−1 is the
rank of the rule. Each cube has one dimension per
subspan and one for target-side translation options.

Cube pruning begins with these cubes being placed
into a priority queue ordered according to the model
score of their corner hypotheses.

With the introduction of the constraint model, the
cube pruning algorithm must also allow for con-
straint failure. For the hard constraint model, we
make the following modifications:

1. Since the corner hypothesis might fail the con-
straint check, rule cube ordering is based on
the score of the nearest hypothesis to the corner
that satisifies its constraints (if any exists). This
hypothesis is found by exploring neighbours in
order of estimated score (that is, without calcu-
lating the full language model score) starting at
the corner.

2. When a hypothesis is popped from a cube and
its neighbours created, constraint-failing neigh-
bours are added to a ‘bad neighbours’ queue.

3. If a cube cannot produce a new hypothesis be-
cause all of the neighbours fail constraints, it
starts exploring neighbours of the bad neigh-
bours.

We place an arbitrary limit of 10 on the number
of consecutive constraint-failing hypotheses to con-
sider before discarding the cube.

We anticipate that decoding for a highly in-
flected target language will result in a less mono-
tonic search space due to the increased formation of
inflectionally-inconsistent combinations.

6 Experiments

6.1 Baseline Setup

We trained a baseline system using the English-
German Europarl and News Commentary data from
the ACL 2010 Joint Fifth Workshop on Statistical
Machine Translation and Metrics MATR1.

The German-side of the parallel corpus was
parsed using the BitPar2 parser. Where a parse failed
the pair was discarded, leaving a total of 1,516,961
sentence pairs. These were aligned using GIZA++

1http://www.statmt.org/wmt10/
translation-task.html

2http://www.ims.uni-stuttgart.de/tcl/
SOFTWARE/BitPar.html
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and SCFG rules were extracted as described in sec-
tion 3.1 using the Moses toolkit. The resulting gram-
mar contained just under 140 million synchronous
rules.

We used all of the available monolingual Ger-
man data to train three 5-gram language models (one
each for the Europarl, News Commentary, and News
data sets). These were interpolated using weights
optimised against the development set and the re-
sulting language model was used in experiments.
We used the SRILM toolkit (Stolcke, 2002) with
Kneser-Ney smoothing (Chen and Goodman, 1998).

The baseline system’s feature weights were tuned
on thenews-test2008dev set (2,051 sentence pairs)
using minimum error rate training (Och, 2003).

6.2 Constraint Model Setup

A feature structure lexicon was generated by run-
ning the Morphisto3 morphological analyser over
the training vocabulary and then extracting feature
values from the output.

The constraint rules were extracted using the
agreement relation identification and filtering meth-
ods described in section 3.3.

We tested two constraint model systems, one us-
ing the rules as hard constraints and the other as soft
constraints. The former discarded all hypotheses
that failed constraints and used the modified cube
pruning search algorithm. The latter allowed con-
straint failure but used the failure count feature as a
penalty. Both systems used the NP case probabil-
ity feature. The weights for these two features were
optimised using MERT (with all baseline weights
fixed). The systems were otherwise identical to the
baseline.

6.3 Evaluation

The systems were evaluated against constrained ver-
sions of thenewstest2009, newstest2010, andnew-
stest2011test sets. We used a maximum rule span
of 20 tokens for decoding. In order that the input
could be covered without the use of glue rules (ex-
cept for unknown words), we used sentences of 20
or fewer tokens, giving test sets of 1,025, 1,054, and
1,317 sentences, respectively. We evaluated transla-
tion quality using case-sensitive BLEU-4 (Papineni

3http://code.google.com/p/morphisto/

(NP-AG der (ADJA regelm̈aßigen) (ADJA täglichen) (NN Handel))

(PP-MO nach Angaben der (ADJA örtlichen) (NN Index))

(NP-CJ die (ADJA amerikanischen) (NN Blutbad))

(PP-MNR für die (ADJA asiatischen) (NN Handel))

(TOP (NP-SB der (NN Vorsprung) des (NN razor))
(VVFIN kämpfen)
(CNP-OA : (NN MP3-Player) (KON und) (NN Mobiltelefone))
.)

Figure 5: Tree fragments containing the first five con-
straint failures found on the baseline 1-best output

et al., 2002) with a single reference.

Table 2 shows the results for the three constrained
test tests. The p-values were calculated using paired
bootstrap resampling (Koehn, 2004). We suspect
that the substantially lower baseline scores on the
newstest2011test set are largely due to recency ef-
fects (since we use 2010 data for training).

To gauge the frequency of agreement violations
in the baseline output we matched constraint rules
to the 1-best baseline derivations and performed a
bottom-up evaluation for each target-side tree. For
the three constrained test sets,newstest2009, new-
stest2010, andnewstest2011, we found that 15.5%,
14.4%, and 15.6% of sentences, respectively, con-
tained one or more constraint failures. Figure 5
shows the tree fragments for the first five failures
found innewstest2009.

In order to explore the interaction of the constraint
model with search we then repeated the experiments
for varying cube pruning pop limits. Figure 6 shows
how the mean test set BLEU score varies against pop
limit. Except at very low pop limits, the soft con-
straint system outperforms the hard constraint sys-
tem. Together with the high p-values for the hard
constraint system, this suggests that, despite filter-
ing, our simple constraint extraction heuristics may
be introducing significant numbers of spurious con-
straints. Alternatively, enforcing the hard constraint
may eliminate too many hypotheses that cannot be
satisifactorily substituted — constraint-satisfying al-
ternatives frequently differ in more than just inflec-
tion. Either way, the soft constraint model is able to
overcome some of these deficiencies by permitting
some constraint failures in the 1-best output.
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newstest2009-20 newstest2010-20 newstest2011-20
Experiment BLEU p-value BLEU p-value BLEU p-value
baseline 15.34 - 15.65 - 12.90 -
hard constraint 15.49 0.164 15.95 0.065 12.87 0.318
soft constraint 15.67 0.006 15.98 0.009 13.11 0.053

Table 2: BLEU scores and p-values for the three test sets
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Figure 6: Cube pruning pop limit vs average BLEU score

7 Conclusion

In this paper we have presented an SMT model that
allows the addition of linguistic constraints to the
target-side of a conventional string-to-tree model.
We have developed a simple heuristic method to ex-
tract constraints for German and demonstrated the
approach on a constrained translation task, achiev-
ing a small improvement in translation accuracy.

In future work we intend to investigate the de-
velopment of constraint models for target languages
with more complex inflection. Besides the require-
ment for suitable language processing tools, this re-
quires the development of reliable language-specific
constraint extraction techniques.

We also plan to investigate how the model could
be extended to generate inflection during decoding:
a complementary constraint system could curb the
overgeneration of surface form combinations that
has limited previous approaches.
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Abstract

The quality of Arabic-English statistical ma-
chine translation often suffers as a result of
standard phrase-based SMT systems’ inabil-
ity to perform long-range re-orderings, specif-
ically those needed to translate VSO-ordered
Arabic sentences. This problem is further ex-
acerbated by the low performance of Arabic
parsers on subject and subject span detection.
In this paper, we present two parse “fuzzi-
fication” techniques which allow the transla-
tion system to select among a range of pos-
sible S–V re-orderings. With this approach,
we demonstrate a 0.3-point improvement in
BLEU score (69% of the maximum possible
using gold parses), and a corresponding im-
provement in the percentage of syntactically
well-formed subjects under a manual evalua-
tion.

1 Introduction

The question of how to effectively use phrase-based
statistical machine translation (PSMT) to translate
between language pairs which require long-range re-
ordering has attracted a great deal of interest in re-
cent years. The inability to capture long-range re-
ordering behaviors is a weakness inherent in PSMT
systems, which typically have only two mechanisms
to control the reordering between source and tar-
get language: (1) distortion penalties, which penal-
ize or forbid long-distance re-orderings in order to
reduce the search space explored by the decoder,
and (2) lexicalized reordering models, which cap-
ture the preferences of individual phrases to orient
themselves monotonically, reversed with their pre-
ceding phrases or discontinuously. Because both

of these mechanisms work at the phrase level, they
have proven very effective at capturing short-range
reordering behaviors, but unable to describe long
range movements; in fact, the distortion penalty ef-
fectively causes the translation system to not pre-
fer long-range re-orderings, even when they are as-
signed significantly higher probability by the lan-
guage model.

The problem is particularly acute in translating
from Arabic to English: Arabic sentences frequently
exhibit a VSO ordering (both VSO and SVO are
permitted in Arabic), while English permits only
an SVO order. Past research has shown that verb
anticipation and subject-span detection is a ma-
jor source of error when translating from Arabic
to English (Green et al., 2009; Bisazza and Fed-
erico, 2010). Unable to perform long-range reorder-
ing, PSMT frequently produces English sentences in
which verbs precede their subjects (sometimes with
“hallucinated” pronouns in front of them) or do not
appear at all. Intuitively, better handling of these re-
orderings has the potential to improve both accuracy
and fluency of translation.

In this paper, we present two parse fuzzification
techniques which allow the translation system to se-
lect among a range of possible S–V re-orderings.
With this approach, we demonstrate a 0.3-point im-
provement in BLEU score (69% of the maximum
possible using gold parses), and a corresponding im-
provement in the percentage of syntactically well-
formed subjects under a manual evaluation.

The rest of the paper is structured as follows. Sec-
tion 2 gives a review of research on this topic. Sec-
tion 3 motivates the approach discussed in Section 4.
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Section 5 presents the results of a set of machine
translation experiments using the automatic metrics
BLEU (Papineni et al., 2002) and METEOR (Baner-
jee and Lavie, 2005), and a manual-evaluation of
subject integrity. Section 6 discusses our conclu-
sions and future plans.

2 Related Work

The general approach pursued in this paper—that
of using pre-ordering to improve translation output–
has been explored by many researchers. Most
work has focused on automatically learning reorder-
ing rules (Xia and McCord, 2004; Habash, 2007b;
Elming, 2008; Elming and Habash, 2009; Dyer
and Resnik, 2010). Xia and McCord (2004) de-
scribe an approach for translation from French to
English, where context-free constituency reordering
rules are acquired automatically using source and
target parses and word alignment. Elming (2008)
and Elming and Habash (2009) use a large set of
linguistic features to automatically learn reordering
rules for English-Danish and English-Arabic; the
rules are used to pre-order the input into a lattice
of variant orders. Habash (2007b) learns syntactic
reordering rules targeting Arabic-English word or-
der differences and integrated them as deterministic
preprocessing. He reports improvements in BLEU
compared to phrase-based SMT limited to mono-
tonic decoding, but these improvements do not hold
with distortion. He hypothesizes that parse errors
are responsible for lack of improvement. Dyer and
Resnik (2010) use an input forest structure to rep-
resent word-order alternatives and learn models for
long-range source reordering that maximize trans-
lation quality. Their results for Arabic-English are
negative.

In contrast to these approaches, Collins et al.
(2005) apply six manually defined transformations
to German parse trees which yield an improvement
on a German-English translation task. In this paper,
we follow Collins et al. (2005) and restrict ourselves
to handcrafted rules (in our case, actually a single
over-generating rule) motivated by linguistic under-
standing.

One major concern not addressed in any of the
aforementioned research on syntax-based reordering
is the fact that the quality of parsers for many lan-

guages is still quite poor. Collins et al. (2005), for
example, assume that the parse trees they use are
correct. While the state-of-the-art in English pars-
ing is fairly good (though far from perfect), this
is not the case in other languages, where parsing
shows substantial error rates. Moreover, when at-
tempting to reorder so as to bring the source text
more grammatically in line with the target language,
a bad parse can be disastrous: moving parts of the
sentence that shouldn’t be moved, and introducing
more distortion error than it is able to correct. To ad-
dress the problem of noisy parse data, Bisazza and
Federico (2010) identify the subject using a chunker,
then fuzzify it, creating a lattice in which the transla-
tion system has a choice of several different paths,
corresponding to re-orderings of different subject
spans.

In investigating syntax-based reordering for Ara-
bic specifically, Carpuat et al. (2010) show that a
syntax-driven reordering of the training data only
for the purpose of alignment improvement leads to
a substantial improvement in translation quality, but
do not report a corresponding improvement when re-
ordering test data in a similar fashion. Interestingly,
Bisazza and Federico (2010) report that fuzzy re-
ordering the test data improves MT output, suggest-
ing that fuzzification may be the mechanism neces-
sary to render reordering on test data useful. To the
best of our knowledge, nobody has yet used fuzzifi-
cation to correct the identified subject span of com-
plete Arabic dependency parses. Green et al. (2009)
use a conditional random field sequence classifier
to detect Arabic noun phrase subjects in verb-initial
clauses achieving an F-score of 61.3%. They in-
tegrate their classifier’s decisions as additional fea-
tures in the Moses decoder (Koehn et al., 2007), but
do not show any gains.

The present work may be thought of as extending
the fuzzification explored by Bisazza and Federico
(2010) to the domain of full parsing—a combina-
tion, in some sense, of their approach with the work
of Carpuat et al. (2010). The approach examined in
this paper differs from Collins et al. (2005) in its use
of fuzzification, from Bisazza and Federico (2010)
in its use of a complete dependency parse, and from
Carpuat et al. (2010) in its use of a reordered test set.
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Figure 1: An example of a dependency tree of a Verb-Object-Subject Arabic sentence: 	àAÓñj. ë ÐñJ
Ë @ ZA�Ó 	�AK
QË @ 	Që
	á�
�J 	j 	j 	®Ó 	á�
�KPAJ
� +H. hz AlryAD msA’ Alywm hjwmAn b+ syArtyn mfxxtyn ‘Two car bombs shook Riyadh this

evening’. The predicted tree (on the left) shows an incorrect subject span (words 5-8).

Figure 1: An example of a dependency tree of a Verb-Object-Subject Arabic sentence: ������� � ����� � ���� ������� � ���
������ �� �� ��� ����������� +�� hz AlryAD msA’ Alywm hjwmAn b+ syArtyn mfxxtyn ‘Two car bombs shook Riyadh this

evening’. The predicted tree (on the left) shows an incorrect subject span (words 5-8).
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We focused on correcting the largest sources of er-
ror: incorrect span and false-positive subjects. As
false-positive subject corrections were already cap-
tured by providing a no-reorder option in the lattice,
only span errors needed additional correction.

In principle, spans can be marked incorrectly both
on their front and back ends; however, because left-
dependency is fairly uncommon in Arabic and hap-
pens in a limited number of predictable cases, the
system made so few errors in identifying the left
boundary of spans (1.8%) that it is not worth try-
ing to correct them. [A note on terminology: “left”
and “right” are used throughout this paper with ref-
erence to English word order. “Left” should be un-
derstood to mean “towards the beginning of the sen-
tence”, and “right” to mean “towards the end of the
sentence.”]

The question is thus how to correct the right edge
of spans assuming that label and attachment have
been predicted correctly. Span classifications can be
broken into three categories: those that are too long

(i.e. that have too many right descendants), too short
(i.e. that have too few right descendants), or correct
(so that the predicted tree has all the same descen-
dants as the gold tree). A comparison of gold and
predicted trees for MT05 was conducted, revealing
the following breakdown:

Type # %

Long 260 12.4%
Short 293 14.0%

Correct 1538 73.6%
Total 2091 100%

Table 1: Distribution of span errors

These numbers are quite low: roughly 3 out of
every 10 subjects identified in the corpus have their
spans incorrectly marked. This suggest that fuzzifi-
cation will provide room for improvement. But what
technique should we use to fuzzify the subjects?

To answer this question, we examined more

3 Motivation

While the VSO order is common at both the matrix
and non-matrix level in Arabic newswire text, ma-
trix VSO constructions are almost always reordered
in translation, while non-matrix VSO constructions
are frequently translated monotonically (they are in-
stead passivized or otherwise transformed in a fash-
ion that leaves them parallel to the source Arabic
text) (Carpuat et al., 2010). This reordering, as
noted in the introduction, is notoriously difficult for
phrase-based statistical machine translation systems
to capture. It is further exacerbated by the low
quality of Arabic parsing especially for subject span
identification (Green et al., 2009).

3.1 Reordering

We began by performing a series of reordering ex-
periments using gold-standard parses of the NIST

MT05 data set:1 (a) a baseline experiment with no
reordering, (b) an experiment which forced reorder-
ing on all matrix subjects, and (c) an experiment in
which the translation system was presented with a
lattice, in which one path contained the original sen-
tence and the other path contained the sentence with
the matrix subject reordered. The baseline system
produced a BLEU score of 47.13, forced reorder-
ing produced a BLEU score of 47.43, and optional
reordering produced a BLEU score of 47.55. These
results indicate that, given correct reordering bound-
aries, the translation quality can indeed be improved
with reordered test data. Furthermore, the improve-
ment noted above between the forced reordering and
optional reordering experiments, while small, indi-
cates that even with correct parses it is sometimes
preferable to leave the input sentence un-reordered.
This is consistent with Carpuat et al. (2010)’s ob-

1The gold parses for NIST MT05 are part of the Columbia
Arabic Treeebank (CATiB) (Habash and Roth, 2009).

229



servation that even VS-ordered matrix verbs in Ara-
bic are sometimes translated monotonically into En-
glish (as, for example, in passive constructions). An
alternative explanation may be that since the train-
ing data itself is not re-ordered, it is plausible that
some re-ordering may cause otherwise good possi-
ble matches in the phrase table to not match any
more.

3.2 Parser Error
The problem of finding correct subject span bound-
aries for reordering, however, is a particularly dif-
ficult one. Both Habash (2007b) and Green et al.
(2009) have noted previously that even state-of-
the-art Arabic dependency parsers tend to perform
poorly, and we would expect that incorrect bound-
aries would do more harm than good for translation.
In order to determine how to “fix” these spans, it is
first necessary to understand the kinds of errors that
the parser makes. A set of predicted parses of the
NIST MT05 data was compared to the gold parses
of the same data set.

There are three categories of error the parser can
make in identifying subjects: labeling errors, attach-
ment errors and span errors. In labeling errors, the
parser either incorrectly marks a node SBJ when no
such label appears in the gold tree, or fails to identify
one of the gold-labeled SBJs. In attachment error,
the identified subject is marked as depending on the
wrong node. Finally, in span error, the descendants
assigned to a labeled SBJ are wrong. The distribu-
tion of parser errors in the NIST MT05 data is as
follows:

• Label errors: 19.8% of predicted subjects are
not gold subjects, and 19.1% of gold subjects
are not identified as predicted subjects.

• Attachment errors: 16.92% of gold subjects are
incorrectly attached in the predicted tree.

• Span errors: 26.4% of predicted subject spans
are incorrect.

In this paper, we focus on correcting the largest
sources of error: incorrect span and false-positive
subjects. We now provide further analysis of the
span errors.

In principle, spans can be marked incorrectly both
on their front and back ends; however, because left-
dependency is fairly uncommon in Arabic and hap-

pens in a limited number of predictable cases, the
parser made so few errors in identifying the left
boundary of spans (1.8%) that it is not worth trying
to correct them.2

The question is thus how to correct the right edge
of spans assuming that label and attachment have
been predicted correctly. Span classifications can
be broken into three categories: those that are too
long (i.e. that have too many right descendants), too
short (i.e. that have too few right descendants), or
correct (so that the predicted tree has all the same
descendants as the gold tree, without regard to their
syntactic structure). A comparison of gold and pre-
dicted trees for MT05 was conducted, revealing the
distribution shown in Table 1. We see that the 26.4%
of subjects with incorrect spans are roughly equally
divided between subjects that are too short and sub-
jects that are too long.

Type # %
Long 260 12.4%
Short 293 14.0%

Correct 1538 73.6%
Total 2091 100%

Table 1: Distribution of span errors in NIST MT05

To gain further insight into the nature of the sub-
ject span errors, we examined more closely the
26.4% of cases where the span is incorrectly labeled,
looking specifically at the “difference box”: the set
of contiguous nodes that must be added to or re-
moved from the predicted span to bring it into agree-
ment with the gold span (see Fig. 1).3 Specifically,
we wished to know how many top-level constituents
required addition or removal to cover the entire dif-
ference. The smaller the number of top-level con-
stituents that needs to be added, the fewer reorder-
ing variations possible, and the better the expected
performance of the system.

Roughly 2% of these difference boxes are what
we might call “pathological” cases: due to some se-

2A note on terminology: “left” and “right” are used through-
out this paper with reference to word order when using the Latin
alphabet. “Left” should be understood to mean “towards the be-
ginning of the sentence”, and “right” to mean “towards the end
of the sentence.”

3Arabic transliteration is presented in the Habash-Soudi-
Buckwalter scheme (Habash et al., 2007).
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Figure 2: A schematic representation of the fuzzification algorithm. The black node is the matrix subject, + indicates
that a node (and its descendants) can be added, − indicates that a node (and its descendants) can be removed, and the
black brackets denote the boundaries of the candidate spans.

rious error in parsing, there is a constituent inside
the difference box with descendants outside the box.
These are algorithmically very difficult to correct as
they require us to either add a constituent and then
prune it, or remove a constituent and then reattach
some of its children; attempting to correct for this
possibility in all sentences will lead to a combinato-
rial explosion of possible parses. Fortunately, these
pathological cases make up a small enough portion
of the data set that they can be safely disregarded.

More promisingly, 66.5% of incorrect spans can
be corrected with the addition or removal of a single
constituent; in other words, the recall of span iden-
tification can be improved from 73.6% to 91.2% by
adding or removing at most one constituent at the
end of the parser’s identified span.

4 Approach

To improve translation of matrix subjects, we im-
plement fuzzy reordering by using a lattice-based
approach similar to Bisazza and Federico (2010) to
correct the matrix subject spans identified by a state-
of-the-art dependency parser (Marton et al., 2010).
Specifically, we take a twofold approach to fuzzy
reordering. First, we present the translation system
with both un-reordered and reordered options. This
is motivated by the observation that on gold parses,
optional reordering outperformed forced reordering

(Section 3.1). Second, we apply a fuzzification algo-
rithm to the reordered subject span, adding yet more
options to the lattice. This is motivated by the ob-
servation that the greatest source of parsing errors
in subjects is span errors (Section 3.2). We discuss
these two techniques in turn.

4.1 Optional Reordering

In keeping with results from the initial gold experi-
ments, we decided to generate a lattice identical to
that used for the optional-reordering experiment, in
which the translation system was presented with the
input sentence both un-reordered and reordered, us-
ing a predicted parse to perform the reordering.

4.2 Subject Span Fuzzification

The observation that 91.2% of spans can be recalled
with single-constituent modifications led very natu-
rally to the following fuzzification algorithm, which
is illustrated in Fig. 2:

1. For each matrix subject in the parse tree4, cre-
ate an empty list to hold fuzzified boundaries.

2. Original span: Add to the list the tuple (l, r, v),
where l is the index of the predicted span’s left-
most descendant, r is the index of the predicted
span’s rightmost descendant and v is the verb

4Allowance must be made for parsers which incorrectly
identify multiple subjects for the matrix verb.
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that the predicted span attaches to. (This step
produces the span labeled “original” in Fig. 2.)

3. Expansion: Add to the list all tuples of the form
(l, r+, v), where r+ is the index of the right-
most descendant of a node whose leftmost de-
scendant has index r + 1. (This step produces
the spans labeled “a1” and “a2” in Fig. 2.)

4. Contraction: Add to the list all tuples of the
form (l, r−−1, v), where r− is the index of the
leftmost descendant of a node whose rightmost
descendant has index r. (This step produces the
spans labeled “r1” and “r2” in Fig. 2.)

5. Create the list of all valid combinations of
spans by taking the Cartesian product of all
the per-subject span lists, and rejecting all en-
tries in which two spans overlap. (This step ac-
counts for multiple subject cases.)

The result of this algorithm is a list of lists of tuples,
where each tuple defines a single reordering, and
each list of tuples defines a set of spans that must be
moved to the left of the matrix verb for one reorder-
ing. These re-orderings are then joined together to
form the final lattice. If a single-constituent correc-
tion to the span exists (except in the aforementioned
pathological and left-attachment cases), it is guaran-
teed to appear as one path through the lattice.

5 Evaluation

5.1 Experimental Setup
We used the open-source Moses PSMT toolkit
(Koehn et al., 2007). Training data was a newswire
(MSA-English) parallel text with 12M words on the
Arabic side (LDC2007E103)5 Sentences were re-
ordered only for alignment, following the approach
of Carpuat et al. (2010). Parses were obtained using
a publicly available parser for Arabic (Marton et al.,
2010). GIZA++ was used for word alignment (Och
and Ney, 2003) and phrase translations of up to 10
words are extracted in the Moses phrase table. The
same baseline phrase table was used in all experi-
ments.

The system’s language model was trained both on
the English portion of the training corpus and En-
glish Gigaword (Graff and Cieri, 2003). We used a

5All data is available from the Linguistic Data Consortium:
http://www.ldc.upenn.edu.

5-gram language model with modified Kneser-Ney
smoothing implemented using the SRILM toolkit
(Stolcke, 2002). Feature weights were tuned with
MERT (Och, 2003) to maximize BLEU on the NIST
MT06 corpus. MERT was done only for the baseline
system; these same weights were used for all exper-
iments to control for the effect of MERT instability.
In the future, we plan to experiment with approach-
specific optimization and to use recent published
suggestions on controlling for optimizer instability
(Clark et al., 2011).

English data was tokenized using simple
punctuation-based rules. Arabic data was seg-
mented with to the Arabic Treebank tokeniza-
tion scheme (Maamouri et al., 2004) using the
MADA+TOKAN morphological disambiguator and
tokenizer (Habash and Rambow, 2005; Habash,
2007a; Roth et al., 2008). The Arabic text was
also Alif/Ya normalized (Habash, 2010). MADA-
produced Arabic lemmas were used for word
alignment.

We compare four settings with predicted parses
(as opposed to the gold parse experiments discussed
in Section 3):

• BASE An un-reordered test set;

• FORCE A test set which forced reordering on
matrix verbs;

• OPT A test set with fuzzification through op-
tional reordering on matrix verbs; and

• SPAN A test set with fuzzification through op-
tional reordering on matrix verbs and through
fuzzification of the subject span according to
the algorithm shown in Section 4.2.

Each reordering corpus used Moses’ lattice input
format (Dyer et al., 2008) (including the baselines,
which had only one path). Results are presented in
terms of the standard BLEU metric (Papineni et al.,
2002), METEOR metric (Banerjee and Lavie, 2005)
and a manual evaluation targeting subject span trans-
lation correctness.

5.2 Automatic Evaluation Results

Table 2 presents the results for the experiments dis-
cussed above. Columns three and Four (Prec-1g
and Prec-4g) indicate the corresponding 1-gram and
4-gram (sub-BLEU) precision scores, respectively.
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System BLEU Prec-1g Prec-4g METEOR
BASE 47.13 81.91 29.52 53.09
FORCE 47.03 81.78 29.52 53.11
OPT 47.42 81.88 30.04 53.22
SPAN 47.41 81.92 30.03 53.21

Table 2: Automatic evaluation results

Both OPT and SPAN showed a statistically signif-
icant improvement in BLEU score over BASE and
FORCE above the 95% level. Statistical signifi-
cance is computed using paired bootstrap resam-
pling (Koehn, 2004). The difference between OPT
and SPAN, however, was not statistically significant.

The relatively small difference in BLEU score be-
tween the baseline and gold reordering (Section 3:
baseline 47.13 and optional reordering 47.55) sug-
gests that we should expect at most a modest in-
crease in BLEU from improving the predicted trees.

The first key observation in these results is that
with a noisy parser, translation quality actually goes
down with forced reordering—the opposite of what
was observed in the gold experiment. By introduc-
ing either optional reordering or complete fuzzifi-
cation, however, BLEU score increases .3 past the
baseline to achieve nearly three quarters of the gain
obtained by optional reordering using the gold parse
(Section 3: baseline 47.13 and optional reordering
47.55). In other words, it is possible to compensate
for the parser noisiness without actually attempting
to correct spans: simply allowing the translation sys-
tem to fall back on an un-reordered input leads to a
significant gain in BLEU.

One possible explanation for this fact is that we
only ever correct for parses on the right-hand side—
the left sides are virtually always correct. Thus,
when we perform any reordering, even if the subject
span is not entirely perfect, we guarantee that we
bring at least one word from the sentence (and usu-
ally more) into alignment where it was out of align-
ment before; this obviously leads to better BLEU
n-gram scores along that boundary.

The general trend in these results is confirmed by
the results of a METEOR analysis, also provided in
Tab. 2. Again, both the OPT and SPAN systems
result exhibit comparable performance, and demon-
strate an improvement over the baseline.

The second observation is that introducing span
fuzzification did not improve over simple optional
reordering. There are a several reasons this could be
happening:

• The increased fluency and introduction of un-
seen phrases cancel each other out.

• All the gains that come from reordering occur
at the left; the presence or absence of correct
words at the right end is less important.

• Better sentences are proposed during the trans-
lation process, but they are not selected during
the final filtering stage.

• The sentences being output are actually better,
but the improvement is not captured by the au-
tomatic evaluation.

Further experiments will be necessary to determine
whether any of the first three possibilities is the case.
We next consider the fourth possibility in more de-
tail.

5.3 Manual Evaluation

We additionally conducted a manual evaluation to
examine how subject quality differed in fuzzified vs.
unfuzzified parses. Each sentence examined was as-
signed one of the six labels below. Examples are
with respect to the reference sentence “Recep Tayyip
Erdogan announced that Turkey is strong.”

• MM: both verb and subject missing. “Turkey
is strong.”

• MV: verb missing. “Recep Tayyip Erdogan
Turkey is strong.”

• MS: subject missing. “announced that Turkey
is strong.”

• SO: subject overlaps with verb. “Recep an-
nounced Tayyip Erdogan Turkey is strong.”

• SI: verb precedes subject (as in Arabic). “an-
nounced Recep Tayyip Erdogan that Turkey is
strong.”

• C: verb follows subject (as in English), i.e. the
correct ordering. “Recep Tayyip Erdogan an-
nounced that Turkey is strong.” We also include
in this category sentences where the English
reference contains no verb (e.g. in newspaper
headlines).
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System MM MS MV SI SO C M* S* C
BASE 8 13 11 9 3 53 33 12 53
OPT 7 11 10 5 5 61 28 10 61
SPAN 8 10 09 5 2 64 27 7 64

Table 3: Subject integrity analysis results. All numbers are %s.

By grouping some of these categories together, we
obtained the following label scheme:

• M*: MM, MV or MS, i.e. verb or subject is
missing.

• S*: SO or SI, i.e. word order is incorrect.

• C: as above.

280 sentences selected randomly from our test set
were evaluated, generating 461 unique output sen-
tences. Annotation was performed by two English
speakers, with 40 input sentences (68 unique out-
puts) annotated by both authors to collect agreement
statistics. For the complete label scheme, the an-
notators agreed on 86.8% of labels, with Cohen’s
κ = 0.811. For the simple label scheme, the an-
notators agreed on 92.6% of labels, with κ = .883.
Results for the BASE, OPT and SPAN systems are
shown in Table 3. Each annotator’s labels were as-
signed a weight of .5 in the section that was jointly
annotated.

Again, both the OPT and SPAN systems display
statistically significant improvements over the base-
line system (p < 0.001). While the SPAN system
consistently displays better results than the OPT sys-
tem, the significance is low (p < .3). Statistical sig-
nificance was measured using the McNemar test of
statistical significance (McNemar, 1947).

These results thus agree with the BLEU score in
indicating that the OPT and SPAN systems are sub-
stantially better than the baseline, but statistically in-
distinguishable from each other. They further in-
dicate that most of the improvements in the OPT
system come from preventing dropped subjects or
verbs, while the improvements in the SPAN system
result in roughly equal proportion from preventing
word-dropping and ensuring correct ordering.

6 Conclusion & Future Work

We presented an approach for improving Arabic-
English PSMT using syntactic information from a

noisy parser. We demonstrated that translation qual-
ity goes down with forced reordering, but improves
with the introduction of either optional reordering
and subject span fuzzification. The BLEU score in-
creases by 0.3% absolute past the baseline achieve
nearly three quarters of the maximum possible gain
starting with gold parses. A detailed manual eval-
uation produces results generally consistent with
BLEU, but highlights the small improvements that
can be gained by subject span fuzzification.

In the future, we plan to explore a more sophis-
ticated approach to the lattice of re-orderings pre-
sented here. We would take into account the fact that
it is possible to suggest to the system that certain
re-orderings are less likely than others without re-
moving them from the search space completely. The
same can be done for the fuzzification task: while
we might wish to add additional fuzzification op-
tions, we also don’t want the correct choice to be
crowded out by too many alternatives.
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Abstract

Paraphrases are useful for statistical machine
translation (SMT) and natural language pro-
cessing tasks. Distributional paraphrase gen-
eration is independent of parallel texts and
syntactic parses, and hence is suitable also
for resource-poor languages, but tends to erro-
neously rank antonyms, trend-contrasting, and
polarity-dissimilar candidates as good para-
phrases. We present here a novel method
for improving distributional paraphrasing by
filtering out such candidates. We evalu-
ate it in simulated low and mid-resourced
SMT tasks, translating from English to two
quite different languages. We show statisti-
cally significant gains in English-to-Chinese
translation quality, up to 1 BLEU from non-
filtered paraphrase-augmented models (1.6
BLEU from baseline). We also show that
yielding gains in translation to Arabic, a mor-
phologically rich language, is not straightfor-
ward.

1 Introduction

Paraphrase recognition and generation has proven
useful for various natural language processing
(NLP) tasks, including statistical machine transla-
tion (SMT), information retrieval, query expansion,
document summarization, and natural language gen-
eration. We concentrate here on phrase-level (as
opposed to sentence-level) paraphrasing for SMT.
Paraphrasing is useful for SMT as it increases trans-
lation coverage – a persistent problem, even in large-
scale systems. Two common approaches are “pivot”
and distributional paraphrasing. Pivot paraphrasing
translates phrases of interest to other languages and
back (Callison-Burch et al., 2006; Callison-Burch,

2008). It relies on parallel texts (or translation
phrase tables) in various languages, which are typ-
ically scarce, and hence limit its applicability. Dis-
tributional paraphrasing (Marton et al., 2009) gener-
ates paraphrases using a distributional semantic dis-
tance measure computed over a large monolingual
corpus.1 Monolingual corpora are relatively easy
and inexpensive to collect, but distributional seman-
tic distance measures are known to rank antonymous
and polarity-dissimilar phrasal candidates high. We
therefore attempt to identify and filter out such ill-
suited paraphrase candidates.

A phrase pair may have a varying degree of
antonymy, beyond the better-known complete op-
posites (hot / cold) and contradictions (did / did
not), e.g., weaker contrasts (hot / cool), contrast-
ing trends (covered / reduced coverage), or senti-
ment polarity (happy / sad). Information extrac-
tion, opinion mining and sentiment analysis litera-
ture has been grappling with identifying such pairs
(Pang and Lee, 2008), e.g., in order to distinguish
positive and negative reviews or comments, or to de-
tect contradictions (Marneffe et al., 2008; Voorhees,
2008). We transfer some of the insights, data and
techniques to the area of paraphrasing and SMT. We
distributionally expand a small seed set of antonyms
in an unsupervised manner, following Mohammad
et al. (2008). We then present a method for fil-
tering antonymous and polarity-dissimilar distribu-
tional paraphrases using the expanded antonymous
list and a list of negators (e.g., cannot) and trend-
decreasing words (reduced). We evaluate the im-
pact of our approach in a SMT setting, where non-

1Other variants use a lexical resource in conjunction with
the monolingual corpus (Mirkin et al., 2009; Marton, 2010).
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baseline translation models are augmented with dis-
tributional paraphrases. We show gains of up to
1 BLEU relative to non-filtered models (1.6 BLEU

from non-augmented baselines) in English-Chinese
models trained on small and medium-large size data,
but lower to no gains in English-Arabic. The small
training size simulates resource-poor languages.

The rest of this paper is organized as follows:
We describe distributional paraphrase generation in
Section 2, antonym discovery in Section 3, and
paraphrase-augmented SMT in Section 4. We then
report experimental results in Section 5, and discuss
the implications in Section 6. We survey related
work in Section 7, and conclude with future work
in Section 8.

2 Distributional Paraphrases

Our method improves on the method presented in
Marton et al. (2009). Using a non-annotated mono-
lingual corpus, our method constructs distributional
profiles (DP; a.k.a. context vectors) of focal words
or phrases. Each DPphr is a vector containing log-
likelihood ratios of the focal phrase phr and each
word w in the corpus. Given a paraphrase candidate
phrase cand, the semantic distance between phr and
cand is calculated using the cosine of their respec-
tive DPs (McDonald, 2000). For details on DPs and
distributional measures, see Weeds et al. (2004) and
Turney and Pantel (2010).

The search of the corpus for paraphrase candi-
dates is performed in the following manner:

1. For each focal phrase phr, build distributional
profile DPphr.

2. Gather contexts: for each occurrence of phr,
keep surrounding (left and right) context L R.

3. For each such context, gather paraphrase can-
didates cand which occur between L and R in
other locations in the training corpus, i.e., all
cand such that L cand R occur in the corpus.

4. For each candidate cand, build a profile
DPcand and measure profile similarity between
DPcand and DPphr.

5. Rank all cand according to the profile similar-
ity score.

6. Filter out every candidate cand that textually
entails phr: This is approximated by filtering
cand if its words all appear in phr in the same

order. For example, if phr is spoken softly, then
spoken very softly would be filtered out.

7. Filter out every candidate cand that is antony-
mous to phr (See Algorithm 1 below).

8. Output k-best remaining candidates above a
certain similarity score threshold t.

Most of the steps above are similar to, and have
been elaborated in, Marton et al. (2009). Due to
space limitations, we concentrate on the main novel
element here, which is the antonym filtering step,
detailed below. Antonyms (largely speaking) are op-
posites, terms that contrast in meaning, such as hot /
cold. Negators are terms such as not and lost, which
often flip the meaning of the word or phrase that fol-
lows or contains them, e.g., confidence / lost confi-
dence. Details on obtaining their definitions and on
obtaining the antonymous pair list and the negator
list are given in Section 3.

Algorithm 1 Antonymous candidate filtering
Given an antonymous pair list, a negator list, and a
phrase-paraphrase candidate (phr-cand) pair list,
for all phr-cand pairs do

for all words w in phr do
if w is also in cand, and there is a negator up
to two words before it in either phr or cand
(but not both!) then

filter out this pair
if w, ant is an antonymous pair, and ant is
in cand, and there is no negator up to two
words before w and ant, or there is such a
negator before both then

filter out this pair

3 Antonyms, Trends, Sentiment Polarity
Native speakers of a language are good at deter-

mining whether two words are antonyms (hot–cold,
ascend–descend, friend–foe) or not (penguin–clown,
cold–chilly, boat–rudder) (Cruse, 1986; Lehrer and
Lehrer, 1982; Deese, 1965). Strict antonyms apart,
there are also many word pairs that exhibit some de-
gree of contrast in meaning, for example, lukewarm–
cold, ascend–slip, and fan–enemy (Mohammad et
al., 2008). Automatically identifying such con-
trasting word pairs has many uses including detect-
ing and generating paraphrases (The lion caught
the gazel / The gazel could not escape the lion)
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and detecting contradictions (Marneffe et al., 2008;
Voorhees, 2008) (The inhabitants of Peru are well
off / the inhabitants of Peru are poor). Of course,
such “contradictions” may be a result of differing
sentiment, new information, non-coreferent men-
tions, or genuinely contradictory statements. Iden-
tifying paraphrases and contradictions are in turn
useful in effectively re-ranking target language hy-
potheses in machine translation, and for re-ranking
query responses in information retrieval. Identifying
contrasting word pairs (or short phrase pairs) is also
useful for detecting humor (Mihalcea and Strappar-
ava, 2005), as satire and jokes tend to have contra-
dictions and oxymorons. Lastly, it is useful to know
which words contrast a focal word, even if only to
filter them out. For example, in the automatic cre-
ation of a thesaurus it is necessary to distinguish
near-synonyms from contrasting word pairs. Distri-
butional similarity measures typically fail to do so.

Instances of strong contrast are recorded to some
extent in manually created dictionaries, but hun-
dreds of thousands of other contrasting pairs are not.
Further, antonyms can be of many kinds such as
those described in Section 3.1 below. We use the
Mohammad et al. (2008) method to automatically
generate a large list of contrasting word pairs, which
are used to identify false paraphrases. Their method
is briefly described in Section 3.2.

3.1 Kinds of antonyms
Antonyms can be classified into different kinds.

A detailed description of one such classification can
be found in Cruse (1986) (Chapters 9, 10, and 11),
where the author describes complementaries (open–
shut, dead–alive), gradable adjective pairs (long–
short, slow–fast) (further classified into polar, over-
lapping, and equipollent antonyms), directional op-
posites (up–down, north–south), (further classified
into antipodals, counterparts, and reversives), re-
lational opposites (husband–wife, predator–prey),
indirect converses (give–receive, buy–pay), con-
gruence variants (huge–little, doctor–patient), and
pseudo opposites (black–white). It should be
noted, however, that even though contrasting word
pairs and antonyms have long been studied by
linguists, lexicographers, and others, experts do
not always agree on the scope of antonymy and
the kinds of contrasting word pairs. Some lex-

ical relations have also received attention at the
Educational Testing Services (ETS). They clas-
sify antonyms into contradictories (alive–dead,
masculine–feminine), contraries (old–young, happy-
sad), reverses (attack–defend, buy–sell), direction-
als (front–back, left–right), incompatibles (happy–
morbid, frank–hypocritical), asymmetric contraries
(hot–cool, dry–moist), pseudoantonyms (popular–
shy, right–bad), and defectives (default–payment,
limp–walk) (Bejar et al., 1991).

As mentioned earlier, in addition to antonyms,
there are other meaning-contrasting phenomena, or
other ways to classify them, such as contrasting
trends and sentiment polarity. They all may have
varying degrees of contrast in meaning. Hereafter
we sometime broadly refer to all of these as antony-
mous phrases. The antonymous phrase pair genera-
tion algorithm that we use here does not employ any
antonym-subclass-specific techniques.

3.2 Detecting antonyms
Mohammad et al. (2008) used a Roget-like the-

saurus, co-occurrence statistics, and a seed set of
antonyms to identify the degree of antonymy be-
tween two words, and generate a list of antony-
mous words. The thesaurus divides the vocabulary
into about a thousand coarse categories. Each cat-
egory has, on average, about a hundred closely re-
lated words. (A word with more than one sense,
is listed in more than one category.) Mohammad
et al. first determine pairs of thesaurus categories
that are contrasting in meaning. A category pair
is said to be contrasting if it has a seed antonym
pair. A list of seed antonyms is compiled using 16
affix patterns such as X and unX (clear–unclear)
and X and disX (honest–dishonest). Once a con-
trasting category pair is identified, all the word pairs
across the two categories are considered to have con-
trasting meaning. The strength of co-occurrence
(as measured by pointwise mutual information) be-
tween two contrasting word pairs is taken to be the
degree of antonymy. This is based on the distri-
butional hypothesis of antonyms, which states that
antonymous pairs tend to co-occur in text more of-
ten than chance. Co-occurrence counts are made
from the British National Corpus (BNC) (Burnard,
2000). The approach attains more than 80% accu-
racy on GRE-style closest opposite questions.
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3.3 Detecting negators
The General Inquirer (GI) (Stone et al., 1966) has

11,788 words labeled with 182 categories of word
tags, such as positive and negative semantic orien-
tation, pleasure, pain, and so on.2 Two of the GI
categories, NOTLW and DECREAS, contain terms
that negate the meaning of what follows (Choi and
Cardie, 2008; Kennedy and Inkpen, 2005). These
terms (with limited added inflection variation) form
our list of negators.

4 Paraphrase-Augmented SMT

Augmenting the source side of SMT phrase tables
with paraphrases of out-of-vocabulary (OOV) items
was introduced by Callison-Burch et al. (2006),
and was adopted practically ‘as-is’ in consequent
work (Callison-Burch, 2008; Marton et al., 2009;
Marton, 2010). Given an OOV source-side phrase
f , if the translation model has a rule 〈f ′, e〉 whose
source side is a paraphrase f ′ of f , then a new rule
〈f, e〉 is added, with an extra weighted log-linear
feature, whose value for the new rule is the similar-
ity score between f and f ′ (computed as a function
of the pivot translation probabilities or the distribu-
tional semantic distance of the respective DPs). We
follow the same line here:

h(e, f) =



asim(DPf ′ , If phrase table entry (e, f)
DPf ) is generated from (e, f ′)

using monolingually-
derived paraphrases.

1 Otherwise.
(1)

where the definition of asim is repeated below. As
noted in that previous work, it is possible to con-
struct a new translation rule from f to e via more
than one pair of source-side phrase and its para-
phrase; e.g., if f1 is a paraphrase of f , and so is f2,
and both f1, f2 translate to the same e, then both lead
to the construction of the new rule translating f to e,
but with potentially different feature scores. In order
to leverage on these paths and resolve feature value
conflicts, an aggregated similarity measure was ap-
plied: For each paraphrase f of source-side phrases

2http://www.wjh.harvard.edu/∼inquirer

fi with similarity scores sim(fi, f),

asimi = asimi−1+(1−asimi−1) sim(fi, f) (2)

where asim0 = 0. We only augment the phrase
table with a single rule from f to e, and in it are the
feature values of the phrase fi for which sim(fi, f)
was the highest.

5 Experiment
5.1 System and Parameters

We augmented translation models with para-
phrases based on distributional semantic distance
measures, with our novel antonym-filtering, and
without it. We tested all models in English-
to-Chinese and English-to-Arabic translation, aug-
menting the models with translation rules for un-
known English phrases. We also contrasted these
models with non-augmented baseline models.

For baseline we used the phrase-based SMT sys-
tem Moses (Koehn et al., 2007), with the default
model features: 1. phrase translation probability,
2. reverse phrase translation probability, 3. lexical
translation probability, 4. reverse lexical translation
probability, 5. word penalty, 6. phrase penalty, 7. six
lexicalized reordering features, 8. distortion cost,
and 9. language model (LM) probability. We used
Giza++ (Och and Ney, 2000) for word alignment.
All features were weighted in a log-linear frame-
work (Och and Ney, 2002). Feature weights were
set with minimum error rate training (Och, 2003) on
a tuning set using BLEU (Papineni et al., 2002) as the
objective function. Test results were evaluated using
BLEU and TER (Snover et al., 2006): The higher
the BLEU score, the better the result; the lower the
TER score, the better the result. This is denoted
with BLEU↑ and TER↓ in Table 1. Statistical signif-
icance of model output differences was determined
using Koehn (2004)’s test on the objective function
(BLEU).

The paraphrase-augmented models were created
as described in Section 4. We used the same data
and parameter settings as in Marton (2010).3 We
used cosine distance over DPs of log-likelihood ra-
tios (McDonald, 2000), built with a sliding win-

3Data preprocessing and paraphrasing code slightly differ
from those used in Marton et al. (2009) and Marton (2010), and
hence scores are not exactly the same across these publications.
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dow of size ±6, a sampling threshold of 10000 oc-
currences, and a maximal paraphrase length of 6
tokens. We applied a paraphrase score threshold
t = 0.05; a dynamic context length (the short-
est non-stoplisted left context L occurring less than
512 times in the corpus, and similarly for R); para-
phrasing of OOV unigrams; filtering paraphrase can-
didates occurring less than 25 times in the corpus
(inspired by McDonald, 2000); and allowing up to
k = 100 best paraphrases per phrase. We tuned
the weights of each model (non-augmented base-
line, unigram-augmented, and unigram-augmented-
filtered) with a separate minimum error rate training.

We explored here augmenting OOV unigrams,
although our paraphrasing and antonym filtering
methods can be applied to longer n-grams with no
further modifications. However, preliminary experi-
ments showed that longer n-grams require additional
provisions in order to yield gains.

5.2 Data

In order to take advantage of the English antonym
resource, we chose English as the source language
for the translation task. We chose Chinese as
the translation target language in order to compare
with Marton (2010), and for the same reasons it was
chosen there: It is quite different from English (e.g.,
in word order), and four reference translation were
available from NIST. We chose Arabic as another
target language, because it is different from both
English and Chinese, and richer morphologically,
which introduces additional challenges.

English-Chinese: For training we used the
LDC Sinorama and FBIS tests (LDC2005T10 and
LDC2003E14), and segmented the Chinese side
with the Stanford Segmenter (Tseng et al., 2005).
After tokenization and filtering, this bitext contained
231,586 lines (6.4M + 5.1M tokens). We trained a
trigram language model on the Chinese side, with
the SRILM toolkit (Stolcke, 2002), using the mod-
ified Kneser-Ney smoothing option. We followed
the split in Marton (2010), and constructed the re-
duced set of about 29,000 sentence pairs. The pur-
pose of creating this subset model was to simulate a
resource-poor language. We trained separate trans-
lation models, using either the subset or the full-size
training dataset.

For weight tuning we used the Chinese-English

NIST MT 2005 evaluation set. In order to use it for
the reverse translation direction (English-Chinese),
we arbitrarily chose the first English reference set
as the tuning “source”, and the Chinese source as a
single “reference translation”. For testing we used
the English-Chinese NIST MT evaluation 2008 test
set with its four reference translations.

English-Arabic: We use an English-Arabic par-
allel corpus of about 135k sentences (4 million
words) and a subset of 30K sentences (one mil-
lion words) for the translation models’ training data.
The sentences were extracted from Arabic News
(LDC2004T17), eTIRR (LDC2004E72), English
translation of Arabic Treebank (LDC2005E46),
and Ummah (LDC2004T18).4 For Arabic pre-
processing, we follow previously reported best to-
kenization scheme (TB)5 and orthographic word
normalization condition (Reduced) when translat-
ing from English to Arabic (El Kholy and Habash,
2010b). MADA (Habash and Rambow, 2005) is
used to pre-process the Arabic text for the translation
model and 5-gram language model (LM). As a post-
processing step, we jointly denormalize and deto-
kenize the text to produce the final Arabic output.
Following El Kholy and Habash (2010a), we use
their best detokenization technique, T+R+LM. The
technique crucially utilizes a lookup table (T), map-
ping tokenized forms to detokenized forms, based
on our MADA-fied LM. Alternatives are given con-
ditional probabilities, P (detokenized|tokenized).
Tokenized words absent from the tables are deto-
kenized using deterministic rules (R), as a backoff
strategy. We use a 5-gram untokenized LM and
the disambig utility in the SRILM toolkit to de-
cide among different alternatives. Word alignment
is done using GIZA++, as in English-Chinese sys-
tem. We use lemma-based alignment which consis-
tently yields superior results to surface-based align-
ment (El Kholy and Habash, 2010b). For LM, we
use 200M words from the Arabic Gigaword Corpus
(LDC2007T40) together with the Arabic side of our
training data.

All experiments were conducted using Moses
here as well. We used a maximum phrase length

4All are available from the Linguistic Data Consortium
(LDC) http://www.ldc.upenn.edu

5TB: Penn Arabic Tree Bank tokenization scheme
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of size 8 tokens. Weight optimization was done us-
ing a set of 300 sentences from the NIST MT 2004
Arabic-English evaluation test set (MT04). The tun-
ing was based on tokenized Arabic without detok-
enization. Testing was done on the NIST Arabic-
English MT05 and MEDAR 2010 English-Arabic
four-reference evaluation sets. For both tuning on
MT04 and testing on MT05, since we need the re-
verse English-Arabic direction, we chose one En-
glish reference translation as the “source”, and the
Arabic as a single “reference”. We evaluated using
BLEU and TER here too.
English paraphrases: We augmented the base-

line models with paraphrases generated as described
above, using a monolingual text of over 516M to-
kens, consisting of the BNC and English Gigaword
documents from 2004 and 2008 (LDC2009T13),
pre-processed to remove punctuation and to conflate
numbers, dates, months, days of week, and alphanu-
meric tokens to their respective classes.

5.3 Results

English-Chinese: Results are given in Table 1.
Augmenting SMT phrase tables with paraphrases of
OOV unigrams resulted in gains of 0.6-0.7 BLEU

points for both subset and full models, but TER
scores were worse (higher) for the full model. Aug-
menting same models with same paraphrases filtered
for antonyms resulted in further gains of 1.6 and 1
BLEU points for both subset and full models, respec-
tively, relative to the respective baselines. The TER
scores of the antonym filtered models were also as
good or better (lower) than those of the baselines.

reduced size large size
model BLEU↑ TER↓ BLEU↑ TER↓

baseline 15.8 69.2 21.8 63.8
aug-1gram 16.4B 68.9 22.5B 64.4
aug-1gram-ant-filt 17.4BD 68.7 22.8BD 63.7

Table 1: English-Chinese scores. B/D = statistically significant
w.r.t. (B)aseline or (D)istributional 1gram model, using Koehn
(2004)’s statistical significance.

English-Arabic: Results are given in columns 1-7
of Table 2. On the MT05 test set, the 135k-sentence
aug-1gram model outperformed its baseline in both
BLEU and TER scores. The lemmatized variants
of the scores showed higher or same gains. Since

only one entry was antonym-filtered here, we do
not provide separate scores for aug-1gram-ant-filt.
Surprisingly, for the reduced 30k models, all scores
(BLEU, TER, and even their lemmatized variants) of
the augmented 1gram model were somewhat worse
than the baseline’s, and those of the antonym-filtered
model were the worst. we also ran a 4-reference test
(Medar) to see whether the single MT05 reference
was problematic, but results were similar. We exam-
ine possible reasons for this in the next section.

6 Discussion

Filtering quality: Our filtering technique is based
on antonymous pair and negator lists that were ex-
panded distributionally from seed sets. Therefore,
they are noisy. From a small random sample (Ta-
ble 3) it seems that only about 10% of filtered cases
should not have been filtered; of the rest, 50% were
strongly antonymous, 25% mildly so, and 15% were
siblings (co-hypernyms) in a natural categorical hi-
erarchy or otherwise noisy paraphrases filtered due
to a noisy antonym pair. Negators in the unigrams’
paraphrase candidates were rare.

English-Chinese: Our paraphrase filtering tech-
nique yielded an additional 1 BLEU point gain
over the non-filtered paraphrase-augmented reduced
model (totaling 1.6 BLEU over baseline). The re-
duced and large augmented models’ phrase table
size increased by about 27% and 4%, respectively –
and antonym filtering did not change these numbers
by much (see left side of Table 4). Therefore, the dif-
ference in performance between the filtered and non-
filtered systems is unlikely to be quantitative (phrase
table size). The out of vocabulary (OOV) rate of the
29k subset model is somewhat high (see Table 4),
especially for the test set; but only after these exper-
iments were completed did we peek at the test set
for calculating these statistics, and in any case, we
should not be guided by such information in choos-
ing the test set. At first glance it may seem surpris-
ing that only 0.4% of the paraphrase candidates of
the English OOV unigrams (248 candidates) were
filtered by our procedure, and that it accounted for
as much as 1 BLEU in the reduced set. (For English-
Arabic only 0.6%, or 23 candidates, were filtered).
Leaving the estimation of antonymous phrase detec-
tion recall for the future, we note that these num-
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BLEU Lemm. Brev. Ref/Sys TER Lemm. Unigram Lemma Match Analysis
↑ BLEU penal. ratio ↓ TER Exact Match Lemma-only Unmatchable Total

30k-sentence (1M word) training dataset models

MT05 baseline 23.6 31.3 99.2 1.008 57.6 47.3 15614 55.4% 4055 14.4% 8550 30.3% 28219
aug-1gram 23.2 30.8 99.9 1.001 58.8 48.4 15387 54.2% 4195 14.8% 8831 31.1% 28413
aug-1gram-ant-filt 23.2 30.8 99.9 1.001 58.8 48.3 15387 54.2% 4195 14.8% 8831 31.1% 28413

MEDAR baseline 13.6 18.7 93.6 1.066 67.6 61.3 4924 53.0% 1563 16.8% 2800 30.1% 9287
aug-1gram 12.9 18.3 94.2 1.060 68.9 62.3 4894 52.0% 1710 18.2% 2815 29.9% 9419
aug-1gram-ant-filt 12.9 18.3 94.2 1.060 69.0 62.3 4891 51.9% 1715 18.2% 2815 29.9% 9421

135k-sentence (4M word) training dataset models

MT05 baseline 25.8 33.5 99.2 1.008 55.7 45.3 16115 57.1% 3999 14.2% 8128 28.8% 28242
aug-1gram 26.4 34.3B 99.5 1.005 55.1 44.7 16156 57.1% 4068 14.4% 8089 28.6% 28313
aug-1gram-ant-filt 26.4 34.3B 99.5 1.005 55.0 44.6 16153 57.1% 4090 14.5% 8068 28.5% 28311

MEDAR baseline 17.1 23.1 94.7 1.054 65.1 58.6 5483 57.7% 1577 16.6% 2438 25.7% 9498
aug-1gram 17.2 23.5 95.3 1.048 65.1 58.6 5586 58.1% 1606 16.7% 2424 25.2% 9616
aug-1gram-ant-filt 17.2 23.5 95.3 1.048 65.1 58.6 5586 58.1% 1606 16.7% 2424 25.2% 9616

Table 2: English-Arabic translation scores and analysis for NIST MT05 and MEDAR test sets. B = statistically significant w.r.t.
(B)aseline using Koehn (2004)’s statistical significance test.

bers from English are not directly comparable to the
Chinese side: they relate to paraphrase candidates
and not phrase table entries; they relate to types and
not tokens; each OOV English word may translate
to one or more Chinese words, each of which may
comprise of one or more characters; and last but not
least, the BLEU score we use is character-based.

phrase ||| paraphrase ||| score comments

absence ||| occupation ||| 0.06 mild
absence ||| presence ||| 0.33 good
backwards ||| forwards ||| 0.21 good
wooden ||| plastic lawn ||| 0.12 sibling
dump ||| dispose of ||| 0.41 bad
cooler ||| warm ||| 0.45 mild
diminished ||| increased ||| 0.23 good
minor ||| serious ||| 0.42 good
relic ||| youth activist in the ||| 0.12 harmless
dive ||| rise ||| 0.15 good
argue ||| also recognize ||| 0.05 mild
bother ||| waste time ||| 0.79 bad
dive ||| climb ||| 0.17 good
moonlight ||| spring ||| 0.05 harmless
sharply ||| slightly ||| 0.60 good
substantial ||| meager ||| 0.14 good
warmer ||| cooler ||| 0.72 good
tough ||| delicate ||| 0.07 good
tiny ||| mostly muslim ||| 0.06 mild
softly ||| deep ||| 0.06 mild

Table 3: Random filtering examples

While individual unigram to 4gram scores for the
augmented models were lower than the baseline’s,
filtered model’s unigram and bigram scores were
lower or similar to the baseline’s, and their trigram
and 4gram scores were higher than the baseline’s.
We intend to further investigate the cause for this
pattern, and its effect on translation quality, with the
help of a native Chinese speaker – and on BLEU, to-
gether with the brevity penalty – in the future.

English-Arabic: The most striking fact is the set of
differences between the language pairs: In English-
Chinese, we see gains with distributional paraphrase
augmentation, and further gains when antonymous
and contrasting paraphrase candidates are filtered
out. But in the 30k-sentence English-Arabic models,
paraphrase augmentation actually degrades perfor-
mance, even in lemma scores. It has been observed
before that BLEU (and similarly TER) is not ideal
for evaluation of contributions of this sort (Callison-
Burch et al., 2006). Therefore we conducted both
manual and focused automatic analysis, including
OOV statistics and unigram lemma match analysis6

6Unigram lemma match analysis is a classification of all the
words in the translation hypothesis (against the translation ref-
erence) into: (a) exact match, which is equal to simple unigram
precision, (b) lemma-only match, which counts words that can
only be matched at the lemma level, and (c) unmatchable.
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between the system output and the reference trans-
lation.

Table 4 shows that the OOV rates for English-
Arabic are lower than English-Chinese. But if they
were negligible, we would not expect to see gains
(or in fact any change) in either model size, contrary
to fact. It is interesting to point out that our trans-
lation model augmentation technique handles about
50% of the (non-digit, non-punctuation) OOV words
in all models (except for only half that in the 135k
model, which still showed gains).

Another concern is that the current maximal para-
phrase length (6 tokens) may be too far from the
paraphrasee’s length (unigram), resulting in lower
quality. However, a closer examination of the
length difference evident through the BLEU brevity
penalty and the reference:system-output length ra-
tio (columns 4-5 of Table 2), reveals that the dif-
ferences are small and inconsistent; on average, the
brevity penalty difference accounts for roughly 0.1
absolute BLEU points and 0.2 absolute lemmatized
BLEU points of the respective differences.7

Last, Modern Standard Arabic is a morphologi-
cally rich language: It has many inflected forms for
most verbs, and several inflected forms for nouns,
adjectives and other parts of speech – and complex
syntactic agreement patterns showing these inflec-
tions. It might be the case that the inflected Arabic
LM model might not serve well the augmented mod-
els, since they include translation rules that are more
likely to be “off” inflection-wise (e.g., showing un-
grammatical syntactic agreement or simply an ac-
ceptable choice that differs from the reference). Pre-
sumably, the smaller the training set, the larger this
problem, since there would be fewer rules and hence
smaller variety of inflected forms per similar core
meaning. The unigram lemma match analysis and
lemma scores’ statistics (Table 2) support this con-
cern. In the 30k model, lemma-only match seems
to even further increase, at the expense of the exact
word-form match. Possible solutions include using
a lemma-based LM, or another LM that is adjusted
to this sort of inflection-wise “off” text.

7These values are computed by subtracting the difference
between two BLEU scores from the difference between the same
two BLEU scores without the effect of brevity penalty (i.e., each
divided by its brevity penalty).

Error Analysis We conducted an error analysis of
our Arabic 30k system using part of the MT05 test
set. That set had 571 OOV types, out of which,
we were able to augment phrases for 196 OOV
types. The majority of OOV words were proper
nouns (67.8%), with the rest being mostly nouns, ad-
jectives and verbs (in the order of their frequency).
Among the OOVs for which we augmented phrases,
the proper noun ratio was smaller than the full set
(45.4% relative). We selected a random sample of
50 OOV words, and examined their translations in
the MT05 test set. The analysis considered all the
OOV word occurrences (96 sentences). We classi-
fied each OOV translation in the augmented system
and the augmented-filtered system as follows:

a1 correct (and in reference)
a2 correct (morphological variation)
a3 acceptable translation into a synonym
a4 acceptable translation into a hypernym
b1 wrong translation into a hypernym
b2 co-hypernym: a sibling in a psychologically

natural category hierarchy
b3 antonymous, trend-contrasting, or polarity dis-

similar meaning
c1 wrong proper-noun translation (sibling)
c2 wrong proper-noun translation (other)
d wrong translation for other reasons

Both the augmented and augmented-filtered system
had 27.1% correct cases (category a). Only one-
quarter of these were exact matches with the refer-
ence (category a1) that can be captured by BLEU.
Incorrect proper-noun translation (category c) was
the biggest error (augmented model: 33.3%, filtered
model: 37.5%); within this category, sibling mis-
translations (category c1), e.g., Buddhism is trans-
lated as Islam, were the majority (over half in aug-
mented model, and about two-thirds in the filtered
model). Proper nouns seem to be a much bigger
problem for translation into Arabic than into Chi-
nese in our sets. Category b mis-translations ap-
peared in 20.8% of the time (equally in augmented
and filtered). Almost half of these were sibling mis-
translations (category b2), e.g., diamond translated
as gold. Only two OOV translations in our sam-
ple were antonymous (category b3). It is possible,
therefore, that our Arabic sets do not give room for
our filtering method to be effective. In one case,
the verb deepen (reference translation �

�Òª
�
K) is mis-
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translated as summit ( �
éÔ

�
¯). In the other case, the

adjective cool (political relations), whose reference
translation uses a figure of speech periods of tension
(Q�

Kñ
�
JË @ 	áÓ

�
H@Q

�
�
	
¯), is mistranslated as good ( �

èYJ
k. ),
which carries the opposite sentiment. The rest of
category b involve hypernyms (b1), such as trans-
lating the OOV word telecom into company ( �

é»Qå
�
�Ë @).

Overall, the filtered model did not behave signifi-
cantly differently from its augmented counterpart.

Chinese-Arabic score difference: We conjecture
that another possible reason for the different score
gain patterns between the two language pairs is the
fact that in Chinese, many words that are siblings-in-
meaning share a character, which doesn’t necessar-
ily have a stand-alone meaning; therefore, character-
based BLEU was able to give credit to such para-
phrases on the Chinese side, which was not case for
the word-based BLEU on the Arabic side.

7 Related Work

This paper brings together several sub-areas:
SMT, paraphrase generation, distributional seman-
tic distance measures, and antonym-related work.
Therefore we can only briefly survey the most rel-
evant work here. Our work can be viewed as an ex-
tension of the line of research that seeks to augment
translation tables with automatically generated para-
phrases of OOV words or phrases in a fashion sim-
ilar to Section 4: Callison-Burch et al. (2006) use
pivoting technique (translating to other languages
and back) in order to generate paraphrases, and the
pivot translation probability as their similarity score;
Callison-Burch (2008) filters such paraphrases using
syntactic parsing information; Marton et al. (2009)
use distributional paraphrasing technique that ap-
plies distributional semantic distance measure for
the paraphrase score; Marton (2010) applies a lexi-
cal resource / corpus-based hybrid semantic distance
measure for the paraphrase score instead, approxi-
mating word senses; here, we apply a distributional
semantic distance measure that is similar to Marton
et al. (2009), with the main difference being the fil-
tering of the resulting paraphrases for antonymity.

Other work on augmentating SMT: Habash and
Hu (2009) show, pivoting via a trilingual parallel
text, that using English as a pivot language be-
tween Chinese and Arabic outperforms translation

using a direct Chinese-Arabic bilingual parallel text.
Other attempts to reduce the OOV rate by augment-
ing the phrase table’s source side include Habash
(2009), providing an online tool for paraphrasing
OOV phrases by lexical and morphological expan-
sion of known phrases and dictionary terms – and
transliteration of proper names.

Bond et al. (2008) also pivot for paraphrasing.
They improve SMT coverage by using a manually
crafted monolingual HPSG grammar for generating
meaning and grammar-preserving paraphrases. This
grammar allows for certain word reordering, lexical
substitutions, contractions, and “typo” corrections.

Onishi et al. (2010), Du et al. (2010), and others,
pivot-paraphrase the input, and represent the para-
phrases in a lattice format, decoding it with Moses.

Work on paraphrase generation: Barzilay and
McKeown (2001) extract paraphrases from a mono-
lingual parallel corpus, containing multiple transla-
tions of the same source. However, monolingual
parallel corpora are extremely rare and small. Dolan
et al. (2004) use edit distance for paraphrasing.
Max (2009) and others take the context of the para-
phrased word’s occurrence into account. Zhao et al.
(2008) apply SMT-style decoding for paraphrasing,
using several log linear weighted resources while
Zhao et al. (2009) filter out paraphrase candidates
and weight paraphrase features according to the de-
sired NLP task. Chevelu et al. (2009) introduce
a new paraphrase generation tool based on Monte-
Carlo sampling. Mirkin et al. (2009), inter alia,
frame paraphrasing as a special, symmetrical case of
(WordNet-based) textual entailment. See Madnani
and Dorr (2010) for a good paraphrasing survey.

Work on measuring distributional semantic dis-
tance: For one survey of this rich topic, see Weeds
et al. (2004) and Turney and Pantel (2010). We
use here cosine of log-likelihood ratios (McDonald,
2000). A recent paper (Kazama et al., 2010) advo-
cates a Bayesian approach, making rare terms have
lower strength of association, as a by-product of re-
lying on their probabilistic Expectation.

Work on detecting antonyms: Our work with
antonyms can be thought of as an application-based
extension of the (Mohammad et al., 2008) method.
Some of the earliest computational work in this
area is by Lin et al. (2003) who used patterns
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model e2z:29k e2z:232k e2a:30k e2a:135k

phrase table baseline vocab. (# source-side types) 13916 34825 24371 49854
phrase table entries: baseline 1996k 13045k 2606k 12344k
phrase table entries: aug-1gram 2543k 127.38% 13615k 104.37% 2635k 101.09% *12373k 100.23%
phrase table entries: aug-1gram-ant-filt 2542k 127.35% 13615k 104.37% 2635k 101.09% *12373k 100.23%

OOV types in tune (% tune types) 1097 21.58% 451 8.87% 141 7.31% 84 4.35%
OOV tokens in tune (% tune tokens) 2138 6.10% 917 2.62% 193 2.18% 115 1.30%
OOV types in test (% test types) 2473 33.59% 1227 16.66% 574 12.42% 339 7.34%
OOV tokens in test (% test tokens) 4844 10.40% 2075 4.46% 992 2.83% 544 1.55%

tune OOV token decrease in aug-1gram/ant-filt 1343 27.73% 510 24.58% 79 7.96% 28 5.15%
tune OOV type decrease in aug-1gram/ant-filt 646 58.89% 203 45.01% 60 42.55% 22 26.19%
test OOV token decrease in aug-1gram /ant-filt 2776 57.31% 996 48.00% 460 46.37% 127 23.35%
test OOV type decrease in aug-1gram/ant-filt 1394 56.37% 585 47.68% 246 42.86% 76 22.42%

Table 4: Out-of-vocabulary (OOV) word rates and phrase table sizes for all model sizes and language pairs. e2z = English-Chinese;
e2a = English-Arabic. The statistics marked with * in the top-right cell are identical, see §5.3.

such as “from X to Y ” and “either X or Y ” to
distinguish between antonymous and similar word
pairs. Harabagiu et al. (2006) detected antonyms
by determining if their WordNet synsets are con-
nected by the hypernymy–hyponymy links and ex-
actly one antonymy link. Turney (2008) proposed a
supervised method to solve word analogy questions
that require identifying synonyms, antonyms, hyper-
nyms, and other lexical-semantic relations between
word pairs.

8 Conclusions and Future Work

We presented here a novel method for filtering out
antonymous phrasal paraphrase candidates, adapted
from sentiment analysis literature, and tested in sim-
ulated low- and mid-resourced SMT tasks from En-
glish to two quite different languages. We used an
antonymous word pair list extracted distributionally
by extending a seed list. Then, the extended list, to-
gether with a negator list and a novel heuristic, were
used to filter out antonymous paraphrase candidates.
Finally, SMT models were augmented with the fil-
tered paraphrases, yielding English-Chinese transla-
tion improvements of up to 1 BLEU from the corre-
sponding non-filtered paraphrase-augmented model
(up to 1.6 BLEU from the corresponding baseline
model). Our method proved effective for mod-
els trained on both reduced and mid-large English-
Chinese parallel texts. The reduced models sim-
ulated “low density” languages by limiting the
amount of the training text.

We also showed for the first time transla-
tion gains for English-Arabic with paraphrase-
augmented (non-filtered) models. However, Ara-
bic, and presumably other morphologically rich lan-
guages, may require more complex models in order
to benefit from our filtering method.

Our antonym detection and filtering method is
distributional and heuristic-based; hence it is noisy.
We suspect that OOV terms in larger models tend
to be harder to paraphrase (judging by the differ-
ence from the reduced models, and the lower OOV
rate), and also harder to filter paraphrase candidates
of (due to the lower paraphrase quality, which might
not even include sufficiently distributionally similar
candidates, antonymous or otherwise). In the future,
we intend to improve our method, so that it can be
used to improve also the quality of models trained
on even larger parallel texts.

Last, we intend to extend our method beyond un-
igrams, limit paraphrase length to the vicinity of the
paraphrasee’s length, and improve our inflected Ara-
bic generation technique, so it can handle this novel
type of augmented data well.

Acknowledgments
Part of this work was done while the first author

was at Columbia University. The second author was
funded through a Google research award. The au-
thors wish to thank Saif Mohammad for providing
his data and for useful discussion, and also thank the
anonymous reviewers for their useful feedback.

246



References
Regina Barzilay and Kathleen McKeown. 2001. Extract-

ing paraphrases from a parallel corpus. In Proceed-
ings of the Association for Computational Linguistics
(ACL).

Isaac I. Bejar, Roger Chaffin, and Susan Embretson.
1991. Cognitive and Psychometric Analysis of Ana-
logical Problem Solving. Springer-Verlag, New York,
NY.

Francis Bond, Eric Nichols, Darren Scott Appling, and
Michael Paul. 2008. Improving statistical machine
translation by paraphrasing the training data. In Pro-
ceedings of IWSLT, Hawai’i, USA.

Lou Burnard. 2000. Reference Guide for the British
National Corpus (World Edition). Oxford University
Computing Services.

Chris Callison-Burch, Philipp Koehn, and Miles Os-
borne. 2006. Improved statistical machine translation
using paraphrases. In Proceedings of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics (NAACL).

Chris Callison-Burch. 2008. Syntactic constraints on
paraphrases extracted from parallel corpora. In Pro-
ceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP), Waikiki,
Hawai’i.

Jonathan Chevelu, Thomas Lavergne, Yves Lepage, and
Thierry Moudenc. 2009. Introduction of a new para-
phrase generation tool based on monte-carlo sampling.
In Proceedings of the 47th Annual Meeting of the As-
sociation for Computational Linguistics (ACL) - the
4th International Joint Conference on Natural Lan-
guage Processing of the Asian Federation of Natural
Language Processing (IJCNLP) Short Papers, pages
249–252, Suntec, Singapore.

Yejin Choi and Claire Cardie. 2008. Learning with
compositional semantics as structural inference for
subsentential sentiment analysis. In Proceedings of
Empirical Methods in Natural Language Processing
(EMNLP), Waikiki, Hawaii.

David A. Cruse. 1986. Lexical semantics. Cambridge
University Press.

James Deese. 1965. The structure of associations in lan-
guage and thought. The Johns Hopkins Press.

Bill Dolan, Chris Quirk, and Chris Brockett. 2004. Un-
supervised construction of large paraphrase corpora:
exploiting massively parallel news sources. In Pro-
ceedings of the 20th Annual Meeting of the Associ-
ation for Computational Linguistics (ACL), Geneva,
Switzerland.

Jinhua Du, Jie Jiang, and Andy Way. 2010. Facilitating
translation using source language paraphrase lattices.
In Proceedings of the Conference on Empirical Meth-

ods in Natural Language Processing (EMNLP), pages
420–429, MIT, Massachusetts, USA.

Ahmed El Kholy and Nizar Habash. 2010a. Techniques
for Arabic Morphological Detokenization and Ortho-
graphic Denormalization. In Proceedings of the sev-
enth International Conference on Language Resources
and Evaluation (LREC), Valletta, Malta.

Ahmed El Kholy and Nizar Habash. 2010b. Ortho-
graphic and Morphological Processing for English-
Arabic Statistical Machine Translation. In In Actes
de Traitement Automatique des Langues Naturelles
(TALN), Montreal, Canada.

Nizar Habash and Jun Hu. 2009. Improving Arabic-
Chinese statistical machine translation using English
as pivot language. In Proceedings of the 4th EACL
Workshop on Statistical Machine Translation, pages
173–181, Athens, Greece.

Nizar Habash and Owen Rambow. 2005. Arabic Tok-
enization, Part-of-Speech Tagging and Morphological
Disambiguation in One Fell Swoop. In Proceedings of
the 43rd Annual Meeting of the Association for Com-
putational Linguistics (ACL), pages 573–580, Ann Ar-
bor, Michigan, June. Association for Computational
Linguistics.

Nizar Habash. 2009. REMOOV: A tool for online han-
dling of out-of-vocabulary words in machine transla-
tion. In Proceedings of the 2nd International Con-
ference on Arabic Language Resources and Tools
(MEDAR), Cairo, Egypt.

Sanda M. Harabagiu, Andrew Hickl, and Finley Laca-
tusu. 2006. Lacatusu: Negation, contrast and contra-
diction in text processing. In Proceedings of the 23rd
National Conference on Artificial Intelligence (AAAI),
Boston, MA.

Junichi Kazama, Stijn De Saeger, Kow Kuroda, Masaki
Murata, and Kentaro Torisawa. 2010. A Bayesian
method for robust estimation of distributional similar-
ities. In Proceedings of the 48th Annual Meeting of
the Association for Computational Linguistics (ACL),
pages 247–256, Uppsala, Sweden.

Alistair Kennedy and Diana Inkpen. 2005. Sentiment
classification of movie and product reviews using con-
textual valence shifters. COMPUTATIONAL INTEL-
LIGENCE, pages 110–125.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran Richard
Zens, Chris Dyer, Ondrej Bojar, Alexandra Con-
stantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
the Annual Meeting of the Association for Com-
putational Linguistics (ACL) demonstration session,
Prague, Czech Republic.

Philipp Koehn. 2004. Statistical significance tests for

247



machine translation evaluation. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP).

Adrienne Lehrer and K. Lehrer. 1982. Antonymy. Lin-
guistics and Philosophy, 5:483–501.

Dekang Lin, Shaojun Zhao, Lijuan Qin, and Ming Zhou.
2003. Identifying synonyms among distributionally
similar words. In Proceedings of the 18th Interna-
tional Joint Conference on Artificial Intelligence (IJ-
CAI), pages 1492–1493, Acapulco, Mexico.

Nitin Madnani and Bonnie Dorr. 2010. Generating
phrasal and sentential paraphrases: A survey of data-
driven methods. Computational Linguistics, 36(3).

Marie-Catherine de Marneffe, Anna Rafferty, and
Christopher D. Manning. 2008. Finding contradic-
tions in text. In Proceedings of the 46th Annual Meet-
ing of the Association for Computational Linguistics
(ACL), Columbus, OH.

Yuval Marton, Chris Callison-Burch, and Philip Resnik.
2009. Improved statistical machine translation using
monolingually-derived paraphrases. In Proceedings of
the Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), Singapore.

Yuval Marton. 2010. Improved statistical machine trans-
lation using monolingual text and a shallow lexical re-
source for hybrid phrasal paraphrase generation. In
Proceedings of the Ninth Conference of the Associa-
tion for Machine Translation in the Americas (AMTA),
Denver, Colorado.

Aurelien Max. 2009. Sub-sentential paraphrasing by
contextual pivot translation. In Proceedings of the
47th Annual Meeting of the Association for Compu-
tational Linguistics (ACL) - the 4th International
Joint Conference on Natural Language Processing of
the Asian Federation of Natural Language Processing
(IJCNLP) - Workshop on Applied Textual Inference,
pages 18–26, Singapore. Suntec.

Scott McDonald. 2000. Environmental determinants of
lexical processing effort. Ph.D. thesis, University of
Edinburgh.

Rada Mihalcea and Carlo Strapparava. 2005. Making
computers laugh: Investigations in automatic humor
recognition. In Proceedings of the Conference on Hu-
man Language Technology and Empirical Methods in
Natural Language Processing, pages 531–538, Van-
couver, Canada.

Shachar Mirkin, Lucia Specia, Nicola Cancedda, Ido Da-
gan, Marc Dymetman, and Idan Szpektor . 2009.
Source-language entailment modeling for translating
unknown terms. In Proceedings of the 47th Annual
Meeting of the Association for Computational Linguis-
tics (ACL) - the 4th International Joint Conference
on Natural Language Processing of the Asian Federa-

tion of Natural Language Processing (IJCNLP), pages
791–799, Suntec, Singapore.

Saif Mohammad, Bonnie Dorr, and Codie Dunn. 2008.
Computing word-pair antonymy. In Proceedings of
the Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 982–991, Waikiki,
Hawaii.

Franz Josef Och and Hermann Ney. 2000. Improved sta-
tistical alignment models. In Proceedings of the 38th
Annual Meeting of the Association for Computational
Linguistics (ACL), pages 440–447.

Franz Josef Och and Hermann Ney. 2002. Discrimina-
tive training and maximum entropy models for statis-
tical machine translation. In Proceedings of ACL.

Franz Josef Och. 2003. Minimum error rate training in
statistical machine translation. In Proceedings of the
41st Annual Meeting of the ACL, pages 160–167.

Takashi Onishi, Masao Utiyama, and Eiichiro Sumita.
2010. Paraphrase lattice for statistical machine trans-
lation. In Proceedings of the Association for Computa-
tional Linguistics (ACL) Short Papers, pages 1–5, Up-
psala, Sweden.

Bo Pang and Lillian Lee. 2008. Opinion mining and
sentiment analysis. Foundations and Trends in Infor-
mation Retrieval, 2(1–2):1–135.

Kishore Papineni, Salim Roukos, Todd Ward, John Hen-
derson, and Florence Reeder. 2002. Corpus-based
comprehensive and diagnostic MT evaluation: Initial
Arabic, Chinese, French, and Spanish results. In Pro-
ceedings of the ACL Human Language Technology
Conference, pages 124–127, San Diego, CA.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study of
translation edit rate with targeted human annotation.
In Proceedings of Association for Machine Translation
in the Americas, pages 223–231, Cambridge, MA.

Andreas Stolcke. 2002. SRILM – an extensible lan-
guage modeling toolkit. In Proceedings of the Inter-
national Conference on Spoken Language Processing,
volume 2, pages 901–904.

Philip Stone, Dexter C. Dunphy, Marshall S. Smith,
Daniel M. Ogilvie, and associates. 1966. The General
Inquirer: A Computer Approach to Content Analysis.
The MIT Press.

Huihsin Tseng, Pichuan Chang, Galen Andrew, Daniel
Jurafsky, and Christopher Manning. 2005. A con-
ditional random field word segmenter. In Fourth
SIGHAN Workshop on Chinese Language Processing.

Peter D. Turney and Patrick Pantel. 2010. From fre-
quency to meaning: Vector space models of semantics.
Journal of Articial Intelligence Research, 37:141–188.

Peter Turney. 2008. A uniform approach to analo-
gies, synonyms, antonyms, and associations. In
Proceedings of the 22nd International Conference

248



on Computational Linguistics (COLING), pages 905–
912, Manchester, UK.

Ellen M Voorhees. 2008. Contradictions and jus-
tifications: Extensions to the textual entailment task.
In Proceedings of the 46th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), Colum-
bus, OH.

Julie Weeds, David Weir, and Diana McCarthy. 2004.
Characterising measures of lexical distributional sim-
ilarity. In Proceedings of the 20th International
Conference on Computational Linguistics (COLING),
pages 1015–1021, Geneva, Switzerland.

Shiqi Zhao, Cheng Niu, Ming Zhou, Ting Liu, and
Sheng Li. 2008. Combining multiple resources to
improve smt-based paraphrasing model. In Proceed-
ings of the Association for Computational Linguis-
tics (ACL)Human Language Technology (HLT), pages
1021–1029, Columbus, Ohio, USA.

Shiqi Zhao, Xiang Lan, Ting Liu, and Sheng Li. 2009.
Application-driven statistical paraphrase generation.
In Proceedings of the 47th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL) - the 4th
International Joint Conference on Natural Language
Processing of the Asian Federation of Natural Lan-
guage Processing (IJCNLP), pages 834–842, Suntec,
Singapore.

249



Proceedings of the 6th Workshop on Statistical Machine Translation, pages 250–260,
Edinburgh, Scotland, UK, July 30–31, 2011. c©2011 Association for Computational Linguistics

Productive Generation of Compound Words in Statistical Machine
Translation

Sara Stymne
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Abstract

In many languages the use of compound
words is very productive. A common practice
to reduce sparsity consists in splitting com-
pounds in the training data. When this is done,
the system incurs the risk of translating com-
ponents in non-consecutive positions, or in the
wrong order. Furthermore, a post-processing
step of compound merging is required to re-
construct compound words in the output. We
present a method for increasing the chances
that components that should be merged are
translated into contiguous positions and in the
right order. We also propose new heuristic
methods for merging components that outper-
form all known methods, and a learning-based
method that has similar accuracy as the heuris-
tic method, is better at producing novel com-
pounds, and can operate with no background
linguistic resources.

1 Introduction

In many languages including most of the Germanic
(German, Swedish etc.) and Uralic (Finnish, Hun-
garian etc.) language families so-called closed com-
pounds are used productively. Closed compounds
are written as single words without spaces or other
word boundaries, as the Swedish:

gatstenshuggare gata + sten + huggare
paving stone cutter street stone cutter

To cope with the productivity of the phenomenon,
any effective strategy should be able to correctly
process compounds that have never been seen in the
training data as such, although possibly their com-
ponents have, either in isolation or within a different
compound.

The extended use of compounds make them prob-
lematic for machine translation. For translation into
a compounding language, often fewer compounds
than in normal texts are produced. This can be due
to the fact that the desired compounds are missing in
the training data, or that they have not been aligned
correctly. When a compound is the idiomatic word
choice in the translation, a MT system can often
produce separate words, genitive or other alternative
constructions, or translate only one part of the com-
pound.

Most research on compound translation in com-
bination with SMT has been focused on transla-
tion from a compounding language, into a non-
compounding one, typically into English. A com-
mon strategy then consists in splitting compounds
into their components prior to training and transla-
tion.

Only few have investigated translation into a com-
pounding language. For translation into a com-
pounding language, the process becomes:

• Splitting compounds on the target (compound-
ing language) side of the training corpus;

• Learn a translation model from this split train-
ing corpus from source (e.g. English) into
decomposed-target (e.g. decomposed-German)

• At translation time, translate using the learned
model from source into decomposed-target.

• Apply a post-processing “merge” step to recon-
struct compounds.

The merging step must solve two problems: identify
which words should be merged into compounds, and
choose the correct form of the compound parts.
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The former problem can become hopelessly diffi-
cult if the translation did not put components nicely
side by side and in the correct order. Preliminary
to merging, then, the problem of promoting transla-
tions where compound elements are correctly posi-
tioned needs to be addressed. We call this promoting
compound coalescence.

2 Related work

The first suggestion of a compound merging method
for MT that we are aware of was described by
Popović et al. (2006). Each word in the translation
output is looked up in a list of compound parts, and
merged with the next word if it results in a known
compound. This method led to improved overall
translation results from English to German. Stymne
(2008) suggested a merging method based on part-
of-speech matching, in a factored translation system,
where compound parts had a special part-of-speech
tag, and compound parts are only merged with the
next word if the part-of-speech tags match. This re-
sulted in improved translation quality from English
to German, and from English to Swedish (Stymne
and Holmqvist, 2008). Another method, based on
several decoding runs, was investigated by Fraser
(2009).

Stymne (2009a) investigated and compared merg-
ing methods inspired by Popović et al. (2006),
Stymne (2008) and a method inspired by morphol-
ogy merging (El-Kahlout and Oflazer, 2006; Virpi-
oja et al., 2007), where compound parts were anno-
tated with symbols, and parts with symbols in the
translation output were merged with the next word.

3 Promoting coalescence of compounds

If compounds are split in the training set, then there
is no guarantee that translations of components will
end up in contiguous positions and in the correct or-
der. This is primarily a language model problem,
and we will model it as such by applying POS lan-
guage models on specially designed part-of-speech
sets, and by applying language model inspired count
features.

The approach proposed in Stymne (2008) consists
in running a POS tagger on the target side of the cor-
pus, decompose only tokens with some predefined
POS (e.g. Nouns), and then marking with special

POS-tags whether an element is a head or a modi-
fier. As an example, the German compound “Fremd-
sprachenkenntnisse”, originally tagged as N(oun),
would be decomposed and re-tagged before training
as:

fremd sprachen kenntnisse
N-Modif N-Modif N

A POS n-gram language model using these extended
tagset, then, naturally steers the decoder towards
translations with good relative placement of these
components

We modify this approach by blurring distinctions
among POS not relevant to the formation of com-
pounds, thus further reducing the tagset to only three
tags:

• N-p – all parts of a split compound except the
last

• N – the last part of the compound (its head) and
all other nouns

• X – all other tokens

The above scheme assumes that only noun com-
pounds are treated but it could easily be extended to
other types of compounds. Alternatively, splitting
can be attempted irrespective of POS on all tokens
longer than a fixed threshold, removing the need of
a POS tagger.

3.1 Sequence models as count features
We expect a POS-based n-gram language model on
our reduced tagset to learn to discourage sequences
unseen in the training data, such as the sequence
of compound parts not followed by a suitable head.
Such a generative LM, however, might also have a
tendency to bias lexical selection towards transla-
tions with fewer compounds, since the correspond-
ing tag sequences might be more common in text.
To compensate for this bias, we experiment with in-
jecting a little dose of a-priori knowledge, and add a
count feature, which explicitly counts the number of
occurrences of POS-sequences which we deem good
and bad in the translation output.

Table 1 gives an overview of the possible bigram
combinations, using the three symbol tagset, plus
sentence beginning and end markers, and their judg-
ment as good, bad or neutral.
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Combination Judgment
N-p N-p Good
N-p N Good
N-p < \s > Bad
N-p X Bad
all other combinations Neutral

Table 1: Tag combinations in the translation output

We define two new feature functions: one count-
ing the number of occurrences of Good sequences
(the Boost model) and the other counting the occur-
rences of Bad sequences (the Punish model). The
two models can be used either in isolation or com-
bined, with or without a further POS n-gram lan-
guage model.

4 Merging compounds

Once a translation is generated using a system
trained on split compounds, a post-processing step
is required to merge components back into com-
pounds. For all pairs of consecutive tokens we have
to decide whether to combine them or not. Depend-
ing on the language and on preprocessing choices,
we might also have to decide whether to apply any
boundary transformation like e.g. inserting an ’s’ be-
tween components.

The method proposed in Popović et al. (2006)
maintains a list of known compounds and compound
modifiers. For any pair of consecutive tokens, if the
first is in the list of known modifiers and the com-
bination of the two is in the list of compounds, than
the two tokens are merged.

A somewhat orthogonal approach is the one pro-
posed in Stymne (2008): tokens are labeled with
POS-tags; compound modifiers are marked with
special POS-tags based on the POS of the head. If
a word with a modifier POS-tag is followed by ei-
ther another modifier POS-tag of the same type, or
the corresponding head POS-tag, then the two to-
kens are merged.

In the following sections we describe how we
modify and combine these two heuristics, and how
we alternatively formulate the problem as a se-
quence labelling problem suitable for a machine
learning approach.

4.1 Improving and combining heuristics

We empirically verified that the simple heuristics in
Popović et al. (2006) tends to misfire quite often,
leading to too many compounds. We modify it by
adding an additional check: tokens are merged if
they appear combined in the list of compounds, but
only if their observed frequency as a compound is
larger than their frequency as a bigram. This blocks
the merging of many consecutive words, which just
happen to form a, often unrelated, compound when
merged, such as för små (too small) into försmå
(spurn) in Swedish. Compound and bigram frequen-
cies can be computed on any available monolingual
corpus in the domain of interest.

We furthermore observed that the (improved) list-
based heuristic and the method based on POS pat-
terns lead to complementary sets of false negatives.
We thus propose to combine the two heuristics in
this way: we merge two consecutive tokens if they
would be combined by either the list-based heuris-
tic or the POS-based heuristic. We empirically veri-
fied improved performance when combining heuris-
tics in this way (Section 5.2).

4.2 Compound merging as sequence labelling

Besides extending and combining existing heuris-
tics, we propose a novel formulation of compound
merging as a sequence labelling problem. The oppo-
site problem, compound splitting, has successfully
been cast as a sequence labelling problem before
(Dyer, 2010), but here we apply this formulation in
the opposite direction.

Depending on choices made at compound split-
ting time, this task can be either a binary or mul-
ticlass classification task. If compound parts were
kept as-is, the merging task is a simple concatena-
tion of two words, and each separation point must
receive a binary label encoding whether the two to-
kens should be merged. An option at splitting time
is to normalize compound parts, which often have
a morphological form specific to compounds, to a
canonical form (Stymne, 2009b). In this case the
compound form has to be restored before concate-
nating the parts. This can be modeled as a multi-
class classifier that have the possible boundary trans-
formations as its classes.

Consider for instance translating into German the
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English sentence:

Europe should promote the knowledge of
foreign languages

Assuming that the training corpus did not con-
tain occurrences of the pair (“knowledge of foreign
languages”,”fremdsprachenkenntnisse”) but con-
tained occurrences of (“knowledge”,”kenntnisse”),
(“foreign”,”fremd”) and (“languages”,”sprachen”),
then the translation model from English into
decomposed-German could be able to produce:

Europa sollte fremd sprachen kenntnisse
fördern

We cast the problem of merging compounds as one
of making a series of correlated binary decisions,
one for each pair of consecutive words, each decid-
ing whether the whitespace between the two words
should be suppressed (label “1”) or not (label “0”).
In the case above, the correct labelling for the sen-
tence would be {0,0,1,1,0}, reconstructing the cor-
rect German:

Europa sollte fremdsprachenkenntnisse
fördern1

If conversely, components are normalized upon
splitting, then labels are no longer binary, but come
from a set describing all local orthographic transfor-
mations possible for the language under considera-
tion. In this work we limited our attention to the case
when compounds are not normalized upon splitting,
and labels are hence binary.

While in principle one could address each atomic
merging decision independently, it seems intuitive
that a decision taken at one point should influence
merging decisions in neighboring separation points.
For this reason, instead of a simple (binary or n-
ary) classification problem, we prefer a sequence la-
belling formulation.

The array of sequence labelling algorithms po-
tentially suitable to our problem is fairly broad, in-
cluding Hidden Markov Models (HMMs) (Rabiner,
1989), Conditional Random Fields (CRFs) (Lafferty
et al., 2001), structured perceptrons (Collins, 2002),

1Nouns in German are capitalized. This is normally dealt
as a further “truecasing” postprocessing, and is an orthogonal
problem from the one we deal with here.

and more. Since the focus of this work is on the
application rather than on a comparison among al-
ternative structured learning approaches, we limited
ourselves to a single implementation. Considering
its good scaling capabilities, appropriateness in pres-
ence of strongly redundant and overlapping features,
and widespread recognition in the NLP community,
we chose to use Conditional Random Fields.

4.2.1 Features
Each sequence item (i.e. each separation point be-
tween words) is represented by means of a sparse
vector of features. We used:

• Surface words: word-1, word+1

• Part-of-speech: POS-1, POS+1

• Character n-grams around the merge point

– 3 character suffix of word-1
– 3 character prefix of word+1
– Combinations crossing the merge points:

1+3, 3+1, 3+3 characters

• Normalized character n-grams around the
merge point, where characters are replaced by
phonetic approximations, and grouped accord-
ing to phonetic distribution, see Figure 1 (only
for Swedish)

• Frequencies from the training corpus, binned
by the following method:

f̄ =

{
10blog10(f)c if f > 1
f otherwise

for the following items:

– bigram, word-1,word+1
– Compound resulting from merging word-

1,word+1
– Word-1 as a true prefix of words in the cor-

pus
– Word+1 as a true suffix of words in the

corpus

• Frequency comparisons of two different fre-
quencies in the training corpus, classified into
four categories: freq1 = freq2 = 0, freq1 <
freq2, freq1 = freq2, freq1 > freq2
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# vowels (soft versus hard)
$word = s/[aouå]/a/g;
$word = s/[eiyäöé]/e/g;

# consonant combinations and
# spelling alternations
$word = s/ng/N/g;
$word = s/gn/G/g;
$word = s/ck/K/g;
$word = s/[lhgd]j/J/g;
$word = s/ˆge/Je/g;
$word = s/ˆske/Se/g;
$word = s/ˆs[kt]?j/S/g;
$word = s/ˆs?ch/S/g;
$word = s/ˆtj/T/g;
$word = s/ˆke/Te/g;

#consonants grouping
$word = s/[ptk]/p/g;
$word = s/[bdg]/b/g;
$word = s/[lvw]/l/g;
$word = s/[cqxz]/q/g;

Figure 1: Transformations performed for normalizing
Swedish consonants (Perl notation).

– word-1,word+1 as bigram vs compound
– word-1 as true prefix vs single word
– word+1 as true suffix vs single word

where -1 refers to the word before the merge point,
and +1 to the word after.

We aimed to include features representing the
knowledge available to the list and POS heuristics,
by including part-of-speech tags and frequencies for
compounds and bigrams, as well as a comparison
between them. Features were also inspired by pre-
vious work on compound splitting, based on the in-
tuition that features that are useful for splitting com-
pounds, could also be useful for merging. Charac-
ter n-grams has successfully been used for splitting
Swedish compounds, as the only knowledge source
by Brodda (1979), and as one of several knowl-
edge sources by Sjöbergh and Kann (2004). Friberg
(2007) tried to normalize letters, beside using the
original letters. While she was not successful, we
still believe in the potential of this feature. Larson et
al. (2000), used frequencies of prefixes and suffixes
from a corpus, as a basis of their method for splitting
German compounds.

4.2.2 Training data for the sequence labeler
Since features are strongly lexicalized, a suitably
large training dataset is required to prevent overfit-
ting, ruling out the possibility of manual labelling.

We created our training data automatically, using
the two heuristics described earlier, plus a third one
enabled by the availability, when estimating parame-
ters for the CRF, of a reference translation: merge if
two tokens are observed combined in the reference
translation (possibly as a sub-sequence of a longer
word). We compared multiple alternative combina-
tions of heuristics on a validation dataset. The val-
idation and test data were created by applying all
heuristics, and then manually check all positive an-
notations.

A first possibility to automatically generate a
training dataset consists in applying the compound
splitting preprocessing of choice to the target side of
the parallel training corpus for the SMT system: sep-
aration points where merges should occur are thus
trivially identified. In practice, however, merging
decisions will need be taken on the noisy output of
the SMT system, and not on the clean training data.
To acquire training data that is similar to the test
data, we could have held out from SMT training a
large fraction of the training data, used the trained
SMT to translate the source side of it, and then la-
bel decision points according to the heuristics. This
would, however, imply making a large fraction of
the data unavailable to training of the SMT. We thus
settled for a compromise: we trained the SMT sys-
tem on the whole training data, translated the whole
source, then labeled decision points according to the
heuristics. The translations we obtain are thus bi-
ased, of higher quality than those we should expect
to obtain on unseen data. Nevertheless they are sub-
stantially more similar to what will be observed in
operations than the reference translations.

5 Experiments

We performed experiments on translation from En-
glish into Swedish and Danish on two different cor-
pora, an automotive corpus collected from a propri-
etary translation memory, and on Europarl (Koehn,
2005) for the merging experiments. We used fac-
tored translation (Koehn and Hoang, 2007), with
both surface words and part-of-speech tags on the
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EU-Sv Auto-Sv Auto-Da
Corpus Europarl Automotive Automotive
Languages English→Swedish English→Swedish English→Danish
Compounds split N, V, Adj N, V, Adj N
POS tag-sets POS POS,RPOS RPOS
Decoder Moses in-house in-house
Training sentences SMT 1,520,549 329,090 168,047
Training words SMT (target) 34,282,247 3,061,282 1,553,382
Training sentences CRF 248,808 317,398 164,702
Extra training sentences CRF 3,000 3,000 163,201

Table 2: Overview of the experimental settings

target side, with a sequence model on part-of-
speech. We used two decoders, Matrax (Simard et
al., 2005) and Moses (Koehn et al., 2007), both stan-
dard statistical phrase based decoders. For parame-
ter optimization we used minimum error rate train-
ing (Och, 2003) with Moses and gradient ascent on
smoothed NIST for the in-house decoder. In the
merging experiments we used the CRF++ toolkit.2

Compounds were split before training using a
corpus-based method (Koehn and Knight, 2003;
Stymne, 2008). For each word we explored all pos-
sible segmentations into parts that had at least 3
characters, and choose the segmentation which had
the highest arithmetic mean of frequencies for each
part in the training corpus. We constrained the split-
ting based on part-of-speech by only allowing split-
ting options where the compound head had the same
tag as the full word. The split compound parts kept
their form, which can be special to compounds, and
no symbols or other markup were added.

The experiment setup is summarized in Table 2.
The extra training sentences for CRF are sentences
that were not also used to train the SMT system. For
tuning, test and validation data we used 1,000 sen-
tence sets, except for Swedish auto, where we used
2,000 sentences for tuning. In the Swedish experi-
ments we split nouns, adjectives and verbs, and used
the full POS-set, except in the coalescence exper-
iments where we compared the full and restricted
POS-sets. For Danish we only split nouns, and
used the restricted POS-set. For frequency calcu-
lations of compounds and compound parts that were
needed for compound splitting and some of the com-

2Available at http://crfpp.sourceforge.net/

pound merging strategies, we used the respective
training data in all cases. Significance testing was
performed using approximate randomization (Rie-
zler and Maxwell, 2005), with 10,000 iterations, and
α < 0.05.

5.1 Experiments: Promoting compound
coalescence

We performed experiments with factored translation
models with the restricted part-of-speech set on the
Danish and Swedish automotive corpus. In these ex-
periments we compared the restricted part-of-speech
set we suggest in this work to several baseline sys-
tems without any compound processing and with
factored models using the extended part-of-speech
set suggested by Stymne (2008). Compound parts
were merged using the POS-based heuristic. Results
are reported on two standard metrics, NIST (Dod-
dington, 2002) and Bleu (Papineni et al., 2002), on
lower-cased data. For all sequence models we use
3-grams.

Results on the two Automotive corpora are sum-
marized in Table 3. The scores are very high, which
is due to the fact that it is an easy domain with many
repetitive sentence types. On the Danish dataset,
we observe significant improvements in BLEU and
NIST over the baseline for all methods where com-
pounds were split before translation and merged af-
terwards. Some of the gain is already obtained us-
ing a language model on the extended part-of-speech
set. Additional gains can however be obtained us-
ing instead a language model on a reduced set of
POS-tags (RPOS), and with a count feature explic-
itly boosting desirable RPOS sequences. The count
feature on undesirable sequences did not bring any
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improvements over any of the systems with com-
pound splitting.

Results on the Swedish automotive corpus are less
clear-cut than for Danish, with mostly insignificant
differences between systems. The system with de-
composition and a restricted part-of-speech model
is significantly better on Bleu than all other systems,
except the system with decomposition and a stan-
dard part-of-speech model. Not splitting actually
gives the highest NIST score, even though the dif-
ference to the other systems is not significant, ex-
cept for the system with a combination of a trained
RPOS model and a boost model, which also has sig-
nificantly lower Bleu score than the other systems
with compound splitting.

5.2 Experiments: Compound merging
We compared alternative combinations of heuristics
on our three validation datasets, see Figure 2. In
order to estimate the amount of false negatives for
all three heuristics, we inspected the first 100 sen-
tences of each validation set, looking for words that
should be merged, but were not marked by any of
the heuristics. In no case we could find any such
words, so we thus assume that between them, the
heuristics can find the overwhelming majority of all
compounds to be merged.

We conducted a round of preliminary experiments
to identify the best combination of the heuristics
available at training time (modified list-based, POS-
based, and reference-based) to use to create auto-
matically the training data for the CRF. Best results
on the validation data are obtained by different com-
bination of heuristics for the three datasets, as could
be expected by the different distribution of errors
in Figure 2. In the experiments below we trained
the CRF using for each dataset the combination of
heuristics corresponding to leaving out the grey por-
tions of the Venn diagrams. This sort of prelimi-
nary optimization requires hand-labelling a certain
amount of data. Based on our experiments, skipping
this optimization and just using ref∨(list∧POS) (the
optimal configuration for the Swedish-English Eu-
roparl corpus) seems to be a reasonable alternative.

The validation data was also used to set a fre-
quency cut-off for feature occurrences (set at 3 in
the following experiments) and to tune the regu-
larization parameter in the CRF objective function.
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Figure 2: Evaluation of the different heuristics on valida-
tion files from the three corpora. The number in each re-
gion of the Venn diagrams indicates the number of times
a certain combination of heuristics fired (i.e. the num-
ber of positives for that combination). The two smaller
numbers below indicate the number of true and false pos-
itive, respectively. Venn diagram regions corresponding
to unreliable combinations of heuristics have correspond-
ing figures on a grey background. OK means that a large
fraction of the Venn cell was inspected, and no error was
found.
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Danish auto Swedish auto
BLEU NIST BLEU NIST

No compound
splitting

Base 70.91 8.8816
Base+POSLM 72.08 8.9338 56.79 9.2674

With
compound
splitting

POSLM 74.11* 9.2341* 57.28 9.1717
RPOSLM 74.26* 9.2767* 58.12* 9.1694
punish model 73.34* 9.1543*
boost model 74.96** 9.3028** 57.31 9.1736
RPOSLM + boost 74.76** 9.3368** 55.82 9.1088

Table 3: Results of experiments with methods for promoting coalescence. Compounds are merged based on the POS
heuristic. Scores that are significantly better than Base+POSLM, are marked ’*’, and scores that are also better than
POSLM with ’**’.

Results are largely insensitive to variations in these
hyper-parameters, especially to the CRF regulariza-
tion parameter.

For the Danish auto corpus we had access to train-
ing data that were not also used to train the SMT
system, that we used to compare the performance
with that on the possibly biased training data that
was also used to train the SMT system. There were
no significant differences between the two types of
training data on validation data, which confirmed
that reusing the SMT training data for CRF training
was a reasonable strategy.

The overall merging results of the heuristics, the
best sequence labeler, and the sequence labeler with-
out POS are shown in Table 4. Notice how the (mod-
ified) list and POS heuristics have complementary
sets of false negatives: when merging on the OR of
the two heuristics, the number of false negatives de-
creases drastically, in general compensating for the
inevitable increase in false positives.

Among the heuristics, the combination of the im-
proved list heuristic and the POS-based heuristic has
a significantly higher recall and F-score than the
POS-based heuristic alone in all cases except on the
validation data for Swedish Auto, and than the list-
based strategy in several cases. The list heuristic
alone performs reasonably well on the two Swedish
data sets, but has a very low recall on the Danish
dataset. In all three cases the SMT training data
has been used for the list used by the heuristic, so
this is unexpected, especially considering the fact
that the Danish dataset is in the same domain as
one of the Swedish datasets. The Danish training
data is smaller than the Swedish data though, which

might be an influencing factor. It is possible that this
heuristic could perform better also for Danish given
more data for frequency calculations.

The sequence labeler is competitive with the
heuristics; on F-score it is only significantly worse
than any of the heuristics once, for Danish auto test
data, and in several cases it has a significantly higher
F-score than some of the heuristics. The sequence
labeler has a higher precision, significantly so in
three cases, than the best heuristic, the combina-
tion heuristic, which is positive, since erroneously
merged compounds are usually more disturbing for
a reader or post-editor than non-merged compounds.

The sequence-labelling approach can be used also
in the absence of a POS tagger, which can be impor-
tant if no such tool of suitable quality is available
for the target language and the domain of interest.
We thus also trained a CRF-based compound merger
without using POS features, and without using the
POS-based heuristic when constructing the training
data. Compared to the CRF with access to POS-tags,
on validation data F-score is significantly worse on
the Europarl Swedish condition and the Automotive
Danish condition, and are unchanged on Automo-
tive Swedish. On test data there are no significant
differences of the two sequence labelers on the two
Automotive corpora. On Swedish Europarl, the CRF
without POS has a higher recall at the cost of a lower
precision. Compared to the list heuristic, which is
the only other alternative strategy that works in the
absence of a POS tagger, the CRF without POS per-
forms significantly better on recall and F-score for
Danish automotive, and mostly comparative on the
two Swedish corpora.
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Validation data Test data
Precision Recall F-score Precision Recall F-score

Swedish auto
list .9889p,lp .9936p .9912p .9900 .9770 .9835
POS .9757 .9632 .9694 .9916lp .9737 .9826
list∨POS .9720 1p .9858p .9822 .9984l,p,c,cp .9902l,p,cp

CRF (ref∨list) .9873p,lp .9984p .9928p,lp .9869 .9869 .9869
CRF without POS .9873p,lp .9968p .9920p,lp .9836 .9852 .9844

Swedish Europarl
list .9923lp,c,cp .9819 .9871 .9882lp,cp .9849 .9865
POS .9867lp .9785 .9825 .9893lp .9751 .9822
list∨POS .9795 .9958l,p,c,cp .9876p,cp .9782 .9993l,p,c,cp .9886p,cp

CRF (ref∨(list∧POS)) .9841cp .9916l,p .9879p,cp .9953l,p,lp,cp .9790 .9871p

CRF without POS .9780 .9882p .9831 .9805 .9882p,c .9843
Danish auto

list .9250 .7603 .8346 .9905lp .7640 .8626
POS .9814l,lp .9635l,cp .9724l,lp,cp .9779 .9294l .9538l

list∨POS .9251 .9863l,p,cp .9547l .9760 .9878l,p,c .9819l,p,c

CRF (ref∨list∨POS) .9775l,lp .9932l,p,cp .9853l,p,lp,cp .9778 .9659l,p .9718l,p

CRF without POS .9924l,lp,c .8973l .9424l .9826 .9635l,p .9729l,p

Table 4: Precision, Recall, and F-score for compound merging methods based on heuristics or sequence labelling on
validation data and on held-out test data. The superscripts marks the systems that are significantly worse than the
system in question (l-list, p-POS, lp-list∨POS, c-best CRF configuration, cp-CRF without POS).

The sequence labeler has the advantage over
the heuristics that it is able to merge completely
novel compounds, whereas the list strategy can
only merge compounds that it has seen, and the
POS-based strategy can create novel compounds,
but only with known modifiers. An inspection of
the test data showed that there were a few novel
compounds merged by the sequence labeler that
were not identified with either of the heuristics. In
the test data we found knap+start (button start)
and vand+nedsænkning (water submersion) in Dan-
ish Auto, and kvarts sekel (quarter century) and
bostad(s)+ersättning (housing grant) in Swedish
Europarl. This confirms that the sequence labeler,
from automatically labeled data based on heuristics,
can learn to merge new compounds that the heuris-
tics themselves cannot find.

6 Discussion and conclusions

In this article, we described several methods for
promoting coalescence and deciding if and how to
merge word compounds that are either competitive
with, or superior to, any currently known method.

For promoting compound coalescence we exper-
imented with introducing additional LMs based on
a restricted set of POS-tags, and with dedicated
SMT model features counting the number of se-
quences known a priori to be desirable and unde-
sirable. Experiments showed that this method can
lead to large improvements over systems using no
compound processing, and over previously known
compound processing methods.

For merging, we improved an existing list-based
heuristic, consisting in checking whether the first of
two consecutive words has been observed in a cor-
pus as a compound modifier and their combination
has been observed as a compound, introducing the
additional constraint that words are merged only if
their corpus frequency as a compound is larger than
their frequency as a bigram.

We observed that the false negatives of this im-
proved list-based heuristic and of another, known,
heuristic based on part-of-speech tags were comple-
mentary, and proposed a logical OR of them that
generally improves over both.

We furthermore cast the compound merging prob-
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lem as a sequence labelling problem, opening it to
solutions based on a broad array of models and al-
gorithms. We experimented with one model, Condi-
tional Random Fields, designed a set of easily com-
puted features reaching beyond the information ac-
cessed by the heuristics, and showed that it gives
very competitive results.

Depending on the choice of the features, the se-
quence labelling approach has the potential to be
truly productive, i.e. to form new compounds in
an unrestricted way. This is for instance the case
with the feature set we experimented with. The list-
based heuristic is not productive: it can only form
a compound if this was already observed as such.
The POS-based heuristic presents some limited pro-
ductivity. Since it uses special POS-tags for com-
pound modifiers, it can form a compound provided
its head has been seen alone or as a head, and its
modifier(s) have been seen elsewhere, possibly sep-
arately, as modifier(s) of compounds. The sequence
labelling approach can decide to merge two consec-
utive words even if neither was ever seen before in a
compound.

In this paper we presented results on Swedish and
Danish. We believe that the methods would work
well also for other compounding languages such as
German and Finnish. If the linguistic resources re-
quired to extract some of the features, e.g. a POS
tagger, are unavailable (or are available only at train-
ing time but not in operations) for some language,
the sequence-labelling method can still be applied. It
is competitive or better than the list heuristic, which
is the only heuristic available in that scenario.

Experiments on three datasets show that the im-
proved and combined heuristics perform generally
better than any already known method, and that, be-
sides being fully productive, the sequence-labelling
version is highly competitive, tends to generate
fewer false positives than the combination heuristic,
and can be used flexibly with limited or no linguistic
resources.
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Benny Brodda. 1979. Något om de svenska ordens fono-
tax och morfotax: Iakttagelse med utgångspunkt från
experiment med automatisk morfologisk analys. In

PILUS nr 38. Inst. för lingvistik, Stockholms univer-
sitet, Sweden.

Michael Collins. 2002. Discriminative training meth-
ods for hidden markov models: Theory and experi-
ments with perceptron algorithms. In Proceedings of
the 2002 Conference on Empirical Methods in Natural
Language Processing, Philadelphia, PA.

George Doddington. 2002. Automatic evaluation of ma-
chine translation quality using n-gram co-occurence
statistics. In Proceedings of the Second International
Conference on Human Language Technology, pages
228–231, San Diego, California, USA.

Chris Dyer. 2010. A Formal Model of Ambiguity and
its Applications in Machine Translation. Ph.D. thesis,
University of Maryland, USA.
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Abstract

Statistical machine translation systems are
normally optimised for a chosen gain func-
tion (metric) by using MERT to find the best
model weights. This algorithm suffers from
stability problems and cannot scale beyond
20-30 features. We present an alternative al-
gorithm for discriminative training of phrase-
based MT systems, SampleRank, which scales
to hundreds of features, equals or beats MERT
on both small and medium sized systems, and
permits the use of sentence or document level
features. SampleRank proceeds by repeatedly
updating the model weights to ensure that the
ranking of output sentences induced by the
model is the same as that induced by the gain
function.

1 Introduction

In phrase-based machine translation (PBMT), the
standard approach is to express the probability dis-
tribution p(a, e|f) (where f is the source sentence
and (a, e) is the aligned target sentence) in terms of
a linear model based on a small set of feature func-
tions

p(a, e|f) ∝ exp

(
n∑

i=1

wihi(a, e, f)

)
(1)

The feature functions {hi} typically include log
probabilities of generative models such as trans-
lation, language and reordering, as well as non-
probabilistic features such as word, phrase and dis-
tortion penalties. The feature weights w = {wi}
are normally trained using MERT (minimum error
rate training) (Och, 2003), to maximise performance

as measured by an automated metric such as BLEU

(Papineni et al., 2002). MERT training uses a par-
allel data set (known as the tuning set) consisting of
about 1000-2000 sentences, distinct from the data
set used to build the generative models. Optimis-
ing the weights in Equation (1) is often referred to
as tuning the MT system, to differentiate it from the
process of training the generative models.

MERT’s inability to scale beyond 20-30 features,
as well as its instability (Foster and Kuhn, 2009)
have led to investigation into alternative ways of
tuning MT systems. The development of tuning
methods is complicated, however by, the use of
BLEU as an objective function. This objective in
its usual form is not differentiable, and has a highly
non-convex error surface (Och, 2003). Furthermore
BLEU is evaluated at the corpus level rather than at
the sentence level, so tuning methods either have to
consider the entire corpus, or resort to a sentence-
level approximation of BLEU. It is unlikely, how-
ever, that the difficulties in discriminative MT tun-
ing are due solely to the use of BLEU as a metric –
because evaluation of translation is so difficult, any
reasonable gain function is likely to have a complex
relationship with the model parameters.

Gradient-based tuning methods, such as mini-
mum risk training, have been investigated as pos-
sible alternatives to MERT. Expected BLEU is nor-
mally adopted as the objective since it is differen-
tiable and so can be optimised by a form of stochas-
tic gradient ascent. The feature expectations re-
quired for the gradient calculation can be obtained
from n-best lists or lattices (Smith and Eisner, 2006;
Li and Eisner, 2009), or using sampling (Arun et al.,
2010), both of which can be computationally expen-
sive.
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Margin-based techniques such as perceptron
training (Liang et al., 2006) and MIRA (Chiang et
al., 2008; Watanabe et al., 2007) have also been
shown to be able to tune MT systems and scale to
large numbers of features, but these generally in-
volve repeatedly decoding the tuning set (and so
are expensive) and require sentence-level approxi-
mations to the BLEU objective.

In this paper we present an alternative method of
tuning MT systems known as SampleRank, which
has certain advantages over other methods in use to-
day. SampleRank operates by repeatedly sampling
pairs of translation hypotheses (for a given source
sentence) and updating the feature weights if the
ranking induced by the MT model (1) is different
from the ranking induced by the gain function (i.e.
BLEU). By considering the translation hypotheses
in batches, it is possible to directly optimise corpus
level metrics like BLEU without resorting to sentence
level approximations.

Tuning using SampleRank does not limit the size
of the feature set in the same way as MERT does,
and indeed it will be shown that SampleRank can
successfully train a model with several hundred fea-
tures. Using just the core PBMT features and train-
ing using SampleRank will be shown to achieve
BLEU scores which equal or exceed those produced
by MERT trained models.

Since SampleRank does not require repeated de-
coding of the tuning set, and is easily parallelisable,
it can run at an acceptable speed, and since it always
maintains a complete translation hypothesis, it opens
up the possibility of sentence or document level fea-
tures1.

2 Method

2.1 SampleRank Training
SampleRank (Culotta, 2008; Wick et al., 2009) is
an online training algorithm that was introduced for
parameter learning in weighted logics, and has been
applied to complex graphical models (Wick et al.,
2011). Assume a probabilistic model p(y|x) admit-
ting a log-linear parametrisation

p(y|x) ∝ exp
∑

i

(wiφi(x, y)) (2)

1As long as the batches described in Section 2.2.1 respect
document boundaries.

where {φi} are a set of feature functions and {wi}
are corresponding feature weights. SampleRank can
be used to optimise the feature weights to maximise
a given gain function.

SampleRank is a supervised training algorithm,
requiring a set of labelled training data D =
{(x1, y1}, . . . , (xn, yn)}, where the xi are the inputs
and the yi the outputs. The algorithm works by con-
sidering each training example (xi, yi) in turn, and
repeatedly sampling pairs of outputs from a neigh-
bourhood defined in the space of all possible out-
puts, updating the weights when the ranking of the
pair due to the model scores is different from the
ranking due to the gain function. So if the sampled
pair of outputs for xi is (y, y′), where p(y′|xi) >
p(y|xi), the weights are updated iff gain(y′, yi) <
gain(y, yi).

The sampled pairs are drawn from a chain which
can be constructed in a similar way to an MCMC
(Markov Chain Monte Carlo) chain.

In (Culotta, 2008) different strategies are explored
for building the chain, choosing the neighbourhood
and updating the weights.

2.2 SampleRank Training for Machine
Translation

We adapted SampleRank for the tuning of PBMT
systems, as summarised in Algorithm 1. The defi-
nitions of the functions in the algorithm (described
in the following subsections) draw inspiration from
work on MIRA training for MT (Watanabe et al.,
2007; Chiang et al., 2008). SampleRank is used to
optimise the parameter weights in (1) using the tun-
ing set.

2.2.1 Gain Function
The first thing that needs to be defined in Algo-

rithm 1 is the gain function. For this we use BLEU,
the most popular gain function for automated MT
evaluation, although the procedure described here
will work with any gain function that can be evalu-
ated quickly. Using BLEU, however, creates a prob-
lem, as BLEU is defined at the corpus level rather
than the sentence level, and in previous work on
SampleRank, the training data is processed one ex-
ample at a time. In other work on online train-
ing for SMT, (Liang et al., 2006; Chiang et al.,
2008), sentence-level approximations to BLEU were
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Algorithm 1 The SampleRank algorithm for tuning
phrase-based MT systems.
Require: Tuning data:

D = {(f1, e1), . . . , (fn, en)}
Require: gain(y, y′): A function which scores a

set of hypotheses (y′) against a set of references
(y).

Require: score(x, y): A function which computes
a model score for a set of hypotheses y and
source sentences x.

1: for epoch = 1 to number of epochs do
2: A← D
3: while A is non-empty do
4: Pick (x, y), a batch of sentence pairs, ran-

domly from A, and remove.
5: Initialise y0, a set of translation hypotheses

for x.
6: for s = 1 to number of samples do
7: N ← ChooseNeighbourhood(ys−1)
8: y′ ← ChooseSample(N)
9: y+ ← ChooseOracle(N)

10: if gain(y,y′)−gain(y,y+)
score(x,y′)−score(x,y+)

< 0 then
11: UpdateWeights()
12: end if
13: ys ← y′

14: end for
15: end while
16: end for

employed, however in this work we directly opti-
mise corpus BLEU by processing the data in small
batches. Using batches was found to work better
than processing the data sentence by sentence.

So the while loop in Algorithm 1 iterates through
the tuning data in batches of parallel sentences,
rather than single sentences. One complete pass
through the tuning data is known as an epoch, and
normally SampleRank training is run for several
epochs. The gain on a particular batch is calcu-
lated by scoring the current set of hypotheses for
the whole batch against the references for that batch.
When calculating BLEU, a smoothing constant of
0.01 is added to all counts in order to avoid zero
counts.

2.2.2 Sample Generation

For each iteration of the while loop in Algo-
rithm 1, a new batch of parallel sentences is cho-
sen from the tuning set, and a corresponding new
set of translation hypotheses must be generated (the
y0 in line 5 of Algorithm 1). These initial hypothe-
ses are generated by glossing. For each word in the
source, the most likely translation option (according
to the weighted phrase-internal score) is selected,
and these translations are joined together monoton-
ically. This method of initialisation was chosen be-
cause it was simple and fast, and experiments with
an alternative method of initialisation (where the de-
coder was run with random scores assigned to hy-
potheses) showed very little difference in perfor-
mance.

Once the initial set of hypotheses for the new
batch is created, the SampleRank innermost loop
(lines 6-14 in Algorithm 1) proceeds by repeatedly
choosing a sample hypothesis set (y′) and an oracle
hypothesis set (y+), corresponding to the source side
of the batch (x).

Given the current hypothesis set ys−1 =
(e1, . . . , ek), the sample and oracle are chosen as
follows. Firstly, a hypothesis ej is selected randomly
from ys−1 , and a neighbourhood of alternate hy-
potheses N 3 ej generated using operators from
Arun et al. (2009) (explained shortly). Model scores
are calculated for all the hypotheses in N , converted
to probabilities using Equation (1), and a sample e′j
taken from N using these probabilities. The sam-
ple hypothesis set (y′) is then the current hypothesis
set (ys−1) with ej replaced by e′j . The oracle is cre-
ated, analogously Chiang et al. (2008), by choosing
e+
j ∈ N to maximise the sum of gain (calculated on

the batch) and model score. The oracle hypothesis
set (y+) is then ys−1 with ej replaced by e+

j .
We now describe how the neighbourhood is cho-

sen. Given a single hypothesis ej , a neighbourhood
is generated by first randomly choosing one of the
two operators MERGE-SPLIT or REORDER, then ran-
domly choosing a point of application for the op-
erator, then applying it to generate the neighbour-
hood. The MERGE-SPLIT operator can be applied
at any inter-word position, and generates its neigh-
bourhood by listing all hypotheses obtained by op-
tionally merging or splitting the phrases(s) touching
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that position, and retranslating them. The REORDER

operator applies at a pair of target phrases (subject
to distortion limits) and generates a neighbourhood
containing two hypotheses, one with the original or-
der and one with the chosen phrases swapped. The
distortion limits and translation option pruning used
by the operators matches those used in decoding, so
together they are able to explore the same hypothe-
sis space as the decoder. A fuller explanation of the
two operators is give in Arun et al. (2009).

2.2.3 Weight Updates
After choosing the sample and oracle hypothe-

sis set (y′ and y+), the weight update may be per-
formed. The weights of the model are updated if the
relative ranking of the sample hypothesis set and the
oracle hypothesis set provided by the model score is
different from that provided by the gain. The model
score function score(x, y) is defined for a hypothe-
sis set y = e1, . . . ek as follows:

score(x, y) =
k∑

j=1

(
n∑

i=1

wihi(aj , ej , fj)

)
(3)

where x = f1, . . . fk are the corresponding source
sentences. The weight update is performed iff
score(x, y′) 6= score(x, y+) and the following con-
dition is satisfied:

gain(y, y′)− gain(y, y+)
score(x, y′)− score(x, y+)

< 0 (4)

where the gain() function is just the BLEU score.
The weight update used in this work is a MIRA-

like update from ws−1 to ws defined as follows:

ws = arg min
w

(‖w −ws−1‖+ Cξ) (5)

subject to

scorew(x, y+)− scorew(x, y′) + ξ

≥M · (gain(y, y+)− gain(y, y′))
(6)

The margin scaling M is set to be gain(y, y+), so
that ranking violations of low BLEU solutions are as-
signed a lower importance than ranking violations of
high BLEU solutions. The ξ in (5) is a slack variable,
whose influence is controlled by C (set to 0.01), and

which has the effect of “clipping” the magnitude of
the weight updates. Since there is only one con-
straint, there is no need to use an iterative method
such as Hildreth’s, because it is straightforward to
solve the optimisation in (5) and (6) exactly using its
Lagrangian dual, following (Crammer et al., 2006).
The weight update is then given by

ws = ws−1 + min
(

b

‖a‖2
, C

)
a

where a = h(a+
j , e+

j , fj)− h(a′j , e
′
j , fj)

and b = M
(
gain(y, y+)− gain(y, y′)

)
−
(
score(x, y+)− gain(y, y′)

)
After updating the weights, the current hypothesis
set (ys) is updated to be the sample hypothesis set
(y′), as in line 13 of Algorithm 1, and then the next
sample is generated.

2.2.4 Implementation Considerations
After each iteration of the inner loop of Algorithm

1, the weights are collected, and the overall weights
output by the tuning algorithm are the average of all
these collected weights. When each new batch is
loaded at the start of the inner loop, a period of burn-
in is run, analogous to the burn-in used in MCMC
sampling, where no weight updates are performed
and weights are not collected.

In order to help the stability of the tuning algo-
rithm, and to enable it to process the tuning data
more quickly, several chains are run in parallel, each
with their own set of current weights, and each pro-
cessing a distinct subset of the tuning data. The
weights are mixed (averaged) after each epoch. The
same technique is frequently adopted for the aver-
aged perceptron (McDonald et al., 2010).

3 Experiments

3.1 Corpora and Baselines

The experiments in this section were conducted with
French-English and German-English sections of the
WMT20112 shared task data. In particular, we used
News-Commentary data (nc11), and Europarl data
(ep11) for training the generative models. Phrase
tables were built from lowercased versions of the

2http://www.statmt.org/wmt11/

264



parallel texts using the standard Moses3 training
pipeline, with the target side of the texts used to
build Kneser-Ney smoothed language models using
the SRILM toolkit4. These data sets were used to
build two phrase-based translation systems: WMT-
SMALL and WMT-LARGE.

The WMT-SMALL translation system uses a trans-
lation model built from just the nc11 data (about
115,000 sentences), and a 3-gram language model
built from the target side of this data set. The fea-
tures used in the WMT-SMALL translation system
were the five Moses translation features, a language
model feature, a word penalty feature and a distor-
tion distance feature.

To build the WMT-LARGE translation system, both
the ep11 data set and the nc11 data set were con-
catenated together before building the translation
model out of the resulting corpus of about 2 mil-
lion sentences. Separate 5-gram language models
were built from the target side of the two data sets
and then they were interpolated using weights cho-
sen to minimise the perplexity on the tuning set
(Koehn and Schroeder, 2007). In the WMT-LARGE

system, the eight core features were supplemented
with the six features of the lexicalised reordering
model, which was trained on the same data as was
used to build the translation model. Whilst a train-
ing set size of 2 million sentences would not nor-
mally be sufficient to build a competitive system for
an MT shared task, it is sufficient to show that how
SampleRank training performs on a realistic sized
system, whilst still allowing for plenty of experime-
nation with the algorithm’s parameters.

For tuning, the nc-devtest2007 was used,
with the first half of nc-test2007 corpus
used for heldout testing and nc-test2008 and
newstest2010 reserved for final testing. The
tuning and heldout sets are about 1000 sentences in
size, whereas the final test sets are approximately
2000 sentences each.

In Table 1, the performance (in BLEU5) of
untrained and MERT-tuned models on the
heldout set is shown6. The untuned models

3http://www.statmt.org/moses/
4http://www-speech.sri.com/projects/

srilm/
5Calculated with multi-bleu.perl
6All BLEU scores and standard deviations are rounded to one

use the default weights output by the Moses
train-model.perl script, whereas the perfor-
mance of the tuned models is the mean across five
different MERT runs.

All decoding in this paper is with Moses, using
default settings.

Pair System untuned MERT-tuned
fr-en WMT-SMALL 28.0 29.2 (0.2)

WMT-LARGE 29.4 32.5 (0.1)
de-en WMT-SMALL 25.0 25.3 (0.1)

WMT-LARGE 26.6 26.8 (0.2)

Table 1: Untrained and MERT-trained performance
on heldout. MERT training is repeated five times,
with the table showing the mean BLEU, and standard
deviation in brackets.

3.2 SampleRank Training For Small Models

First we look at how SampleRank training compares
to MERT training using the WMT-SMALL models.
Using the smaller models allows reasonably quick
experimentation with a large range of different pa-
rameter settings.

For these experiments, the epoch size is set at
1024, and we vary both the number of cores and the
number of samples used in training. The number of
cores n is set to either 1,2,4,8 or 16, meaning that
each epoch we split the tuning data into n different,
non-overlapping shards, passing a different shard to
each process, so the shard size k is set to 1024/n. In
each process, a burn of 100 ∗k samples is run (with-
out updating the weights), followed by either 100∗k
or 500∗k samples with weight updates, using the al-
gorithm described in Section 2.2. After an epoch is
completed, the current weights are averaged across
all processes to give the new current weights in each
process. At intervals of 50000 samples in each core,
weights are averaged across all samples so far, and
across all cores, and used to decode the heldout set
to measure performance.

In Figure 1, learning curves are shown for the
100 sample-per-sentence case, for 1, 4 and 16 cores,
for French-English. The training is repeated five
times and the error bars in the graph indicate the

decimal place.
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Figure 1: SampleRank learning curves for the WMT-SMALL French-English system, for 1, 4 and 16 cores.
The dashed line shows the mean MERT performance, which has a standard deviation of 0.2.

spread across the different training runs. Increasing
the number of cores makes a clear difference to the
training, with the single core training run failing to
reach the the level of MERT, and the 16 core train-
ing run exceeding the mean MERT performance by
more than 0.5 BLEU. Using a single core also results
in a much bigger training variance, which makes
sense as using more cores and averaging weights
reduces the adverse effect of a single chain going
astray. The higher BLEU score achieved when us-
ing the larger number of cores is probably because
a larger portion of the parameter space is being ex-
plored.

In one sense, the x axes of the graphs in Figure 1
are not comparable, since increasing the number of
cores and keeping the number of samples per core
increases the total computing time. However even if
the single core training was run for much longer, it
did not reach the level of performance obtained by
multi-core training. Limited experimentation with
increasing the core count to 32 did not show any ap-
preciable gain, despite greatly increasing the com-
puting resources required.

The training runs shown in Figure 1 take between
21 hours (for 16 cores) and 35 hours (for a single
core)7. In the 16 core runs each core is doing the
same amount of work as in the single core runs, so
the difference in time is due to the extra effort in-
volved in dealing with larger batches. These times
are for the 100 samples-per-sentence condition, and

7The processors are Intel Xeon 5450 (3GHz)

increasing to 500 samples-per-sentence provides a
speed-up of about 25%, since proportionally less
time is spent on burn-in. Most of the time is spent
in BLEU evaluation, so improved memoisation and
incremental evaluation would reduce training time.

In Table 2 the mean maximum BLEU achieved on
the heldout set at each parameter setting is shown.
By this it is meant that for each of the five training
runs at each (samples,cores) setting, the maximum
BLEU on heldout data is observed, and these max-
ima are averaged across the five runs. It can be seen
that changing the samples-per-sentence makes little
difference, but there is a definite effect of increasing
the core count.

Cores 100 Samples 500 Samples
1 29.1 (0.2) 29.2 (0.1)
2 29.3 (0.1) 29.3 (0.1)
4 29.6 (0.1) 29.5 (0.1)
8 30.0 (0.0) 29.9 (0.1)
16 30.0 (0.1) 29.8 (0.1)

Table 2: Mean maximum heldout performance for
SampleRank training of the French-English WMT-
SMALL model. Standard deviations are shown in
brackets.

The learning curves for the equivalent German-
English model are shown in Figure 2 and show a
fairly different behaviour to their French-English
counterparts. Again, using more cores helps to im-
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prove and stabilise the performance, but there is lit-
tle if any improvement throughout training. As with
MERT training, SampleRank training of the model
weights makes little difference to the BLEU score,
suggesting a fairly flat error surface.

Table 3 shows the mean maximum BLEU score
on heldout data, the equivalent of Table 2, but for
German-English. The results show very little varia-
tion as the samples-per-sentence and core counts are
changed.

Cores 100 Samples 500 Samples
1 25.2 (0.0) 25.3 (0.1)
2 25.4 (0.1) 25.4 (0.1)
4 25.4 (0.1) 25.4 (0.1)
8 25.4 (0.1) 25.4 (0.1)
16 25.3 (0.1) 25.4 (0.1)

Table 3: Mean maximum heldout performance for
SampleRank training of the German-English WMT-
SMALL model. Standard deviations are shown in
brackets

3.3 SampleRank Training for Larger Models

For the training of the WMT-LARGE systems with
SampleRank, similar experiments to those in Sec-
tion 3.2 were run, although only for 8 and 16 cores.
The learning curves for the two language pairs (Fig-
ure 3) show roughly similar patterns to those in
the previous section, in that the French-English sys-
tem gradually increases performance through train-
ing to reach a maximum, as opposed to the German-
English system with its fairly flat learning curve.
Training times are around 27 hours for the 500 sam-
ple curve shown in Figure 3, increasing to 64 hours
for 100 samples-per-sentence.

In Table 4, the mean maximum BLEU scores are
shown for each configuration. of each language pair,
calculated in the manner described in the previous
section. For the larger system, SampleRank shows
a smaller advantage over MERT for French-English,
and little if any gain for German-English. For both
large and small German-English models, neither of
the parameter tuning algorithms are able to lift BLEU

scores very far above the scores obtained from the
untuned weights set by the Moses training script.

Pair Cores 100 Samples 500 Samples
fr-en 8 32.6 (0.1) 32.7 (0.1)

16 32.8 (0.1) 32.9 (0.1)
de-en 8 26.9 (0.0) 27.0 (0.1)

16 26.8 (0.1) 26.9 (0.1)

Table 4: Mean (and standard deviation) of maximum
heldout performance for SampleRank training of the
WMT-LARGE model.

3.4 SampleRank Training for Larger Feature
Sets

The final set of experiments are concerned with us-
ing SampleRank training for larger feature sets than
the 10-20 typically used in MERT-trained models.
The models considered in this section are based on
the WMT-SMALL systems, but also include a fam-
ily of part-of-speech tag based phrase boundary fea-
tures.

The phrase boundary features are defined by con-
sidering the target-side part-of-speech tag bigrams
spanning each phrase boundary in the hypothesis,
and allowing a separate feature to fire for each bi-
gram. Dummy phrases with parts-of-speech <S>
and </S> are inserted at the start and end of the
sentence, and also used to construct phrase bound-
ary features. The example in Figure 4 shows the
phrase-boundary features from a typical hypothe-
sis. The idea is similar to a part-of-speech language
model, but discriminatively trained, and targeted at
how phrases are joined together in the hypothesis.

The target-side part-of-speech tags are added us-
ing the Brill tagger, and incorporated into the phrase
table using the factored translation modelling capa-
bilities of Moses (Koehn and Hoang, 2007).

Adding the phrase boundary features to the WMT-
SMALL system increased the feature count from 8
to around 800. Training experiments were run for
both the French-English and German-English mod-
els, using the same configuration as in Section 3.2,
varying the number of cores (8 or 16) and the num-
ber of samples per sentence (100 or 500). Train-
ing times were similar to those for the WMT-SMALL

system. The mean maximum scores on heldout are
shown in Table 5. We suspect that these features are
fixing some short range reordering problems which
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Figure 2: SampleRank learning curves for the WMT-SMALL German-English system, for 1, 4 and 16 cores.
The dashed line shows the mean MERT performance, which has a standard deviation of 0.1.
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Figure 3: SampleRank learning curves for the WMT-LARGE French-English and German-English systems,
using 8 cores and 500 samples per sentence. The dashed line shows the mean MERT performance, which
has a standard deviation of 0.07 (fr-en) and 0.2 (de-en).

occur in the former language pair, but since the re-
ordering problems in the latter language pair tend to
be longer range, adding these extra features just tend
to add extra noise to the model.

3.5 Comparison of MERT and SampleRank on
Test Data

Final testing was performed on the nc-test2008
and newstest2010 data sets. The former is quite
similar to the tuning and heldout data, whilst the lat-
ter can be considered to be “out-of-domain”, so pro-
vides a check to see whether the model weights are
being tuned too heavily towards the domain.

For the SampleRank experiments on the test set,

the best training configurations were chosen from
the results in Tables 2, 3, 4 and 5, and the best per-
forming weight sets for each of the five runs for this
configuration. For the MERT trained models, the
same five models from Table 1 were used. The test
set results are shown in Table 6.

The patterns observed on the heldout data carry
over, to a large extent, to the test data. This is
especially true for the WMT-SMALL system, where
similar improvements (for French-English) over the
MERT trained system are observed on the SampleR-
ank trained system. For the WMT-LARGE system,
the slightly improved performance that SampleRank
offered on the in-domain data is no longer there, al-
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Hypothesis [europe ’s] [after] [racial] [house divided against itself]
Tags <S> NNP POS IN JJ NN VBN IN PRP </S>

This produces five phrase boundary features: <S>:NNP, POS:IN, IN:JJ, JJ:NN and PRP:</S>.

Figure 4: The definition of the phrase boundary feature from part-of-speech tags

fr-en de-en
Training System nc-test2008 newstest2010 nc-test2008 newstest2010

MERT WMT-SMALL 28.1 (0.1) 19.6 (0.1) 25.9 (0.1) 16.4 (0.2)
SampleRank WMT-SMALL 28.7 (0.0) 20.1 (0.1) 25.9 (0.1) 16.6 (0.1)
SampleRank WMT-SMALL+pb 28.8 (0.1) 19.8 (0.1) 25.9 (0.1) 16.7 (0.1)
MERT WMT-LARGE 30.1 (0.1) 22.9 (0.1) 28.0 (0.2) 19.1 (0.2)
SampleRank WMT-LARGE 30.0 (0.1) 23.6 (0.3) 28.1 (0.1) 19.5 (0.2)

Table 6: Comparison of MERT trained and SampleRank trained models on the test sets. The WMT-
SMALL+pb model is the model with phrase boundary features, as described in Section 3.4

Pair Cores 100 Samples 500 Samples
fr-en 8 30.2 (0.0) 30.2 (0.0)

16 30.3 (0.0) 30.3 (0.00)
de-en 8 25.1 (0.1) 25.1 (0.0)

16 25.0 (0.1) 25.0 (0.0)

Table 5: Mean (and standard deviation) of maximum
heldout performance for SampleRank training of the
WMT-SMALL model, with the phrase boundary fea-
ture.

though interestingly there is a reasonable improve-
ment on out-of-domain, over the MERT trained
model, similar to the effect observed in (Arun et
al., 2010). Finally, the improvements offered by the
phrase boundary feature are reduced, perhaps an in-
dication of some over-fitting.

4 Related Work

Whilst MERT (Och, 2003) is still the dominant al-
gorithm used for discriminative training (tuning) of
SMT systems, research into improving on MERT’s
line search has tended to focus either on gradient-
based or margin-based techniques.

Gradient-based techniques require a differentiable
objective, and expected sentence BLEU is the most
popular choice, beginning with Smith and Eisner
(2006). They used n-best lists to calculate the fea-

ture expectations required for the gradient, optimis-
ing a second order Taylor approximation of expected
sentence BLEU. They also introduced the idea of de-
terministic annealing to the SMT community, where
an entropy term is added to the objective in train-
ing, and has its temperature progressively lowered
in order to sharpen the model probability distribu-
tion. The work of Smith and Eisner was extended
by Li and Eisner (2009) who were able to obtain
much better estimates of feature expectations by us-
ing a packed chart instead of an n-best list. They
also demonstrated that their method could extend to
large feature sets, although their experiments were
only run on small data sets.

An alternative method of calculating the feature
expectations for expected BLEU training is Monte-
Carlo Markov Chain (MCMC) approximation, and
this was explored in (Arun et al., 2009) and (Arun et
al., 2010). The sampling methods introduced in this
earlier work form the basis of the current work, al-
though in using the sampler for expected BLEU train-
ing, many samples must be collected before making
a parameter weight update, as opposed to the cur-
rent work where weights may be updated after ev-
ery sample. One novel feature of Arun et al. (2010)
is that they were able to train to directly maximise
corpus BLEU, instead of its sentence-based approx-
imation, although this only made a small difference
to the results. The training methods in (Arun et al.,
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2010) are very resource intensive, with the experi-
ments running for 48 hours on around 40 cores, on
a pruned phrase table derived from Europarl, and a
3-gram language model.

Instead of using expected BLEU as a training ob-
jective, Blunsom et al. (2008) trained their model to
directly maximise the log-likelihood of the discrim-
inative model, estimating feature expectations from
a packed chart. Their model treats derivations as
a latent variable, directly modelling the translation
probability.

Margin-based techniques have the advantage that
they do not have to employ expensive and com-
plex algorithms to calculate the feature expectations.
Typically, either perceptron ((Liang et al., 2006),
(Arun and Koehn, 2007)) or MIRA ((Watanabe et
al., 2007), (Chiang et al., 2008)) is employed, but
in both cases the idea is to repeatedly decode sen-
tences from the tuning set, and update the parame-
ter weights if the best hypothesis according to the
model differs from some “oracle” sentence. The ap-
proaches differ in the way they compute the oracle
sentence, as well as the way the weights are updated.
Normally sentences are processed one-by-one, with
a weight update after considering each sentence, and
sentence BLEU is used as the objective. However
Chiang et al. (2008) introduced an approximation to
corpus BLEU by using a rolling history. Both papers
on MIRA demonstrated its ability to extend to large
numbers of features.

In the only known application of SampleRank to
SMT, Roth et al. (2010) deploys quite a different
translation model to the usual phrase-based model,
allowing overlapping phrases and implemented as a
factor graph. Decoding is with a rather slow stochas-
tic search and performance is quite poor, but this
model, in common with the training algorithm pre-
sented in the current work, permits features which
depend on the whole sentence.

5 Discussion and Conclusions

The results presented in Table 6 show that Sam-
pleRank is a viable method of parameter tuning for
phrase-based MT systems, beating MERT in many
cases, and equalling it in others. It is also able to
do what MERT cannot do, and scale to a large num-
ber of features, with the phrase boundary feature of

Section 3.4 providing a “proof-of-concept”.
A further potential advantage of SampleRank is

that it allows training with features which depend
on the whole sentence, or even the whole document,
since a full set of hypotheses is retained through-
out training. Of course adding these features pre-
cludes decoding with the usual dynamic program-
ming based decoders, and would require an alterna-
tive method, such as MCMC (Arun et al., 2009).

As with the other alternatives to MERT men-
tioned in this paper, SampleRank training presents
the problem of determining convergence. With
MERT this is straightforward, since training (nor-
mally) comes to a halt when the estimated tuning
BLEU stops increasing and the weights stop chang-
ing. With methods such as minimum risk training,
MIRA and SampleRank, some kind of early stop-
ping criterion is usually employed, which lengthens
training unnecessarily, and adds costly decodes to
the training process. Building up sufficient practical
experience with each of these methods will offset
these problems somewhat.

Another important item for future work is to com-
pare SampleRank training with MIRA training, in
terms of performance, speed and ability to handle
large feature sets.

The code used for the experiments in this paper is
available under an open source license8.
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Abstract

We present an empirical study of instance se-
lection techniques for machine translation. In
an active learning setting, instance selection
minimizes the human effort by identifying
the most informative sentences for transla-
tion. In a transductive learning setting, se-
lection of training instances relevant to the
test set improves the final translation qual-
ity. After reviewing the state of the art in
the field, we generalize the main ideas in a
class of instance selection algorithms that use
feature decay. Feature decay algorithms in-
crease diversity of the training set by devalu-
ing features that are already included. We
show that the feature decay rate has a very
strong effect on the final translation quality
whereas the initial feature values, inclusion
of higher order features, or sentence length
normalizations do not. We evaluate the best
instance selection methods using a standard
Moses baseline using the whole 1.6 million
sentence English-German section of the Eu-
roparl corpus. We show that selecting the
best 3000 training sentences for a specific
test sentence is sufficient to obtain a score
within 1 BLEU of the baseline, using 5% of
the training data is sufficient to exceed the
baseline, and a∼ 2 BLEU improvement over
the baseline is possible by optimally selected
subset of the training data. In out-of-domain
translation, we are able to reduce the train-
ing set size to about 7% and achieve a similar
performance with the baseline.

1 Introduction

Statistical machine translation (SMT) makes use
of a large number of parallel sentences, sentences
whose translations are known in the target lan-
guage, to derive translation tables, estimate param-
eters, and generate the actual translation. Not all
of the parallel corpus nor the translation table that
is generated is used during decoding a given set
of test sentences and filtering is usually performed
for computational advantage (Koehn et al., 2007).
Some recent regression-based statistical machine
translation systems rely on a small sized training
data to learn the mappings between source and tar-
get features (Wang and Shawe-Taylor, 2008; Ser-
rano et al., 2009; Bicici and Yuret, 2010). Regres-
sion has some computational disadvantages when
scaling to large number of training instances.

Previous work shows that the more the training
data, the better the translations become (Koehn,
2006). However, with the increased size of the
parallel corpus there is also the added noise, mak-
ing relevant instance selection important. Phrase-
based SMT systems rely heavily on accurately
learning word alignments from the given parallel
corpus. Proper instance selection plays an impor-
tant role in obtaining a small sized training set with
which correct alignments can be learned. Word-
level translation accuracy is also affected by the
number of times a word occurs in the parallel cor-
pus (Koehn and Knight, 2001). Koehn and Knight
find that about 50 examples per word are required
to achieve a performance close to using a bilingual
lexicon in their experiments. Translation perfor-
mance can improve as we include multiple possi-
ble translations for a given word, which increases
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the diversity of the training set.
Transduction uses test instances, which can

sometimes be accessible at training time, to learn
specific models tailored towards the test set which
also reduces computation by not using the full
training set. Transductive retrieval selects train-
ing data close to the test set given a parallel corpus
and a test set. This work shows that transductive
retrieval of the training set for statistical machine
translation allows us to achieve a performance bet-
ter than using all of the parallel corpus. When se-
lecting training data, we seek to maximize the cov-
erage or the percentage of test source and target
features (i.e. n-grams) found in the training set us-
ing minimal number of target training features and
a fixed number of training instances. Diversifying
the set of training sentences can help us increase
the coverage. We show that target coverage bounds
the achievable BLEU score with a given training
set and small increases can result in large increases
on this BLEU bound.

We develop the feature decay algorithms (FDA)
that aim to maximize the coverage of the target
language features and achieve significant gains in
translation performance. We find that decaying
feature weights has significant effect on the per-
formance. We achieve improvements of ∼2 BLEU
points using about 20% of the available training
data in terms of target words and ∼1 BLEU points
with only about 5%. We show that selecting 3000
instances for a test sentence is sufficient to obtain
a score within 1 BLEU of the baseline. In the out-
of-domain translation task, we are able to reduce
the training set size to its 7% to achieve a similar
performance with the baseline.

The next section reviews related previous work.
We discuss the FDA in section 3. Section 4
presents our coverage and translation results both
in and out-of-domain and includes an instance se-
lection method also designed for improving word
alignment results. We list our contributions in the
last section.

2 Related Work
Transductive learning makes use of test instances,
which can sometimes be accessible at training
time, to learn specific models tailored towards the
test set. Selection of training instances relevant to
the test set improves the final translation quality as

in transductive learning and decreases human ef-
fort by identifying the most informative sentences
for translation as in active learning. Instance se-
lection in a transductive learning framework se-
lects the best instances for a given test set (Lü et
al., 2007). Active learning selects training samples
that will benefit the learning algorithm the most
over the unlabeled dataset U from a labeled train-
ing set L or from U itself after labeling (Banko and
Brill, 2001). Active learning in SMT selects which
instances to add to the training set to improve the
performance of a baseline system (Haffari et al.,
2009; Ananthakrishnan et al., 2010). Recent work
involves selecting sentence or phrase translation
tasks for external human effort (Bloodgood and
Callison-Burch, 2010). Below we present exam-
ples of both with a label indicating whether they
follow an approach close to active learning [AL] or
transductive learning [TL] and in our experiments
we use the transductive framework.

TF-IDF [TL]: Lü et al. (2007) use tf-idf infor-
mation retrieval technique based cosine score to se-
lect a subset of the parallel corpus close to the test
set for SMT training. They outperform the baseline
system when the top 500 training instances per test
sentence are selected. The terms used in their tf-idf
measure correspond to words where this work fo-
cuses on bigram feature coverage. When the com-
bination of the top N selected sentences are used
as the training set, they show increase in the per-
formance at the beginning and decrease when 2000
sentences are selected for each test sentence.

N-gram coverage [AL]: Eck et al. (2005) use
n-gram feature coverage to sort and select training
instances using the following score:

φNGRAM (S) =

∑n
i=1

∑
unseen x ∈ Xi(S) C(x)

|S|
,

(1)
for sentence S with Xi(S) storing the i-grams
found in S and C(x) returning the count of x in
the parallel corpus. φNGRAM score sums over un-
seen n-grams to increase the coverage of the train-
ing set. The denominator involving the length of
the sentence takes the translation cost of the sen-
tence into account. Eck et al. (2005) also note
that longer sentences are more difficult for train-
ing SMT models. In their experiments, they are
not able to reach a performance above the baseline

2
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system’s BLEU score, which is using all of the par-
allel corpus, but they achieve close performance by
using about 15% of the parallel corpus.

DWDS [AL]: Density weighted diversity sam-
pling (DWDS) (Ambati et al., 2010) score tries to
select sentences containing the n-gram features in
the unlabeled dataset U while increasing the di-
versity among the sentences selected, L (labeled).
DWDS increases the score of a sentence with in-
creasing frequency of its n-grams found in U and
decreases with increasing frequency in the already
selected set of sentences, L, in favor of diversity.
Let PU (x) denote the probability of feature x in U
and CL(x) denote its count in L. Then:

d(S) =

∑
x∈X(S) PU (x)e−λCL(x)

|X(S)|
(2)

u(S) =

∑
x∈X(S) I(x 6∈ X(L))

|X(S)|
(3)

φDWDS(S) =
2d(S)u(S)
d(S) + u(S)

, (4)

where X(S) stores the features of S and λ is a
decay parameter. d(S) denotes the density of S
proportional to the probability of its features in U
and inversely proportional to their counts in L and
u(S) its uncertainty, measuring the percentage of
new features in S. These two scores are combined
using harmonic mean. DWDS tries to select sen-
tences containing similar features in U with high
diversity. In their active learning experiments, they
selected 1000 training instances in each iteration
and retrained the SMT system.

Log-probability ratios [AL]: Haffari et
al. (2009) develop sentence selection scores using
feature counts in L and U , increasing for frequent
features in U and decreasing for frequent features
in L. They use geometric and arithmetic averages
of log-probability ratios in an active learning
setting where 200 sentences from U are selected
and added to L with their translations for 25
iterations (Haffari et al., 2009). Later, Haffari
et al. (2009) distinguish between features found
in the phrase table, xreg, and features not found,
xoov. OOV features are segmented into subfeatures
(i.e. feature “go to school” is segmented as:
(go to school), (go)(to school), (go to)(school),
(go)(to)(school)). Expected log probability ratio

(ELPR) score is used:

φELPR(S) = 0.4
|Xreg(S)|

∑
x∈Xreg(S)

log
PU (x)
PL(x)

+ 0.6
|Xoov(S)|

∑
x∈Xoov(S)

∑
h∈H(x)

1
|H(x)|

∑
y∈Yh(x)

log
PU (y)
PL(y)

,

(5)
where H(x) return the segmentations of x and
Yh(x) return the features found in segment h.
φELPR performs better than geometric average in
their experiments (Haffari and Sarkar, 2009).

Perplexity [AL & TL]: Perplexity of the train-
ing instance as well as inter-SMT-system disagree-
ment are also used to select training data for trans-
lation models (Mandal et al., 2008). The increased
difficulty in translating a parallel sentence or its
novelty as found by the perplexity adds to its im-
portance for improving the SMT model’s perfor-
mance. A sentence having high perplexity (a rare
sentence) in L and low perplexity (a common sen-
tence) in U is considered as a candidate for addi-
tion. They are able to improve the performance
of a baseline system trained on some initial corpus
together with additional parallel corpora using the
initial corpus and part of the additional data.

Alignment [TL]: Uszkoreit et al. (2010) mine
parallel text to improve the performance of a base-
line translation model on some initial document
translation tasks. They retrieve similar documents
using inverse document frequency weighted cosine
similarity. Then, they filter nonparallel sentences
using their word alignment performance, which is
estimated using the following score:

score(A) =
∑

(s,t)∈A

ln
p(s, t)
p(s)p(t)

, (6)

where A stands for an alignment between source
and target words and the probabilities are estimated
using a word aligned corpus. The produced paral-
lel data is used to expand a baseline parallel corpus
and shown to improve the translation performance
of machine translation systems.

3 Instance Selection with Feature
Decay

In this section we will describe a class of instance
selection algorithms for machine translation that

3
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use feature decay, i.e. increase the diversity of the
training set by devaluing features that have already
been included. Our abstraction makes three com-
ponents of such algorithms explicit permitting ex-
perimentation with their alternatives:

• The value of a candidate training sentence as
a function of its features.

• The initial value of a feature.

• The update of the feature value as instances
are added to the training set.

A feature decay algorithm (FDA) aims to max-
imize the coverage of the target language features
(such as words, bigrams, and phrases) for the test
set. A target language feature that does not ap-
pear in the selected training instances will be dif-
ficult to produce regardless of the decoding algo-
rithm (impossible for unigram features). In gen-
eral we do not know the target language features,
only the source language side of the test set is avail-
able. Unfortunately, selecting a training instance
with a particular source language feature does not
guarantee the coverage of the desired target lan-
guage feature. There may be multiple translations
of a feature appropriate for different senses or dif-
ferent contexts. For each source language feature
in the test set, FDA tries to find as many train-
ing instances as possible to increase the chances
of covering the appropriate target language feature.
It does this by reducing the value of the features
that are already included after picking each train-
ing instance. Algorithm 1 gives the pseudo-code
for FDA.

The input to the algorithm is a parallel corpus,
the number of desired training instances, and the
source language features of the test set. We use
unigram and bigram features; adding trigram fea-
tures does not seem to significantly affect the re-
sults. The user has the option of running the algo-
rithm for each test sentence separately, then possi-
bly combining the resulting training sets. We will
present results with these variations in Section 4.

The first foreach loop initializes the value of
each test set feature. We experimented with ini-
tial feature values that are constant, proportional
to the length of the n-gram, or log-inverse of the
corpus frequency. We have observed that the ini-
tial value does not have a significant effect on the

Algorithm 1: The Feature Decay Algorithm
Input: Bilingual corpus U , test set features F ,

and desired number of training
instances N .

Data: A priority queue Q, sentence scores
score, feature values fvalue.

Output: Subset of the corpus to be used as the
training data L ⊆ U .

foreach f ∈ F do1

fvalue(f)← init(f,U)2

foreach S ∈ U do3

score(S)←
∑
f∈features(S) fvalue(f)4

push(Q, S,score(S))5

while |L| < N do6

S ← pop(Q)7

score(S)←
∑
f∈features(S) fvalue(f)8

if score(S) ≥ topval(Q) then9

L ← L ∪ {S}10

foreach f ∈ features(S) do11

fvalue(f)← decay(f,U ,L)12

else13

push(Q, S,score(S))14

quality of training instances selected. The feature
decay rule dominates the behavior of the algorithm
after the first few iterations. However, we prefer
the log-inverse values because they lead to fewer
score ties among candidate instances and result in
faster running times.

The second foreach loop initializes the score for
each candidate training sentence and pushes them
onto a priority queue. The score is calculated as the
sum of the feature values. Note that as we change
the feature values, the sentence scores in the prior-
ity queue will no longer be correct. However they
will still be valid upper bounds because the fea-
ture values only get smaller. Features that do not
appear in the test set are considered to have zero
value. This observation can be used to speed up
the initialization by using a feature index and only
iterating over the sentences that have features in
common with the test set.

Finally the while loop populates the training set
by picking candidate sentences with the highest
scores. This is done by popping the top scoring
candidate S from the priority queue at each itera-
tion. We recalculate its score because the values
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of its features may have changed. We compare the
recalculated score of S with the score of the next
best candidate. If the score of S is equal or better
we are sure that it is the top candidate because the
scores in the priority queue are upper bounds. In
this case we place S in our training set and decay
the values of its features. Otherwise we push S
back on the priority queue with its updated score.

The feature decay function on Line 12 is the
heart of the algorithm. Unlike the choice of fea-
tures (bigram vs trigram) or their initial values
(constant vs log–inverse–frequency) the rate of de-
cay has a significant effect on the performance. We
found it is optimal to reduce feature values at a rate
of 1/n where n is the current training set count
of the feature. The results get significantly worse
with no feature decay. They also get worse with
faster, exponential feature decay, e.g. 1/2n. Ta-
ble 1 presents the experimental results that support
these conclusions. We use the following settings
for the experiments in Section 4:

init(f,U) = 1 or log(|U|/cnt(f,U))

decay(f,U ,L) =
init(f,U)

1 + cnt(f,L)
or

init(f,U)
1 + 2cnt(f,L)

init decay en→de de→en
1 none .761 .484 .698 .556
log(1/f) none .855 .516 .801 .604
1 1/n .967 .575 .928 .664
log(1/f) 1/n .967 .570 .928 .656
1 1/2n .967 .553 .928 .653
log(1/f) 1/2n .967 .557 .928 .651

Table 1: FDA experiments. The first two columns
give the initial value and decay formula used for
features. f is the corpus frequency of a feature
and n is its count in selected instances. The next
four columns give the expected coverage of the
source and target language bigrams of a test sen-
tence when 100 training sentences are selected.

4 Experiments
We perform translation experiments on the
English-German language pair using the parallel

corpus provided in WMT’10 (Callison-Burch et
al., 2010). The English-German section of the Eu-
roparl corpus contains about 1.6 million sentences.
We perform in-domain experiments to discriminate
among different instance selection techniques bet-
ter in a setting with low out-of-vocabulary rate. We
randomly select the test set test with 2, 588 tar-
get words and separate development set dev with
26, 178 target words. We use the language model
corpus provided in WMT’10 (Callison-Burch et
al., 2010) to build a 5-gram model.

We use target language bigram coverage, tcov,
as a quality measure for a given training set, which
measures the percentage of the target bigram fea-
tures of the test sentence found in a given training
set. We compare tcov and the translation perfor-
mance of FDA with related work. We also perform
small scale SMT experiments where only a couple
of thousand training instances are used for each test
sentence.

4.1 The Effect of Coverage on Translation

BLEU (Papineni et al., 2001) is a precision based
measure and uses n-gram match counts up to or-
der n to determine the quality of a given transla-
tion. The absence of a given word or translating
it as another word interrupts the continuity of the
translation and decreases the BLEU score even if
the order among the words is determined correctly.
Therefore, the target coverage of an out-of-domain
test set whose translation features are not found in
the training set bounds the translation performance
of an SMT system.

We estimate this translation performance bound
from target coverage by assuming that the miss-
ing tokens can appear randomly at any location of
a given sentence where sentence lengths are nor-
mally distributed with mean 25.6 and standard de-
viation 14.1. This is close to the sentence length
statistics of the German side Europarl corpus used
in WMT’10 (WMT, 2010). We replace all un-
known words found with an UNK token and calcu-
late the BLEU score. We perform this experiment
for 10, 000 instances and repeat for 10 times.

The obtained BLEU scores for target cover-
age values is plotted in Figure 1 with label esti-
mate. We also fit a third order polynomial func-
tion of target coverage 0.025 BLEU scores above
the estimate values to show the similarity with the
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Figure 1: Effect of coverage on translation perfor-
mance. BLEU bound is a third-order function of
target coverage. High coverage→ High BLEU.

BLEU scores bound estimated, whose parameters
are found to be [0.56, 0.53,−0.09, 0.003] with a
least-squares fit. Figure 1 shows that the BLEU
score bound obtained has a third-order polyno-
mial relationship with target coverage and small
increases in the target coverage can result in large
increases on this BLEU bound.

4.2 Coverage Results

We select N training instances per test sentence
using FDA (Algorithm 1), TF-IDF with bigram
features, NGRAM scoring (Equation 1), DWDS
(Equation 4), and ELPR (Equation 5) techniques
from previous work. For the active learning algo-
rithms, source side test corpus becomes U and the
selected training set L. For all the techniques, we
compute 1-grams and 2-grams as the features used
in calculating the scores and add only one sentence
to the training set at each iteration except for TF-
IDF. We set λ parameter of DWDS to 1 as given
in their paper. We adaptively select the top scor-
ing instance at each step from the set of possible
sentences U with a given scorer φ(.) and add the
instance to the training set, L, until the size of L
reaches N for the related work other than TF-IDF.
We test all algorithms in this transductive setting.

We measure the bigram coverage when all of
the training sentences selected for each test sen-
tence are combined. The results are presented in
Figure 2 where the x-axis is the number of words

of the training set and y-axis is the target cover-
age obtained. FDA has a steep slope in its increase
and it is able to reach target coverage of ∼ 0.84.
DWDS performs worse initially but its target cov-
erage improve after a number of instances are se-
lected due to its exponential feature decay proce-
dure. TF-IDF performs worse than DWDS and it
provides a fast alternative to FDA instance selec-
tion but with some decrease in coverage. ELPR
and NGRAM instance selection techniques per-
form worse. NGRAM achieves better coverage
than ELPR, although it lacks a decay procedure.

When we compare the sentences selected, we
observe that FDA prefers longer sentences due to
summing feature weights and it achieves larger tar-
get coverage value. NGRAM is not able to discrim-
inate between sentences well and a lot of sentences
of the same length get the same score when the un-
seen n-grams belong to the same frequency class.
The statistics of L obtained with the instance se-
lection techniques differ from each other as given
in Table 2, where N = 1000 training instances se-
lected per test sentence. We observe that DWDS
has fewer unique target bigram features than TF-
IDF although it selects longer target sentences.
NGRAM obtains a large number of unique target
bigrams although its selected target sentences have
similar lengths with DWDS and ELPR prefers short
sentences.

Technique Unique bigrams Words per sent tcov

FDA 827,928 35.8 .74
DWDS 412,719 16.7 .67
TF-IDF 475,247 16.2 .65

NGRAM 626,136 16.6 .55
ELPR 172,703 10.9 .35

Table 2: Statistics of the obtained target L forN =
1000.

4.3 Translation Results

We develop separate phrase-based SMT models
using Moses (Koehn et al., 2007) using default set-
tings with maximum sentence length set to 80 and
obtained baseline system score as 0.3577 BLEU.
We use the training instances selected by FDA in
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Figure 2: Target coverage curve comparison with previous work. Figure shows the rate of increase in
tcov as the size of L increase.

three learning settings:

L∪ L is the union of the instances selected for
each test sentence.

L∪F L is selected using all of the features found
in the test set.

LI L is the set of instances selected for each test
sentence.

We develop separate Moses systems with each
training set and LI corresponds to developing a
Moses system for each test sentence. L∪ results
are plot in Figure 3 where we increasingly select
N ∈ {100, 200, 500, 1000, 2000, 3000, 5000,
10000} instances for each test sentence for train-
ing. The improvements over the baseline are sta-
tistically significant with paired bootstrap resam-
pling using 1000 samples (Koehn, 2004). As we
select more instances, the performance of the SMT
system increases as expected and we start to see a
decrease in the performance after selecting ∼107

target words. We obtain comparable results for the
de-en direction. The performance increase is likely
to be due to the reduction in the number of noisy or
irrelevant training instances and the increased pre-
cision in the probability estimates in the generated

phrase tables.
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Figure 3: BLEU vs. the number of target words in
L∪.

L∪F results given in Table 3 show that we can
achieve within 1 BLEU performance using about
3% of the parallel corpus target words (30,000 in-
stances) and better performance using only about
5% (50,000 instances).

The results with LI when building an individ-
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# sent # target words BLEU NIST
10,000 449,116 0.3197 5.7788
20,000 869,908 0.3417 6.0053
30,000 1,285,096 0.3492 6.0246
50,000 2,089,403 0.3711 6.1561

100,000 4,016,124 0.3648 6.1331
ALL 41,135,754 0.3577 6.0653

Table 3: Performance for en-de using L∪F . ALL
corresponds to the baseline system using all of the
parallel corpus. bold correspond to statistically
significant improvement over the baseline result.

ual Moses model for each test sentence are given
in Table 4. Individual SMT training and transla-
tion can be preferable due to smaller computational
costs and high parallelizability. As we translate
a single sentence with each SMT system, tuning
weights becomes important. We experiment three
settings: (1) using 100 sentences for tuning, which
are randomly selected from dev.1000, (2) using the
mean of the weights obtained in (1), and (3) us-
ing the weights obtained in the union learning set-
ting (L∪). We observe that we can obtain a perfor-
mance within 2 BLEU difference to the baseline
system by training on 3000 instances per sentence
(underlined) using the mean weights and 1 BLEU
difference using the union weights. We also exper-
imented with increasing the N -best list size used
during MERT optimization (Hasan et al., 2007),
with increased computational cost, and observed
some increase in the performance.

N 100 dev sents Mean Union
1000 0.3149 0.3242 0.3354
2000 0.3258 0.3352 0.3395
3000 0.3270 0.3374 0.3501
5000 0.3217 0.3303 0.3458

Table 4: LI performance for en-de using 100 sen-
tences for tuning or mean of the weights or dev
weights obtained with the union setting.

Comparison with related work: Table 5
presents the translation results compared with pre-
vious work selecting 1000 instances per test sen-
tence. We observe that coverage and translation
performance are correlated. Although the cover-
age increase of DWDS and FDA appear similar,

due to the third-order polynomial growth of BLEU
with respect to coverage, we achieve large BLEU
gains in translation. We observe increased BLEU
gains when compared with the results of TF-IDF,
NGRAM, and ELPR in order.

FDA DWDS TF-IDF NGRAM ELPR
0.3645 0.3547 0.3405 0.2572 0.2268

Table 5: BLEU results using different techniques
with N = 1000. High coverage→ High BLEU.

We note that DWDS originally selects instances
using the whole test corpus to estimate PU (x) and
selects 1000 instances at each iteration. We exper-
imented with both of these settings and obtained
0.3058 and 0.3029 BLEU respectively. Lower
performance suggest the importance of updating
weights after each instance selection step.

4.4 Instance Selection for Alignment

We have shown that high coverage is an integral
part of training sets for achieving high BLEU per-
formance. SMT systems also heavily rely on the
word alignment of the parallel corpus to derive
a phrase table that can be used for translation.
GIZA++ (Och and Ney, 2003) is commonly used
for word alignment and phrase table generation,
which is prone to making more errors as the length
of the training sentence increase (Ravi and Knight,
2010). Therefore, we analyze instance selection
techniques that optimize coverage and word align-
ment performance and at the same time do not
produce very long sentences. Too few words per
sentence may miss the phrasal structure, whereas
too many words per sentence may miss the actual
word alignment for the features we are interested.
We are also trying to retrieve relevant training sen-
tences for a given test sentence to increase the fea-
ture alignment performance.

Shortest: A baseline strategy that can minimize
the training feature set’s size involves selecting the
shortest translations containing each feature.

Co-occurrence: We use co-occurrence of
words in the parallel corpus to retrieve sentences
containing co-occurring items. Dice’s coeffi-
cient (Dice, 1945) is used as a heuristic word align-
ment technique giving an association score for
each pair of word positions (Och and Ney, 2003).
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We define Dice’s coefficient score as:

dice(x, y) =
2C(x, y)
C(x)C(y)

, (7)

where C(x, y) is the number of times x and y co-
occur and C(x) is the count of observing x in the
selected training set. Given a test source sentence,
SU , we can estimate the goodness of a training
sentence pair, (S, T ), by the sum of the alignment
scores:

φdice(SU , S, T ) =

X
x∈X(SU )

|T |X
j=1

X
y∈Y (x)

dice(y, Tj)

|T | log |S| ,

(8)
where X(SU ) stores the features of SU and Y (x)
lists the tokens in feature x. The difficulty of word
aligning a pair of training sentences, (S, T ), can be
approximated by |S||T |. We use a normalization
factor proportional to |T | log |S|.

The average target words per sentence using
φdice drops to 26.2 compared to 36.3 of FDA.
We still obtain a better performance than the base-
line en-de system with the union of 1000 train-
ing instances per sentence with 0.3635 BLEU and
6.1676 NIST scores. Coverage comparison with
FDA shows slight improvement with lower number
of target bigrams and similar trend for others (Fig-
ure 4). We note that shortest strategy achieves bet-
ter performance than both ELPR and NGRAM. We
obtain 0.3144 BLEU and 5.5 NIST scores in the
individual translation task with 1000 training in-
stances per sentence and 0.3171 BLEU and 5.4662
NIST scores when the mean of the weights is used.

4.5 Out-of-domain Translation Results
We have used FDA and dice algorithms to select
training sets for the out-of-domain challenge test
sets used in (Callison-Burch et al., 2011). The
parallel corpus contains about 1.9 million training
sentences and the test set contain 3003 sentences.
We built separate Moses systems using all of the
parallel corpus for the language pairs en-de, de-en,
en-es, and es-en. We created training sets using
all of the features of the test set to select train-
ing instances. The results given in Table 6 show
that we can achieve similar BLEU performance us-
ing about 7% of the parallel corpus target words
(200,000 instances) using dice and about 16% us-
ing FDA. In the out-of-domain translation task, we

are able to reduce the training set size to achieve
a performance close to the baseline. The sample
points presented in the table is chosen proportional
to the relative sizes of the parallel corpus sizes of
WMT’10 and WMT’11 datasets and the training
set size of the peak in Figure 3. We may be able
to achieve better performance in the out-of-domain
task as well. The sample points in Table 6 may be
on either side of the peak.

5 Contributions

We have introduced the feature decay algorithms
(FDA), a class of instance selection algorithms that
use feature decay, which achieves better target cov-
erage than previous work and achieves significant
gains in translation performance. We find that de-
caying feature weights has significant effect on the
performance. We demonstrate that target coverage
and translation performance are correlated, show-
ing that target coverage is also a good indicator of
BLEU performance. We have shown that target
coverage provides an upper bound on the transla-
tion performance with a given training set.

We achieve improvements of ∼2 BLEU points
using about 20% of the available training data in
terms of target words with FDA and ∼ 1 BLEU
points with only about 5%. We have also shown
that by training on only 3000 instances per sen-
tence we can reach within 1 BLEU difference to
the baseline system. In the out-of-domain transla-
tion task, we are able to reduce the training set size
to achieve a similar performance with the baseline.

Our results demonstrate that SMT systems can
improve their performance by transductive train-
ing set selection. We have shown how to select in-
stances and achieved significant performance im-
provements.
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en-de de-en en-es es-en
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Abstract

Most of the freely available parallel data to
train the translation model of a statistical ma-
chine translation system comes from very spe-
cific sources (European parliament, United
Nations, etc). Therefore, there is increasing
interest in methods to perform an adaptation
of the translation model. A popular approach
is based on unsupervised training, also called
self-enhancing. Both only use monolingual
data to adapt the translation model. In this pa-
per we extend the previous work and provide
new insight in the existing methods. We report
results on the translation between French and
English. Improvements of up to 0.5 BLEU
were observed with respect to a very com-
petitive baseline trained on more than 280M
words of human translated parallel data.

1 Introduction

Adaptation of a statistical machine translation sys-
tem (SMT) is a topic of increasing interest during
the last years. Statistical (n-gram) language models
are used in many domains and several approaches to
adapt such models were proposed in the literature,
for instance in the framework of automatic speech
recognition. Many of these approaches were suc-
cessfully used to adapt the language model of an
SMT system. On the other hand, it seems more chal-
lenging to adapt the other components of an SMT
system, namely the translation and reordering mod-
els. In this work we consider the adaptation of the
translation model of a phrase-based SMT system.

While rule-based machine translation rely on
rules and linguistic resources built for that purpose,

SMT systems can be developed without the need of
any language-specific expertise and are only based
on bilingual sentence-aligned data (“bitexts”) and
large monolingual texts. However, while monolin-
gual data are usually available in large amounts and
for a variety of tasks, bilingual texts are a sparse re-
source for most language pairs.

Current parallel corpora mostly come from one
domain (proceedings of the Canadian or European
Parliament, or of the United Nations). This is prob-
lematic when SMT systems trained on such corpora
are used for general translations, as the language jar-
gon heavily used in these corpora is not appropriate
for everyday life translations or translations in some
other domain. This problem could be attacked by ei-
ther searching for more in-domain training data, e.g.
by exploring comparable corpora or the WEB, or by
adapting the translation model to the task. In this
work we consider translation model adaptation with-
out using additional bilingual data. One can dis-
tinguish two types of translation model adaptation:
first, adding new source words or/and new transla-
tions to the model; and second, modifying the prob-
abilities of the existing model to better fit the topic
of the task. These two directions are complementary
and could be simultaneously applied. In this work
we focus on the second type of adaptation.

In this work, we focus on statistical phrase-
based machine translations systems (PBSMT), but
the methods could be also applied to hierarchical
systems. In PBSMT, the translation model is rep-
resented by a large list of all known source phrases
and their translations. Each entry is weighted us-
ing several probabilities, e.g. the popular Moses
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system uses phrase translation probabilities in the
forward and backward direction, as well as lexical
probabilities in both directions. The entries of the
phrase-table are automatically extracted from sen-
tence aligned parallel data and they are usually quite
noisy. It is not uncommon to encounter several hun-
dreds, or even thousands of possible translations of
frequent source phrases. Many of these automati-
cally extracted translations are probably wrong and
are never used since their probabilities are (fortu-
nately) small in comparison to better translations.
Therefore, several approaches were proposed to fil-
ter these phrase-tables, reducing considerably their
size without any loss of the quality, or even achiev-
ing improved performance (Johnson et al., 2007).

Given these observations, adaptation of the trans-
lation model of PBSMT systems could be performed
by modifying the probability distribution of the ex-
isting phrases without necessarily modifying the en-
tries. The idea is of course to increase the prob-
abilities of translations that are appropriate to the
task and to decrease the probabilities of the other
ones. Ideally, we should also add new translations or
source phrase, but this seems to be more challenging
without any additional parallel data.

A common way to modify a statistical model is to
use a mixture model and to optimize the coefficients
to the adaptation domain. This was investigated in
the framework of SMT by several authors, for in-
stance for word alignment (Civera and Juan, 2007),
for language modeling (Zhao et al., 2004; Koehn
and Schroeder, 2007) and to a lesser extent for the
translation model (Foster and Kuhn, 2007; Chen et
al., 2008). This mixture approach has the advan-
tage that only few parameters need to be modified,
the mixture coefficients. On the other hand, many
translation probabilities are modified at once and it
is not possible to selectively modify the probabilities
of particular phrases.

Another direction of research is self-enhancing of
the translation model. This was first proposed by
Ueffing (2006). The idea is to translate the test data,
to filter the translations with help of a confidence
score and to use the most reliable ones to train an
additional small phrase table that is jointly used with
the generic phrase table. This could be also seen as a
mixture model with the in-domain component being
build on-the-fly for each test set. In practice, such

an approach is probably only feasible when large
amounts of test data are collected and processed at
once, e.g. a typical evaluation set up with a test set of
about 50k words. This method of self-enhancing the
translation model seems to be more difficult to apply
for on-line SMT, e.g. a WEB service, since often the
translation of some sentences only is requested. In
follow up work, this approach was refined (Ueffing
et al., 2007). Domain adaptation was also performed
simultaneously for the translation, language and re-
ordering model (Chen et al., 2008).

A somehow related approach was named lightly-
supervised training (Schwenk, 2008). In that work
an SMT system is used to translate large amounts of
monolingual texts, to filter them and to add them to
the translation model training data. This approach
was reported to obtain interesting improvements
in the translations quality (Schwenk and Senellart,
2009; Bertoldi and Federico, 2009). In comparison
to self enhancing as proposed by Ueffing (2006),
lightly-supervised training does not adapt itself to
the test data, but large amounts of monolingual train-
ing data are translated and a completely new model
is built. This model can be applied to any test data,
including a WEB service.

In this paper we propose to extend this approach
in several ways. First, we argue that the automatic
translations should not be performed from the source
to the target language, but in the opposite direction.
Second, we propose to use the segmentation ob-
tained during translation instead of performing word
alignments with GIZA++ (Och and Ney, 2003) of
the automatic translations. Finally, we propose to
enrich the vocabulary of the adapted system by de-
tecting untranslated words and automatically infer-
ring possible translations from the stemmed form
and the existing translations in the phrase table.

This paper is organized as follows. In the next
section we first describe our approach in detail. Sec-
tion 3 describes the considered task, the available
resources and the baseline PBSMT system. Results
are summarized in section 4 and the paper concludes
with a discussion and perspectives of this work.

2 Architecture of the approach

In this paper we propose to extend in several ways
the translation model adaptation by unsupervised
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training as proposed by Schwenk (2008). In that
paper the authors propose to first build a PBSMT
system using all available human translated bi-
texts. This system is then used to translate large
amounts of monolingual data in the source language.
These automatic translations are filtered using the
sentence-length normalized log score of Moses, i.e.
the sum of the log-scores of all feature functions.
Putting a threshold on this score, only the most re-
liable translations are kept. This threshold was de-
termined experimentally. The automatic translations
were added to the parallel training data and a new
PBSMT model was build, performing the complete
pipeline of word alignment with GIZA++, phrase
extraction and scoring and tuning the system on
development data with MERT. In Schwenk (2009)
significant improvement were obtained by this ap-
proach when translating from Arabic to French.

2.1 Choice of the translation direction

First, we argue that it should be better to translate
monolingual data in the opposite translation direc-
tion of the system that we want to improve, i.e. from
the target into the source language. When translat-
ing large amounts of monolingual data, the system
will of course produce some wrong translations with
respect to choice of the vocabulary, to word order,
to morphology, etc. If we translate from the source
to the target language, these wrong translations are
added to the phrase table and may be used in future
translations performed by the adapted system. When
we add the automatic translations performed in the
opposite direction to the training data, the possibly
wrong translations will appear on the source side of
the entries in the adapted phrase table. PBSMT sys-
tems segment the source sentence according to the
available entries in the phrase table. Since the source
sentence is usually grammatically and semantically
correct, with the eventual exception of speech trans-
lation, it is unlikely that the wrong entries in the
phrase table will be ever used, e.g. phrases with bad
word choice or wrong morphology.

The question of the choice of the translation di-
rection was already raised by Bertoldi and Fed-
erico (2009). However, when data in the source
language is available they adapt only the translation
model (TM), while they adapt the TM and the lan-
guage model (LM) when data in the target language

is given. Of course the system with adapted LM is
much better, but this doesn’t prove that target mono-
lingual data are better than source monolingual data
for TM adaptation. In our paper, we use the same,
best, LM for all systems and we adapt the baseline
system with bitexts synthesized from source or tar-
get monolingual data.

2.2 Word alignment

In the work of Schwenk (2008), the filtered auto-
matic translation were added to the parallel training
data and the full pipeline to build a PBSMT sys-
tem was performed again, including word alignment
with GIZA++. Word alignment of bitexts of several
hundreds of millions of words is a very time con-
suming step. Therefore we propose to use the seg-
mentation into phrases and words obtained implic-
itly during the translation of the monolingual data
with the moses toolkit. These alignments are simply
added to the previously calculated alignments of the
human translated bitexts and a new phrase table is
built.

This new procedure does not only speed-up the
overall processing, but there are also investigations
that these alignments obtained by decoding are more
suitable to extract phrases than the symmetrized
word alignments produced by GIZA++. For in-
stance, Wuebker et al. (2010) proposed to trans-
late the training data, using forced alignment and
a leave-one-out technique, and to use the induced
alignments to extract phrases. They have observed
improvements with respect to word alignment ob-
tained by GIZA++. On the other hand, Bertoldi and
Federico (2009) adapted an SMT system with au-
tomatic translations and trained the translation and
reordering models on the word alignment used by
moses. They reported a very small drop in per-
formance with respect to training word alignments
with GIZA++. Similar ideas were also used in pivot
translation. Bertoldi et al. (2008) translated from the
pivot language to the source language to create par-
allel training data for the direct translation.

2.3 Treatment of unknown words

Statistical machine translation systems have some
trouble dealing with morphologically rich lan-
guages. It can happen, in function of the avail-
able training data, that translations of words are only
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Source language Source language Target language
French stemmed form English
finies fini finished

effacés effacé erased
hawaienne hawaien Hawaiian

... ... ...

Table 1: Example of translations from French to English
which are automatically extracted from the phrase-table
with the stemmed form.

known in some forms and not in others. For in-
stance, for a user of MT technology it is quite dif-
ficult to understand why the system can translate
the French word “je pense”1, but not “tu penses”2.
There have been attempts in the literature to address
this problem, for instance by Habash (2008) to deal
with the Arabic language. It is actually possible to
automatically infer possible translations when trans-
lating from a morphologically rich language, to a
simpler language. In our case we use this approach
to translate from French to English.

Several of the unknown words are actually adjec-
tives, nouns or verbs in a particular form that itself
is not known, but the phrase table would contain the
translation of a different form. As an example we
can mention the French adjective finies which is in
the female plural form. After stemming we may be
able to find the translation in a dictionary which is
automatically extracted from the phrase-table (see
Table 1). This idea was already outlined by (Bo-
jar and Tamchyna, 2011) to translate from Czech to
English.

First, we automatically extract a dictionary from
the phrase table. This is done, be detecting all 1-to-1
entries in the phrase table. When there are multi-
ple entries, all are kept with their lexical translations
probabilities. Our dictionary has about 680k unique
source words with a total of almost 1M translations.

source segment les travaux sont finis
stemmed les travaux sont fini
segment les travaux sont <n translation=”finished||ended”
proposed prob=”0.008||0.0001”>finis</n>

Table 2: Example of the treatment of an unknown French
word and its automatically inferred translation.

The detection of unknown words is performed by
1I think
2you think

comparing the n-grams contained in the phrase ta-
ble and the source segment in order to detect iden-
tical words. Once the unknown word is selected,
we are looking for its stemmed form in the dictio-
nary and propose some translations for the unknown
word based on lexical score of the phrase table (see
Table 2 for some examples). The stemmer used is
the snowball stemmer3. Then the different hypothe-
sis are evaluated with the target language model.

This kind of processing could be done either be-
fore running the Moses decoder, i.e. using the
XML mark-up of Moses, or after decoding by post-
processing the untranslated words. In both cases, we
are unable to differentiate the possible translations
of the same source phrase with meaningful transla-
tion probabilities, and they won’t be added to the
phrase-table, nor put into a context with other words
that may trigger their use.

Therefore, we propose to use this technique to re-
place unknown words during the translation of the
monolingual data that we use to adapt the transla-
tion model. By these means, the automatically in-
duced translations of previously unknown morpho-
logical forms will be put into a context and actually
appear in the new adapted phrase-table. The corre-
sponding translation probabilities will be those cor-
responding to their frequency in the monolingual in-
domain data.

This procedure has been implemented, but we
were not able to obtain improvements in the BLEU
score. However, one can ask if automatic metrics,
evaluated on a test corpus of limited size, are the best
choice to judge this technique. In fact, in our setting
we have observed that less than 0.2% of the words
in the test set are unknown. We argue that the ability
to complement the phrase-table with many morpho-
logical forms of other wise known words, can only
improve the usability of SMT systems.

3 Task Description and resources

In this paper, we consider the translation of news
texts between French and English, in both direc-
tions. In order to allow comparisons, we used ex-
actly the same data as those allowed for the inter-
national evaluation organized in the framework of
the sixth workshop on SMT, to be held in Edinburgh

3http://snowball.tartarus.org/
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Parallel data Size English/French French/English
[M words] Dev Test Dev Test

Eparl + nc 54 26.20 (0.06) 28.06 (0.2) 26.70 (0.06) 27.41 (0.2)
Eparl + nc + crawled1 168 26.84 (0.09) 29.08 (0.1) 27.96 (0.09) 28.20 (0.04)
Eparl + nc + crawled2 286 26.95 (0.04) 29.29 (0.03) 28.20 (0.03) 28.57 (0.1)
Eparl + nc + un 379 26.57 28.52 - -
Eparl + nc + crawled1 + un 514 26.87 28.99 - -
Eparl + nc + crawled2 + un 631 26.99 29.26 - -

Table 4: Case sensitive BLEU scores as a function of the amount of parallel training data. (Eparl=Europarl, nc=News
Commentary, crawled1/2=sub-sampled crawled bitexts, un=sub-sampled United Nations bitexts).

Corpus English French
Bitexts:
Europarl 50.5M 54.4M
News Commentary 2.9M 3.3M
United Nations 344M 393M
Crawled (109 bitexts) 667M 794M
Development data:
newstest2009 65k 73k
newstest2010 62k 71k
Monolingual data:
LDC Gigaword 4.1G 920M
Crawled news 2.6G 612M

Table 3: Available training data for the translation be-
tween French and English for the translation evaluation
at WMT’11 (number of words after tokenisation).

in July 2011. Preliminary results of this evaluation
are available on the Internet.4 Table 3 summarizes
the available training and development data. We op-
timized our systems on newstest2009 and used
newstest2010 as internal test set. For both cor-
pora, only one reference translations is available.
Scoring was performed with NIST’s implementation
of the BLEU score (‘mt-eval’ version 13).

3.1 Baseline system

The baseline system is a standard phrase-based SMT
system based on the the Moses SMT toolkit (Koehn
et al., 2007). It uses fourteen features functions
for translation, namely phrase and lexical translation
probabilities in both directions, seven features for
the lexicalized distortion model, a word and a phrase
penalty, and a target language model. It is con-

4http://matrix.statmt.org

structed as follows. First, word alignments in both
directions are calculated. We used a multi-threaded
version of the GIZA++ tool (Gao and Vogel, 2008).
Phrases and lexical reorderings are extracted using
the default settings of the Moses toolkit. All the bi-
texts were concatenated. The parameters of Moses
are tuned on the development data using the MERT
tool. For most of the runs, we performed three op-
timizations using different starting points and report
average results. English and French texts were to-
kenised using a modified version of the tools of the
Moses suite. Punctuation and case were preserved.

The language models were trained on all the avail-
able data, i.e. the target side of the bitexts, the whole
Gigaword corpus and the crawled monolingual data.
We build 4-gram back-off LMs with the SRI LM
toolkit using Modified Kneser-Ney and no cut-off
on all the n-grams. Past experience has shown that
keeping all n-grams slightly improves the perfor-
mance although this produces quite huge models
(10G and 30G of disk space for French and English
respectively).

Table 4 gives the baseline results using various
amounts of bitexts. Starting with the Europarl and
the News Commentary corpora, various amounts of
human translated data were added. The organizers
of the evaluation provide the so called 109 French-
English parallel corpus which contains almost 800
million words of data crawled from Canadian and
European Internet pages. Following works from the
2010 WMT evaluation (Lambert et al., 2010), we
filtered this data using IBM-1 probabilities and lan-
guage model scores to keep only the most reliable
translations. Two subsets were built with 115M and
232M English words respectively (using two differ-
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alignment Dev Test
BLEU BLEU TER

giza 27.34 (0.01) 29.80 (0.06) 55.34 (0.06)
reused giza 27.40 (0.05) 29.82 (0.10) 55.30 (0.02)
reused moses 27.42 (0.02) 29.77 (0.06) 55.27 (0.03)

Table 5: Results for systems trained via different word alignment configurations. The values are the average over
3 MERT runs performed with different seeds. The numbers in parentheses are the standard deviation of these three
values. Translation was performed from English to French, adding 45M words of automatic translations (translated
from French to English) to the baseline system “eparl+nc+crawled2”.

ent settings of the filter thresholds). They are re-
ferred to as “crawled1” and “crawled2” respectively.
Adding this data improved the BLEU score of al-
most 1 BLEU point (28.30 → 29.27). This is our
baseline system to be improved by translation model
adaptation. Using the UN data gave no significant
improvement despite its huge size. This is probably
a typical example that it is not necessarily useful to
use all available parallel training data, in particular
when a very specific (out-of domain) jargon is used.
Consequently, the UN data was not used in the sub-
sequent experiments.

We were mainly working on the translation from
English to French. Therefore only one baseline sys-
tem was build for the reverse translation direction.

4 Experimental Evaluation

The system trained on Europarl, News Commen-
tary and the sub-sampled version of the 109 bitexts
(“eparl+nc+crawled2”, in the third line of Table 3),
was used to translate parts of the crawled news in
French and English. Statistics on the translated data
are given in Table 6.

We focused on the most recent data since the
time period of our development and test data was
end of 2008 and 2009 respectively. In the future
we will translate all the available monolingual data
and make it available to the community in order to
ease the widespread use of this kind of translation
model adaptation methods. These automatic trans-
lations were filtered using the sentence normalized
log-score of the decoder, as proposed by (Schwenk,
2008). However, we did not perform systematic ex-
periments to find the optimal threshold on this score,
but simply used a value which seems to be a good
compromise of quality and quantity of the transla-
tions. This gave us about 45M English words of

Corpus French (fe) English (ef)
available filtered available filtered

2009 92 31 121 45
2010 43 12 112 49
2011 8 2 15 6
total 219 45 177 100

Table 6: Monolingual data used to adapt the systems,
given in millions of English words. Under “French (fe)”,
we indicated the number of translated English words
from French, and under “English (ef)” we reported the
number of source English words translated into French.
Thus “fe” and “ef” refer respectively to French–English
and English–French translation direction of monolingual
data. In the experiments we used the 100M English–
French (ef) filtered monolingual data, as well as a 45M-
word subset (in order to have the same amount of data as
for French–English) and a 65M-word subset.

automatic translations from French, as well as the
translations into French of 100M English words, to
be used to adapt the baseline systems.

4.1 Word alignment

In order to build a phrase table with the translated
data, we re-used the word alignment obtained dur-
ing the translation with the moses toolkit. We com-
pared the system trained via these alignments to
the systems built by running GIZA++ on all the
data. When word alignments of the baseline corpus
(not adapted) are trained together with the translated
data, they could be affected by phrase pairs com-
ing from incorrect translations. To measure this ef-
fect, we trained an additional system, for which the
alignments of the baseline corpus are those trained
without the translated data. For the translated data,
we re-use the GIZA++ alignments trained on all the
data. Results for these three alignment configura-
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baseline translated bitexts Dev Test
BLEU BLEU TER

Eparl + nc - 26.20 (0.06) 28.06 (0.22) 56.85 (0.09)
news fe 45M 27.18 (0.09) 29.03 (0.07) 55.97 (0.07)
news ef 45M 26.15 (0.04) 28.44 (0.09) 56.56 (0.11)

Eparl + nc + crawled2 - 26.95 (0.04) 29.29 (0.03) 55.77 (0.19)
news fe 45M 27.42 (0.02) 29.77 (0.06) 55.27 (0.03)
news ef 45M 26.75 (0.04) 28.88 (0.10) 56.06 (0.05)

Table 7: Translation results of the English–French systems augmented with a bitext obtained by translating news data
from English to French (ef) and French to English (fe). 45M refers to the number of English running words.

baseline translated bitexts Dev Test
BLEU BLEU TER

Eparl + nc - 26.70 (0.06) 27.41 (0.24) 55.07 (0.17)
news fe 45M 27.47 (0.08) 27.77 (0.23) 54.84 (0.13)
news ef 45M 27.55 (0.05) 28.51 (0.10) 54.12 (0.09)
news ef 65M 27.58 (0.03) 28.70 (0.09) 54.06 (0.17)
news ef 100M 27.63 (0.06) 28.68 (0.06) 54.02 (0.06)

Eparl + nc + crawled2 - 28.20 (0.03) 28.54 (0.12) 54.17 (0.15)
news fe 45M 28.02 (0.11) 28.40 (0.10) 54.45 (0.06)
news ef 45M 28.24 (0.06) 28.93 (0.22) 53.90 (0.08)
news ef 65M 28.16 (0.19) 28.75 (0.06) 54.03 (0.14)
news ef 100M 28.28 (0.09) 28.96 (0.03) 53.79 (0.09)

Table 8: Translation results of the French–English systems augmented with a bitext obtained by translating news data
from English to French (ef) and French to English (fe). 45M/65M/100M refers to the number of English running
words.

tions are presented in Table 5. In these systems
French sources and English translations (45 mil-
lion words) were added to the “eparl+nc+crawled2”
baseline corpus. According to BLEU and TER met-
rics, reusing Moses alignments to build the adapted
phrase table has no significant impact on the system
performance. We repeated the experiment without
the 109 corpus and with the smaller selection of 109

(crawled1) and arrived to the same conclusion.
However, the re-use of Moses alignments saves time
and resources. On the larger baseline corpus, the
mGiza process lasted 46 hours with two jobs of 4
thread running and a machine with two Intel X5650
quad-core processors.

4.2 Choice of the translation direction
A second point under study in this work is the effect
of the translation direction of the monolingual data
used to adapt the translation model. Tables 7 and
8 present results for, respectively, English–French

and French–English systems adapted with news data
translated from English to French (ef) and French
to English (fe). The experiment was repeated with
two baseline corpora. The results show clearly
that target to source translated data are more use-
ful than source to target translated data. The im-
provement in terms of BLEU score due to the use of
target-to-source translated data instead of source-to-
target translated data ranges from 0.5 to 0.9 for the
French–English and English–French systems. For
instance, when translating from English to French
(Table 7), the baseline system “eparl+nc” achieves
a BLEU score of 28.06 on the test set. This could
be improved to 29.03 using automatic translations
in the reverse direction (French to English), while
we only achieve a BLEU score of 28.44 when us-
ing automatic translation performed in the same di-
rection as the system to be adapted. The effect is
even clearer when we try to adapt the large system
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“eparl+nc+crawled2”. Adding automatic transla-
tions translated from English-to-French did actually
lead to a lower BLEU score (29.29→ 28.88) while
we observe an improvement of nearly 0.5 BLEU in
the other case.

With target-to-source translated news data,
the gain with respect to the baseline corpus
for English-French systems (Table 7) is nearly
1 BLEU for “Eparl+nc” and 0.5 BLEU for
“Eparl+nc+crawled2”. With the same amount
of translated data (45 million English words),
approximately the same gains are observed in
French–English systems. Due to the larger avail-
ability of English news data, we were able to use
larger sets of target-to-source translated data for
French-English systems, as can be seen in Table 8.
With a bitext containing additionally 20 million
English words, we get a further improvement of
0.2 BLEU for “Eparl+nc” (28.51 → 28.70), but no
improvement for “Eparl+nc+crawled2” (the BLEU
score is even lower, but the scores lie within the
error interval). No further gain on the test data is
achieved if we add again 35 million English words
(total of 100M words) to the system “Eparl+nc”.
With the “Eparl+nc+crawle2” baseline, no sig-
nificant improvement is observed if we adapt the
system with 100M words instead of only 45M.

4.3 Result analysis

To get more insight into what happens to the model
when we add the automatic translations, we cal-
culated some statistics of the phrase table, pre-
sented in Table 9. Namely, we calculated the
number of entries in the phrase table, the aver-
age number of translation options of each source
phrase, the average entropy for each source phrase,
the average source phrase length (in words) and
the average target phrase length. The entropy is
calculated over the probabilities of all translation
options for each source phrase. Comparing the
baseline with “Eparl+nc” and the baseline with
“Eparl+nc+crawl2”, we can observe that the aver-
age number of translation options was nearly mul-
tiplied by 3 with the addition of 230 million words
of human translated bitexts. As a consequence the
average entropy was increased from 1.84 to 2.08.
On the contrary, adding 100 million words of in-
domain automatic translations, the average num-

ber of translation options increased by only 5%
for the “Eparl+nc” baseline, and decreased for the
“Eparl+nc+crawl2” baseline. A decrease may occur
if new source phrases with less translation options
than the average are added. Furthermore, with the
addition of 45 million words of in-domain data, the
average entropy dropped from 1.84 to 1.33 or 1.60
for the “Eparl+nc” baseline, and from 2.08 to 1.81 or
1.96 for the “Eparl+nc+crawl2” baseline. With both
baselines, the more translations are added to the sys-
tem, the lower the entropy, although in some case
the number of translation options increases (this is
the case when we pass from 65M to 100M words
of synthetic data). These results illustrate the fact
that the automatic translations only reinforce some
probabilities in the model, with the subsequent de-
crease in entropy, while human translations add new
vocabulary. Note also that in the corpus using au-
tomatic translations, new words can only occur in
the source side. Thus when translating from French
to English, automatic translations from English to
French are expected to yield more translation op-
tions and a higher entropy than the automatic trans-
lations from French to English. This is what is ef-
fectively observed in Table 9.

5 Conclusion

Unsupervised training is widely used in other ar-
eas, in particular large vocabulary speech recogni-
tion. The statistical models in speech recognition
use a generative approach based on small units, usu-
ally triphones. Each triphone is modeled by a hid-
den Markov model and Gaussian mixture probabil-
ity distributions (plus many improvements like pa-
rameter tying etc). Many methods were developed
to adapt such models. The corresponding model
in statistical machine translation is the phrase table,
a long list of known words with their translations
and probabilities. It seems much more challenging
to adapt this kind of statistical model with unsuper-
vised training, i.e. monolingual data. Nevertheless,
we believe that unsupervised training can be also
very useful in SMT. To the best of our knowledge,
work in this area is very recent and only in its begin-
nings. This paper tries to give additional insights in
this promising method.

Our work is based on the approach initially pro-
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baseline translated bitexts entries (M) translations entropy src size trg size
Eparl + nc - 7.16 83.83 1.84 1.80 2.81

news fe 45M 7.42 70.00 1.33 1.83 2.80
news ef 45M 8.24 81.58 1.60 1.86 2.79
news ef 65M 8.42 81.58 1.55 1.88 2.79
news ef 100M 9.21 85.93 1.54 1.90 2.79

Eparl + nc + crawl2 - 25.42 235.16 2.08 1.76 2.93
news fe 45M 25.54 217.21 1.81 1.77 2.93
news ef 45M 26.09 228.07 1.96 1.78 2.93
news ef 65M 26.21 226.45 1.91 1.78 2.93
news ef 100M 26.79 227.08 1.89 1.79 2.93

Table 9: Phrase table statistics for French–English systems augmented with bitexts built via automatic translations.
Only the entries useful to translate the development set were present in the considered phrase table.

posed in (Schwenk, 2008): build a first SMT sys-
tem, use it to translate large amounts of monolingual
data, filter the obtained translations, add them to the
bitexts and build a new system from scratch.

We proposed several extensions to this technique
which seem to improve the translations quality in
our experiments. First of all, we have observed that
it is clearly better to add automatically translated
texts to the translations model training data which
were translated from the target to the source lan-
guage. This seems to ensure that potentially wrong
translations are not used in the new model.

Second, we were able to skip the process of per-
forming word alignment of this additional parallel
data without any significant loss in the BLEU score.
Performing word alignments with GIZA++ can eas-
ily take several days when several hundred millions
of bitexts are available. Instead, we directly used the
word alignments produced by Moses when translat-
ing the monolingual data. This resulted in an appre-
ciable speed-up of the procedure, but has also inter-
esting theoretical aspects. Reusing the word align-
ment from the translation process is expected to re-
sult in a phrase extraction process that is more con-
sistent with the use of the phrases.

Finally, we outlined a method to automatically
add new translations without any additional parallel
training data. In fact, when translating from a mor-
phologically rich language to an easier one, in our
case from French to English, it is often possible to
infer the translations of unobserved morphological
forms of nouns, verbs or adjectives. This is obtained
by looking up the stemmed form in an automati-

cally constructed dictionary. This kind of approach
could be also applied to a classical PBSMT system,
by adding various forms to the phrase table, but it
is not obvious to come up with reasonable transla-
tions probabilities for these new entries. In our ap-
proach, the unknown word forms are processed in
large amounts of monolingual data and the induced
translations will appear in the context of complete
sentences. Wrong translations can be blocked by the
language model and the new translations can appear
in phrases of various lengths.

This paper provided a detailed experimental eval-
uation of these methods. We considered the trans-
lation between French and English using the same
data than was made available for the 2011 WMT
evaluation. Improvement of up to 0.5 BLEU were
observed with respect to an already competitive sys-
tem trained on more than 280M words of human
translated parallel data.
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Abstract

This work presents a simplified approach to
bilingual topic modeling for language model
adaptation by combining text in the source
and target language into very short documents
and performing Probabilistic Latent Semantic
Analysis (PLSA) during model training. Dur-
ing inference, documents containing only the
source language can be used to infer a full
topic-word distribution on all words in the tar-
get language’s vocabulary, from which we per-
form Minimum Discrimination Information
(MDI) adaptation on a background language
model (LM). We apply our approach on the
English-French IWSLT 2010 TED Talk exer-
cise, and report a 15% reduction in perplexity
and relative BLEU and NIST improvements
of 3% and 2.4%, respectively over a baseline
only using a 5-gram background LM over the
entire translation task. Our topic modeling ap-
proach is simpler to construct than its counter-
parts.

1 Introduction

Adaptation is usually applied to reduce the per-
formance drop of Statistical Machine Translation
(SMT) systems when translating documents that de-
viate from training and tuning conditions. In this
paper, we focus primarily on language model (LM)
adaptation. In SMT, LMs are used to promote fluent
translations. As probabilistic models of sequences
of words, language models guide the selection and
ordering of phrases in translation. With respect to

∗This work was carried out during an internship period at
Fondazione Bruno Kessler.

LM training, LM adaptation for SMT tries to im-
prove an existing LM by using smaller amounts of
texts. When adaptation data represents the trans-
lation task domain one generally refers to domain
adaptation, while when they just represent the con-
tent of the single document to be translated one typ-
ically refers to topic adaptation.

We propose a cross-language topic adaptation
method, enabling the adaptation of a LM based on
the topic distribution of the source document dur-
ing translation. We train a latent semantic topic
model on a collection of bilingual documents, in
which each document contains both the source and
target language. During inference, a latent topic dis-
tribution of words across both the source and tar-
get languages is inferred from a source document
to be translated. After inference, we remove all
source language words from the topic-word distribu-
tions and construct a unigram language model which
is used to adapt our background LM via Minimum
Discrimination Information (MDI) estimation (Fed-
erico, 1999, 2002; Kneser et al., 1997).

We organize the paper as follows: In Section 2,
we discuss relevant previous work. In Section 3, we
review topic modeling. In Section 4, we review MDI
adaptation. In Section 5, we describe our new bilin-
gual topic modeling based adaptation technique. In
Section 6, we report adaptation experiments, fol-
lowed by conclusions and future work in Section 7.

2 Previous work

Zhao et al. (2004) construct a baseline SMT system
using a large background language model and use it
to retrieve relevant documents from large monolin-
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gual corpora and subsequently interpolate the result-
ing small domain-specific language model with the
background language model. In Sethy et al. (2006),
domain-specific language models are obtained by
including only the sentences that are similar to the
ones in the target domain via a relative entropy based
criterion.

Researchers such as Foster and Kuhn (2007) and
Koehn and Schroeder (2007) have investigated mix-
ture model approaches to adaptation. Foster and
Kuhn (2007) use a mixture model approach that in-
volves splitting a training corpus into different com-
ponents, training separate models on each compo-
nent, and applying mixture weights as a function of
the distances of each component to the source text.
Koehn and Schroeder (2007) learn mixture weights
for language models trained with in-domain and out-
of-domain data respectively by minimizing the per-
plexity of a tuning (development) set and interpolat-
ing the models. Although the application of mixture
models yields significant results, the number of mix-
ture weights to learn grows linearly with the number
of independent language models applied.

Most works focus on monolingual language
model adaptation in the context of automatic speech
recognition. Federico (2002) combines Probabilis-
tic Latent Semantic Analysis (PLSA) (Hofmann,
1999) for topic modeling with the minimum dis-
crimination information (MDI) estimation criterion
for speech recognition and notes an improvement
in terms of perplexity and word error rate (WER).
Latent Dirichlet Allocation (LDA) techniques have
been proposed as an alternative to PLSA to construct
purely generative models. LDA techniques include
variational Bayes (Blei et al., 2003) and HMM-LDA
(Hsu and Glass, 2006).

Recently, bilingual approaches to topic model-
ing have also been proposed. A Hidden Markov
Bilingual Topic AdMixture (HM-BiTAM) model is
proposed by Zhao and Xing (2008), which con-
structs a generative model in which words from a
target language are sampled from a mixture of topics
drawn from a Dirichlet distribution. Foreign words
are sampled via alignment links from a first-order
Markov process and a topic specific translation lexi-
con. While HM-BiTAM has been used for bilingual
topic extraction and topic-specific lexicon mapping
in the context of SMT, Zhao and Xing (2008) note

that HM-BiTAM can generate unigram language
models for both the source and target language and
thus can be used for language model adaptation
through MDI in a similar manner as outlined in Fed-
erico (2002). Another bilingual LSA approach is
proposed by Tam et al. (2007), which consists of
two hierarchical LDA models, constructed from par-
allel document corpora. A one-to-one correspon-
dence between LDA models is enforced by learn-
ing the hyperparameters of the variational Dirichlet
posteriors in one LDA model and bootstrapping the
second model by fixing the hyperparameters. The
technique is based on the assumption that the topic
distributions of the source and target documents are
identical. It is shown by Tam et al. (2007) that the
bilingual LSA framework is also capable of adapt-
ing the translation model. Their work is extended
in Tam and Schultz (2009) by constructing paral-
lel document clusters formed by monolingual doc-
uments using M parallel seed documents.

Additionally, Gong et al. (2010) propose transla-
tion model adaptation via a monolingual LDA train-
ing. A monolingual LDA model is trained from ei-
ther the source or target side of the training corpus
and each phrase pair is assigned a phrase-topic dis-
tribution based on:

ˆ
M j
i =

wjk ·M
j
i∑m

k=1w
j
k

, (1)

where M j is the topic distribution of document j
and wk is the number of occurrences of phrase pair
Xk in document j.

Mimno et al. (2009) extend the original con-
cept of LDA to support polylingual topic models
(PLTM), both on parallel (such as EuroParl) and
partly comparable documents (such as Wikipedia ar-
ticles). Documents are grouped into tuples w =
(w1, ...,wL) for each language l = 1, ..., L. Each
document wl in tuple w is assumed to have the
same topic distribution, drawn from an asymmetric
Dirichlet prior. Tuple-specific topic distributions are
learned using LDA with distinct topic-word concen-
tration parameters βl. Mimno et al. (2009) show that
PLTM sufficiently aligns topics in parallel corpora.
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3 Topic Modeling

3.1 PLSA
The original idea of LSA is to map documents to
a latent semantic space, which reduces the dimen-
sionality by means of singular value decomposition
(Deerwester et al., 1990). A word-document matrix
A is decomposed by the formulaA = UΣV t, where
U and V are orthogonal matrices with unit-length
columns and Σ is a diagonal matrix containing the
singular values of A. LSA approximates Σ by cast-
ing all but the largest k singular values in Σ to zero.

PLSA is a statistical model based on the likeli-
hood principle that incorporates mixing proportions
of latent class variables (or topics) for each obser-
vation. In the context of topic modeling, the latent
class variables z ∈ Z = {z1, ..., zk} correspond to
topics, from which we can derive probabilistic distri-
butions of words w ∈W = {w1, ..., wm} in a docu-
ment d ∈ D = {d1, ..., dn} with k << n. Thus, the
goal is to learn P (z | d) and P (w|z) by maximizing
the log-likelihood function:

L(W,D) =
∑
d∈D

∑
w∈W

n(w, d) logP (w | d), (2)

where n(w, d) is the term frequency of w in d.
Using Bayes’ formula, the conditional probability
P (w | d) is defined as:

P (w | d) =
∑
z∈Z

P (w | z)P (z | d). (3)

Using the Expectation Maximization (EM) algo-
rithm (Dempster et al., 1977), we estimate the pa-
rameters P (z|d) and P (w|z) via an iterative pro-
cess that alternates two steps: (i) an expectation
step (E) in which posterior probabilities are com-
puted for each latent topic z; and (ii) a maximiza-
tion (M) step, in which the parameters are updated
for the posterior probabilities computed in the previ-
ous E-step. Details of how to efficiently implement
the re-estimation formulas can be found in Federico
(2002).

Iterating the E- and M-steps will lead to a con-
vergence that approximates the maximum likelihood
equation in (2).

A document-topic distribution θ̂ can be inferred
on a new document d′ by maximizing the following

equation:

θ̂ = arg max
θ

∑
w

n(w, d′) log
∑
z

P (w | z)θz,d′ ,

(4)
where θz,d′ = P (z | d′). (4) can be maximized by
performing Expectation Maximization on document
d′ by keeping fixed the word-topic distributions al-
ready estimated on the training data. Consequently,
a word-document distribution can be inferred by ap-
plying the mixture model (3) (see Federico, 2002 for
details).

4 MDI Adaptation

An n-gram language model approximates the prob-
ability of a sequence of words in a text W T

1 =
w1, ..., wT drawn from a vocabulary V by the fol-
lowing equation:

P (W T
1 ) =

T∏
i=1

P (wi|hi), (5)

where hi = wi−n+1, ..., wi−1 is the history of n −
1 words preceding wi. Given a training corpus B,
we can compute the probability of a n-gram from a
smoothed model via interpolation as:

PB(w|h) = f∗B(w|h) + λB(h)PB(w|h′), (6)

where f∗B(w|h) is the discounted frequency of se-
quence hw, h′ is the lower order history, where
|h|−1 = |h′|, and λB(h) is the zero-frequency prob-
ability of h, defined as:

λB(h) = 1.0−
∑
w∈V

f∗B(w|h).

Federico (1999) has shown that MDI Adaptation
is useful to adapt a background language model
with a small adaptation text sample A, by assum-
ing to have only sufficient statistics on unigrams.
Thus, we can reliably estimate P̂A(w) constraints
on the marginal distribution of an adapted language
model PA(h,w) which minimizes the Kullback-
Leibler distance from B, i.e.:

PA(·) = arg min
Q(·)

∑
hw∈V n

Q(h,w) log
Q(h,w)

PB(h,w)
.

(7)
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The joint distribution in (7) can be computed us-
ing Generalized Iterative Scaling (Darroch and Rat-
cliff, 1972). Under the unigram constraints, the GIS
algorithm reduces to the closed form:

PA(h,w) = PB(h,w)α(w), (8)

where

α(w) =
P̂A(w)

PB(w)
. (9)

In order to estimate the conditional distribution of
the adapted LM, we rewrite (8) and simplify the
equation to:

PA(w|h) =
PB(w|h)α(w)∑
ŵ∈V PB(ŵ|h)α(ŵ)

. (10)

The adaptation model can be improved by
smoothing the scaling factor in (9) by an exponential
term γ (Kneser et al., 1997):

α(w) =

(
P̂A(w)

PB(w)

)γ
, (11)

where 0 < γ ≤ 1. Empirically, γ values less than
one decrease the effect of the adaptation ratio to re-
duce the bias.

As outlined in Federico (2002), the adapted lan-
guage model can also be written in an interpolation
form:

f∗A(w|h) =
f∗B(w|h)α(w)

z(h)
, (12)

λA(h) =
λB(h)z(h′)

z(h)
, (13)

z(h) = (
∑

w:NB(h,w)>0

f∗B(w|h)α(w)) + λB(h)z(h′),

(14)

which permits to efficiently compute the normaliza-
tion term for high order n-grams recursively and by
just summing over observed n-grams. The recursion
ends with the following initial values for the empty
history ε:

z(ε) =
∑
w

PB(w)α(w), (15)

PA(w|ε) = PB(w)α(w)z(ε)−1. (16)

MDI adaptation is one of the adaptation methods
provided by the IRSTLM toolkit and was applied as
explained in the following section.

5 Bilingual Latent Semantic Models

Similar to the treatment of documents in HM-
BiTAM (Zhao and Xing, 2008), we combine parallel
texts into a document-pair (E,F) containing n par-
allel sentence pairs (ei, fi), 1 < i ≤ n, correspond-
ing to the source and target languages, respectively.
Based on the assumption that the topics in a parallel
text share the same semantic meanings across lan-
guages, the topics are sampled from the same topic-
document distribution. We make the additional as-
sumption that stop-words and punctuation, although
having high word frequencies in documents, will
generally have a uniform topic distribution across
documents; therefore, it is not necessary to remove
them prior to model training, as they will not ad-
versely affect the overall topic distribution in each
document. In order to ensure the uniqueness be-
tween word tokens between languages, we annotate
E with special characters. We perform PLSA train-
ing, as described in Section 3.1 and receive word-
topic distributions P (w|z), w ∈ VE ∪ VF

Given an untranslated text Ê, we split Ê into
a sequence of documents D. For each document
di ∈ D, we infer a full word-document distribu-
tion by learning θ̂ via (4). Via (3), we can generate
the full word-document distribution P (w | d) for
w ∈ VF .

We then convert the word-document probabilities
into pseudo-counts via a scaling function:

n(w | d) =
P (w | d)

maxw′ P (w′ | d)
·∆, (17)

where ∆ is a scaling factor to raise the probabil-
ity ratios above 1. Since our goal is to generate a
unigram language model on the target language for
adaptation, we remove the source words generated
in (17) prior to building the language model.

From our newly generated unigram language
model, we perform MDI adaptation on the back-
ground LM to yield an adapted LM for translating
the source document used for the PLSA inference
step.

6 Experiments

Our experiments were done using the TED Talks
collection, used in the IWSLT 2010 evaluation task1.

1http://iwslt2010.fbk.eu/
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In IWSLT 2010, the challenge was to translate talks
from the TED website2 from English to French. The
talks include a variety of topics, including photog-
raphy and pyschology and thus do not adhere to
a single genre. All talks were given in English
and were manually transcribed and translated into
French. The TED training data consists of 329 par-
allel talk transcripts with approximately 84k sen-
tences. The TED test data consists of transcriptions
created via 1-best ASR outputs from the KIT Quaero
Evaluation System. It consists of 758 sentences and
27,432 and 27,307 English and French words, re-
spectively. The TED talk data is segmented at the
clause level, rather than at the level of sentences.

Our SMT systems are built upon the Moses open-
source SMT toolkit (Koehn et al., 2007)3. The trans-
lation and lexicalized reordering models have been
trained on parallel data. One 5-gram background
LM was constructed from the French side of the
TED training data (740k words), smoothed with the
improved Kneser-Ney technique (Chen and Good-
man, 1999) and computed with the IRSTLM toolkit
(Federico et al., 2008). The weights of the log-linear
interpolation model were optimized via minimum
error rate training (MERT) (Och, 2003) on the TED
development set, using 200 best translations at each
tuning iteration.

This paper investigates the effects of language
model adaptation via bilingual latent semantic mod-
eling on the TED background LM against a baseline
model that uses only the TED LM.

6.1 Bilingual Latent Semantic Model

Using the technique outlined in Section 5, we con-
struct bilingual documents by splitting the parallel
TED training corpus into 41,847 documents of 5
lines each. While each individual TED lecture could
be used as a document, our experimental goal is
to simulate near-time translation of speeches; thus,
we prefer to construct small documents to simulate
topic modeling on a spoken language scenario in
which the length of a talk is not known a priori.
We annotate the English source text for removal af-
ter inference. Figure 1 contains a sample document
constructed for PLSA training. (In fact, we distin-

2http://www.ted.com/talks/
3http://www.statmt.org/moses/

robert lang is a pioneer of the newest kind of origami – us-

ing math and engineering principles to fold mind-blowingly

intricate designs that are beautiful and , sometimes , very

useful . my talk is ” flapping birds and space telescopes .

” and you would think that should have nothing to do with

one another , but i hope by the end of these 18 minutes

, you ’ll see a little bit of a relation . robert lang est un

pionnier des nouvelles techniques d’ origami - basées sur

des principes mathématiques et d’ ingénierie permettant de

créer des modèles complexes et époustouflants , qui sont

beaux et parfois , très utiles . ma conférence s’ intitule ”

oiseaux en papier et télescopes spatiaux ” . et vous pensez

probablement que les uns et les autres n’ ont rien en com-

mun , mais j’ espère qu’ à l’ issue de ces 18 minutes , vous

comprendrez ce qui les relie .

Figure 1: A sample bilingual document used for PLSA
training.

guish English words from French words by attach-
ing to the former a special suffix.) By using our in-
house implementation, training of the PLSA model
on the bilingual collection converged after 20 EM
iterations.

Using our PLSA model, we run inference on each
of the 476 test documents from the TED lectures,
constructed by splitting the test set into 5-line docu-
ments. Since our goal is to translate and evaluate the
test set, we construct monolingual (English) docu-
ments. Figure 2 provides an example of a document
to be inferred. We collect the bilingual unigram
pseudocounts after 10 iterations of inference and re-
move the English words. The TED lecture data is
transcribed by clauses, rather than full sentences, so
we do not add sentence splitting tags before training
our unigram language models.

As a result of PLSA inference, the probabilities
of target words increase with respect to the back-
ground language model. Table 1 demonstrates this
phenomenon by outlining several of the top ranked
words that have similar semantic meaning to non-
stop words on the source side. In every case, the
probabilityPA(w) increases fairly substantially with
respect to the PB(w). As a result, we expect that the
adapted language model will favor both fluent and
semantically correct translations as the adaptation is
suggesting better lexical choices of words.
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we didn ’t have money , so we had a cheap , little ad , but we

wanted college students for a study of prison life . 75 peo-

ple volunteered , took personality tests . we did interviews .

picked two dozen : the most normal , the most healthy .

Figure 2: A sample English-only document (#230) used
for PLSA inference. A full unigram word distribution
will be inferred for both English and French.

Rank Word PA(w) PB(w) PA(w)/PB(w)
20 gens 8.41E-03 4.55E-05 184.84
22 vie 8.30E-03 1.09E-04 76.15
51 prix 2.59E-03 8.70E-05 29.77
80 école 1.70E-03 6.13E-05 27.73
83 argent 1.60E-03 3.96E-05 40.04
86 personnes 1.52E-03 2.75E-04 5.23
94 aide 1.27E-03 7.71E-05 16.47
98 étudiants 1.20E-03 7.12E-05 16.85

119 marché 9.22E-04 9.10E-05 10.13
133 étude 7.63E-04 4.55E-05 16.77
173 éducation 5.04E-04 2.97E-05 16.97
315 prison 2.65E-04 1.98E-05 13.38
323 université 2.60E-04 2.97E-05 8.75

Table 1: Sample unigram probabilities of the adaptation
model for document #230, compared to the baseline un-
igram probabilities. The French words selected are se-
mantically related to the English words in the adapted
document. The PLSA adaptation infers higher unigram
probabilities for words with latent topics related to the
source document.

6.2 MDI Adaptation

We perform MDI adaptation with each of the un-
igram language models to update the background
TED language model. We configure the adaptation
rate parameter γ to 0.3, as recommended in Fed-
erico (2002). The baseline LM is replaced with each
adapted LM, corresponding to the document to be
translated. We then calculate the mean perplexity of
the adapted LMs and the baseline, respectively. The
perplexity scores are shown in Table 2. We observe a
15.3% relative improvement in perplexity score over
the baseline.

6.3 Results

We perform MT experiments on the IWSLT 2010
evaluation set to compare the baseline and adapted
LMs. In the evaluation, we notice a 0.85 improve-
ment in BLEU (%), yielding a 3% improvement over
the baseline. The same performance trend in NIST
is observed with a 2.4% relative improvement com-
pared to the unadapted baseline. Our PLSA and

MDI-based adaptation method not only improves
fluency but also improves adequacy: the topic-
based adaptation approach is attempting to suggest
more appropriate words based on increased unigram
probabilities than that of the baseline LM. Table 3
demonstrates a large improvement in unigram se-
lection for the adapted TED model in terms of the
individual contribution to the NIST score, with di-
minishing effects on larger n-grams. The majority
of the overall improvements are on individual word
selection.

Examples of improved fluency and adequacy are
shown in Figure 3. Line 285 shows an example of a
translation that doesn’t provide much of an n-gram
improvement, but demonstrates more fluent output,
due to the deletion of the first comma and the move-
ment of the second comma to the end of the clause.
While “installation” remains an inadequate noun in
this clause, the adapted model reorders the root
words “rehab” and “installation” (in comparison
with the baseline) and improves the grammaticality
of the sentence; however, the number does not match
between the determiner and the noun phrase. Line
597 demonstrates a perfect phrase translation with
respect to the reference translation using semantic
paraphrasing. The baseline phrase “d’origine” is
transformed and attributed to the noun. Instead of
translating “original” as a phrase for “home”, the
adapted model captures the original meaning of the
word in the translation. Line 752 demonstrates an
improvement in adequacy through the replacement
of the word “quelque” with “autre.” Additionally,
extra words are removed.

These lexical changes result in the improvement
in translation quality due to topic-based adaptation
via PLSA.

LM Perplexity BLEU (%) NIST
Adapt TED 162.44 28.49 6.5956
Base TED 191.76 27.64 6.4405

Table 2: Perplexity, BLEU, and NIST scores for the base-
line and adapted models. The perplexity scores are aver-
aged across each document-specific LM adaptation.
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NIST 1-gram 2-gram 3-gram
Adapt TED 4.8077 1.3925 0.3229
Base TED 4.6980 1.3527 0.3173
Difference 0.1097 0.0398 0.0056

Table 3: Individual unigram NIST scores for n-grams 1-3
of the baseline and adapted models. The improvement of
the adapted model over the baseline is listed below.

(Line 285)

, j’ ai eu la chance de travailler dans les installations , rehab

j’ ai eu la chance de travailler dans les rehab installation ,

j’ ai la chance de travailler dans un centre de désintoxication
,

(Line 597)

d’ origine , les idées qui ont de la valeur –

d’ avoir des idées originales qui ont de la valeur –

d’ avoir des idées originales qui ont de la valeur –

(Line 752)

un nom qui appartient à quelque chose d’ autre , le soleil .

un nom qui appartient à autre chose , le soleil .

le nom d’ une autre chose , le soleil .

Figure 3: Three examples of improvement in MT results:
the first sentence in each collection corresponds to the
baseline, the second utilizes the adapted TED LMs, and
the third is the reference translation.

7 Conclusions

An alternative approach to bilingual topic modeling
has been presented that integrates the PLSA frame-
work with MDI adaptation that can effectively adapt
a background language model when given a docu-
ment in the source language. Rather than training
two topic models and enforcing a one-to-one cor-
respondence for translation, we use the assumption
that parallel texts refer to the same topics and have
a very similar topic distribution. Preliminary exper-
iments show a reduction in perplexity and an overall
improvement in BLEU and NIST scores on speech
translation. We also note that, unlike previous works
involving topic modeling, we did not remove stop
words and punctuation, but rather assumed that these
features would have a relatively uniform topic distri-
bution.

One downside to the MDI adaptation approach
is that the computation of the normalization term
z(h) is expensive and potentially prohibitive during

continuous speech translation tasks. Further investi-
gation is needed to determine if there is a suitable
approximation that avoids computing probabilities
across all n-grams.
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Abstract 

This paper presents the Linguatec 
submission to the WMT 2011 sixth 
workshop on statistical machine 
translation. It describes the architecture of 
our machine translation system ‘Personal 
Translator’ (hereinafter also referred to as 
PT), developed by Linguatec, which is a 
rule-based translation system, enriched by 
statistical approaches. 

We participate for the German-English 
translation direction. For the current 
submission we have chosen the latest 
commercial version of the system, PT14. 
The translation quality improvement for the 
submission was done mainly by lexicon 
tuning:  detection of unknown words, 
extracting of possible translations, partly 
from the wmt11 training corpora, and 
enlarging the lexicon by manually coding 
the chosen transfer candidates. 

1 Introduction 

The origin of the PT technology dates back to the 
80’s when a translation system based on logic 
programming and slot grammars was developed by 
Michael McCord at IBM T.J. Watson Research 
Center. In many years of development the 
translation engine has been driven forward and 
enhanced. Most recently we have added statistical 

approaches for tasks such as erroneous input 
correction, subject area recognition and word 
disambiguation. Today ‘Personal Translator’ is one 
of the leading programs in the translation 
technology field. It is a commercial MT system 
whose product range includes 7 language pairs, i.e. 
14 translation directions, for single users and 
networks. Linguatec is a leading provider of 
language-technology software for office use in 
Germany. In addition to machine translation, we 
develop and provide commercial products in the 
fields of speech recognition and speech synthesis. 
Linguatec is the only company to have won the 
European Information Technology Prize three 
times. 

2 System fundamentals 

Personal Translator is implemented as a modular 
system which basically consists of the following 
components: 

• the grammar, written in Prolog, based on 
the concept of slot grammar 

• the lexicon, administrated in the data base 
internally called TransLexis 

• additional morphological analysers written 
partly in C and C++  

• hybrid (rule-based and statistical) methods 
for word disambiguation, subject area 
recognition and spell-checking 

• a range of pre- and post-processing 
components such as format converters  for 
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html, pdf, doc, txt and rtf formats, sentence 
splitter, tokeniser, lemmatizer. 

As Personal Translator is a commercial system, 
aiming at providing a complete translator work 
bench and creating added value for users, it 
integrates a wide range of advanced features such 
as:  

• Translation memory system for 
management, creation, analysis and 
maintenance of  TMs, as well as large 
system modules, containing tens of 
thousands of sentence pairs 

• Translation project management tool, 
enabling the user to save and administer all 
important translation settings and project 
relevant options 

• Text to speech functionality to support  
editing and learning processes such as text 
revision/correction in the language(s) 
mastered by the user, or   getting a feeling 
for the correct pronunciation in a foreign 
language, to name just a few. 

2.1 LMT and Slot Grammar 

Personal Translator is based on the LMT (Logic 
programming based Machine Translation). The 
core of LMT uses the principles of slot grammar, 
a grammatical description system developed 
originally by Michael McCord1 at IBM. 

Slot grammar is based on the concept of word 
valence. It is dependency oriented, i.e. each phrase 
has a head word. Each (head) word is characterised 
by slots which represent empty places in its 
grammatical surroundings such as subject, object, 
modifier etc. which can be realised in text or not. 
The slots represent either complements of the 
head word which have to be defined in the lexicon 
or adjuncts which are rather associated with the 
part of speech and defined more generally in the 
grammar rules. The possible slot fillers are 
typified by their morphological, syntactic or 
semantic properties. The analysis of a word is 
finished and the phrase is considered as satisfied if 
the appropriate fillers are found in the text and all 
(obligatory) slots of the word are filled 

                                                             
1 McCord (1989); McCord, Vernth (1992) 

3 Advanced translation features 

There are some well-known restrictions concerning 
the automatic translation process. One of them is 
the ability of most MT systems to operate on only 
one sentence at a time. The same is also true for 
the PT but only to a limited degree. PT integrates 
several methods for semantic and context analysis 
on multi-sentence level and for the identification of 
concepts which are repeated throughout the text.  
This applies in particular to the recognition of 
pronoun references and coreference analysis of 
proper names, as well as subject area recognition 
and neural transfer which are described further 
below. 

3.1 Recognition of pronoun reference 

Pronouns can refer to other words (their 
antecedents) which had occurred in the previous 
text. When translating from German into English 
and vice versa the fact that e.g. the English 
personal pronouns he/she apply only to humans 
and it to all other things, whereas in German 
er/sie/es can refer to any noun, has to be 
considered when searching for appropriate 
translation: 

This is a desk. It is new.  
Dies ist ein Schreibtisch. Er ist neu. 

versus: 
This is a bag. It is new. 
Dies ist eine Tasche. Sie ist neu. 

The user can either select the translation option 
„Automatic recognition of pronoun reference“, 
when translating a continuous text, or deselect it in 
case of translating lists of independent sentences 
(as we did for the current submission). If this 
option is deselected, the PT output for the 
sentences above reads as follows: 

Dies ist ein Schreibtisch. Es ist neu.  
Dies ist eine Tasche. Es ist neu.  

Also the translation of other words in the context 
can benefit from correct pronoun reference 
recognition: 

 The dogs found biscuits. They ate them. 
 Die Hunde fanden Kekse. Sie fraßen sie. 

versus: 
The children found biscuits. They ate them. 
 Die Kinder fanden Kekse. Sie aßen sie. 

The last example demonstrates an improvement in 
the translation of the verb eat which is to be 
translated into German with fressen if its subject is 
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an animal or with essen if the subject is a human. 
The pronoun they in the first sentence refers to 
dogs (animals), in the second to children (humans) 
respectively. 

3.2 Named entity recognition 

The treatment of proper names is a real challenge 
for machine translation. There is a huge number of 
proper names, even growing constantly if e.g. the 
companies and product names are considered. 
Furthermore, person names are constantly 
changing in their degree of topicality, so it is not of 
much use to have Kohl and Fischer in the lexicon 
when the texts to be translated speak about Merkel 
and Rösler. As such, the proper names are 
unsuitable to be primarily stored in the lexicon. 
The second problem is homography: If a proper 
name is spelled in the same way as a common 
word, it is very likely to be translated by an MT 
system (Brown => Braun; Metzger => Butcher).  

Personal Translator integrates a named entity 
recognition component which runs both: 
• as a pre-processing tool: It puts mark-ups on 

the proper names to exclude them of other 
pre-processing components such as e.g. 
spell checker 

• as part of the translation process, integrated 
into the lexicon and the complete analysis-
transfer-generation process: Morphological 
and syntactic analysis/generation bases 
among other things on semantic roles 
(person, place…), as the proper names have 
special inflection patterns  and specific 
syntactic behaviour (preposition  slots, 
appositions etc.). 

By this, we could achieve an increase in translation 
quality of about 30% for sentences containing 
proper names.2 

3.3 Word sense disambiguation 

Another important issue is the treatment of 
ambiguous words. Most glossaries contain several 
million translations, among them large amounts of 
words with multiple meanings. Traditionally, 
‘Personal Translator’ uses several ways to 
disambiguate ambiguous words and select the most 
proper translation: 
• Interpretion of gender/number and other 

morphosyntactic information: 
                                                             
2 cf. Thurmair (2005) 

der Kiefer (m) = jaw 
die Kiefer (f) = pine 
minute (sg)  = Minute 
minutes (pl) = Protokoll 

• Analysis of slot fillers: 
anmachen (Licht) = turn on (light) 
anmachen (Salat) = prepare (salad) 
anmachen (jmd.) = chat (s.o.) up  
bestehen (auf ) =  insist (on) 
bestehen (aus) = be made (of) 

• Use of orthographic information: 
fest (lower case) = stable, firm 
Fest (capitalised) = celebration 

• Definition of different subject area codes for 
the translations: 
die Mutter (general) = mother 
die Mutter (techn.) = nut 

 

4 Hybrid technology 

All these disambiguation methods are labour-
intensive in terms of manual coding efforts, and 
they require, to a certain extent, user interaction 
(e.g. selecting appropriate options such as subject 
area) that in turn needs reliable knowledge of the 
contents to be translated which is often not the 
case. And not at least, manual setting of the 
disambiguation contexts is not only inefficient but 
also prone to errors.  
For these reasons Linguatec continually tests new, 
innovative solutions to reduce manual coding 
efforts and increase translation quality. Therefore it 
seemed obvious to try to draw statistical 
significant, reliable, and empirically-sound 
information from the immense Linguatec corpus 
and enrich the RMT with this knowledge. Thus an 
innovative hybrid component, which has been filed 
as patent3, has been developed. 

4.1 Neural transfer 

We as humans rarely have problems to distinguish 
between two or more different meanings of a word. 
The decision happens automatically, supported by 
accessing the world knowledge stored in our brains. 
Many efforts have been made to artificially imitate 
these processes. In linguistics, traditionally 
ontologies have been created which aim at 

                                                             
3 cf. Linguatec Patent „Hybrid transfer selection in Machine 
Translation“  US: 11/885.688, EPA: Nr. 05715789.3 
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reflecting the relations and the hierarchy in the 
nature. In information technology, artificial neural 
networks try to approximate the operation of the 
human brain. Linguatec’s hybrid disambiguation 
model tries to single out the best translation for a 
word by identifying its semantic network.  We call 
it ‘neural transfer’. 

The disambiguation model for the neural 
transfer has been trained on a significant amount of 
different contexts for each lexicon entry with 
multiple translations, where this method could be 
considered as appropriate. Clusters of different 
meanings of words were built manually and 
statistical methods were applied on them in order 
to identify the most distinctive terms in their 
surroundings and represent the results in neural 
networks.  The neural transfer technology has been 
integrated into the PT by modifying the affected 
lexicon entries, and by adding a pre-processing 
component which assigns a semantic net to the 
affected text passage. 

The neural transfer enables the PT to 
‘understand’ the context beyond sentence 
boundaries. Thus it is possible to deliver two 
different translations for the word Gericht (court, 
dish) in absolutely identical sentences, depending 
on the textual context: 

Ich kann mich noch an dieses Gericht erinnern. 
Es hat die Klage meiner Firma auf 
Entschädigung abgewiesen. 
I can still remember this court. It has rejected 
the complaint of my company on reimbursement. 

versus: 
Ich kann mich noch an dieses Gericht erinnern. 
Es war eines dieser Gerichte aus der Küche der 
Balkanländer, mit Gemüse und Knoblauch. 
I can still remember this dish. It was one of 
these dishes from the kitchen of the Balkan 
States with vegetables and garlic. 

The test results showed an improvement of the 
translation quality by about 40% for texts 
containing the affected concepts. 

4.2 Automatic subject area recognition 

In order to overcome the problems mentioned 
above (manual coding effort, required user 
interaction), a component for automatic topic 
identification has been developed and integrated 
into the PT. Its principle works in a similar way to 
neural transfer. The most important difference is 
that the automatic topic identifier assigns the 

recognised subject area to the whole text to be 
translated, whereas the neural transfer can operate 
on the single paragraph level. 

4.3 SmartCorrect 

Regarding the enormous amount of texts to be 
translated, most of which are from internet or other 
unscanned sources, it is not reasonable to expect 
from MT users to keep control of correct spelling. 
Nevertheless, a MT system is only able to translate 
correctly spelled words. For these reasons most 
MT systems, as well as text processing 
programmes, include a spellchecker. The problem 
is that they mostly just identify the typos/spelling 
errors and leave it up to the user to choose the 
correct form from a list of suggestions. This is 
process which requires intensive user interaction 
and experience has taught us, that users are not 
always ready to invest their time. In addition, this 
can only be expected if the text to be corrected 
belongs to the language mastered by the user. 
Therefore Linguatec developed SmartCorrect 
which not only recognises spelling errors in the 
text but also corrects them automatically. Trained 
on very large corpora, the model is likely to detect 
the best variant in nearly all cases. Clever enough, 
it cooperates with the named entities recogniser 
and thus does not identify unknown proper names 
as spelling errors. Entries from the user lexicons 
are also save from SmartCorrect intervention. 
However, a major part of the misspelling 
corrections is already performed in a pre-
processing step, which adopts some proven 
methods4 to identify and correct frequent errors, 
such as letter deletion, insertion, substitution, 
inversion and duplication. 

5 WMT2011 Submission  

We participate for the German-English translation 
direction. Linguatec has not used the training 
corpus because we wanted to submit the results of 
our general purpose MT system. 

The only system tuning consisted of lexicon 
coding. Unknown words were detected 
automatically by analysing the test set. Appropriate 
translations were found, some of them from the 
training corpus. About 200 terms were manually 
coded or imported into the PT lexicon.  

                                                             
4 cf. Habash (2008) 
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Furthermore, we have observed that the test set 
contained some spelling errors which have been 
corrected by SmartCorrect (ca. 150 misspelling 
corrections were done), for example:  

offiziel => offiziell 
Sympatie => Sympathie 
enhüllten => enthüllten 
bessseren => besseren 
unbwohnbar => unbewohnbar 
zwiwchen => zwischen 
 

Thus, for comparison purposes we translated the 
test set three times: 
• Out-of-the-box PT, without SmartCorrect 
• Out-of-the-box PT, with SmartCorrect 
• Out-of-the-box PT, with SmartCorrect plus 

lexicon adaptation 

The BLEU score in the first run was 17,0. 
Interestingly, the BLEU score of the second run 
did not reflect any improvements caused by 
correction of typos; on the contrary, it declined by 
0,2  from 17,0 to 16,8. However, by manual 
evaluation of sample sentences we gained a more 
positive impression of the results. With the third 
run, after the lexicon coding, a BLEU of 17,1, i.e. a 
minimal increase compared with the firs run, was 
achieved. Here again, the manual inspection of 
random sentences, containing the coded terms, left 
an impression of some more significant 
improvements than measured by BLEU. 

5.1 Conclusion 

Automatic metrics have shown a minimal 
improvement of translation quality. However, the 
manual inspection suggested much more 
significant influences of spelling correction and 
lexicon coding on the translation adequacy and 
sentence structure and consequently on the 
readability of the output than the BLEU score did. 

5.2 Combined system submission by DFKI 

At WMT 2011 our PT will also participate in the 
combined translation task in a combination of rule-
based and SMT systems submitted by the DFKI5. 
 

                                                             
5 Xu et al.(2011) 

6 Outlook 

Simultaneously with the current submission a 
‘hybrid experiment’ was performed: An attempt at 
using SMT methods to improve the transfer 
selection for coding new entries in PT. 

An existing (crawled) parallel corpus in the 
automotive domain was cleaned, segmented by 
Liguatec sentence splitter, sentence-aligned by 
Hunalign (supported by using the Linguatec 
dictionary), word-aligned by GIZA++ and finally 
phrase tables were produced by using Moses. The 
objective was to extract meaningful phrases and 
their translations which are particularly suitable for 
import into the PT lexicon and thus generate a 
glossary. 

First a phrase table filter, based on frequency, 
was applied. Then part of speech information was 
added to both source and target entries as a basis 
for filtering linguistically motivated phrases. A 
glossary was generated. For testing purposes a very 
small set of about 250 terms, namely those which 
were unknown in the PT lexicon, was chosen to be 
imported. On a test corpus of about 320 sentences 
from the automotive domain the translation quality 
improvement, measured by BLEU, turned out to be 
about 3.1% (before coding: 14.87, after coding: 
17.97). 
We will continue researching in that field. 
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Abstract

This paper describes LIMSI’s submissions to
the Sixth Workshop on Statistical Machine
Translation. We report results for the French-
English and German-English shared transla-
tion tasks in both directions. Our systems
use n-code, an open source Statistical Ma-
chine Translation system based on bilingual
n-grams. For the French-English task, we fo-
cussed on finding efficient ways to take ad-
vantage of the large and heterogeneous train-
ing parallel data. In particular, using a sim-
ple filtering strategy helped to improve both
processing time and translation quality. To
translate from English to French and Ger-
man, we also investigated the use of the
SOUL language model in Machine Trans-
lation and showed significant improvements
with a 10-gram SOUL model. We also briefly
report experiments with several alternatives to
the standard n-best MERT procedure, leading
to a significant speed-up.

1 Introduction

This paper describes LIMSI’s submissions to the
Sixth Workshop on Statistical Machine Translation,
where LIMSI participated in the French-English and
German-English tasks in both directions. For this
evaluation, we used n-code, our in-house Statistical
Machine Translation (SMT) system which is open-
source and based on bilingual n-grams.

This paper is organized as follows. Section 2 pro-
vides an overview of n-code, while the data pre-
processing and filtering steps are described in Sec-
tion 3. Given the large amount of parallel data avail-

able, we proposed a method to filter the French-
English GigaWord corpus (Section 3.2). As in our
previous participations, data cleaning and filtering
constitute a non-negligible part of our work. This
includes detecting and discarding sentences in other
languages; removing sentences which are also in-
cluded in the provided development sets, as well as
parts that are repeated (for the monolingual news
data, this can reduce the amount of data by a fac-
tor 3 or 4, depending on the language and the year);
normalizing the character set (non-utf8 characters
which are aberrant in context, or in the case of the
GigaWord corpus, a lot of non-printable and thus in-
visible control characters such as EOT (end of trans-
mission)1).

For target language modeling (Section 4), a stan-
dard back-off n-gram model is estimated and tuned
as described in Section 4.1. Moreover, we also in-
troduce in Section 4.2 the use of the SOUL lan-
guage model (LM) (Le et al., 2011) in SMT. Based
on neural networks, the SOUL LM can handle an
arbitrary large vocabulary and a high order marko-
vian assumption (up to 10-gram in this work). Fi-
nally, experimental results are reported in Section 5
both in terms of BLEU scores and translation edit
rates (TER) measured on the provided newstest2010
dataset.

2 System Overview

Our in-house n-code SMT system implements the
bilingual n-gram approach to Statistical Machine
Translation (Casacuberta and Vidal, 2004). Given a

1This kind of characters was used for Teletype up to the sev-
enties or early eighties.
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source sentence sJ
1, a translation hypothesis t̂I

1 is de-
fined as the sentence which maximizes a linear com-
bination of feature functions:

t̂I
1 = argmax

tI
1

{
M

∑
m=1

λmhm(sJ
1, t

I
1)

}
(1)

where sJ
1 and tI

1 respectively denote the source and
the target sentences, and λm is the weight associated
with the feature function hm. The translation fea-
ture is the log-score of the translation model based
on bilingual units called tuples. The probability as-
signed to a sentence pair by the translation model is
estimated by using the n-gram assumption:

p(sJ
1, t

I
1) =

K

∏
k=1

p((s, t)k|(s, t)k−1 . . .(s, t)k−n+1)

where s refers to a source symbol (t for target) and
(s, t)k to the kth tuple of the given bilingual sentence
pair. It is worth noticing that, since both languages
are linked up in tuples, the context information pro-
vided by this translation model is bilingual. In ad-
dition to the translation model, eleven feature func-
tions are combined: a target-language model (see
Section 4 for details); four lexicon models; two lex-
icalized reordering models (Tillmann, 2004) aim-
ing at predicting the orientation of the next transla-
tion unit; a “weak” distance-based distortion model;
and finally a word-bonus model and a tuple-bonus
model which compensate for the system preference
for short translations. The four lexicon models are
similar to the ones used in a standard phrase-based
system: two scores correspond to the relative fre-
quencies of the tuples and two lexical weights are
estimated from the automatically generated word
alignments. The weights associated to feature func-
tions are optimally combined using a discriminative
training framework (Och, 2003) (Minimum Error
Rate Training (MERT), see details in Section 5.4),
using the provided newstest2009 data as develop-
ment set.

2.1 Training

Our translation model is estimated over a training
corpus composed of tuple sequences using classi-
cal smoothing techniques. Tuples are extracted from

a word-aligned corpus (using MGIZA++2 with de-
fault settings) in such a way that a unique segmenta-
tion of the bilingual corpus is achieved, allowing to
estimate the n-gram model. Figure 1 presents a sim-
ple example illustrating the unique tuple segmenta-
tion for a given word-aligned pair of sentences (top).

Figure 1: Tuple extraction from a sentence pair.

The resulting sequence of tuples (1) is further re-
fined to avoid NULL words in the source side of the
tuples (2). Once the whole bilingual training data is
segmented into tuples, n-gram language model prob-
abilities can be estimated. In this example, note that
the English source words perfect and translations
have been reordered in the final tuple segmentation,
while the French target words are kept in their orig-
inal order.

2.2 Inference

During decoding, source sentences are encoded
in the form of word lattices containing the most
promising reordering hypotheses, so as to reproduce
the word order modifications introduced during the
tuple extraction process. Hence, at decoding time,
only those encoded reordering hypotheses are trans-
lated. Reordering hypotheses are introduced using
a set of reordering rules automatically learned from
the word alignments.

In the previous example, the rule [perfect transla-
tions ; translations perfect] produces the swap of
the English words that is observed for the French
and English pair. Typically, part-of-speech (POS)
information is used to increase the generalization
power of such rules. Hence, rewriting rules are built
using POS rather than surface word forms. Refer

2http://geek.kyloo.net/software
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to (Crego and Mariño, 2007) for details on tuple ex-
traction and reordering rules.

3 Data Pre-processing and Selection

We used all the available parallel data allowed in
the constrained task to compute the word align-
ments, except for the French-English tasks where
the United Nation corpus was not used to train our
translation models. To train the target language
models, we also used all provided data and mono-
lingual corpora released by the LDC for French
and English. Moreover, all parallel corpora were
POS-tagged with the TreeTagger (Schmid, 1994).
For German, the fine-grained POS information used
for pre-processing was computed by the RFTag-
ger (Schmid and Laws, 2008).

3.1 Tokenization
We took advantage of our in-house text process-
ing tools for the tokenization and detokenization
steps (Déchelotte et al., 2008). Previous experi-
ments have demonstrated that better normalization
tools provide better BLEU scores (Papineni et al.,
2002). Thus all systems are built in “true-case.”

As German is morphologically more complex
than English, the default policy which consists in
treating each word form independently is plagued
with data sparsity, which poses a number of diffi-
culties both at training and decoding time. Thus,
to translate from German to English, the German
side was normalized using a specific pre-processing
scheme (described in (Allauzen et al., 2010)), which
aims at reducing the lexical redundancy and splitting
complex compounds.

Using the same pre-processing scheme to trans-
late from English to German would require to post-
process the output to undo the pre-processing. As in
our last year’s experiments (Allauzen et al., 2010),
this pre-processing step could be achieved with a
two-step decoding. However, by stacking two de-
coding steps, we may stack errors as well. Thus, for
this direction, we used the German tokenizer pro-
vided by the organizers.

3.2 Filtering the GigaWord Corpus
The available parallel data for English-French in-
cludes a large Web corpus, referred to as the Giga-
Word parallel corpus. This corpus is very noisy, and

contains large portions that are not useful for trans-
lating news text. The first filter aimed at detecting
foreign languages based on perplexity and lexical
coverage. Then, to select a subset of parallel sen-
tences, trigram LMs were trained for both French
and English languages on a subset of the available
News data: the French (resp. English) LM was used
to rank the French (resp. English) side of the cor-
pus, and only those sentences with perplexity above
a given threshold were selected. Finally, the two se-
lected sets were intersected. In the following exper-
iments, the threshold was set to the median or upper
quartile value of the perplexity. Therefore, half (or
75%) of this corpus was discarded.

4 Target Language Modeling

Neural networks, working on top of conventional
n-gram models, have been introduced in (Bengio
et al., 2003; Schwenk, 2007) as a potential means
to improve conventional n-gram language models
(LMs). However, probably the major bottleneck
with standard NNLMs is the computation of poste-
rior probabilities in the output layer. This layer must
contain one unit for each vocabulary word. Such a
design makes handling of large vocabularies, con-
sisting of hundreds thousand words, infeasible due
to a prohibitive growth in computation time. While
recent work proposed to estimate the n-gram dis-
tributions only for the most frequent words (short-
list) (Schwenk, 2007), we explored the use of the
SOUL (Structured OUtput Layer Neural Network)
language model for SMT in order to handle vocabu-
laries of arbitrary sizes.

Moreover, in our setting, increasing the order of
standard n-gram LM did not show any significant
improvement. This is mainly due to the data spar-
sity issue and to the drastic increase in the number of
parameters that need to be estimated. With NNLM
however, the increase in context length at the input
layer results in only a linear growth in complexity
in the worst case (Schwenk, 2007). Thus, training
longer-context neural network models is still feasi-
ble, and was found to be very effective in our system.
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4.1 Standard n-gram Back-off Language
Models

To train our language models, we assumed that the
test set consisted in a selection of news texts dat-
ing from the end of 2010 to the beginning of 2011.
This assumption was based on what was done for
the 2010 evaluation. Thus, for each language, we
built a development corpus in order to optimize the
vocabulary and the target language model.

Development set and vocabulary In order to
cover different periods, two development sets were
used. The first one is newstest2008. This corpus is
two years older than the targeted time period; there-
fore, a second development corpus named dev2010-
2011 was collected by randomly sampling bunches
of 5 consecutive sentences from the provided news
data of 2010 and 2011.

To estimate such large LMs, a vocabulary
was first defined for each language by including
all tokens observed in the Europarl and News-
Commentary corpora. For French and English, this
vocabulary was then expanded with all words that
occur more than 5 times in the French-English Gi-
gaWord corpus, and with the most frequent proper
names taken from the monolingual news data of
2010 and 2011. As for German, since the amount
of training data was smaller, the vocabulary was ex-
panded with the most frequent words observed in the
monolingual news data of 2010 and 2011. This pro-
cedure resulted in a vocabulary containing around
500k words in each language.

Language model training All the training data al-
lowed in the constrained task were divided into sev-
eral sets based on dates or genres (resp. 9 and 7
sets for English and French). On each set, a stan-
dard 4-gram LM was estimated from the 500k words
vocabulary using absolute discounting interpolated
with lower order models (Kneser and Ney, 1995;
Chen and Goodman, 1998).

All LMs except the one trained on the news cor-
pora from 2010-2011 were first linearly interpolated.
The associated coefficients were estimated so as to
minimize the perplexity evaluated on dev2010-2011.
The resulting LM and the 2010-2011 LM were fi-
naly interpolated with newstest2008 as development
data. This procedure aims to avoid overestimating

the weight associated to the 2010-2011 LM.

4.2 The SOUL Model

We give here a brief overview of the SOUL LM;
refer to (Le et al., 2011) for the complete training
procedure. Following the classical work on dis-
tributed word representation (Brown et al., 1992),
we assume that the output vocabulary is structured
by a clustering tree, where each word belongs to
only one class and its associated sub-classes. If wi

denotes the i-th word in a sentence, the sequence
c1:D(wi) = c1, . . . ,cD encodes the path for the word
wi in the clustering tree, with D the depth of the tree,
cd(wi) a class or sub-class assigned to wi, and cD(wi)
the leaf associated with wi (the word itself). The
n-gram probability of wi given its history h can then
be estimated as follows using the chain rule:

P(wi|h) = P(c1(wi)|h)
D

∏
d=2

P(cd(wi)|h,c1:d−1)

Figure 2 represents the architecture of the NNLM
to estimate this distribution, for a tree of depth
D = 3. The SOUL architecture is the same as for
the standard model up to the output layer. The
main difference lies in the output structure which in-
volves several layers with a softmax activation func-
tion. The first softmax layer (class layer) estimates
the class probability P(c1(wi)|h), while other out-
put sub-class layers estimate the sub-class proba-
bilities P(cd(wi)|h,c1:d−1). Finally, the word layers
estimate the word probabilities P(cD(wi)|h,c1:D−1).
Words in the short-list are a special case since each
of them represents its own class without any sub-
classes (D = 1 in this case).

5 Experimental Results

The experimental results are reported in terms of
BLEU and translation edit rate (TER) using the
newstest2010 corpus as evaluation set. These auto-
matic metrics are computed using the scripts pro-
vided by the NIST after a detokenization step.

5.1 English-French

Compared with last year evaluation, the amount of
available parallel data has drastically increased with
about 33M of sentence pairs. It is worth noticing
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Figure 2: Architecture of the Structured Output Layer
Neural Network language model.

that the provided corpora are not homogeneous, nei-
ther in terms of genre nor in terms of topics. Never-
theless, the most salient difference is the noise car-
ried by the GigaWord and the United Nation cor-
pora. The former is an automatically collected cor-
pus drawn from different websites, and while some
parts are indeed relevant to translate news texts, us-
ing the whole GigaWord corpus seems to be harm-
ful. The latter (United Nation) is obviously more
homogeneous, but clearly out of domain. As an il-
lustration, discarding the United Nation corpus im-
proves performance slightly.

Table 1 summarizes some of our attempts at deal-
ing with such a large amount of parallel data. As
stated above, translation models are trained with
the news-commentary, Europarl, and GigaWord cor-
pora. For this last data set, results show the reward of
sentence pair selection as described in Section 3.2.
Indeed, filtering out 75% of the corpus yields to
a significant BLEU improvement when translating
from English to French and of 1 point in the other
direction (line upper quartile in Table 1). More-
over, a larger selection (50% in the median line) still
increases the overall performance. This shows the
room left for improvement by a more accurate data
selection process such as a well optimized thresh-
old in our approach, or a more sophisticated filtering
strategy (see for example (Foster et al., 2010)).

Another issue when using such a large amount

System en2fr fr2en
BLEU TER BLEU TER

All 27.4 56.6 26.8 55.0
Upper quartile 27.8 56.3 28.4 53.8
Median 28.1 56.0 28.6 53.5

Table 1: English-French translation results in terms of
BLEU score and TER estimated on newstest2010 with
the NIST script. All means that the translation model is
trained on news-commentary, Europarl, and the whole
GigaWord. The rows upper quartile and median corre-
spond to the use of a filtered version of the GigaWord.

of data is the mismatch between the target vocab-
ulary derived from the translation model and that of
the LM. The translation model may generate words
which are unknown to the LM, and their probabili-
ties could be overestimated. To avoid this behaviour,
the probability of unknown words for the target LM
is penalized during the decoding step.

5.2 English-German
For this translation task, we compare the impact of
two different POS-taggers to process the German
part of the parallel data. The results are reported
in Table 2. Results show that to translate from En-
glish to German, the use of a fine-grained POS infor-
mation (RFTagger) leads to a slight improvement,
whereas it harms the source reordering model in the
other direction. It is worth noticing that to translate
from German to English, the RFTagger is always
used during the data pre-processing step, while a dif-
ferent POS tagger may be involved for the source
reordering model training.

System en2de de2en
BLEU TER BLEU TER

RFTagger 22.8 60.1 16.3 66.0
TreeTagger 23.1 59.4 16.2 66.0

Table 2: Translation results in terms of BLEU score
and translation edit rate (TER) estimated on newstest2010
with the NIST scoring script.

5.3 The SOUL Model
As mentioned in Section 4.2, the order of a con-
tinuous n-gram model such as the SOUL LM can
be raised without a prohibitive increase in complex-
ity. We summarize in Table 3 our experiments with
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SOUL LMs of orders 4, 6, and 10. The SOUL LM
is introduced in the SMT pipeline by rescoring the
n-best list generated by the decoder, and the asso-
ciated weight is tuned with MERT. We observe for
the English-French task: a BLEU improvement of
0.3, as well as a similar trend in TER, when intro-
ducing a 4-gram SOUL LM; an additional BLEU
improvement of 0.3 when increasing the order from
4 to 6; and a less important gain with the 10-gram
SOUL LM. In the end, the use of a 10-gram SOUL
LM achieves a 0.7 BLEU improvement and a TER
decrease of 0.8. The results on the English-German
task show the same trend with a 0.5 BLEU point
improvement.

SOUL LM en2fr en2de
BLEU TER BLEU TER

without 28.1 56.0 16.3 66.0
4-gram 28.4 55.5 16.5 64.9
6-gram 28.7 55.3 16.7 64.9
10-gram 28.8 55.2 16.8 64.6

Table 3: Translation results from English to French and
English to German measured on newstest2010 using a
100-best rescoring with SOUL LMs of different orders.

5.4 Optimization Issues
Along with MIRA (Margin Infused Relaxed Al-
gorithm) (Watanabe et al., 2007), MERT is the
most widely used algorithm for system optimiza-
tion. However, standard MERT procedure is known
to suffer from instability of results and very slow
training cycle with approximate estimates of one de-
coding cycle for each training parameter. For this
year’s evaluation, we experimented with several al-
ternatives to the standard n-best MERT procedure,
namely, MERT on word lattices (Macherey et al.,
2008) and two differentiable variants to the BLEU
objective function optimized during the MERT cy-
cle. We have recast the former in terms of a spe-
cific semiring and implemented it using a general-
purpose finite state automata framework (Sokolov
and Yvon, 2011). The last two approaches, hereafter
referred to as ZHN and BBN, replace the BLEU
objective function, with the usual BLEU score on
expected n-gram counts (Rosti et al., 2010) and
with an expected BLEU score for normal n-gram
counts (Zens et al., 2007), respectively. All expecta-

tions (of the n-gram counts in the first case and the
BLEU score in the second) are taken over all hy-
potheses from n-best lists for each source sentence.

Experiments with the alternative optimization
methods achieved virtually the same performance in
terms of BLEU score, but 2 to 4 times faster. Neither
approach, however, showed any consistent and sig-
nificant improvement for the majority of setups tried
(with the exception of the BBN approach, that had
almost always improved over n-best MERT, but for
the sole French to English translation direction). Ad-
ditional experiments with 9 complementary transla-
tion models as additional features were performed
with lattice-MERT, but neither showed any substan-
tial improvement. In the view of these rather incon-
clusive experiments, we chose to stick to the classi-
cal MERT for the submitted results.

6 Conclusion

In this paper, we described our submissions to
WMT’11 in the French-English and German-
English shared translation tasks, in both directions.
For this year’s participation, we only used n-code,
our open source Statistical Machine Translation sys-
tem based on bilingual n-grams. Our contributions
are threefold. First, we have shown that n-gram
based systems can achieve state-of-the-art perfor-
mance on large scale tasks in terms of automatic
metrics such as BLEU. Then, as already shown by
several sites in the past evaluations, there is a signifi-
cant reward for using data selection algorithms when
dealing with large heterogeneous data sources such
as the GigaWord. Finally, the use of a large vocab-
ulary continuous space language model such as the
SOUL model has enabled to achieve significant and
consistent improvements. For the upcoming evalua-
tion(s), we would like to suggest that the important
work of data cleaning and pre-processing could be
shared among all the participants instead of being
done independently several times by each site. Re-
ducing these differences could indeed help improve
the reliability of SMT systems evaluation.
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Abstract

We present a translation model enriched with
shallow syntactic and semantic information
about the source language. Base-phrase la-
bels and semantic role labels are incorporated
into an hierarchical model by creating shal-
low semantic “trees”. Results show an in-
crease in performance of up to 6% in BLEU
scores for English-Spanish translation over a
standard phrase-based SMT baseline.

1 Introduction

The use of semantic information to improve Statis-
tical Machine Translation (SMT) is a very recent re-
search topic that has been attracting significant at-
tention. In this paper we describe our participation
in the shared translation task of the 6th Workshop on
Statistical Machine Translation (WMT) with a sys-
tem that incorporates shallow syntactic and semantic
information into hierarchical SMT models.

The system is based on the Moses toolkit (Hoang
et al., 2009; Koehn et al., 2007) using hierarchi-
cal models informed with shallow syntactic (chunks)
and semantic (semantic role labels) information for
the source language. The toolkit SENNA (Collobert
et al., 2011) is used to provide base-phrases (chunks)
and semantic role labels.

Experiments with English-Spanish and English-
German news datasets show promising results and
highlight important issues about the use of seman-
tic information in hierarchical models as well as a
number of possible directions for further research.

The remaining of the paper is organized as fol-
lows: Section 2 presents related work; Section 3 de-

scribes the method; Section 4 presents the results ob-
tained for the English-Spanish and English-German
translation tasks; and Section 5 brings some conclu-
sions and directions for further research.

2 Related Work

In hierarchical SMT (Chiang, 2005), a Synchronous
Context Free Grammar (SCFG) is learned from a
parallel corpus.The model capitalizes on the recur-
sive nature of language replacing sub-phrases by
an unlabeled nonterminal. Hierarchical models are
known to produce high coverage rules, once they are
only constrained by the word alignment. Neverthe-
less the lack of specialized vocabulary also leads to
spurious ambiguity (Chiang, 2005).

Syntax-based models are hierarchical models
whose rules are constrained by syntactic informa-
tion.The syntactic constraints have an impact in
the rule extraction process, reducing drastically the
number of rules available to the system. While this
may be helpful to reduce ambiguity, it can lead to
poorer performance (Ambati and Lavie, 2008).

Motivated by the fact that syntactically constrain-
ing a hierarchical model can decrease translation
quality, some attempts to overcome the problems
at rule extraction time have been made. Venugopal
and Zollmann (2006) propose a heuristic method to
relax parse trees known as Syntax Augmented Ma-
chine Translation (SAMT). Significant gains are ob-
tained by grouping nonterminals under categories
when they do not span across syntactic constituents.

Hoang and Koehn (2010) propose a soft syntax-
based model which combines the precision of a
syntax-constrained model with the coverage of an
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unconstrained hierarchical model. Instead of hav-
ing heuristic strategies to combine nonterminals in a
parse tree, whenever a rule cannot be retrieved be-
cause it does not span a constituent, the extraction
procedure falls back to the hierarchical approach, re-
trieving a rule with unlabeled nonterminals. Perfor-
mance gains are reported over standard hierarchical
models using both full parse trees and shallow syn-
tax.

Moving beyond syntactic information, some at-
tempts have recently been made to add semantic an-
notations to SMT. Wu and Fung (2009) present a
two-pass model to incorporate semantic information
to the phrase-based SMT pipeline. The method per-
forms conventional translation in a first step, fol-
lowed by a constituent reordering step seeking to
maximize the cross-lingual match of the semantic
role labels of the translation and source sentences.

Liu and Gildea (2010) add features extracted from
the source sentences annotated with semantic role
labels in a tree-to-string SMT model. They mod-
ify a syntax-based SMT system in order to penal-
ize/reward role reordering and role deletion. The
input sentence is parsed for semantic roles and the
roles are then projected onto the target side using
word alignment information at decoding time. They
assume that a one-to-one mapping between source
and target roles is desirable.

Baker et al. (2010) propose to graft semantic in-
formation, namely named entities and modalities, to
syntactic tags in a syntax-based model. The vocab-
ulary of nonterminals is specialized using the se-
mantic categories, for instance, a noun phrase (NP)
whose head is a geopolitical entity (GPE) will be
tagged as NPGPE, making the rule table less am-
biguous.

Similar to (Baker et al., 2010) we specialize a vo-
cabulary of syntactic nonterminals with semantic in-
formation, however we use shallow syntax (base-
phrases) and semantic role labels instead of con-
stituent parse and named entities. The resulting shal-
low trees are relaxed following SAMT (Venugopal
and Zollmann, 2006). Different from previous work
we add the semantic knowledge at the level of the
corpus annotation. As a consequence, instead of bi-
asing deletion and reordering through additional fea-
tures (Liu and Gildea, 2010), we learn hierarchical
rules that encode those phenomena, taking also into

account the semantic role of base-phrases.

3 Proposed Method

The proposed method is based on an extension of the
hierarchical models in Moses using source language
information. Our submission included systems for
two language pairs: English-Spanish (en-es) and
English-German (en-de) and was constrained to us-
ing data provided by WMT11. Phrase and rule ex-
traction were performed using the entire en-es and
en-de portions of Europarl. Model parameters were
tuned using the news-test2008 dataset. Three 5-
gram Spanish and German language models were
trained using SRILM1 with the News Commentaries
(∼ 160K sentences), Europarl (∼ 2M sentences)
and News (∼ 5M sentences) corpora. These models
were interpolated using scripts provided in Moses
(Koehn and Schroeder, 2007).

At pre-processing stage, sentences longer than 80
tokens were filtered from the training/development
corpus. The parallel corpus was then tokenized and
truecased. Additionally, for en-de, compound split-
ting of the German side of the corpus was performed
using a frequency based method described in (Koehn
and Knight, 2003). This method helps alleviate spar-
sity, reducing the size of the vocabulary by decom-
posing compounds into their base words. Recas-
ing and detokenization, along with compound merg-
ing of the translations into German, were handled
at post-processing stage. Compound merging was
performed by finding the most likely sequences of
words to be merged into previously seen compounds
(Stymne, 2009).

3.1 Source Language Annotation

For rule extraction, training and test, the English side
of the corpus was annotated with Semantic Role La-
bels (SRL) using the toolkit SENNA2, which also
outputs POS and base-phrase (without prepositional
attachment) tags. The resulting source language an-
notation was used to produce trees in order to build
a tree-to-string model in Moses.

1http://www.speech.sri.com/projects/
srilm/

2http://ml.nec-labs.com/senna/
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S
NP VP NP PP NP O O NP VP NP ADVP

PRP VBZ TO VB DT NN TO NN PUNC CC PRP VBZ RB VBD WDT RB
he intends to donate this money to charity , but he has not decided which yet

Figure 1: Example of POS tags and base-phrase annotation. Base-phrases: noun-phrase (NP), verb-phrase
(VP), prepositional-phrase (PP), adverbial-phrase (ADVP), outside-of-a-phrase (O)

In order to derive trees for the source side of the
corpus from this annotation, a new level is created to
add the POS tags for each word form. Syntactic tags
are then added by grouping words and POS tags into
base phrases using linguistic information as given
by SENNA. Figure 1 shows an example of an input
sentence annotated with POS and base-phrase infor-
mation. Additionally, SRLs are used to enrich the
POS and base-phrase annotation levels. Semantic
roles are assigned to each predicate independently.
As a consequence, the resulting annotation cannot
be considered a tree and there is not an obvious hi-
erarchy of predicates in a sentence. For example,
Figure 2 shows the SRL annotation for the example
in Figure 1.

[A0 He] [T intends] [A1 to donate this money to charity],
but he has not decided which yet
[A0 He] intends to [T donate] [A1 this money] [A2 to
charity], but he has not decided which yet
He intends to donate this money to charity, but [A0 he]
has [AM-NEG not] [T decided] [A1 which] [AM-TMP
yet]

Figure 2: SRL for sentence in Figure 1

Arguments of a single predicate never overlap,
however in longer sentences, the occurrence of mul-
tiple verbs increases the chances that arguments of
different predicates overlap, that is, the argument of
a verb might contain or even coincide with the argu-
ment of another verb and depending on the verb the
argument role might change. For example, in Fig-
ure 2: i) He is both the agent of intend and donate;
ii) this money is the donated thing and also part of
the chunk which express the intention (to donate this
money to charity). In a different example we can see
that arguments might overlap and their roles change
completely depending on their target predicates (e.g
in I gave you something to eat, you is the recipient
of the verb give and the agent of the verb eat). For
this reason, why semantic role labels are usually an-

notated individually in different structures, as shown
in Figure 2, each annotation focusing on a single tar-
get verb. In order to convert the predicates and argu-
ments of a sentence into a single tree, we enrich the
POS-tags and base-phrase annotation as follows:

• Semantic labels are directly grafted to the base-
phrase annotation whenever possible, that is,
if a predicate argument coincides with a sin-
gle base-phrase, the base-phrase type is spe-
cialized with the argument role. In Figure 3,
the noun-phrase (NP) the money is specialized
into NP:A1:donate, since that single NP is the
argument A1 of donate.

• If a predicate argument groups multiple base-
phrases, the semantic label applies to a node in
a new level of the tree subsuming all these base-
phrases. In Figure 3, the base-phrases to (PP)
and charity (NP) are grouped by A2:donate.

• We add the labels sequentially from the short-
est chunks to the largest ones. If two la-
bels spanning the same number of tokens: i)
overlap completely, we merge them so that
no hierarchy is imposed between their targets
(e.g. in Figure 3, the noun-phrase He is spe-
cialized into NP:A0:donate,intend); ii) over-
lap partially, we merge them so that the re-
sulting label will compete against other labels
in a different length category. If a label span-
ning a larger chunk overlaps partially with a
label spanning a shorter chunk, or contains it,
we stack them in a way that the first subsumes
the second (e.g in Figure 3, A1:intend sub-
sumes VP:T:donate, NP:A1:donate,intend and
A2:donate).

• Verb phrases might get split if they contain
multiple target predicates (e.g. in Figure 3,
the VP intends to donate is split into two verb-

318



phrases, each specialized with its own role la-
bel).

• Finally, tags are lexicalized, that is, semantic
labels are composed by their type (e.g. A0) and
target predicate lemma (verb).

Figure 3 shows and example of how semantic la-
bels are combined with shallow syntax in order to
produce the input tree for the sentence in Figure
1. The argument A1 of intend subsumes the target
verb donate and its arguments A1 and A2; A2:donate
groups base-phrases so as to attach the preposition to
the noun phrase.

Finally, following the method for syntactic trees
by Venugopal and Zollmann (2006), the input trees
are relaxed in order to alleviate the impact of the
linguistic constraints on rule extraction. We relax
trees3 by combining any pairs of neighboring nodes.
For example, NP:A0:donate,intend+VP:T:intend
and NP:A1:donate+A2:donate are created for the
tree in Figure 3.

4 Results

As a baseline to compare against our proposed ap-
proach (srl), we took a phrase-based SMT system
(pb) built using the Moses toolkit with the same
datasets and training conditions described in Sec-
tion 3. The results are reported in terms of standard
BLEU (Papineni et al., 2002) (and its case sensitive
version, BLEU-c) and tested for statistical signifi-
cance using an approximate randomization test (Rie-
zler and Maxwell, 2005) with 100 iterations.

In addition, we included an intermediate model
between these two: a hierarchical model in-
formed with source-language base-phrase informa-
tion (chunk). For the English-Spanish task we also
built a purely hierarchical model (hier) using Moses
and the same datasets and training conditions. For
the English-German task, hierarchical models have
not been shown to outperform standard phrase-based
models in previous work (Koehn et al., 2010).

Table 1 shows the performance achieved for the
English-Spanish translation task test set, where (srl)
is our official submission. One can notice a signifi-
cant gain in performance (up to 6% BLEU) in using
tree-based models (with or without source language

3Using the Moses implementation relax-parse for SAMT 2

annotation) as opposed to using standard phrase-
based models.

Model BLEU BLEU-c
pb 0.2429 0.2340
srl 0.2901 0.2805
hier 0.3029 0.2933
chunk 0.3034 0.2935

Table 1: English-Spanish experiments - differences
between all pairs of models are statistically signifi-
cant with 99% confidence, except for the pair (hier,
chunk)

The purely hierarchical approach performs as
well as our linguistically informed tree-based mod-
els (chunk and srl). On the one hand this finding
is somewhat disappointing as we expected that tree-
based models would benefit from linguistic annota-
tion. On the other hand it shows that the linguistic
annotation yields a significant reduction in the num-
ber of unnecessary productions: the linguistically in-
formed models are much smaller than hier (Table
5), but perform just as well. Whether the linguistic
annotation significantly helps make the productions
less ambiguous or not is still a question to be ad-
dressed in further experimentation.

Table 2 shows the performance achieved for the
English-German translation task test set. These re-
sults indicate that the linguistic information did not
lead to any significant gains in terms of automatic
metrics. An in-depth comparative analysis based on
a manual inspection of the translations remains to be
done.

Model BLEU BLEU-c
pb 0.1398 0.1360
srl 0.1381 0.1344
chunk 0.1403 0.1367

Table 2: English-German experiments - differences
between pairs of models are not statistically signifi-
cant

In Table 3 we also show the impact of three com-
pound merging strategies as post-processing for en-
de: i) no compound merging (nm), ii) frequency-
based compound merging (fb), and iii) frequency-
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NP:A0:donate,intend

PRP

He

VP:T:intend

VBZ

intends

A1:intend

VP:T:donate

TO

to

VB

donate

NP:A1:donate

DT

this

NN

money

A2:donate

PP

TO

to

NP

NN

charity

...

Figure 3: Tree for example in Figure 1

based compound merging constrained by POS4

(cfb). Applying both frequency-based compound
merging strategies (Stymne, 2009) resulted in sig-
nificant improvements of nearly 0.5% in BLEU.

Model BLEU BLEU-c
nm 0.1334 0.1298
fb 0.1369 0.1332
cfb 0.1381 0.1344

Table 3: English-German compound merging - dif-
ferences between all pairs of models are statistically
significant with 99% confidence

Another somewhat disappoint result is the perfor-
mance of srl when compared to chunk. We believe
the main reason why the chunk models outperform
the srl models is data sparsity. The semantic infor-
mation, and particularly the way it was used in this
paper, with lexicalized roles, led to a very sparse
model. As an attempt to make the srl model less
sparse, we tested a version of this model without
lexicalizing the semantic tags, in other words, us-
ing the semantic role labels only, for example, A1
instead of A1:intend in Figure 3. Table 4 shows that
models with lexicalized semantic roles (lex) consis-
tently outperform the alternative version (non lex),
although the differences were only statistically sig-
nificant for the en-de dataset. One reason for that
may be that non-lexicalized rules do not help mak-

4POS tagging was performed using the TreeTagger toolkit:
http://www.ims.uni-stuttgart.de/projekte/
corplex/TreeTagger/

ing the chunk rules less ambiguous.

Model BLEU BLEU-c
en-esnon lex 0.2891 0.2795
en-eslex 0.2901 0.2805
en-denon lex 0.1319 0.1284
en-delex 0.1381 0.1344

Table 4: Alternative model with non-lexicalized tags
- differences are statistically significant with 99%
confidence for en-de only

Table 5 shows how the additional annotation con-
strains the rule extraction (for the en-es dataset). The
unconstrained model hier presents the largest rule
table, followed by the chunk model, which is only
constrained by syntactic information. The models
enriched with semantic labels, both the lexicalized
or non-lexicalized versions, contain a comparable
number of rules. They are at least half the size of
the chunk model and about 9 times smaller than the
hier model. However, the number of nonterminals
in the lexicalized models highlights the sparsity of
such models.

Model Rules Nonterminals
hier 962,996,167 1
chunk 235,910,731 3,390
srlnon lex 92,512,493 44,095
srllex 117,563,878 3,350,145

Table 5: Statistics from the rule table

In order to exemplify the importance of having
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some form of lexicalized information as part of the
semantic models, Figure 4 shows two predicates
which present different semantic roles, even though
they have nearly the same shallow syntactic struc-
ture. In this case, unless lexicalized, rules map-
ping semantic roles into base-phrases become am-
biguous. Besides, the same role might appear sev-
eral times in the same sentence (Figure 2). In this
case, if the semantic roles are not annotated with
their target lemma, they bring additional confusion.
Therefore, the model needs the lexical information
to distinguish role deletion and reordering phenom-
ena across predicates.

Figure 4: Different SRL for similar chunks

[NP:A0 I] [VP:T gave] [NP:A2 you] [NP:A1 a car]
[NP:A0 I] [VP:T dropped] [NP:A1 the glass] [AM-LOC
[PP on] [NP the floor]]

In WMT11’s official manual evaluation, our sys-
tem submissions (srl) were ranked 10th out of 15
systems in the English-Spanish task, and 18th out
of 22 systems participating in the English-German
task. For detailed results refer to the overview paper
of the Shared Translation Task of the Sixth Work-
shop on Machine Translation (WMT11).

5 Conclusions

We have presented an effort towards using shal-
low syntactic and semantic information for SMT.
The model based on shallow syntactic information
(chunk annotation) has significantly outperformed a
baseline phrase-based model and performed as well
as a hierarchical phrase-based model with a signifi-
cantly smaller number of translation rules.

While annotating base-phrases with semantic la-
bels is intuitively a promising research direction, the
current model suffers from sparsity and representa-
tion issues resulting from the fact that multiple pred-
icates share arguments within a given sentence. As
a consequence, shallow semantics has not yet shown
improvements with respect to the chunk-based mod-
els.

In future work, we will address the sparsity is-
sues in the lexicalized semantic models by cluster-
ing predicates in a way that semantic roles can be
specialized with semantic categories, instead of the

verb lemmas.
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Koç University

34450 Sariyer, Istanbul, Turkey
ebicici@ku.edu.tr

Deniz Yuret
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Abstract

We present the results we obtain using our
RegMT system, which uses transductive re-
gression techniques to learn mappings be-
tween source and target features of given par-
allel corpora and use these mappings to gen-
erate machine translation outputs. Our train-
ing instance selection methods perform fea-
ture decay for proper selection of training in-
stances, which plays an important role to learn
correct feature mappings. RegMT uses L2

regularized regression as well as L1 regular-
ized regression for sparse regression estima-
tion of target features. We present transla-
tion results using our training instance selec-
tion methods, translation results using graph
decoding, system combination results with
RegMT, and performance evaluation with the
F1 measure over target features as a metric for
evaluating translation quality.

1 Introduction

Regression can be used to find mappings between
the source and target feature sets derived from given
parallel corpora. Transduction learning uses a sub-
set of the training examples that are closely related
to the test set without using the model induced by
the full training set. In the context of statistical ma-
chine translation, translations are performed at the
sentence level and this enables us to select a small
number of training instances for each test instance
to guide the translation process. This also gives us a
computational advantage when considering the high
dimensionality of the problem as each sentence can
be mapped to many features.

The goal in transductive regression based ma-
chine translation (RegMT) is both reducing the com-
putational burden of the regression approach by re-
ducing the dimensionality of the training set and the
feature set and also improving the translation quality
by using transduction.

We present translation results using our training
instance selection methods, translation results us-
ing graph decoding, system combination results with
RegMT, and performance evaluation with the F1

measure over target features as a metric for eval-
uating translation quality. RegMT work builds on
our previous regression-based machine translation
results (Bicici and Yuret, 2010) especially with in-
stance selection and additional graph decoding ca-
pability. We present our results to this year’s chal-
lenges.

Outline: Section 2 gives an overview of the
RegMT model. In section 3, we present our train-
ing instance selection techniques and WMT’11 re-
sults. In section 4, we present the graph decoding re-
sults on the Haitian Creole-English translation task.
Section 5 presents our system combination results
using reranking with the RegMT score. Section 6
evaluates the F1 measure that we use for the auto-
matic evaluation metrics challenge. The last section
present our contributions.

2 Machine Translation Using Regression

Let X and Y correspond to the sets of tokens
that can be used in the source and target strings,
then, m training instances are represented as
(x1, y1), . . . , (xm, ym) ∈ X∗ × Y ∗, where (xi, yi)
corresponds to a pair of source and target language
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token sequences for 1 ≤ i ≤ m. Our goal is to find
a mapping f : X∗ → Y ∗ that can convert a source
sentence to a target sentence sharing the same mean-
ing in the target language (Figure 1).

X∗ Y ∗-

? R ?
-FX FY

g
ΦX ΦY

6
Φ−1
Y

f

h

Figure 1: String-to-string mapping.

We define feature mappers ΦX : X∗ → FX =
RNX and ΦY : Y ∗ → FY = RNY that map each
string sequence to a point in high dimensional real
number space. Let MX ∈ RNX×m and MY ∈
RNY ×m such that MX = [ΦX(x1), . . . ,ΦX(xm)]
and MY = [ΦY (y1), . . . ,ΦY (ym)]. The ridge re-
gression solution usingL2 regularization is found by
minimizing the following cost:

WL2 = arg min
W∈RNY ×NX

‖MY −WMX ‖2F +λ‖W‖2F . (1)

Two main challenges of the regression based ma-
chine translation (RegMT) approach are learning
the regression function, h : FX → FY , and
solving the pre-image problem, which, given the
features of the estimated target string sequence,
h(ΦX(x)) = ΦY (ŷ), attempts to find y ∈ Y ∗:
y = arg miny∈Y ∗ ||h(ΦX(x)) − ΦY (y)||2. Pre-
image calculation involves a search over possible
translations minimizing the cost function:

f(x) = arg min
y∈Y ∗

‖ΦY (y)−WΦX(x)‖2 . (2)

2.1 L1 Regularized Regression
String kernels lead to sparse feature representations
and L1 regularized regression is effective to find the
mappings between sparsely observed features.We
would like to observe only a few nonzero target co-
efficients corresponding to a source feature in the co-
efficient matrix. L1 regularization helps us achieve
solutions close to permutation matrices by increas-
ing sparsity (Bishop, 2006) (page 145). In contrast,
L2 regularized solutions give us dense matrices.

WL2 is not a sparse solution and most of the coef-
ficients remain non-zero. We are interested in pe-
nalizing the coefficients better; zeroing the irrele-

vant ones leading to sparsification to obtain a solu-
tion that is closer to a permutation matrix. L1 norm
behaves both as a feature selection technique and a
method for reducing coefficient values.

WL1 = arg min
W∈RNY ×NX

‖MY −WMX ‖2F +λ‖W‖1 . (3)

Equation 3 presents the lasso (Tibshirani, 1996) so-
lution where the regularization term is now the L1

matrix norm defined as ‖W‖1=
∑

i,j |Wi,j |. WL2

can be found by taking the derivative but since
L1 regularization cost is not differentiable, WL1 is
found by optimization or approximation techniques.
We use forward stagewise regression (FSR) (Hastie
et al., 2006), which approximates lasso for L1 regu-
larized regression.

2.2 Related Work:

Regression techniques can be used to model the
relationship between strings (Cortes et al., 2007).
Wang et al. (2007) applies a string-to-string map-
ping approach to machine translation by using ordi-
nary least squares regression and n-gram string ker-
nels to a small dataset. Later they use L2 regularized
least squares regression (Wang and Shawe-Taylor,
2008). Although the translation quality they achieve
is not better than Moses (Koehn et al., 2007), which
is accepted to be the state-of-the-art, they show the
feasibility of the approach. Serrano et al. (2009)
use kernel regression to find translation mappings
from source to target feature vectors and experiment
with translating hotel front desk requests. Locally
weighted regression solves separate weighted least
squares problems for each instance (Hastie et al.,
2009), weighted by a kernel similarity function.

3 Instance Selection for Machine
Translation

Proper selection of training instances plays an im-
portant role for accurately learning feature mappings
with limited computational resources. Coverage of
the features is important since if we do not have the
correct features in the training matrices, we will not
be able to translate them. Coverage is measured by
the percentage of target features of the test set found
in the training set. For each test sentence, we pick
a limited number of training instances designed to
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improve the coverage of correct features to build a
regression model.

We use two techniques for this purpose: (1)
Feature Decay Algorithm (FDA), which optimizes
source languge bigram coverage to maximize the
target coverage, (2) dice. Feature decay algorithms
(FDA) aim to maximize the coverage of the tar-
get language features (such as words, bigrams, and
phrases) for the test sentences. FDA selects training
instances one by one updating the coverage of the
features already added to the training set in contrast
to the features found in the test sentence.

We also use a technique that we call dice, which
optimizes source language bigram coverage such
that the difficulty of aligning source and target fea-
tures is minimized. We define Dice’s coefficient
score as:

dice(x, y) =
2C(x, y)
C(x)C(y)

, (4)

where C(x, y) is the number of times x and y co-
occurr and C(x) is the count of observing x in
the selected training set. Given a test source sen-
tence, SU , we can estimate the goodness of a train-
ing sentence pair, (S, T ), by the sum of the align-
ment scores:

φdice(SU , S, T ) =

∑
x∈X(SU )

|T |∑
j=1

∑
y∈Y (x)

dice(y, Tj)

|T | log |S|
,

(5)
where X(SU ) stores the features of SU and Y (x)
lists the tokens in feature x. The difficulty of word
aligning a pair of training sentences, (S, T ), can be
approximated by |S||T |. We use a normalization fac-
tor proportional to |T | log |S|.

The details of both of these techniques and further
results can be found in (Bicici and Yuret, 2011).

3.1 Moses Experiments on the Translation
Task

We have used FDA and dice algorithms to select
training sets for the out-of-domain challenge test
sets used in (Callison-Burch et al., 2011). The par-
allel corpus contains about 1.9 million training sen-
tences and the test set contain 3003 sentences. We
built separate Moses systems using all of the paral-
lel corpus for the language pairs en-de, de-en, en-
es, and es-en. We created training sets using all

en-de de-en en-es es-en

BLEU
ALL .1376 .2074 .2829 .2919
FDA .1363 .2055 .2824 .2892
dice .1374 .2061 .2834 .2857

words
ALL 47.4 49.6 52.8 50.4
FDA 7.9 8.0 8.7 8.2
dice 6.9 7.0 3.9 3.6

% ALL FDA 17 16 16 16
dice 14 14 7.4 7.1

Table 1: Performance for the out-of-domain task
of (Callison-Burch et al., 2011). ALL corresponds to the
baseline system using all of the parallel corpus. words
list the size of the target words used in millions.

of the features of the test set to select training in-
stances. The results given in Table 1 show that we
can achieve similar BLEU performance using about
7% of the parallel corpus target words (200,000 in-
stances) using dice and about 16% using FDA. In the
out-of-domain translation task, we are able to reduce
the training set size to achieve a performance close
to the baseline. We may be able to achieve better
performance in this out-of-domain task as well as
explained in (Bicici and Yuret, 2011).

4 Graph Decoding for RegMT

We perform graph-based decoding by first generat-
ing a De Bruijn graph from the estimated ŷ (Cortes et
al., 2007) and then finding Eulerian paths with max-
imum path weight. We use four features when scor-
ing paths: (1) estimation weight from regression, (2)
language model score, (3) brevity penalty as found
by eα(lR−|s|/|path|) for lR representing the length ra-
tio from the parallel corpus and |path| representing
the length of the current path, (4) future cost as in
Moses (Koehn et al., 2007) and weights are tuned
using MERT (Och, 2003) on the de-en dev set.

We demonstrate that sparse L1 regularized regres-
sion performs better than L2 regularized regression.
Graph based decoding can provide an alternative to
state of the art phrase-based decoding system Moses
in translation domains with small vocabulary and
training set size.

4.1 Haitian Creole to English Translation Task
with RegMT

We have trained a Moses system for the Haitian Cre-
ole to English translation task, cleaned corpus, us-
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ing the options as described in section 3.1. Moses
achieves 0.3186 BLEU on this task. We observed
that graph decoding performs better where target
coverage is high such that the bigrams used lead
to a connected graph. To increase the connec-
tivity, we have included Moses translations in the
training set and performed graph decoding with
RegMT. RegMT with L2 regularized regression
achieves 0.2708 BLEU with graph decoding and
lasso achieves 0.26 BLEU.

Moses makes use of a number of distortion pa-
rameters and lexical weights, which are estimated
using all of the parallel corpus. Thus, our Moses
translation achieves a better performance than graph
decoding with RegMT using 100 training instances
for translating each source test sentence.

5 System Combination with RegMT

We perform experiments on the system com-
bination task for the English-German, German-
English, English-Spanish, and Spanish-English lan-
guage pairs using the training corpus provided in
WMT’11 (Callison-Burch et al., 2011). We have
tokenized and lowercased each of the system out-
puts and combined these in a single N -best file per
language pair. We use these N -best lists for rerank-
ing by RegMT to select the best translation model.
Feature mappers used are 2-spectrum counting word
kernels (Taylor and Cristianini, 2004).

We rerank N -best lists by a linear combination of
the following scoring functions:

1. RegMT: Regression based machine translation
scores as found by Equation 2.

2. CBLEU: Comparative BLEU scores we obtain
by measuring the average BLEU performance
of each translation relative to the other systems’
translations in the N -best list.

3. LM: We calculate 5-gram language model
scores for each translation using the language
model trained over the target corpus provided
in the translation task.

Since we do not have access to the reference trans-
lations nor to the translation model scores each sys-
tem obtained for each sentence, we estimate trans-
lation model performance (CBLEU) by measuring

the average BLEU performance of each translation
relative to the other translations in the N -best list.
Thus, each possible translation in the N -best list is
BLEU scored against other translations and the av-
erage of these scores is selected as the CBLEU score
for the sentence. Sentence level BLEU score calcu-
lation avoids singularities in n-gram precisions by
taking the maximum of the match count and 1

2|si| for
|si| denoting the length of the source sentence si as
used in (Macherey and Och, 2007).

Table 2 presents reranking results on all of the lan-
guage pairs we considered, using RegMT, CBLEU,
and LM scores with the same combination weights
as above. We also list the performance of the best
model (Max) as well as the worst (Min). We are
able to achieve close or better BLEU scores in all
of the listed systems when compared with the per-
formance of the best translation system except for
the ht-en language pair. The lower performance in
the ht-en language pair may be due to having a sin-
gle best translation system that outperforms others
significantly. This happens for instance when an un-
constrained model use external resources to achieve
a significantly better performance than the second
best model. 2nd best in Table 2 lists the second best
model’s performance to estimate how much the best
model’s performance is better than the rest.

BLEU en-de de-en en-es es-en ht-en
Min .1064 .1572 .2174 .1976 .2281
Max .1727 .2413 .3375 .3009 .3708

2nd best .1572 .2302 .3301 .2973 .3288
Average .1416 .1997 .292 .2579 .2993

Oracle .2529 .3305 .4265 .4233 .4336
RegMT .1631 .2322 .3311 .3052 .3234

Table 2: System combination results.

RegMT model may prefer sentences with lower
BLEU, which can sometimes cause it to achieve a
lower BLEU performance than the best model. This
is clearly the case for en-de with 1.6 BLEU points
difference with the second best model performance
and for de-en task with 1.11 BLEU points differ-
ence. Also this observation holds for en-es with
0.74 BLEU points difference and for ht-en with 4.2
BLEU points difference. For es-en task, there is 0.36
BLEU points difference with the second best model
and these models likely to complement each other.
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The existence of complementing SMT models is
important for the reranking approach to achieve a
performance better than the best model, as there is
a need for the existence of a model performing bet-
ter than the best model on some test sentences. We
can use the competitive SMT model to achieve the
performance of the best with a guarantee even when
a single model is dominating the rest (Bicici and
Kozat, 2010). For competing translation systems
in an on-line machine translation setting adaptively
learning of model weights can be performed based
on the previous transaltion performance (Bicici and
Kozat, 2010).

6 Target F1 as a Performance Evaluation
Metric

We use target sentence F1 measure over the tar-
get features as a translation performance evaluation
metric. We optimize the parameters of the RegMT
model with the F1 measure comparing the target
vector with the estimate we get from the RegMT
model. F1 measure uses the 0/1-class predictions
over the target feature with the estimate vector,
ΦY (ŷ). Let TP be the true positive, TN the true neg-
ative, FP the false positive, and FN the false negative
rates, we use the following measures for evaluation:

prec =
TP

TP + FP
, BER = ( FP

TN+FP + FN
TP+FN )/2 (6)

rec =
TP

TP + FN
, F1 = 2×prec×rec

prec+rec (7)

where BER is the balanced error rate, prec is pre-
cision, and rec is recall. The evaluation techniques
measure the effectiveness of the learning models in
identifying the features of the target sentence mak-
ing minimal error to increase the performance of the
decoder and its translation quality.

We use gapped word sequence kernels (Taylor
and Cristianini, 2004) when using F1 for evaluating
translations since a given translation system may not
be able to translate a given word but can correctly
identify the surrounding phrase. For instance, let the
reference translation be the following sentence:

a sound compromise has been reached

Some possible translations for the reference are
given in Table 3 together with their BLEU (Papineni
et al., 2001) and F1 scores for comparison. F1 score

does not have a brevity penalty but a brief transla-
tion is penalized by a low recall value. We use up
to 3 tokens as gaps. F1 measure is able to increase
the ranking of Trans4 by using a gapped sequence
kernel, which can be preferrable to Trans3.

We note that a missing token corresponds to vary-
ing decreases in the n-gram precision used in the
BLEU score. A sentence containing m tokens has
m 1-grams, m−1 2-grams, andm−n+1 n-grams.
A missing token degrades the performance more in
higher order n-gram precision values. A missing to-
ken decreases n-gram precision by 1

m for 1-grams
and by n

m−n+1 for n-grams. Based on this obser-
vation, we use F1 measure with gapped word se-
quence kernels to evaluate translations. Gapped fea-
tures allows us to consider the surrounding phrase
for a missing token as present in the translation.

Let the reference sentence be represented with
a b c d e f where a-f, x, y, z correspond to to-
kens in the sentence. Then, Trans3 has the form
a b x y f, and Trans4 has the form a c y f.
Then, F1 ranks Trans4 higher than Trans3 for orders
greater than 3 as there are two consecutive word er-
rors in Trans3. F1 can also prefer a missing token
rather than a word error as we see by comparing
Trans4 and Trans5 and it can still prefer contigu-
ity over a gapped sequence as we see by comparing
Trans5 and Trans6 in Table 3.

We calculate the correlation of F1 with BLEU on
the en-de development set. We use 5-grams with the
F1 measure as this increases the correlation with 4-
gram BLEU. Table 4 gives the correlation results us-
ing both Pearson’s correlation score and Spearman’s
correlation score. Spearman’s correlation score is a
better metric for comparing the relative orderings.

Metric No gaps Gaps
Pearson .8793 .7879
Spearman .9068 .8144

Table 4: F1 correlation with 4-gram BLEU using blended
5-gram gapped word sequence features on the develop-
ment set.

7 Contributions

We present the results we obtain using our RegMT
system, which uses transductive regression tech-
niques to learn mappings between source and tar-
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Format BLEU F1

Ref: a sound compromise has been reached a b c d e f 4-grams 3-grams 4-grams 5-grams
Trans1: a sound agreement has been reached a b x d e f .2427 .6111 .5417 .5
Trans2: a compromise has reached a c d f .137 .44 .3492 .3188
Trans3: a sound agreement is reached a b x y f .1029 .2 .1558 .1429
Trans4: a compromise is reached a c y f .0758 .2 .1587 .1449
Trans5: a good compromise is reached a z c y f .0579 .1667 .1299 .119
Trans6: a good compromise is been a z c y e .0579 .2 .1558 .1429

Table 3: BLEU vs. F1 on sample sentence translation task.

get features of given parallel corpora and use these
mappings to generate machine translation outputs.
We also present translation results using our train-
ing instance selection methods, translation results
using graph decoding, system combination results
with RegMT, and performance evaluation with F1

measure over target features. RegMT work builds
on our previous regression-based machine transla-
tion results (Bicici and Yuret, 2010) especially with
instance selection and additional graph decoding ca-
pability.
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Ondřej Bojar and Ale š Tamchyna
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Abstract

We use target-side monolingual data to ex-
tend the vocabulary of the translation model
in statistical machine translation. This method
called “reverse self-training” improves the de-
coder’s ability to produce grammatically cor-
rect translations into languages with morphol-
ogy richer than the source language esp. in
small-data setting. We empirically evalu-
ate the gains for several pairs of European
languages and discuss some approaches of
the underlying back-off techniques needed to
translate unseen forms of known words. We
also provide a description of the systems we
submitted to WMT11 Shared Task.

1 Introduction

Like any other statistical NLP task, SMT relies on
sizable language data for training. However the par-
allel data required for MT are a very scarce resource,
making it difficult to train MT systems of decent
quality. On the other hand, it is usually possible to
obtain large amounts of monolingual data.

In this paper, we attempt to make use of the
monolingual data to reduce the sparseness of surface
forms, an issue typical for morphologically rich lan-
guages. When MT systems translate into such lan-
guages, the limited size of parallel data often causes
the situation where the output should include a word
form never observed in the training data. Even
though the parallel data do contain the desired word

∗ This work has been supported by the grants EuroMatrix-
Plus (FP7-ICT-2007-3-231720 of the EU and 7E09003 of the
Czech Republic), P406/10/P259, and MSM 0021620838.

in other forms, a standard phrase-based decoder has
no way of using it to generate the correct translation.

Reverse self-training addresses this problem by
incorporating the available monolingual data in the
translation model. This paper builds upon the idea
outlined in Bojar and Tamchyna (2011), describing
how this technique was incorporated in the WMT
Shared Task and extending the experimental evalu-
ation of reverse self-training in several directions –
the examined language pairs (Section 4.2), data size
(Section 4.3) and back-off techniques (Section 4.4).

2 Related Work

The idea of using monolingual data for improving
the translation model has been explored in several
previous works. Bertoldi and Federico (2009) used
monolingual data for adapting existing translation
models to translation of data from different domains.
In their experiments, the most effective approach
was to train a new translation model from “fake”
parallel data consisting of target-side monolingual
data and their machine translation into the source
language by a baseline system.

Ueffing et al. (2007) used a boot-strapping tech-
nique to extend translation models using mono-
lingual data. They gradually translated additional
source-side sentences and selectively incorporated
them and their translations in the model.

Our technique also bears a similarity to de Gis-
pert et al. (2005), in that we try to use a back-off
for surface forms to generalize our model and pro-
duce translations with word forms never seen in the
original parallel data. However, instead of a rule-
based approach, we take advantage of the available
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Source English Target Czech Czech Lemmatized
Parallel (small) a cat chased. . . = kočka honila. . . kočka honit. . .

I saw a cat = viděl jsemkočku vidět b́yt kǒcka
I read about a dog = četl jsem o psovi č́ıst b́yt o pes

Monolingual (large) ? četl jsem okočce č́ıst b́yt o kǒcka
I read about a cat ← Use reverse translation backed-off by lemmas.

Figure 1: The essence of reverse self-training: a new phrasepair (“about a cat” = “okočce”) is learned based on a
small parallel corpus and large target-side monolingual texts.

data and learn these forms statistically. We are there-
fore not limited to verbs, but our system is only able
to generate surface forms observed in the target-side
monolingual data.

3 Reverse Self-Training

Figure 1 illustrates the core of the method. Using
available parallel data, we first train an MT system
to translate from the target to the source language.
Since we want to gather new word forms from the
monolingual data, this reverse model needs the abil-
ity to translate them. For that purpose we use a fac-
tored translation model (Koehn and Hoang, 2007)
with two alternative decoding paths: form→form
and back-off→form. We experimented with several
options for the back-off (simple stemming by trun-
cation or full lemmatization), see Section 4.4. The
decoder can thus use a less sparse representation of
words if their exact forms are not available in the
parallel data.

We use this reverse model to translate (much
larger) target-side monolingual data into the source
language. We preserve the word alignments of the
phrases as used in the decoding so we directly ob-
tain the word alignment in the new “parallel” cor-
pus. This gives us enough information to proceed
with the standard MT system training – we extract
and score the phrases consistent with the constructed
word alignment and create the phrase table.

We combine this enlarged translation model with
a model trained on the true parallel data and use
Minimum Error Rate Training (Och, 2003) to find
the balance between the two models. The final
model has four separate components – two language
models (one trained on parallel and one on monolin-
gual data) and the two translation models.

We do not expect the translation quality to im-

prove simply because more data is included in train-
ing – by adding translations generated using known
data, the model could gain only new combinations
of known words. However, by using a back-off
to less sparse units (e.g. lemmas) in the factored
target→source translation, we enable the decoder
to produce previously unseen surface forms. These
translations are then included in the model, reducing
the data sparseness of the target-side surface forms.

4 Experiments

We used common tools for phrase-based translation
– Moses (Koehn et al., 2007) decoder and tools,
SRILM (Stolcke, 2002) and KenLM (Heafield,
2011) for language modelling and GIZA++ (Och
and Ney, 2000) for word alignments.

For reverse self-training, we needed Moses to also
output word alignments between source sentences
and their translations. As we were not able to make
the existing version of this feature work, we added a
new option and re-implemented this funcionality.

We rely on automatic translation quality eval-
uation throughout our paper, namely the well-
established BLEU metric (Papineni et al., 2002). We
estimate 95% confidence bounds for the scores as
described in Koehn (2004). We evaluated our trans-
lations on lower-cased sentences.

4.1 Data Sources

Aside from the WMT 2011 Translation Task data,
we also used several additional data sources for the
experiments aimed at evaluating various aspects of
reverse self-training.

JRC-Acquis

We used the JRC-Acquis 3.0 corpus (Steinberger
et al., 2006) mainly because of the number of avail-
able languages. This corpus contains a large amount

331



Source Target Corpus Size (k sents) Vocabulary Size Ratio Baseline +Mono LM +Mono TM
Para Mono

English Czech 94 662 1.67 40.9±1.9 43.5±2.0 *44.3±2.0
English Finnish 123 863 2.81 27.0±1.9 27.6±1.8 28.3±1.7
English German 127 889 1.83 34.8±1.8 36.4±1.8 37.6±1.8
English Slovak 109 763 2.03 35.3±1.6 37.3±1.7 37.7±1.8
French Czech 95 665 1.43 39.9±1.9 42.5±1.8 43.1±1.8
French Finnish 125 875 2.45 26.7±1.8 27.8±1.7 28.3±1.8
French German 128 896 1.58 38.5±1.8 40.2±1.8 *40.5±1.8
German Czech 95 665 0.91 35.2±1.8 37.0±1.9 *37.3±1.9

Table 1: BLEU scores of European language pairs on JRC data. Asterisks in the last column mark experiments for
which MERT had to be re-run.

of legislative texts of the European Union. The fact
that all data in the corpus come from a single, very
narrow domain has two effects – models trained on
this corpus perform mostly very well in that domain
(as documented e.g. in Koehn et al. (2009)), but fail
when translating ordinary texts such as news or fic-
tion. Sentences in this corpus also tend to be rather
long (e.g. 30 words on average for English).

CzEng

CzEng 0.9 (Bojar anďZabokrtský, 2009) is a par-
allel richly annotated Czech-English corpus. It con-
tains roughly 8 million parallel sentences from a
variety of domains, including European regulations
(about 34% of tokens), fiction (15%), news (3%),
technical texts (10%) and unofficial movie subtitles
(27%). We do not make much use of the rich anno-
tation in this paper, however we did experiment with
using Czech lemmas (included in the annotation) as
the back-off factor for reverse self-training.

4.2 Comparison Across Languages

In order to determine how successful our approach
is across languages, we experimented with Czech,
Finnish, German and Slovak as target languages. All
of them have a rich morphology in some sense. We
limited our selection of source languages to English,
French and German because our method focuses on
the target language anyway. We did however com-
bine the languages with respect to the richness of
their vocabulary – the source language has less word
forms in almost all cases.

Czech and Slovak are very close languages, shar-
ing a large portion of vocabulary and having a very
similar grammar. There are many inflectional rules

for verbs, nouns, adjectives, pronouns and numerals.
Sentence structure is exhibited by various agreement
rules which often apply over long distance. Most of
the issues commonly associated with rich morphol-
ogy are clearly observable in these languages.

German also has some inflection, albeit much less
complex. The main source of German vocabulary
size are the compound words. Finnish serves as an
example of agglutinative languages well-known for
the abundance of word forms.

Table 1 contains the summary of our experimen-
tal results. Here, only the JRC-Acquis corpus was
used for training, development and evaluation. For
every language pair, we extracted the first 10 per-
cent of the parallel corpus and used them as the par-
allel data. The last 70 percent of the same corpus
were our “monolingual” data. We used a separate
set of 1000 sentences for the development and an-
other 1000 for testing.

Sentence counts of the corpora are shown in the
columns Corpus Size Para and Mono. The table
also shows the ratio between observed vocabulary
size of the target and source language. Except for
the German→Czech language pair, the ratios are
higher than 1. The Baseline column contains the
BLEU score of a system trained solely on the paral-
lel data (i.e. the first 10 percent). A 5-gram language
model was used. The “+Mono LM” scores were
achieved by adding a 5-gram language model trained
on the monolingual data as a separate component
(its weight was determined by MERT). The last col-
umn contains the scores after adding the translation
model self-trained on target monolingual data. This
model was also added as another component and the
weights associated with it were found by MERT.
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For the back-off in the reverse self-training, we
used a simple suffix-trimming heuristic suitable for
fusional languages: cut off the last three characters
of each word always keeping at least the first three
characters. This heuristic reduces the vocabulary
size to a half for Czech and Slovak but it is much
less effective for Finish and German (Table 2), as
can be expected from their linguistic properties.

Language Vocabulary reduced to (%)
Czech 52
Finnish 64
German 73
Slovak 51

Table 2: Reduction of vocabulary size by suffix trimming

We did not use any linguistic tools, such as mor-
phological analyzers, in this set of experiments. We
see the main point of this section in illustrating the
applicability of our technique on a wide range of lan-
guages, including languages for which such tools are
not available.

We encountered problems when using MERT to
balance the weights of the four model components.
Our model consisted of 14 features – one for each
language model, five for each translation model
(phrase probability and lexical weight for both di-
rections and phrase penalty), word penalty and dis-
tortion penalty. The extra 5 weights of the reversely
trained translation model caused MERT to diverge in
some cases. Since we used themert-moses.pl
script for tuning and kept the default parameters,
MERT ran for 25 iterations and stopped. As a result,
even though our method seemed to improve trans-
lation performance in most language pairs, several
experiments contradicted this observation. We sim-
ply reran the final tuning procedure in these cases
and were able to achieve an improvement in BLEU
as well. These language pairs are marked with a ’*’
sign in Table 1.

A possible explanation for this behaviour of
MERT is that the alternative decoding paths add a
lot of possible derivations that generate the same
string. To validate our hypothesis we examined a
diverging run of MERT for English→Czech transla-
tion with two translation models. Our n-best lists
contained the best 100 derivations for each trans-

Figure 2: Vocabulary ratio and BLEU score
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lated sentence from the development data. On av-
erage (over all 1000 sentences and over all runs), the
n-best list only contained 6.13 different translations
of a sentence. The result of the same calculation
applied on the baseline run of MERT (which con-
verged in 9 iterations) was 34.85 hypotheses. This
clear disproportion shows that MERT had much less
information when optimizing our model.

Overall, reverse self-training seems helpful for
translating into morphologically rich languages. We
achieved promising gains in BLEU, even over the
baseline including a language model trained on the
monolingual data. The improvement ranges from
roughly 0.3 (e.g. German→Czech) to over 1 point
(English→German) absolute. This result also indi-
cates that suffix trimming is a quite robust heuristic,
useful for a variety of language types.

Figure 2 illustrates the relationship between vo-
cabulary size ratio of the language pair and the
improvement in translation quality. Although the
points are distributed quite irregularly, a certain ten-
dency towards higher gains with higher ratios is ob-
servable. We assume that reverse self-training is
most useful in cases where a single word form in the
source language can be translated as several forms in
the target language. A higher ratio between vocab-
ulary sizes suggests that these cases happen more
often, thus providing more space for improvement
using our method.
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4.3 Data Sizes

We conducted a series of English-to-Czech experi-
ments with fixed parallel data and a varying size of
monolingual data. We used the CzEng corpus, 500
thousand parallel sentences and from 500 thousand
up to 5 million monolingual sentences. We used
two separate sets of 1000 sentences from CzEng for
development and evaluation. Our results are sum-
marized in Figure 3. The gains in BLEU become
more significant as the size of included monolingual
data increases. The highest improvement can be ob-
served when the data are largest – over 3 points ab-
solute. Figure 4 shows an example of the impact on
translation quality – the “Mono” data are 5 million
sentences.

When evaluated from this point of view, our
method can also be seen as a way of considerably
improving translation quality for languages with lit-
tle available parallel data.

We also experimented with varying size of paral-
lel data (500 thousand to 5 million sentences) and its
effect on reverse self-training contribution. The size
of monolingual data was always 5 million sentences.
We first measured the percentage of test data word
forms covered by the training data. We calculated
the value for parallel data and for the combination of
parallel and monolingual data. For word forms that
appeared only in the monolingual data, a different
form of the word had to be contained in the parallel
data (so that the model can learn it through the back-
off heuristic) in order to be counted in. The differ-
ence between the first and second value can simply
be thought of as the upper-bound estimation of re-
verse self-training contribution. Figure 5 shows the
results along with BLEU scores achieved in transla-
tion experiments following this scenario.

Our technique has much greater effect for small
parallel data sizes; the amount of newly learned
word forms declines rapidly as the size grows.
Similarly, improvement in BLEU score decreases
quickly and becomes negligible around 2 million
parallel sentences.

4.4 Back-off Techniques

We experimented with several options for the back-
off factor in English→Czech translation. Data from
training section of CzEng were used, 1 million par-

Figure 3: Relation between monolingual data size and
gains in BLEU score
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Figure 5: Varying parallel data size, surface form cov-
erage (“Parallel”, “Parallel and Mono”) and BLEU score
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allel sentences and another 5 million sentences as
target-side monolingual data. As in the previous
section, the sizes of our development and evaluation
sets were a thousand sentences.

CzEng annotation contains lexically disam-
biguated word lemmas, an appealing option for our
purposes. We also tried trimming the last 3 charac-
ters of each word, keeping at least the first 3 charac-
ters intact. Stemming of each word to four charac-
ters was also evaluated (Stem-4).

Table 3 summarizes our results. The last column
shows the vocabulary size compared to original vo-
cabulary size, estimated on lower-cased words.

We are not surprised by stemming performing the
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System Translation Gloss
Baseline Jsi tak zrcadla? Are youSG so mirrors? (ungrammatical)
+Mono LM Jsi neobjednávejte zrcadla? Did youSG don’t orderPL mirrors? (ungrammatical)
+Mono TM Už sis objednal zrcadla? Have youSG orderedSG the mirrors (for yourself) yet?

Figure 4: Translation of the sentence “Did you order the mirrors?” by baseline systems and a reversely-trained system.
Only the last one is able to generate the correct form of the word “order”.

worst – the equivalence classes generated by this
simple heuristic are too broad. Using lemmas seems
optimal from the linguistic point of view, however
suffix trimming outperformed this approach in our
experiments. We feel that finding well-performing
back-off techniques for other languages merits fur-
ther research.

Back-off BLEU Vocabulary Size (%)
Baseline 31.82±3.24 100
Stem-4 32.73±3.19 19
Lemma 33.05±3.40 54
Trimmed Suffix 33.28±3.32 47

Table 3: Back-off BLEU scores comparison

4.5 WMT Systems

We submitted systems that used reverse self-
training (cu-tamchyna) for English→Czech and
English→German language pairs.

Our parallel data for German were constrained to
the provided set (1.9 million sentences). For Czech,
we used the training sections of CzEng and the sup-
plied WMT11 News Commentary data (7.3 million
sentences in total).

In case of German, we only used the supplied
monolingual data, for Czech we used a large col-
lection of texts for language modelling (i.e. uncon-
strained). The reverse self-training used only the
constrained data – 2.3 million sentences in German
and 2.2 in Czech. In case of Czech, we only used
the News monolingual data from 2010 and 2011 for
reverse self-training – we expected that recent data
from the same domain as the test set would improve
translation performance the most.

We achieved mixed results with these systems –
for translation into German, reverse self-training did
not improve translation performance. For Czech,
we were able to achieve a small gain, even though
the reversely translated data contained less sentences

than the parallel data. Our BLEU scores were also
affected by submitting translation outputs without
normalized punctuation and with a slightly different
tokenization.

In this scenario, a lot of parallel data were avail-
able and we did not manage to prepare a reversely
trained model from larger monolingual data. Both
of these factors contributed to the inconclusive re-
sults.

Table 4 shows case-insensitive BLEU scores as
calculated in the official evaluation.

Target Language Mono LM +Mono TM
German 14.8 14.8
Czech 15.7 15.9

Table 4: Case-insensitive BLEU of WMT systems

5 Conclusion

We introduced a technique for exploiting monolin-
gual data to improve the quality of translation into
morphologically rich languages.

We carried out experiments showing improve-
ments in BLEU when using our method for trans-
lating into Czech, Finnish, German and Slovak with
small parallel data. We discussed the issues of in-
cluding similar translation models as separate com-
ponents in MERT.

We showed that gains in BLEU score increase
with growing size of monolingual data. On the other
hand, growing parallel data size diminishes the ef-
fect of our method quite rapidly. We also docu-
mented our experiments with several back-off tech-
niques for English to Czech translation.

Finally, we described our primary submissions to
the WMT 2011 Shared Translation Task.

335



References

Nicola Bertoldi and Marcello Federico. 2009. Do-
main adaptation for statistical machine translation with
monolingual resources. InProceedings of the Fourth
Workshop on Statistical Machine Translation, pages
182–189, Athens, Greece, March. Association for
Computational Linguistics.
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Abstract

This paper describes the German-English
translation system developed by the ARK re-
search group at Carnegie Mellon University
for the Sixth Workshop on Machine Trans-
lation (WMT11). We present the results of
several modeling and training improvements
to our core hierarchical phrase-based trans-
lation system, including: feature engineering
to improve modeling of the derivation struc-
ture of translations; better handing of OOVs;
and using development set translations into
other languages to create additional pseudo-
references for training.

1 Introduction

We describe the German-English translation system
submitted to the shared translation task in the Sixth
Workshop on Machine Translation (WMT11) by the
ARK research group at Carnegie Mellon Univer-
sity.1 The core translation system is a hierarchical
phrase-based machine translation system (Chiang,
2007) that has been extended in several ways de-
scribed in this paper.

Some of our innovations focus on modeling.
Since German and English word orders can diverge
considerably, particularly in non-matrix clauses,
we focused on feature engineering to improve the
modeling of long-distance relationships, which are
poorly captured in standard hierarchical phrase-
based translation models. To do so, we devel-
oped features that assess the goodness of the source

1http://www.ark.cs.cmu.edu

language parse tree under the translation grammar
(rather than of a “linguistic” grammar). To train the
feature weights, we made use of a novel two-phase
training algorithm that incorporates a probabilistic
training objective and standard minimum error train-
ing (Och, 2003). These segmentation features were
supplemented with a 7-gram class-based language
model, which more directly models long-distance
relationships. Together, these features provide a
modest improvement over the baseline and suggest
interesting directions for future work. While our
work on parse modeling was involved and required
substantial changes to the training pipeline, some
other modeling enhancements were quite simple: for
example, improving how out-of-vocabulary words
are handled. We propose a very simple change, and
show that it provides a small, consistent gain.

On the training side, we had two improvements
over our baseline system. First, we were inspired
by the work of Madnani (2010), who showed that
when training to optimize BLEU (Papineni et al.,
2002), overfitting is reduced by supplementing a sin-
gle human-generated reference translation with ad-
ditional computer-generated references. We gener-
ated supplementary pseudo-references for our de-
velopment set (which is translated into many lan-
guages, but once) by using MT output from a sec-
ondary Spanish-English translation system. Second,
following Foster and Kuhn (2009), we used a sec-
ondary development set to select from among many
optimization runs, which further improved general-
ization.

We largely sought techniques that did not require
language-specific resources (e.g., treebanks, POS
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annotations, morphological analyzers). An excep-
tion is a compound segmentation model used for
preprocessing that was trained on a corpus of man-
ually segmented German. Aside from this, no fur-
ther manually annotated data was used, and we sus-
pect many of the improvements described here can
be had in other language pairs. Despite avoiding
language-specific resources and using only the train-
ing data provided by the workshop, an extensive
manual evaluation determined that the outputs pro-
duced were of significantly higher quality than both
statistical and rule-based systems that made use of
language-specific resources (Callison-Burch et al.,
2011).

2 Baseline system and data

Our translation system is based on a hierarchical
phrase-based translation model (Chiang, 2007), as
implemented in the cdec decoder (Dyer et al.,
2010). Since German is a language that makes
productive use of “closed” compounds (compound
words written as a single orthographic token), we
use a CRF segmentation model of to evaluate the
probability of all possible segmentations, encoding
the most probable ones compactly in a lattice (Dyer,
2009). For the purposes of grammar induction, the
single most probable segmentation of each word in
the source side of the parallel training data under the
model was inferred.

The parallel data were aligned using the
Giza++ implementation of IBM Model 4 run
in both directions and then symmetrized using
the grow-diag-final-and heuristic (Och and
Ney, 2002; Brown et al., 1993; Koehn et al., 2003).
The aligned corpus was encoded as a suffix array
(Lopez, 2008) and lattice-specific grammars (con-
taining just the rules that are capable of matching
spans in the input lattice) were extracted for each
sentence in the test and development sets, using the
heuristics recommended by Chiang (2007).

A 4-gram modified Kneser-Ney language model
(Chen and Goodman, 1996) was constructed using
the SRI language modeling toolkit (Stolcke, 2002)
from the English side of the parallel text, the mono-
lingual English data, and the English version 4 Giga-
word corpus (Parker et al., 2009). Since there were
many duplicate segments in the training data (much

of which was crawled from the web), duplicate seg-
ments and segments longer than 100 words were re-
moved. Inference was carried out using the language
modeling library described by Heafield (2011).

The newstest-2009 set (with the 500 longest
segments removed) was used for development,2 and
newstest-2010 was used as a development test
set. Results in this paper are reported on the dev-
test set using uncased BLEU4 with a single refer-
ence translation. Minimum error rate training (Och,
2003) was used to optimize the parameters of the
system to maximize BLEU on the development data,
and inference was performed over a pruned hyper-
graph representation of the translation hypothesis
space (Kumar et al., 2009).

For the experiments reported in this paper, Viterbi
(max-derivation) decoding was used. The system
submitted for manual evaluation used segment-level
MBR decoding with 1 − BLEU as the loss function,
approximated over a 500-best list for each sentence.
This reliably results in a small but consistent im-
provement in translation quality, but is much more
time consuming to compute (Kumar and Byrne,
2004).

3 Source parse structure modeling

Improving phrase-based translation systems is chal-
lenging in part because our intuitions about what
makes a “good” phrase or translation derivation are
often poor. For example, restricting phrases and
rules to be consistent with syntactic constituents
consistently harms performance (Chiang, 2007; Gal-
ley et al., 2006; Koehn et al., 2003), although our
intuitions might suggest this is a reasonable thing
to do. On the other hand, it has been shown that
incorporating syntactic information in the form of
features can lead to improved performance (Chiang,
2010; Gimpel and Smith, 2009; Marton and Resnik,
2008). Syntactic features that are computed by as-
sessing the overlap of the translation parse with a
linguistic parse can be understood to improve trans-
lation because they lead to a better model of what a
“correct” parse of the source sentence is under the
translation grammar.

Like the “soft syntactic features” used in pre-

2Removing long segments substantially reduces training
time and does not appear to negatively affect performance.
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vious work (Marton and Resnik, 2008; Chiang et
al., 2008), we propose features to assess the tree
structure induced during translation. However, un-
like that work, we do not rely on linguistic source
parses, but instead only make use of features that
are directly computable from the source sentence
and the parse structure being considered in the de-
coder. In particular, we take inspiration from the
model of Klein and Manning (2002), which mod-
els constituency in terms of the contexts that rule
productions occur in. Additionally, we make use of
salient aspects of the spans being dominated by a
nonterminal, such as the words at the beginning and
end of the span, and the length of the span. Impor-
tantly, the features do not rely on the target words
being predicted, but only look at the structure of the
translation derivation. As such, they can be under-
stood as monolingual parse features.3

Table 1 lists the feature templates that were used.

Template Description
CTX:fi−1, fj context bigram
CTX:fi−1, fj , x context bigram + NT
CTX:fi−1, fj , x, (j − i) context bigram + NT + len
LU:fi−1 left unigram
LB:fi−1, fi left bigram (overlapping)
RU:fj right unigram
RB:fj−1, fj right bigram (overlapping)

Table 1: Context feature templates for features extracted
from every translation rule used; i and j indicate hypothe-
sized constituent span, x is its nonterminal category label
(in our grammar, X or S), and fk is the kth word of the
source sentence, with f<1 = 〈s〉 and f>|f| = 〈/s〉. If a
word fk is not among the 1000 most frequent words in
the training corpus, it is replaced by a special unknown
token. The SMALLCAPS prefixes prevent accidental fea-
ture collisions.

3.1 Two-phase discriminative learning

The parse features just introduced are numerous and
sparse, which means that MERT can not be used
to infer their weights. Instead, we require a learn-
ing algorithm that can cope with millions of fea-
tures and avoid overfitting, perhaps by eliminating
most of the features and keeping only the most valu-
able (which would also keep the model compact).

3Similar features have been proposed for use in discrimina-
tive monolingual parsing models (Taskar et al., 2004).

Furthermore, we would like to be able to still tar-
get the BLEU measure of translation quality during
learning. While large-scale discriminative training
for machine translation is a widely studied problem
(Hopkins and May, 2011; Li and Eisner, 2009; De-
vlin, 2009; Blunsom et al., 2008; Watanabe et al.,
2007; Arun and Koehn, 2007; Liang et al., 2006), no
tractable algorithm exists for learning a large num-
ber of feature weights while directly optimizing a
corpus-level metric like BLEU. Rather than resorting
to a decomposable approximation, we have explored
a new two-phase training algorithm in development
of this system.

The two-phase algorithm works as follows. In
phase 1, we use a non-BLEU objective to train a
translation model that includes the large feature set.
Then, we use this model to compute a small num-
ber of coarse “summary features,” which summa-
rize the “opinion” of the first model about a trans-
lation hypothesis in a low dimensional space. Then,
in the second training pass, MERT is used to deter-
mine how much weight to give these summary fea-
tures together with the other standard coarse trans-
lation features. At test time, translation becomes a
multi-step process as well. The hypothesis space is
first scored using the phase-1 model, then summary
features are computed, then the hypothesis space is
rescored with the phase-2 model. As long as the fea-
tures used factor with the edges in the translation
space (which ours do), this can be carried out in lin-
ear time in the size of the translation forest.

3.1.1 Phase 1 training
For the first model, which includes the sparse parse
features, we learn weights in order to optimize pe-
nalized conditional log likelihood (Blunsom et al.,
2008). We are specifically interested in modeling
an unobserved variable (i.e., the parse tree underly-
ing a translation derivation), this objective is quite
natural, since probabilistic models offer a principled
account of unobserved data. Furthermore, because
our features factor according to edges in the trans-
lation forest (they are “stateless” in standard MT
terminology), there are efficient dynamic program-
ming algorithms that can be used to exactly compute
the expected values of the features (Lari and Young,
1990), which are necessary for computing the gradi-
ents used in optimization.
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We are therefore optimizing the following objec-
tive, given a set T of parallel training sentences:

L = λR(θ)−
∑

〈f,e〉∈T

log
∑

d

pθ(e,d | f)

where pθ(e,d | f) =
exp θ>h(f, e,d)

Z(f)
,

where d is a variable representing the unobserved
synchronous parses giving rise to the pair of sen-
tences 〈f, e〉, and where R(θ) is a penalty that favors
less complex models. Since we not only want to pre-
vent over fitting but also want a small model, we use
R(θ) =

∑
k |θk|, the `1 norm, which forces many

parameters to be exactly 0.
Although L is not convex in θ (on account of the

latent derivation variable), we make use of an on-
line stochastic gradient descent algorithm that im-
poses an `1 penalty on the objective (Tsuruoka et
al., 2009). Online algorithms are often effective for
non-convex objectives (Liang and Klein, 2009).

We selected 12,500 sentences randomly from the
news-commentary portion of the training data to use
to train the latent variable model. Using the stan-
dard rule extraction heuristics (Chiang, 2007), 9,967
of the sentence pairs could be derived.4 In addition
to the parse features describe above, the standard
phrase features (relative frequency and lexical trans-
lation probabilities), and a rule count feature were
included. Training was run for 48 hours on a sin-
gle machine, which resulted in 8 passes through the
training data, instantiating over 8M unique features.
The regularization strength λ was chosen so that ap-
proximately 10, 000 (of the 8M) features would be
non-zero.5

3.1.2 Summary features
As outlined above, the phase 1 model will be incor-
porated into the final translation model using a low
dimensional “summary” of its opinion. Because we
are using a probabilistic model, posterior probabili-
ties (given the source sentence f) under the parsing

4When optimizing conditional log likeligood, it is necessary
to be able to exactly derive the training pair. See Blunsom et al.
(2008) for more information.

5Ideally, λ would have been tuned to optimize held-out like-
lihood or BLEU; however, the evaluation deadline prevented us
from doing this.

model are easily defined and straightforward to com-
pute with dynamic programming. We made use of
four summary features: the posterior log probability
log pθ(e,d|f); for every rule r ∈ d, the probability of
its span being a constituent under the parse model;
the probabilities that some span starts at the r’s start-
ing index, or that some rule ends at r’s ending index.

Once these summary features have been com-
puted, the sparse features are discarded, and the
summary features are reweighted using coefficients
learned by MERT, together with the standard MT
features (language model, word penalty, etc.). This
provides a small improvement over our already very
strong baseline, as the first two rows in Table 2 show.

Condition BLEU

baseline 25.0
+ parse features 25.2
+ parse features + 7-gram LM 25.4

Table 2: Additional features designed to improve model
of long-range reordering.

3.2 7-gram class-based LM
The parsing features above were intended to im-
prove long range reordering quality. To further sup-
port the modeling of larger spans, we incorporated
a 7-gram class-based language model. Automatic
word clusters are attractive because they can be
learned for any language without supervised data,
and, unlike part-of-speech annotations, each word
is in only a single class, which simplifies inference.
We performed Brown clustering (Brown et al., 1992)
on 900k sentences from our language modeling data
(including the news commentary corpus and a sub-
set of Gigaword). We obtained 1,000 clusters us-
ing an implementation provided by Liang (2005),6

as Turian et al. (2010) found that relatively large
numbers clusters gave better performance for infor-
mation extraction tasks. We then replaced words
with their clusters in our language modeling data
and built a 7-gram LM with Witten-Bell smoothing
(Witten and Bell, 1991).7 The last two rows of Ta-

6http://www.cs.berkeley.edu/˜pliang/
software

7The distributional assumptions made by the more com-
monly used Kneser-Ney estimator do not hold in the word-
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ble 2 shows that in conjunction with the source parse
features, a slight improvement comes from includ-
ing the 7-gram LM.

4 Non-translating tokens

When two languages share a common alphabet (as
German and English largely do), it is often appro-
priate to leave some tokens untranslated when trans-
lating. Named entities, numbers, and graphical el-
ements such as emoticons are a few common ex-
amples of such “non-translating” elements. To en-
sure that such elements are well-modeled, we aug-
ment our translation grammar so that every token
in the input can translate as itself and add a feature
that counts the number of times such self-translation
rules are used in a translation hypothesis. This is in
contrast to the behavior of most other decoders, such
as Moses, which only permit a token to translate as
itself if it is learned from the training data, or if there
is no translation in the phrase table at all.

Since many non-translating tokens are out-of-
vocabulary (OOV) in the target LM, we also add
a feature that fires each time the LM encounters a
word that is OOV.8 This behavior be understood as
discriminatively learning the unknown word penalty
that is part of the LM. Again, this is in contrast to
the behavior of other decoders, which typically add
a fixed (and very large) cost to the LM feature for
every OOV. Our multi-feature parameterization per-
mits the training algorithm to decide that, e.g., some
OOVs are acceptable if they occur in a “good” con-
text rather than forcing the decoder to avoid them
at all costs. Table 3 shows that always providing
a non-translating translation option together with a
discriminative learned OOV feature improves the
quality of German-English translation.9

Condition BLEU

−OOV (baseline) 24.6
+OOV and non-translating rules 25.0

Table 3: Effect of discriminatively learned penalties for
OOV words.

classified corpus.
8When multiple LMs are used, there is an extra OOV feature

for each LM.
9Both systems were trained using the human+ES-EN refer-

ence set described below (§5).

5 Computer-generated references

Madnani (2010) shows that models learned by op-
timizing BLEU are liable to overfit if only a sin-
gle reference is used, but that this overfitting can
be mitigated by supplementing the single reference
with supplemental computer-generated references
produced by paraphrasing the human reference us-
ing a whole-sentence statistical paraphrase system.
These computer-generated paraphrases are just used
to compute “better” BLEU scores, but not directly as
examples of target translations.

Although we did not have access to a paraphrase
generator, we took advantage of the fact that our de-
velopment set (newstest-2009) was translated
into several languages other than English. By trans-
lating these back into English, we hypothesized we
would get suitable pseudo-references that could be
used in place of computer-generated paraphrases.
Table 4 shows the results obtained on our held-out
test set simply by altering the reference translations
used to score the development data. These systems
all contain the OOV features described above.

Condition BLEU

1 human 24.7
1 human + ES-EN 25.0
1 human + FR-EN 24.0
1 human + ES-EN + FR-EN 24.2

Table 4: Effect of different sets of reference translations
used during tuning.

While the effect is somewhat smaller than Mad-
nani (2010) reports using a sentential paraphraser,
the extremely simple technique of adding the output
of a Spanish-English (ES-EN) system was found to
consistently improve the quality of the translations
of the held-out data. However, a comparable effect
was not found when using references generated from
a French-English (FR-EN) translation system, indi-
cating that the utility of this technique must be as-
sessed empirically and depends on several factors.

6 Case restoration

Our translation system generates lowercased out-
put, so we must restore case as a post-processing
step. We do so using a probabilistic transducer as
implemented in SRILM’s disambig tool. Each
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lowercase token in the input can be mapped to a
cased variant that was observed in the target lan-
guage training data. Ambiguities are resolved us-
ing a language model that predicts true-cased sen-
tences.10 We used the same data sources to con-
struct this model as were used above. During devel-
opment, it was observed that many named entities
that did not require translation required some case
change, from simple uppercasing of the first letter,
to more idiosyncratic casings (e.g., iPod). To ensure
that these were properly restored, even when they
did not occur in the target language training data, we
supplement the true-cased LM training data and case
transducer training data with the German source test
set.

Condition BLEU (Cased)
English-only 24.1
English+test-set 24.3

Table 5: Effect of supplementing recasing model training
data with the test set source.

7 Model selection

Minimum error rate training (Och, 2003) is a
stochastic optimization algorithm that typically finds
a different weight vector each time it is run. Foster
and Kuhn (2009) showed that while the variance on
the development set objective may be narrow, the
held-out test set variance is typically much greater,
but that a secondary development set can be used to
select a system that will have better generalization.
We therefore replicated MERT 6 times and selected
the output that performed best on NEWSTEST-2010.
Since we had no additional blind test set, we can-
not measure what the impact is. However, the BLEU

scores we selected on varied from 25.4 to 26.1.

8 Summary

We have presented a summary of the enhancements
made to a hierarchical phrase-based translation sys-
tem for the WMT11 shared translation task. Some
of our results are still preliminary (the source parse

10The model used is p(y | x)p(y). While this model is some-
what unusual (the conditional probability is backwards from a
noisy channel model), it is a standard and effective technique
for case restoration.

model), but a number of changes we made were
quite simple (OOV handling, using MT output to
provide additional references for training) and also
led to improved results.
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Abstract

This paper presents the system we developed
for the 2011 WMT Haitian Creole–English
SMS featured translation task. Applying stan-
dard statistical machine translation methods to
noisy real-world SMS data in a low-density
language setting such as Haitian Creole poses
a unique set of challenges, which we attempt
to address in this work. Along with techniques
to better exploit the limited available train-
ing data, we explore the benefits of several
methods for alleviating the additional noise
inherent in the SMS and transforming it to
better suite the assumptions of our hierarchi-
cal phrase-based model system. We show
that these methods lead to significant improve-
ments in BLEU score over the baseline.

1 Introduction

For the featured translation task of the Sixth Work-
shop on Statistical Machine Translation, we devel-
oped a system for translating Haitian Creole Emer-
gency SMS messages. Given the nature of the task,
translating text messages that were sent during the
January 2010 earthquake in Haiti to an emergency
response service called Mission 4636, we were not
only faced with the problem of dealing with a low-
density language, but additionally, with noisy, real-
world data in a domain which has thus far received
relatively little attention in statistical machine trans-
lation. We were especially interested in this task be-
cause of the unique set of challenges that it poses
for existing translation systems. We focused our re-
search effort on techniques to better utilize the lim-
ited available training resources, as well as ways in

which we could automatically alleviate and trans-
form the noisy data to our advantage through the
use of automatic punctuation prediction, finite-state
raw-to-clean transduction, and grammar extraction.
All these techniques contributed to improving trans-
lation quality as measured by BLEU score over our
baseline system.

The rest of this paper is structured as follows.
First, we provide a brief overview of our baseline
system in Section 2, followed by an examination of
issues posed by this task and the steps we have taken
to address them in Section 3, and finally we con-
clude with experimental results and additional anal-
ysis.

2 System Overview

Our baseline system is based on a hierarchical
phrase-based translation model, which can formally
be described as a synchronous context-free gram-
mar (SCFG) (Chiang, 2007). Our system is imple-
mented in cdec, an open source framework for align-
ing, training, and decoding with a number of differ-
ent translation models, including SCFGs. (Dyer et
al., 2010). 1 SCFG grammars contain pairs of CFG
rules with aligned nonterminals, where by introduc-
ing these nonterminals into the grammar, such a sys-
tem is able to utilize both word and phrase level re-
ordering to capture the hierarchical structure of lan-
guage. SCFG translation models have been shown
to produce state-of-the-art translation for most lan-
guage pairs, as they are capable of both exploit-
ing lexical information for and efficiently comput-
ing all possible reorderings using a CKY-based de-
coder (Dyer et al., 2009).

1http://cdec-decoder.org
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One benefit of cdec is the flexibility allowed with
regard to the input format, as it expects either a
string, lattice, or context-free forest, and subse-
quently generates a hypergraph representing the full
translation forest without any pruning. This forest
can now be rescored, by intersecting it with a lan-
guage model for instance, to obtain output transla-
tions. These capabilities of cdec allow us to perform
the experiments described below, which may have
otherwise proven to be quite impractical to carry out
in another system.

The set of features used in our model were the
rule translation relative frequency P (e|f), a target
n-gram language model P (e), lexical translation
probabilities Plex(e|f) and Plex(f |e), a count of the
total number of rules used, a target word penalty,
and a count of the number of times the glue rule
is used. The number of non-terminals allowed in
a synchronous grammar rule was restricted to two,
and the non-terminal span limit was 12 for non-glue
grammars. The hierarchical phrase-based transla-
tion grammar was extracted using a suffix array rule
extractor (Lopez, 2007).

To optimize the feature weights for our model, we
used an implementation of the hypergraph minimum
error rate training (MERT) algorithm (Dyer et al.,
2010; Och, 2003) for training with an arbitrary loss
function. The error function we used was BLEU (Pa-
pineni et al., 2002), and the decoder was configured
to use cube pruning (Huang and Chiang, 2007) with
a limit of 100 candidates at each node.

2.1 Data Preparation

The SMS messages were originally translated by
English speaking volunteers for the purpose of pro-
viding first responders with information and loca-
tions requiring their assistance. As such, in order to
create a suitable parallel training corpus from which
to extract a translation grammar, a number of steps
had to be taken in addition to lowercasing and tok-
enizing both sides of training data. Many of the En-
glish translations had additional notes sections that
were added by the translator to the messages with
either personal notes or further informative remarks.
As these sections do not correspond to any text on
the source side, and would therefore degrade the
alignment process, these had to be identified and re-
moved. Furthermore, the anonymization of the data

resulted in tokens such as firstname and phonenum-
ber which were prevalent and had to be preserved
as they were. Since the total amount of Haitian-
English parallel data provided is quite limited, we
found additional data and augmented the available
set with data gathered by the CrisisCommons group
and made it available to other WMT participants.
The combined training corpus from which we ex-
tracted our grammar consisted of 123,609 sentence
pairs, which was then filtered for length and aligned
using the GIZA++ implementation of IBM Model
4 (Och and Ney, 2003) to obtain one-to-many align-
ments in either direction and symmetrized using the
grow-diag-final-and method (Koehn et al., 2003).

We trained a 5-gram language model using the
SRI language modeling toolkit (Stolcke, 2002) from
the English monolingual News Commentary and
News Crawl language modeling training data pro-
vided for the shared task and the English portion of
the parallel data with modified Kneser-Ney smooth-
ing (Chen and Goodman, 1996). We have previ-
ously found that since the beginnings and ends of
sentences often display unique characteristics that
are not easily captured within the context of the
model, explicitly annotating beginning and end of
sentence markers as part of our translation process
leads to significantly improved performance (Dyer
et al., 2009).

A further difficulty of the task stems from the fact
that there are two versions of the SMS test set, a raw
version, which contains the original messages, and a
clean version which was post-edited by humans. As
the evaluation of the task will consist of translating
these two versions of the test set, our baseline sys-
tem consisted of two systems, one built on the clean
data using the 900 sentences in SMS dev clean to
tune our feature weights, and evaluated using SMS
devtest clean, and one built analogously for the raw
data tuned on the 900 sentences in SMS dev raw and
evaluated on SMS devtest raw. We report results on
these sets as well as the 1274 sentences in the SMS
test set.

3 Experimental Variation

The results produced by the baseline systems are
presented in Table 1. As can be seen, the clean ver-
sion performs on par with the French-English trans-
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BASELINE

Version Set BLEU TER

clean
dev 30.36 56.04
devtest 28.15 57.45
test 27.97 59.19

raw
dev 25.62 63.27
devtest 24.09 63.82
test 23.33 65.93

Table 1: Baseline system BLEU and TER scores

lation quality in the 2011 WMT shared translation
task,2 and significantly outperforms the raw version,
despite the content of the messages being identical.
This serves to underscore the importance of proper
post-processing of the raw data in order to attempt to
close the performance gap between the two versions.
Through analysis of the raw and clean data we iden-
tified several factors which we believe greatly con-
tribute to the difference in translation output. We
examine punctuation in Section 3.2, grammar post-
processing in Section 3.3, and morphological differ-
ences in Sections 3.4 and 3.5.

3.1 Automatic Resource Confidence Weighting
A practical technique when working with a low-
density language with limited resources is to du-
plicate the same trusted resource multiple times in
the parallel training corpus in order for the transla-
tion probabilities of the duplicated items to be aug-
mented. For instance, if we have confidence in the
entries of the glossary and dictionary, we can dupli-
cate them 10 times in our training data to increase
the associated probabilities. The aim of this strat-
egy is to take advantage of the limited resources and
exploit the reliable ones.

However, what happens if some resources are
more reliable than others? Looking at the provided
resources, we saw that in the Haitisurf dictionary,
the entry for paske is matched with for, while in
glossary-all-fix, paske is matched with because. If
we then consider the training data, we see that in
most cases, paske is in fact translated as because.
Motivated by this type of phenomenon, we em-
ployed an alternative strategy to simple duplication
which allows us to further exploit our prior knowl-
edge.

2http://matrix.statmt.org/matrix

First, we take the previously word-aligned base-
line training corpus and for each sentence pair and
word ei compute the alignment link count c(ei, fj)
over the positions j that ei is aligned with, repeating
for c(fi, ej) in the other direction. Then, we pro-
cess each resource we are considering duplicating,
and augment its score by c(ei, fj) for every pair of
words which was observed in the training data and
is present in the resource. This score is then normal-
ized by the size of the resource, and averaged over
both directions. The outcome of this process is a
score for each resource. Taking these scores on a
log scale and pinning the top score to associate with
20 duplications, the result is a decreasing number of
duplications for each subsequent resources, based on
our confidence in its entries. Thus, every entry in the
resource receives credit, as long as there is evidence
that the entries we have observed are reliable. On
our set of resources, the process produces a score of
17 for the Haitisurf dictionary and 183 for the glos-
sary, which is in line with what we would expect.
It may be that the resources may have entries which
occur in the test set but not in the training data, and
thus we may inadvertently skew our distribution in
a way which negatively impacts our performance,
however, overall we believe it is a sound assumption
that we should bias ourselves toward the more com-
mon occurrences based on the training data, as this
should provide us with a higher translation probabil-
ity from the good resources since the entries are re-
peated more often. Once we obtain a proper weight-
ing scheme for the resources, we construct a new
training corpus, and proceed forward from the align-
ment process.

Table 2 presents the BLEU and TER results of the
standard strategy of duplication against the confi-
dence weighting scheme outlined above. As can be

CONF. WT. X10
Version Set BLEU TER BLEU TER

clean
dev 30.79 55.71 30.61 55.31
devtest 27.92 57.66 28.22 57.06
test 27.97 59.65 27.74 59.34

raw
dev 26.11 62.64 25.72 62.99
devtest 24.16 63.71 24.18 63.71
test 23.66 65.69 23.06 66.78

Table 2: Confidence weighting versus x10 duplication
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seen, the confidence weighting scheme substantially
outperforms the duplication for the dev set of both
versions, but these improvements do not carry over
to the clean devtest set. Therefore, for the rest of the
experiments presented in the paper, we will use the
confidence weighting scheme for the raw version,
and the standard duplication for the clean version.

3.2 Automatic Punctuation Prediction

Punctuation does not usually cause a problem in
text-based machine translation, but this changes
when venturing into the domain of SMS. Punctua-
tion is very informative to the translation process,
providing essential contextual information, much
as the aforementioned sentence boundary markers.
When this information is lacking, mistakes which
would have otherwise been avoided can be made.
Examining the data, we see there is substantially
more punctuation in the clean set than in the raw.
For example, there are 50% more comma’s in the
clean dev set than in the raw. A problem of lack of
punctuation has been studied in the context of spo-
ken language translation, where punctuation predic-
tion on the source language prior to translation has
been shown to improve performance (Dyer, 2007).
We take an analogous approach here, and train a hid-
den 5-gram model using SRILM on the punctuated
portion of the Haitian side of the parallel data. We
then applied the model to punctuate the raw dev set,
and tuned a system on this punctuated set. How-
ever, the translation performance did not improve.
This may have been do to several factors, including
the limited size of the training set, and the lack of
in-domain punctuated training data. Thus, we ap-
plied a self-training approach. We applied the punc-
tuation model to the SMS training data, which is
only available in the raw format. Once punctuated,
we re-trained our punctuation prediction model, now
including the automatically punctuated SMS data

AUTO-PUNC

Version Set BLEU TER

raw
dev 26.09 62.84
devtest 24.38 64.26
test 23.59 65.91

Table 3: Automatic punctuation prediction results

as part of the punctuation language model training
data. We use this second punctuation prediction
model to predict punctuation for the tuning and eval-
uation sets. We continue by creating a new parallel
training corpus which substitutes the original SMS
training data with the punctuated version, and build
a new translation system from it. The results from
using the self-trained punctuation method are pre-
sented in Table 3. Future experiments on the raw
version are performed using this punctuation.

3.3 Grammar Filtering
Although the grammars of a SCFG model per-
mit high-quality translation, the grammar extraction
procedure extracts many rules which are formally li-
censed by the model, but are otherwise incapable of
helping us produce a good translation. For example,
in this task we know that the token firstname must al-
ways translate as firstname, and never as phonenum-
ber. This refreshing lack of ambiguity allows us to
filter the grammar after extracting it from the train-
ing corpus, removing any grammar rule where these
conditions are not met, prior to decoding. Filtering
removed approximately 5% of the grammar rules.3

Table 4 shows the results of applying grammar fil-
tering to the raw and clean version.

GRAMMAR

Version Set BLEU TER

clean
dev 30.88 54.53
devtest 28.69 56.21
test 28.29 58.78

raw
dev 26.41 62.47
devtest 24.47 63.26
test 23.96 65.82

Table 4: Results of filtering the grammar in a post-
processing step before decoding

3.4 Raw-Clean Segmentation Lattice
As noted above, a major cause of the performance
degradation from the clean to the raw version is re-
lated to the morphological errors in the messages.
Figure 1 presents a segmentation lattice with two
versions of the same sentence; the first being from

3We experimented with more aggressive filtering based
on punctuation and numbers, but translation quality degraded
rapidly.
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the raw version, and the second from the clean. We
can see that that Ilavach has been broken into two
segments, while ki sou has been combined into one.

Since we do not necessarily know in advance
which segmentation is the correct one for a better
quality translation, it may be of use to be able to
utilize both segmentations and allow the decoder to
learn the appropriate one. In previous work, word
segmentation lattices have been used to address the
problem of productive compounding in morphologi-
cally rich languages, such as German, where mor-
phemes are combined to make words but the or-
thography does not delineate the morpheme bound-
aries. These lattices encode alternative ways of seg-
menting compound words, and allow the decoder
to automatically choose which segmentation is best
for translation, leading to significantly improved re-
sults (Dyer, 2009). As opposed to building word
segmentation lattices from a linguistic morphologi-
cal analysis of a compound word, we propose to uti-
lize the lattice to encode all alternative ways of seg-
menting a word as presented to us in either the clean
or raw versions of a sentence. As the task requires
us to produce separate clean and raw output on the
test set, we tune one system on a lattice built from
the clean and raw dev set, and use the single system
to decode both the clean and raw test set separately.
Table 5 presents the results of using segmentation
lattices.

3.5 Raw-to-Clean Transformation Lattice

As can be seen in Tables 1, 2, and 3, system per-
formance on clean text greatly outperforms system
performance on raw text, with a difference of almost
5 BLEU points. Thus, we explored the possibility of
automatically transforming raw text into clean text,
based on the “parallel” raw and clean texts that were
provided as part of the task.

One standard approach might have been to train

SEG-LATTICE

Version Set BLEU TER

raw
dev 26.17 61.88
devtest 24.64 62.53
test 23.89 65.27

Table 5: Raw-Clean segmentation lattice tuning results

FST-LATTICE

Version Set BLEU TER

raw
dev 26.20 62.15
devtest 24.21 63.45
test 22.56 67.79

Table 6: Raw-to-clean transformation lattice results

a Haitian-to-Haitian MT system to “translate” from
raw text to clean text. However, since the training set
was only available as raw text, and only the dev and
devtest datasets had been cleaned, we clearly did not
have enough data to train a raw-to-clean translation
system. Thus, we created a finite-state transducer
(FST) by aligning the raw dev text to the clean dev
text, on a sentence-by-sentence basis. These raw-to-
clean alignments were created using a simple mini-
mum edit distance algorithm; substitution costs were
calculated according to orthographic match.

One option would be to use the resulting raw-to-
clean transducer to greedily replace each word (or
phrase) in the raw input with the predicted transfor-
mation into clean text. However, such a destructive
replacement method could easily introduce cascad-
ing errors by removing text that might have been
translated correctly. Fortunately, as mentioned in
Section 2, and utilized in the previous section, the
cdec decoder accepts lattices as input. Rather than
replacing raw text with the predicted transformation
into “clean” text, we add a path to the input lat-
tice for each possible transform, for each word and
phrase in the input. We tune a system on a lattice
built from this approach on the dev set, and use the
FST developed from the dev set in order to create
lattices for decoding the devtest and test sets. An
example is shown in Figure 3.4. Note that in this
example, the transformation technique correctly in-
serted new paths for ilavach and ki sou, correctly
retained the single path for zile, but overgenerated
many (incorrect) options for nan. Note, though, that
the original path for nan remains in the lattice, de-
laying the ambiguity resolution until later in the de-
coding process. Results from creating raw-to-clean
transformation lattices are presented in Table 6.

By comparing the results in Table 6 to those in
Table 5, we can see that the noise introduced by the
finite-state transformation process outweighed the
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Figure 1: Partial segmentation lattice combining the raw and clean versions of the sentence:
Are you going to let us die on Ile à Vaches which is located close the city of Les Cayes.
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Figure 2: Partial input lattice for sentence in Figure 3.4, generated using the raw-to-clean transform technique
described in Section 3.5.

gains of adding new phrases for tuning.

4 System Comparison

Table 7 shows the performance on the devtest set
of each of the system variations that we have pre-
sented in this paper. From this table, we can see
that our best-performing system on clean data was
the GRAMMAR system, where the training data was
multiplied by ten as described in Section 3.1, then
the grammar was filtered as described in Section 3.3.
Our performance on clean test data, using this sys-
tem, was 28.29 BLEU and 58.78 TER. Table 7 also
demonstrates that our best-performing system on
raw data was the SEG-LATTICE system, where the
training data was confidence-weighted (Section 3.1),
the grammar was filtered (Section 3.3), punctuation
was automatically added to the raw data as described
in Section 3.2, and the system was tuned on a lattice
created from the raw and clean dev dataset. Our per-
formance on raw test data, using this system, was
23.89 BLEU and 65.27 TER.

5 Conclusion

In this paper we presented our system for the 2011
WMT featured Haitian Creole–English translation
task. In order to improve translation quality of low-
density noisy SMS data, we experimented with a
number of methods that improve performance on
both the clean and raw versions of the data, and help

clean raw
System BLEU TER BLEU TER

BASELINE 28.15 57.45 24.09 63.82
CONF. WT. 27.92 57.66 24.16 63.71
X10 28.22 57.06 24.18 63.71
GRAMMAR 28.69 56.21 24.47 63.26
AUTO-PUNC – – 24.38 64.26
SEG-LATTICE – – 24.64 62.53
FST-LATTICE – – 24.21 63.45

Table 7: Comparison of all systems’ performance on
devtest set

close the gap between the post-edited and real-world
data according to BLEU and TER evaluation. The
methods employed were developed to specifically
address shortcomings we observed in the data, such
as segmentation lattices for morphological ambigu-
ity, confidence weighting for resource utilization,
and punctuation prediction for lack thereof. Overall,
this work emphasizes the feasibility of adapting ex-
isting translation technology to as-yet underexplored
domains, as well as the shortcomings that need to be
addressed in future work in real-world data.
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Abstract
In this paper we describe our hybrid machine
translation system with which we participated
in the WMT11 shared translation task for the
English→German language pair. Our system
was able to outperform its RBMT baseline and
turned out to be the best-scored participating
system in the manual evaluation. To achieve
this, we extended an existing, rule-based MT
system with a module for stochastic selection
of analysis parse trees that allowed to better
cope with parsing errors during the system’s
analysis phase. Due to the integration into the
analysis phase of the RBMT engine, we are
able to preserve the benefits of a rule-based
translation system such as proper generation
of target language text. Additionally, we used
a statistical tool for terminology extraction to
improve the lexicon of the RBMT system.
We report results from both automated metrics
and human evaluation efforts, including exam-
ples which show how the proposed approach
can improve machine translation quality.

1 Introduction

Rule-based machine translation (RBMT) systems
that employ a transfer-based translation approach,
highly depend on the quality of their analysis phase
as it provides the basis for its later processing
phases, namely transfer and generation. Any parse
failures encountered in the initial analysis phase will
proliferate and cause further errors in the following
phases. Very often, bad translation results can be
traced back to incorrect analysis trees that have been
computed for the respective input sentences. Hence-
forth, any improvements that can be achieved for

the analysis phase of a given RBMT system directly
lead to improved translation output which makes this
an interesting topic in the context of hybrid MT.

In this paper we present a study how the rule-
based analysis phase of a commercial RBMT system
can be supplemented by a stochastic parser. The
system under investigation is the rule-based engine
Lucy LT. This software uses a sophisticated RBMT
transfer approach with a long research history; it is
explained in more detail in (Alonso and Thurmair,
2003).

The output of its analysis phase is a parse forest
containing a small number of tree structures. For
our hybrid system we investigated if the existing rule
base of the Lucy LT system chooses the best tree
from the analysis forest and how the selection of this
best tree out of the set of candidates can be improved
by adding stochastic knowledge to the rule-based
system.

The remainder of this paper is structured in the
following way: in Section 2 we first describe the
transfer-based architecture of the rule-based Lucy
LT engine, giving special focus to its analysis phase
which we are trying to optimize. Afterwards,
we provide details on the implementation of the
stochastic selection component, the so-called “tree
selector” which allows to integrate knowledge from
a stochastic parser into the analysis phase of the
rule-based system. Section 3 reports on the results
of both automated metrics and manual evaluation
efforts, including examples which show how the
proposed approach has improved or degraded MT
quality. Finally, we conclude and provide an outlook
on future work in this area.
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Figure 1: Original analysis tree from the rule-based MT system

2 System Architecture

2.1 Lucy LT Architecture
The Lucy LT engine is a renowned RMBT system
which follows a “classical”, transfer-based machine
translation approach. The system first analyses the
given source sentence creating a forest of several
analysis parse trees. One of these parse trees is then
selected (as “best” analysis) and transformed in the
transfer phase into a tree structure from which the
target text (i.e. the translation) can be generated.

It is clear that any errors that occur during the
initial analysis phase proliferate and cause negative
side effects on the outcome of the final translation
result. As the analysis phase is thus of very special
importance, we have investigated it in more detail.
The Lucy LT analysis consists of several phases:

1. The input is tokenised with regards to the
system’s source language lexicon.

2. The resulting tokens undergo a morphological
analysis, which is able to identify possible
combinations of allomorphs for a token.

3. This leads to a chart which forms the basis for
the actual parsing, using a head-driven strat-
egy1. Special handling is performed for the
analysis of multi-word expressions and also for
verbal framing.

At the end of the analysis, there is an extra phase
named phrasal analysis which is called whenever

1grammar formalism + number of rules

the grammar was not able to construct a legal con-
stituent from all the elements of the input. This hap-
pens in several different scenarios:

− The input is ungrammatical according to the
LT analysis grammar.

− The category of the derived constituent is not
one of the allowed categories.

− A grammatical phenomenon in the source
sentence is not covered.

− There are missing lexical entries for the input
sentence.

During the phrasal analysis, the LT engine collects
all partial trees and greedily constructs an overall in-
terpretation of the chart. Based on our findings from
many experiments with the Lucy LT engine, phrasal
analyses are performed for more than 40% of the
sentences from our test sets and very often result in
bad translations.

Each resulting analysis parse tree, independent
of whether it is a grammatical or a result from the
phrasal analysis, is also assigned an integer score by
the grammar. The tree with the highest score is then
handed over to the transfer phase, thus pre-defining
the final translation output.

2.2 The “Tree Selector”

An initial evaluation of the translation quality based
on the tree selection of the analysis phase showed
that there is potential for improvement. The integer
score assigned by the analysis grammar provides a
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Figure 2: Improved analysis tree resulting from stochastic parse selection

good indication of which trees lead to good transla-
tions, as is depicted in Table 1. Still, in many cases
an alternative tree would have lead to a better trans-
lation.

As additional feature, we chose to use the tree
edit distance of each analysis candidate to a stochas-
tic parse tree. An advantage of stochastic parsing
lies in the fact that parsers from this class can deal
very well even with ungrammatical or unknown out-
put, which we have seen is problematic for a rule-
base parser. We decided to make use of the Stanford
Parser as described in (Klein and Manning, 2003),
which uses an unlexicalised probabilistic context-
free grammar that was trained on the Penn Tree-
bank2. We parse the original source sentence with
this PCFG grammar to get a stochastic parse tree that
can be compared to the trees from the Lucy analysis
forest.

In our experiments, we compare the stochastic
parse tree with the alternatives given by Lucy LT.
Tree comparison is implemented based on the Tree
Edit Distance, as originally defined in (Zhang and
Shasha, 1989). In analogy to the Word Edit or Lev-

2Further experiments with different grammars are currently
on-going.

Best Analysis Tree Percentage
Default (id=1) 42 (61.76%)

Alternative (id=2-7) 26 (38.24%)

Table 1: Evaluation of Analysis Forests

enshtein Distance, the distance between two trees
is the number of editing actions that are required to
transform the first tree into the second tree. The Tree
Edit Distance knows three actions:

− Insertion
− Deletion
− Renaming (substitution in Levenshtein Distance)

Since the Lucy LT engine uses its own tag set,
a mapping between this proprietary and the Penn
Treebank tag set was created. Our implementation,
called “Tree Selector” uses a normalised version of
the Tree Edit Distance to estimate the quality of the
trees from the Lucy analysis forest, possibly over-
riding the analysis decision taken by the unmodified
RBMT engine. The integration of the Tree Selector
has been possible by using an adapted version of the
rule-based MT system which allowed to communi-
cate the selection result from our external process to
the Lucy LT kernel which would then load the re-
spective parse tree for all further processing steps.

2.3 LiSTEX Terminology Extraction

The LiSTEX extension of the Lucy RBMT engine
allows to improve the system’s lexicon; the approach
is described in more detail in (Federmann et al.,
2011). To extend the lexicon, terminology lists are
extracted from parallel corpora. These lists are then
enriched with linguistic information, such as part-of-
speech tag, internal structure of multi-word expres-
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sions and frequency. For English and German, about
26,000 terms were imported using this procedure.

2.4 Named Entity Handling

Named entities are often handled incorrectly and
wrongly translated, such as George Bush→ George
Busch. To reduce the frequency of such errors, we
added a pre- and post-processing modules to deal
with named entities. Before translation, the input
text is scanned for named entities. We use both
HeiNER (Wolodja Wentland and Hartung (2008))
and the OpenNLP toolkit3. HeiNER is a dictionary
containing named entities extracted from Wikipedia.
This provides us with a wide range of well-translated
entities. To increase the coverage, we also use the
named entity recogniser in OpenNLP. These entities
have to be translated using the RBMT engine. We
save the named entity translations and insert place-
holders for all NEs. The modified text is translated
using the hybrid set-up described above. After the
translation is finished, the placeholders are replaced
by their respective translations.

3 Evaluation

3.1 Shared Task Setup

For the WMT11 shared translation task, we submit-
ted three different runs of our hybrid MT system:

1. Hybrid Transfer (without the Tree Selector, but
with the extended lexicon)

2. Full Hybrid (with both the Tree Selector and
the extended lexicon)

3. Full Hybrid+Named Entities (full hybrid and
named entity handling)

Our primary submission was run #3. All three runs
were evaluated using BLEU (Papineni et al. (2001))
and TER (Snover et al. (2006)). The results from
these automated metrics are reported in Table 2.

Table 2: Automatic metric scores for WMT11

System BLEU TER
Hybrid Transfer 13.4 0.792
Full Hybrid 13.1 0.796
Full Hybrid+Named Entities 12.8 0.800

3http://incubator.apache.org/opennlp/

Table 3 shows that we were able to outperform
the original Lucy version. Furthermore, it turned out
that our hybrid system was the best-scoring system
from all shared task participants.

Table 3: Manual evaluation scores for WMT11

System Normalized Score
Full Hybrid+Named Entities 0.6805
Original Lucy 0.6599

3.2 Error Analysis
The selection process following the decision factors
as explained in Section 2.2 may fail due to wrong
assumptions in two areas:

1. The tree with the lowest distance does not
result in the best translation.

2. There are several trees associated with the low-
est distance, but the tree with the highest score
does not result in the best translation.

To calculate the error rate of the Tree Selector, we
ran experiments on the test set of the WMT10 shared
task and evaluated a sample of 100 sentences with
regards to translation quality. To do so, we created
all seven possible translations for each of the phrasal
analyses and checked whether the Tree Selector re-
turned a tree that led to exactly this translation. In
case it did not, we investigated the reasons for this.
Sentences for which all trees created the same trans-
lation were skipped. This sample contains both
examples in which the translation changed and in
which the translation stayed the same.

Table 4 shows the error rate of the Tree Selector
while Table 5 contains the error analysis. As one
can see, the optimal tree was chosen for 56% of the
sentences. We also see that the minimal tree edit
distance seems to be a good feature to use for com-
parisons, as it holds for 71% of the trees, including
those examples where the best tree was not scored
highest by the LT engine. This also means that addi-
tional features for choosing the tree out of the group
of trees with the minimal edit distance are required.
Even for the 29% of sentences, in which the opti-
mal tree was not chosen, little quality was lost: in
75.86% of those cases, the translations didn’t change
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Best Translation Returned 56%
Other Translation Returned 44%

Best Tree has Minimal Edit Distance 71%
Best Tree has Higher Distance 29%

Table 4: Error Rate of the Tree Selector

at all (obviously the trees resulted in equal transla-
tion output). In the remaining cases the translations
were divided evenly between slight degradations and
and equal quality.

Other Translation: Selected Tree
Tree 1 (Default) 31

Tree 2-7 (Alternatives) 13
Reasons for Selection

Source contained more than 50 tokens 16
Time-out before best tree is reached 13
Chosen tree had minimal distance 15

Table 5: Evaluation of Tree Selector Errors

In the cases when the best tree was not chosen,
the first tree (which is the default tree) was selected
in 70.45% . This is due to a combinations of ro-
bustness factors that are implemented in the RBMT
system and have been beyond our control in the ex-
periments. The LT engine has several different indi-
cators which may throw a time-out exception, if, for
example, the analysis phase takes too long to pro-
duce a result. To avoid getting time-out errors, only
sentences with up to 50 tokens are treated with the
Tree Selector. Additionally the Tree Selector itself
checks the processing time and returns intermediate
results, if this limit is reached. This ensures that we
receive a proper translation for all sentences.4

3.3 Examples
Using our stochastic selection component, we are
able to fix errors which can be found in translation
output generated by the original Lucy engine.

Table 6 shows several examples including source
text, reference text, and translations from both the
original Lucy engine (A) and our hybrid system (B).
We will briefly discuss our observations for these
examples in the following section.

4We are currently working on eliminating this time-out issue
as it prevents us from driving our approach to its full potential.

1. Translation A is the default translation. The
parse tree for this translation can be seen in
Figure 1. Here the adjective alleged is wrongly
parsed as a verb. By contrast, Figure 2 shows
the tree selected by our hybrid implementation,
which contains the correct analysis of alleged
and results in a correct translation.

2. Word order is improved in the Example 2.

3. Lexical items are associated with a domain area
in the lexicon of the rule-based system. Items
that are contained within a different domain
than the input text are still accessible, but items
in the same domain are preferred. In Exam-
ple 3, this may lead to the incorrect disam-
biguation of multi-word expressions: the trans-
lation of to blow up as in die Luft fliegen was
not preferred in Translation A due to the cho-
sen domain and a more superficial translation
was chosen. This problem is fixed in Transla-
tion B. Our system chose a tree leading to the
correct idiomatic translation.

4. Something similar happens in Example 4
where the choice of preposition is improved.

5. These changes remain at a rather local scope,
but we also have instances where the sentence
improves globally: Example 5 illustrates this
well. In translation A, the name of the book,
“After the Ice”, has been moved to an entirely
different place in the sentence, removing it
from its original context.

6. The same process can be observed in Exam-
ple 6, where the translation of device was
moved from the main clause to the sub clause
in Translation A.

7. An even more impressive example is Exam-
ple 7. Here, translation A was not even a gram-
matically correct sentence. This is due to the
heuristics of the Lucy engine, although they
could also create a correct translation B.

These examples show that our initial goal of
improving the given RMBT system has been
reached and that a hybrid MT system with an
architecture similar to what we have described in
this paper does in fact perform quite well.
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Table 6: Translation Examples for Original (A) and Improved (B) Lucy

1 Source: They were also protesting against bad pay conditions and alleged persecution.
Reference: Sie protestierten auch gegen die schlechten Zahlungsbedingungen und angebliche Schikanen.

Translation A: Sie protestierten auch gegen schlechte Soldbedingungen und behaupteten Verfolgung.
Translation B: Sie protestierten auch gegen schlechte Soldbedingungen und angebliche Verfolgung.

2 Source: If the finance minister can’t find the money elsewhere, the project will have to be aborted and
sanctions will be imposed, warns Janota.

Reference: Sollte der Finanzminister das Geld nicht anderswo finden, müsste das Projekt gestoppt wer-
den und in diesem Falle kommen Sanktionen, warnte Janota.

Translation A: Wenn der Finanzminister das Geld nicht anderswo finden kann, das Projekt abgebrochen
werden müssen wird und Sanktionen auferlegt werden werden, warnt Janota.

Translation B: Wenn der Finanzminister das Geld nicht anderswo finden kann, wird das Projekt abgebrochen
werden müssen und Sanktionen werden auferlegt werden, warnt Janota.

3 Source: Apparently the engine blew up in the rocket’s third phase.
Reference: Vermutlich explodierte der Motor in der dritten Raketenstufe.

Translation A: Offenbar blies der Motor hinauf die dritte Phase der Rakete in.
Translation B: Offenbar flog der Motor in der dritten Phase der Rakete in die Luft.

4 Source: As of January, they should be paid for by the insurance companies and not compulsory.
Reference: Ab Januar soll diese von den Versicherungen bezahlt und freiwillig sein.

Translation A: Ab Januar sollten sie für von den Versicherungsgesellschaften und nicht obligatorisch bezahlt
werden.

Translation B: Ab Januar sollten sie von den Versicherungsgesellschaften und nicht obligatorisch gezahlt
werden.

5 Source: In his new book, “After the Ice”, Alun Anderson, a former editor of New Scientist, offers
a clear and chilling account of the science of the Arctic and a gripping glimpse of how the
future may turn out there.

Reference: In seinem neuen Buch “Nach dem Eis” (Originaltitel “After the Ice”) bietet Alun Anderson,
ein ehemaliger Herausgeber des Wissenschaftsmagazins “New Scientist”, eine klare und be-
unruhigende Beschreibung der Wissenschaft der Arktis und einen packenden Einblick, wie
die Zukunft sich entwickeln könnte.

Translation A: In seinem neuen Buch bietet Alun Anderson, ein früherer Redakteur von Neuem Wis-
senschaftler, “Nach dem Eis” einen klaren und kalten Bericht über die Wissenschaft der
Arktis und einen spannenden Blick davon an, wie die Zukunft sich hinaus dort drehen kann.

Translation B: In seinem neuen Buch, “Nach dem Eis”, bietet Alun Anderson, ein früherer Redakteur von
Neuem Wissenschaftler, einen klaren und kalten Bericht über die Wissenschaft der Arktis
und einen spannenden Blick davon an, wie die Zukunft sich hinaus dort drehen kann.

6 Source: If he does not react, and even though the collision is unavoidable, the device exerts the maxi-
mum force to the brakes to minimize damage.

Reference: Falls der Fahrer nicht auf die Warnung reagiert und sogar wenn der Zusammenstoss schon
unvermeidlich ist, übt der Bremsassistent den maximalen Druck auf die Bremsen aus, um auf
diese Weise die Schäden so gering wie möglich zu halten.

Translation A: Wenn er nicht reagiert, und das Gerät auch wenn der Zusammenstoß unvermeidlich ist, die
größtmögliche Kraft zu den Bremsen ausübt, um Schaden zu bagatellisieren.

Translation B: Wenn er nicht reagiert, und auch wenn der Zusammenstoß unvermeidlich ist, übt das Gerät
die größtmögliche Kraft zu den Bremsen aus, um Schaden zu bagatellisieren.

7 Source: For the second year, the Walmart Foundation donated more than $150,000 to purchase, and
transport the wreaths.

Reference: Die Walmart-Stiftung spendete zum zweiten Mal mehr als 150.000 Dollar für Kauf und
Transport der Kränze.

Translation A: Für das zweite Jahr, die Walmart-Gründung, mehr gespendet als $150,000, um die Kränze zu
kaufen, und zu transportieren.

Translation B: Für das zweite Jahr spendete die Walmart-Gründung mehr als $150,000, um die Kränze zu
kaufen, und zu transportieren.
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4 Conclusion and Outlook

The analysis phase proves to be crucial for the over-
all quality of the translation in rule-based machine
translation systems. Our hybrid approach indicates
that it is possible to improve the analysis results
of such a rule-based engine by a better selection
method of the trees created by the grammar. Our
evaluation shows that the selection itself is no trivial
task, as our initial experiments deliver results of
varying quality. The degradations we have observed
in our own manual evaluation can be fixed by a
more fine-grained selection mechanism, as we al-
ready know that better trees exist, i.e. the default
translations.

While the work reported on in this paper is a
dedicated extension of a specific rule-based machine
translation system, the overall approach can be used
with any transfer-based RBMT system. Future work
will concentrate on the circumvention of e.g. the
time-out errors that prevented a better performance
of the stochastic selection module. Also, we will
more closely investigate the issue of decreased trans-
lation quality and experiment with other decision
factors that may help to alleviate the negative effects.

The LiSTEX module provides us with high qual-
ity entries for the lexicon, increasing the coverage
of the lexicon and fluency of the translation. As a
side-effect, the new terms also help to reduce parsing
errors, as formerly unknown multiword expressions
are now properly recognised and treated. Further
work is being carried out to increase the precision
of the extracted terminology lists.

The addition of stochastic knowledge into an
existing rule-based machine translation system is
an example of a successful, hybrid combination of
different MT paradigms into a joint system. Our
system turned out to be the winning system for
the English→German language pair of the WMT11
shared task.
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Abstract

This paper describes the joint QUAERO sub-
mission to the WMT 2011 machine transla-
tion evaluation. Four groups (RWTH Aachen
University, Karlsruhe Institute of Technol-
ogy, LIMSI-CNRS, and SYSTRAN) of the
QUAERO project submitted a joint translation
for the WMT German→English task. Each
group translated the data sets with their own
systems. Then RWTH system combination
combines these translations to a better one. In
this paper, we describe the single systems of
each group. Before we present the results of
the system combination, we give a short de-
scription of the RWTH Aachen system com-
bination approach.

1 Overview

QUAERO is a European research and develop-
ment program with the goal of developing multi-
media and multilingual indexing and management
tools for professional and general public applica-
tions (http://www.quaero.org). Research in machine
translation is mainly assigned to the four groups
participating in this joint submission. The aim of
this WMT submission was to show the quality of a
joint translation by combining the knowledge of the
four project partners. Each group develop and main-
tain their own different machine translation system.
These single systems differ not only in their general
approach, but also in the preprocessing of training
and test data. To take the advantage of these dif-
ferences of each translation system, we combined
all hypotheses of the different systems, using the
RWTH system combination approach.

1.1 Data Sets

For WMT 2011 each QUAERO partner trained their
systems on the parallel Europarl and News Com-
mentary corpora. All single systems were tuned on
the newstest2009 dev set. The newstest2008 dev set
was used to train the system combination parame-
ters. Finally the newstest2010 dev set was used to
compare the results of the different system combi-
nation approaches and settings.

2 Translation Systems

2.1 RWTH Aachen Single Systems

For the WMT 2011 evaluation the RWTH utilized
RWTH’s state-of-the-art phrase-based and hierar-
chical translation systems. GIZA++ (Och and Ney,
2003) was employed to train word alignments, lan-
guage models have been created with the SRILM
toolkit (Stolcke, 2002).

2.1.1 Phrase-Based System

The phrase-based translation (PBT) system is
similar to the one described in Zens and Ney (2008).
After phrase pair extraction from the word-aligned
bilingual corpus, the translation probabilities are es-
timated by relative frequencies. The standard feature
set also includes an n-gram language model, phrase-
level IBM-1 and word-, phrase- and distortion-
penalties, which are combined in log-linear fash-
ion. Parameters are optimized with the Downhill-
Simplex algorithm (Nelder and Mead, 1965) on the
word graph.
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2.1.2 Hierarchical System
For the hierarchical setups described in this pa-

per, the open source Jane toolkit (Vilar et al., 2010)
is employed. Jane has been developed at RWTH
and implements the hierarchical approach as intro-
duced by Chiang (2007) with some state-of-the-art
extensions. In hierarchical phrase-based translation,
a weighted synchronous context-free grammar is in-
duced from parallel text. In addition to contiguous
lexical phrases, hierarchical phrases with up to two
gaps are extracted. The search is typically carried
out using the cube pruning algorithm (Huang and
Chiang, 2007). The model weights are optimized
with standard MERT (Och, 2003) on 100-best lists.

2.1.3 Phrase Model Training
For some PBT systems a forced alignment pro-

cedure was applied to train the phrase translation
model as described in Wuebker et al. (2010). A
modified version of the translation decoder is used
to produce a phrase alignment on the bilingual train-
ing data. The phrase translation probabilities are es-
timated from their relative frequencies in the phrase-
aligned training data. In addition to providing a sta-
tistically well-founded phrase model, this has the
benefit of producing smaller phrase tables and thus
allowing more rapid and less memory consuming
experiments with a better translation quality.

2.1.4 Final Systems
For the German→English task, RWTH conducted

experiments comparing the standard phrase extrac-
tion with the phrase training technique described in
Section 2.1.3. Further experiments included the use
of additional language model training data, rerank-
ing of n-best lists generated by the phrase-based sys-
tem, and different optimization criteria.

A considerable increase in translation quality can
be achieved by application of German compound
splitting (Koehn and Knight, 2003). In comparison
to standard heuristic phrase extraction techniques,
performing force alignment phrase training (FA)
gives an improvement in BLEU on newstest2008
and newstest2009, but a degradation in TER. The
addition of LDC Gigaword corpora (+GW) to the
language model training data shows improvements
in both BLEU and TER. Reranking was done on
1000-best lists generated by the the best available

system (PBT (FA)+GW). Following models were
applied: n-gram posteriors (Zens and Ney, 2006),
sentence length model, a 6-gram LM and IBM-1 lex-
icon models in both normal and inverse direction.
These models are combined in a log-linear fashion
and the scaling factors are tuned in the same man-
ner as the baseline system (using TER−4BLEU on
newstest2009).

The final table includes two identical Jane sys-
tems which are optimized on different criteria. The
one optimized on TER−BLEU yields a much lower
TER.

2.2 Karlsruhe Institute of Technology Single
System

2.2.1 Preprocessing
We preprocess the training data prior to training

the system, first by normalizing symbols such as
quotes, dashes and apostrophes. Then smart-casing
of the first words of each sentence is performed. For
the German part of the training corpus we use the
hunspell1 lexicon to learn a mapping from old Ger-
man spelling to new German spelling to obtain a cor-
pus with homogeneous spelling. In addition, we per-
form compound splitting as described in (Koehn and
Knight, 2003). Finally, we remove very long sen-
tences, empty lines, and sentences that probably are
not parallel due to length mismatch.

2.2.2 System Overview
The KIT system uses an in-house phrase-based

decoder (Vogel, 2003) to perform translation. Op-
timization with regard to the BLEU score is done
using Minimum Error Rate Training as described
by Venugopal et al. (2005). The translation model
is trained on the Europarl and News Commentary
Corpus and the phrase table is based on a GIZA++
Word Alignment. We use two 4-gram SRI language
models, one trained on the News Shuffle corpus and
one trained on the Gigaword corpus. Reordering is
performed based on continuous and non-continuous
POS rules to cover short and long-range reorder-
ings. The long-range reordering rules were also ap-
plied to the training corpus and phrase extraction
was performed on the resulting reordering lattices.
Part-of-speech tags are obtained using the TreeTag-

1http://hunspell.sourceforge.net/
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ger (Schmid, 1994). In addition, the system applies
a bilingual language model to extend the context of
source language words available for translation. The
individual models are described briefly in the fol-
lowing.

2.2.3 POS-based Reordering Model
We use a reordering model that is based on parts-

of-speech (POS) and learn probabilistic rules from
the POS tags of the words in the training corpus and
the alignment information. In addition to continu-
ous reordering rules that model short-range reorder-
ing (Rottmann and Vogel, 2007), we apply non-
continuous rules to address long-range reorderings
as typical for German-English translation (Niehues
and Kolss, 2009). The reordering rules are applied
to the source sentences and the reordered sentence
variants as well as the original sequence are encoded
in a word lattice which is used as input to the de-
coder.

2.2.4 Lattice Phrase Extraction
For the test sentences, the POS-based reordering

allows us to change the word order in the source sen-
tence so that the sentence can be translated more eas-
ily. If we apply this also to the training sentences, we
would be able to extract also phrase pairs for origi-
nally discontinuous phrases and could apply them
during translation of reordered test sentences.

Therefore, we build reordering lattices for all
training sentences and then extract phrase pairs from
the monotone source path as well as from the re-
ordered paths. To limit the number of extracted
phrase pairs, we extract a source phrase only once
per sentence, even if it is found in different paths and
we only use long-range reordering rules to generate
the lattices for the training corpus.

2.2.5 Bilingual Language Model
In phrase-based systems the source sentence is

segmented by the decoder during the search pro-
cess. This segmentation into phrases leads to the
loss of context information at the phrase boundaries.
The language model can make use of more target
side context. To make also source language context
available we use a bilingual language model, an ad-
ditional language model in the phrase-based system
in which each token consist of a target word and all

source words it is aligned to. The bilingual tokens
enter the translation process as an additional target
factor.

2.3 LIMSI-CNRS Single System
2.3.1 System overview

The LIMSI system is built with n-code2, an open
source statistical machine translation system based
on bilingual n-grams.

2.3.2 n-code Overview
In a nutshell, the translation model is im-

plemented as a stochastic finite-state transducer
trained using a n-gram model of (source,target)
pairs (Casacuberta and Vidal, 2004). Training this
model requires to reorder source sentences so as to
match the target word order. This is performed by a
stochastic finite-state reordering model, which uses
part-of-speech information3 to generalize reordering
patterns beyond lexical regularities.

In addition to the translation model, eleven fea-
ture functions are combined: a target-language
model; four lexicon models; two lexicalized reorder-
ing models (Tillmann, 2004) aiming at predicting
the orientation of the next translation unit; a weak
distance-based distortion model; and finally a word-
bonus model and a tuple-bonus model which com-
pensate for the system preference for short transla-
tions. The four lexicon models are similar to the ones
use in a standard phrase based system: two scores
correspond to the relative frequencies of the tuples
and two lexical weights estimated from the automat-
ically generated word alignments. The weights asso-
ciated to feature functions are optimally combined
using a discriminative training framework (Och,
2003), using the newstest2009 data as development
set.

The overall search is based on a beam-search
strategy on top of a dynamic programming algo-
rithm. Reordering hypotheses are computed in a
preprocessing step, making use of reordering rules
built from the word reorderings introduced in the tu-
ple extraction process. The resulting reordering hy-
potheses are passed to the decoder in the form of
word lattices (Crego and Mariño, 2007).

2http://www.limsi.fr/Individu/jmcrego/n-code
3Part-of-speech information for English and German is com-

puted using the TreeTagger.
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2.3.3 Data Preprocessing
Based on previous experiments which have

demonstrated that better normalization tools provide
better BLEU scores (K. Papineni and Zhu, 2002),
all the English texts are tokenized and detokenized
with in-house text processing tools (Déchelotte et
al., 2008). For German, the standard tokenizer sup-
plied by evaluation organizers is used.

2.3.4 Target n-gram Language Models
The English language model is trained assuming

that the test set consists in a selection of news texts
dating from the end of 2010 to the beginning of
2011. This assumption is based on what was done
for the 2010 evaluation. Thus, a development cor-
pus is built in order to create a vocabulary and to
optimize the target language model.

Development Set and Vocabulary In order to
cover different period, two development sets are
used. The first one is newstest2008. However, this
corpus is two years older than the targeted time pe-
riod. Thus a second development corpus is gath-
ered by randomly sampling bunches of 5 consecu-
tive sentences from the provided news data of 2010
and 2011.

To estimate a LM, the English vocabulary is first
defined by including all tokens observed in the Eu-
roparl and news-commentary corpora. This vocabu-
lary is then expanded with all words that occur more
that 5 times in the French-English giga-corpus, and
with the most frequent proper names taken from the
monolingual news data of 2010 and 2011. This pro-
cedure results in a vocabulary around 500k words.

Language Model Training All the training data
allowed in the constrained task are divided into 9
sets based on dates on genres. On each set, a
standard 4-gram LM is estimated from the 500k
word vocabulary with in-house tools using abso-
lute discounting interpolated with lower order mod-
els (Kneser and Ney, 1995; Chen and Goodman,
1998).

All LMs except the one trained on the news cor-
pora from 2010-2011 are first linearly interpolated.
The associated coefficients are estimated so as to
minimize the perplexity evaluated on the dev2010-
2011. The resulting LM and the 2010-2011 LM are

finally interpolated with newstest2008 as develop-
ment data. This two steps interpolation aims to avoid
an overestimate of the weight associated to the 2010-
2011 LM.

2.4 SYSTRAN Software, Inc. Single System
The data submitted by SYSTRAN were obtained by
the SYSTRAN baseline system in combination with
a statistical post editing (SPE) component.

The SYSTRAN system is traditionally classi-
fied as a rule-based system. However, over the
decades, its development has always been driven by
pragmatic considerations, progressively integrating
many of the most efficient MT approaches and tech-
niques. Nowadays, the baseline engine can be con-
sidered as a linguistic-oriented system making use of
dependency analysis, general transfer rules as well
as of large manually encoded dictionaries (100k −
800k entries per language pair).

The basic setup of the SPE component is identi-
cal to the one described in (L. Dugast and Koehn,
2007). A statistical translation model is trained on
the rule-based translation of the source and the tar-
get side of the parallel corpus. This is done sepa-
rately for each parallel corpus. Language models are
trained on each target half of the parallel corpora and
also on additional in-domain corpora. Moreover, the
following measures − limiting unwanted statistical
effects − were applied:

• Named entities are replaced by special tokens
on both sides. This usually improves word
alignment, since the vocabulary size is signif-
icantly reduced. In addition, entity translation
is handled more reliably by the rule-based en-
gine.

• The intersection of both vocabularies (i.e. vo-
cabularies of the rule-based output and the ref-
erence translation) is used to produce an addi-
tional parallel corpus (whose target is identical
to the source). This was added to the parallel
text in order to improve word alignment.

• Singleton phrase pairs are deleted from the
phrase table to avoid overfitting.

• Phrase pairs not containing the same number
of entities on the source and the target side are
also discarded.
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• Phrase pairs appearing less than 2 times were
pruned.

The SPE language model was trained 15M
phrases from the news/europarl corpora, provided
as training data for WMT 2011. Weights for these
separate models were tuned by the MERT algorithm
provided in the Moses toolkit (P. Koehn et al., 2007),
using the provided news development set.

3 RWTH Aachen System Combination

System combination is used to produce consensus
translations from multiple hypotheses produced with
different translation engines that are better in terms
of translation quality than any of the individual hy-
potheses. The basic concept of RWTH’s approach
to machine translation system combination has been
described by Matusov et al. (2006; 2008). This ap-
proach includes an enhanced alignment and reorder-
ing framework. A lattice is built from the input hy-
potheses. The translation with the best score within
the lattice according to a couple of statistical mod-
els is selected as consensus translation. A deeper
description will be also given in the WMT11 sys-
tem combination paper of RWTH Aachen Univer-
sity. For this task only the A2L framework has been
used.

4 Experiments

We tried different system combinations with differ-
ent sets of single systems and different optimiza-
tion criteria. As RWTH has two different transla-
tion systems, we put the output of both systems into
system combination. Although both systems have
the same preprocessing, their hypotheses differ. Fi-
nally, we added for both RWTH systems two addi-
tional hypotheses to the system combination. The
two hypotheses of Jane were optimized on differ-
ent criteria. The first hypothesis was optimized on
BLEU and the second one on TER−BLEU. The first
RWTH phrase-based hypothesis was generated with
force alignment, the second RWTH phrase-based
hypothesis is a reranked version of the first one as
described in 2.1.4. Compared to the other systems,
the system by SYSTRAN has a completely different
approach (see section 2.4). It is mainly based on a
rule-based system. For the German→English pair,
SYSTRAN achieves a lower BLEU score in each

test set compared to the other groups. But since the
SYSTRAN system is very different to the others, we
still obtain an improvement when we add it also to
system combination.

We obtain the best result from system combina-
tion of all seven systems, optimizing the parameters
on BLEU. This system was the system we submitted
to the WMT 2011 evaluation.

For each dev set we obtain an improvement com-
pared to the best single systems. For newstest2008
and newstest2009 we get an improvement of 0.5
points in BLEU and 1.8 points in TER compared to
the best single system of Karlsruhe Institute of Tech-
nology. For newstest2010 we get an improvement
of 1.8 points in BLEU and 2.7 points in TER com-
pared to the best single system of RWTH. The sys-
tem combination weights optimized for the best run
are listed in Table 2. We see that although the single
system of SYSTRAN has the lowest BLEU scores,
it gets the second highest system weight. This high
value shows the influence of a completely different
system. On the other hand, all RWTH systems are
very similar, because of their same preprocessing
and their small variations. Therefor the system com-
bination parameter of all four systems by themselves
are relatively small. The summarized ”RWTH ap-
proach” system weight, though, is again on par with
the other systems.

5 Conclusion

The four statistical machine translation systems of
Karlsruhe Institute of Technology, RWTH Aachen
and LIMSI and the very structural approach of SYS-
TRAN produce hypotheses with a huge variability
compared to the others. Finally the RWTH Aachen
system combination combined all single system hy-
potheses to one hypothesis with a higher BLEU
compared to each single system. If the system
combination implementation can handle enough sin-
gle systems we would recommend to add all single
systems to the system combination. Although the
single system of SYSTRAN has the lowest BLEU
scores and the RWTH single systems are similar we
achieved the best result in using all single systems.
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newstest2008 newstest2009 newstest2010 description
BLEU TER BLEU TER BLEU TER
22.73 60.73 22.50 59.82 25.26 57.37 sc (all systems) BLEU opt
22.61 60.60 22.28 59.39 25.07 56.95 sc (all systems - (1)) TER−BLEU opt
22.50 60.41 22.52 59.61 25.23 57.40 sc (all systems) TER−BLEU opt
22.19 60.09 22.05 59.31 24.74 56.89 sc (all systems - (4)) TER−BLEU opt
22.21 60.71 21.89 59.95 24.72 57.58 sc (all systems - (4,7)) TER−BLEU opt
22.22 60.45 21.79 59.72 24.32 57.59 sc (all systems - (3,4)) TER−BLEU opt
22.27 60.60 21.75 59.92 24.35 57.64 sc (all systems - (3,4)) BLEU opt
22.10 62.59 22.01 61.64 23.34 60.35 (1) Karlsruhe Institute of Technology
21.41 62.77 21.12 61.91 23.44 60.06 (2) RWTH PBT (FA) rerank +GW
21.11 62.96 21.06 62.16 23.29 60.26 (3) RWTH PBT (FA)
21.47 63.89 21.00 63.33 22.93 61.71 (4) RWTH jane + GW BLEU opt
20.89 61.05 20.36 60.47 23.42 58.31 (5) RWTH jane + GW TER−BLEU opt
20.33 64.50 19.79 64.91 21.97 61.44 (6) Limsi-CNRS
17.06 69.48 17.52 67.34 18.68 66.37 (7) SYSTRAN Software

Table 1: All systems for the WMT 2011 German→English translation task (truecase). BLEU and TER results are in
percentage. FA denotes systems with phrase training, +GW the use of LDC data for the language model. sc denotes
system combination.

system weight
Karlsruhe Institute of Technology 0.350
RWTH PBT (FA) rerank +GW 0.001
RWTH PBT (FA) 0.046
RWTH jane + GW BLEU opt 0.023
RWTH jane + GW TER−BLEU opt 0.034
Limsi-CNRS 0.219
SYSTRAN Software 0.328

Table 2: Optimized systems weights for each system of the best system combination result.
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Abstract

We present the Carnegie Mellon University
Stat-XFER group submission to the WMT
2011 shared translation task. We built a hy-
brid syntactic MT system for French–English
using the Joshua decoder and an automati-
cally acquired SCFG. New work for this year
includes training data selection and grammar
filtering. Expanded training data selection
significantly increased translation scores and
lowered OOV rates, while results on grammar
filtering were mixed.

1 Introduction

During the past year, the statistical transfer ma-
chine translation group at Carnegie Mellon Univer-
sity has continued its work on large-scale syntactic
MT systems based on automatically acquired syn-
chronous context-free grammars (SCFGs). For the
2011 Workshop on Machine Translation, we built
a hybrid MT system, including both syntactic and
non-syntactic rules, and submitted it as a constrained
entry to the French–English translation task. This
is our fourth yearly submission to the WMT shared
translation task.

In design and construction, the system is sim-
ilar to our submission from last year’s workshop
(Hanneman et al., 2010), with changes in the meth-
ods we employed for training data selection and
SCFG filtering. Continuing WMT’s general trend,
we worked with more data than in previous years,
basing our 2011 system on 13.9 million sentences
of parallel French–English training data and an En-
glish language model of 1.8 billion words. Decod-

ing was carried out in Joshua (Li et al., 2009), an
open-source framework for parsing-based MT. We
managed our experiments with LoonyBin (Clark and
Lavie, 2010), an open-source tool for defining, mod-
ifying, and running complex experimental pipelines.

We describe our system-building process in more
detail in Section 2. In Section 3, we evaluate the sys-
tem’s performance on WMT development sets and
examine the aftermath of training data selection and
grammar filtering. Section 4 concludes with possi-
ble directions for future work.

2 System Construction

2.1 Training Data Selection

WMT 2011’s provided French–English training data
consisted of 36.8 million sentence pairs from the Eu-
roparl, news commentary, UN documents, and Giga-
FrEn corpora (Table 1). The first three of these are,
for the most part, clean data resources that have been
successfully employed as MT corpora for a number
of years. The Giga-FrEn corpus, though the largest,
is also the least precise, as its Web-crawled data
sources are less homogeneous and less structured
than the other corpora. Nevertheless, Pino et al.
(2010) found significant improvements in French–
English MT output quality by including it. Our goal
for this year was to strike a middle ground: to avoid
computational difficulties in using the entire 36.8
million sentence pairs of training data, but to mine
the Giga-FrEn corpus for sentences to increase our
system’s vocabulary coverage.

Our method of training data selection proceeded
as follows. We first tokenized all the parallel training
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Corpus Released Used

Europarl 1,825,077 1,614,111
News commentary 115,562 95,138
UN documents 12,317,600 9,352,232
Giga-FrEn 22,520,400 2,839,466
Total 36,778,639 13,900,947

Table 1: Total number of training sentence pairs released,
by corpus, and the number used in building our system.

data using the Stanford parser’s tokenizer (Klein and
Manning, 2003) for English and our own in-house
script for French. We then passed the Europarl, news
commentary, and UN data through a filtering script
that removed lines longer than 95 tokens in either
language, empty lines, lines with excessively imbal-
anced length ratios, and lines containing tokens of
more than 25 characters in either language. From
the filtered data, we computed a list of the source-
side vocabulary words along with their frequency
counts. Next, we searched the Giga-FrEn corpus for
relatively short lines on the source side (up to 50 to-
kens long) that contained either a new vocabulary
word or a word that had been previously seen fewer
than 20 times. Such lines were added to the filtered
training data to make up our system’s final parallel
training corpus.

The number of sentences retained from each data
source is listed in Table 1; in the end, we trained our
system from 13.9 million parallel sentences. With
the Giga-FrEn data included, the source side of our
parallel corpus had a vocabulary of just over 1.9
million unique words, compared with a coverage of
545,000 words without using Giga-FrEn.

We made the decision to leave the training data in
mixed case for our entire system-building process.
At the cost of slightly sparser estimates for word
alignments and translation probabilities, a mixed-
case system avoids the extra step of building a sta-
tistical recaser to treat our system’s output.

2.2 Grammar Extraction and Scoring

Once we had assembled the final training corpus,
we annotated it with statistical word alignments and
constituent parse trees on both sides. Unidirec-
tional word alignments were provided by MGIZA++
(Gao and Vogel, 2008), then symmetrized with the

grow-diag-final-and heuristic (Koehn et al., 2005).
For generating parse trees, we used the French and
English grammars of the Berkeley statistical parser
(Petrov and Klein, 2007).

Except for minor bug fixes, our method for ex-
tracting and scoring a translation grammar remains
the same as in our WMT 2010 submission. We ex-
tracted both syntactic and non-syntactic portions of
the translation grammar. The non-syntactic gram-
mar was extracted from the parallel corpus and
word alignments following the standard heuristics
of phrase-based SMT (Koehn et al., 2003). The
syntactic grammar was produced using the method
of Lavie et al. (2008), which decomposes each pair
of word-aligned parse trees into a series of minimal
SCFG rules. The word alignments are first gener-
alized to node alignments, where nodess andt are
aligned between the source and target parse trees if
all word alignments in the yield ofs land within
the yield oft and vice versa. Minimal SCFG rules
are derived from adjacent levels of node alignments:
the labels from each pair of aligned nodes forms a
rule’s left-hand side, and the right-hand side is made
up of the labels from the frontier of aligned nodes
encountered when walking the left-hand side’s sub-
trees. Within a phrase length limit, each aligned
node pair generate an all-terminal phrase pair rule
as well.

Since both grammars are extracted from the same
Viterbi word alignments using similar alignment
consistency constraints, the phrase pair rules from
the syntactic grammar make up a subset of the rules
extracted according to phrase-based SMT heuristics.
We thus share instance counts between identical
phrases extracted in both grammars, then delete the
non-syntactic versions. Remaining non-syntactic
phrase pairs are converted to SCFG rules, with the
phrase pair forming the right-hand side and the
dummy label PHR::PHR as the left-hand side. Ex-
cept for the dummy label, all nonterminals in the fi-
nal SCFG are made up of a syntactic category label
from French joined with a syntactic category label
from English, as extracted in the syntactic grammar.
A sampling of extracted SCFG rules is shown in Fig-
ure 1.

The combined grammar was scored according to
the 22 translation model features we used last year.
For a generic SCFG rule of the formℓs :: ℓt →
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PHR :: PHR → [, ainsi qu’ ] :: [as well as]

V :: VBN → [modifiées] :: [modified]

NP :: NP → [les conflits armés] :: [armed conflict]

AP :: SBAR → [tel qu’ VPpart1] :: [as VP1]

NP :: NP → [D1 N2 A3] :: [CD1 JJ3 NNS2]

Figure 1: Sample extracted SCFG rules. They include
non-syntactic phrase pairs, single-word and multi-word
syntactic phrase pairs, partially lexicalized hierarchical
rules, and fully abstract hierarchical rules.

[rs ] :: [rt ], we computed 11 maximum-likelihood
features as follows:

• Phrase translation scoresP (rs | rt) and
P (rt | rs) for phrase pair rules, using the larger
non-syntactic instance counts for rules that
were also extracted syntactically.

• Hierarchical translation scoresP (rs | rt) and
P (rt | rs) for syntactic rules with nonterminals
on the right-hand side.

• Labeling scoresP (ℓs :: ℓt | rs), P (ℓs :: ℓt | rt),
andP (ℓs :: ℓt | rs, rt) for syntactic rules.

• “Not syntactically labelable” scoresP (ℓs ::
ℓt = PHR :: PHR | rs) and P (ℓs :: ℓt =
PHR :: PHR | rt), with additive smoothing
(n = 1), for all rules.

• Bidirectional lexical scores for all rules with
lexical items, calculated from a unigram lexi-
con over Viterbi-aligned word pairs as in the
Moses decoder (Koehn et al., 2007).

We also included the following 10 binary indicator
features using statistics local to each rule:

• Three low-count features that equal 1 when the
extracted frequency of the rule is exactly equal
to 1, 2, or 3.

• A syntactic feature that equals 1 when the rule’s
label is syntactic, and a corresponding non-
syntactic feature that equals 1 when the rule’s
label is PHR::PHR.

• Five rule format features that equal 1 when the
rule’s right-hand side has a certain composi-
tion. If as andat are true when the source and

target sides contain only nonterminals, respec-
tively, our rule format features are equal toas,
at, as ∧ āt, ās ∧ at, andās ∧ āt.

Finally, our model includes a glue rule indicator fea-
ture that equals 1 when the rule is a generic glue
rule. In the Joshua decoder, glue rules monotoni-
cally stitch together adjacent parsed translation frag-
ments at no model cost.

2.3 Language Modeling

This year, our constrained-track system made use of
part of the English Gigaword data, along with other
provided text, in its target-side language model.
From among the data released directly for WMT
2011, we used the English side of the Europarl,
news commentary, French–English UN document,
and English monolingual news corpora. From the
English Gigaword corpus, we included the entire
Xinhua portion and the most recent 13 million sen-
tences of the AP Wire portion. Some of these cor-
pora contain many lines that are repeated a dispro-
portionate number of times — the monolingual news
corpus in particular, when filtered to only one oc-
currence of each sentence, reaches only 27% of its
original line count. As part of preparing our lan-
guage modeling data, we deduplicated both the En-
glish news and the UN documents, the corpora with
the highest percentages of repeated sentences. We
also removed lines containing more than 750 char-
acters (about 125 average English words) before to-
kenization.

The final prepared corpus was made up of approx-
imately 1.8 billion words of running text. We built
a 5-gram language model from it with the SRI lan-
guage modeling toolkit (Stolcke, 2002). To match
the treatment given to the training data, the language
model was also built in mixed case.

2.4 Grammar Filtering for Decoding

As is to be expected from a training corpus of 13.9
million sentence pairs, the grammars we extract ac-
cording to the procedure of Section 2.2 are quite
large: approximately 2.53 billion non-syntactic and
440 million syntactic rule instances, for a combined
grammar of 1.26 billion unique rules. In preparation
for tuning or decoding, we are faced with the engi-
neering challenge of selecting a subset of the gram-
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mar that contains useful rules and fits in a reasonable
amount of memory.

Before even extracting a syntactic grammar, we
passed the automatically generated parse trees on the
training corpus through a small tag-correction script
as a pre-step. In previous experimentation, we no-
ticed that a surprising proportion of cardinal num-
bers in English had been tagged with labels other
than CD, their correct tag. We also found errors in
labeling marks of punctuation in both English and
French, when again the canonical labels are unam-
biguous. To fix these errors, we forcibly overwrote
the labels of English tokens made up of only digits
with CD, and we overwrote the labels of 25 English
and 24 French marks of punctuation or other sym-
bols with the appropriate tag as defined by the rele-
vant treebank tagging guidelines.

After grammar extraction and combination of
syntactic and non-syntactic rules, we ran an addi-
tional filtering step to reduce derivational ambiguity
in the case where the same SCFG right-hand side ap-
peared with more than one left-hand-side label. For
each right-hand side, we sorted its possible labels by
extracted frequency, then threw out the labels in the
bottom 10% of the left-hand-side distribution.

Finally, we ran a main grammar filtering step prior
to tuning or decoding, experimenting with two dif-
ferent filtering methods. In both cases, the phrase
pair rules in the grammar were split off and filtered
so that only those whose source sides completely
matched the tuning or test set were retained.

The first, more naive grammar filtering method
sorted all hierarchical rules by extracted frequency,
then retained the most frequent 10,000 rules to join
all matching phrase pair rules in the final translation
grammar. This is similar to the basic grammar filter-
ing we performed for our WMT 2010 submission.
It is based on the rationale that the most frequently
extracted rules in the parallel training data are likely
to be the most reliably estimated and also frequently
used in translating a new data set. However, it also
passes through a disproportionate number of fully
abstract rules — that is, rules whose right-hand sides
are made up entirely of nonterminals — which can
apply more recklessly on the test set because they
are not lexically grounded.

Our second, more advanced method of filtering
made two improvements over the naive approach.

First, it controlled for the imbalance of hierarchi-
cal rules by splitting the grammar’s partially lexical-
ized rules into a separate group that can be filtered
independently. Second, it applied a lexical-match
filter such that a partially lexicalized rule was re-
tained only if all its lexicalized source phrases up
to bigrams matched the intended tuning or testing
set. The final translation grammar in this case was
made up of three parts: all phrase pair rules match-
ing the test set (as before), the 100,000 most fre-
quently extracted partially lexicalized rules whose
bigrams match the test set, and the 2000 most fre-
quently extracted fully abstract rules.

3 Experimental Results and Analysis

We tuned each system variant on the newstest2008
data set, using the Z-MERT package (Zaidan, 2009)
for minimum error-rate training to the BLEU metric.
We ran development tests on the newstest2009 and
newstest2010 data sets; Table 2 reports the results
obtained according to various automatic metrics.
The evaluation consists of case-insensitive scoring
according to METEOR 1.0 (Lavie and Denkowski,
2009) tuned to HTER with the exact, stemming,
and synonymy modules enabled, case-insensitive
BLEU (Papineni et al., 2002) as implemented by
the NISTmteval-v13 script, and case-insensitive
TER 0.7.25 (Snover et al., 2006).

Table 2 gives comparative results for two major
systems: one based on our WMT 2011 data selec-
tion as outlined in Section 2.1, and one based on
the smaller WMT 2010 training data that we used
last year (8.6 million sentence pairs). Each system
was run with the two grammar filtering variants de-
scribed in Section 2.4: the 10,000 most frequently
extracted hierarchical rules of any type (“10k”), and
a combination of the 2000 most frequently extracted
abstract rules and the 100,000 most frequently ex-
tracted partially lexicalized rules that matched the
test set (“2k+100k”). Our primary submission to the
WMT 2011 shared task was the fourth line of Ta-
ble 2 (“WMT 2011 2k+100k”); we also made a con-
strastive submission with the system from the sec-
ond line (“WMT 2010 2k+100k”).

Using part of the Giga-FrEn data — along with
the additions to the Europarl, news commentary,
and UN document courses released since last year
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newstest2009 newstest2010
System METEOR BLEU TER METEOR BLEU TER

WMT 2010 10k 54.94 24.77 56.53 56.66 25.78 55.06
WMT 2010 2k+100k 55.16 24.88 56.19 56.89 26.05 54.66
WMT 2011 10k 55.82 26.02 54.77 58.13 27.71 52.96
WMT 2011 2k+100k 55.77 26.01 54.70 57.88 27.38 53.04

Table 2: Development test results for systems based on WMT 2010 data (without the Giga-FrEn corpus) and WMT
2011 data (with some Giga-FrEn). The fourth line is our primary shared-task submission.

Applications 10k 2k+100k

Unique rules 1,305 1,994
Rule instances 14,539 12,130

Table 3: Summary of 2011 system syntactic rule applica-
tions on both test sets.

— is beneficial to translation quality, as there is
a clear improvement in metric scores between the
2010 and 2011 systems. Our BLEU score improve-
ments of 1.2 to 1.9 points are statistically significant
according to the paired bootstrap resampling method
(Koehn, 2004) withn = 1000 andp < 0.01. They
are also larger than the 0.7- to 1.1-point gains re-
ported by Pino et al. (2010) when the full Giga-FrEn
was added. The 2011 system also shows a signifi-
cant reduction in the out-of-vocabulary (OOV) rate
on both test sets: 38% and 47% fewer OOV types,
and 44% and 45% fewer OOV tokens, when com-
pared to the 2010 system.

Differences between grammar filtering tech-
niques, on the other hand, are much less signifi-
cant according to all three metrics. Under paired
bootstrap resampling on the newstest2009 set, the
grammar variants in both the 2010 and 2011 systems
are statistically equivalent according to BLEU score.
On newstest2010, the 2k+100k grammar improves
over the 10k version (p < 0.01) in the 2010 system,
but the situation is reversed in the 2011 system.

We investigated differences in grammar use with
an analysis of rule applications in the two variants
of the 2011 system, the results of which are summa-
rized in Table 3. Though the configuration with the
2k+100k grammar does apply syntactic rules 20%
more frequently than its 10k counterpart, the 10k
system uses overall 53% more unique rules. One
contributing factor to this situation could be that the

fully abtract rule cutoff is set too low compared to
the increase in partially lexicalized rules. The ef-
fect of the 2k+100k filtering is to reduce the number
of abstract rules from 4000 to 2000 while increas-
ing the number of partially lexicalized rules from
6000 to 100,000. However, we find that the 10k
system makes heavy use of some short, meaningful
abstract rules that were excluded from the 2k+100k
system. The 2k+100k grammar, by contrast, in-
cludes a long tail of less frequently used partially
lexicalized grammar rules.

In practice, there is a balance between the use
of syntactic and non-syntactic grammar rules dur-
ing decoding. We highlight an example of how
both types of rules work together in Figure 2, which
shows our primary system’s translation of part of
newstest2009 sentence 2271. The French source
text is given in italics and segmented into phrases.
The SCFG rules used in translation are shown
above each phrase, where numerical superscripts on
the nonterminal labels indicate those constituents’
relative ordering in the original French sentence.
(Monotonic glue rules are not shown.) While non-
syntactic rules can be used for short-distance re-
ordering and fixed phrases, such astéléphones mo-
biles↔ mobile phones, the model prefers syntac-
tic translations for more complicated patterns, such
as the head–children reversal inappareils musicaux
portables↔ portable music devices.

4 Conclusions and Future Work

Compared to last year, the two main differences in
our current WMT submission are: (1) a new train-
ing data selection strategy aimed at increasing sys-
tem vocabulary without hugely increasing corpus
size, and (2) a new method of grammar filtering that
emphasizes partially lexicalized rules over fully ab-
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PHR::PHR

young people who

PHR::PHR

frequently use

NP::NP

N::NNS1

devices

A::NN2

music

A::JJ3

portable

PHR::PHR

and mobile phones

jeunes qui utilisent fŕequemment des appareils musicaux portables et des téléphones mobiles

PHR::PHR

at full

N::NN

volume

,::,

,

V::MD

can

VPpart::VP

NP::NP3

N::NN2

hearing

D::PRP$1

their

V::VBG1

damaging

ADV::RB2

unknowingly

à plein volume , puissent endommager inconsciemment leur audition

Figure 2: Our primary submission’s translation of a partialsentence from the newstest2009 set, showing a combination
of syntactic and non-syntactic rules.

stract ones.
Based on the results presented in Section 3, we

feel confident in declaring vocabulary-based filter-
ing of the Giga-FrEn corpus a success. By increas-
ing the size of our parallel corpus by 26%, we more
than tripled the number of unique words appearing
in the source text. In conjunction with supplements
to the Europarl, news commentary, and UN docu-
ment corpora, this improvement led to 44% fewer
OOV tokens at decoding time on two different test
sets, as well as a boost in automatic metric scores
of 0.6 METEOR, 1.2 BLEU, and 1.5 TER points
compared to last year’s system. We expect to em-
ploy similar data selection techniques when building
future systems, especially as the amount of parallel
data available continues to increase.

We did not, however, find significant improve-
ments in translation quality by changing the gram-
mar filtering method. As discussed in Section 3, lim-
iting the grammar to only 2000 fully abstract rules
may not have been enough, since additional abstract
rules applied fairly frequently in test data if they
were available. We plan to experiment with larger
filtering cutoffs in future work. A complementary
solution could be to increase the number of par-
tially lexicalized rules. Although we found mixed
results in their application within our current sys-
tem, the success of Hiero-derived MT systems (Chi-

ang, 2005; Chiang, 2010) shows that high transla-
tion quality can be achieved with rules that are only
partially abstract. A major difference between such
systems and our current implementation is that ours,
at 102,000 rules, has a much smaller grammar.
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Abstract

This paper presents our submissions to the
shared translation task at WMT 2011. We
created two largely independent systems
for English-to-French and Haitian Creole-to-
English translation to evaluate different fea-
tures and components from our ongoing re-
search on these language pairs. Key features
of our systems include anaphora resolution,
hierarchical lexical reordering, data selection
for language modelling, linear transduction
grammars for word alignment and syntax-
based decoding with monolingual dependency
information.

1 English to French

Our submission to the English-French task was a
phrase-based Statistical Machine Translation based
on the Moses decoder (Koehn et al., 2007). Phrase
tables were separately trained on Europarl, news
commentary and UN data and then linearly inter-
polated with uniform weights. For language mod-
elling, we used 5-gram models trained with the
IRSTLM toolkit (Federico et al., 2008) on the mono-
lingual News corpus and parts of the English-French
109 corpus. More unusual features of our system
included a special component to handle pronomi-
nal anaphora and the hierarchical lexical reordering
model by Galley and Manning (2008). Selected fea-
tures of our system will be discussed in depth in the
following sections.

1.1 Handling pronominal anaphora
Pronominal anaphora is the use of pronominal ex-
pressions to refer to “something previously men-
tioned in the discourse” (Strube, 2006). It is a very

common phenomenon found in almost all kinds of
texts. Anaphora can be local to a sentence, or it can
cross sentence boundaries. Standard SMT methods
do not handle this phenomenon in a satisfactory way
at present: For sentence-internal anaphora, they de-
pend on the n-gram language model with its lim-
ited history, while cross-sentence anaphora is left
to chance. We therefore added a word-dependency
model (Hardmeier and Federico, 2010) to our sys-
tem to handle anaphora explicitly.

Our processing of anaphoric pronouns follows
the procedure outlined by Hardmeier and Federico
(2010). We use the open-source coreference resolu-
tion system BART (Broscheit et al., 2010) to link
pronouns to their antecedents in the text. Coref-
erence links are handled differently depending on
whether or not they cross sentence boundaries. If
a coreference link points to a previous sentence, we
process the sentence containing the antecedent with
the SMT system and look up the translation of the
antecedent in the translated output. If the corefer-
ence link is sentence-internal, the translation lookup
is done dynamically by the decoder during search.
In either case, the word-dependency model adds a
feature function to the decoder score representing
the probability of a particular pronoun choice given
the translation of the antecedent.

In our English-French system, this model was
only applied to the inanimate pronouns it and they,
which seemed to be the most promising candidates
for improvement since their French equivalents re-
quire gender marking. It was trained on data au-
tomatically annotated for anaphora taken from the
news-commentary corpus, and the vocabulary of the
predicted pronouns was limited to words recognised
as pronouns by the POS tagger.
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1.2 Hierarchical lexical reordering
The basic word order model of SMT penalises any
divergence between the order of the words in the in-
put sentence and the order of their translation equiv-
alents in the MT output. All reordering must thus be
driven by the language model when no other reorder-
ing model is present. Lexical reordering models
making certain word order choices in the MT out-
put conditional on the identity of the words involved
have been a standard component in SMT for some
years. The lexical reordering model usually em-
ployed in the Moses decoder was implemented by
Koehn et al. (2005). Adopting the perspective of the
SMT decoder, which produces the target sentence
from left to right while covering source phrases in
free order, the model distinguishes between three or-
dering classes, monotone, swap and discontinuous,
depending on whether the source phrases giving rise
to the two last target phrases emitted were adjacent
in the same order, adjacent in swapped order or sep-
arated by other source words. Probabilities for each
ordering class given source and target phrase are
estimated from a word-aligned training corpus and
integrated into MT decoding as extra feature func-
tions.

In our submission, we used the hierarchical lexi-
cal reordering model proposed by Galley and Man-
ning (2008) and recently implemented in the Moses
decoder.1 This model uses the same approach of
classifying movements as monotone, swap or dis-
continuous, but unlike the phrase-based model, it
does not require the source language phrases to be
strictly adjacent in order to be counted as monotone
or swap. Instead, a phrase can be recognised as ad-
jacent to, or swapped with, a contiguous block of
source words that has been segmented into multi-
ple phrases. Contiguous phrase blocks are recog-
nised by the decoder with a shift-reduce parsing al-
gorithm. As a result, fewer jumps are labelled with
the uninformative discontinuous class.

1.3 Data selection from the WMT Giga corpus
One of the supplied language resources for this eval-
uation is the French-English WMT Giga corpus,

1The hierarchical lexical reordering model was imple-
mented in Moses during MT Marathon 2010 by Christian Hard-
meier, Gabriele Musillo, Nadi Tomeh, Ankit Srivastava, Sara
Stymne and Marcello Federico.
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Figure 1: Perplexity and size of language models trained
on data of the WMT Giga corpus that were selected using
different perplexity thresholds.

aka 109 corpus, a large collection of parallel sen-
tences crawled from Canadian and European Union
sources. While this corpus was too large to be used
for model training with the means at our disposal,
we exploited it as a source of parallel data for trans-
lation model training as well as monolingual French
data for the language model by filtering it down to a
manageable size. In order to extract sentences close
to the news translation task, we applied a simple
data selection procedure based on perplexity. Sen-
tence pairs were selected from the WMT Giga cor-
pus if the perplexity of their French part with respect
to a language model (LM) trained on French news
data was below a given threshold. The rationale is
that text sentences which are better predictable by
the LM should be closer to the news domain. The
threshold was set in a way to capture enough novel
n-grams, from one side, but also to avoid adding too
many irrelevant n-grams. It was tuned by training
a 5-gram LM on the selected data and checking its
size and its perplexity on a development set. In fig-
ure 1 we plot perplexity and size of the WMT Giga
LM for different values of the data-selection thresh-
old. Perplexities are computed on the newstest2009
set. As a good perplexity-size trade-off, the thresh-
old 250 was chosen to estimate an additional 5-gram
LM (WMT Giga 250) that was interpolated with
the original News LM. The resulting improvement
in perplexity is reported in table 1. For translation
model data, a perplexity threshold of 159 was ap-
plied.
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LM Perplexity OOV rate
News 146.84 0.82
News + WMT Giga 250 130.23 0.71

Table 1: Perplexity reduction after interpolating the News
LM with data selected from the 109 corpus.

newstest
2009 2010 2011

Primary submission 0.246 0.286 0.284

w/o Anaphora handling 0.246 0.286 0.284

WMT Giga data
w/o LM 0.244 0.289 0.280
w/o TM 0.247 0.286 0.282
w/o LM and TM 0.247 0.289 0.278

Lexical reordering
phrase-based reo 0.239 0.281 0.275
no lexical reo 0.239 0.281 0.275

with LDC data 0.254 0.293 0.291

Table 2: Ablation test results (case-sensitive BLEU)

1.4 Results and Ablation tests

Owing to time constraints, we were not able to run
thorough tests on our system before submitting it to
the evaluation campaign. We therefore evaluated the
various components included in a post hoc fashion
by running ablation tests. In each test, we left out
one of the system components to identify its effect
on the overall performance. The results of these tests
are reported in table 2.

Performance-wise, the most important particular-
ity of our SMT system was the hierarchical lexical
reordering model, which led to a sizeable improve-
ment of 0.7, 0.5 and 0.9 BLEU points for the 2009,
2010 and 2011 test sets, respectively. We had previ-
ously seen negative results when trying to apply the
same model to English-German SMT, so its perfor-
mance seems to be strongly dependent on the lan-
guage pair it is used with.

Compared to the scores obtained using the full
system, the anaphora handling system did not have
any effect on the BLEU scores. This result is
similar to our result for English-German transla-
tion (Hardmeier and Federico, 2010). Unfortu-
nately, for English-French, the negative results ex-
tends to the pronoun translation scores (not reported
here), where slightly higher recall with the word-

dependency model was overcompensated by de-
graded precision, so the outcome of the experiments
clearly suggests that the anaphora handling proce-
dure is in need of improvement.

The effect of the WMT Giga language model dif-
fers among the test sets. For the 2009 and 2011
test sets, it results in an improvement of 0.2 and 0.4
BLEU points, respectively, while the 2010 test set
fares better without this additional language model.
However, it should be noted that there may be a
problem with the 2010 test set and the News lan-
guage model, which was used as a component in all
our systems. In particular, upgrading the News LM
data from last year’s to this year’s release led to an
improvement of 4 BLEU points on the 2010 test set
and an unrealistically low perplexity of 73 as com-
pared to 130 for the 2009 test set, which makes us
suspect that the latest News LM data may be tainted
with data from the 2010 test corpus. If this is the
case, the 2010 test set should be considered unreli-
able for LM evaluation. The benefit of adding WMT
Giga data to the translation model is less clear. For
the 2009 and 2010 test sets, this leads to a slight
degradation, but for the 2011 corpus, we obtained
a small improvement.

Our shared task submission did not use the French
Gigaword corpus from the Linguistic Data Consor-
tium (LDC2009T28), which is not freely available
to sites without LDC membership. After the sub-
mission, we ran a contrastive experiment including
a 5-gram model trained on this corpus, which led
to a sizeable improvement of 0.7–0.8 BLEU points
across all test sets.

2 Haitian Creole to English

Our experiments with the Haitian Creole-English
data are independent of the system presented for the
English to French task above. We experimented with
both phrase-based SMT and syntax-based SMT. The
main questions we investigated were i) whether we
can improve word alignment and phrase extraction
for phrase-based SMT and ii) whether we can in-
tegrate dependency parsing into a syntax-based ap-
proach. All our experiments were conducted on the
clean data set using Moses for training and decod-
ing. In the following we will first describe the exper-
iments with phrase-based models and linear trans-
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duction grammars for word alignment and, there-
after, our findings from integrating English depen-
dency parses into a syntax-based approach.

2.1 Phrase-based SMT
The phrase-based system that we used in this series
of experiments uses a rather traditional setup. For
the translations into English we used the news data
provided for the other translations tasks in WMT
2011 to build a large scale-background language
model. The English data from the Haitian Creole
task were used as a separate domain-specific lan-
guage model. For the other translation direction we
only used the in-domain data provided. We used
standard 5-gram models with Witten-Bell discount-
ing and backoff interpolation for all language mod-
els. For the translation model we applied standard
techniques and settings for phrase extraction and
score estimations. However, we applied two differ-
ent systems for word alignment: One is the standard
GIZA++ toolbox implementing the IBM alignment
models (Och and Ney, 2003) and extensions and the
other is based on transduction grammars which will
briefly be introduced in the next section.

2.1.1 Alignment with PLITGs
By making the assumption that the parallel cor-

pus constitutes a linear transduction (Saers, 2011)2

we can induce a grammar that is the most likely to
have generated the observed corpus. The grammar
induced will generate a parse forest for each sen-
tence pair in the corpus, and each parse tree in that
forest will correspond to an alignment between the
two sentences. Following Saers et al. (2010), the
alignment corresponding to the best parse can be ex-
tracted and used instead of other word alignment ap-
proaches such as GIZA++. There are several gram-
mar types that generate linear transductions, and in
this work, stochastic bracketing preterminalized lin-
ear inversion transduction grammars (PLITG) were
used (Saers and Wu, 2011). Since we were mainly
interested in the word alignments, we did not induce
phrasal grammars.

Although alignments from PLITGs may not reach
the same level of translation quality as GIZA++,
they make different mistakes, so both complement

2A transduction is a set of pairs of strings, and thus repre-
sents a relation between two languages.

each other. By duplicating the training corpus and
aligning each copy of the corpus with a different
alignment tool, the phrase extractor seems to be able
to pick the best of both worlds, producing a phrase
table that is superior to one produced with either of
the alignments tools used in isolation.

2.1.2 Results
In the following we present our results on the pro-

vided test set3 for translating into both languages
with phrase-based systems trained on different word
alignments. Table 3 summarises the BLEU scores
obtained.

English-Haitian BLEU phrase-table
GIZA++ 0.2567 3,060,486
PLITG 0.2407 5,007,254
GIZA++ & PLITG 0.2572 7,521,754
Haitian-English BLEU phrase-table
GIZA++ 0.3045 3,060,486
PLITG 0.2922 5,049,280
GIZA++ & PLITG 0.3105 7,561,043

Table 3: Phrase-based SMT (pbsmt) on the Haitian
Creole-English test set with different word alignments.

From the table we can see that phrase-based sys-
tems trained on PLITG alignments performs slightly
worse than the ones trained on GIZA++. However
combining both alignments with the simple data du-
plication technique mentioned earlier produces the
overall best scores in both translation directions.
The fact that both alignments lead to complemen-
tary information can be seen in the size of the phrase
tables extracted (see table 3).

2.2 Syntax-based SMT

We used Moses and its syntax-mode for our exper-
iments with hierarchical phrase-based and syntax-
augmented models. Our main interest was to in-
vestigate the influence of monolingual parsing on
the translation performance. In particular, we tried
to integrate English dependency parses created by
MaltParser (Nivre et al., 2007) trained on the Wall
Street Journal section of the Penn Treebank (Mar-
cus et al., 1993) extended with about 4000 questions

3We actually swapped the development set and the test set
by mistake. But, of course, we never mixed development and
test data in any result reported.

375



from the Question Bank (Judge et al., 2006). The
conversion to dependency trees was done using the
Stanford Parser (de Marneffe et al., 2006). Again,
we ran both translation directions to test our settings
in more than just one task. Interesting here is also
the question whether there are significant differences
when integrating monolingual parses on the source
or on the target side.

The motivation for applying dependency parsing
in our experiments is to use the specific information
carried by dependency relations. Dependency struc-
tures encode functional relations between words that
can be seen as an interface to the semantics of a
sentence. This information is usually not avail-
able in phrase-structure representations. We believe
that this type of information can be beneficial for
machine translation. For example, knowing that a
noun acts as the subject of a sentence is more in-
formative than just marking it as part of a noun
phrase. Whether or not this information can be ex-
plored by current syntax-based machine translation
approaches that are optimised for phrase-structure
representations is a question that we liked to inves-
tigate. For comparison we also trained hierarchical
phrase-based models without any additional annota-
tion.

2.2.1 Converting projective dependency trees
First we needed to convert dependency parses to

a tree representation in order to use our data in
the standard models of syntax-based models imple-
mented in Moses. In our experiments, we used
a parser model that creates projective dependency
graphs that can be converted into tree structures of
nested segments. We used the yield of each word
(referring to that word and its transitive dependents)
to define spans of phrases and their dependency rela-
tions are used as span labels. Furthermore, we also
defined pre-terminal nodes that encode the part-of-
speech information of each word. These tags were
obtained using the HunPos tagger (Halácsy et al.,
2007) trained on the Wall Street Journal section of
the Penn Treebank. Figure 2 illustrates the conver-
sion process. Tagging and parsing is done for all En-
glish data without any manual corrections or optimi-
sation of parameters. After the conversion, we were
able to use the standard training procedures imple-
mented in Moses.

-ROOT- and
CC

how
WRB

old
JJ

is
VBZ

your
PRP$

nephew
NN

?
.

advmoddep poss

nsubjcc

punctnull

<tree label="null">

<tree label="cc">

<tree label="CC">and</tree>

</tree>

<tree label="dep">

<tree label="advmod">

<tree label="WRB">how</tree>

</tree>

<tree label="JJ">old</tree>

</tree>

<tree label="VBZ">is</tree>

<tree label="nsubj">

<tree label="poss">

<tree label="PRP$">your</tree>

</tree>

<tree label="NN">nephew</tree>

</tree>

<tree label="punct">

<tree label=".">?</tree>

</tree>

</tree>

Figure 2: A dependency graph from the training corpus
and its conversion to a nested tree structure. The yield of
each word in the sentence defines a span with the label
taken from the relation of that word to its head. Part-of-
speech tags are used as additional pre-terminal nodes.

2.2.2 Experimental Results

We ran several experiments with slightly differ-
ent settings. We used the same basic setup for
all of them including the same language models
and GIZA++ word alignments that we have used
for the phrase-based models already. Further, we
used Moses for extracting rules of the syntax-based
translation model. We use standard settings for
the baseline system (=hiero) that does not employ
any linguistic markup. For the models that include
dependency-based trees we changed the maximum
span threshold to a high value of 999 (default: 15)
in order to extract as many rules as possible. This
large degree of freedom is possible due to the oth-
erwise strong constraints on rule flexibility imposed
by the monolingual syntactic markup. Rule tables
are dramatically smaller than for the unrestricted hi-
erarchical models (see table 4).

However, rule restriction by linguistic constraints
usually hurts performance due to the decreased cov-
erage of the rule set. One common way of improving
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reference Are you going to let us die on Ile à Vaches which is located close the city of Les Cayes. I am ...
pbsmt Do you are letting us die in Ilavach island’s on in Les Cayes. I am ...
hiero do you will let us die in the island Ilavach on the in Les Cayes . I am ...
samt2 Are you going to let us die in the island Ilavach the which is on the Les. My name is ...
reference I’m begging you please help me my situation is very critical.
pbsmt Please help me please. Because my critical situation very much.
hiero please , please help me because my critical situation very much .
samt2 Please help me because my situation very critical.
reference I don’t have money to go and give blood in Port au Prince from La Gonave.
pbsmt I don’t have money, so that I go to give blood Port-au-Prince since lagonave.
hiero I don ’t have any money , for me to go to give blood Port-au-Prince since lagonave .
samt2 I don’t have any money, to be able to go to give blood Port-au-Prince since Gonâve Island.

Figure 3: Example translations for various models.

English-Haitian BLEU number of rules
hiero 0.2549 34,118,622
malt (source) 0.2180 1,628,496
- binarised 0.2327 9,063,933
- samt1 0.2311 11,691,279
- samt2 0.2366 29,783,694
Haitian-English BLEU number of rules
hiero 0.3034 33,231,535
malt (target) 0.2739 1,922,688
- binarised 0.2857 8,922,343
- samt1 0.2952 11,073,764
- samt2 0.2954 24,554,317

Table 4: Syntax-based SMT on the Haitian Creole-
English test set with (=malt) or without (=hiero) English
parse trees and various parse relaxation strategies. The
final system submitted to WMT11 is malt(target)-samt2.

rule extraction is based on tree manipulation and re-
laxed extraction algorithms. Moses implements sev-
eral algorithms that have been proposed in the lit-
erature. Tree binarisation is one of them. This can
be done in a left-branching and in a right-branching
mode. We used a combination of both in the set-
tings denoted as binarised. The other relaxation al-
gorithms are based on methods proposed for syntax-
augmented machine translation (Zollmann et al.,
2008). We used two of them: samt1 combines pairs
of neighbouring children nodes into combined com-
plex nodes and creates additional complex nodes of
all children nodes except the first child and similar
complex nodes for all but the last child. samt2 com-
bines any pair of neighbouring nodes even if they are
not children of the same parent. All of these relax-
ation algorithms lead to increased rule sets (table 4).
In terms of translation performance there seems to

be a strong correlation between rule table size and
translation quality as measured by BLEU. None of
the dependency-based models beats the unrestricted
hierarchical model. Both translation directions be-
have similar with slightly worse performances of
the dependency-based models (relative to the base-
line) when syntax is used on the source language
side. Note also that all syntax-based models (includ-
ing hiero) are below the corresponding phrase-based
SMT systems. Of course, automatic evaluation has
its limits and interesting qualitative differences may
be more visible in manual assessments. The use of
linguistic information certainly has an impact on the
translation hypotheses produced as we can see in the
examples in figure 3. In the future, we plan to inves-
tigate the effect of dependency information on gram-
maticality of translated sentences in more detail.

3 Conclusions

In our English-French and Haitian Creole-English
shared task submissions, we investigated the use
of anaphora resolution, hierarchical lexical reorder-
ing and data selection for language modelling
(English-French) as well as LTG word alignment
and syntax-based decoding with dependency infor-
mation (Haitian Creole-English). While the re-
sults for the systems with anaphora handling were
somewhat disappointing and the effect of data fil-
tering was inconsistent, hierarchical lexical reorder-
ing brought substantial improvements. We also ob-
tained consistent gains by combining information
from different word aligners, and we presented a
simple way of including dependency parses in stan-
dard tree-based decoding.
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Abstract
This paper describes the phrase-based SMT
systems developed for our participation
in the WMT11 Shared Translation Task.
Translations for English↔German and
English↔French were generated using a
phrase-based translation system which is
extended by additional models such as
bilingual and fine-grained POS language
models, POS-based reordering, lattice phrase
extraction and discriminative word alignment.
Furthermore, we present a special filtering
method for the English-French Giga corpus
and the phrase scoring step in the training is
parallelized.

1 Introduction

In this paper we describe our systems for the
EMNLP 2011 Sixth Workshop on Statistical Ma-
chine Translation. We participated in the Shared
Translation Task and submitted translations for
English↔German and English↔French. We use a
phrase-based decoder that can use lattices as input
and developed several models that extend the stan-
dard log-linear model combination of phrase-based
MT. These include advanced reordering models and
corresponding adaptations to the phrase extraction
process as well as extension to the translation and
language model in form of discriminative word
alignment and a bilingual language model to ex-
tend source word context. For English-German, lan-
guage models based on fine-grained part-of-speech
tags were used to address the difficult target lan-
guage generation due to the rich morphology of Ger-
man.

We also present a filtering method directly ad-
dressing the problems of web-crawled corpora,
which enabled us to make use of the French-English
Giga corpus. Another novelty in our systems this
year is the parallel phrase scoring method that re-
duces the time needed for training which is espe-
cially convenient for such big corpora as the Giga
corpus.

2 System Description

The baseline systems for all languages use a trans-
lation model that is trained on EPPS and the News
Commentary corpus and the phrase table is based
on a GIZA++ word alignment. The language model
was trained on the monolingual parts of the same
corpora by the SRILM Toolkit (Stolcke, 2002). It
is a 4-gram SRI language model using Kneser-Ney
smoothing.

The problem of word reordering is addressed us-
ing the POS-based reordering model as described
in Section 2.4. The part-of-speech tags for the re-
ordering model are obtained using the TreeTagger
(Schmid, 1994).

An in-house phrase-based decoder (Vogel, 2003)
is used to perform translation and optimization with
regard to the BLEU score is done using Minimum
Error Rate Training as described in Venugopal et al.
(2005). During decoding only the top 20 translation
options for every source phrase were considered.

2.1 Data

We trained all systems using the parallel EPPS and
News Commentary corpora. In addition, the UN
corpus and the Giga corpus were used for training
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the French-English systems.
Optimization was done for most languages using

the news-test2008 data set and news-test2010 was
used as test set. The only exception is German-
English, where news-test2009 was used for opti-
mization due to system combination arrangements.
The language models for the baseline systems were
trained on the monolingual versions of the training
corpora. Later on, we used the News Shuffle and the
Gigaword corpus to train bigger language models.
For training a discriminative word alignment model,
a small amount of hand-aligned data was used.

2.2 Preprocessing

The training data is preprocessed prior to training
the system. This includes normalizing special sym-
bols, smart-casing the first words of each sentence
and removing long sentences and sentences with
length mismatch.

For the German parts of the training corpus
we use the hunspell1 lexicon to map words writ-
ten according to old German spelling to new Ger-
man spelling, to obtain a corpus with homogenous
spelling.

Compound splitting as described in Koehn and
Knight (2003) is applied to the German part of the
corpus for the German-to-English system to reduce
the out-of-vocabulary problem for German com-
pound words.

2.3 Special filtering of the Giga parallel Corpus

The Giga corpus incorporates non-neglegible
amounts of noise even after our usual preprocess-
ing. This noise may be due to different causes.
For instance: non-standard HTML characters,
meaningless parts composed of only hypertext
codes, sentences which are only partial translation
of the source, or eventually not a correct translation
at all.

Such noisy pairs potentially degrade the transla-
tion model quality, therefore it seemed more conve-
nient to eliminate them.

Given the size of the corpus, this task could not be
performed manually. Consequently, we used an au-
tomatic classifier inspired by the work of Munteanu
and Marcu (2005) on comparable corpora. This clas-

1http://hunspell.sourceforge.net/

sifier should be able to filter out the pairs which
likely are not beneficial for the translation model.

In order to reliably decide about the classifier to
use, we evaluated several techniques. The training
and test sets for this evaluation were built respec-
tively from nc-dev2007 and nc-devtest2007. In each
set, about 30% randomly selected source sentences
switch positions with the immediate following so
that they form negative examples. We also used lex-
ical dictionaries in both directions based on EPPS
and UN corpora.

We relied on seven features in our classifiers:
IBM1 score in both directions, number of unaligned
source words, the difference in number of words be-
tween source and target, the maximum source word
fertility, number of unaligned target words, and the
maximum target word fertility. It is noteworthy
that all the features requiring alignment information
(such as the unaligned source words) were computed
on the basis of the Viterbi path of the IBM1 align-
ment. The following classifiers were used:

Regression Choose either class based on a
weighted linear combination of the features
and a fixed threshold of 0.5.

Logistic regression The probability of the class is
expressed as a sigmoid of a linear combination
of the different features. Then the class with
the highest probability is picked.

Maximum entropy classifier We used the same set
of features to train a maximum entropy classi-
fier using the Megam package2.

Support vector machines classifier An SVM clas-
sifier was trained using the SVM-light pack-
age3.

Results of these experiments are summarized in
Table 1.

The regression weights were estimated so that to
minimize the squared error. This gave us a pretty
poor F-measure score of 90.42%. Given that the lo-
gistic regression is more suited for binary classifica-
tion in our case than the normal regression, it led to
significant increase in the performance. The training

2http://www.cs.utah.edu/˜hal/megam/
3http://svmlight.joachims.org/
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Approach Precision Recall F-measure
Regression 93.81 87.27 90.42
LogReg 93.43 94.84 94.13
MaxEnt 93.69 94.54 94.11
SVM 98.20 96.87 97.53

Table 1: Results of the filtering experiments

was held by maximizing the likelihood to the data
with L2 regularization (with α = 0.1). This gave an
F-measure score of 94.78%.

The maximum entropy classifier performed better
than the logistic regression in terms of precision but
however it had worse F-measure.

Significant improvements could be noticed us-
ing the SVM classifier in both precision and recall:
98.20% precision, 96.87% recall, and thus 97.53%
F-measure.

As a result, we used the SVM classifier to filter
the Giga parallel corpus. The corpus contained orig-
inally around 22.52 million pairs. After preprocess-
ing and filtering it was reduced to 16.7 million pairs.
Thus throwing around 6 million pairs.

2.4 Word Reordering

In contrast to modeling the reordering by a distance-
based reordering model and/or a lexicalized distor-
tion model, we use a different approach that relies
on part-of-speech (POS) sequences. By abstracting
from surface words to parts-of-speech, we expect to
model the reordering more accurately.

2.4.1 POS-based Reordering Model

To model reordering we first learn probabilistic
rules from the POS tags of the words in the train-
ing corpus and the alignment information. Contin-
uous reordering rules are extracted as described in
Rottmann and Vogel (2007) to model short-range re-
orderings. When translating between German and
English, we apply a modified reordering model with
non-continuous rules to cover also long-range re-
orderings (Niehues and Kolss, 2009). The reorder-
ing rules are applied to the source text and the orig-
inal order of words and the reordered sentence vari-
ants generated by the rules are encoded in a word
lattice which is used as input to the decoder.

2.4.2 Lattice Phrase Extraction
For the test sentences, the POS-based reordering

allows us to change the word order in the source sen-
tence so that the sentence can be translated more eas-
ily. If we apply this also to the training sentences, we
would be able to extract the phrase pairs for orig-
inally discontinuous phrases and could apply them
during translation of reordered test sentences.

Therefore, we build reordering lattices for all
training sentences and then extract phrase pairs from
the monotone source path as well as from the re-
ordered paths.

To limit the number of extracted phrase pairs, we
extract a source phrase only once per sentence even
if it is found in different paths.

2.5 Translation and Language Models
In addition to the models used in the baseline sys-
tem described above we conducted experiments in-
cluding additional models that enhance translation
quality by introducing alternative or additional in-
formation into the translation or language modelling
process.

2.5.1 Discriminative Word Alignment
In most of our systems we use the PGIZA++

Toolkit4 to generate alignments between words in
the training corpora. The word alignments are gen-
erated in both directions and the grow-diag-final-and
heuristic is used to combine them. The phrase ex-
traction is then done based on this word alignment.

In the English-German system we applied the
Discriminative Word Alignment approach as de-
scribed in Niehues and Vogel (2008) instead. This
alignment model is trained on a small corpus of
hand-aligned data and uses the lexical probability
as well as the fertilities generated by the PGIZA++
Toolkit and POS information.

2.5.2 Bilingual Language Model
In phrase-based systems the source sentence is

segmented by the decoder according to the best com-
bination of phrases that maximize the translation
and language model scores. This segmentation into
phrases leads to the loss of context information at
the phrase boundaries. Although more target side
context is available to the language model, source

4http://www.cs.cmu.edu/˜qing/
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side context would also be valuable for the decoder
when searching for the best translation hypothesis.
To make also source language context available we
use a bilingual language model, an additional lan-
guage model in the phrase-based system in which
each token consist of a target word and all source
words it is aligned to. The bilingual tokens enter
the translation process as an additional target factor
and the bilingual language model is applied to the
additional factor like a normal language model. For
more details see (Niehues et al., 2011).

2.5.3 Parallel phrase scoring
The process of phrase scoring is held in two runs.

The objective of the first run is to compute the nec-
essary counts and to estimate the scores, all based
on the source phrases; while the second run is sim-
ilarly held based on the target phrases. Thus, the
extracted phrases have to be sorted twice: once by
source phrase and once by target phrase. These two
sorting operations are almost always done on an ex-
ternal storage device and hence consume most of the
time spent in this step.

The phrase scoring step was reimplemented in or-
der to exploit the available computation resources
more efficiently and therefore reduce the process-
ing time. It uses optimized sorting algorithms for
large data volumes which cannot fit into memory
(Vitter, 2008). In its core, our implementation re-
lies on STXXL: an extension of the STL library for
external memory (Kettner, 2005) and on OpenMP
for shared memory parallelization (Chapman et al.,
2007).

Table 2 shows a comparison between Moses and
our phrase scoring tools. The comparison was held
using sixteen-core 64-bit machines with 128 Gb
RAM, where the files are accessed through NFS on
a RAID disk. The experiments show that the gain
grows linearly with the size of input with an average
of 40% of speed up.

2.5.4 POS Language Models
In addition to surface word language models, we

did experiments with language models based on
part-of-speech for English-German. We expect that
having additional information in form of probabil-
ities of part-of-speech sequences should help espe-
cially in case of the rich morphology of German and

#pairs(G) Moses ∗103(s) KIT ∗103(s)
0.203 25.99 17.58
1.444 184.19 103.41
1.693 230.97 132.79

Table 2: Comparison of Moses and KIT phrase extraction
systems

therefore the more difficult target language genera-
tion.

The part-of-speeches were generated using the
TreeTagger and the RFTagger (Schmid and Laws,
2008), which produces more fine-grained tags that
include also person, gender and case information.
While the TreeTagger assigns 54 different POS tags
to the 357K German words in the corpus, the RF-
Tagger produces 756 different fine-grained tags on
the same corpus.

We tried n-gram lengths of 4 and 7. While no im-
provement in translation quality could be achieved
using the POS language models based on the normal
POS tags, the 4-gram POS language model based
on fine-grained tags could improve the translation
system by 0.2 BLEU points as shown in Table 3.
Surprisingly, increasing the n-gram length to 7 de-
creased the translation quality again.

To investigate the impact of context length, we
performed an analysis on the outputs of two different
systems, one without a POS language model and one
with the 4-gram fine-grained POS language model.
For each of the translations we calculated the aver-
age length of the n-grams in the translation when
applying one of the two language models using 4-
grams of surface words or parts-of-speech. The re-
sults are also shown in Table 3.

The average n-gram length of surface words on
the translation generated by the system without POS
language model and the one using the 4-gram POS
language model stays practically the same. When
measuring the n-gram length using the 4-gram POS
language model, the context increases to 3.4. This
increase of context is not surprising, since with
the more general POS tags longer contexts can be
matched. Comparing the POS context length for
the two translations, we can see that the context in-
creases from 3.18 to 3.40 due to longer matching
POS sequences. This means that the system using
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the POS language model actually generates trans-
lations with more probable POS sequences so that
longer matches are possible. Also the perplexity
drops by half since the POS language model helps
constructing sentences that have a better structure.

System BLEU avg. ngram length PPL
Word POS POS

no POS LM 16.64 2.77 3.18 66.78
POS LM 16.88 2.81 3.40 33.36

Table 3: Analysis of context length

3 Results

Using the models described above we performed
several experiments leading finally to the systems
used for generating the translations submitted to the
workshop. The following sections describe the ex-
periments for the individual language pairs and show
the translation results. The results are reported as
case-sensitive BLEU scores (Papineni et al., 2002)
on one reference translation.

3.1 German-English
The German-to-English baseline system applies
short-range reordering rules and uses a language
model trained on the EPPS and News Commen-
tary. By exchanging the baseline language model
by one trained on the News Shuffle corpus we im-
prove the translation quality considerably, by more
than 3 BLEU points. When we expand the cov-
erage of the reordering rules to enable long-range
reordering we can improve even further by 0.4 and
adding a second language model trained on the En-
glish Gigaword corpus we gain another 0.3 BLEU
points. To ensure that the phrase table also includes
reordered phrases, we use lattice phrase extraction
and can achieve a small improvement. Finally, a
bilingual language model is added to extend the con-
text of source language words available for transla-
tion, reaching the best score of 23.35 BLEU points.
This system was used for generating the translation
submitted to the German-English Translation Task.

3.2 English-German
The English-to-German baseline system also in-
cludes short-range reordering and uses translation

System Dev Test
Baseline 18.49 19.10
+ NewsShuffle LM 20.63 22.24
+ LongRange Reordering 21.00 22.68
+ Additional Giga LM 21.80 22.92
+ Lattice Phrase Extraction 21.87 22.96
+ Bilingual LM 22.05 23.35

Table 4: Translation results for German-English

and language model based on EPPS and News Com-
mentary. Exchanging the language model by the
News Shuffle language model again yields a big im-
provement by 2.3 BLEU points. Adding long-range
reordering improves a lot on the development set
while the score on the test set remains practically
the same. Replacing the GIZA++ alignments by
alignments generated using the Discriminative Word
Alignment Model again only leads to a small im-
provement. By using the bilingual language model
to increase context we can gain 0.1 BLEU points
and by adding the part-of-speech language model
with rich parts-of-speech including case, number
and gender information for German we achieve the
best score of 16.88. This system was used to gener-
ate the translation used for submission.

System Dev Test
Baseline 13.55 14.19
+ NewsShuffle LM 15.10 16.46
+ LongRange Reordering 15.79 16.46
+ DWA 15.81 16.52
+ Bilingual LM 15.85 16.64
+ POS LM 15.88 16.88

Table 5: Translation results for English-German

3.3 English-French

Table 6 summarizes how our system for English-
French evolved. The baseline system for this direc-
tion was trained on the EPPS and News Commen-
tary corpora, while the language model was trained
on the French part of the EPPS, News Commen-
tary and UN parallel corpora. Some improvement
could be already seen by introducing the short-range
reorderings trained on the baseline parallel corpus.
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Apparently, the UN data brought only slight im-
provement to the overall performance. On the other
hand, adding bigger language models trained on the
monolingual French version of EPPS, News Com-
mentary and the News Shuffle together with the
French Gigaword corpus introduces an improvement
of 3.7 on test. Using a system trained only on the
Giga corpus data with the same last configuration
shows a significant gain. It showed an improvement
of around 1.0. We were able to obtain some further
improvements by merging the translation models of
the last two systems. i.e. the one system based on
EPPS, UN, and News Commentary and the other on
the Giga corpus. This merging increased our score
by 0.2. Finally, our submitted system for this direc-
tion was obtained by using a single language model
trained on the union of all the French corpora in-
stead of using multiple models. This resulted in an
improvement of 0.1 leading to our best score: 28.28.

System Dev Test
Baseline 20.62 22.36
+ Reordering 21.29 23.11
+ UN 21.27 23.24
+ Big LMs 23.77 26.90
Giga data 24.53 27.94
Merge 24.74 28.14
+ Merged LMs 25.07 28.28

Table 6: Translation results for English-French

3.4 French-English

The development of our system for the French-
English direction is summarized in Table 7. Our sys-
tem for this direction evolved quite similarly to the
opposite direction. The largest improvement accom-
panied the integration of the bigger language mod-
els (trained on the English version of EPPS, News
Commentary, News Shuffle and the Gigaword cor-
pus): 3.3 BLEU points, whereas smaller improve-
ments could be gained by applying the short reorder-
ing rules and almost no change by including the UN
data. Further gains were obtained by training the
system on the Giga corpus added to the previous
parallel data. This increased our performance by
0.6. The submitted system was obtained by aug-
menting the last system with a bilingual language

model adding around 0.2 to the previous score and
thus giving 28.34 as final score.

System Dev Test
Baseline 20.76 23.78
+ Reordering 21.42 24.28
+ UN 21.55 24.21
+ Big LMs 24.16 27.55
+ Giga data 24.86 28.17
+ BiLM 25.01 28.34

Table 7: Translation results for French-English

4 Conclusions

We have presented the systems for our participation
in the WMT 2011 Evaluation for English↔German
and English↔French. For English↔French, a spe-
cial filtering method for web-crawled data was de-
veloped. In addition, a parallel phrase scoring tech-
nique was implemented that could speed up the MT
training process tremendously. Using these two fea-
tures, we were able to integrate the huge amounts of
data available in the Giga corpus into our systems
translating between English and French.

We applied POS-based reordering to improve our
translations in all directions, using short-range re-
ordering for English↔French and long-range re-
ordering for English↔German. For German-
English, reordering also the training corpus lead to
further improvements of the translation quality.

A Discriminative Word Alignment Model led to
an increase in BLEU for English-German. For this
direction we also tried fine-grained POS language
models of different n-gram lengths. The best trans-
lations could be obtained by using 4-grams.

For nearly all experiments, a bilingual language
model was applied that expands the context of
source words that can be considered during decod-
ing. The improvements range from 0.1 to 0.4 in
BLEU score.
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Helmut Schmid and Florian Laws. 2008. Estimation of
Conditional Probabilities with Decision Trees and an
Application to Fine-Grained POS Tagging. In COL-
ING 2008, Manchester, Great Britain.

Helmut Schmid. 1994. Probabilistic Part-of-Speech Tag-
ging Using Decision Trees. In International Con-
ference on New Methods in Language Processing,
Manchester, UK.

Andreas Stolcke. 2002. SRILM – An Extensible Lan-
guage Modeling Toolkit. In Proc. of ICSLP, Denver,
Colorado, USA.

Ashish Venugopal, Andreas Zollman, and Alex Waibel.
2005. Training and Evaluation Error Minimization
Rules for Statistical Machine Translation. In Work-
shop on Data-drive Machine Translation and Beyond
(WPT-05), Ann Arbor, MI.

Jeffrey Scott Vitter. 2008. Algorithms and Data Struc-
tures for External Memory. now Publishers Inc.

Stephan Vogel. 2003. SMT Decoder Dissected: Word
Reordering. In Int. Conf. on Natural Language Pro-
cessing and Knowledge Engineering, Beijing, China.

385



Proceedings of the 6th Workshop on Statistical Machine Translation, pages 386–392,
Edinburgh, Scotland, UK, July 30–31, 2011. c©2011 Association for Computational Linguistics

CMU Haitian Creole-English Translation System for WMT 2011

Sanjika Hewavitharana, Nguyen Bach, Qin Gao, Vamshi Ambati, Stephan Vogel
Language Technologies Institute

Carnegie Mellon University
Pittsburgh, PA 15213, USA

{sanjika,nbach,qing,vamshi,vogel+}@cs.cmu.edu

Abstract
This paper describes the statistical machine
translation system submitted to the WMT11
Featured Translation Task, which involves
translating Haitian Creole SMS messages into
English. In our experiments we try to ad-
dress the issue of noise in the training data,
as well as the lack of parallel training data.
Spelling normalization is applied to reduce
out-of-vocabulary words in the corpus. Us-
ing Semantic Role Labeling rules we expand
the available training corpus. Additionally we
investigate extracting parallel sentences from
comparable data to enhance the available par-
allel data.

1 Introduction

In this paper we describe the CMU-SMT Haitian
Creole-English translation system that was built as
part of the Featured Translation Task of the WMT11.
The task involved translating text (SMS) messages
that were collected during the humanitarian opera-
tions in the aftermath of the earthquake in Haiti in
2010.

Due to the circumstances of this situation, the
SMS messages were often noisy, and contained in-
complete information. Additionally they sometimes
contained text from other languages (e.g. French).
As is typical in SMS messages, abbreviated text (as
well as misspelled words) were present. Further,
since the Haitian Creole orthography is not fully
standardized (Allen, 1998), the text inherently con-
tained several different spelling variants.

These messages were translated into English by
a group of volunteers during the disaster response.

The background and the details of this crowdsourc-
ing translation effort is discussed in Munro (2010).
Some translations contain additional annotations
which are not part of the original SMS, possibly
added by the translators to clarify certain issues with
the original message. Along with the noise, spelling
variants, and fragmented nature of the SMS mes-
sages, the annotations contribute to the overall diffi-
culty in building a machine translation system with
this type of data. We aim to address some of these
issues in out effort.

Another challenge with building a Haitian Creole-
English translation system is the lack of parallel
data. As Haitian Creole is a less commonly spo-
ken language, the available resources are limited.
Other than the manually translated SMS messages,
the available Haitian Creole-English parallel data
is about 2 million tokens, which is considerably
smaller than the parallel data available for the Stan-
dard Translation Task of the WMT11.

Lewis (2010) details the effort quickly put
forth by the Microsoft Translator team in building
a Haitian Creole-English translation system from
scratch, as part of the relief effort in Haiti. We took
a similar approach to this shared task: rapidly build-
ing a translation system to a new language pair uti-
lizing available resources. Within a short span (of
about one week), we built a baseline translation sys-
tem, identified the problems with the system, and
exploited several approaches to rectify them and im-
prove its overall performance. We addressed the is-
sues above (namely: noise in the data and sparsity of
parallel data) when building our translation system
for Haitian Creole-English task. We also normalized
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different spelling variations to reduce the number of
out-of-vocabulary (OOV) tokens in the corpus. We
used Semantic Role Labeling to expand the available
training corpus. Additionally we exploited other re-
sources, such as comparable corpora, to extract par-
allel data to enhance the limited amount of available
parallel data.

The paper is organized as follows: Section 2
presents the baseline system used, along with a de-
scription of training and testing data used. Section 3
explains different preprocessing schemes that were
tested for SMS data, and their effect on the trans-
lation performance. Corpus expansion approach is
given in Section 4. Parallel data extraction from
comparable corpora is presented in section 5. We
present our concluding remarks in Section 6.

2 System Architecture

The WMT11 has provided a collection of Haitian
Creole-English parallel data from a variety of
sources, including data from CMU1. A summary
of the data is given in Table 1. The primary in-
domain data comprises the translated (noisy) SMS
messages. The additional data contains newswire
text, medical dialogs, the Bible, several bilingual
dictionaries, and parallel sentences from Wikipedia.

Corpus Sentences Tokens (HT/EN)

SMS messages 16,676 351K / 324K
Newswire text 13,517 336K / 292K
Medical dialog 1,619 10K / 10K
Dictionaries 42,178 97K / 92K
Other 41,872 939K / 865K
Wikipedia 8,476 77K / 90K

Total 124,338 1.81M / 1.67M

Table 1: Haitian Creole (HT) and English (EN) parallel
data provide by WMT11

We preprocessed the data by separating the punc-
tuations, and converting both sides into lower case.
SMS data was further processed to normalize quo-
tations and other punctuation marks, and to remove
all markups.

To build a baseline translation system we fol-
lowed the recommended steps: generate word align-

1www.speech.cs.cmu.edu/haitian/

ments using GIZA++ (Och and Ney, 2003) and
phrase extraction using Moses (Koehn et al., 2007).
We built a 4-gram language model with the SRI
LM toolkit (Stolcke, 2002) using English side of
the training corpus. Model parameters for the lan-
guage model, phrase table, and lexicalized reorder-
ing model were optimized via minimum error-rate
(MER) training (Och, 2003).

The SMS test sets were provided in two formats:
raw (r) and cleaned (cl), where the latter had been
manually cleaned. We used the SMS dev clean to op-
timize the decoder parameters and the SMS devtest
clean and SMS devtest raw as held-out evaluation sets.
Each set contains 900 sentences. A separate SMS
test, with 1274 sentences, was used as the unseen
test set in the final evaluation. For each experiment
we report the case-insensitive BLEU (Papineni et
al., 2002) score.

Using the available training data we built several
baseline systems: The first system (Parallel-OOD),
uses all the out-of-domain parallel data except the
Wikipedia sentences. The second system, in addi-
tion, includes Wikipedia data. The third system uses
all available parallel training data (including both the
out-of-domain data as well as in-domain SMS data).
We used the third system as the baseline for later
experiments.

dev (cl) devtest (cl) devtest (r)

Parallel-OOD 23.84 22.28 17.32
+Wikipedia 23.89 22.42 17.37
+SMS 32.28 33.49 29.95

Table 2: Translation results in BLEU for different corpora

Translation results for different test sets using the
three systems are presented in Table 2. No signifi-
cant difference in BLEU was observed with the ad-
dition of Wikipedia data. However, a significant
improvement in performance can be seen when in-
domain SMS data is added, despite the fact that this
is noisy data. Because of this, we paid special atten-
tion to clean the noisy SMS data.

3 Preprocessing of SMS Data

In this section we explain two approaches that we
explored to reduce the noise in the SMS data.
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3.1 Lexicon-based Collapsing of OOV Words

We observed that a number of words in the raw SMS
data consisted of asterisks or special character sym-
bols. This seems to occur because either users had
to type with a phone-based keyboard or simply due
to processing errors in the pipeline. Our aim, there-
fore, was to collapse these incorrectly spelled words
to their closest vocabulary entires from the rest of
the data.

We first built a lexicon of words using the entire
data provided for the Featured Task. We then built
a second probabilistic lexicon by cross-referencing
SMS dev raw with the cleaned-up SMS dev clean.
The first resource can be treated as a dictionary
while the second is a look-up table. We processed
incoming text by first selecting all the words with
special characters in the text, and then computing
an edit distance with each of the words in the first
lexicon. We return the most frequent word that is
the closest match as a substitute. For all words that
don’t have a closest match, we looked them up in the
probabilistic dictionary and return a potential substi-
tution if it exists. As the probabilistic dictionary is
constructed using a very small amount of data, the
two-level lookup helps to place less trust in it and
use it only as a back-off option for a missing match
in the larger lexicon.

This approach only collapses words with special
characters to their closest in-vocabulary words. It
does not make a significant difference to the OOV
ratios, but reduces the number of tokens in the
dataset. Using this approach we were able to col-
lapse about 80% of the words with special characters
to existing vocabulary entries.

3.2 Spelling Normalization

One of the most problematic issues in Haitian Cre-
ole SMS translation system is misspelled words.
When training data contains misspelled words, the
translation system performance will be affected at
several levels, such as word alignment, phrase/rule
extractions, and tuning parameters (Bertoldi et al.,
2010). Therefore, it is desirable to perform spelling
correction on the data. Spelling correction based
on the noisy channel model has been explored in
(Kernighan et al., 1990; Brill and Moore, 2000;
Toutanova and Moore, 2002). The model is gener-

ally presented in the following form:

p(ĉ|h) = arg max
∀c

p(h|c)p(c) (1)

where h is the Haitian Creole word, and c is a pos-
sible correction. p(c) is a source model which is a
prior of word probabilities. p(h|c) is an error model
or noisy channel model that accounts for spelling
transformations on letter sequences.

Unfortunately, in the case of Haitian Creole SMS
we do not have sufficient data to estimate p(h|c)
and p(c). However, we can assume p(c|h) ≈ p(c)
and c is in the French vocabulary and is not an En-
glish word. The rationale for this, from linguistic
point of view, is that Haitian Creole developed from
the 18th century French. As a result, an important
part of the Haitian Creole lexicon is directly derived
from French. Furthermore, SMS messages some-
times were mixed with English words. Therefore,
we ignore c if it appears in an English dictionary.

Given h, how do we get a list of possible normal-
ization c and estimate p(c)? We use edit distance
of 1 between h and c. An edit can be a deletion,
transposition, substitution, or insertion. If a word
has l characters, there will be 66l+31 possible cor-
rections2. It may result in a large list. However,
we only keep possible normalizations which appear
in a French dictionary and do not appear in an En-
glish dictionary3. To approximate p(c), we use the
French parallel Giga training data from the Shared
Task of the WMT11. p(c) is estimated by MLE. Fi-
nally, our system chooses the French word with the
highest probability.

dev (cl) devtest (cl) test (cl)

Before 2.6 ; 16 2.7 ; 16 2.6 ; 16
After 2.2 ; 13.63 2.3 ; 13.95 2.2 ; 14.3

Table 3: Percentage of OOV tokens and types in test sets
before and after performing spelling normalization.

Table 3 shows that spelling normalization helps
to bring down the percentage of OOV tokens and
types by 0.4% and 2% respectively on the three test
2l deletions, l-1 transpositions, 32l substitutions, and 32(l+1)
insertions; Haitian Creole orthography has 32 forms.

3The English dictionary was created from the English Gigaword
corpus.
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sets. Some examples of Haitian Creole words and
their French normalization are (tropikal:tropical),
(economiques:economique), (irjan:iran), (idanti-
fie:identifie).

dev (cl) devtest (cl) devtest (r)

Baseline 32.28 33.49 29.95
S1 32.18 30.22 25.45
S2 28.9 31.06 27.69

Table 4: Translation results in BLEU with/without
spelling correction

Given the encouraging OOV reductions, we ap-
plied the spelling normalization for the full corpus,
and built new translation systems. Our baseline sys-
tem has no spelling correction (for the training cor-
pus or the test sets); in S1, the spelling corrections
is applied to all words; in S2, the spelling correc-
tion is only applied to Haitian Creole words that oc-
cur only once or twice in the data. In S1, 11.5% of
Haitian Creole words had been mapped to French,
including high frequency words. Meanwhile, 4.5%
Haitian Creole words on training data were mapped
to French words in S2. Table 4 presents a compar-
ison of translation performance of the baseline, S1
and S2 for the SMS test sets. Unfortunately, none of
systems with spelling normalization outperformed
the system trained on the original data. Restricting
the spelling correction only to infrequent words (S2)
performed better for the devtest sets, but not for the
dev set, although all the test sets come from the same
domain.

4 Corpus Expansion using Semantic Role
Labeling

To address the problem of limited resources, we
tried to expand the training corpus by applying the
corpus expansion method described in (Gao and Vo-
gel, 2011). First, we parsed and labeled the semantic
roles of the English side of the corpus, using the AS-
SERT labeler (Pradhan et al., 2004). Next, using the
word alignment models of the parallel corpus, we
extracted Semantic Role Label (SRL) substitution
rules. SRL rules consist of source and target phrases
that cover whole constituents of semantic roles, the
verb frames they belong to, and the role labels of

the constituents. The source and target phrases must
comply with the restrictions detailed in (Gao and Vo-
gel, 2011). Third, for each sentence, we replaced
one of embedded SRL substitution rules with equiv-
alent rules that have the same verb frame and the
same role label.

The original method includes an additional but
crucial step of filtering out the grammatically incor-
rect sentences using an SVM classifier, trained with
labeled samples. However, we were unable to find
Haitian Creole speakers who could manually label
training data for the filtering step. Therefore, we
were forced to skip this filtering step. We expanded
the full training corpus which contained 124K sen-
tence pairs, resulting in an expanded corpus with
505K sentences. The expanded corpus was force-
aligned using the word alignment models trained
on the original unexpanded corpus. A new trans-
lation system was built using the original plus the
expanded corpus. As seen in Table 5, we observed
a small improvement with the expanded corpus for
the raw devtest. This method did not improve per-
formance for the other two test sets.

dev (cl) devtest (cl) devtest (r)

Baseline 32.28 33.49 29.95
+Expanded 31.79 32.98 30.1

Table 5: Translation results in BLEU with/without corpus
expansion

A possible explanation for this, in addition to
the missing component of filtering, is the low qual-
ity of SRL parsing on the SMS corpus. We ob-
served a very small ratio of expansions in the
Haitian Creole-English data, when compared to the
Chinese-English experiment shown in (Gao and Vo-
gel, 2011). The latter used a high quality corpus for
the expansion and the expanded corpus was 20 times
larger than the original one. Due to the noisy nature
of the available parallel data, only 61K of the 124K
sentences were successfully parsed and SRL-labeled
by the labeler.
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5 Extracting Parallel Data from
Comparable Data

As we only have a limited amount of parallel data,
we focused on automatically extracting additional
parallel data from other available resources, such as
comparable corpora. We were not able to find com-
parable news articles in Haitian Creole and English.
However, we found several hundred Haitian Creole
medical articles on the Web which were linked to
comparable English articles4. Although some of the
medical articles seemed to be direct translations of
each other, converting the original pdf formats into
text did not produce sentence aligned parallel arti-
cles. Rather, it produced sentence fragments (some-
times in different orders) due to the structural dif-
ferences in the article pair. Hence a parallel sen-
tence detection technique was necessary to process
the data. Because the SMS messages are related to
the disaster relief effort, which may include many
words in the medical domain, we believe the newly
extracted data may help improve translation perfor-
mance.

Following Munteanu and Marcu (2005), we used
a Maximum Entropy classifier to identify compara-
ble sentence. To avoid the problem of having dif-
ferent sentence orderings in the article pair, we take
every source-target sentence pair in the two articles,
and apply the classifier to detect if they are paral-
lel. The classifier approach is appealing to a low-
resource language such as Haitian Creole, because
the features for the classifier can be generated with
minimal translation resources (i.e. a translation lex-
icon).

5.1 Maximum Entropy Classifier
The classifier probability can be defined as:

Pr(ci|S, T ) =
exp

(∑n
j=1 λjfij(ci, S, T )

)
Z(S, T )

(2)

where (S, T ) is a sentence pair, ci is the class, fij

are feature functions and Z(S) is a normalizing fac-
tor. The parameters λi are the weights for the feature
functions and are estimated by optimizing on a train-
ing data set. For the task of classifying a sentence
pair, there are two classes, c0 = non − parallel

4Two main sources were: www.rhin.org and www.nlm.nih.gov

and c1 = parallel . A value closer to one for
Pr(c1|S, T ) indicates that (S, T ) are parallel.

The features are defined primarily based on trans-
lation lexicon probabilities. Rather than computing
word alignment between the two sentences, we use
lexical probabilities to determine alignment points
as follows: a source word s is aligned to a tar-
get word t if p(s|t) > 0.5. Target word align-
ment is computed similarly. We defined a feature set
which includes: length ratio and length difference
between source and target sentences, lexical proba-
bility scores similar to IBM model 1 (Brown et al.,
1993), number of aligned/unaligned words and the
length of the longest aligned word sequence. Lexi-
cal probability score, and alignment features gener-
ate two sets of features based on translation lexica
obtained by training in both directions. Features are
normalized with respect to the sentence length.

5.2 Training and Testing the Classifier
To train the model we need training examples that
belong to each of the two classes: parallel and non-
parallel. Initially we used a subset of the available
parallel data as training examples for the classifier.
This data was primarily sourced from medical con-
versations and newswire text, whereas the compa-
rable data was found in medical articles. This mis-
match in domain resulted in poor classification per-
formance. Therefore we manually aligned a set of
250 Haitian Creole-English sentence pairs from the
medical articles and divided them in to a training set
(175 sentences) and a test set (100 sentences).

The parallel sentence pairs were directly used as
positive examples. In selecting negative examples,
we followed the same approach as in (Munteanu
and Marcu, 2005): pairing all source phrases with
all target phrases, but filter out the parallel pairs and
those that have high length difference or a low lex-
ical overlap, and then randomly select a subset of
phrase pairs as the negative training set. The test
set was generated in a similar manner. The model
parameters were estimated using the GIS algorithm.
We used the trained ME model to classify the sen-
tences in the test set into the two classes, and notice
how many instances are classified correctly.

Classification results are as given in Table 6. We
notice that even with a smaller training set, the clas-
sifier produces results with high precision. Using
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Precision Recall F-1 Score

Training Set 93.90 77.00 84.61
Test Set 85.53 74.29 79.52

Table 6: Performance of the Classifier

the trained classifier, we processed 220 article pairs
which contained a total of 20K source sentences
and 18K target sentences. The classifier selected
about 10K sentences as parallel. From these, we se-
lected sentences where pr(c1|S, T ) > 0.7 for trans-
lation experiments. The extracted data expanded the
source vocabulary by about 5%.

We built a second translation system by combin-
ing the baseline parallel corpus and the extracted
corpus. Table 7 shows the translation results for this
system.

dev (cl) devtest (cl) devtest (r)

Baseline 32.28 33.49 29.95
+Extracted 32.29 33.29 29.89

Table 7: Translation results in BLEU with/without ex-
tracted data

The results indicate that there is no significant per-
formance difference in using the extracted data. This
may be due to the relatively small size of the com-
parable corpus we used when extract the data.

6 Conclusion

Building an MT system to translate Haitian Creole
SMS messages involved several challenges. There
was only a limited amount of parallel data to train
the models. The SMS messages tend to be quite
noisy. After building a baseline MT system, we
investigated several approaches to improve its per-
formance. In particular, we tried collapsing OOV
words using a lexicon generated with clean data, and
normalize different variations in spelling. However,
these methods did not results in improved translation
performance.

We tried to address the data sparseness problem
with two approaches: expanding the corpus using
SRL rules, and extracting parallel sentences from
a collection of comparable documents. Corpus ex-

pansion showed a small improvement for the raw
devtest. Both corpus expansion and parallel data
extraction did not have a positive impact on other
test sets. Both these methods have shown significant
performance improvement in the past in large data
scenarios (for Chinese-English and Arabic-English),
but failed to show improvements in the current low-
data scenario. Thus, we need further investigations
in handling noisy data, especially in low-resource
scenarios.
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Abstract

This paper presents the LIU system for the
WMT 2011 shared task for translation be-
tween German and English. For English–
German we attempted to improve the trans-
lation tables with a combination of standard
statistical word alignments and phrase-based
word alignments. For German–English trans-
lation we tried to make the German text more
similar to the English text by normalizing Ger-
man morphology and performing rule-based
clause reordering of the German text. This re-
sulted in small improvements for both transla-
tion directions.

1 Introduction

In this paper we present the LIU system for the
WMT11 shared task, for translation between En-
glish and German in both directions. We added a
number of features that address problems for trans-
lation between German and English such as word or-
der differences, incorrect alignment of certain words
such as verbs, and the morphological complexity
of German compared to English, as well as dealing
with previously unseen words.

In both translation directions our systems in-
clude compound processing, morphological se-
quence models, and a hierarchical reordering model.
For German–English translation we also added mor-
phological normalization, source side reordering,
and processing of out-of-vocabulary words (OOVs).
For English–German translation, we extracted word
alignments with a supervised method and combined
these alignments with Giza++ alignments in various

ways to improve the phrase table. We experimented
with different ways of combining the two alignments
such as using heuristic symmetrization and interpo-
lating phrase tables.

Results are reported on three metrics, BLEU (Pa-
pineni et al., 2002), NIST (Doddington, 2002) and
Meteor ranking scores (Agarwal and Lavie, 2008)
based on truecased output.

2 Baseline System

This years improvements were added to the LIU
baseline system (Stymne et al., 2010). Our base-
line is a factored phrase based SMT system that uses
the Moses toolkit (Koehn et al., 2007) for transla-
tion model training and decoding, GIZA++ (Och
and Ney, 2003) for word alignment, SRILM (Stol-
cke, 2002) an KenLM (Heafield, 2011) for language
modelling and minimum error rate training (Och,
2003) to tune model feature weights. In addition,
the LIU baseline contains:

• Compound processing, including compound
splitting and for translation into German also
compound merging

• Part-of-speech and morphological sequence
models

All models were trained on truecased data. Trans-
lation and reordering models were trained using the
bilingual Europarl and News Commentary corpora
that were concatenated before training. We created
two language models. The first model is a 5-gram
model that we created by interpolating two language
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models from bilingual News Commentary and Eu-
roparl with more weight on the News Commentary
model. The second model is a 4-gram model trained
on monolingual News only. All models were cre-
ated using entropy-based pruning with 10−8 as the
threshold.

Due to time constraints, all tuning and evaluation
were performed on half of the provided shared task
data. Systems were tuned on 1262 sentences from
newstest2009 and all results reported in Tables 1 and
2 are based on a devtest set of 1244 sentences from
newstest2010.

2.1 Sequence models with part-of-speech and
morphology

To improve target word order and agreement in the
translation output, we added an extra output factor in
our translation models consisting of tags with POS
and morphological features. For English we used
tags that were obtained by enriching POS tags from
TreeTagger (Schmid, 1994) with additional morpho-
logical features such as number for determiners. For
German, the POS and morphological tags were ob-
tained from RFTagger (Schmid and Laws, 2008)
which provides morphological information such as
case, number and gender for nouns and tense for
verbs. We trained two sequence models for each
system over this output factor and added them as
features in our baseline system. The first sequence
model is a 7-gram model interpolated from models
of bilingual Europarl and News Commentary. The
second model is a 6-gram model trained on mono-
lingual News only.

2.2 Compound processing

In both translation directions we split compounds,
using a modified version of the corpus-based split-
ting method of Koehn and Knight (2003). We split
nouns, verb, and adjective compounds into known
parts that were content words or cardinal numbers,
based on the arithmetic mean of the frequency of
the parts in the training corpus. We allowed 10 com-
mon letter changes (Langer, 1998) and hyphens at
split points. Compound parts were kept in their sur-
face form and compound modifiers received a part-
of-speech tag based on that of the tag of the full com-
pound.

For translation into German, compounds were

merged using the POS-merging strategy of Stymne
(2009). A compound part in the translation output,
identified by the special part-of-speech tags, was
merged with the next word if that word had a match-
ing part-of-speech tag. If the compound part was
followed by the conjunction und (and), we added a
hyphen to the part, to account for coordinated com-
pounds.

2.3 Hierarchical reordering

In our baseline system we experimented with two
lexicalized reordering models. The standard model
in Moses (Koehn et al., 2005), and the hierarchi-
cal model of Galley and Manning (2008). In both
models the placement of a phrase is compared to
that of the previous and/or next phrase. In the stan-
dard model up to three reorderings are distinguished,
monotone, swap, and discontinuous. In the hier-
archical model the discontinuous class can be fur-
ther subdivided into two classes, left and right dis-
continuous. The hierarchical model further differs
from the standard model in that it compares the or-
der of the phrase with the next or previous block of
phrases, not only with the next or previous single
phrase.

We investigated one configuration of each
model. For the standard model we used the msd-
bidirectional-fe setting, which uses three orienta-
tions, is conditioned on both the source and target
language, and considers both the previous and next
phrase. For the hierarchical model we used all four
orientations, and again it is conditioned on both the
source and target language, and considers both the
previous and next phrase.

The result of replacing the standard reordering
model with an hierarchical model is shown in Table
1 and 2. For translation into German adding the hi-
erarchical model led to small improvements as mea-
sured by NIST and Meteor. For translation in the
other direction, the differences on automatic metrics
were very small. Still, we decided to use the hierar-
chical model in all our systems.

3 German–English

For translation from German into English we fo-
cused on making the German source text more sim-
ilar to English by removing redundant morphology
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and changing word order before training translation
models.

3.1 Normalization

We performed normalization of German words to re-
move distinctions that do not exist in English, such
as case distinctions on nouns. This strategy is sim-
ilar to that of El-Kahlout and Yvon (2010), but we
used a slightly different set of transformations, that
we thought better mirrored the English structure.
For morphological tags we used RFTagger and for
lemmas we used TreeTagger. The morphological
transformations we performed were the following:

• Nouns:

– Replace with lemma+s if plural number
– Replace with lemma otherwise

• Verbs:

– Replace with lemma if present tense, not
third person singular

– Replace with lemma+p if past tense

• Adjectives:

– Replace with lemma+c if comparative
– Replace with lemma+sup if superlative
– Replace with lemma otherwise

• Articles:

– Definite articles:
∗ Replace with des if genitive
∗ Replace with der otherwise

– Indefinite articles:
∗ Replace with eines if genitive
∗ Replace with ein otherwise

• Pronouns:

– Replace with RELPRO if relative
– Replace with lemma if indefinite, interrog-

ative, or possessive pronouns
– Add +g to all pronouns which are geni-

tive, unless they are possessive

For all word types that are not mentioned in the
list, surface forms were kept.

BLEU NIST Meteor
Baseline 21.01 6.2742 41.32
+hier reo 20.94 6.2800 41.24
+normalization 20.85 6.2370 41.04
+source reordering 21.06 6.3082 41.40
+ OOV proc. 21.22 6.3692 41.51

Table 1: German–English translation results. Results are
cumulative.

We also performed those tokenization and
spelling normalizations suggested by El-Kahlout
and Yvon (2010), that we judged could safely be
done for translation from German without collect-
ing corpus statistics. We split words with numbers
and letters, such as 40-jährigen or 40jährigen (40
year-old), unless the suffix indicates that it is a ordi-
nal, such as 70sten (70th). We also did some spelling
normalization by exchanging ß with ss and replacing
tripled consonants with doubled consonants. These
changes would have been harmful for translation
into German, since they change the language into a
normalized variant, but for translation from German
we considered them safe.

3.2 Source side reordering

To make the word order of German input sen-
tences more English-like a version of the rules of
(Collins et al., 2005) were partially implemented us-
ing tagged output from the RFTagger. Basically,
beginnings of subordinate clauses, their subjects (if
present) and final verb clusters were identified based
on tag sequences, and the clusters were moved to
the beginning of the clause, and reordered so that
the finite verb ended up in the second clause posi-
tion. Also, some common adverbs were moved with
the verb cluster and placed between finite and non-
finite verbs. After testing, we decided to apply these
rules only to subordinate clauses at the end of sen-
tences, since these were the only ones that could be
identified with good precision. Still, some 750,000
clauses were reordered.

3.3 OOV Processing

We also added limited processing of OOVs. In a pre-
processing step we replaced unknown words with
known cased variants if available, removed markup
from normalized words if that resulted in an un-
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known token, and split hyphened words. We also
split suspected names in cases where we had a pat-
tern with a single upper-case letter in the middle of a
word, such as ConocoPhillips into Conoco Phillips.
In a post-processing step we changed the number
formatting of unknown numbers by changing dec-
imal points and thousand separators, to agree with
English orthography. This processing only affects
a small number of words, and cannot be expected
to make a large impact on the final results. Out
of 884 OOVs in the devtest, 39 had known cased
options, 126 hyphened words were split, 147 cases
had markup from the normalization removed, and 13
suspected names were split.

3.4 Results
The results of these experiments can be seen in Table
1 where each new addition is added to the previous
system. When we compare the new additions with
the baseline with hierarchical reordering, we see that
while the normalization did not seem to have a posi-
tive effect on any metric, both source reordering and
OOV processing led to small increases on all scores.

4 English–German

For translation from English into German we at-
tempted to improve the quality of the phrase table by
adding new word alignments to the standard Giza++
alignments.

4.1 Phrase-based word alignment
We experimented with different ways of com-
bining word alignments from Giza++ with align-
ments created using phrase-based word alignment
(PAL) which previously has been shown to improve
alignment quality for English–Swedish (Holmqvist,
2010). The idea of phrase-based word alignment is
to use word and part-of-speech sequence patterns
from manual word alignments to align new texts.
First, parallel phrases containing a source segment,
a target segment and links between source and target
words are extracted from word aligned texts (Figure
1). In the second step, these phrases are matched
against new parallel text and if a matching phrase
is found, word links from the phrase are added to
the corresponding words in the new text. In order
to increase the number of matching phrases and im-
prove word alignment recall, words in the parallel

En: a typical example
De: ein typisches Beispiel
Links: 0-0 1-1 2-2

En: a JJ example
De: ein ADJA Beispiel
Links: 0-0 1-1 2-2

En: DT JJ NN
De: ART ADJA N
Links: 0-0 1-1 2-2

Figure 1: Examples of parallel phrases used in word
alignment.

BLEU NIST Meteor
Baseline 16.16 6.2742 50.89
+hier reo 16.06 6.2800 51.25
+pal-gdfa 16.14 5.6527 51.10
+pal-dual 15.71 5.5735 50.43
+pal-inter 15.92 5.6230 50.73

Table 2: English–German translation results, results
are cumulative except for the three alternative PAL-
configurations.

segments were replaced by POS/morphological tags
from RFTagger.

Alignment patterns were extracted from 1000 sen-
tences in the manually word aligned sample of
English–German Europarl texts from Pado and Lap-
ata (2006). All parallel phrases were extracted from
the word aligned texts, as when extracting a trans-
lation model. Parallel phrases that contain at least
3 words were generalized with POS tags to form
word/POS patterns for alignment. A subset of these
patterns, with high alignment precision (> 0.80) on
the 1000 sentences, were used to align the entire
training corpus.

We combined the new word alignments with
the Giza++ alignments in two ways. In the first
method, we used a symmetrization heuristic similar
to grow-diag-final-and to combine three word align-
ments into one, the phrase-based alignment and two
Giza++ alignments in different directions. In the
second method we extracted a separate phrase ta-
ble from the sparser phrase-based alignment using
a constrained method of phrase extraction that lim-
ited the number of unaligned words in each phrase
pair. The reason for constraining the phrase table
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extraction was that the standard extraction method
does not work well for the sparse word alignments
that PAL produces, but we think it could still be
useful for extracting highly reliable phrases. After
some experimentation we decided to allow an unlim-
ited number of internal unaligned words, that is un-
aligned words that are surrounded by aligned words,
but limit the number of external unaligned words,
i.e., unaligned words at the beginning or end of the
phrase, to either one each in the source and target
phrase, or to zero.

We used two ways to include the sparse phrase-
table into the translation process:

• Have two separate phrase-tables, the sparse ta-
ble, and the standard GIZA++ based phrase-
table, and use Moses’ dual decoding paths.

• Interpolate the sparse phrase-table with the
standard phrase-table, using the mixture model
formulation of Ueffing et al. (2007), with equal
weights, in order to boost the probabilities of
highly reliable phrases.

4.2 Results

We evaluated our systems on devtest data and found
that the added phrase-based alignments did not pro-
duce large differences in translation quality com-
pared to the baseline system with hierarchical re-
ordering as shown in Table 2. The system created
with a heuristic combination of PAL and Giza++
(pal-gdfa) had a small increase in BLEU, but no im-
provement on the other metrics. Systems using a
phrase table extracted from the sparse alignments
did not produce better results than baseline. The sys-
tem using dual decoding paths (pal-dual) produced
worse results than the system using an interpolated
phrase table (pal-inter).

5 Submitted systems

The LIU system participated in German–English
and English–German translation in the WMT 2011
shared task. The new additions were a combina-
tion of unsupervised and supervised word align-
ments, spelling normalization, clause reordering and
OOV processing. Our submitted systems contain
all additions described in this paper. For English-
German we used the best performing method of

BLEU
System Devtest Test

en-de
baseline +hier 16.1 14.5
submitted 16.1 14.8

de-en
baseline +hier 20.9 19.3
submitted 21.2 19.9

Table 3: Summary of devtest results and shared task test
results for submitted systems and LIU baseline with hier-
archical reordering.

word alignment combination which was the method
that uses heuristic combination similar to grow-diag-
final-and.

The results of our submitted systems are shown
in Table 3 where we compare them to the LIU base-
line system with hierarchical reordering models. We
report modest improvements on the devtest set for
both translation directions. We also found small im-
provements of our submitted systems in the official
shared task evaluation on the test set newstest2011.
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Abstract

MonoTrans2 is a translation system that com-
bines machine translation (MT) with human
computation using two crowds of monolin-
gual source (Haitian Creole) and target (En-
glish) speakers. We report on its use in the
WMT 2011 Haitian Creole to English trans-
lation task, showing that MonoTrans2 trans-
lated 38% of the sentences well compared to
Google Translate’s 25%.

1 Introduction

One of the most remarkable success stories to come
out of the January 2010 earthquake in Haiti in-
volved translation (Munro, 2010). While other
forms of emergency response and communication
channels were failing, text messages were still get-
ting through, so a number of people came together to
create a free phone number for emergency text mes-
sages, which allowed earthquake victims to report
those who were trapped or in need of medical atten-
tion. The problem, of course, was that most people
were texting in Haitian Creole (Kreyol), a language
not many of the emergency responders understood,
and few, if any, professional translators were avail-
able. The availability of usable translations literally
became a matter of life and death.

In response to this need, Stanford University grad-
uate student Rob Munro coordinated the rapid cre-
ation of a crowdsourcing framework, which allowed
volunteers – including, for example, Haitian expa-
triates and French speakers – to translate messages,
providing responders with usable information in as
little as ten minutes. Translations may not have been
perfect, but to a woman in labor, it had to have made

a big difference for English-speaking responders to
see Undergoing children delivery Delmas 31 instead
of Fanm gen tranche pou fè yon pitit nan Delmas 31.

What about a scenario, though, in which even am-
ateur bilingual volunteers are hard to find, or too
few in number? What about a scenario, e.g. the
March 2011 earthquake and tsunami in Japan, in
which there are many people worldwide who wish
to help but are not fluent in both the source and tar-
get languages?

For the last few years, we have been exploring the
idea of monolingual crowdsourcing for translation
– that is, technology-assisted collaborative transla-
tion involving crowds of participants who know only
the source or target language (Buzek et al., 2010;
Hu, 2009; Hu et al., 2010; Hu et al., 2011; Resnik
et al., 2010). Our MonoTrans2 framework has pre-
viously shown very promising results on children’s
books: on a test set where Google Translate pro-
duced correct translations for only 10% of the input
sentences, monolingual German and Spanish speak-
ers using our framework produced translations that
were fully correct (as judged by two independent
bilinguals) nearly 70% of the time (Hu et al., 2011).

We used the same framework in the WMT 2011
Haitian-English translation task. For this experi-
ment, we hired Haitian Creole speakers located in
Haiti, and recruited English speakers located in the
U.S., to serve as the monolingual crowds.

2 System

MonoTrans2 is a translation system that combines
machine translation (MT) with human computation
(Quinn et al., 2011) using two “crowds” of mono-
lingual source (Haitian Creole) and target (English)
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speakers.1 We summarize its operation here; see Hu
et al. (2011) for details.

The Haitian Creole sentence is first automatically
translated into English and presented to the English
speakers. The English speakers then can take any of
the following actions for candidate translations:

• Mark a phrase in the candidate as an error

• Suggest a new translation candidate

• Vote candidates up or down

Identifying likely errors and voting for candidates
are things monolinguals can do reasonably well:
even without knowing the intended interpretation,
you can often identify when some part of a sentence
doesn’t make sense, or when one sentence seems
more fluent or plausible than another. Sometimes
rather than identifying errors, it is easier to suggest
an entirely new translation candidate based on the
information available on the target side, a variant
of monolingual post-editing (Callison-Burch et al.,
2004).

Any new translation candidates are then back-
translated into Haitian Creole, and any spans marked
as translation errors are projected back to identify
the corresponding spans in the source sentence, us-
ing word alignments as the bridge (cf. Hwa et al.
(2002), Yarowsky et al. (2001)).2 The Haitian Cre-
ole speakers can then:

• Rephrase the entire source sentence (cf.
(Morita and Ishida, 2009))

• “Explain” spans marked as errors

• Vote candidates up or down (based on the back-
translation)

Source speakers can “explain” error spans by of-
fering a different way of phrasing that piece of the
source sentence (Resnik et al., 2010), in order to
produce a new source sentence, or by annotating the
spans with images (e.g. via Google image search)
or Web links (e.g. to Wikipedia). The protocol then
continues: new source sentences created via partial-

1For the work reported here, we used Google Translate as
the MT component via the Google Translate Research API.

2The Google Translate Research API provides alignments
with its hypotheses.

or full-sentence paraphrase pass back through MT
to the English side, and any explanatory annota-
tions are projected back to the corresponding spans
in the English candidate translations (where the er-
ror spans had been identified). The process is asyn-
chronous: participants on the Haitian Creole and
English sides can work independently on whatever
is available to them at any time. At any point, the
voting-based scores can be used to extract a 1-best
translation.

In summary, the MonoTrans2 framework uses
noisy MT to cross the language barrier, and supports
monolingual participants in doing small tasks that
gain leverage from redundant information, the hu-
man capacity for linguistic and real-world inference,
and the wisdom of the crowd.

3 Experiment

We recruited 26 English speakers and 4 Haitian Cre-
ole speakers. The Haitian Creole speakers were re-
cruited from Haiti and do not speak English. Five of
the 26 English speakers were paid UMD undergrad-
uates; the other 21 were volunteer researchers, grad-
uate students, and staff unrelated to this research. 3

Over a 13 day period, Haitian Creole and English
speaker efforts totaled 15 and 29 hours, respectively.

4 Data Sets

Our original goal of fully processing the entire SMS
clean test and devtest sets could not be realized in the
available time, owing to unanticipated reshuffling of
the data by the shared task organizers and logistical
challenges working with participants in Haiti. Ta-
ble 1 summarizes the data set sizes before and after
reshuffling. We put 1,224 sentences from the pre-

before after
test 1,224 1,274

devtest 925 900

Table 1: SMS clean data sets before and after reshuffling

reshuffling test set, interspersed with 123 of the 925
sentences from the pre-reshuffling devtest set, into
the system — 1,347 sentences in total. We report

3These, obviously, did not include any of the authors.

400



results on the union of pre- and post-reshuffling de-
vtest sentences (Set A, |A| = 1516), and the post-
reshuffling test set (Set B, |B| = 1274 ).

5 Evaluation

Of the 1,347 sentences available for processing in
MonoTrans2, we define three subsets:

• Touched: Sentences that were processed by at
least one person (657 sentences)

• Each-side: Sentences that were processed by at
least one English speaker followed by at least
one Haitian Creole speaker (431 sentences)

• Full: Sentences that have at least three trans-
lation candidates, of which the most voted-for
one received at least three votes (207 sentences)

We intersect these three sets with sets A and B in or-
der to evaluate MonoTrans2 output against the pro-
vided references (Table 2).4

Set S |S| |S ∩A| |S ∩B|
Touched 657 162 168
Each-side 431 127 97

Full 207 76 60

Table 2: Data sets for evaluation and their sizes

Tables 3 and 4 report two automatic scoring met-
rics, uncased BLEU and TER, comparing Mono-
Trans2 (M2) against Google Translate (GT) as a
baseline.

Set Condition BLEU TER

Touched ∩A
GT 21.75 56.99
M2 23.25 57.27

Each-side ∩A
GT 21.44 57.51
M2 21.47 58.98

Full ∩A
GT 25.05 54.15
M2 27.59 52.78

Table 3: BLEU and TER results for different levels of com-
pletion on the devtest set A

Since the number of sentences in each evaluated
set is different (Table 2), we cannot directly compare

4Note that according to these definitions, Touched contains
both Each-side and Full, but Each-side does not contain Full.

Set Condition BLEU TER

Touched ∩B
GT 19.78 59.88
M2 24.09 58.15

Each-side ∩B
GT 21.15 56.88
M2 23.80 57.19

Full ∩B
GT 22.51 54.51
M2 28.90 52.22

Table 4: BLEU and TER results for different levels of com-
pletion on the test set B

scores between the sets. However, Table 4 shows
that when the MonoTrans2 process is run on test
items “to completion”, in the sense defined by “Full”
(i.e. Full∩B), we see a dramatic BLEU gain of 6.39,
and a drop in TER of 2.29 points. Moreover, even
when only target-side or only source-side monolin-
gual participation is available we see a gain of 4.31
BLEU and a drop of 1.73 TER points (Touched∩B).

By contrast, the results on the devtest data are en-
couraging, but arguably mixed (Table 3). In order to
step away from the vagaries of single-reference au-
tomatic evaluations, therefore, we also conducted an
evaluation based on human judgments. Two native
English speakers unfamiliar with the project were
recruited and paid for fluency and adequacy judg-
ments: for each target translation paired with its cor-
responding reference, each evaluator rated the tar-
get sentence’s fluency and adequacy on a 5-point
scale, where fluency of 5 indicates complete fluency
and adequacy of 5 indicates complete preservation
of meaning (Dabbadie et al., 2002).5

Sentences N Google MonoTrans2
Full ∩A 76 18 (24%) 30 (39%)
Full ∩B 60 15 (25%) 23 (38%)

Table 5: Number of sentences with maximum possible
adequacy (5) in Full ∩A and Full ∩B, respectively.

Similar to Hu et al. (2011), we adopt the very con-
servative criterion that a translation output is consid-
ered correct only if both evaluators independently
give it a rating of 5. Unlike Hu et al. (2011), for
whom children’s book translation requires both flu-
ency and adequacy, we make this a requirement only

5Presentation order was randomized.
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for adequacy, since in this scenario what matters to
aid organizations is not whether a translation is fully
fluent, but whether it is correct. On this criterion,
the Google Translate baseline of around 25% cor-
rect improves to around 40% for Monotrans, con-
sistently for both the devtest and test data (Table 5).
Nonetheless, Figures 1 and 2 make it clear that the
improvements in fluency are if anything more strik-
ing.

5.1 Statistical Analysis

Variable Adequacy Fluency
Positive

mostSingleCandidateVote ** ***
candidateCount ** **
numOfAnswers * NS

Negative
roundTrips *** ***
voteCount * .

Table 6: Effects of independent variables in linear regres-
sion for 330 touched sentences
(Signif. codes: ’***’ 0.001, ’**’ 0.01, ’*’ 0.05, ’.’ 0.1)

In addition to the main evaluation, we investi-
gated the relationship between tasks performed in
the MonoTrans2 system and human judgments us-
ing linear regression and an analysis of variance.
We evaluate the set of all 330 touched sentences in
Touched∩A and Touched∩B in order to under-
stand which properties of the MonoTrans2 process
correlate with better translation outcomes.

Our analysis focused on improvement over the
Google Translate baseline, looking specifically at
the improvement based on the human evaluators’ av-
eraged fluency and adequacy scores.

Table 6 summarizes the positive and negative
effects for five of six variables we considered that
came out significant for at least one of the measures.
6

The positive results were as expected. Having
more votes for the winning candidate (mostSingle-
CandidateVote) made it more successful, since this
means that more people felt it was a good represen-
tative translation. Having more candidates to choose

6A sixth, numOfVoters, was not significant in the linear re-
gression for either adequacy or fluency.

from (candidateCount) meant that more people had
taken the time to generate alternatives, reflecting at-
tention paid to the sentence. Also, the amount of
attention paid to target speakers’ requests for clarifi-
cation (numOfAnswers) is as expected related to the
adequacy of the final translation, and perhaps as ex-
pected does not correlate with fluency of the output
since it helps with meaning and not actual target-side
wording.

We were, however, confused at first by the neg-
ative influence of the roundTrips measure and vote-
Count measures. We conjecture that the first effect
arises due to a correlation between roundTrips and
translation difficulty; much harder sentences would
have led to many more paraphrase requests, and
hence to more round trips. We attempted to inves-
tigate this hypothesis by testing correlation with a
naive measure of sentence difficulty, length, but this
was not fruitful. We suspect that inspecting use of
abbreviations, proper nouns, source-side mistakes,
and syntactic complexity would give us more insight
into this issue.

As for voteCount, the negative correlation is un-
derstandable when considered side by side with
the other vote-based measure, mostSingleCandidat-
eVote. Having a higher number of votes for the win-
ning candidate leads to improvement (strongly sig-
nificant for both adequacy and fluency), so a higher
general vote count means that people were also vot-
ing more times for other candidates. Hence, once the
positive winning vote count is taken into account,
the remaining votes actually represent disagreement
on the candidates, hence correlating negatively with
overall improvement over baseline.

It is important to note that when these measures
are all considered together, they show that there is a
clear correlation between the MonoTrans2 system’s
human processing and the eventual increase in both
quality and fluency of the sentences. As people give
more attention to sentences, these sentences show
better performance, as judged by increase over base-
line.

6 Discussion

Our experiment did not address acquisition of, and
incentives for, monolingual participants. In fact, get-
ting time from Haitian Creole speakers, even for pay,
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Figure 1: Human judgments for fluency and adequacy in fully processed devtest items (Full ∩A)
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Figure 2: Human judgments for fluency and adequacy in fully processed test items (Full ∩B)

created a large number of logistical challenges, and
was a contributing factor as to why we did not obtain
translations for the entire test set. However, avail-
ability of monolingual participants is not the issue
being addressed in this experiment: we are confi-
dent that in a real-world scenario like the Haitian
or Japanese earthquakes, large numbers of monolin-
gual volunteers would be eager to help, certainly in
larger total numbers than bilingual volunteers. What
matters here, therefore, is not how much of the test
set was translated in total, but how much the trans-
lations improved for the sentences where monolin-
gual crowdsourcing was involved, compared to the
MT baseline, and what throughput might be like in
a real-world scenario.

We also were interested in throughput, particu-
larly in comparison to bilingual translators. In previ-
ous experimentation (Hu et al., 2011), throughput in
MonoTrans2 extrapolated to roughly 800 words per
day, a factor of 2.5 slower than professional trans-
lators’ typical speed of 2000 words per day. In
this experiment, overall translation speed averaged

about 300 words per day, a factor of more than 6
times slower. However, this is an extremely pes-
simistic estimate, for several reasons. First, our pre-
vious experiment had more than 20 users per side,
while here our Haitian crowd consisted of only four
people. Second, we discovered after beginning the
experiment that the translation of our instructions
into Haitian Creole had been done somewhat slop-
pily. And, third, we encountered a range of tech-
nical and logistical problems with our Haitian par-
ticipants, ranging from finding a location with In-
ternet access to do the work (ultimately an Internet
Café turned out to be the best option), to slow and
sporadic connections (even in an Internet Café), to
relative lack of motivation for part-time rather than
full-time work. It is fair to assume that in a real-
world scenario, some unanticipated problems like
these might crop up, but it also seems fair to assume
that many would not; for example, most people from
the Haitian Creole and French-speaking communi-
ties who volunteered using Munro et al.’s system
in January 2010 were not themselves located in the
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third world.
Finally, regarding quality, the results here are

promising, albeit not as striking as those Hu et al.
(2011) obtained for Spanish-German translation of
children’s books. The nature of SMS messages
themselves may have been a contributing factor to
the lower translation adequacy: even in clean form,
these are sometimes written using shorthand (e.g.
”SVP”), and are sometimes not syntactically correct.
The text messages are seldom related to each other,
unlike sentences in larger bodies of text where even
partially translated sentences can be related to each
other to provide context, as is the case for children’s
books. One should also keep in mind that the under-
lying machine translation engine, Google Translate
between Haitian Creole and English, is still in an al-
pha phase.

Those considerations notwithstanding, it is en-
couraging to see a set of machine translations get
better without the use of any human bilingual exper-
tise. We are optimistic that with further refinements
and research, monolingual translation crowdsourc-
ing will make it possible to harness the vast num-
ber of technologically connected people who want
to help in some way when disaster strikes.
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Abstract

This paper describes the statistical machine
translation (SMT) systems developed by
RWTH Aachen University for the translation
task of the EMNLP 2011 Sixth Workshop on
Statistical Machine Translation. Both phrase-
based and hierarchical SMT systems were
trained for the constrained German-English
and French-English tasks in all directions. Ex-
periments were conducted to compare differ-
ent training data sets, training methods and op-
timization criteria, as well as additional mod-
els on dependency structure and phrase re-
ordering. Further, we applied a system com-
bination technique to create a consensus hy-
pothesis from several different systems.

1 Overview

We sketch the baseline architecture of RWTH’s se-
tups for the WMT 2011 shared translation task by
providing an overview of our translation systems in
Section 2. In addition to the baseline features, we
adopted several novel methods, which will be pre-
sented in Section 3. Details on the respective se-
tups and translation results for the French-English
and German-English language pairs (in both trans-
lation directions) are given in Sections 4 and 5. We
finally conclude the paper in Section 6.

2 Translation Systems

For the WMT 2011 evaluation we utilized RWTH’s
state-of-the-art phrase-based and hierarchical trans-
lation systems as well as our in-house system com-
bination framework. GIZA++ (Och and Ney, 2003)

was employed to train word alignments, language
models have been created with the SRILM toolkit
(Stolcke, 2002).

2.1 Phrase-Based System

We applied a phrase-based translation (PBT) system
similar to the one described in (Zens and Ney, 2008).
Phrase pairs are extracted from a word-aligned bilin-
gual corpus and their translation probability in both
directions is estimated by relative frequencies. The
standard feature set moreover includes an n-gram
language model, phrase-level single-word lexicons
and word-, phrase- and distortion-penalties. To lexi-
calize reordering, a discriminative reordering model
(Zens and Ney, 2006a) is used. Parameters are opti-
mized with the Downhill-Simplex algorithm (Nelder
and Mead, 1965) on the word graph.

2.2 Hierarchical System

For the hierarchical setups described in this paper,
the open source Jane toolkit (Vilar et al., 2010) was
employed. Jane has been developed at RWTH and
implements the hierarchical approach as introduced
by Chiang (2007) with some state-of-the-art exten-
sions. In hierarchical phrase-based translation, a
weighted synchronous context-free grammar is in-
duced from parallel text. In addition to contiguous
lexical phrases, hierarchical phrases with up to two
gaps are extracted. The search is typically carried
out using the cube pruning algorithm (Huang and
Chiang, 2007). The standard models integrated into
our Jane systems are: phrase translation probabil-
ities and lexical translation probabilities on phrase
level, each for both translation directions, length
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penalties on word and phrase level, three binary fea-
tures marking hierarchical phrases, glue rule, and
rules with non-terminals at the boundaries, source-
to-target and target-to-source phrase length ratios,
four binary count features and an n-gram language
model. The model weights are optimized with stan-
dard MERT (Och, 2003) on 100-best lists.

2.3 System Combination

System combination is used to produce consensus
translations from multiple hypotheses produced with
different translation engines that are better in terms
of translation quality than any of the individual hy-
potheses. The basic concept of RWTH’s approach
to machine translation system combination has been
described by Matusov et al. (Matusov et al., 2006;
Matusov et al., 2008). This approach includes an
enhanced alignment and reordering framework. A
lattice is built from the input hypotheses. The trans-
lation with the best score within the lattice according
to a couple of statistical models is selected as con-
sensus translation.

3 Translation Modeling

We incorporated several novel methods into our sys-
tems for the WMT 2011 evaluation. This section
provides a short survey of three of the methods
which we suppose to be of particular interest.

3.1 Language Model Data Selection

For the English and German language models,
we applied the data selection method proposed in
(Moore and Lewis, 2010). Each sentence is scored
by the difference in cross-entropy between a lan-
guage model trained from in-domain data and a lan-
guage model trained from a similar-sized sample of
the out-of-domain data. As in-domain data we used
the news-commentary corpus. The out-of-domain
data from which the data was selected are the news
crawl corpus for both languages and for English the
109 corpus and the LDC Gigaword data. We used a
3-gram trained with the SRI toolkit to compute the
cross-entropy. For the news crawl corpus, only 1/8
of the sentences were discarded. Of the 109 corpus
we retained 1/2 and of the LDC Gigaword data we
retained 1/4 of the sentences to train the language
models.

3.2 Phrase Model Training

For the German→English and French→English
translation tasks we applied a forced alignment pro-
cedure to train the phrase translation model with the
EM algorithm, similar to the one described in (DeN-
ero et al., 2006). Here, the phrase translation prob-
abilities are estimated from their relative frequen-
cies in the phrase-aligned training data. The phrase
alignment is produced by a modified version of the
translation decoder. In addition to providing a statis-
tically well-founded phrase model, this has the ben-
efit of producing smaller phrase tables and thus al-
lowing more rapid experiments. A detailed descrip-
tion of the training procedure is given in (Wuebker
et al., 2010).

3.3 Soft String-to-Dependency

Given a dependency tree of the target language,
we are able to introduce language models that span
over longer distances than the usual n-grams, as in
(Shen et al., 2008). To obtain dependency structures,
we apply the Stanford parser (Klein and Manning,
2003) on the target side of the training material.
RWTH’s open source hierarchical translation toolkit
Jane has been extended to include dependency infor-
mation in the phrase table and to build dependency
trees on the output hypotheses at decoding time from
this information.

Shen et al. (2008) use only phrases that meet cer-
tain restrictions. The first possibility is what the au-
thors call a fixed dependency structure. With the
exception of one word within this phrase, called
the head, no outside word may have a dependency
within this phrase. Also, all inner words may only
depend on each other or on the head. For a second
structure, called a floating dependency structure, the
head dependency word may also exist outside the
phrase. If the dependency structure of a phrase con-
forms to these restrictions, it is denoted as valid.

In our phrase table, we mark those phrases that
possess a valid dependency structure with a binary
feature, but all phrases are retained as translation op-
tions. In addition to storing the dependency informa-
tion, we also memorize for all hierarchical phrases
if the content of gaps has been dependent on the left
or on the right side. We utilize the dependency in-
formation during the search process by adding three
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French English
Sentences 3 710 985
Running Words 98 352 916 87 689 253
Vocabulary 179 548 216 765

Table 1: Corpus statistics of the preprocessed high-
quality training data (Europarl, news-commentary, and
selected parts of the 109 and UN corpora) for the
RWTH systems for the WMT 2011 French→English and
English→French translation tasks. Numerical quantities
are replaced by a single category symbol.

features to the log-linear model: merging errors to
the left, merging errors to the right, and the ratio of
valid vs. non-valid dependency structures. The de-
coder computes the corresponding costs when it tries
to construct a dependency tree of a (partial) hypothe-
sis on-the-fly by merging the dependency structures
of the used phrase pairs.

In an n-best reranking step, we compute depen-
dency language model scores on the dependencies
which were assembled on the hypotheses by the
search procedure. We apply one language model
for left-side dependencies and one for right-side de-
pendencies. For head structures, we also compute
their scores by exploiting a simple unigram language
model. We furthermore include a language count
feature that is incremented each time we compute
a dependency language model score. As trees with
few dependencies have less individual costs to be
computed, they tend to obtain lower overall costs
than trees with more complex structures in other
sentences. The intention behind this feature is thus
comparable to the word penalty in combination with
a normal n-gram language model.

4 French-English Setups

We set up both hierarchical and standard phrase-
based systems for the constrained condition of the
WMT 2011 French→English and English→French
translation tasks. The English→French RWTH pri-
mary submission was produced with a single hierar-
chical system, while a system combination of three
systems was used to generate a final hypothesis for
the French→English primary submission.

Besides the Europarl and news-commentary cor-
pora, the provided parallel data also comprehends

French English
Sentences 29 996 228
Running Words 916 347 538 778 544 843
Vocabulary 1 568 089 1 585 093

Table 2: Corpus statistics of the preprocessed full training
data for the RWTH primary system for the WMT 2011
English→French translation task. Numerical quantities
are replaced by a single category symbol.

the large French-English 109 corpus and the French-
English UN corpus. Since model training with
such a huge amount of data requires a consider-
able computational effort, RWTH decided to select
a high-quality part of altogether about 2 Mio. sen-
tence pairs from the latter two corpora. The selec-
tion of parallel sentences was carried out according
to three criteria: (1) Only sentences of minimum
length of 4 tokens are considered, (2) at least 92%
of the vocabulary of each sentence occurs in new-
stest2008, and (3) the ratio of the vocabulary size
of a sentence and the number of its tokens is mini-
mum 80%. Word alignments in both directions were
trained with GIZA++ and symmetrized according to
the refined method that was proposed in (Och and
Ney, 2003). The phrase tables of the translation
systems are extracted from the Europarl and news-
commentary parallel training data as well as the se-
lected high-quality parts the 109 and UN corpora
only. The only exception is the hierarchical system
used for the English→French RWTH primary sub-
mission which comprehends a second phrase table
with lexical (i.e. non-hierarchical) phrases extracted
from the full parallel data (approximately 30 Mio.
sentence pairs).

Detailed statistics of the high-quality parallel
training data (Europarl, news-commentary, and the
selected parts of the 109 and UN corpora) are given
in Table 1, the corpus statistics of the full parallel
data from which the second phrase table with lexi-
cal phrases for the English→French RWTH primary
system was created are presented in Table 2.

The translation systems use large 4-gram lan-
guage models with modified Kneser-Ney smooth-
ing. The French language model was trained on
most of the provided French data including the
monolingual LDC Gigaword corpora, the English
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newstest2009 newstest2010
French→English BLEU TER BLEU TER
System combination of † systems (primary) 26.7 56.0 27.4 54.9
PBT with triplet lexicon, no forced alignment (contrastive) † 26.2 56.7 27.2 55.3
Jane as below + improved LM (contrastive) 26.3 57.4 26.7 56.2
Jane with parse match + syntactic labels + dependency † 26.2 57.5 26.5 56.4
PBT with forced alignment phrase training † 26.0 57.1 26.3 56.0

Table 3: RWTH systems for the WMT 2011 French→English translation task (truecase). BLEU and TER results are
in percentage.

newstest2009 newstest2010
English→French BLEU TER BLEU TER
Jane shallow + in-domain TM + lexical phrases from full data 25.3 60.1 27.1 57.2
Jane shallow + in-domain TM + triplets + DWL + parse match 24.8 60.5 26.6 57.5
PBT with triplets, DWL, sentence-level word lexicon, discrim. reord. 24.8 60.1 26.5 57.3

Table 4: RWTH systems for the WMT 2011 English→French translation task (truecase). BLEU and TER results are
in percentage.

language model was trained on automatically se-
lected English data (cf. Section 3.1) from the pro-
vided resources including the 109 corpus and LDC
Gigaword.

The scaling factors of the log-linear model com-
bination are optimized towards BLEU on new-
stest2009, newstest2010 is used as an unseen test set.

4.1 Experimental Results French→English

The results for the French→English task are given in
Table 3. RWTH’s three submissions – one primary
and two contrastive – are labeled accordingly in the
table. The first contrastive submission is a phrase-
based system with a standard feature set plus an ad-
ditional triplet lexicon model (Mauser et al., 2009).
The triplet lexicon model was trained on in-domain
news commentary data only. The second contrastive
submission is a hierarchical Jane system with three
syntax-based extensions: A parse match model (Vi-
lar et al., 2008), soft syntactic labels (Stein et al.,
2010), and the soft string-to-dependency extension
as described in Section 3.3. The primary submis-
sion combines the phrase-based contrastive system,
a hierarchical system that is very similar to the Jane
contrastive submission but with a slightly worse lan-
guage model, and an additional PBT system that has
been trained with forced alignment (Wuebker et al.,

2010) on WMT 2010 data only.

4.2 Experimental Results English→French

The results for the English→French task are given
in Table 4. We likewise submitted two contrastive
systems for this translation direction. The first con-
trastive submission is a phrase-based system, en-
hanced with a triplet lexicon model and a discrim-
inative word lexicon model (Mauser et al., 2009) –
both trained on in-domain news commentary data
only – as well as a sentence-level single-word lex-
icon model and a discriminative reordering model
(Zens and Ney, 2006a). The second contrastive sub-
mission is a hierarchical Jane system with shallow
rules (Iglesias et al., 2009), a triplet lexicon model, a
discriminative word lexicon, the parse match model,
and a second phrase table extracted from in-domain
data only. Our primary submission is very similar
to the latter Jane setup. It does not comprise the ex-
tended lexicon models and the parse match exten-
sion, but instead includes lexical phrases from the
full 30 Mio. sentence corpus as described above.

5 German-English Setups

We trained phrase-based and hierarchical transla-
tion systems for both translation directions of the
German-English language pair. The corpus statis-
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German English
Sentences 1 857 745
Running Words 48 449 977 50 559 217
Vocabulary 387 593 123 470

Table 5: Corpus statistics of the preprocessed train-
ing data for the WMT 2011 German→English and
English→German translation tasks. Numerical quantities
are replaced by a single category symbol.

tics can be found in Table 5. Word alignments were
generated with GIZA++ and symmetrized as for the
French-English setups.

The language models are 4-grams trained on the
bilingual data as well as the provided News crawl
corpus. For the English language model the 109

French-English and LDC Gigaword corpora were
used additionally. For the 109 French-English and
LDC Gigaword corpora RWTH applied the data se-
lection technique described in Section 3.1. We ex-
amined two different language models, one with
LDC data and one without.

Systems were optimized on the newstest2009 data
set, newstest2008 was used as test set. The scores
for newstest2010 are included for completeness.

5.1 Morpho-Syntactic Analysis
In order to reduce the source vocabulary size for
the German→English translation, the source side
was preprocessed by splitting German compound
words with the frequency-based method described
in (Koehn and Knight, 2003). To further reduce
translation complexity, we performed the long-range
part-of-speech based reordering rules proposed by
(Popović et al., 2006). For additional experiments
we used the TreeTagger (Schmid, 1995) to produce
a lemmatized version of the German source.

5.2 Optimization Criterion
We studied the impact of different optimization cri-
teria on tranlsation performance. The usual prac-
tice is to optimize the scaling factors to maximize
BLEU. We also experimented with two different
combinations of BLEU and Translation Edit Rate
(TER): TER−BLEU and TER−4BLEU. The first
denotes the equally weighted combination, while for
the latter BLEU is weighted 4 times as strong as
TER.

5.3 Experimental Results German→English

For the German→English task we conducted ex-
periments comparing the standard phrase extraction
with the phrase training technique described in Sec-
tion 3.2. For the latter we applied log-linear phrase-
table interpolation as proposed in (Wuebker et al.,
2010). Further experiments included the use of addi-
tional language model training data, reranking of n-
best lists generated by the phrase-based system, and
different optimization criteria. We also carried out
a system combination of several systems, including
phrase-based systems on lemmatized German and
on source data without compound splitting and two
hierarchical systems optimized for different criteria.
The results are given in Table 6.

A considerable increase in translation quality can
be achieved by application of German compound
splitting. The system that operates on German
surface forms without compound splitting (SUR)
clearly underperforms the baseline system with mor-
phological preprocessing. The system on lemma-
tized German (LEM) is at about the same level as
the system on surface forms.

In comparison to the standard heuristic phrase ex-
traction technique, performing phrase training (FA)
gives an improvement in BLEU on newstest2008
and newstest2009, but a degradation in TER. The
addition of LDC Gigaword corpora (+GW) to the
language model training data shows improvements
in both BLEU and TER. Reranking was done on
1000-best lists generated by the the best available
system (PBT (FA)+GW). Following models were
applied: n-gram posteriors (Zens and Ney, 2006b),
sentence length model, a 6-gram LM and single-
word lexicon models in both normal and inverse di-
rection. These models are combined in a log-linear
fashion and the scaling factors are tuned in the same
manner as the baseline system (using TER−4BLEU
on newstest2009).

The table includes three identical Jane systems
which are optimized for different criteria. The one
optimized for TER−4BLEU offers the best balance
between BLEU and TER, but was not finished in
time for submission. As primary submission we
chose the reranked PBT system, as secondary the
system combination.
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newstest2008 newstest2009 newstest2010
German→English opt criterion BLEU TER BLEU TER BLEU TER
Syscombi of † (secondary) TER−BLEU 21.1 62.1 20.8 61.2 23.7 59.2
Jane +GW † BLEU 21.5 63.9 21.0 63.3 22.9 61.7
Jane +GW TER−4BLEU 21.4 62.6 21.1 62.0 23.5 60.3
PBT (FA) rerank +GW (primary) † TER−4BLEU 21.4 62.8 21.1 61.9 23.4 60.1
PBT (FA) +GW † TER−4BLEU 21.1 63.0 21.1 62.2 23.3 60.3
Jane +GW † TER−BLEU 20.9 61.1 20.4 60.5 23.4 58.3
PBT (FA) TER−4BLEU 21.1 63.2 20.6 62.4 23.2 60.4
PBT TER−4BLEU 20.6 62.7 20.3 61.9 23.3 59.7
PBT (SUR) † TER−4BLEU 19.5 66.5 18.9 65.8 21.0 64.9
PBT (LEM) † TER−4BLEU 19.2 66.1 18.9 65.4 21.0 63.5

Table 6: RWTH systems for the WMT 2011 German→English translation task (truecase). BLEU and TER results
are in percentage. FA denotes systems with phrase training, +GW the use of LDC data for the language model.
SUR and LEM denote the systems without compound splitting and on the lemmatized source, respectively. The three
hierarchical Jane systems are identical, but used different parameter optimization criterea.

newstest2008 newstest2009 newstest2010
English→German opt criterion BLEU TER BLEU TER BLEU TER
PBT + discrim. reord. (primary) TER−4BLEU 15.3 70.2 15.1 69.8 16.2 65.6
PBT + discrim. reord. BLEU 15.2 70.6 15.2 70.1 16.2 66.0
PBT TER−4BLEU 15.2 70.7 15.2 70.2 16.2 66.1
Jane BLEU 15.1 72.1 15.4 71.2 16.4 67.4
Jane TER−4BLEU 15.1 68.4 14.6 69.5 14.6 65.9

Table 7: RWTH systems for the WMT 2011 English→German translation task (truecase). BLEU and TER results are
in percentage.

5.4 Experimental Results English→German
We likewise studied the effect of using BLEU only
versus using TER−4BLEU as optimization crite-
rion in the English→German translation direction.
Moreover, we tested the impact of the discriminative
reordering model (Zens and Ney, 2006a). The re-
sults can be found in Table 7. For the phrase-based
system, optimizing towards TER−4BLEU leads to
slightly better results both in BLEU and TER than
optimizing towards BLEU. Using the discriminative
reordering model yields some improvements both on
newstest2008 and newstest2010. In the case of the
hierarchical system, the effect of the optimization
criterion is more pronounced than for the phrase-
based system. However, in this case it clearly leads
to a tradeoff between BLEU and TER, as the choice
of TER−4BLEU harms the translation results of
test2010 with respect to BLEU.

6 Conclusion

For the participation in the WMT 2011 shared trans-
lation task, RWTH experimented with both phrase-
based and hierarchical translation systems. We used
all bilingual and monolingual data provided for the
constrained track. To limit the size of the lan-
guage model, a data selection technique was applied.
Several techniques yielded improvements over the
baseline, including three syntactic models, extended
lexicon models, a discriminative reordering model,
forced alignment training, reranking methods and
different optimization criteria.
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Abstract

In this paper we describe the Institute for
Logic, Language and Computation (Uni-
versity of Amsterdam) phrase-based statisti-
cal machine translation system for English-
to-German translation proposed within the
EMNLP-WMT 2011 shared task. The main
novelty of the submitted system is a syntax-
driven pre-translation reordering algorithm
implemented as source string permutation via
transfer of the source-side syntax tree.

1 Introduction

For the WMT 2011 shared task, ILLC-UvA submit-
ted two translations (primary and secondary) for the
English-to-German translation task. This year, we
directed our research toward addressing the word
order problem for statistical machine translation
(SMT) and discover its impact on output translation
quality. We reorder the words of a sentence of the
source language with respect to the word order of
the target language and a given source-side parse
tree. The difference from the baseline Moses-based
translation system lies in the pre-translation step, in
which we introduce a discriminative source string
permutation model based on probabilistic parse tree
transduction.

The idea here is to permute the order of the source
words in such a way that the resulting permutation
allows as monotone a translation process as possible
is not new. This approach to enhance SMT by using
a reordering step prior to translation has proved to be
successful in improving translation quality for many

translation tasks, see (Genzel, 2010; Costa-jussà and
Fonollosa, 2006; Collins et al., 2005), for example.

The general problem of source-side reordering is
that the number of permutations is factorial in n, and
learning a sequence of transductions for explaining
a source permutation can be computationally rather
challenging. We propose to address this problem by
defining the source-side permutation process as the
learning problem of how to transfer a given source
parse tree into a parse tree that minimizes the diver-
gence from target word order.

Our reordering system is inspired by the direction
taken in (Tromble and Eisner, 2009), but differs in
defining the space of permutations, using local prob-
abilistic tree transductions, as well as in the learn-
ing objective aiming at scoring permutations based
on a log-linear interpolation of a local syntax-based
model with a global string-based (language) model.

The reordering (novel) and translation (standard)
components are described in the following sections.
The rest of this paper is structured as follows. After a
brief description of the phrase-based translation sys-
tem in Section 2, we present the architecture and de-
tails of our reordering system (Section 3), Section 4
reviews related work, Section 5 reports the experi-
mental setup, details the submissions and discusses
the results, while Section 6 concludes the article.

2 Baseline system

2.1 Statistical machine translation

In SMT the translation problem is formulated as se-
lecting the target translation t with the highest prob-
ability from a set of target hypothesis sentences for
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the source sentence s: t̂ = arg max
t
{ p(t|s) } =

arg max
t
{ p(s|t) · p(t) }.

2.2 Phrase-based translation

While first systems following this approach per-
formed translation on the word level, modern state-
of-the-art phrase-based SMT systems (Och and Ney,
2002; Koehn et al., 2003) start-out from a word-
aligned parallel corpus working with (in principle)
arbitrarily large phrase pairs (also called blocks) ac-
quired from word-aligned parallel data under a sim-
ple definition of translational equivalence (Zens et
al., 2002).

The conditional probabilities of one phrase given
its counterpart is estimated as the relative frequency
ratio of the phrases in the multiset of phrase-pairs
extracted from the parallel corpus and are interpo-
lated log-linearly together with a set of other model
estimates:

êI
1 = arg max

eI
1

{
M∑

m=1

λmhm(eI
1, f

J
1 )

}
(1)

where a feature function hm refer to a system model,
and the corresponding λm refers to the relative
weight given to this model.

A phrase-based system employs feature func-
tions for a phrase pair translation model, a lan-
guage model, a reordering model, and a model
to score translation hypothesis according to length.
The weights λm are optimized for system perfor-
mance (Och, 2003) as measured by BLEU (Papineni
et al., 2002).

Apart from the novel syntax-based reordering
model, we consider two reordering methods that
are widely used in phrase-based systems: a simple
distance-based reordering and a lexicalized block-
oriented data-driven reordering model (Tillman,
2004).

3 Architecture of the reordering system

We approach the word order challenge by including
syntactic information in a pre-translation reordering
framework. This section details the general idea of
our approach and details the reordering model that
was used in English-to-German experiments.

3.1 Pre-translation reordering framework

Given a word-aligned parallel corpus, we define the
source string permutation as the task of learning
to unfold the crossing alignments between sentence
pairs in the parallel corpus. Let be given a source-
target sentence pair s → t with word alignment set
a between their words. Unfolding the crossing in-
stances in a should lead to as monotone an align-
ment a

′
as possible between a permutation s

′
of s

and the target string t. Conducting such a “mono-
tonization” on the parallel corpus gives two par-
allel corpora: (1) a source-to-permutation parallel
corpus (s → s

′
) and (2) a source permutation-to-

target parallel corpus (s
′ → t). The latter corpus is

word-aligned automatically again and used for train-
ing a phrase-based translation system, while the for-
mer corpus is used for training our model for pre-
translation source permutation via parse tree trans-
ductions.

In itself, the problem of permuting the source
string to unfold the crossing alignments is com-
putationally intractable (see (Tromble and Eisner,
2009)). However, different kinds of constraints can
be made on unfolding the crossing alignments in a.
A common approach in hierarchical SMT is to as-
sume that the source string has a binary parse tree,
and the set of eligible permutations is defined by bi-
nary ITG transductions on this tree. This defines
permutations that can be obtained only by at most
inverting pairs of children under nodes of the source
tree.

3.2 Conditional tree reordering model

Given a parallel corpus with string pairs s → t with
word alignment a, the source strings s are parsed,
leading to a single parse tree τs per source string. We
create a source permuted parallel corpus s → s

′
by

unfolding the crossing alignments in a without/with
syntactic tree to provide constraints on the unfold-
ing.

Our model aims at learning from the source per-
muted parallel corpus s → s

′
a probabilistic op-

timization arg maxπ(s) P (π(s) | s, τs). We as-
sume that the set of permutations {π(s)} is defined
through a finite set of local transductions over the
tree τs. Hence, we view the permutations leading
from s to s

′
as a sequence of local tree transduc-
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tions τ
s
′
0
→ . . . → τs′n

, where s
′
0 = s and s

′
n = s

′
,

and each transduction τ
s
′
i−1

→ τ
s
′
i

is defined using a
tree transduction operation that at most permutes the
children of a single node in τ

s
′
i−1

as defined next.
A local transduction τ

s
′
i−1

→ τ
s
′
i

is modelled by
an operation that applies to a single node with ad-
dress x in τ

s
′
i−1

, labeled Nx, and may permute the
ordered sequence of children αx dominated by node
x. This constitutes a direct generalization of the ITG
binary inversion transduction operation. We assign a
conditional probability to each such local transduc-
tion:

P (τ
s
′
i
| τ

s
′
i−1

) ≈ P (π(αx) | Nx → αx, Cx) (2)

where π(αx) is a permutation of αx (the ordered
sequence of node labels under x) and Cx is a lo-
cal tree context of node x in tree τ

s
′
i−1

. One wrin-
kle in this definition is that the number of possible
permutations of αx is factorial in the length of αx.
Fortunately, the source permuted training data ex-
hibits only a fraction of possible permutations even
for longer αx sequences. Furthermore, by condition-
ing the probability on local context, the general ap-
plicability of the permutation is restrained.

In principle, if we would disregard the computa-
tional cost, we could define the probability of the se-
quence of local tree transductions τ

s
′
0
→ . . . → τs′n

as

P (τ
s
′
0
→ . . . → τs′n

) =
n∏

i=1

P (τ
s
′
i
| τ

s
′
i−1

) (3)

The problem of calculating the most likely permu-
tation under this kind of transduction probability
is intractable because every local transduction con-
ditions on local context of an intermediate tree1.
Hence, we disregard this formulation and in practice
we take a pragmatic approach and greedily select at
every intermediate point τ

s
′
i−1

→ τ
s
′
i

the single most
likely local transduction that can be conducted on
any node of the current intermediate tree τ

s
′
i−1

. The

1Note that a single transduction step on the current tree
τ

s
′
i−1

leads to a forest of trees τ
s
′
i

because there can be mul-

tiple alternative transduction rules. Hence, this kind of a model
demands optimization over many possible sequences of trees,
which can be packed into a sequence of parse-forests with trans-
duction links between them.

individual steps are made more effective by interpo-
lating the term in Equation 2 with string probability
ratios:

P (π(αx) | Nx → αx, Cx)×
(

P (s
′
i−1)

P (s′i)

)
(4)

The rationale behind this interpolation is that our
source permutation approach aims at finding the op-
timal permutation s

′
of s that can serve as input for

a subsequent translation model. Hence, we aim at
tree transductions that are syntactically motivated
that also lead to improved string permutations. In
this sense, the tree transduction definitions can be
seen as an efficient and syntactically informed way
to define the space of possible permutations.

We estimate the string probabilities P (s
′
i) using

5-gram language models trained on the s
′

side of
the source permuted parallel corpus s → s

′
. We es-

timate the conditional probability P (π(αx) | Nx →
αx, Cx) using a Maximum-Entropy framework,
where feature functions are defined to capture the
permutation as a class, the node label Nx and its
head POS tag, the child sequence αx together with
the corresponding sequence of head POS tags and
other features corresponding to different contextual
information.

We were particularly interested in those linguistic
features that motivate reordering phenomena from
the syntactic and linguistic perspective. The features
that were used for training the permutation system
are extracted for every internal node of the source
tree that has more than one child:

• Local tree topology. Sub-tree instances that in-
clude parent node and the ordered sequence of
child node labels.

• Dependency features. Features that determine
the POS tag of the head word of the current
node, together with the sequence of POS tags
of the head words of its child nodes.

• Syntactic features. Two binary features from
this class describe: (1) whether the parent node
is a child of the node annotated with the same
syntactic category, (2) whether the parent node
is a descendant of a node annotated with the
same syntactic category.
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4 Related work

The integration of linguistic syntax into SMT sys-
tems offers a potential solution to reordering prob-
lem. For example, syntax is successfully integrated
into hierarchical SMT (Zollmann and Venugopal,
2006). In (Yamada and Knight, 2001), a set of tree-
string channel operations is defined over the parse
tree nodes, while reordering is modeled by permuta-
tions of children nodes. Similarly, the tree-to-string
syntax-based transduction approach offers a com-
plete translation framework (Galley et al., 2006).

The idea of augmenting SMT by a reordering step
prior to translation has often been shown to improve
translation quality. Clause restructuring performed
with hand-crafted reordering rules for German-to-
English and Chinese-to-English tasks are presented
in (Collins et al., 2005) and (Wang et al., 2007), re-
spectively. In (Xia and McCord, 2004; Khalilov,
2009) word reordering is addressed by exploiting
syntactic representations of source and target texts.

In (Costa-jussà and Fonollosa, 2006) source and
target word order harmonization is done using well-
established SMT techniques and without the use of
syntactic knowledge. Other reordering models op-
erate provide the decoder with multiple word or-
ders. For example, the MaxEnt reordering model
described in (Xiong et al., 2006) provides a hierar-
chical phrasal reordering system integrated within
a CKY-style decoder. In (Galley and Manning,
2008) the authors present an extension of the famous
MSD model (Tillman, 2004) able to handle long-
distance word-block permutations. Coming up-to-
date, in (PVS, 2010) an effective application of data
mining techniques to syntax-driven source reorder-
ing for MT is presented.

Different syntax-based reordering systems can be
found in (Genzel, 2010). In this system, reorder-
ing rules capable to capture many important word
order transformations are automatically learned and
applied in the preprocessing step.

Recently, Tromble and Eisner (Tromble and Eis-
ner, 2009) define source permutation as the word-
ordering learning problem; the model works with a
preference matrix for word pairs, expressing pref-
erence for their two alternative orders, and a cor-
responding weight matrix that is fit to the parallel
data. The huge space of permutations is then struc-

tured using a binary synchronous context-free gram-
mar (Binary ITG) with O(n3) parsing complexity,
and the permutation score is calculated recursively
over the tree at every node as the accumulation of
the relative differences between the word-pair scores
taken from the preference matrix. Application to
German-to-English translation exhibits some perfor-
mance improvement.

5 Experiments and submissions

Design, architecture and configuration of the trans-
lation system that we used in experimentation co-
incides with the Moses-based translation system
(Baseline system) described in details on the
WMT 2011 web page2.

This section details the experiments carried out to
evaluate the proposed reordering model, experimen-
tal set-up and data.

5.1 Data

In our experiments we used EuroParl v6.0 German-
English parallel corpus provided by the organizers
of the evaluation campaign.

A detailed statistics of the training, development,
internal (test int.) and official (test of.) test datasets
can be found in Table 1. The development corpus
coincides with the 2009 test set and for internal test-
ing we used the test data proposed to the participants
of WMT 2010.

”ASL“ stands for average sentence length. All the
sets were provided with one reference translation.

Data Sent. Words Voc. ASL
train En 1.7M 46.0M 121.3K 27.0
train Ge 1.7M 43.7M 368.5K 25.7
dev En 2.5K 57.6K 13.2K 22.8

test int. En 2.5K 53.2K 15.9K 21.4
test of. En 3.0K 74.8K 11.1K 24.9

Table 1: German-English EuroParl corpus (version 6.0).

Apart from the German portion of the EuroParl
parallel corpus, two additional monolingual corpora
from news domain (the News Commentary corpus
(NC) and the News Crawl Corpus 2011 (NS)) were

2http://www.statmt.org/wmt11/baseline.
html
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used to train a language model for German. The
characteristics of these datasets can be found in Ta-
ble 2. Notice that the data were not de-duplicated.

Data Sent. Words Voc. ASL
NC Ge 161.8M 3.9G 136.7M 23.9
NS Ge 45.3M 799.4M 3.0M 17.7

Table 2: Monolingual German corpora used for target-
side language modeling.

5.2 Experimental setup
Moses toolkit (Koehn et al., 2007) in its standard
setting was used to build the SMT systems:

• GIZA++/mkcls (Och, 2003; Och, 1999) for
word alignment.

• SRI LM (Stolcke, 2002) for language model-
ing. A 3-gram target language model was es-
timated and smoothed with modified Kneser-
Ney discounting.

• MOSES (Koehn et al., 2007) to build an un-
factored translation system.

• the Stanford parser (Klein and Manning,
2003) was used as a source-side parsing en-
gine3.

• For maximum entropy modeling we used the
maxent toolkit4.

The discriminative syntactic reordering model is
applied to reorder training, development, and test
corpora. A Moses-based translation system (corpus
realignment included5) is then trained using the re-
ordered input.

5.3 Internal results and submissions
The outputs of two translation system were submit-
ted. First, we piled up all feature functions into a sin-
gle model as described in Section 3. It was our “sec-
ondary” submission. However, our experience tells

3The parser was trained on the English treebank set provided
with 14 syntactic categories and 48 POS tags.

4http://homepages.inf.ed.ac.uk/lzhang10/
maxent_toolkit.html

5Some studies show that word re-alignment of a mono-
tonized corpus gives better results than unfolding of alignment
crossings (Costa-jussà and Fonollosa, 2006).

that the system performance can increase if the set
of patterns is split into partial classes conditioned on
the current node label (Khalilov and Sima’an, 2010).
Hence, we trained three separate MaxEnt models for
the categories with potentially high reordering re-
quirements, namely NP , SENT and SBAR(Q).
It was defines as our “primary” submission.

The ranking of submission was done according to
the results shown on internal testing, shown in Ta-
ble 3.

System BLEU dev BLEU test NIST test
Baseline 11.03 9.78 3.78
Primary 11.07 10.00 3.79

Secondary 10.92 9.91 3.78

Table 3: Internal testing results.

5.4 Official results and discussion
Unfortunately, the results of our participation this
year were discouraging. The primary submission
was ranked 30th (12.6 uncased BLEU-4) and the
secondary 31th (11.2) out of 32 submitted systems.

It turned out that our preliminary idea to extrapo-
late the positive results of English-to-Dutch transla-
tion reported in (Khalilov and Sima’an, 2010) to the
WMT English-to-German translation task was not
right.

Analyzing the reasons of negative results during
the post-evaluation period, we discovered that trans-
lation into German differs from English-to-Dutch
task in many cases. In contrast to English-to-Dutch
translation, the difference in terms of automatic
scores between the internal baseline system (without
external reordering) and the system enhanced with
the pre-translation reordering is minimal. It turns
out that translating into German is more complex
in general and discriminative reordering is more ad-
vantageous for English-to-Dutch than for English-
to-German translation.

A negative aspect influencing is the way how the
rules are extracted and applied according to our ap-
proach. Syntax-driven reordering, as described in
this paper, involves large contextual information ap-
plied cumulatively. Under conditions of scarce data,
alignment and parsing errors, it introduces noise to
the reordering system and distorts the feature prob-
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ability space. At the same time, many reorderings
can be performed more efficiently based on fixed
(hand-crafted) rules (as it is done in (Collins et al.,
2005)). A possible remedy to this problem is to
combine automatically extracted features with fixed
(hand-crafted) rules. Our last claims are supported
by the observations described in (Visweswariah et
al., 2010).

During post-evaluation period we analyzed the
reasons why the system performance has slightly
improved when separate MaxEnt models are ap-
plied. The outline of reordered nodes for
each of syntactic categories considered (SENT ,
SBAR(Q) and NP ) can be found in Table 4 (the
size of the corpus is 1.7 M of sentences).

Category # of applications
NP 497,186

SBAR(Q) 106,243
SENT 221,568

Table 4: Application of reorderings for separate syntactic
categories.

It is seen that the reorderings for NP nodes is
higher than for SENT and SBAR(Q) categories.
While SENT and SBAR(Q) reorderings work anal-
ogously for Dutch and German, our intuition is that
German has more features that play a role in reorder-
ing of NP structures than Dutch and there is a need
of more specific features to model NP permutations
in an accurate way.

6 Conclusions

This paper presents the ILLC-UvA translation sys-
tem for English-to-German translation task pro-
posed to the participants of the EMNLP-WMT 2011
evaluation campaign. The novel feature that we
present this year is a source reordering model in
which the reordering decisions are conditioned on
the features from the source parse tree.

Our system has not managed to outperform the
majority of the participating systems, possibly due
to its generic approach to reordering. We plan to in-
vestigate why our approach works well for English-
to-Dutch and less well for the English-to-German
translation in order to discover more generic ways
for learning discriminative reordering rules. One

possible explanation of the bad results is a high
sparseness of automatically extracted rules that does
not allow for sufficient generalization of reordering
instances.

In the future, we plan (1) to perform deeper anal-
ysis of the dissimilarity between English-to-Dutch
and English-to-German translations from SMT
perspective, and (2) to investigate linguistically-
motivated ideas to extend our model such that we
can bring about some improvement to English-to-
German translation.
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Abstract 

This paper describes the UPM system for 
translation task at the EMNLP 2011 workshop 
on statistical machine translation 
(http://www.statmt.org/wmt11/), and it has 
been used for both directions: Spanish-English 
and English-Spanish. This system is based on 
Moses with two new modules for pre and post 
processing the sentences. The main 
contribution is the method proposed (based on 
the similarity with the source language test set) 
for selecting the sentences for training the 
models and adjusting the weights. With 
system, we have obtained a 23.2 BLEU for 
Spanish-English and 21.7 BLEU for English-
Spanish. 

1 Introduction 

The Speech Technology Group of the Universidad 
Politécnica de Madrid has participated in the sixth 
workshop on statistical machine translation in the 
Spanish-English and English-Spanish translation 
task. 

Our submission is based on the state-of-the-art 
SMT toolkit Moses (Koehn, 2010) adding a pre-
processing and a post-processing module. The 
main contribution is a corpus selection method for 
training the translation models based on the 
similarity of each source corpus sentence with the 
language model of the source language test set. 

There are several related works on filtering the 
training corpus by using a similarity measure based 
on the alignment score or based on sentences 
length (Khadivi and Ney, 2005; Sanchis-Trilles et 
al, 2010). However, these techniques are focused 
on removing noisy data, i.e., their idea is to 
eliminate possible errors in the databases. 

The difference between these techniques and the 
method that we propose is that we do not search 
“bad” pairs of sentences, but we search those 
sentences in source training corpus that are more 
similar with the language model generated with the 
source test sentences and we select them for 
training. 

Other interesting technique of corpus selection 
is based on transductive learning (Ueffing, 2007). 
In this work, authors use of transductive semi-
supervised methods for the effective use of 
monolingual data from the source language in 
order to improve translation quality. 

The method proposed in this paper is also 
applied to the validation corpus. There are other 
works related to select development set (Hui, 
2010) that they combine different development sets 
in order to find the more similar one with test set. 

2 Overall description of the system  

The translation system used is based on Moses, 
the software released to support the translation task 
(http://www.statmt.org/wmt11/) at the EMNLP 
2011 workshop on statistical machine translation.  

 
Figure 1: Moses translation system 
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The phrase model has been trained following 
these steps (Figure 1): 
• Word alignment computation. GIZA++ (Och 

and Ney, 2003) is a statistical machine 
translation toolkit that is used to calculate the 
alignments between Spanish and English words 
in both direction (Spanish-English and English-
Spanish). To generate the translation model, the 
parameter “alignment” was fixed to “grow-
diag-final” (default value), and the parameter 
“reordering” was fixed to “msd-bidirectional-
fe” as the best option, based on experiments on 
the development set. 

• Phrase extraction (Koehn et al 2003). All phrase 
pairs that are consistent with the word 
alignment (grow-diag-final alignment in our 
case) are collected. To extract the phrases, the 
parameter “max-phrase-length” was fixed to 
“7” (default value), based on experiments on 
the development set. 

• Phrase scoring. In this step, the translation 
probabilities are computed for all phrase pairs. 
Both translation probabilities are calculated: 
forward and backward. 

The Moses decoder is used for the translation 
process (Koehn, 2010). This program is a beam 
search decoder for phrase-based statistical machine 
translation models. In order to obtain a 3-gram 
language model, the SRI language modeling 
toolkit has been used (Stolcke, 2002). 

In addition, a pre-processing module was 
developed for adapting the format of the corpus 
before training (pre-processing of training, 
development and test corpora). And a post-
processing for ordering punctuations, recasing, etc. 
is also applied to Moses output. 

3 Corpora used in these experiments 

For the system development, we have only used 
the free corpora distributed in the EMNLP 2011 
translation task. 

In particular, we have considered the union of 
the Europarl corpus, the United Nations 
Organization (UNO) Corpus, the News 
Commentary Corpus and the test sets of 2000, 
2006, 2007 and 2008. 

For developing the system, we have developed 
and evaluated the system considering the union of 
2009 and 2010 test sets.  

All these files can be free downloaded from 
http://www.statmt.org/wmt11/.  

A pre-processing of these databases is necessary 
for adapting the original format to our system. 

We have not used the complete union of all 
corpora, but a corpus selection by filtering the 
union of the training set and also filtering the union 
of the development set. This selection will be 
explained in section 5. 

The main characteristics of the corpus are shown 
in Table 1: the previous corpora and the filtered 
corpora. 

 
Table 1: Main characteristics of the corpus 

4 Preparing the corpora  

In order to use the corpus described in section 3 
with the mentioned translation systems, it is 
necessary a pre-processing. This pre-processing, 
for training files, consists of: 

 
• UTF-8 to Windows format conversion, because 

our software adapted to Windows had several 
problems with the UTF-8 format: it does not 
know accent marks, ñ letter, etc. 

• Deletion of blank lines and sentences that are 
comments (for instance: “<CHAPTER ID=1>”) 

• Deletion of special characters (.,;:¿?¡!-/\, etc.), 
except those that are next to numbers (for 
instance: “1.4”, “2,000”, “1/3”). We decided to 
remove these special characters to avoid 
including them in the translation model. During 
translation, these characters will be considered 
as phrase limits. 

  Original 
sentences 

Filtered 
sentences

Training 
(Translation 
Model (TM) 
/Language 

Model (LM))

Europarl 
Training 
Corpus 

1,650,152 

150,000 
(TM) 

3,000,000 
(LM) 

UNO 
Corpus 6,222,450 

News 
commentary 98,598 

Previous test 
sets 15,150 

Development news-test2009 2,525 1,000 news-test2010 2,489 
Test news-test2011 3,003 3,003 
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• Words were kept in their natural case, but the 
first letter of each sentence was lowercased, 
because first words of sentences are used to be 
lowercased as their most common form. 

• Contracted words were separated for training 
each word separately. For instance, “it’s” 
becomes “it is”. For the ambiguous cases, like 
“he’s” that can be “he is” or “he has”, we have 
not done any further processing: we have 
considered the most frequent situation. For the 
case of Saxon genitive, when proper names are 
used (instead of pronouns), “’s” is a Saxon 
genitive most of the times. But, when using a 
pronoun, it is a contracted word. 

For development and test sets, the same actions 
were carried out, but now, special characters were 
not deleted, but separated in tokens, i.e., a blank 
space was introduced between special characters 
and adjacent words. For instance, “la bolsa de 
Praga , al principio del martes comercial , 
reaccionó inmediatamente a la caída del lunes 
cuando descendió aproximadamente a un 6 %  .”  

So, special characters are considered as 
independent tokens in translation. The main idea 
was to force the system to consider special 
characters as phrase limits during the translation 
process. 

5 Selecting the training corpus 

Scattering of training data is a problem when 
integrating training material from different sources 
for developing a statistical system. In this case, we 
want to use a big training corpus joining all 
available corpora obtaining about 8 millions 
sentences. 

But an excessive amount of data can produce an 
important scattering that the statistical model 
cannot learn properly. 

The technique proposed by the Speech 
Technology Group at UPM in the translation task 
(Spanish-English and English-Spanish) consists of 
a filtering of the training data in order to obtain 
better results, without having memory problems. 

The first step is to compute a language model of 
the source language considering sentences to 
translate (sentences from the 2011 source test set).  

Secondly, the system computes the similarity of 
each source sentence in the training to the language 

model obtained in the first step. This similarity is 
computed with the following formula: 
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For example, if one sentence is “A B C D” 

(where each letter is a word of the sentence): 
 

)2()(
4
1

BCDABCABA PPPPsim +++=

 
 
Each probability is extracted from the language 

model calculated in the first step. This similarity is 
the negative of the source sentence perplexity 
given the language model. 

With all the similarities, the mean and the 
standard deviation values are computed and used 
to define a threshold. For example, calculating the 
similarity of all sentences in our train corpus 
(about 8,000,000 of sentences) a similarity 
histogram is obtained (Figure 2).  
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Figure 2: Similarity histogram of Spanish-English 

system  
 

This histogram indicates the number of 
sentences inside each interval. There are 100 
different intervals: the minimum similarity is 
mapped into 0 and the maximum one into 100. 

Finally, source training sentences with a 
similarity lower than the threshold are eliminated 
from the training set (the corresponding target 
sentences are also removed).  

The whole process is shown in Figure 3. This 
process takes 20 hours approximately for filtering 
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more than 8 million sentences in an Intel core 2 
quad computer.  

Source test 
set

Pre-
process

Target test 
set

Post-
process

N-gram 
probabilities of the 
language model

Big
Source training 

set

Big
Target training 

set

Source training 
filtered set 

Target training 
filtered set

Language 
Model

Translation 
model

Translation

Target test set

Features extraction

Classification

 
 

Figure 3: Diagram of complete process 
 
Figure 4 shows the results of the experiments in 

Spanish-English system selecting the training 
corpus with different similarity thresholds. These 
results were obtained before filtering the 
development corpus, with the same filtered 
training corpus for translation and language models 
and before post-processing. 
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Figure 4: Translation results of baseline Spanish-
English system with different number of training 

sentences 
 

As can be observed, with more than 400,000 
sentences there is a 12% BLEU (with an 
asymptotic tendency), but there is an important 
improvement filtering up to 100,000 (there is 
already not scattering). But results start to fall off 
when there are insufficient sentences (problem of 
sparseness of data with less than 100,000 
sentences). 

6 Post processing 

After performing the statistical translation, we 
have incorporated a post-processing module with 
the following functions: 
 
• To check the date format, detecting possible 

order errors and correcting them. 

• To check the format of the numbers, numerical 
and ordinal ones: 1º into 1st and so on. 

• Detokenization and ordering the punctuations 
marks when there are several ones 
consecutively (i.e. ‘“.’ or ‘).’), trying to follow, 
always, the same order. 

• To put the first letter of the sentences in capital 
letters. 

• To use a backup dictionary for translating 
isolated words. This aspect has improved 2% 
(BLEU) but it has also introduced some errors. 
For example in the case of English-Spanish, 
there was a checking process for translating 
English words into Spanish. But there were 
several English words that also are Spanish 
words. For example, “un” is an article in 
Spanish but in English means “United Nations” 
(Naciones Unidas) so some “un” were 
translated as “Naciones Unidas” by error. 

7 Selecting the development corpus 

The development corpus is used to adapt the 
different weights used in the translation process for 
combining the different sources of information. 
Weight computation is a sensible task. In order to 
better adapt these weights, the development corpus 
is also filtered considering the same strategy 
commented in section 5. 

Our solution consists of using two different 
corpora (2009 and 2010 test sets) and “choosing” 
the best sentences to use in development task with 
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the same filtering technique explained in section 5. 
Finally, we select the 1,000 sentences with the 
greater similarity respect to the source language 
model of the test set. 

Other action carried out in final experiments is 
using different corpora for training translation and 
language models. In order to generate the language 
model it is better to use a big corpus; so, we use 
3,000,000 sentences that it is the biggest model 
that we can generate without memory problems. 

But in order to generate the translation model, 
the final one is trained with 150,000 sentences.  

The final results are shown in Table 2. 
 
Spanish-English BLEU BLEU cased 

Baseline 12.57 12.15 
Best result 23.20 21.90 

English-Spanish BLEU BLEU cased 
Baseline 10.73 10.30 

Best result 21.70 20.90 
 

Table 2: Final results of the translation system 
 

With this work, we have demonstrated that 
filtering the corpus for training the translation 
module, can improve the translation results. But 
there are still important problems that must be 
addressed like the high number of out of 
vocabulary words (OOVs) (more than 40% of the 
test corpus vocabulary) that they have to be 
improved in the selecting method. 

About the selection, it is important to comment 
that this method more likely filters long sentences 
out: the average number of words in the selected 
corpus is 14 while in the whole training set and in 
the test set is higher than 25. 

Other interesting aspect to comment is that in the 
selected training corpus, more than 70% of the 
sentences come from the Europarl or the News 
Commentary corpus, being the UNO corpus the 
biggest one. 

Anyway, although the improvement is 
interesting, the system can not compete with other 
well-known translation systems until we 
incorporate additional modules for reordering or n-
best post processing. 

8 Conclusions 

This paper has presented and described the UPM 
statistical machine translation system for Spanish-

English and English-Spanish. This system is based 
on Moses with pre-processing and post-processing 
modules. The main contribution has been the 
proposed method for selecting the sentences used 
for training and developing the system. This 
selection is based on the similarity with the source 
language test set. The results have been 23.2 
BLEU for Spanish into English and 21.7 for 
English into Spanish. 

9 Future work 

One of the main problems we have observed in the 
selection proposed method has been the high 
number of OOVs during translation. This problem 
has been addressed by incorporating a backup 
vocabulary in the post-processing module. This 
solution has solved some cases but it has not able 
to deal with order problems. Because of this, in the 
near future, we will try to improve the corpus 
selection method for reducing the number of 
OOVs. 
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Abstract

This paper describes an experiment in which
we try to automatically correct mistakes in
grammatical agreement in English to Czech
MT outputs. We perform several rule-based
corrections on sentences parsed to dependency
trees. We prove that it is possible to improve
the MT quality of majority of the systems par-
ticipating in WMT shared task. We made both
automatic (BLEU) and manual evaluations.

1 Introduction

This paper is a joint report on two English-to-Czech
submissions to the WMT11 shared translation task.
The main contribution is however the proposal and
evaluation of a rule-based post-processing system
DEPFIX aimed at correcting errors in Czech gram-
mar applicable to any MT system. This is somewhat
the converse of other approaches (e.g. Simard et al.
(2007)) where a statistical system was applied for
the post-processing of a rule-based one.

2 Our phrase-based systems

This section briefly describes our underlying phrase-
based systems. One of them (CU-BOJAR) was sub-
mitted directly to the WMT11 manual evaluation,
the other one (CU-TWOSTEP) was first corrected by
the proposed method (Section 3 below) and then
submitted under the name CU-MARECEK.

∗This research has been supported by the European Union
Seventh Framework Programme (FP7) under grant agreement
n◦ 247762 (Faust), n◦ 231720 (EuroMatrix Plus), and by the
grants GAUK 116310 and GA201/09/H057.

2.1 Data for statistical systems

Our training parallel data consists of CzEng 0.9
(Bojar and Žabokrtský, 2009), the News Commen-
tary corpus v.6 as released by the WMT11 orga-
nizers, the EMEA corpus, a corpus collected from
the transcripts of TED talks (http://www.ted.com),
the parallel news and separately some of the par-
allel web pages of the European Commission
(http://ec.europa.eu), and the Official Journal of the
European Union as released by the Apertium con-
sortium (http://apertium.eu/data).

A custom web crawler was used for the European
Commission website. English and Czech websites
were matched according to their URLs. Unfortu-
nately, Czech websites very often contain untrans-
lated parts of English texts. Because of this, we
aimed especially at the news articles, which are very
often translated correctly and also more relevant for
the shared task. Texts were segmented using train-
able tokenizer (Klyueva and Bojar, 2008) and dedu-
plicated. Processed texts were automatically aligned
by Hunalign (Varga and others, 2005).

The data from the Official Journal were first con-
verted from XML to plain text. The documents were
paired according to their filenames. To better han-
dle the nature of these data, we decided to divide
the documents into two classes based on the aver-
age number of words per sentence: “lists” are docu-
ments with less than 2.8 words per sentence, other
documents are called “texts”. The corresponding
“lists” were aligned line by line. The corresponding
“texts” were automatically segmented by trainable
tokenizer and aligned automatically by Hunalign.

We use the following two Czech language mod-
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els, their weights are optimized in MERT:

• 5-gram LM from the Czech side of CzEng (ex-
cluding the Navajo section). The LM was con-
structed by interpolating LMs of the individual do-
mains (news, EU legislation, technical documenta-
tion, etc.) to achieve the lowest perplexity on the
WMT08 news test set.

• 6-gram LM from the monolingual data supplied by
WMT11 organizers (news of the individual years
and News Commentary), the Czech National Cor-
pus and a web collection of Czech texts. Again, the
final LM is constructed by interpolating the smaller
LMs1 for the WMT08 news test set.

2.2 Baseline Moses (CU-BOJAR)
The system denoted CU-BOJAR for English-to-
Czech is simple phrase-based translation, i.e. Moses
without factors. We tokenized, lemmatized and
tagged all texts using the tools wrapped in TectoMT
(Popel and Žabokrtský, 2010). We further tokenize
e.g. dashed words (“23-year”) after all the process-
ing is finished. Phrase-based MT is then able to
handle such expressions both at once, or decompose
them as needed to cover unseen variations. We use
lexicalized reordering (orientation-bidirectional-fe).
The translation runs in “supervised truecase”, which
means that we use the output of our lemmatizers
to decide whether the word should be lowercased
or should preserve uppercasing. After the transla-
tion, the first letter in the output is simply upper-
cased. The model is optimized using Moses’ stan-
dard MERT on the WMT09 test set.

The organizers of WMT11 encouraged partici-
pants to apply simple normalization to their data
(both for training and testing).2 The main purpose
of the normalization is to improve the consistency of
typographical rules. Unfortunately, some of the au-
tomatic changes may accidentally damage the mean-
ing of the expression.3 We therefore opted to submit

1The interpolated LM file (gzipped ARPA format) is 5.1 GB
so we applied LM pruning as implemented in SRI toolkit with
the threshold 10−14 to reduce the file size to 2.3 GB.

2http://www.statmt.org/wmt11/normalize-punctuation.perl
3Fixing the ordering of the full stop and the quote is wrong

because the order (at least in Czech typesetting) depends on
whether it is the full sentence or a final phrase that is captured
in the quotes. Even riskier are rules handling decimal and thou-
sand separators in numbers. While there are language-specific
conventions, they are not always followed and the normaliza-
tion can in such cases confuse the order of magnitude by 3.

the output based on non-normalized test sets as our
primary English-to-Czech submission.

We invested much less effort into the submission
called CU-BOJAR for Czech-to-English. The only
interesting feature there is the use of alternative de-
coding paths to translate either from the Czech form
or from the Czech lemma equipped with meaning-
bearing morphological properties, e.g. the number
of nouns. Bojar and Kos (2010) used the same setup
with simple lemmas in the fallback decoding path.
The enriched lemmas perform marginally better.

2.3 Two-step translation

Our two-step translation is essentially the same
setup as detailed by Bojar and Kos (2010): (1)
the English source is translated to simplified Czech,
and (2) the simplified Czech is monotonically trans-
lated to fully inflected Czech. Both steps are sim-
ple phrase-based models. Instead of word forms, the
simplified Czech uses lemmas enriched by a sub-
set of morphological features selected manually to
encode only properties overt both in English and
Czech such as the tense of verbs or number of nouns.
Czech-specific morphological properties indicating
various agreements (e.g. number and gender of ad-
jectives, gender of verbs) are imposed in the second
step solely on the basis of the language model.

The first step uses the same parallel and mono-
lingual corpora as CU-BOJAR, except the LMs being
trained on the enriched lemmas, not on word forms.
The second step uses exactly the same LM as CU-
BOJAR but the phrase-table is extracted from all our
Czech monolingual data (phrase length limit of 1.)

3 Grammatical post-processing

Phrase-based machine translation systems often
have problems with grammatical agreement, espe-
cially on longer dependencies. Sometimes, there is
a mistake in agreement even between adjacent words
because each one belongs to a different phrase. The
goal of our post-processing is to correct forms of
some words so that they do not violate grammatical
rules (eg. grammatical agreement).

The problem is how to find the correct syntactic
relations in the output of an MT system. Parsers
trained on correct sentences can rely on grammat-
ical agreement, according to which they determine
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the dependencies between words. Unfortunately, the
agreement in MT outputs is often wrong and the
parser fails to produce a correct parse tree. There-
fore, we would need a parser trained on a manually
annotated treebank consisting of specific outputs of
machine translation systems. Such a treebank does
not exist and we do not even want to create one, be-
cause the MT systems are changing constantly and
also because manual annotation of texts that are of-
ten not even understandable would be almost a su-
perhuman task.

The DEPFIX system was implemented in TectoMT
framework (Popel and Žabokrtský, 2010). MT out-
puts were tagged by Morče tagger (Spoustová et al.,
2007) and then parsed with MST parser (McDon-
ald et al., 2005) that was trained on the Prague De-
pendency Treebank (Hajič and others, 2006), i.e.
on correct Czech sentences. We used an improved
implementation with some additional features es-
pecially tuned for Czech (Novák and Žabokrtský,
2007). The parser accuracy is much lower on the
“noisy” MT output sentences, but a lot of dependen-
cies in which we are to correct grammatical agree-
ment are determined correctly. Adapting the parser
for outputs of MT systems will be addressed in the
coming months.

A typical example of a correction is the agreement
between the subject and the predicate: they should
share the morphological number and gender. If they
do not, we simply change the number and gender
of the predicate in agreement with the subject.4 An
example of such a changed predicate is in Figure 1.

Apart from the dependency tree of the target sen-
tence, we can also use the dependency tree of the
source sentence. Source sentences are grammat-
ically correct and the accuracy of the tagger and
the parser is accordingly higher there. Words in
the source and target sentences are aligned using
GIZA++5 (Och and Ney, 2003) but verbose outputs
of the original MT systems would be possibly a bet-
ter option. The rules for fixing grammatical agree-
ment between words can thus consider also the de-
pendency relations and morphological caregories of
their English counterparts in the input sentence.

4In this case, we suppose that the number of the subject has
a much higher chance to be correct.

5GIZA++ was run on lemmatized texts in both directions
and intersection symmetrization was used.

Some

people

came

later

Atr

Sb

Pred

Adv
pl

pl

.
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Někteří

lidé
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Figure 1: Example of fixing subject-predicate agreement.
The Czech word přišel [he came] has a wrong morpho-
logical number and gender.

3.1 Grammatical rules

We have manually devised a set of the following
rules. Their input is the dependency tree of a Czech
sentence (MT output) and its English source sen-
tence (MT input) with the nodes aligned where pos-
sible. Each of the rules fires if the specified con-
ditions (“IF”) are matched, executes the command
(“DO”) , usually changing one or more morphologi-
cal categories of the word, and generates a new word
form for any word which was changed.

The rules make use of several morphological cat-
egories of the word (node:number, node:gender...),
its syntactic relation to its parent in the dependency
tree (node:afun) and the same information for its
English counterpart (node:en) and other nodes in
the dependency trees.

The order of the rules in this paper follows the
order in which they are applied; this is important, as
often a rule changes a morphological category of a
word which is then used by a subsequent rule.

3.1.1 Noun number (NounNum)
In Czech, a word in singular sometimes has the

same form as in plural. Because the tagger often
fails to tag the word correctly, we try to correct the
tag of a noun tagged as singular if its English coun-
terpart is in plural, so that the subsequent rules can
work correctly.

We trust the form of the word but changing the
number may also require to change the morphologi-
cal case (i.e. the tagger was wrong with both number
and case). In such cases we choose the first (linearly
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from nominative to instrumentative) case matching
the form. The rule is:
IF: node:pos = noun &

node:number = singular &

node:en:number = plural

DO: node:number := plural;

node:case := find case(node:form, plural);

3.1.2 Subject case (SubjCase)
The subject of a Czech sentence must be in the

nominative case. Since the parser often fails in
marking the correct word as a subject, we use the
English source sentence and presuppose that the
Czech counterpart of the English subject is also a
subject in the Czech sentence.
IF: node:en:afun = subject

DO: node:case := nominative;

3.1.3 Subject-predicate agreement (SubjPred)
Subject and predicate in Czech agree in their mor-

phological number. To identify a Czech Subject, we
trust the subject in the English sentence. Then we
copy the number from the (Czech) Subject to the
Czech Predicate.
IF: node:en:afun = subject &

parent:afun = predicate

DO: parent:number := node:number;

3.1.4 Subject-past participle agreement (SubjPP)
Czech past participles agree with subject in

morphological gender.
IF: node:pos = noun|pronoun &

node:en:afun = subject &

parent:pos = verb past participle

DO: parent:number := node:number;

parent:gender := node:gender;

3.1.5 Preposition without children (PrepNoCh)
In our dependency trees, the preposition is the

parent of the words it belongs to (usually a noun). A
preposition without children is incorrect so we find
nodes aligned to its English counterpart’s children
and rehang them under the preposition.
IF: node:afun = preposition &

!node:has children &

node:en:has children

DO: foreach node:en:child;

node:en:child:cs:parent := node;

3.1.6 Preposition-noun agreement (PrepNoun)
Every prepositions gets a morphological case as-

signed to it by the tagger, with which the dependent
noun should agree.
IF: parent:pos = preposition &

node:pos = noun

DO: node:case := parent:case;

3.1.7 Noun-adjective agreement (NounAdj)
Czech adjectives and nouns agree in morpholog-

ical gender, number and case. We assume that the
noun is correct and change the adjective accordingly.
IF: node:pos = adjective &

parent:pos = noun

DO: node:gender := parent:gender;

node:number := parent:number;

node:case := parent:case;

3.1.8 Reflexive particle deletion (ReflTant)
Czech reflexive verbs are accompanied by reflex-

ive particles (‘se’ and ‘si’). We delete particles not
beloning to any verb (or adjective derived from a
verb).
IF: node:form = ‘se’|‘si’ &

node:pos = pronoun &

parent:pos != verb|verbal adjective

DO: remove node;

4 Experiments and results

We tested our CU-TWOSTEP system with DEPFIX

post-processing on both WMT10 and WMT11 test-
ing data. This combined system was submitted to
shared translation task as CU-MARECEK. We also
ran the DEPFIX post-processing on all other partici-
pating systems.

4.1 Automatic evaluation

The achieved BLEU scores are shown in Tables 1
and 2. They show the scores before and after the
DEPFIX post-processing. It is interesting that the
improvements are quite different between the years
2010 and 2011 in terms of their BLEU score. While
the average improvement on WMT10 test set was
0.21 BLEU points, it was only 0.05 BLEU points on
the WMT11 test set. Even the results of the same
TWOSTEP system differ in a similar way, so it must
have been caused by the different data.
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system before after improvement
cu-twostep 15.98 16.13 0.15 (0.05 - 0.26)
cmu-heaf. 16.95 17.04 0.09 (-0.01 - 0.20)
cu-bojar 15.85 16.09 0.24 (0.14 - 0.36)
cu-zeman 12.33 12.55 0.22 (0.12 - 0.32)
dcu 13.36 13.59 0.23 (0.13 - 0.37)
dcu-combo 18.79 18.90 0.11 (0.02 - 0.23)
eurotrans 10.10 10.11 0.01 (-0.04 - 0.07)
koc 11.74 11.91 0.17 (0.08 - 0.26)
koc-combo 16.60 16.86 0.26 (0.16 - 0.37)
onlineA 11.81 12.08 0.27 (0.17 - 0.38)
onlineB 16.57 16.79 0.22 (0.11 - 0.33)
potsdam 12.34 12.57 0.23 (0.14 - 0.35)
rwth-combo 17.54 17.79 0.25 (0.15 - 0.35)
sfu 11.43 11.83 0.40 (0.29 - 0.52)
uedin 15.91 16.19 0.28 (0.18 - 0.40)
upv-combo 17.51 17.73 0.22 (0.10 - 0.34)

Table 1: Depfix improvements on the WMT10 systems
in BLEU score. Confidence intervals, which were com-
puted on 1000 bootstrap samples, are in brackets.

system before after improvement
cu-twostep 16.57 16.60 0.03 (-0.07 - 0.13)
cmu-heaf. 20.24 20.32 0.08 (-0.03 - 0.19)
commerc2 09.32 09.32 0.00 (-0.04 - 0.04)
cu-bojar 16.88 16.85 -0.03 (-0.12 - 0.07)
cu-popel 14.12 14.11 -0.01 (-0.06 - 0.03)
cu-tamch. 16.32 16.28 -0.04 (-0.14 - 0.06)
cu-zeman 14.61 14.80 0.19 (0.09 - 0.29)
jhu 17.36 17.42 0.06 (-0.03 - 0.16)
online-B 20.26 20.31 0.05 (-0.06 - 0.16)
udein 17.80 17.88 0.08 (-0.02 - 0.17)
upv-prhlt. 20.68 20.69 0.01 (-0.08 - 0.11)

Table 2: Depfix improvements on the WMT11 systems
in BLEU score. Confidence intervals are in brackets.

4.2 Manual evaluation

Two independent annotators evaluated DEPFIX man-
ually on the outputs of CU-TWOSTEP and ONLINE-
B. We randomly selected 1000 sentences from the
newssyscombtest2011 data set and the appropri-
ate translations made by these two systems. The
annotators got the outputs before and after DEPFIX

post-processing and their task was to decide which
translation6 from these two is better and label it by
the letter ‘a’. If it was not possible to determine

6They were also provided with the source English sentence
and the reference translation. The options were shuffled and
indentical candidate sentences were collapsed.

A / B improved worsened indefinite total
improved 273 20 15 308
worsened 12 59 7 78
indefinite 53 35 42 130

total 338 114 64 516

Table 5: Matrix of the inter-annotator agreement

rule fired impr. wors. % impr.
SubjCase 51 46 5 90.2
SubjPP 193 165 28 85.5
NounAdj 434 354 80 81.6
NounNum 156 122 34 78.2
PrepNoun 135 99 36 73.3
SubjPred 68 48 20 70.6
ReflTant 15 10 5 66.7
PrepNoCh 45 29 16 64.4

Table 6: Rules and their utility.

which is better, they labeled both by ‘n’.
Table 3 below shows that about 60% of sentences

fixed by DEPFIX were improved and only about 20%
were worsened. DEPFIX worked a little better on the
ONLINE-B, making fewer changes but also fewer
wrong changes. It is probably connected with the
fact that overall better translations by ONLINE-B are
easier to parse.

The matrix of inter-annotator agreement is in Ta-
ble 5. Our two annotators agreed in 374 sentences
(out of 516), that is 72.5%. On the other hand, if
we consider only cases where both annotators chose
different translation as better (no indefinite marks),
we get only 8.8% disagreement (32 out of 364).

Using the manual evaluation, we can also measure
performance of the individual rules. Table 6 shows
the number of all, improved or worsened sentences
where a particular rule was applied. Definitely, the
most useful rule (used often and quite reliable) was
the one correcting noun-adjective agreement, fol-
lowed by the subject-pastparticiple agreement rule.

In each changed sentence, two rules (not neces-
sarily related ones) were applied on average.

4.3 Manual evaluation across data sets

The fact that the improvements in BLEU scores on
WMT10 test set are much higher has led us to one
more experiment: we compare manual annotations
of 330 sentences from each of the WMT10 and

430



system annotator changed improved worsened indefinite
count % count % count %

cu-bojar-twostep A 269 152 56.5 39 14.5 78 29.0
cu-bojar-twostep B 269 173 64.3 50 18.6 46 17.1
online-B A 247 156 63.1 39 15.9 52 21.1
online-B B 247 165 66.8 64 25.9 18 7.3

Table 3: Manual evaluation of the DEPFIX post-processing on 1000 randomly chosen sentences from WMT11 test set.

test set changed improved worsened indefinite BLEU
count % count % count % before after diff

newssyscombtest2010 104 52 50.0 20 19.2 32 30.8 16.99 17.38 0.39
newssyscombtest2011 101 66 65.3 19 18.8 16 15.8 13.99 13.87 -0.12

Table 4: Manual and automatic evaluation of the DEPFIX post-processing on CU-TWOSTEP system across different
datasets. 330 sentences were randomly selected from each of the WMT10 and WMT11 test sets. Both manual scores
and BLEU are computed only on the sentences that were changed by the DEPFIX post-processing.

WMT11 sets as translated by CU-TWOSTEP and cor-
rected by DEPFIX. Table 4 shows that WMT10 and
WMT11 are comparable in manually estimated im-
provement (50–65%). BLEU does not indicate that
and even estimates a drop in quality on this subset
WMT11. (The absolute BLEU scores differ from
BLEUs on the whole test sets but we are interested
only in the change of the scores.) BLEU is thus not
very suitable for the evaluation of DEPFIX.

5 Conclusions and future work

Manual evaluation shows that our DEPFIX approach
to improving MT output quality is sensible. Al-
though it is unable to correct many serious MT er-
rors, such as wrong lexical choices, it can improve
the grammaticality of the output in a way that the
language model often cannot, which leads to out-
put that is considered to be better by humans. We
also suggest that BLEU is not appropriate metric
for measuring changes in grammatical correctness
of sentences, especially with inflective languages.

An advantage of our method is that it is possible
to apply it on output of any MT system (although it
works better for phrase-based MT systems). While
DEPFIX has been developed using the output of CU-
BOJAR, the rules we devised are not specific to any
MT system. They simply describe several grammat-
ical rules of Czech language that can be machine-
checked and if errors are found, the output can be
corrected. Moreover, our method only requires the
source sentence and the translation output for its op-

eration – i.e. it is not necessary to modify the MT
system itself.

We are now considering modifications of the
parser so that it is able to parse the incorrect sen-
tences produced by MT. Theoretically it would be
possible to train the parser on annotated ungrammat-
ical sentences, but we do not want to invest such an-
notation labour. Instead, when parsing the Czech
sentence we will make the parser utilize the infor-
mation contained in the parse tree of the English
sentence, which is usually correct. We will proba-
bly also have to make the parser put less weight to
the often incorrect tagger output. An alternative is
to avoid parsing of the target and project the source
parse to the target side using word alignments, if
provided by the MT system.

Because some of our rules are able to work using
only the tagger output, we will also try to apply them
before the parsing as they might help the parser by
correcting some of the tags.

We will also try several modifications of the tag-
ger, but the English sentence does not help us so
much here, because it does not contain any infor-
mation regarding the most common errors – in-
correct assignment of morphological gender and
case. However, it could help with part of speech
and morphological number disambiguation. More-
over, it would be probably helpful for us if the tag-
ger included several most probable hypotheses, as
the single-output-only disambiguation is often erro-
neous on ungrammatical sentences.
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Large Parallel Treebank with Rich Annotation.
Prague Bulletin of Mathematical Linguistics, 92.
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engineering in maximum spanning tree dependency
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Abstract

Accuracy of dependency parsers is one of the
key factors limiting the quality of dependency-
based machine translation. This paper deals
with the influence of various dependency pars-
ing approaches (and also different training
data size) on the overall performance of an
English-to-Czech dependency-based statisti-
cal translation system implemented in the
Treex framework. We also study the relation-
ship between parsing accuracy in terms of un-
labeled attachment score and machine transla-
tion quality in terms of BLEU.

1 Introduction

In the last years, statistical n-gram models domi-
nated the field of Machine Translation (MT). How-
ever, their results are still far from perfect. Therefore
we believe it makes sense to investigate alternative
statistical approaches. This paper is focused on an
analysis-transfer-synthesis translation system called
TectoMT whose transfer representation has a shape
of a deep-syntactic dependency tree. The system has
been introduced by Žabokrtský et al. (2008). The
translation direction under consideration is English-
to-Czech.

It has been shown by Popel (2009) that the current
accuracy of the dependency parser employed in this
translation system is one of the limiting factors from
the viewpoint of its output quality. In other words,
the parsing phase is responsible for a large portion
of translation errors. The biggest source of trans-
lation errors in the referred study was (and prob-
ably still is) the transfer phase, however the pro-

portion has changed since and the relative impor-
tance of the parsing phase has grown, because the
tranfer phase errors have already been addressed by
improvements based on Hidden Markov Tree Mod-
els for lexical and syntactic choice as shown by
Žabokrtský and Popel (2009), and by context sensi-
tive translation models based on maximum entropy
as described by Mareček et al. (2010).

Our study proceeds along two directions. First,
we train two state-of-the-art dependency parsers on
training sets with varying size. Second, we use
five parsers based on different parsing techniques.
In both cases we document the relation between
parsing accuracy (in terms of Unlabeled Attachment
Score, UAS) and translation quality (estimated by
the well known BLEU metric).

The motivation behind the first set of experiments
is that we can extrapolate the learning curve and try
to predict how new advances in dependency parsing
can affect MT quality in the future.

The second experiment series is motivated by
the hypothesis that parsers based on different ap-
proaches are likely to have a different distribution
of errors, even if they can have competitive perfor-
mance in parsing accuracy. In dependency parsing
metrics, all types of incorrect edges typically have
the same weight,1 but some incorrect edges can be
more harmful than others from the MT viewpoint.
For instance, an incorrect attachment of an adverbial
node is usually harmless, while incorrect attachment
of a subject node might have several negative conse-

1This issue has been tackled already in the parsing literature;
for example, some authors disregard placement of punctuation
nodes within trees in the evaluation (Zeman, 2004).
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quences such as:

• unrecognized finiteness of the governing verb,
which can lead to a wrong syntactization on the
target side (an infinitive verb phrase instead of
a finite clause),

• wrong choice of the target-side verb form (be-
cause of unrecognized subject-predicate agree-
ment),

• missing punctuation (because of wrongly rec-
ognized finite clause boundaries),

• wrong placement of clitics (because of wrongly
recognized finite clause boundaries),

• wrong form of pronouns (personal and posses-
sive pronouns referring to the clause’s subject
should have reflexive forms in Czech).

Thus it is obvious that the parser choice is im-
portant and that it might not be enough to choose a
parser, for machine translation, only according to its
UAS.

Due to growing popularity of dependency syntax
in the last years, there are a number of dependency
parsers available. The present paper deals with
five parsers evaluated within the translation frame-
work: three genuine dependency parsers, namely the
parsers described in (McDonald et al., 2005), (Nivre
et al., 2007), and (Zhang and Nivre, 2011), and two
constituency parsers (Charniak and Johnson, 2005)
and (Klein and Manning, 2003), whose outputs were
converted to dependency structures by Penn Con-
verter (Johansson and Nugues, 2007).

As for the related literature, there is no published
study measuring the influence of dependency parsers
on dependency-based MT to our knowledge.2

The remainder of this paper is structured as fol-
lows. The overall translation pipeline, within which
the parsers are tested, is described in Section 2. Sec-
tion 3 lists the parsers under consideration and their
main features. Section 4 summarizes the influence
of the selected parsers on the MT quality in terms of
BLEU. Section 5 concludes.

2However, the parser bottleneck of the dependency-based
MT approach was observed also by other researchers (Robert
Moore, personal communication).

2 Dependency-based Translation in Treex

We have implemented our experiments in the Treex
software framework (formerly TectoMT, introduced
by Žabokrtský et al. (2008)), which already offers
tool chains for analysis and synthesis of Czech and
English sentences.

We use the tectogrammatical (deep-syntactic)
layer of language representation as the transfer layer
in the presented MT experiments. Tectogrammat-
ics was introduced by Sgall (1967) and further
elaborated within the Prague Dependency Treebank
project (Hajič et al., 2006). On this layer, each
sentence is represented as a tectogrammatical tree,
whose main properties (from the MT viewpoint) are
the following:

1. nodes represent autosemantic words,

2. edges represent semantic dependencies (a node
is an argument or a modifier of its parent),

3. there are no functional words (prepositions,
auxiliary words) in the tree, and the autose-
mantic words appear only in their base forms
(lemmas). Morphologically indispensable cat-
egories (such as number with nouns or tense
with verbs, but not number with verbs as it is
only imposed by agreement) are stored in sep-
arate node attributes (grammatemes).

The intuitions behind the decision to use tec-
togrammatics for MT are the following: we be-
lieve that (1) tectogrammatics largely abstracts from
language-specific means (inflection, agglutination,
functional words etc.) of expressing non-lexical
meanings and thus tectogrammatical trees are sup-
posed to be highly similar across languages, (2)
it enables a natural transfer factorization,3 (3) and
local tree contexts in tectogrammatical trees carry
more information (especially for lexical choice) than
local linear contexts in the original sentences.

The translation scenario is outlined in the rest of
this section.

3Morphological categories can be translated almost inde-
pendently from lemmas, which makes parallel training data
‘denser’, especially when translating from/to a language with
rich inflection such as Czech.
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2.1 Analysis

The input English text is segmented into sentences
and tokens. The tokens are lemmatized and tagged
with Penn Treebank tags using the Morce tagger
(Spoustová et al., 2007). Then one of the studied
dependency parsers is applied and a surface-syntax
dependency tree (analytical tree in the PDT termi-
nology) is created for each sentence.

This tree is converted to a tectogrammatical tree.
Each autosemantic word with its associated func-
tional words is collapsed into a single tectogram-
matical node, labeled with a lemma, formeme,4 and
semantically indispensable morphologically cate-
gories; coreference is also resolved.

2.2 Transfer

The transfer phase follows, whose most difficult part
consists especially in labeling the tree with target-
side lemmas and formemes. There are also other
types of changes, such as node addition and dele-
tion. However, as shown by Popel (2009), changes
of tree topology are required relatively infrequently
due to the language abstractions on the tectogram-
matical layer.

Currently, translation models based on Maxi-
mum Entropy classifiers are used both for lemmas
and formemes (Mareček et al., 2010). Tree label-
ing is optimized using Hidden Tree Markov Mod-
els (Žabokrtský and Popel, 2009), which makes
use of target-language dependency tree probabilistic
model.

All models used in the transfer phase are trained
using training sections of the Czech-English parallel
corpus CzEng 0.9 (Bojar and Žabokrtský, 2009).

2.3 Synthesis

Finally, surface sentence shape is synthesized from
the tectogrammatical tree, which is basically the
reverse operation of the tectogrammatical analy-
sis. It consists of adding punctuation and functional

4Formeme captures the morphosyntactic means which are
used for expressing the tectogrammatical node in the surface
sentence shape. Examples of formeme values: v:that+fin –
finite verb in a subordinated clause introduced with conjunction
that, n:sb – semantic noun in a subject position, n:for+X –
semantic noun in a prepositional group introduced with prepo-
sition for, adj:attr – semantic adjective in an attributive po-
sition.

words, spreading morphological categories accord-
ing to grammatical agreement, performing inflection
(using Czech morphology database (Hajič, 2004)),
arranging word order etc.

The difference from the analysis phase is that
there is not very much space for optimization in the
synthesis phase. In other words, final sentence shape
is determined almost uniquely by the tectogrammat-
ical tree (enriched with formemes) resulting from
the transfer phase. However, if there are not enough
constraints for a unique choice of a surface form of
a lemma, then a unigram language model is used for
the final decision. The model was trained using 500
million words from the Czech National Corpus.5

3 Involved Parsers

We performed experiments with parsers from
three families: graph-based parsers, transition-
based parsers, and phrase-structure parsers (with
constituency-to-dependency postprocessing).

3.1 Graph-based Parser

In graph-based parsing, we learn a model for scoring
graph edges, and we search for the highest-scoring
tree composed of the graph’s edges. We used Max-
imum Spanning Tree parser (Mcdonald and Pereira,
2006) which is capable of incorporating second or-
der features (MST for short).

3.2 Transition-based Parsers

Transition-based parsers utilize the shift-reduce al-
gorithm. Input words are put into a queue and
consumed by shift-reduce actions, while the out-
put parser is gradually built. Unlike graph-based
parsers, transition-based parsers have linear time
complexity and allow straightforward application of
non-local features.

We included two transition-based parsers into our
experiments:

• Malt – Malt parser introduced by Nivre et al.
(2007) 6

5http://ucnk.ff.cuni.cz
6We used stackeager algorithm, liblinear learner, and

the enriched feature set for English (the same configu-
ration as in pretrained English models downloadable at
http://maltparser.org.
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• ZPar – Zpar parser7 which is basically an al-
ternative implementation of the Malt parser,
employing a richer set of non-local features as
described by Zhang and Nivre (2011).

3.3 CFG-based Tree Parsers

Another option how to obtain dependency trees is
to apply a constituency parser, recognize heads in
the resulting phrase structures and apply a recur-
sive algorithm for converting phrase-structure trees
into constituency trees (the convertibility of the two
types of syntactic structures was studied already by
Gaifman (1965)).

We used two constituency parsers:

• Stanford – The Stanford parser (Klein and
Manning, 2003),8

• CJ – a MaxEnt-based parser combined with
discriminative reranking (Charniak and John-
son, 2005).9

Before applying the parsers on the text, the system
removes all spaces within tokens. For instance U. S.
becomes U.S. to restrict the parsers from creating
two new tokens. Tokenization built into both parsers
is bypassed and the default tokenization in Treex is
used.

After parsing, Penn Converter introduced by Jo-
hansson and Nugues (2007) is applied, with the
-conll2007 option, to change the constituent
structure output, of the two parsers, into CoNLL de-
pendency structure. This allows us to keep the for-
mats consistent with the output of both MST and
MaltParser within the Treex framework.

There is an implemented procedure for cre-
ating tectogrammatical trees from the English
phrase structure trees described by Kučerová and
Žabokrtský (2002). Using the procedure is more
straightforward, as it does not go through the
CoNLL-style trees; English CoNLL-style trees dif-
fer slightly from the PDT conventions (e.g. in at-
taching auxiliary verbs) and thus needs additional

7http://sourceforge.net/projects/zpar/ (version 0.4)
8Only the constituent, phrase based, parsed output is used in

these experiments.
9We are using the default settings from the August 2006 ver-

sion of the software.

postprocessing for our purposes. However, we de-
cided to stick to Penn Converter, so that the similar-
ity of the translation scenarios is maximized for all
parsers.

3.4 Common Preprocessing: Shallow Sentence
Chunking

According to our experience, many dependency
parsers have troubles with analyzing sentences that
contain parenthesed or quoted phrases, especially if
they are long.

We use the assumption that in most cases the con-
tent of parentheses or quotes should correspond to
a connected subgraph (subtree) of the syntactic tree.
We implemented a very shallow sentence chunker
(SentChunk) which recognizes parenthesed word
sequences. These sequences can be passed to a
parser first, and be parsed independently of the rest
of the sentence. This was shown to improve not only
parsing accuracy of the parenthesed word sequence
(which is forced to remain in one subtree), but also
the rest of the sentence.10

In our experiments, SentChunk is used only
in combination with the three genuine dependency
parsers.

4 Experiments and Evaluation

4.1 Data for Parsers’ Training and Evaluation

The dependency trees needed for training the parsers
and evaluating their UAS were created from the
Penn Treebank data (enriched first with internal
noun phrase structure applied via scripts provided
by Vadas and Curran (2007)) by Penn Converter (Jo-
hansson and Nugues, 2007) with the -conll2007
option (PennConv for short).

All the parsers were evaluated on the same data –
section 23.

All the parsers were trained on sections 02–21,
except for the Stanford parser which was trained
on sections 01–21. We were able to retrain the
parser models only for MST and Malt. For the
other parsers we used pretrained models available on
the Internet: CJ’s default model ec50spfinal,
Stanford’s wsjPCFG.ser.gz model, and

10Edge length is a common feature in dependency parsers, so
“deleting” parenthesed words may give higher scores to correct
dependency links that happened to span over the parentheses.
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ZPar’s english.tar.gz. The model of ZPar
is trained on data converted to dependencies using
Penn2Malt tool,11 which selects the last member of
a coordination as the head. To be able to compare
ZPar’s output with the other parsers, we postpro-
cessed it by a simple ConjAsHead code that con-
verts this style of coordinations to the one used in
CoNLL2007, where the conjuction is the head.

4.2 Reference Translations Used for Evaluation

Translation experiments were evaluated using refer-
ence translations from the new-dev2009 data set,
provided by the organizors of shared translation task
with the Workshop on Statistical Machine Transla-
tion.

4.3 Influence of Parser Training Data Size

We trained a sequence of parser models for MST and
Malt, using a roughly exponentially growing se-
quence of Penn Treebank subsets. The subsets are
contiguous and start from the beginning of section
02. The results are collected in Tables 1 and 2.12

#tokens UAS BLEU NIST
100 0.362 0.0579 3.6375
300 0.509 0.0859 4.3853

1000 0.591 0.0995 4.6548
3000 0.623 0.1054 4.7972

10000 0.680 0.1130 4.9695
30000 0.719 0.1215 5.0705

100000 0.749 0.1232 5.1193
300000 0.776 0.1257 5.1571
990180 0.793 0.1280 5.1915

Table 1: The effect of training data size on parsing accu-
racy and on translation performance with MST.

The trend of the relation between the training data
size and BLEU is visible also in Figure 1. It is ob-
vious that increasing the training data has a positive
effect on the translation quality. However, the pace
of growth of BLEU is sublogarithmic, and becomes
unconvincing above 100,000 training tokens. It in-
dicates that given one of the two parsers integrated

11http://w3.msi.vxu.se/˜nivre/research/
Penn2Malt.html

12To our knowledge, the best system participating in the
shared task reaches BLEU 17.8 for this translation direction.

#tokens UAS BLEU NIST
100 0.454 0.0763 4.0555
300 0.518 0.0932 4.4698

1000 0.591 0.1042 4.6769
3000 0.616 0.1068 4.7472

10000 0.665 0.1140 4.9100
30000 0.695 0.1176 4.9744

100000 0.723 0.1226 5.0504
300000 0.740 0.1238 5.1005
990180 0.759 0.1253 5.1296

Table 2: The effect of training data size on parsing accu-
racy and on translation performance with Malt.
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Figure 1: The effect of parser training data size of BLEU
with Malt and MST parsers.

into our translation framework, increasing the parser
training data alone would probably not lead to a sub-
stantial improvement of the translation performance.

4.4 Influence of Parser Choice

Table 3 summarizes our experiments with the five
parsers integrated into the tectogrammatical transla-
tion pipeline. Two configurations (with and without
SentChunk) are listed for the genuine dependency
parsers. The relationship between UAS and BLEU
for (the best configurations of) all five parsers is de-
picted also in Figure 2.

Additionally, we used paired bootstrap 95% con-
fidence interval testing (Zhang et al., 2004), to check
which BLEU differences are significant. For the
five compared parser (with SentChunk if appli-
cable), only four comparisons are not significant:
MST-CJ, MST-Stanford, Malt-Stanford,
and CJ-Stanford.
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Parser Training data Preprocessing Postprocessing UAS BLEU NIST TER
MST PennTB + PennConv SentChunk – 0.793 0.1280 5.192 0.735
MST PennTB + PennConv – – 0.794 0.1236 5.149 0.739
Malt PennTB + PennConv SentChunk – 0.760 0.1253 5.130 0.740
Malt PennTB + PennConv – – 0.761 0.1214 5.088 0.744
Zpar PennTB + Penn2Malt SentChunk ConjAsHead 0.793 0.1176 5.039 0.749
Zpar PennTB + Penn2Malt – ConjAsHead 0.792 0.1127 4.984 0.754
CJ PennTB – PennConv 0.904 0.1284 5.189 0.737
Stanford PennTB – PennConv 0.825 0.1277 5.137 0.740

Table 3: Dependency parsers tested in the translation pipeline.
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Figure 2: Unlabeled Attachment Score versus BLEU.

Even if BLEU grows relatively smoothly with
UAS for different parsing models of the same parser,
one can see that there is no obvious relation be-
tween UAS and BLEU accross all parsers. MST and
Zpar have the same UAS but quite different BLEU,
whereas MST and CJ have very similar BLEU but
distant UAS. It confirms the original hypothesis that
it is not only the overall UAS, but also the parser-
specific distribution of errors what matters.

4.5 Influence of Shallow Sentence Chunking

Table 3 confirms that parsing the contents paren-
theses separately from the rest of the sentence
(SentChunk) has a positive effect with all three
dependency parsers. Surprisingly, even if the effect
on UAS is negligible, the improvement is almost
half of BLEU point which is significant for all the
three parsers.

4.6 Discussion on Result Comparability

We tried to isolate the effects of the properties of
selected parsers, however, the separation from other
influencing factors is not perfect due to several tech-
nical issues:

• So far, we were not able to retrain the models
for all parsers ourselves and therefore their pre-
trained models (one of them based on slightly
different Penn Treebank division) must have
been used.

• Some parsers make their own choice of POS
tags within the parsed sentences, while other
parsers require the sentences to be tagged al-
ready on their input.

• The trees in the CzEng 0.9 parallel treebank
were created using MST. CzEng 0.9 was used
for training translation models used in the
transfer phase of the translation scenario; thus
these translation models might compensate for
some MST’s errors, which might handicap other
parsers. So far we were not able to reparse 8
million sentence pairs in CzEng 0.9 by all stud-
ied parsers.

5 Conclusions

This paper is a study of how the choice of a de-
pendency parsing technique influences the quality of
English-Czech dependency-based translation. Our
main observations are the following. First, BLEU
grows with the increasing amount of training depen-
dency trees, but only in a sublogarithmic pace. Sec-
ond, what seems to be quite effective for translation
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is to facilitate the parsers’ task by dividing the sen-
tences into smaller chunks using parenthesis bound-
aries. Third, if the parsers are based on different
approaches, their UAS does not correlate well with
their effect on the translation quality.
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Abstract

We describe our system for the news com-
mentary translation task of WMT 2011. The
submitted run for the French-English direction
is a combination of two MOSES-based sys-
tems developed at LIG and LIA laboratories.
We report experiments to improve over the
standard phrase-based model using statistical
post-edition, information retrieval methods to
subsample out-of-domain parallel corpora and
ROVER to combinen-best list of hypotheses
output by different systems.

1 Introduction

This year, LIG and LIA have combined their efforts
to produce a joint submission to WMT 2011 for the
French-English translation task. Each group started
by developing its own solution whilst sharing re-
sources (corpora as provided by the organizers but
also aligned data etc) and acquired knowledge (cur-
rent parameters, effect of the size ofn-grams, etc.)
with the other. Both LIG and LIA systems are stan-
dard phrase-based translation systems based on the
MOSEStoolkit with appropriate carefully-tuned se-
tups. The final LIGA submission is a combination
of the two systems.

We summarize in Section 2 the resources used
and the main characteristics of the systems. Sec-
tions 3 and 4 describe the specificities and report
experiments of resp. the LIG and the LIA system.
Section 5 presents the combination ofn-best lists
hypotheses generated by both systems. Finally, we
conclude in Section 6.

2 System overview

2.1 Used data

Globally, our system1 was built using all the French
and English data supplied for the workshop’s shared
translation task, apart from the Gigaword monolin-
gual corpora released by the LDC. Table 1 sums up
the used data and introduces designations that we
follow in the remainder of this paper to refer to cor-
pora. Four corpora were used to build translation
models: news-c, euro, UN and giga, while three
others are employed to train monolingual language
models (LMs). Three bilingual corpora were de-
voted to model tuning:test09was used for the de-
velopment of the two seed systems (LIG and LIA),
whereastest08andtestcomb08were used to tune the
weights for system combination.test10was finally
put aside to compare internally our methods.

2.2 LIG and LIA system characteristics

Both LIG and LIA systems are phrase-based trans-
lation models. All the data were first tokenized with
the tokenizer provided for the workshop. Kneser-
Ney discounted LMs were built from monolingual
corpora using the SRILM toolkit (Stolcke, 2002),
while bilingual corpora were aligned at the word-
level using GIZA ++ (Och and Ney, 2003) or its
multi-threaded version MGIZA ++ (Gao and Vogel,
2008) for the large corporaUN and giga. Phrase
table and lexicalized reordering models were built
with MOSES (Koehn et al., 2007). Finally, 14 fea-
tures were used in the phrase-based models:

1When not specified otherwise “our” system refers to the
LIGA system.
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CORPORA DESIGNATION SIZE (SENTENCES)

English-French Bilingual training
News Commentary v6 news-c 116 k
Europarl v6 euro 1.8 M
United Nation corpus UN 12 M
10

9 corpus giga 23 M

English Monolingual training
News Commentary v6 mono-news-c 181 k
Shuffled News Crawl corpus (from 2007 to 2011)news-s 25 M
Europarl v6 mono-euro 1.8 M

Development
newstest2008 test08 2,051
newssyscomb2009 testcomb09 502
newstest2009 test09 2,525

Test
newstest2010 test10 2,489

Table 1: Used corpora

• 5 translation model scores,

• 1 distance-based reordering score,

• 6 lexicalized reordering score,

• 1 LM score and

• 1 word penalty score.

The score weights were optimized on thetest09cor-
pus according to the BLEU score with the MERT
method (Och, 2003). The experiments led specifi-
cally with either LIG or LIA system are respectively
described in Sections 3 and 4. Unless otherwise
indicated, all the evaluations were performed using
case-insensitive BLEU and were computed with the
mteval-v13a.pl script provided by NIST. Ta-
ble 2 summarizes the differences between the final
configuration of the systems.

3 The LIG machine translation system

LIG participated for the second time to the WMT
shared news translation task for the French-English
language pair.

3.1 Pre-processing

Training data were first lowercased with the PERL

script provided for the campaign. They were also

processed in order to normalize a special French
form (named euphonious “t”) as described in (Potet
et al., 2010).

The baseline system was built using a 4-gram LM
trained on the monolingual corpora provided last
year and translation models trained onnews-cand
euro (Table 3, System 1). A significant improve-
ment in terms of BLEU is obtained when taking into
account a third corpus,UN, to build translation mod-
els (System 2). The next section describes the LMs
that were trained using the monolingual data pro-
vided this year.

3.2 Language model training

Target LMs are standard 4-gram models trained
on the provided monolingual corpus (mono-news-c,
mono-euroandnews-s). We decided to test two dif-
ferent n-gram cut-off settings. The fist set has low
cut-offs: 1-2-3-3 (respectively for 1-gram, 2-gram,
3-gram and 4-gram counts), whereas the second one
(LM2) is more aggressive: 1-5-7-7. Experiment re-
sults (Table 3, Systems 3 and 4) show that resorting
to LM2 leads to an improvement of BLEU with re-
spect toLM1. LM2 was therefore used in the sub-
sequent experiments.
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FEATURES LIG SYSTEM LIA SYSTEM

Pre-processing
Text lowercased Text truecased
Normalization of French euphonious
’t’

Reaccentuation of French words start-
ing with a capital letter

LM
Training onmono-news-c, news-sand
mono-euro

Training onmono-news-candnews-s

4-gram models 5-gram models

Translation model
Training onnews-c, euroandUN Training on 10 M sentence pairs se-

lected innews-c, euro, UN andgiga
Phrase table filtering
Use of -monotone-at-punctuationop-
tion

Table 2: Distinct features between final configurations retained for the LIG and LIA systems

3.3 Translation model training

Translation models were trained from the parallel
corporanews-c, euro and UN. Data were aligned
at the word-level and then used to build standard
phrase-based translation models. We filtered the ob-
tained phrase table using the method described in
(Johnson et al., 2007). Since this technique drasti-
cally reduces the size of the phrase table, while not
degrading (and even slightly improving) the results
on the development and test corpora (System 6), we
decided to employ filtered phrase tables in the final
configuration of the LIG system.

3.4 Tuning

For decoding, the system uses a log-linear com-
bination of translation model scores with the LM
log-probability. We prevent phrase reordering over
punctuation using the MOSESoption -monotone-at-
punctuation. As the system can be beforehand tuned
by adjusting the log-linear combination weights on
a development corpus, we used the MERT method
(System 5). Optimizing weights according to BLEU
leads to an improvement with respect to the sys-
tem with MOSES default value weights (System 5
vsSystem 4).

3.5 Post-processing

We also investigated the interest of a statistical
post-editor (SPE) to improve translation hypotheses.
About 9,000 sentences extracted from the news do-
main test corpora of the 2007–2009 WMT transla-

tion tasks were automatically translated by a sys-
tem very similar to that described in (Potet et al.,
2010), then manually post-edited. Manual correc-
tions of translations were performed by means of the
crowd-sourcing platform AMAZON MECHANICAL

TURK2 ($0.15/sent.). These collected data make
a parallel corpus whose source part is MT output
and target part is the human post-edited version of
MT output. This are used to train a phrase-based
SMT (with Moses without the tuning step) that au-
tomatically post-edit the MT output. That aims at
learning how to correct translation hypotheses. Sys-
tem 7 obtained when post-processing MT 1-best out-
put shows a slight improvement. However, SPE was
not used in the final LIG system since we lacked
time to apply SPE on the N-best hypotheses for the
development and test corpora (the N-best being nec-
essary for combination of LIG and LIA systems).
Ths LIGA submission is thus a constrained one.

3.6 Recasing

We trained a phrase-based recaser model on the
news-scorpus using the provided MOSES scripts
and applied it to uppercase translation outputs. A
common and expected loss of around 1.5 case-
sensitive BLEU points was observed on the test cor-
pus (news10) after applying this recaser (System 7)
with respect to the score case-insensitive BLEU pre-
viously measured.

2http://www.mturk.com/mturk/welcome
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♯ SYSTEM DESCRIPTION
BLEU SCORE

test09 test10

1 Training:euro+news-c 24.89 26.01
2 Training: euro+news-c+UN 25.44 26.43
3 2 +LM1 24.81 27.19
4 2 +LM2 25.37 27.25
5 4 +MERT on test09 26.83 27.53
6 5 +phrase-table filtering 27.09 27.64
7 6 + SPE 27.53 27.74
8 6 + recaser 24.95 26.07

Table 3: Incremental improvement of the LIG system in
terms of case-insensitive BLEU (%), except for line 8
where case-sensitive BLEU (%) are reported

4 The LIA machine translation system

This section describes the particularities of the MT
system which was built at the LIA for its first partic-
ipation to WMT.

4.1 System description

The available corpora were pre-processed using
an in-house script that normalizes quotes, dashes,
spaces and ligatures. We also reaccentuated French
words starting with a capital letter. We significantly
cleaned up the crawled parallelgigacorpus, keeping
19.3 M of the original 22.5 M sentence pairs. For ex-
ample, sentence pairs with numerous numbers, non-
alphanumeric characters or words starting with cap-
ital letters were removed. The whole training ma-
terial is truecased, meaning that the words occur-
ing after a strong punctuation mark were lowercased
when they belonged to a dictionary of common all-
lowercased forms; the others were left unchanged.

The training of a 5-gram English LM was re-
strained to the news corporamono-news-candnews-
s that we consider large enough to ignore other data.
In order to reduce the size of the LM, we first limited
the vocabulary of our model to a 1 M word vocabu-
lary taking the most frequent words in the news cor-
pora. We also resorted to cut-offs to discard infre-
quent n-grams (2-2-3-5 thresholds on 2- to 5-gram
counts) and uses the SRILM optionprune, which
allowed us to train the LM on large data with 32 Gb
RAM.

Our translation models are phrase-based models
(PBMs) built with MOSESwith the following non-

default settings:

• maximum sentence length of 80 words,

• limit on the number of phrase translations
loaded for each phrase fixed to 30.

Weights of LM, phrase table and lexicalized re-
ordering model scores were optimized on the devel-
opment corpus thanks to the MERT algorithm.

Besides the size of used data, we experimented
with two advanced features made available for
MOSES. Firstly, we filtered phrase tables using the
default setting-l a+e -n 30. This dramatically
reduced phrase tables by dividing their size by a
factor of 5 but did not improve our best configu-
ration from the BLEU score perspective (Table 4,
line 1); the method was therefore not kept in the
LIA system. Secondly, we introduced reordering
constraints in order to consider quoted material as
a block. This method is particularly useful when ci-
tations included in sentences have to be translated.
Two configurations were tested:zonemarkups in-
clusion around quotes andwall markups inclusion
within zonemarkups. However, the measured gains
were finally too marginal to include the method in
the final system.

4.2 Parallel corpus subsampling

As the only news parallel corpus provided for the
workshop contains 116 k sentence pairs, we must
resort to parallel out-of-domain corpora in order to
build reliable translation models. Information re-
trieval (IR) methods have been used in the past to
subsample parallel corpora. For example, Hilde-
brand et al. (2005) used sentences belonging to the
development and test corpora as queries to select the
k most similar source sentences in an indexed paral-
lel corpus. The retrieved sentence pairs constituted
a training corpus for the translation models.

The RALI submission for WMT10 proposed a
similar approach that builds queries from the mono-
lingual news corpus in order to select sentence pairs
stylistically close to the news domain (Huet et al.,
2010). This method has the major interest that it
does not require to build a new training parallel
corpus for each news data set to translate. Fol-
lowing the best configuration tested in (Huet et al.,
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2010), we index the three out-of-domain corpora us-
ing LEMUR3, and build queries from Englishnews-s
sentences where stop words are removed. The 10 top
sentence pairs retrieved per query are selected and
added to the new training corpus if they are not re-
dundant with a sentence pair already collected. The
process is repeated until the training parallel cor-
pus reaches a threshold over the number of retrieved
pairs.

Table 4 reports BLEU scores obtained with the
LIA system using the in-domain corpusnews-cand
various amounts of out-of-domain data. MERT was
re-run for each set of training data. The first four
lines display results obtained with the same num-
ber of sentence pairs, which corresponds to the
size ofnews-cappended toeuro. The experiments
show that usingeuro instead of the first sentences of
UN and giga significantly improves BLEU scores,
which indicates the better adequacy ofeurowith re-
spect to thetest10corpus. The use of the IR method
to select sentences fromeuro, UN andgiga leads to
a similar BLEU score to the one obtained witheuro.
The increase of the collected pairs up to 3 M pairs
generates a significant improvement of 0.9 BLEU
point. A further rise of the amount of collected
pairs does not introduce a major gain since retriev-
ing 10 M sentence pairs only augments BLEU from
29.1 to 29.3. This last configuration which leads to
the best BLEU was used to build the final LIA sys-
tem. Let us note that 2 M, 3 M and 15 M queries
were required to respectively obtain 3 M, 5 M and
10 M sentence pairs because of the removal of re-
dundant sentences in the increased corpus.

For a matter of comparison, a system was also
built taking into account all the training material,
i.e. 37 M sentence pairs4. This last system is out-
performed by our best system built with IR and has
finally close performance to the one obtained with
news-c+euro relatively to the quantity of used data.

5 The system combination

System combination is based on the 500-best out-
puts generated by the LIA and the LIG systems.

3www.lemurproject.org
4For this experiment, the data were split into three parts

to build independent alignment models:news-c+euro, UN and
giga, and they were joined afterwards to build translation mod-
els.

USED PARALLEL CORPORA FILTERING

without with

news-c+ euro (1.77 M) 28.1 28.0
news-c+ 1.77 M ofUN 27.2 -
news-c+ 1.77 M ofgiga 27.1 -
news-c+ 1.77 M with IR 28.2 -
news-c+ 3 M with IR 29.1 29.0
news-c+ 5 M with IR 28.8 -
news-c+ 10 M with IR 29.3 29.2
All data 28.9 29.0

Table 4: BLEU (%) on test10 measured with the LIA
system using different training parallel corpora

They both used the MOSESoptiondistinct, en-
suring that the hypotheses produced for a given sen-
tence are different inside an N-best list. Each N-best
list is associated with a set of 14 scores and com-
bined in several steps.

The first step takes as input lowercased 500-best
lists, since preliminary experiments have shown a
better behavior using only lowercased output (with
cased output, combination presents some degrada-
tions). The score combination weights are opti-
mized on the development corpus, in order to max-
imize the BLEU score at the sentence level when
N-best lists are reordered according to the 14 avail-
able scores. To this end, we resorted to the SRILM
nbest-optimize tool to do a simplex-based
Amoeba search (Press et al., 1988) on the error func-
tion with multiple restarts to avoid local minima.

Once the optimized feature weights are com-
puted independently for each system, N-best lists
are turned into confusion networks (Mangu et al.,
2000). The 14 features are used to compute poste-
riors relatively to all the hypotheses in the N-best
list. Confusion networks are computed for each sen-
tence and for each system. In Table 5 we present
the ROVER (Fiscus, 1997) results for the LIA and
LIG confusion networks (LIA CNC and LIG CNC).
Then, both confusion networks computed for each
sentence are merged into a single one. A ROVER
is applied on the combined confusion network and
generates a lowercased 1-best.

The final step aims at producing cased hypothe-
ses. The LIA system built from truecased corpora
achieved significantly higher performance than the
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LIG LIA LIG CNC LIA CNC LIG+LIA

case-insensitive test10 27.6 29.3 28.1 29.4 29.7
BLEU test11 28.5 29.4 28.5 29.3 29.9

case-sensitive test10 26.1 28.4 27.0 28.4 28.7
BLEU test11 26.9 28.4 27.5 28.4 28.8

Table 5: Performance measured before and after combining systems

LIG system trained on lowercased corpora (Table 5,
two last lines). In order to get an improvement when
combining the outputs, we had to adopt the follow-
ing strategy. The 500-best truecased outputs of the
LIA system are first merged in a word graph (and
not a mesh lattice). Then, the lowercased 1-best
previously obtained with ROVER is aligned with the
graph in order to find the closest existing path, which
is equivalent to matching an oracle with the graph.
This method allows for several benefits. The new
hypothesis is based on a “true” decoding pass gener-
ated by a truecased system and discarded marginal
hypotheses. Moreover, the selected path offers a
better BLEU score than the initial hypothesis with
and without case. This method is better than the one
which consists of applying the LIG recaser (section
3.6) on the combined (un-cased) hypothesis.

The new recased one-best hypothesis is then used
as the final submission for WMT. Our combination
approach improves ontest11 the best single sys-
tem by 0.5 case-insensitive BLEU point and by 0.4
case-sensitive BLEU (Table 5). However, it also in-
troduces some mistakes by duplicating in particular
some segments. We plan to apply rules at the seg-
ment level in order to reduce these artifacts.

6 Conclusion

This paper presented two statistical machine trans-
lation systems developed at different sites using
MOSESand the combination of these systems. The
LIGA submission presented this year was ranked
among the best MT system for the French-English
direction. This campaign was the first shot for LIA
and the second for LIG. Beside following the tradi-
tional pipeline for building a phrase-based transla-
tion system, each individual system led to specific
works: LIG worked on using SPE as post-treatment,
LIA focused on extracting useful data from large-

sized corpora. And their combination implied to ad-
dress the interesting issue of matching results from
systems with different casing approaches.

WMT is a great opportunity to chase after perfor-
mance and joining our efforts has allowed to save
considerable amount of time for data preparation
and tuning choices (even when final decisions were
different among systems), yet obtaining very com-
petitive results. This year, our goal was to develop
state-of-the-art systems so as to investigate new ap-
proaches for related topics such as translation with
human-in-the-loop or multilingual interaction sys-
tems (e.g. vocal telephone information-query di-
alogue systems in multiple languages or language
portability of such systems).
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Abstract

Unsupervised word clustering algorithms —
which form word clusters based on a measure of
distributional similarity — have proven to be
useful in providing beneficial features for var-
ious natural language processing tasks involv-
ing supervised learning. This work explores the
utility of such word clusters as factors in sta-
tistical machine translation.
Although some of the language pairs in this
work clearly benefit from the factor augmen-
tation, there is no consistent improvement in
translation accuracy across the board. For all
language pairs, the word clusters clearly im-
prove translation for some proportion of the
sentences in the test set, but has a weak or
even detrimental effect on the rest.
It is shown that if one could determine whether
or not to use a factor when translating a given
sentence, rather substantial improvements in
precision could be achieved for all of the lan-
guage pairs evaluated. While such an “oracle”
method is not identified, evaluations indicate
that unsupervised word cluster are most bene-
ficial in sentences without unknown words.

1 Factored translation
One can go far in terms of translation quality with
plenty of bilingual text and a translation model that
maps small chunks of tokens as they appear in the
surface form, that is, the usual phrase-based sta-
tistical machine translation model. Yet even with
a large parallel corpus, data sparsity is still an is-
sue. Factored translation models are an extension of
phrase-based models which allow integration of addi-
tional word-level annotation into the model. Operat-
ing on more general representations, such as lemmas
or some kind of stems, translation model can draw
on richer statistics and to some degree offset the data
sparsity problem.

4.1.1 The Brown algorithm

In this thesis, we use the bottom-up agglomerative word clustering algorithm of

(Brown et al., 1992) to derive a hierarchical clustering of words. The input to the

algorithm is a text, which is a sequence of words w1, . . . , wn. The output from the

clustering algorithm is a binary tree, in which the leaves of the tree are the words.

We interpret each internal node as a cluster containing the words in that subtree.

Initially, the algorithm starts with each word in its own cluster. As long as there

are at least two clusters left, the algorithm merges the two clusters that maximizes

the quality of the resulting clustering (quality will be defined later).1 Note that the

algorithm generates a hard clustering—each word belongs to exactly one cluster.

To define the quality of a clustering, we view the clustering in the context of a class-

based bigram language model. Given a clustering C that maps each word to a cluster,

the class-based language model assigns a probability to the input text w1, . . . , wn,

where the maximum-likelihood estimate of the model parameters (estimated with

empirical counts) are used. We define the quality of the clustering C to be the

logarithm of this probability (see Figure 4-1 and Equation 4.1) normalized by the

length of the text.

...

...

c1 c2 c3 ci cn

w1 w2 w3 wi wn

P (ci|ci−1)

P (wi|ci) ci = C(wi)

Figure 4-1: The class-based bigram language model, which defines the quality of a
clustering, represented as a Bayesian network.

1We use the term clustering to refer to a set of clusters.

44

Figure 1: Bayesian network illustrating the class-
based language model that is used to define the qual-
ity of a clustering in the Brown algorithm [Liang,
2005]

2 Unsupervised word clusters
Unsupervised word clusters owe their appeal perhaps
mostly to the relative ease of obtaining them. Ob-
taining regular morphological, syntactic or seman-
tic analyses for tokens in a text relies on some sort
of tagger, either based on manually crafted rules or
trainable on an annotated corpus. Both rule-crafting
and corpus annotation are time-consuming and ex-
pensive processes, and might not be feasible for a
small or resource-scarce language.

For unsupervised word clusters, on the other hand,
one merely needs a large amount of raw (unanno-
tated) text and some processing power. Such cluster-
ing is thus particularly interesting for resource-scarce
languages, and especially so if the clusters enable the
training of more generalized translation models with-
out more bilingual text.

The independence of annotated corpora or hand-
crafted rules make unsupervised clusters interesting
for languages rich in NLP resources too. They of-
fer a way to exploit vast amounts of raw, unanno-
tated, monolingual text, in a manner akin to the way
language models profitably may be trained on vast
amounts of raw monolingual text.

With the broad coverage achievable from vast
amounts of monolingual text, word clusters might
help alleviate the problem of unknown words in
translation. It is imaginable that a word form oth-
erwise unknown to the translation model belongs to
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a known cluster. Appropriate use of word clusters,
coupled with a broad-coverage language model, could
make it be possible for the translation model to ar-
rive at the intended translation.

In this work we use two unsupervised clustering al-
gorithms: Brown and Unsupos. Other clustering al-
gorithms were on the drawing board as well, namely
embeddings from the Neural Language Model of Col-
lobert and Weston [2008] and word representations
from random indexing (RI)1. These, however, were
abandoned due to time constraints.

2.1 The Brown algorithm
The bottom-up agglomerative algorithm of Brown
et al. [1992] processes a sequence of tokens and pro-
duces a binary tree with tokens as leaf nodes. Each
internal node in the tree can be interpreted as a clus-
ter containing the tokens on the leaf nodes of that
subtree. The clustering produced is thus a hierarchi-
cal clustering.

Very briefly, the algorithm proceeds by first as-
signing every token to its own cluster, and then iter-
atively merges the two clusters that maximises the
quality of the resulting clustering, where the quality
of a clustering is defined in terms of a class-based
language model (figure 1).

Note that this algorithm produces a hard clus-
tering, in the sense that it assigns each token to a
single cluster. From a semantic perspective, there
are homographic words whose underlying senses are
conceptually and possibly syntactically distinct, and
whose cluster-tag intuitively should depend on their
use in running text. The clustering obtained from the
Brown algorithm does not accommodate this wish.

We use the implementation2 of Liang [2005].

2.2 jUnsupos
Contrary to the hard clustering of the Brown algo-
rithm, the jUnsupos algorithm of Biemann [2006]
emits a Viterbi tagger which is sensitive to the con-
text of a token in running text. Thus, word forms can
belong to more than a single cluster, and such word
forms — which are considered ambiguous by the al-
gorithm — will be assigned to a cluster depending
on their context.

In a coarse outline, the algorithm works by first
inducing a distributional clustering for unambiguous
high-frequency tokens, as well as a co-occurrence-
based clustering for less common tokens. The two
partly overlapping clusterings are then combined to

1https://github.com/turian/random-indexing-
wordrepresentations

2Available at http://www.cs.berkeley.edu/~pliang/software/

100001001 immediate urgent ongoing absolute ex-
traordinary exceptional ideological un-
precedented appalling overwhelming al-
leged automatic [...]

11111100111111110 worried concerned skeptical
unhappy uneasy reticent unsure per-
plexed excited apprehensive legion un-
concerned [...]

111111100010001 cover include involve exclude
confuse encompass designate preclude
transcend duplicate defy precede [...]

1111111000000 encourage promote protect defend
safeguard restore assist preserve coordi-
nate convince destroy integrate [...]

0111000 china russia iran israel turkey ukraine in-
dia japan pakistan georgia serbia europol
[...]

1000110010 waste water drugs land fish material
meat profit alcohol forest blood chemi-
cals [...]

Figure 2: Exemplars of word clusters obtained using
the Brown algorithm (C=1000), showing the 12 most
frequent tokens per cluster

produce a lexicon with derived syntactic categories
and word forms.

2.3 Cluster count and complexion
A reasonable question when faced with the task of
inducing word clusters in an unsupervised manner
is: How many clusters to produce? This question is
presumably closely intertwined with the question of
what sort of beast a cluster obtained in this man-
ner can be expected to be. Would a clustering with
around 30-90 clusters correspond somewhat closely
to an ordinary part-of-speech tag-set for the given
language?

Looking at the handful of exemplar clusters shown
in figure 2, which were obtained with the Brown algo-
rithm (using a cluster count of 1000), we cautiously
note some apparent patterns.

• The clusters appear to be subsets of the cluster-
ing implied by conventional part-of-speech tags:
The first two consist of adjectives (including the
rather ambiguous form legion), the next two
(transitive) verbs and the final two nouns.

• Syntactically, members of the two apparent verb
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clusters seem to consist of verbs in their infini-
tive (or plurally inflected) form.

• From a quasi-semantic perspective, the last clus-
ter appears to consist of nouns for corporeal
goods (as apposed to immaterial things).

• While most exemplars from the second-last clus-
ter are countries, all of the shown forms can be
said to be proper nouns.

Note that only the 12 most frequent forms from each
cluster are displayed, the apparent patterns should
be taken with a pinch of salt. Although the qualities
suggested can be expected to relate to distributional
properties that the clusters reflect, exceptional mem-
bers are perhaps to be expected.

In the present work, we went with the pre-trained
models for jUnsupos3, which have the following
characteristics4:

Lang Corpus # Sents # Tags
cs LCC 4 M 539
de Wortschatz 40 M 396
en Medline 2004 34 M 480
es LCC 4.5 M 415
fr LCC 3 M 359

For the Brown algorithm, we are contrasting clus-
ter count choices of 320 and 1000, based on reports
of other successful applications [Turian et al., 2010]5,
with clustering models trained on monolingual data
from the Europarl corpus and the News Commentary
corpus.

3 Experimental setup
The baseline systems were set up in accordance with
the guidelines on the shared task website. That is,
they were trained with grow-diag-final-and word
alignment heuristics and msd-bidirectional-fe re-
ordering.

Translation models were trained on a concatena-
tion of the Europarl and News Commentary corpora,
which were first tokenized, then filtered to sentence
lengths of up to 40 tokens, and finally lowercased.

5-gram language models were built using
ngram-count on a concatenation of the Eu-
roparl corpora and the News Commentary corpora.

3As available at http://wortschatz.uni-
leipzig.de/~cbiemann/software/unsupos.html

4LCC refers to the Leipzig Corpora, available at
http://corpora.uni-leipzig.de/. Wortschatz refers to
http://www.wortschatz.uni-leipzig.de/. Medline is avail-
able at http://www.nlm.nih.gov/mesh/filelist.html.

5A planned evaluation of a cluster count of 3200 was aban-
doned due to time constraints

For the unsupervised word clusters, 5-gram language
models were used as well, built from tagged versions
of the same corpora. All language models were
binarised and loaded using KenLM [Heafield, 2011].

Minimum error rate training (MERT) was used to
optimise parameters on both baseline and factored
models against the 2008 news test set, as suggested
on the shared task website6.

All phrase tables were filtered and binarised for
the development and testing corpora during tuning
and testing, respectively.

Seeing that the preparation of the raw corpora,
word clustering models, factored corpora, language
models, as well as training, optimization and eval-
uation of the various models was a rather involved,
yet repetitive process, we took a stab at making a
GNU Makefile-based approach for automated han-
dling (and parallelisation) of the whole dependency
graph of subtasks. The ongoing effort, which shares
some aspirations and abilities with the recently an-
nounced Experiment Management System (EMS), is
publicly available7.

4 Results
Table 1a lists BLEU scores for adding jUnsupos tags
(uPOS), Brown clusters with 320 clusters (C320) or
Brown clusters with 1000 clusters (C1000) as either
an alignment factor, a two-sided translation factor or
a source-sided translation factor.

Although using Brown clusters (C1000) as a two-
sided translation factor improves BLEU scores for
some language pairs, most notably en-cs, en-de and
cs-en, no clear across-the-board benefit is seen.

4.1 Oracle scores
Based on the hypothesis that the factorisations are
beneficial when translation some sentences, and not
when translating others, we completed an oracle-
based evaluation, in which we assume to know a pri-
ori whether to use the factored model for translating
a given sentence, or just go with the baseline, unfac-
tored model. In reality, we don’t have such an or-
acle method for arbitrary sentences, but when deal-
ing with the shared task test set (or other corpora
for which we have reference translations), it was easy
enough to check per-sentence BLEU scores for each
model and make the decision based on a comparison.

Table 1b lists BLEU scores obtainable with each
factor configuration given such an oracle method. In
this scenario, most factored models beat the baseline,
indicating that the factorisations are beneficial for
certain sentences, and detrimental for others.

6http://www.statmt.org/wmt11/translation-task.html
7At https://gibhub.com/crishoj/factored
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Pair Baseline Alignment factor Two-sided translation Source-sided transl. Best
C1000 C320 uPOS C1000 C320 uPOS C1000 C320 uPOS Δ %

cs-en 18.18 17.77 17.19 13.54 18.59 18.36 17.50 18.19 18.19 17.59 0.41 2.3%
de-en 18.45 17.94 17.57 16.36 18.56 18.42 17.93 18.12 18.12 17.86 0.11 0.6%
en-cs 11.85 11.82 11.61 9.75 12.73 12.28 10.94 11.92 11.92 11.85 0.88 7.4%
en-de 13.27 12.90 12.83 11.98 13.81 13.84 13.19 12.94 12.94 12.92 0.57 4.3%
en-es 28.08 27.10 26.52 24.90 28.40 28.16 27.50 27.31 27.31 27.19 0.32 1.1%
en-fr 25.90 24.60 23.98 21.85 25.89 20.59 24.16 24.89 24.89 24.74 – –
es-en 26.70 24.87 24.71 23.92 25.76 25.96 25.40 24.92 24.92 24.92 – –
fr-en 24.73 23.18 23.13 21.76 24.01 22.86 23.23 23.37 23.37 23.04 – –

(a) BLEU scores for factor configurations in comparison to the unfactored baseline

Pair Baseline Alignment factor Two-sided translation Source-sided transl. Best
C1000 C320 uPOS C1000 C320 uPOS C1000 C320 uPOS Δ %

cs-en 18.18 19.93 19.81 19.19 20.01 20.00 19.83 19.58 19.58 19.63 1.83 10.1%
de-en 18.45 20.06 20.00 19.75 20.28 20.26 20.15 19.84 19.84 19.90 1.83 9.9%
en-cs 11.85 13.18 13.14 12.81 13.77 13.58 12.98 12.83 12.83 12.93 1.92 16.2%
en-de 13.27 14.56 14.60 14.36 14.98 15.10 14.81 14.21 14.21 14.28 1.83 13.8%
en-es 28.08 29.70 29.50 29.17 30.33 30.2 30.00 29.54 29.54 29.56 2.25 8.0%
en-fr 25.90 27.34 27.22 26.90 27.84 26.98 27.32 27.15 27.15 27.16 1.94 7.5%
es-en 26.70 27.83 27.81 27.74 28.16 28.20 28.06 27.64 27.64 27.73 1.50 5.6%
fr-en 24.73 25.86 25.95 25.83 26.16 26.31 26.05 25.66 25.66 25.69 1.58 6.4%

(b) BLEU scores with an oracle-directed, per-sentence selective usage of either the baseline or the factored model

Table 1: BLEU scores when using Brown Clusters with granularity 1000 (C1000), granularity 320 (C320)
and unsupervised part-of-speech tags (uPOS) as either an added alignment factor, a two-sided translation
factor or a source-sided translation factor

Pair Baseline Oracle Abs. Δ Rel. %
cs-en 18.18 22.60 4.42 24.3%
de-en 18.45 22.42 3.97 21.5%
en-cs 11.85 15.89 4.04 34.1%
en-de 13.27 17.16 3.89 29.3%
en-es 28.08 32.52 4.44 15.8%
en-fr 25.90 30.07 4.17 16.1%
es-en 26.70 30.22 3.52 13.2%
fr-en 24.73 28.67 3.94 15.9%

Table 2: BLEU scores under the assumption of an
oracle function indicating the optimal factor config-
uration for each sentence

4.2 Combined oracle scores
Imagine another oracle function, which would not
simply determine whether to prefer a given factored
model over the baseline for a given sentence, but
instead indicate which of several possible factored
models to use when translating a given sentence.

BLEU scores obtainable under the assumption of
such a combined oracle function are listed in table 2.
As was the case for the individual factored models
(table 1a), en-cs, en-de and cs-en see the largest ben-
efits over the baselines.

These oracle scores are obviously an idealised case.
They indicate an upper bound that one could seek to
approximate by constructing an appropriate oracle
function.

4.3 Unknown words
In section 2 it was hypothesised that word clus-
ters are potentially beneficial in translating sentences
with unknown words — that is, word forms which
were not seen in any aligned sentences (but which
may belong to a word cluster known by the transla-
tion model).

With this hypothesis in mind, we would like to
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Pair Sentences Baseline C1000 Rel. %
cs-en 1955 65% 17.63 17.70 0.4%
de-en 1925 64% 17.84 17.56 -1.6%
en-cs 1583 53% 11.85 12.63 6.6%
en-de 1395 46% 13.65 13.47 -1.3%
en-es 1327 44% 27.77 27.97 0.7%
en-fr 1369 46% 25.43 25.11 -1.3%
es-en 1316 44% 26.43 25.41 -3.9%
fr-en 1423 47% 24.20 23.56 -2.6%
Avg. 1537 51% 20.60 20.43 -0.4%

(a) BLEU scores for sentences with unknown words

Pair Sentences Baseline C1000 Rel. %
cs-en 1048 35% 19.63 20.77 5.8%
de-en 1078 36% 20.03 21.24 6.0%
en-cs 1420 47% 11.85 12.90 8.9%
en-de 1608 54% 12.97 14.22 9.6%
en-es 1676 56% 28.41 28.88 1.7%
en-fr 1634 54% 26.46 26.81 1.3%
es-en 1687 56% 27.01 26.15 -3.2%
fr-en 1580 53% 25.40 24.58 -3.2%
Avg. 1466 49% 21.47 21.94 3.4%

(b) BLEU scores for sentences with no unknown words

Table 3: BLEU scores for the best overall factorisa-
tion, Brown clusters (C=1000) as a two-sided trans-
lation factor, on sentences with (table 3a) and with-
out (table 3b) unknown words

see how the factored models fare in comparison to
the unfactored baselines, specifically for those sen-
tences containing unknown words, and for the rest
(sentences without unknown words). This targeted
evaluation was done using the best overall factor con-
figuration: Brown clusters (C=1000) as a two-sided
translation factor.

The results are shown in tables 3a and 3b. On
average (across language paris), 51% test set sen-
tences contain at least 1 unknown word. Contrary
to what might be expected, the factorisation seems
to be most beneficial for sentences with all known
words (3.4% improvement in BLEU score on aver-
age). For sentences with unknown words, the effect
is weak or detrimental (except for en-cs), averaging
a slight decrease (-0.4%) in BLEU score across the
language pairs.

The lack of benefit for sentences with unknown
words is likely due to the fact that no additional
monolingual data was used to make the Brown clus-
ters for this experiment. In other words, there is
no chance of knowing the Brown cluster for an un-
known word. Furthermore, we assume that gains for

sentences with unknown words are more likely with
a factorisation that includes an alternative decoding
path for word clusters8.

5 Conclusions and future work
In this work we have explored the utility of three un-
supervised word clusterings as either an alignment
factor, a two-sided translation factor or a source-
sided translation factor.

Although no across-the-board benefit was seen, it
was evident that the factorisations help in translating
some proportion of the test set sentences. Being able
to determine for which sentences to use a factored
model is clearly desirable.

Overall, the single most beneficial of the factor
configurations explored was Brown clusters with a
granularity of 1000, as a two-sided translation factor.
A more detailed evaluation of the effects of different
cluster sizes, as well as using clusters induced from
more text, would be interesting in a follow-up study.

Using clusters in some more interesting factor
configurations, particularly in alternative decoding
paths, is still pending.
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Abstract

This work describes the Haitian-Créole to En-
glish statistical machine translation system
built by Barcelona Media Innovation Center
(BM) and Institute for Infocomm Research
(I2R) for the 6th Workshop on Statistical Ma-
chine Translation (WMT 2011). Our sys-
tem carefully processes the available data and
uses it in a standard phrase-based system en-
hanced with a source context semantic feature
that helps conducting a better lexical selection
and a feature orthogonalization procedure that
helps making MERT optimization more reli-
able and stable. Our system was ranked first
(among a total of 9 participant systems) by the
conducted human evaluation.

1 Introduction

During years there has been a big effort to produce
natural language processing tools that try to under-
stand well written sentences, but the question is how
well do these tools work to analyze the contents
of SMS. For example, not even syntactic tools like
stemming can bring to common stems words that
have been shortened (like Xmas or Christmas).

This paper describes our participation on the 6th
Workshop on Statistical Machine Translation (WMT
2011). The featured task from the workshop was
to translate Haitian-Créole SMS messages into En-
glish. According to the WMT 2011 organizers, these
text messages (SMS) were sent by people in Haiti in
the aftermath of the January 2010 earthquake. Our
objective in this featured task is to translate from
Haitian-Créole into English either using raw or clean
data.

We propose to build an SMT system which could
be used for both raw and clean data. Our base-
line system is an standard phrase-based SMT sys-
tem built with Moses (Koehn et al., 2007). Starting
from this system we propose to introduce a semantic
feature function based on latent semantic indexing
(Landauer et al., 1998). Additionally, as a total dif-
ferent approximation, we propose to orthogonalize
the standard feature functions of the phrase-based
table using the Gram-Schmidt methodology (Greub,
1975). Then, we experimentally combine both en-
hancements.

The only difference among the raw and clean
SMT system were the training sentences. In order
to translate the clean data, we propose to normalize
the corpus of short messages given very scarce re-
sources. We only count with a small set of parallel
corpus at the level of sentence of chat and standard
language. A nice normalization methodology can
allow to make the task of communication easier. We
propose a statistical normalization technique using
the scarce resources we have based on a combina-
tion of statistical machine translation techniques.

The rest of this paper is organized as follows. Sec-
tion 2 briefly describes the phrase-based SMT sys-
tem which is used as a reference system. Next, sec-
tion 3 describes our approximation to introduce se-
mantics in the baseline system. Section 4 reports our
idea of orthogonalizing the feature functions in the
translation table. Section 5 details the data process-
ing and the data conversion from raw to clean. As
follows, section 6 shows the translation results. Fi-
nally, section 7 reports most relevant conclusions of
this work.
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2 Phrase-based SMT baseline system

The phrase-based approach to SMT performs the
translation splitting the source sentence in segments
and assigning to each segment a bilingual phrase
from a phrase-table. Bilingual phrases are trans-
lation units that contain source words and target
words, e.g. unité de traduction — translation unit,
and have different scores associated to them. These
bilingual phrases are then selected in order to maxi-
mize a linear combination of feature functions. Such
strategy is known as the log-linear model (Och,
2003) and it is formally defined as:

ê = arg max
e

[
M∑

m=1

λmhm (e, f)

]
(1)

where hm are different feature functions with
weights λm. The two main feature functions are
the translation model (TM) and the target lan-
guage model (LM). Additional models include lexi-
cal weights, phrase and word penalty and reordering.

3 Semantic feature function

Source context information is generally disregarded
in phrase-based systems given that all training sen-
tences contribute equally to the final translation.
The main objective in this section is to motivate
the use of a semantic feature function we have re-
cently proposed (Banchs and Costa-jussà, 2011) for
incorporating source context information into the
phrase-based statistical machine translation frame-
work. Such a feature is based on the use of a sim-
ilarity metric for assessing the degree of similarity
between the sentences to be translated and the sen-
tences in the original training dataset.

The measured similarity is used to favour those
translation units that have been extracted from train-
ing sentences that are similar to the current sen-
tence to be translated and to penalize those trans-
lation units than have been extracted from unrelated
or dissimilar training sentences. In the proposed fea-
ture, sentence similarity is measured by means of the
cosine distance in a reduced dimension vector-space
model, which is constructed by using Latent Seman-
tic Indexing (Landauer et al., 1998), a well know
dimensionality reduction technique that is based on

the singular value decomposition of a matrix (Golub
and Kahan, 1965).

The main motivation of this semantic feature is
the fact that source context information is actually
helpful for disambiguating the sense of a given word
during the translation process. Consider for instance
the Spanish word banco which can be translated into
English as either bank or bench depending on the
specific context it occurs. By comparing a given
input sentence containing the Spanish word banco
with all training sentences from which phrases in-
cluding this word where extracted, we can figure
out which is the most appropriated sense for this
word in the given sentence. This is because for the
sense bank the Spanish word banco will be more
like to co-occur with words such as dinero (money),
cuenta (account), intereses (interest), etc., while for
the sense bench it would be more likely to co-occur
with words such as plaza (square), parque (park),
mesa (table), etc; and the chances are high for such
disambiguating words to appear in one or more of
the training sentences from which bilingual phrases
containing banco has been extracted.

In the particular case of translation tasks where
multi-domain corpora is used for training machine
translation systems, such as the Haitian-Creole-to-
English task considered here, the proposed seman-
tic feature has proven to contribute to a better lexi-
cal selection during the decoding process. However,
in tasks considering mono-domain corpora the se-
mantic feature does not improves translation quality
as the most frequent translation pairs learned by the
system are actually the correct ones.

Another important issue related to the semantic
feature discussed here is that it is a dynamic feature
in the sense that it is computed for each potential
translation unit according to the current input sen-
tence being translated. This makes the implementa-
tion of this semantic feature very expensive from a
computational point of view. At this moment, we do
not have an efficient implementation, which makes it
unfeasible in the practice to apply this methodology
to large training corpora.

As the training corpus available for the Haitian-
Creole-to-English is both small in size and multi-
domain in nature, it constitutes the perfect scenario
for experimenting with the recently proposed source
context semantic feature. For more details about im-
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plementation and performance of this methodology
in a different translation task, the reader should refer
to (Banchs and Costa-jussà, 2011).

4 Heuristic enhacement

The phrase-based SMT baseline system contains,
by default, 5 feature functions which are the con-
ditional and posterior probabilities, the direct and
indirect lexical scores and the phrase penalty. Usu-
ally, these feature functions are not statistical inde-
pendent from each other. Based on the analogy be-
tween the statistical and geometrical concepts of in-
dependence and orthogonality, and given that, dur-
ing MERT, the optimization of feature combination
is conducted on log-probability space; we decided
to explore the effect of using a set of orthogonal fea-
tures during MERT optimization.

It is well know in both spectral analysis and vec-
tor space decomposition that orthogonal bases allow
for optimal representations of signals and variables,
as they allow for each individual natural component
to be represented independently of the others. In
linear lattice predictors, for instance, each filter co-
efficient can be optimized independently from the
others while convergence to the optimal solution is
guarantied (Haykin, 1996). In the case of statisti-
cal machine translation, the linear nature of feature
combination in log-probability space suggested us
that transforming the features into a set of orthog-
onal features could make MERT optimization more
robust and efficient.

According to this, we used Gram-Schmidt
(Greub, 1975) to transform all available feature
functions into an orthogonal set of feature func-
tions. This orthogonalization process was con-
ducted directly over the log-probability space, i.e,
given the five vectors representing the feature
functions h1, h2, h3, h4, h5, we used the Gram-
Schmidt algorithm to construct an orthogonal basis
v1, v2, v3, v4, v5. The resulting set of features con-
sisted of 5 vectors that form an orthogonal basis.
This new orthogonal set of features was used for
MERT optimization and decoding.

5 Experimental framework

In this section we report the details of the used data
preprocessing and raw to clean data conversion.

5.1 Data preprocessing
The WMT evaluation provided a high variety of
data. Our preprocessing consisted of the following:

• Lowercase and tokenize all files using the
scripts from Moses.

• In the case of the haitian-Creole side of the
data, replace all stressed vowels by their plain
forms.

• Filter out those sentences which had no words
or more than 120.

Table 1 shows the data statistics of the different
sources before and after this preprocessing. The dif-
ferent sources of the table include: in-domain SMS
data (SMS); medical domain (medical); newswire
domain (newswire); united nations (un); state de-
partment (state depart.); guidelines for approapriate
international disaster donations (guidelines); kren-
gle senetences (krengle) and a glossary includes
wikipedia name entities and haitisurf dictionary.
The sources of this material are specified in the web
page of the workshop.

All data from table 1 was concatenated and used
as training corpus. The English part of this data was
used to build the language model. As development
and test corpus we used the data provided by the
organization. Both development and test contained
900 sentences.

Finally, in the evaluation, we included develop-
ment and tests as part of the training corpus, and
then, we translated the evaluation set.

5.2 Raw to clean data conversion
This featured task contained two subtasks. One was
to translate raw data and the other was to translate
clean data. Therefore, we have to build two sys-
tems. Our raw data system was built using the train-
ing data from table 1. The clean data system was
built using all training data from table 1 except in-
domain SMS data. Particularly, a modified version
of the in-domain SMS data was included in the clean
data system. The modification consisted in cleaning
the original in-domain SMS data using an standard
Moses SMT system. We built an SMT system to
translate from raw data to clean data. This SMT sys-
tem was built with the development, test and evalu-
ation data which in total were 2700 sentences. We

454



Statistics
before after

SMS
sentences 17,192 16,594
words 386.0k 383.0k

medical
sentences 1,619 1,619
words 10.4k 10.4k

newswire
sentences 13,517 13,508
words 326.9k 326.7k

wikipedia
sentences 8,476 8,476
words 113.9k 113.9k

un
sentences 91 91
words 1,906 1,906

state depart.
sentences 56 14
words 450 355

guidelines
sentences 60 9
words 795 206

krengle
sentences 658 655
words 4.2k 4.2k

bible
sentences 30,715 30,677
words 946k 944k

glossary
sentences 49,990 49,980
words 126.4k 126.3k

Table 1: Data Statistics before and after training prepro-
cessing. Number of words are from the English side.

used 2500 sentences as training data and 200 sen-
tences for development to adjust weights. The raw
and clean systems were tuned with their respective
developments and tested on their respective tests.

6 Experimental results

In this section we report the results of the approaches
proposed in previous sections. Table 2 and 3 report
the results on the development and test sets on the
raw and clean subtask, respectively.

First row on both tables report the results of the
baseline system briefly described in section 2. Sec-
ond row and third row on both tables report the per-
formance of the semantic feature function and on the
heuristic approach of orthogonalization (orthofea-
tures) respectively. Finally, the last row on both
tables report the performance of both semantic and
heuristic features when combined.

Results shown in tables 2 and 3 do not show
coherent improvements when introducing the new

System Dev Test
baseline 32.00 31.01
+semanticfeature 32.34 30.68
+orthofeatures 31.63 29.90
+semanticfeature+orthofeatures 32.21 30.34

Table 2: BLEU results for the raw data. Best results in
bold.

System Dev Test
baseline 35.86 33.78
+semanticfeature 35.98 33.90
+orthofeatures 35.57 34.10
+semanticfeature+orthofeatures 36.28 33.53

Table 3: BLEU results for the clean data. Best results in
bold.

methodologies proposed. The clean data seems to
benefit from the semantic features and the orthofea-
tures separately. However, the raw data seems not to
benefit from the orthofeatures and keep the similar
performance to the baseline system when using the
semantic feature. Although, this trend is clear, the
results are not conclusive. Therefore, we decided to
participate in the evaluation with the full system (in-
cluding the semantic features and orthofeatures) in
the clean track and with the system including the se-
mantic feature in the raw track. Actually, we used
those systems that performed best in the develop-
ment set. Additionally, results with the semantic
feature may not be significantly better than the base-
line system, but we have seen it actually heps to im-
prove lexical selection in practice in previous works
(Banchs and Costa-jussà, 2011).

7 Conclusions

This paper reports the BM-I2R system description in
the Haitian-Créole to English translation task. This
system was ranked first in the WMT 2011 by the
conducted human evaluation. The translation sys-
tem uses a PBSMT system enhanced with two dif-
ferent methodologies. First, we experiment with the
introduction of a semantic feature which is capa-
ble of introducing source context information. Sec-
ond, we propose to transform the five standard fea-
ture functions used in the translation model of the
PBSMT system into five orthogonal feature func-
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tions using the Gram-Schmidt methodology. Results
show that the first methodology can be used for both
raw and clean data. Whereas the second seems to
only benefit clean data.
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Abstract

This paper describes the machine translation
(MT) system developed by the Transducens
Research Group, from Universitat d’Alacant,
Spain, for the WMT 2011 shared transla-
tion task. We submitted a hybrid system for
the Spanish–English language pair consist-
ing of a phrase-based statistical MT system
whose phrase table was enriched with bilin-
gual phrase pairs matching transfer rules and
dictionary entries from the Apertium shallow-
transfer rule-based MT platform. Our hybrid
system outperforms, in terms of BLEU, GTM
and METEOR, a standard phrase-based statis-
tical MT system trained on the same corpus,
and received the second best BLEU score in
the automatic evaluation.

1 Introduction

This paper describes the system submitted by
the Transducens Research Group (Universitat
d’Alacant, Spain) to the shared translation task of
the EMNLP 2011 Sixth Workshop on Statistical
Machine Translation (WMT 2011). We partici-
pated in the Spanish–English task with a hybrid sys-
tem that combines, in a phrase-based statistical ma-
chine translation (PBSMT) system, bilingual infor-
mation obtained from parallel corpora in the usual
way (Koehn, 2010, ch. 5), and bilingual informa-
tion from the Spanish–English language pair in the
Apertium (Forcada et al., 2011) rule-based machine
translation (RMBT) platform.

A wide range of hybrid approaches (Thurmair,
2009) may be taken in order to build a machine

translation system which takes advantage of a par-
allel corpus and explicit linguistic information from
RBMT. In particular, our hybridisation approach di-
rectly enriches the phrase table of a PBSMT system
with phrase pairs generated from the explicit lin-
guistic resources from an Apertium-based shallow-
transfer RBMT system. Apertium, which is de-
scribed in detail below, does not perform a complete
syntactic analysis of the input sentences, but rather
works with simpler linear intermediate representa-
tions.

The rest of the paper is organised as follows. Next
section overviews the two MT systems we combine
in our submission. Section 3 outlines related hybrid
approaches, whereas our approach is described in
Section 4. Sections 5 and 6 describe, respectively,
the resources we used to build our submission and
the results achieved for the Spanish–English lan-
guage pair. The paper ends with some concluding
remarks.

2 Translation approaches

We briefly describe the rationale behind the PBSMT
(section 2.1) and the shallow-transfer RBMT (sec-
tion 2.2) systems we have used in our hybridisation
approach.

2.1 Phrase-based statistical machine
translation

Phrase-based statistical machine translation sys-
tems (Koehn et al., 2003) translate sentences by
maximising the translation probability as defined
by the log-linear combination of a number of fea-
ture functions, whose weights are chosen to opti-
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mise translation quality (Och, 2003). A core com-
ponent of every PBSMT system is the phrase ta-
ble, which contains bilingual phrase pairs extracted
from a bilingual corpus after word alignment (Och
and Ney, 2003). The set of translations from which
the most probable one is chosen is built by segment-
ing the source-language (SL) sentence in all possi-
ble ways and then combining the translation of the
different source segments according to the phrase ta-
ble. Common feature functions are: source-to-target
and target-to-source phrase translation probabilities,
source-to-target and target-to-source lexical weight-
ings (calculated by using a probabilistic bilingual
dictionary), reordering costs, number of words in
the output (word penalty), number of phrase pairs
used (phrase penalty), and likelihood of the output
as given by a target-language (TL) model.

2.2 Shallow-transfer rule-based machine
translation

The RBMT process (Hutchins and Somers, 1992)
can be split into three different steps: i) analysis of
the SL text to build a SL intermediate representation,
ii) transfer from that SL intermediate representation
to a TL intermediate representation, and iii) genera-
tion of the final translation from the TL intermediate
representation.

Shallow-transfer RBMT systems use relatively
simple intermediate representations, which are
based on lexical forms consisting of lemma, part
of speech and morphological inflection information
of the words in the input sentence, and apply sim-
ple shallow-transfer rules that operate on sequences
of lexical forms: this kind of systems do not per-
form a full parsing. Apertium (Forcada et al., 2011),
the shallow-transfer RBMT platform we have used,
splits the transfer step into structural and lexical
transfer. The lexical transfer is done by using a bilin-
gual dictionary which, for each SL lexical form, al-
ways provides the same TL lexical form; thus, no
lexical selection is performed. Multi-word expres-
sions (such ason the other hand, which acts as a
single adverb) may be analysed by Apertium to (or
generated from) a single lexical form.

Structural transfer in Apertium is done by apply-
ing a set of rules in a left-to-right, longest-match
fashion to prevent the translation from being per-
formed word for word in those cases in which this

would result in an incorrect translation. Structural
transfer rules process sequences of lexical forms by
performing operations such as reorderings or gen-
der and number agreements. For the translation be-
tween non-related language pairs, such as Spanish–
English, the structural transfer may be split into
three levels in order to facilitate the writing of rules
by linguists. The first level performs short-distance
operations, such as gender and number agreement
between nouns and adjectives, and groups sequences
of lexical forms intochunks; second-level rules per-
form interchunkoperations, such as agreements be-
tween more distant constituents (i.e. subject and
main verb); and third-level ones de-encapsulate the
chunks and generate a sequence of TL lexical forms
from eachchunk. Note that, although the multi-
level shallow transfer allows performing operations
between words which are distant in the source sen-
tence, shallow-transfer RBMT systems are less pow-
erful that the ones which perform full parsing. In ad-
dition, each lexical form is processed at most by one
rule in the same level.

The following example illustrates how lexical and
structural transfer are performed in Apertium. Sup-
pose that the Spanish sentencePor otra parte mis
amigos americanos han decidido veniris to be trans-
lated into English. First, it is analysed as:

por otra parte<adv>
ḿıo<det><pos><mf><pl>
amigo<n><m><pl>
americano<adj><m><pl>
haber<vbhaver><pri><p3><pl>
decidir<vblex><pp><m><sg>
venir<vblex><inf>

which splits the sentence in seven lexical forms: a
multi-word adverb (por otra parte), a plural pos-
sessive determiner (ḿıo), a noun and an adjective
in masculine plural (amigoandamericano, respec-
tively), the third-person plural form of the present
tense of the verbto be (haber), the masculine sin-
gular past participle of the verbdecidir and the verb
venir in infinitive mood. Then, the transfer step is
executed. It starts by performing the lexical trans-
fer and applying the first-level rules of the structural
transfer in parallel. The lexical transfer of each SL
lexical form gives as a result:

on the other hand<adv>
my<det><pos><pl>
friend<n><pl>
american<adj>
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have<vbhaver><pres>
decide<vblex><pp>
come<vblex><inf>

Four first-level structural transfer rules are trig-
gered: the first one matches a single adverb (the
first lexical form in the example); the second one
matches a determiner followed by an adjective and
a noun (the next three lexical forms); the third one
matches a form of the verbhaberplus the past par-
ticiple form of another verb (the next two lexical
forms); and the last one matches a verb in infini-
tive mood (last lexical form). Each of these first-
level rules group the matched lexical forms in the
samechunkand perform local operations within the
chunk; for instance, the second rule reorders the ad-
jective and the noun:

ADV{ on the other hand<adv> }
NOUN_PHRASE{ my<det><pos><pl>
american<adj> friend<n><pl> }
HABER_PP{ have<vbhaver><pres>
decide<vblex><pp> }
INF{ come<vblex><inf> }

After that, inter chunk operations are performed.
The chunk sequenceHABERPP (verb in present
perfect tense)INF (verb in infinitive mood) matches
a second-level rule which adds the prepositionto be-
tween them:

ADV{ on the other hand<adv> }
NOUN_PHRASE{ my<det><pos><pl>
friend<n><pl> american<adj> }
HABER_PP{ have<vbhaver><pres>
decide<vblex><pp> }
TO{ to<pr> }
INF{ come<vblex><inf> }

Third-level structural transfer removeschunken-
capsulations so that a plain sequence of lexical forms
is generated:

on the other hand<adv>
my<det><pos><pl>
american<adj>
friend<n><pl>
have<vbhaver><pres>
decide<vblex><pp>
to<pr> come<vblex><inf>

Finally, the translation into TL is generated from
the TL lexical forms:On the other hand my Ameri-
can friends have decided to come.

3 Related work

Linguistic data from RBMT have already been used
to enrich SMT systems in different ways. Bilingual

dictionaries have been added to SMT systems since
its early days (Brown et al., 1993); one of the sim-
plest strategies involves adding the dictionary entries
directly to the training parallel corpus (Tyers, 2009;
Schwenk et al., 2009). Other approaches go beyond
that. Eisele et al. (2008) first translate the sentences
in the test set with an RBMT system, then apply the
usual phrase-extraction algorithm over the resulting
small parallel corpus, and finally add the obtained
phrase pairs to the original phrase table. It is worth
noting that neither of these two strategies guarantee
that the multi-word expressions in the RBMT bilin-
gual dictionary appearing in the sentences to trans-
late will be translated as such because they may be
split into smaller units by the phrase-extraction algo-
rithm. Our approach overcomes this issue by adding
the data obtained from the RBMT system directly
to the phrase table. Preliminary experiments with
Apertium data shows that our hybrid approach out-
performs the one by Eisele et al. (2008) when trans-
lating Spanish texts into English.

4 Enhancing phrase-based SMT with
shallow-transfer linguistic resources

As already mentioned, the Apertium structural trans-
fer detects sequences of lexical forms which need
to be translated together to prevent them from be-
ing translated word for word, which would result in
an incorrect translation. Therefore, adding to the
phrase table of a PBSMT system all the bilingual
phrase pairs which either match one of these se-
quences of lexical forms in the structural transfer or
an entry in the bilingual dictionary suffices to encode
all the linguistic information provided by Apertium.
We add these bilingual phrase pairs directly to the
phrase table, instead of adding them to the training
corpus and rely on the phrase extraction algorithm
(Koehn, 2010, sec. 5.2.3), to avoid splitting the
multi-word expressions provided by Apertium into
smaller phrases (Schwenk et al., 2009, sec. 2).

4.1 Phrase pair generation

Generating the set of bilingual phrase pairs which
match bilingual dictionary entries is straightforward.
First, all the SL surface forms that are recognised by
Apertium and their corresponding lexical forms are
generated. Then, these SL lexical forms are trans-
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lated using the bilingual dictionary, and finally their
TL surface forms are generated.

Bilingual phrase pairs which match structural
transfer rules are generated in a similar way. First,
the SL sentences to be translated are analysed to get
their SL lexical forms, and then the sequences of lex-
ical forms that either match a first-level or a second-
level structural transfer rule are passed through the
Apertium pipeline to get their translations. If a se-
quence of SL lexical forms is matched by more than
one structural transfer rule in the same level, it will
be used to generate as many bilingual phrase pairs
as different rules it matches. This differs from the
way in which Apertium translates, since in those
case only the longest rule would be applied.

The following example illustrates this procedure.
Let the Spanish sentencePor otra parte mis amigos
americanos han decidido venir, from the example
in the previous section, be one of the sentences to
be translated. The SL sequencespor otra parte, mis
amigos americanos, amigos americanos, han deci-
dido, venir andhan decidido venirwould be used to
generate bilingual phrase pairs because they match a
first-level rule, a second-level rule, or both. The SL
words amigos americanosare used twice because
they are covered by two first-level rules: one that
matches a determiner followed by a noun and an ad-
jective, and another that matches a noun followed by
an adjective. Note that when using Apertium in the
regular way, outside this hybrid approach, only the
first rule is applied as a consequence of the left-to-
right, longest match policy. The SL wordshan de-
cidido andvenir are used because they match first-
level rules, whereashan decidido venirmatches a
second-level rule.

It is worth noting that the generation of bilin-
gual phrase pairs from the shallow-transfer rules is
guided by the test corpus. We decided to do it in
this way in order to avoid meaningless phrases and
also to make our approach computationally feasible.
Consider, for instance, the rule which is triggered
every time a determiner followed by a noun and an
adjective is detected. Generating all the possible
phrase pairs matching this rule would involve com-
bining all the determiners in the dictionary with all
the nouns and all the adjectives, causing the genera-
tion of many meaningless phrases, such asel niño
inalámbrico – the wireless boy. In addition, the

number of combinations to deal with becomes un-
manageable as the length of the rule grows.

4.2 Scoring the new phrase pairs

State-of-the-art PBSMT systems usually attach 5
scores to every phrase pair in the translation table:
source-to-target and target-to-source phrase trans-
lation probabilities, source-to-target and target-to-
source lexical weightings, and phrase penalty.

To calculate the phrase translation probabilities of
the phrase pairs obtained from the shallow-transfer
RBMT resources we simply add them once to the
list of corpus-extracted phrase pairs, and then com-
pute the probabilities by relative frequency as it is
usually done (Koehn, 2010, sec. 5.2.5). In this re-
gard, it is worth noting that, as RBMT-generated
phrase pairs are added only once, if one of them hap-
pens to share its source side with many other corpus-
extracted phrase pairs, or even with a single, very
frequent one, the RBMT-generated phrase pair will
receive lower scores, which penalises its use. To
alleviate this without adding the same phrase pair
an arbitrary amount of times, we introduce an ad-
ditional boolean score to flag phrase pairs obtained
from the RBMT resources.

The fact that the generation of bilingual phrase
pairs from shallow transfer rules is guided by the test
corpus may cause the translation of a sentence to be
influenced by other sentences in the test set. This
happens when the translation provided by Apertium
for a subsegment of a test sentence matching an
Apertium structural transfer rule is shared with one
or more subsegments in the test corpus. In that case,
the phrase translation probabilityp(source|target)
of the resulting bilingual phrase pair is lower than
if no subsegments with the same translation were
found.

To calculate the lexical weightings (Koehn, 2010,
sec. 5.3.3) of the RBMT-generated phrase pairs,
the alignments between the words in the source side
and those in the target side are needed. These word
alignments are obtained by tracing back the opera-
tions carried out in the different steps of the shallow-
transfer RBMT system. Only those words which
are neither split nor joint with other words by the
RBMT engine are included in the alignments; thus,
multi-word expressions are left unaligned. This is
done for convenience, since in this way multi-word

460



Figure 1: Example of word alignment obtained by tracing back the operations done by Apertium when translating
from Spanish to English the sentencePor otra parte mis amigos americanos han decidido venir. Note thatpor
otra parteis analysed by Apertium as a multi-word expression whose words are left unaligned for convenience (see
section 4.2).

expressions are assigned a lexical weighting of 1.0.
Figure 1 shows the alignment between the words in
the running example.

5 System training

We submitted a hybrid system for the Spanish–
English language pair built by following the strat-
egy described above. The initial phrase table was
built from all the parallel corpora distributed as part
of the WMT 2011 shared translation task, namely
Europarl (Koehn, 2005), News Commentary and
United Nations. In a similar way, the language
model was built from the the Europarl (Koehn,
2005) and the News Crawl monolingual English cor-
pora. The weights of the different feature functions
were optimised by means of minimum error rate
training (Och, 2003) on the 2008 test set.1 Table 1
summarises the data about the corpora used to build
our submission. We also built a baseline PBSMT
system trained on the same corpora and a reduced
version of our system whose phrase table was en-
riched only with dictionary entries.

The Apertium (Forcada et al., 2011) engine and
the linguistic resources for Spanish–English were
downloaded from the Apertium Subversion repos-
itory.The linguistic data contains326 228 entries
in the bilingual dictionary,106 first-level structural
transfer rules, and31 second-level rules. As en-
tries in the bilingual dictionary contain mappings be-
tween SL and TL lemmas, when phrase pairs match-
ing the bilingual dictionary are generated all the pos-
sible inflections of these lemmas are produced.

We used the free/open-source PBSMT system
Moses (Koehn et al., 2007), together with the
IRSTLM language modelling toolkit (Federico et
al., 2008), which was used to train a 5-gram lan-

1The corpora can be downloaded fromhttp://www.
statmt.org/wmt11/translation-task.html .

Task Corpus Sentences

Language model
Europarl 2 015 440
News Crawl 112 905 708
Total 114 921 148

Training

Europarl 1 786 594
News Commentary 132 571
United Nations 10 662 993
Total 12 582 158
Total clean 8 992 751

Tuning newstest2008 2 051
Test newstest2011 3 003

Table 1: Size of the corpora used in the experiments.
The bilingual training corpora has been cleaned to re-
move empty parallel sentences and those which contain
more than40 tokens.

guage model using interpolated Kneser-Ney dis-
counting (Goodman and Chen, 1998). Word align-
ments from the training parallel corpus were com-
puted by means of GIZA++ (Och and Ney, 2003).
The cube pruning (Huang and Chiang, 2007) decod-
ing algorithm was chosen in order to speed-up the
tuning step and the translation of the test set.

6 Results and discussion

Table 2 reports the translation performance
as measured by BLEU (Papineni et al.,
2002), GTM (Melamed et al., 2003) and ME-
TEOR2 (Banerjee and Lavie, 2005) for Apertium
and the three systems presented in the previous
section, as well as the size of the phrase table and
the amount of unknown words in the test set. The
hybrid approach outperforms the baseline PBSMT
system in terms of the three evaluation metrics.
The confidence interval of the difference between
them, computed by doing1 000 iterations of paired

2Modulesexact, stem, synonymandparaphrase(Denkowski
and Lavie, 2010) were used.
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system BLEU GTM METEOR # of unknown words phrase table size
baseline 28.06 52.40 47.27 1 447 254 693 494
UA-dict 28.58 52.55 47.41 1 274 255 860 346
UA 28.73 52.66 47.51 1 274 255 872 094
Apertium 23.89 50.71 45.65 4 064 -

Table 2: Case-insensitive BLEU, GTM, and METEOR scores obtained by the hybrid approach submitted to the
WMT 2011 shared translation task (UA), a reduced version of it whose phrase table is enriched using only bilingual
dictionary entries (UA-dict), a baseline PBSMT system trained with the same corpus (baseline), and Apertium on the
newstest2011test set. The number of unknown words and the phrase table size are also reported when applicable.

bootstrap resampling (Zhang et al., 2004) with
a p-level of 0.05, does not overlap with zero for
any evaluation metric,3 which confirms that it is
statistically significant. Our hybrid approach also
outperforms Apertium in terms of the three eval-
uation metrics.4 However, the difference between
our complete hybrid system and the version which
only takes advantage of bilingual dictionary is not
statistically significant for any metric.5

The results show how the addition of RBMT-
generated data leads to an improvement over the
baseline PBMST system, even though it was trained
with a very large parallel corpus and the propor-
tion of entries from the Apertium data in the phrase
table is very small (0.46%). 5.94% of the phrase
pairs chosen by the decoder were generated from the
Apertium data. The improvement may be explained
by the fact that the sentences in the test set belong to
the news domain and Apertium data has been devel-
oped bearing in mind the translation of general texts
(mainly news), whereas most of the bilingual train-
ing corpus comes from specialised domains. In addi-
tion, the morphology of Spanish is quite rich, which
makes it very difficult to find all possible inflections
of the same lemma in a parallel corpus. Therefore,
Apertium-generated phrases, which contain hand-
crafted knowledge from a general domain, cover

3The confidence interval of the difference between our sys-
tem and the baseline PBSMT system for BLEU, GTM and
METEOR is[0.38, 0.93], [0.06, 0.45], and[0.06, 0.42], respec-
tively.

4The confidence interval of the difference between our
approach and Apertium for BLEU, GTM and METEOR is
[4.35, 5.35], [1.55, 2.32], and[1.50, 2.21], respectively.

5The confidence interval of the difference between our ap-
proach and the reduced version which does not use structural
transfer rules for BLEU, GTM and METEOR is[−0.07, 0.37],
[−0.06, 0.27], and[−0.06, 0.26], respectively.

some sequences of words in the input text which are
not covered, or are sparsely found, in the original
training corpora, as shown by the reduction in the
amount of unknown words (1 447 unknown words
versus1 274). In other words, Apertium linguistic
information does not completely overlap with the
data learned from the parallel corpus. Regarding the
small difference between the hybrid system enriched
with all the Apertium resources and the one that only
includes the bilingual dictionary, preliminary exper-
iments shows that the impact of the shallow-transfer
rules is higher when the TL is highly inflected and
the SL is not, which is exactly the scenario opposite
to the one described in this paper.

7 Concluding remarks

We have presented the MT system submitted by
the Transducens Research Group from Universitat
d’Alacant to the WMT2011 shared translation task.
This is the first submission of our team to this shared
task. We developed a hybrid system for the Spanish–
English language pair which enriches the phrase ta-
ble of a standard PBSMT system with phrase pairs
generated from the RBMT linguistic resources pro-
vided by Apertium. Our system outperforms a base-
line PBSMT in terms of BLEU, GTM and METEOR
scores by a statistically significant margin.
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Abstract

This paper describes the development of
French–English and English–French statisti-
cal machine translation systems for the 2011
WMT shared task evaluation. Our main sys-
tems were standard phrase-based statistical
systems based on the Moses decoder, trained
on the provided data only, but we also per-
formed initial experiments with hierarchical
systems. Additional, new features this year in-
clude improved translation model adaptation
using monolingual data, a continuous space
language model and the treatment of unknown
words.

1 Introduction

This paper describes the statistical machine trans-
lation systems developed by the Computer Science
laboratory at the University of Le Mans (LIUM) for
the 2011 WMT shared task evaluation. We only
considered the translation between French and En-
glish (in both directions). The main differences
with respect to previous year’s system (Lambert et
al., 2010) are as follows: use of more training data
as provided by the organizers, improved translation
model adaptation by unsupervised training, a con-
tinuous space language model for the translation
into French, some attempts to automatically induce
translations of unknown words and first experiments
with hierarchical systems. These different points are
described in the rest of the paper, together with a
summary of the experimental results showing the
impact of each component.

2 Resources Used

The following sections describe how the resources
provided or allowed in the shared task were used to
train the translation and language models of the sys-
tem.

2.1 Bilingual data

Our system was developed in two stages. First,
a baseline system was built to generate automatic
translations of some of the monolingual data avail-
able. These automatic translations were then used
directly with the source texts to create additional bi-
texts. In a second stage, these additional bilingual
data were incorporated into the system (see Sec-
tion 5 and Tables 4 and 5).

The latest version of the News-Commentary (NC)
corpus and of the Europarl (Eparl) corpus (version
6) were used. We also took as training data a sub-
set of the French–English Gigaword (109) corpus.
We applied the same filters as last year to select this
subset. The first one is a lexical filter based on the
IBM model 1 cost (Brown et al., 1993) of each side
of a sentence pair given the other side, normalised
with respect to both sentence lengths. This filter was
trained on a corpus composed of Eparl, NC, and UN
data. The other filter is an n-gram language model
(LM) cost of the target sentence (see Section 3), nor-
malised with respect to its length. This filter was
trained with all monolingual resources available ex-
cept the 109 data. We generated two subsets, both
by selecting sentence pairs with a lexical cost infe-
rior to 4, and an LM cost respectively inferior to 2.3
(109

1, 115 million English words) and 2.6 (109
2, 232

million English words).
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2.2 Use of Automatic Translations

Available human translated bitexts such as the Eu-
roparl or 109 corpus seem to be out-of domain for
this task. We used two types of automatically ex-
tracted resources to adapt our system to the task do-
main.

First, we generated automatic translations of the
provided monolingual News corpus and selected the
sentences with a normalised translation cost (re-
turned by the decoder) inferior to a threshold. The
resulting bitext contain no new translations, since
all words of the translation output come from the
translation model, but it contains new combinations
(phrases) of known words, and reinforces the prob-
ability of some phrase pairs (Schwenk, 2008). This
year, we improved this method in the following way.
In the original approach, the automatic translations
are added to the human translated bitexts and a com-
plete new system is build, including time consuming
word alignment with GIZA++. For WMT’11, we
directly used the word-to-word alignments produced
by the decoder at the output instead of GIZA’s align-
ments. This speeds-up the procedure and yields the
same results in our experiments. A detailed compar-
ison is given in (Lambert et al., 2011).

Second, as in last year’s evaluation, we automat-
ically extracted and aligned parallel sentences from
comparable in-domain corpora. We used the AFP
and APW news texts since there are available in the
French and English LDC Gigaword corpora. The
general architecture of our parallel sentence extrac-
tion system is described in detail by Abdul-Rauf and
Schwenk (2009). We first translated 91M words
from French into English using our first stage SMT
system. These English sentences were then used to
search for translations in the English AFP and APW
texts of the Gigaword corpus using information re-
trieval techniques. The Lemur toolkit (Ogilvie and
Callan, 2001) was used for this purpose. Search
was limited to a window of ±5 days of the date of
the French news text. The retrieved candidate sen-
tences were then filtered using the Translation Er-
ror Rate (TER) with respect to the automatic trans-
lations. In this study, sentences with a TER below
75% were kept. Sentences with a large length differ-
ence (French versus English) or containing a large
fraction of numbers were also discarded. By these

means, about 27M words of additional bitexts were
obtained.

2.3 Monolingual data
The French and English target language models
were trained on all provided monolingual data. In
addition, LDC’s Gigaword collection was used for
both languages. Data corresponding to the develop-
ment and test periods were removed from the Giga-
word collections.

2.4 Development data
All development was done on newstest2009, and
newstest2010 was used as internal test set. The de-
fault Moses tokenization was used. However, we
added abbreviations for the French tokenizer. All
our models are case sensitive and include punctua-
tion. The BLEU scores reported in this paper were
calculated with the tool multi-bleu.perl and are case
sensitive.

3 Architecture of the SMT system

The goal of statistical machine translation (SMT) is
to produce a target sentence e from a source sen-
tence f . Our main system is a phrase-based system
(Koehn et al., 2003; Och and Ney, 2003), but we
have also performed some experiments with a hier-
archical system (Chiang, 2007). Both use a log lin-
ear framework in order to introduce several models
explaining the translation process:

e∗ = arg max p(e|f)
= arg max

e
{exp(

∑
i

λihi(e, f))} (1)

The feature functions hi are the system models
and the λi weights are typically optimized to maxi-
mize a scoring function on a development set (Och
and Ney, 2002). The phrase-based system uses four-
teen features functions, namely phrase and lexical
translation probabilities in both directions, seven
features for the lexicalized distortion model, a word
and a phrase penalty and a target language model
(LM). The hierarchical system uses only 8 features:
a LM weight, a word penalty and six weights for the
translation model.

Both systems are based on the Moses SMT toolkit
(Koehn et al., 2007) and constructed as follows.
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First, word alignments in both directions are cal-
culated. We used a multi-threaded version of the
GIZA++ tool (Gao and Vogel, 2008).1 This speeds
up the process and corrects an error of GIZA++ that
can appear with rare words.

Phrases, lexical reorderings or hierarchical rules
are extracted using the default settings of the Moses
toolkit. The parameters of Moses were tuned on
newstest2009, using the ‘new’ MERT tool. We re-
peated the training process three times, each with a
different seed value for the optimisation algorithm.
In this way we have an rough idea of the error intro-
duced by the tuning process.

4-gram back-off LMs were used. The word list
contains all the words of the bitext used to train the
translation model and all words that appear at least
ten times in the monolingual corpora. Words of the
monolingual corpora containing special characters
or sequences of uppercase characters were not in-
cluded in the word list. Separate LMs were build on
each data source with the SRI LM toolkit (Stolcke,
2002) and then linearly interpolated, optimizing the
coefficients with an EM procedure. The perplexities
of these LMs were 99.4 for French and 129.7 for
English. In addition, we build a 5-gram continuous
space language model for French (Schwenk, 2007).
This model was trained on all the available French
texts using a resampling technique. The continu-
ous space language model is interpolated with the
4-gram back-off model and used to rescore n-best
lists. This reduces the perplexity by about 8% rela-
tive.

4 Treatment of unknown words

Finally, we propose a method to actually add new
translations to the system inspired from (Habash,
2008). For this, we propose to identity unknown
words and propose possible translations.

Moses has two options when encountering an un-
known word in the source language: keep it as it is
or drop it. The first option may be a good choice
for languages that use the same writing system since
the unknown word may be a proper name. The sec-
ond option is usually used when translating between
language based on different scripts, e.g. translating

1The source is available at http://www.cs.cmu.edu/
˜qing/

Source language Source language Target language
French stemmed form English
finies fini finished

effacés effacé erased
hawaienne hawaien Hawaiian

... ... ...

Table 1: Example of translations from French to English
which are automatically extracted from the phrase-table
with the stemmed form.

from Arabic to English. Alternatively, we propose to
infer automatically possible translations when trans-
lating from a morphologically rich language, to a
simpler language. In our case, we use this approach
to translate from French to English.

Several of the unknown words are actually adjec-
tives, nouns or verbs in a particular form that itself
is not known, but the phrase table would contain the
translation of a different form. As an example we
can mention the French adjective finies which is in
the female plural form. After stemming we may be
able to find the translation in a dictionary which is
automatically extracted from the phrase-table (see
Table 1). This idea was already outlined by (Bo-
jar and Tamchyna, 2011) to translate from Czech to
English.

First, we automatically extract a dictionary from
the phrase table. This is done, be detecting all 1-to-1
entries in the phrase table. When there are multi-
ple entries, all are kept with their lexical translations
probabilities. Our dictionary has about 680k unique
source words with a total of almost 1M translations.

source segment les travaux sont finis
target segment works are finis
stemmed word found fini
translations found finished, ended
segment proposed works are finished

works are ended
segment kept works are finished

Table 2: Example of the treatment of an unknown French
word and its automatically inferred translation.

The detection of unknown words is performed by
comparing the source and the target segment in order
to detect identical words. Once the unknown word
is selected, we are looking for its stemmed form in
the dictionary and propose some translations for the
unknown word based on lexical score of the phrase
table (see Table 2 for some examples). The snowball
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Bitext #Fr Words PT size newstest2009 newstest2010
(M) (M) BLEU BLEU TER METEOR

Eparl+NC 56 7.1 26.74 27.36 (0.19) 55.11 (0.14) 60.13 (0.05)
Eparl+NC+109

1 186 16.3 27.96 28.20 (0.04) 54.46 (0.10) 60.88 (0.05)
Eparl+NC+109

2 323 25.4 28.20 28.57 (0.10) 54.12 (0.13) 61.20 (0.05)
Eparl+NC+news 140 8.4 27.31 28.41 (0.13) 54.15 (0.14) 61.13 (0.04)
Eparl+NC+109

2+news 406 25.5 27.93 28.70 (0.24) 54.12 (0.16) 61.30 (0.20)
Eparl+NC+109

2+IR 351 25.3 28.07 28.51 (0.18) 54.07 (0.06) 61.18 (0.07)
Eparl+NC+109

2+news+IR 435 26.1 27.99 28.93 (0.02) 53.84 (0.07) 61.46 (0.07)
+larger beam+pruned PT 435 8.2 28.44 29.05 (0.14) 53.74 (0.16) 61.68 (0.09)

Table 4: French–English results: number of French words (in million), number of entries in the filtered phrase-table
(in million) and BLEU scores in the development (newstest2009) and internal test (newstest2010) sets for the different
systems developed. The BLEU scores and the number in parentheses are the average and standard deviation over 3
values (see Section 3)

corpus newstest2010 subtest2010
number of sentences 2489 109
number of words 70522 3586
number of UNK detected 118 118
nbr of sentences containing UNK 109 109
BLEU Score without UNK process 29.43 24.31
BLEU Score with UNK process 29.43 24.33
TER Score without UNK process 53.08 58.54
TER Score with UNK process 53.08 58.59

Table 3: Statistics of the unknown word (UNK) process-
ing algorithm on our internal test (newstest2010) and its
sub-part containing only the processed sentences (sub-
test2010).

stemmer2 was used. Then the different hypothesis
are evaluated with the target language model.

We processed the produced translations with this
method. It can happen that some words are transla-
tions of themselves, e.g. the French word ”duel” can
be translated by the English word ”duel”. If theses
words are present into the extracted dictionary, we
keep them. If we do not find any translation in our
dictionary, we keep the translation. By these means
we hope to keep named entities.

Several statistics made on our internal test (new-
stest2010) are shown in Table 3. Its shows that the
influence of the detected unknown words is minimal.
Only 0.16% of the words in the corpus are actually
unknown. However, the main goal of this process
is to increase the human readability and usefulness
without degrading automatic metrics. We also ex-
pect a larger impact in other tasks for which we have

2http://snowball.tartarus.org/

smaller amounts of parallel training data. In future
versions of this detection process, we will try to de-
tect unknown words before the translation process
and propose alternatives hypothesis to the Moses de-
coder.

5 Results and Discussion

The results of our SMT system for the French–
English and English–French tasks are summarized
in Tables 4 and 5, respectively. The MT metric
scores are the average of three optimisations per-
formed with different seeds (see Section 3). The
numbers in parentheses are the standard deviation
of these three values. The standard deviation gives
a lower bound of the significance of the difference
between two systems. If the difference between two
average scores is less than the sum of the standard
deviations, we can say that this difference is not sig-
nificant. The reverse is not true. Note that most of
the improvements shown in the tables are small and
not significant. However many of the gains are cu-
mulative and the sum of several small gains makes a
significant difference.

Baseline French–English System

The first section of Table 4 shows results of the de-
velopment of the baseline SMT system, used to gen-
erate automatic translations.

Although no French translations were generated,
we did similar experiments in the English–French
direction (first section of Table 5).
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Bitext #En Words newstest2009 newstest2010
(M) BLEU BLEU TER

Eparl+NC 52 26.20 28.06 (0.22) 56.85 (0.08)
Eparl+NC+109

1 167 26.84 29.08 (0.12) 55.83 (0.14)
Eparl+NC+109

2 284 26.95 29.29 (0.03) 55.77 (0.19)
Eparl+NC+109

2+news 299 27.34 29.56 (0.14) 55.44 (0.18)
Eparl+NC+109

2+IR 311 27.14 29.43 (0.12) 55.48 (0.06)
Eparl+NC+109

2+news+IR 371 27.32 29.73 (0.21) 55.16 (0.20)
+rescoring with CSLM 371 27.46 30.04 54.79

Table 5: English–French results: number of English words (in million) and BLEU scores in the development (new-
stest2009) and internal test (newstest2010) sets for the different systems developed. The BLEU scores and the number
in parentheses are the average and standard deviation over 3 values (see Section 3.)

In both cases the best system is the one trained
on the Europarl, News-commentary and 109

2 cor-
pora. This system was used to generate the auto-
matic translations. We did not observe any gain
when adding the United Nations data, so we dis-
carded this data.

Impact of the Additional Bitexts

With the baseline French–English SMT system (see
above), we translated the French News corpus to
generate an additional bitext (News). We also trans-
lated some parts of the French LDC Gigaword cor-
pus, to serve as queries to our IR system (see section
2.2). The resulting additional bitext is referred to as
IR. The second section of Tables 4 and 5 summarize
the system development including the additional bi-
texts.

With the News additional bitext added to
Eparl+NC, we obtain a system of similar perfor-
mance as the baseline system used to generate the
automatic translations, but with less than half of
the data. Adding the News corpus to a larger cor-
pus, such as Eparl+NC+109

2, has less impact but
still yields some improvement: 0.1 BLEU point in
French–English and 0.3 in English–French. Thus,
the News bitext translated from French to English
may have more impact when translating from En-
glish to French than in the opposite direction. This
effect is studied in detail in a separate paper (Lam-
bert et al., 2011). With the IR additional bitext added
to Eparl+NC+109

2, we observe no improvement in
French to English, and a very small improvement
in English to French. However, added to the base-

line system (Eparl+NC+109
2) adapted with the News

data, the IR additional bitexts yield a small (0.2
BLEU) improvement in both translation directions.

Final System

In both translation directions our best system was the
one trained on Eparl+NC+109

2+News+IR. We fur-
ther achieved small improvements by pruning the
phrase-table and by increasing the beam size. To
prune the phrase-table, we used the ‘sigtest-filter’
available in Moses (Johnson et al., 2007), more pre-
cisely the α− ε filter3.

We also build hierarchical systems on the various
human translated corpora, using up to 323M words
(corpora Eparl+NC+109

2). The systems yielded sim-
ilar results than the phrase-based approach, but re-
quired much more computational resources, in par-
ticular large amounts of main memory to perform
the translations. Running the decoder was actually
only possible with binarized rule-tables. Therefore,
the hierarchical system was not used in the evalua-
tion system.

3The p-value of two-by-two contingency tables (describing
the degree of association between a source and a target phrase)
is calculated with Fisher exact test. This probability is inter-
preted as the probability of observing by chance an association
that is at least as strong as the given one, and hence as its sig-
nificance. An important special case of a table occurs when a
phrase pair occurs exactly once in the corpus, and each of the
component phrases occurs exactly once in its side of the paral-
lel corpus (1-1-1 phrase pairs). In this case the negative log of
the p-value is α = logN (N is number of sentence pairs in the
corpus). α − ε is the largest threshold that results in all of the
1-1-1 phrase pairs being included.
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6 Conclusions and Further Work

We presented the development of our statistical ma-
chine translation systems for the French–English
and English–French 2011 WMT shared task. In the
official evaluation the English–French system was
ranked first according to the BLEU score and the
French–English system second.
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Abstract

We report results on translation of SMS mes-
sages from Haitian Creole to English. We
show improvements by applying spell check-
ing techniques to unknown words and creating
a lattice with the best known spelling equiva-
lents. We also used a small cleaned corpus to
train a cleaning model that we applied to the
noisy corpora.

1 Introduction

In this paper we report results on the WMT 2011
featured shared task on translation of SMS messages
from Haitian Creole into English, which featured a
number of challenges. The in-domain data avail-
able is small and noisy, with a lot of non-standard
language. Furthermore, Haitian Creole is a low re-
source language, for which there are few language
technology tools and corpora available.

Our main focus has been to make the best pos-
sible use of the available training data through dif-
ferent ways of cleaning the data, and by replacing
unknown words in the test data by plausible spelling
equivalents. We have also investigated effects of dif-
ferent ways to combine the available data in transla-
tion and language models.

2 Baseline system

We performed all our experiments using a stan-
dard phrase-based statistical machine translation
(PBSMT) system, trained using the Moses toolkit
(Koehn et al., 2007), with SRILM (Stolcke, 2002)
and KenLM (Heafield, 2011) for language model-
ing, and GIZA++ (Och and Ney, 2003) for word
alignment. We also used a lexicalized reordering

model (Koehn et al., 2005). We optimized each
system separately using minimum error rate train-
ing (Och, 2003). The development and devtest data
were available in two versions, as raw, noisy data,
and in a clean version, where the raw data had been
cleaned by human post-editors.

The different subcorpora had different tokeniza-
tions and casing conventions. We normalized punc-
tuation by applying a tokenizer that separated most
punctuation marks into separate tokens, excluding
apostrophes that were suspected to belong to con-
tracted words or Haitian short forms, periods for ab-
breviations, and periods in URLs. There were often
many consecutive punctuation marks; these were re-
placed by only the first of the punctuation marks.
In the English translations of the SMS data there
were often translator’s notes at the end of the transla-
tions. These were removed when introduced by two
standard formulations: Additional Notes or transla-
tor’s note/interpretation. In addition the translation
marker The SMS [ . . . ] were removed.

Case information was inconsistent, especially for
SMS data, and for this reason we lower-cased all
Haitian source data. On the English target side
we wanted to use true-cased data, since we wanted
case distinctions in the translation output. We based
the true-casing on Koehn and Haddow (2009), who
changed the case of the first word in each sentence,
to the most common case variant of that word in the
corpus when it is not sentence initial. In the noisy
SMS data, though, there were many sentences with
all capital letters that would influence this truecasing
method negatively. To address this, we modified the
algorithm to exclude sentences with more than 40%
capital letters when calculating corpus statistics, and
to lowercase all unknown capitalized words.
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Data Sentences Words TM LM Reo TC
In-domain SMS data 17,192 35k SMS SMS yes yes
Medical domain 1,619 10k other other – –
Newswire domain 13,517 30k other other – yes
Glossary 35,728 85k other other – –
Wikipedia parallel sentence 8,476 90k other other – yes
Wikipedia named entities 10,499 25k other other – –
Haitisurf dictionary 1,687 3k other other – yes
Krengle sentences 658 3k other other – yes
The Bible 30,715 850k bible bible – yes

Table 1: Corpora used for training translation models (TM), language models (LM), lexicalized reordering model
(Reo), and true-casing model (TC). All corpora are bilingual English–Haitian Creole.

All translation results are reported for the devtest
corpus, on truecased data. We report results on
three metrics, Bleu (Papineni et al., 2002), NIST
(Doddington, 2002), and Meteor optimized on flu-
ency/adequacy (Lavie and Agarwal, 2007).

3 Corpus Usage

The corpora available for the task was a small
bilingual in-domain corpus of SMT data, a limited
amount of bilingual out-of-domain corpora, such
as dictionaries and the Bible. This is different to
the common situation of domain adaptation, as in
the standard WMT shared tasks, where there is a
small bilingual in-domain corpus, a larger in-domain
monolingual corpus, and possibly several out-of-
domain corpora that can be both monolingual and
bilingual. In such a scenario it is often useful to
use all available training data for both translation
and language models, possibly in separate models
(Koehn and Schroeder, 2007).

Table 1 summarizes how we used the available
corpora, in our different models. For translation
and language models we separated the bilingual data
into three parts, the SMS data, the Bible, and every-
thing else. For our lexicalized reordering model we
only used SMS data, since we believe word order
there is likely to differ from the other corpora. For
the English true-casing model we concatenated the
English side of all bilingual corpora that were not
lower-cased.

Table 2 shows the results of the different model
combinations on the clean devtest data. When we
used only the SMS data in the translation model,
the scores changed only slightly regardless of which
combinations of language models we used. Using

two translation models for the SMS data and the
other bilingual data overall gave better results than
when only using SMS data for the translation model.
With double translation models it was best only to
use the SMS data in the language model. Including
the Bible data had a minor impact. Based on these
experiments we will use all available training data
in two translation models, one for SMS and one for
everything else, but only use SMS data in one lan-
guage model, which corresponds to the line marked
in bold in Table 2, and which we will call the dual
system.

We did not perform model combination experi-
ments for the raw input data, since we believed the
pattern would be similar as for the clean data. The
results for the raw devtest as input are considerably
lower than for the clean data. Using the best model
combination, we got a Bleu score of only 26.25,
which can be compared to 29.90 using the clean
data.

4 Data Cleaning Model

While the training data is noisy, we had access to
cleaned versions of dev, devtest and test data. We
decided to use the dev data to build a model for
cleaning the noisy SMS data. We did this by train-
ing a standard PBSMT model from raw to clean dev
data. When inspecting this translation model we
found that it very often changed the place holders
for names and phone numbers, and thus we filtered
out all entries in the phrase table that did not have
matching place holders. We then used this model to
perform monotone decoding of the raw SMS data,
thus creating a cleaner version of it.

This approach is similar to that of Aw et al.
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TMs LMs Bleu NIST Meteor
SMS SMS 29.04 5.578 52.32
SMS SMS, other 28.76 5.543 51.96
SMS SMS, other+bible 29.18 5.696 51.77
SMS, other SMS 29.78 5.808 52.86
SMS, other+bible SMS 29.90 5.764 52.88
SMS, other+bible SMS, other 29.59 5.742 52.28
SMS, other+bible SMS, other+bible 28.75 5.587 52.52

Table 2: Translation results, with different combinations of translation and language models. Model names separated
by a comma stands for separate models, and names separated with a plus for one model built from concatenated
corpora.

Model Testset Bleu NIST Meteor
Dual clean 29.90 5.764 52.88
Dual+CM clean 29.78 5.740 52.95
Dual raw 26.25 5.231 50.79
Dual raw+CM 26.26 5.348 51.30
Dual+CM raw 25.64 5.120 50.01
Dual+CM raw+CM 26.24 5.362 51.64

Table 3: Translation results, with and without an addi-
tional cleaning model (+CM) on the clean and raw devtest
data

(2006), who trained a model for translation from
English SMS language to standard written English,
with very good results both on this task itself, and
on a task of translating English SMS messages into
Chinese. For training they used up to 5000 sen-
tences, but the results stabilized already when us-
ing 3000 training sentences. Our task is different,
though, since we do not aim at standard written
Haitian, but into cleaned up SMS language, and our
training corpus is a lot smaller, only 900 sentences.

Table 3 shows the results of using the cleaning
model on training data and raw translation input. For
the clean data using the cleaning model on the train-
ing data had very little effect on any of the metrics
used. For the raw data translation results are im-
proved as measured by NIST and Meteor when we
use the filter on the devtest data, compared to using
the raw devtest data. Using the filter on the training
data gives worse results for non-filtered devtest data,
but the overall best results are had by filtering both
training and devtest data for raw translation input.
Based on these experiments we used the cleaning
model both on test and training data for raw input,
but not at all for clean input, marked in bold in Table
3.

5 Spell Checking-based Replacement of
Unknown Words

The SMS data is noisy, and there are often many
spelling variations of the same word. One exam-
ple is the word airport, which occur in the training
corpus in at least six spelling variants: the correct
ayeropò, and aeoport, ayeopò, aeroport, aeyopòt,
and aewopo, and in the devtest in a seventh variant
ayéoport. The non-standardized spelling means that
many unknown words (out-of-vocabulary words,
OOVs) have a known spelling variant in the train-
ing corpus. We thus decided to treat OOVs using a
method inspired by spell-checking techniques, and
applied an approximate string matching technique
to OOVs in the translation input in order to change
them into known spelling variants.

OOV replacement has been proposed by several
researchers, replacing OOVs e.g. by morphological
variants (Arora et al., 2008) or synonyms (Mirkin et
al., 2009). Habash (2008) used several techniques
for expanding OOVs in order to extend the phrase-
table. Yang and Kirchhoff (2006) trained a morpho-
logically based back-off model for OOVs. Bertoldi
et al. (2010) created confusion networks as input of
translation input with artificially created misspelled
words, not specifically targetting OOVs, however.
The work most similar to ours is DeNeefe et al.
(2008), who also created lattices with spelling alter-
natives for OOVs, which did not improve translation
results, however. Contrary to us, they only consid-
ered one edit per word, and did not weigh edits or
lattice arcs.

Many standard spell checkers are based on the
noisy channel model, which use an error (channel)
model and a source model, which is normally mod-
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eled by a language model. The error model normally
use some type of approximate string matching, such
as Levenshtein distance (Levenshtein, 1966), which
measures the distance between two strings as the
number of insertions, deletions, and substitutions of
characters. It is often normalized based on the length
of the strings (Yujian and Bo, 2007), and the dis-
tance calculation has also been improved by associ-
ating different costs to individual error operations.
Church and Gale (1991) used a large training corpus
to assign probabilities to each unique error opera-
tion, and also conditioned operations on one consec-
utive character. Brill and Moore (2000) introduced a
model that worked on character sequences, not only
on character level, and was conditioned on where
in the word the sequences occurred. They trained
weights on a corpus of misspelled words with cor-
rections.

Treating OOVs in the SMS corpus as a spell
checking problem differs from a standard spell
checking scenario in that the goal is not necessarily
to change an incorrectly spelled word into a correct
word, but rather to change a word that is not in our
corpus into a spelling variant that we have seen in the
corpus, but which might not necessarily be correctly
spelled. It is also the case that many of the OOVs are
not wrong, but just happen to be unseen; for instance
there are many place names. Thus we must make
sure that our algorithm for finding spelling equiva-
lents is bi-directional, so that it cannot only change
incorrect spellings into correct spellings, but also go
the other way, which could be needed in some cases.
We also need to try not to suggest alternatives for
words that does not have any plausible alternatives
in the corpus, such as unknown place names.

5.1 Approximate String Matching Algorithm

The approximate string matching algorithm we sug-
gest is essentially that of Brill and Moore (2000),
a modified weighted Levenshtein distance, where
we allow error operations on character sequences as
well as on single characters. We based our weight
estimations on the automatically created list of lex-
ical variants that was built as a step in building the
cleaning model, described in section 4. This list is
very noisy, but does also contain some true spelling
equivalents. We implemented two versions of the
algorithm, first a simple version which used manu-

ally identified error operations, then a more complex
variant where error operations and weights were
found automatically.

Manually Assigned Weights
We went through the lexicon list manually to iden-
tify edits that could correct the misspellings that oc-
curred in the list. We identified substitutions lim-
ited to three characters in length, and at the begin-
ning and end of words we also identified letter in-
sertions and deletions. The inspection showed that
it was very common for letters to be replaced by the
same letter but with a diacritic, or with a different
diacritic, for instance to vary between [e, é, è]. An-
other common operation was between a single char-
acter and two consecutive occurrences of the same
character. Table 4 shows the 46 identified opera-
tions. To account for the fact that we do not want
our error model to have a directionality from wrong
to correct, we allow operations in both directions.

Since the operations were found manually we did
not have a reliable way to estimate weights, and used
uniform weights for all operations. The operations
in Table 4 have the weights given in the table, sub-
stitution of a letter with a diacritic variant 0, single
to double letters 0.1, insertions and deletions 1 and
substitutions other than those in the table, 1.6.

Automatically Assigned Weights
To automatically train weights from the very noisy
list of lexical variants, we filtered it by applying
the edit distance with the manual weights described
above to phrase pair that did not differ in length by
more than three characters. We used a cut-off thresh-
old of 2.8 for words where both versions had at least
six characters, and 1 for shorter words. This gave
us a list of 587 plausible spelling variants, from the
original list with 1635 word pairs.

To find good character substitutions and assign
weights to them, we used standard PBSMT tech-
niques as implemented in Moses, but on character
level, with the filtered list of word pairs as train-
ing data. We inserted spaces between each character
of the words, and also added beginning and end of
word markers, e.g., the word problém was tokenized
as ‘B p r o b l é m E’. Thus we could train a PB-
SMT system that aligned characters using GIZA++,
and extracted and scored phrases, which in this case
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Manual Automatic
Type Instances Weight Examples+weights Count
mid 1-1 e-i, a-o, i-y, a-e, i-u, s-c, r-w, c-k, j-g, s-z,

n-m
.2 n-m .90, e-c .74, j-g .62 12

mid 1-2 z-sz, i-iy, m-nm, n-nm, y-il, i-ye, s-rs, t-
th, o-an, x-ks, x-kz, e-a,

.2 x-ks .35, i-ue .83, w-rr .74 107

mid 1-3 – – e-ait .75 e-eur .66 29
mid 2-2 wa-oi, we-oi, en-un, xs-ks .2 we-oi .67, wo-ro .20, ie-ye .54 103
mid 2-3 wa-oir, ye-ier, an-ent, eo-eyo .2 iv-eve .79, ey-eyi .18 160
mid 3-3 syo-tio, syo-tyo .2 ant-ent .81, dyo,dia .67 116
beg 0-1 ε-h, ε-l .2 ε-n .95, ε-m .90, ε-h .50 9
beg 0-2 – – ε-te .95, ε-pa .82 6
beg 1-1 h-l .2 a-e .89, w-r .67 i-u .33 5
beg 1-2,3 – – e-ai .68, a-za .74 k-pak .48 30
beg 2,3-2,3 – – wo-ro 0, ex-ekz .65, ens-ins .17 58
end 0-1 ε-e, ε-t, ε-n, ε-m, ε-r, ε-y .2 ε-r .57 ε-e .85, ε-v .75 12
end 0-2 ε-te, ε-de, ε-ue, ε-le 1 ε-de .93, ε-le .75 7
end 1-1 – – e-o .74, n-m .86 5
end 1-2,3 – – i-li .81, c-se .62 n-nne .66 48
end 2,3-2,3 – – sm-me .67, ns-nce .38, wen-oin .36 70

Table 4: Error operations at the middle, beginning and end of words. For manually defined operations all instances are
shown, with their uniform score. For automaticcally identified operations examples are shown with their score, and
the total count of each operation type.

amounts to creating a phrase-table with character se-
quences. The phrase probabilities are given in both
translation directions, P (S|T ) and P (T |S). Since
we do not want our scores to have any direction, we
used the arithmetic mean of these two probabilities
to calculate the score for the pair, which is calcu-
lated as 1 − ((P (S|T ) + P (T |S))/2), to also con-
vert the probabilities to costs. To compensate for
errors made in the extraction process, we filtered
out phrase pairs where both probabilities were lower
than 0.1.

To get fair scores for character sequences of dif-
ferent lengths we applied the phrase table construc-
tion four times, while increasing the limit of the
maximum phrase length from one to four. From the
first phrase table, with maximum length 1, we ex-
tracted 1-1 substitutions, from the second table 1-2
and 2-2 substitutions, and so on. We used the begin-
ning and end of word markers both to extract sub-
stitutions that were only used at the beginning or
end of sentences, and to extract deletions and inser-
tions used at the beginning and end of words. Again,
we only allowed substitutions up to three characters
in length. The fourth phrase-table, with phrases of
length four, were only used to allow us to extract

substitutions of length three at the beginning and end
of words, since the markers count as tokens. Table 4
shows the types of transformations extracted, some
examples of each with their score, and the count
of each transformation. A total of 777 operations
were found, compared to only 46 manual operations.
There were few substitutions with diacritic variants,
so again we allowed them with a zero cost. The costs
for deletions, additions, and substitutions not given
any weights were the same as before, 1, 1, and 1.6.
For the edit distance with the automatic weights, we
used scores that were normalized by the length of
the shortest string.

Application to OOVs

We applied the edit distance operation on all OOVs
longer than 3 characters, and calculated the distance
to all words in the training corpora that did not dif-
fer in length with more than two characters. We used
the standard dynamic programming implementation
of our edit distance, but extended to check the scores
not only in directly neighbouring cells, but in cells
up to a distance of 3 away, to account for the maxi-
mum length of the character sequence substitutions.
It would have been possible to use a fast trie imple-
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Clean devtest Raw devtest
System Bleu NIST Meteor Bleu NIST Meteor
No OOV treatment 29.90 5.764 52.88 26.24 5.362 51.64
Manual 1-best 29.76 5.721 52.91 26.60 5.417 52.17
Automatic 1-best 29.90 5.746 52.83 26.26 5.351 51.60
Manual lattice 30.53 5.957 54.06 27.12 5.574 53.27
Automatic lattice 30.94 5.982 54.62 27.27 5.554 52.99
Automatic lattice + LM 30.33 5.912 54.07 27.79 5.555 52.98

Table 5: Translation results, using the approximate string matching algorithm for OOVs. The submitted system is
marked with bold.

mentation (Brill and Moore, 2000), however.
We performed both 1-best substitution of OOVs,

and lattice decoding where we kept the three best
alternatives for each word. In both cases we only re-
placed OOVs if the edit distance scores were below a
threshold of 1.2 for the manual weights, which were
not normalized, and for the normalized automatic
weights below 0.25, or below 0.33 for word pairs
where both words had at least 6 characters. These
thresholds were set by inspecting the results, but re-
sulted in a different number of substitutions:

• clean (total 691)
– manual: 251
– automatic: 222

• raw (total 932)
– manual: 601
– automatic: 437

The lattice arcs were weighted with the edit dis-
tance score, normalized to fall between 0-1. We also
tried to include a source language model score in
the weights in the lattice, to account for the source
model that has been shown to be useful for spelling
correction, but which has not been found useful for
OOV replacement. We trained a 3-gram language
model on the Haitian SMS text, and applied this
model for a five-word context around the replaced
OOV. We used a single lattice weight where half the
score came from the edit distance, and the other half
represented the language model component. A bet-
ter approach though, would probably have been to
use two weights.

5.2 Results
Table 5 shows the results of the OOV treatment.
When using 1-best substitutions there are small dif-
ferences compared to the baseline on both test sets,

except for the system with manual weights on raw
data, which was improved on all metrics. All three
ways of applying the lattice substitutions led to large
improvements on all metrics on both test sets. On
the clean test set it was better to use automatic than
manual weights when not using the language model
score, which made the results worse. On the raw
test set the highest Meteor and NIST scores were
had by using manual weights, whereas the highest
Bleu score was had by using automatic weights with
the language model. The system submitted to the
workshop is the system with a lattice with manual
weights, marked in bold in Table 5, since the auto-
matic weights were not ready in time for the submis-
sion.

6 Conclusion

In this article we presented methods for translat-
ing noisy Haitian Creole SMS messages, which we
believe are generally suitable for small and noisy
corpora and under-resourced languages. We used
an automatically trained cleaning model, trained on
only 900 manually cleaned sentences, that led to im-
provements for noisy translation input. Our main
contribution was to apply methods inspired by spell
checking to suggest known spelling variants of un-
known words, which we presented as a lattice to
the decoder. Several versions of this method gave
consistent improvements over the baseline system.
There are still many questions left about which con-
figuration that is best for weighting and pruning the
lattice, however, which we intend to investigate in
future work. In this work we only considered OOVs
in the translation input, but it would also be interest-
ing to address misspelled words in the training cor-
pus.
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Abstract

We present progress on Joshua, an open-
source decoder for hierarchical and syntax-
based machine translation. The main fo-
cus is describing Thrax, a flexible, open
source synchronous context-free grammar ex-
tractor. Thrax extracts both hierarchical (Chi-
ang, 2007) and syntax-augmented machine
translation (Zollmann and Venugopal, 2006)
grammars. It is built on Apache Hadoop for
efficient distributed performance, and can eas-
ily be extended with support for new gram-
mars, feature functions, and output formats.

1 Introduction

Joshua is an open-source1 toolkit for hierarchical
machine translation of human languages. The origi-
nal version of Joshua (Li et al., 2009) was a reim-
plementation of the Python-based Hiero machine-
translation system (Chiang, 2007); it was later ex-
tended (Li et al., 2010) to support richer formalisms,
such as SAMT (Zollmann and Venugopal, 2006).

The main focus of this paper is to describe this
past year’s work in developing Thrax (Weese, 2011),
an open-source grammar extractor for Hiero and
SAMT grammars. Grammar extraction has shown
itself to be something of a black art, with decod-
ing performance depending crucially on a variety
of features and options that are not always clearly
described in papers. This hindered direct com-
parison both between and within grammatical for-
malisms. Thrax standardizes Joshua’s grammar ex-

1http://github.com/joshua-decoder/joshua

traction procedures by providing a flexible and con-
figurable means of specifying these settings. Sec-
tion 3 presents a systematic comparison of the two
grammars using identical feature sets.

In addition, Joshua now includes a single pa-
rameterized script that implements the entire MT
pipeline, from data preparation to evaluation. This
script is built on top of a module called CachePipe.
CachePipe is a simple wrapper around shell com-
mands that uses SHA-1 hashes and explicitly-
provided lists of dependencies to determine whether
a command needs to be run, saving time both in run-
ning and debugging machine translation pipelines.

2 Thrax: grammar extraction

In modern machine translation systems such as
Joshua (Li et al., 2009) and cdec (Dyer et al., 2010),
a translation model is represented as a synchronous
context-free grammar (SCFG). Formally, an SCFG
may be considered as a tuple

(N,S, Tσ, Tτ , G)

where N is a set of nonterminal symbols of the
grammar, S ∈ N is the goal symbol, Tσ and Tτ
are the source- and target-side terminal symbol vo-
cabularies, respectively, and G is a set of production
rules of the grammar.

Each rule in G is of the form

X → 〈α, γ,∼〉

where X ∈ N is a nonterminal symbol, α is a se-
quence of symbols from N ∪ Tσ, γ is a sequence of
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symbols from N ∪ Tτ , and ∼ is a one-to-one cor-
respondence between the nonterminal symbols of α
and γ.

The language of an SCFG is a set of ordered pairs
of strings. During decoding, the set of candidate
translations of an input sentence f is the set of all
e such that the pair (f, e) is licensed by the transla-
tion model SCFG. Each candidate e is generated by
applying a sequence of production rules (r1 . . . rn).
The cost of applying each rule is:

w(X → 〈α, γ〉) =
∏
i

φi(X → 〈α, γ〉)λi (1)

where each φi is a feature function and λi is the
weight for φi. The total translation model score of
a candidate e is the product of the rules used in its
derivation. This translation model score is then com-
bined with other features (such as a language model
score) to produce an overall score for each candidate
translation.

2.1 Hiero and SAMT
Throughout this work, we will reference two par-
ticular SCFG types known as Hiero and Syntax-
Augmented Machine Translation (SAMT).

A Hiero grammar (Chiang, 2007) is an SCFG
with only one type of nonterminal symbol, tradi-
tionally labeled X . A Hiero grammar can be ex-
tracted from a parallel corpus of word-aligned sen-
tence pairs as follows: If (f ji , e

l
k) is a sub-phrase

of the sentence pair, we say it is consistent with
the pair’s alignment if none of the words in f ji are
aligned to words outside of elk, and vice-versa. The
consistent sub-phrase may be extracted as an SCFG
rule. Furthermore, if a consistent phrase is contained
within another one, a hierarchical rule may be ex-
tracted by replacing the smaller piece with a nonter-
minal.

An SAMT grammar (Zollmann and Venugopal,
2006) is similar to a Hiero grammar, except that the
nonterminal symbol set is much larger, and its la-
bels are derived from a parse tree over either the
source or target side in the following manner. For
each rule, if the target side is spanned by one con-
stituent of the parse tree, we assign that constituent’s
label as the nonterminal symbol for the rule. Other-
wise, we assign an extended category of the form
C1 + C2, C1/C2, or C2 \C1 — indicating that the

das begrüße ich sehr .

i very much welcome this .

PRP

NP

S

RB RB

ADVP
VP

VBP DT

NP

.

Figure 1: An aligned sentence pair.

target side spans two adjacent constituents, is a C1

missing a C2 to the right, or is a C1 missing a C2

on the left, respectively. Table 1 contains a list of
Hiero and SAMT rules extracted from the training
sentence pair in Figure 1.

2.2 System overview
The following were goals in the design of Thrax:

• the ability to extract different SCFGs (such as
Hiero and SAMT), and to adjust various extrac-
tion parameters for the grammars;

• the ability to easily change and extend the fea-
ture sets for each rule

• scalability to arbitrarily large training corpora.

Thrax treats the grammar extraction and scoring
as a series of dependent Hadoop jobs. Hadoop
(Venugopal and Zollmann, 2009) is an implementa-
tion of Google’s MapReduce (Dean and Ghemawat,
2004), a framework for distributed processing of
large data sets. Hadoop jobs have two parts. In the
map step, a set of key/value pairs is mapped to a set
of intermediate key/value pairs. In the reduce step,
all intermediate values associated with an interme-
diate key are merged.

The first step in the Thrax pipeline is to extract all
the grammar rules. The map step in this job takes as
input word-aligned sentence pairs and produces a set
of ordered pairs (r, c) where r is a rule and c is the
number of times it was extracted. During the reduce
step, these rule counts are summed, so the result is
a set of rules, along with the total number of times
each rule was extracted from the entire corpus.
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Span Hiero SAMT
[1, 3] X → 〈sehr, very much〉 ADV P → 〈sehr, very much〉
[0, 3] X → 〈X sehr, X very much〉 PRP +ADV P → 〈PRP sehr, PRP very much〉
[3, 4] X → 〈begrüße,welcome〉 V BP → 〈begrüße,welcome〉
[0, 6] X → 〈X ich sehr ., i very much X .〉 S → 〈V P ich sehr ., i very much V P .〉
[0, 6] X → 〈X ., X .〉 S → 〈S/. ., S/. .〉

Table 1: A subset of the Hiero and SAMT rules extracted from the sentence pair of Figure 1.

Given the rules and their counts, a separate
Hadoop job is run for each feature. These jobs can
all be submitted at once and run in parallel, avoid-
ing the linear sort-and-score workflow. The output
from each feature job is the same set of pairs (r, c)
as the input, except each rule r has been annotated
with some feature score f .

After the feature jobs have been completed, we
have several copies of the grammar, each of which
has been scored with one feature. A final Hadoop
job combines all these scores to produce the final
grammar.

Some users may not have access to a Hadoop
cluster. Thrax can be run in standalone or pseudo-
distributed mode on a single machine. It can also
be used with Amazon Elastic MapReduce,2 a web
service that provides computation time on a Hadoop
cluster on-demand.

2.3 Extraction
The first step in the Thrax workflow is the extraction
of grammar rules from an input corpus. As men-
tioned above, Hiero and SAMT grammars both re-
quire a parallel corpus with word-level alignments.
SAMT additionally requires that the target side of
the corpus be parsed.

There are several parameters that can make a sig-
nificant difference in a grammar’s overall translation
performance. Each of these parameters is easily ad-
justable in Thrax by changing its value in a configu-
ration file.

• maximum rule span

• maximum span of consistent phrase pairs

• maximum number of nonterminals

• minimum number of aligned terminals in rule
2http://aws.amazon.com/elasticmapreduce/

• whether to allow adjacent nonterminals on
source side

• whether to allow unaligned words at the edges
of consistent phrase pairs

Chiang (2007) gives reasonable heuristic choices
for these parameters when extracting a Hiero gram-
mar, and Lopez (2008) confirms some of them (max-
imum rule span of 10, maximum number of source-
side symbols at 5, and maximum number of non-
terminals at 2 per rule). ?) provided comparisons
among phrase-based, hierarchical, and syntax-based
models, but did not report extensive experimentation
with the model parameterizations.

When extracting Hiero- or SAMT-style gram-
mars, the first Hadoop job in the Thrax workflow
takes in a parallel corpus and produces a set of rules.
But in fact Thrax’s extraction mechanism is more
general than that; all it requires is a function that
maps a string to a set of rules. This makes it easy
to implement new grammars and extract them using
Thrax.

2.4 Feature functions

Thrax considers feature functions of two types: first,
there are features that can be calculated by looking
at each rule in isolation. Such features do not re-
quire a Hadoop job to calculate their scores, since
we may inspect the rules in any order. (In practice,
we calculate the scores at the very last moment be-
fore outputting the final grammar.) We call these
features simple features. Thrax implements the fol-
lowing simple features:

• a binary indicator functions denoting:

– whether the rule is purely abstract (i.e.,
has no terminal symbols)
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– the rule is purely lexical (i.e., has no non-
terminals)

– the rule is monotonic or has reordering
– the rule has adjacent nonterminals on the

source side

• counters for

– the number of unaligned words in the rule
– the number of terminals on the target side

of the rule

• a constant phrase penalty

In addition to simple features, Thrax also imple-
ments map-reduce features. These are features that
require comparing rules in a certain order. Thrax
uses Hadoop to sort the rules efficiently and calcu-
late these feature functions. Thrax implements the
following map-reduce features:

• Phrasal translation probabilities p(α|γ) and
p(γ|α), calculated with relative frequency:

p(α|γ) =
C(α, γ)

C(γ)
(2)

(and vice versa), where C(·) is the number of
times a given event was extracted.

• Lexical weighting plex(α|γ,A) and
plex(γ|α,A). We calculate these weights
as given in (Koehn et al., 2003): let A be the
alignment between α and γ, so (i, j) ∈ A if
and only if the ith word of α is aligned to the
jth word of γ. Then we can define plex(γ|α) as

n∏
i=1

1

|{j : (i, j) ∈ A}|
∑

(i,j)∈A

w(γj |αi) (3)

where αi is the ith word of α, γj is the jth word
of γ, and w(y|x) is the relative frequency of
seeing word y given x.

• Rarity penalty, given by

exp(1− C(X → 〈α, γ〉)) (4)

where again C(·) is a count of the number of
times the rule was extracted.

The above features are all implemented and can
be turned on or off with a keyword in the Thrax con-
figuration file.

It is easy to extend Thrax with new feature func-
tions. For simple features, all that is needed is to im-
plement Thrax’s SIMPLEFEATURE interface defin-
ing a method that takes in a rule and calculates a
feature score. Map-reduce features are slightly more
complex: to subclass MAPREDUCEFEATURE, one
must define a mapper and reducer, but also a sort
comparator to determine in what order the rules are
compared during the reduce step.

2.5 Related work
Joshua includes a simple Hiero extractor (Schwartz
and Callison-Burch, 2010). The extractor runs as a
single Java process, which makes it difficult to ex-
tract larger grammars, since the host machine must
have enough memory to hold all of the rules at once.
Joshua’s extractor scores each rule with three feature
functions — lexical probabilities in two directions,
and one phrasal probability score p(γ|α).

The SAMT implementation of Zollmann and
Venugopal (2006) includes a several-thousand-line
Perl script to extract their rules. In addition to
phrasal and lexical probabilities, this extractor im-
plements several other features that are also de-
scribed in section 2.4.

Finally, the cdec decoder (Dyer et al., 2010) in-
cludes a grammar extractor that performs well only
when all rules can be held in memory.

Memory usage is a limitation of both the Joshua
and cdec extractors. Translation models can be very
large, and many feature scores require accumulation
of statistical data from the entire set of extracted
rules. Since it is impractical to keep the entire gram-
mar in memory, rules are usually sorted on disk and
then read sequentially. Different feature calcula-
tions may require different sort orders, leading to a
linear workflow that alternates between sorting the
grammar and calculating a feature score. To cal-
culate more feature scores, more sorts have to be
performed. This discourages the implementation of
new features. For example, Joshua’s built-in rule ex-
tractor calculates the phrasal probability p(γ|α) for
each rule but, to save time, does not calculate its ob-
vious counterpart p(α|γ), which would require an-
other sort.
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Language pair sentences (K) words (M)
cs–en 332 4.7
de–en 279 5.5
en–cs 487 6.9
en–de 359 7.2
en–fr 682 12.5
fr–en 792 14.4

Table 2: Training data size after subsampling.

The SAMT extractor does not have a problem
with large data sets; SAMT can run on Hadoop, as
Thrax does.

The Joshua and cdec extractors only extract Hiero
grammars, and Zollmann and Venugopal’s extractor
can only extract SAMT-style grammars. They are
not designed to score arbitrary feature sets, either.
Since variation in translation models and feature sets
can have a significant effect on translation perfor-
mance, we have developed Thrax in order to make it
easy to build and test new models.

3 Experiments

We built systems for six language pairs for the WMT
2011 shared task: cz-en, en-cz, de-en, en-de, fr-en,
and en-fr.3 For each language pair, we built both
SAMT and hiero grammars.4 Table 3 contains the
results on the complete WMT 2011 test set.

To train the translation models, we used the pro-
vided Europarl and news commentary data. For cz-
en and en-cz, we also used sections of the CzEng
parallel corpus (Bojar and Žabokrtský, 2009). The
parallel data was subsampled using Joshua’s built-
in subsampler to select sentences with n-grams rel-
evant to the tuning and test set. We used SRILM
to train a 5-gram language model with Kneser-Ney
smoothing using the appropriate side of the paral-
lel data. For the English LM, we also used English
Gigaword Fourth Edition.5

Before extracting an SCFG with Thrax, we used
the provided Perl scripts to tokenize and normalize

3fr=French, cz=Czech, de=German, en=English.
4Except for fr-en and en-fr. We were unable to decode with

SAMT grammars for these language pairs due to their large size.
We have since resolved this issue and will have scores for the
final version of the paper.

5LDC2009T13

pair hiero SAMT improvement
cz-en 21.1 21.7 +0.6
en-cz 16.8 16.9 +0.1
de-en 18.9 19.5 +0.6
en-de 14.3 14.9 +0.6
fr-en 28.0 - -
en-fr 30.4 - -

Table 3: Single-reference BLEU-4 scores.

the data. We also removed any sentences longer than
50 tokens (after tokenization). For SAMT grammar
extraction, we parsed the English training data us-
ing the Berkeley Parser (Petrov et al., 2006) with the
provided Treebank-trained grammar.

We tuned the model weights against the
WMT08 test set (news-test2008) using Z-
MERT (Zaidan, 2009), an implementation of mini-
mum error-rate training included with Joshua. We
decoded the test set to produce a 300-best list of
unique translations, then chose the best candidate for
each sentence using Minimum Bayes Risk reranking
(Kumar and Byrne, 2004). Figure 2 shows an exam-
ple derivation with an SAMT grammar. To re-case
the 1-best test set output, we trained a true-case 5-
gram language model using the same LM training
data as before, and used an SCFG translation model
to translate from the lowercased to true-case output.
The translation model used rules limited to five to-
kens in length, and contained no hierarchical rules.

4 CachePipe: Cached pipeline runs

Machine translation pipelines involve the specifica-
tion and execution of many different datasets, train-
ing procedures, and pre- and post-processing tech-
niques that can have large effects on translation out-
come, and which make direct comparisons between
systems difficult. The complexity of managing these
pipelines and experimental environments has led to a
number of different experimental management sys-
tems, such as Experiment.perl,6 Joshua 2.0’s Make-
file system (Li et al., 2010), and LoonyBin (Clark
and Lavie, 2010). In addition to managing the
pipeline, these scripts employ different techniques
to avoid expensive recomputation by caching steps.

6http://www.statmt.org/moses/?n=
FactoredTraining.EMS
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the reactor type will be operated with uranium

VBN

DT+NP

GLUE

VP

PP

der reaktortyp , das nicht angereichertwird zwar mit uran betrieben

, which is not enriched

ist .

NP

GLUE

NN

COMMA+SBAR+.

ADJP

JJ

.

S

VBN

DT+NP

GLUE

VP

PP

NP

GLUE

NN

COMMA+SBAR+.

ADJP

JJ

S

Figure 2: An SAMT derivation. The shaded terminal symbols are the lexicalized part of a rule with terminals
and non-terminals. The unshaded terminals are directly dominated by a nonterminal symbol.

However, these approaches are based on simple but
unreliable heuristics (such as timestamps or file ex-
istence) to make the caching determination.

Our solution to the caching dependency problem
is CachePipe. CachePipe is designed with the fol-
lowing goals: (1) robust content-based dependency
checking and (2) ease of use, including minimal
editing of existing scripts. CachePipe is essentially
a wrapper around command invocations. Presented
with a command to run and a list of file dependen-
cies, it computes SHA-1 hashes of the dependencies
and of the command invocation and stores them; the
command is executed only if any of those hashes are
different from previous runs. A basic invocation in-
volves specifying (1) a name or identifier associated
with the command or step, (2) the command to run,
and (3) a list of file dependencies. For example, to
copy file a to b from a shell prompt, the following
command could be used:

cachecmd copy "cp a b" a b

The first time the command is run, the file would be
copied; afterwards, the command would be skipped
after CachePipe verified that the contents of the de-
pendencies a and b had not changed.

CachePipe is open-source software, distributed

with Joshua or available separately.7 It currently
provides both a shell script interface and a program-
matic API for Perl. It accepts a number of other
arguments and dependency types. It also serves as
the foundation of a new script in Joshua 3.0 that im-
plements the complete Joshua pipeline, from data
preparation to evaluation.

5 Future work

Thrax is currently limited to SCFG-based translation
models. A natural development would be to extract
GHKM grammars (Galley et al., 2004) or more re-
cent tree-to-tree models (Zhang et al., 2008; Liu et
al., 2009; Chiang, 2010). We also hope that Thrax
will continue to be extended with more feature func-
tions as researchers develop and contribute them.
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Abstract
We present the DFKI hybrid translation sys-
tem at the WMT workshop 2011. Three SMT
and two RBMT systems are combined at the
level of the final translation output. The trans-
lation results show that our hybrid system sig-
nificantly outperformed individual systems by
exploring strengths of both rule-based and sta-
tistical translations.

1 Introduction

Machine translation (MT), in particular the statisti-
cal approach to it, has undergone incremental im-
provements in recent years. While rule-based ma-
chine translation (RBMT) maintains competitive-
ness in human evaluations. Combining the advan-
tages of both approaches have been investigated by
many researchers such as (Eisele et al., 2008).
Nonetheless, significant improvements over statis-
tical approaches still remain to be shown. In this
paper, we present the DFKI hybrid system in the
WMT workshop 2011. Our system is different from
the system of the last year (Federmann et al., 2010),
which is based on the shallow phrase substitution.
In this work, two rule-based translation systems are
applied. In addition, three statistical machine trans-
lation systems are built, including a phrase-based,
a hierarchical phrase-based and a syntax-based sys-
tem. Instead of combining with rules or post-editing,
we perform system combination on the final transla-
tion hypotheses. We applied the CMU open toolkit
(Heafield and Lavie, 2010) among numerous com-
bination methods such as (Matusov, 2009), (Sim et
al., 2007) and (He et al., 2008). The final transla-
tion output outperforms each individual output sig-
nificantly.

2 Individual translation systems

2.1 Phrase-based system
We use the IBM model 1 and 4 (Brown et al., 1993)
and Hidden-Markov model (HMM) (Vogel et al.,
1996) to train the word alignment using the mgiza
toolkit1. We applied the EMS in Moses (Koehn et
al., 2007) to build up the phrase-based translation
system. Features in the log-linear model include
translation models in two directions, a language
model, a distortion model and a sentence length
penalty. A dynamic programming beam search al-
gorithm is used to generate the translation hypoth-
esis with maximum probability. We applied a 5-
gram mixture language model with each sub-model
trained on one fifth of the monolingual corpus with
Kneser-Ney smoothing using SRILM toolkit (Stol-
cke, 2002). We did not perform any tuning, because
it hurts the evaluation performance in our experi-
ments.

2.2 Syntax-based system
To capture the syntactic structure, we also built a
tree-based system using the same configuration of
EMS in Moses (Koehn et al., 2007). Tree-based
models operate on so-called grammar rules, which
include variables in the mapping rules. To increase
the diversity of models in combination, the lan-
guage model in each individual translation system
is trained differently. For the tree-based system,
we applied a 4-gram language model with Kneser-
Ney smoothing using SRILM toolkit (Stolcke, 2002)
trained on the whole monolingual corpus. The
test2007 news part is applied to tune the feature
weights using mert, because the tuning on test2007

1http://geek.kyloo.net/software/doku.php/mgiza:overview
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improves the translation performance more than the
tuning on test2008 in a small-scale experiment for
the tree-based system.

2.3 Hierarchical phrase-based system

For the hierarchical system, we used the open source
hierarchical phrased-based system Jane, developed
at RWTH and free for non-commercial use (Vi-
lar et al., 2010). This approach is an extension
of the phrase-based approach, where the phrases
are allowed to have gaps (Chiang, 2007). In this
way long-range dependencies and reorderings can
be modeled in a consistent statistical framework.

The system uses a fairly standard setup, trained
using the bilingual data provided by the organizers,
word aligned using the mgiza. Two 5-gram language
models were used during decoding: one trained on
the monolingual part of the bilingual training data,
and a larger one trained on the additional news data.
Decoding was carried out using the cube pruning al-
gorithm. The tuning is performed on test2008 with-
out further experiments.

2.4 Rule-based systems

We applied two rule-based translation systems, the
Lucy system (Lucy, 2011) and the Linguatec sys-
tem (Aleksić and Thurmair, 2011). The Lucy sys-
tem is a recent offspring of METAL. The Linguatec
system is a modular system consisting of grammar,
lexicon and morphological analyzers based on logic
programming using slot grammar.

3 Hybrid translation

A hybrid approach combining rule-based and sta-
tistical machine translation is usually investigated
with an in-box integration, such as multi-way trans-
lation (Eisele et al., 2008), post-editing (Ueffing et
al., 2008) or noun phrase substitution (Federmann
et al., 2010). However, significant improvements
over state-of-the-art statistical machine translation
are still expected. In the meanwhile system combi-
nation methods for instance described in (Matusov,
2009), (Sim et al., 2007) and (He et al., 2008) are
mostly evaluated to combine statistical translation
systems, rule-based systems are not considered. In
this work, we integrate the rule-based and statistical
machine translation system on the level of the final

PBT Syntax
PBT-2010 18.32
Max80words 20.65 21.10
Max100words 20.78
+Compound 21.52 22.13
+Newparallel 21.77

Table 1: Translation performance BLEU[%] on
phrase/syntax-based system using various settings eval-
uated on test10.

translation hypothesis and treat the rule-based sys-
tem anonymously as an individual system. In this
way an black-box integration is allowed using the
current system combination techniques.

We applied the CMU open toolkit (Heafield
and Lavie, 2010) MEMT, a package by Kenneth
Heafield to combine the translation hypotheses. The
language model is trained on the target side of the
parallel training corpus using SRILM (Stolcke,
2002). We used only the Europarl part to train lan-
guage models for tuning and all target side of paral-
lel data to train language models for decoding. The
beam size is set to 80, and 300 nbest is considered.

4 Translation experiments

4.1 MT Setup

The parallel training corpus consists of 1.8
million German-English parallel sentences from
Europarl-v6 (Koehn, MT Summit 2005) and news-
commentary with 48 million tokenized German
words and 54 million tokenized English words re-
spectively. The monolingual training corpus con-
tains the target side of the parallel training cor-
pus and the additional monolingual language model
training data downloaded from (SMT, 2011). We
did not apply the large-scale Gigaword corpus, be-
cause it does not significantly reduce the perplexity
of our language model but raises the computational
requirement heavily.

4.2 Single systems

For each individual translation system, different
configurations are experimented to achieve a higher
translation quality. We take phrase- and syntax-
based translation system as examples. Table 1
presents official submission result on DE-EN by
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PBT+Syntax 20.37
PBT+Syntax+HPBT 20.78
PBT+HPBT+Linguatec+Lucy 20.27
PBT+Syntax+HPBT+Linguatec+Lucy 20.81

Table 2: Translation performance BLEU[%] on test2011
using hybrid system tuned on test10 with various settings
(DE-EN).

DFKI in 2010. In 2010’s translation system only
Europarl parallel corpus was applied, and the trans-
lation output was evaluated as 18.32% in the BLEU
score. In 2011, we added the News Commentary
parallel corpus and trained the language model on all
monolingual data provided by (SMT, 2011) except
for Gigaword. As shown in Table 1, if we increase
the maximum sentence length of the training cor-
pus from 80 to 100, the BLEU score increases from
20.65% to 20.78%. In the error analysis, we found
that many OOVs come from the compound words
in German. Therefore, we applied the compound
splitting for both German and English by activating
the corrensponding settings in the EMS in Moses.
This leads to a further improvement of nearly 1%
in the BLEU score. As we add the new parallel
corpus provided on the homepage of SMT work-
shop in 2011 (SMT, 2011) to the corpus in 2010,
a slight improvement can be achieved. Within one
year, the score for the DFKI PBT system DE-EN has
improved by nearly 3.5% absolute and 20% relative
BLEU score points, as shown in Table 1.

In the phrase-based translation, the tuning was not
applied, because it improves the results on the held-
out data but hurts the results on the evaluation set.
In our observation, the decrease is in the range of
0.01% to 1% in the BLEU score. However tun-
ing does help for the Tree-based system. Therefore
we applied the test2007 to optimize the parameters,
which enhanced the BLEU score from 17.52% to
21.10%. The compound splitting also improves the
syntax system, with about 1% in the BLEU score.
We did not add the new parallel corpus into the train-
ing for syntax system due to its larger computational
requirement than that of the phrase-based system.

Test10 Test08 Test11
Hybrid-2010 17.43
PBT 21.77 20.70 20.40
Syntax 22.13 20.50 20.49
HPBT 19.21 18.26 17.06
Linguatec 16.59 16.07 15.97
Lucy 16.57 16.66 16.68
Hybrid-2011 23.88 21.13 21.25

Table 3: Translation performance BLEU[%] on three test
sets using different translation systems in 2011 submis-
sion (DE-EN).

Test10 Test11
Hybrid-2010 14.42
PBT 15.46 14.05
Linguatec 14.92 12.92
Lucy 13.77 13.0
Hybrid-2011 15.55 15.83

Table 4: Translation performance BLEU[%] on two test
sets using different translation systems in 2011 submis-
sion (EN-DE).

4.3 Hybrid system

We applied test10 as the held-out data to tune
the German-English and English-German transla-
tion systems. For experiments, we applied a small-
scaled 4-gram language model trained only on the
target side of the Europarl parallel training data. As
shown in Table 2, different combinations are per-
formed on the hypotheses generated from single sys-
tems. We first combined the PBT with syntax sys-
tem, then together with the HPBT system. The
translation result in the BLEU score performs best
when we combine all three statistical machine trans-
lation systems and two rule-based systems together.

4.4 Evaluation results

For the decoding during the WMT evaluation, we
applied a larger 4-gram language model trained on
the target side of all parallel training corpus. As
shown in Table 3, in last year’s evaluation the DFKI
hybrid translation result was evaluated as 17.34% in
the BLEU score. In 2011, among all the transla-
tion systems, the syntax system performs the best
on test10 and test11, while the PBT performs the
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SRC Diese Verordnung wurde vom Gesundheitsministerium in diesem Jahr einigermassen gemildert - die Kühlschrankpflicht fiel weg.
REF It was mitigated by the Ministry of Health this year - the obligation to have a refrigerator has been removed.
PBT This regulation by the Ministry of Health in this year - somewhat mitigated the fridge duty fell away.
Syntax This regulation was somewhat mitigated by the Ministry of Health this year - the refrigerator duty fell away.
HPBT This regulation was by the Ministry of Health in reasonably Dokvadze this year - the Kühlschrankpflicht fell away.
Linguatec This ordinance was soothed to some extent by the brazilian ministry of health this year, the refrigerator duty was discontinued.
Lucy This regulation was quite moderated by the Department of Health, Education and Welfare this year - the refrigerator duty was omitted.
Hybrid This regulation was somewhat mitigated by the Ministry of Health this year - the fridge duty fell away.

SRC Die Deregulierung und Bakalas ehemalige Bergarbeiterwohnungen sind ein brisantes Thema.
REF Deregulation and Bakala ’s former mining flats are local hot topic.
PBT The deregulation and Bakalas former miners’ homes are a sensitive issue.
Syntax The deregulation and Bakalas former miners’ homes are a sensitive issue.
HPBT The deregulation and Bakalas former Bergarbeiterwohnungen are a hot topic.
Linguatec Former miner flats are an explosive topic the deregulation and Bakalas.
HPBT The deregulation and Bakalas former miner apartments are an explosive topic.
Hybrid The deregulation and Bakalas former miners’ apartments are a sensitive issue.

Table 5: Examples of translation output by the different systems.

best on test08. The rule-based sytems, Linguatec
and Lucy are expected to have a higher score in the
human evaluation than in the automatic evaluation.
Furthermore, as we can see from Table 3, there is
still room to improve the Jane system, with better
modeling, configurations or even higher-order lan-
guage model. Using the hybrid system we success-
fully improved the translation result to 23.88% on
test10. The hybrid system outperforms the best sin-
gle system by 0.43% and 0.76% in the BLEU score
on the test08 and test11, respectively.

For the translation from English to German, the
translation result of last year’s submission was eval-
uated as 14.42% in the BLEU score, as shown in Ta-
ble 4. In this year, the phrase-based translation result
is 15.46% in the BLEU score. We only set up one
statistical translation system due to time limitation.
With the respect of the BLEU score, phrase-based
translation outperforms rule-based translations. Be-
tween rule-based translation systems, Linguatec per-
forms better on the test10 (14.92%) and Lucy per-
forms better on the test11 (13.0%). Combining three
translation hypotheses leads to a smaller improve-
ment (from 15.46% to 15.55%) on the test10 and a
greater improvement (from 14.05% to 15.83%) on
the test11 in the BLEU score over the single best
translation system. Comparing to last year’s trans-
lation output, the improvement is over one percent
absolutely (from 14.42% to 15.55%) in the BLEU
score on the test10.

4.5 Output examples
Table 5 shows two translation examples from the
MT output of the test2011. We list the source sen-
tence in German and its reference translation as
well as the translation results generated by different
translation systems. As can be seen from Table 5,
the translation quality of source sentences is greatly
improved using the hybrid system over the single in-
dividual systems. Translations of words and word
orderings are more appropriate by the hybrid sys-
tem.

5 Conclusion and future work

We presented the DFKI hybrid translation system
submitted in the WMT workshop 2011. The hy-
brid translation is performed on the final translation
output by individual systems, including a phrase-
based system, a syntax-based system, a hierarchical
phrase-based system and two rule-based systems.
Combining the results from statistical and rule-
based systems significantly improved the translation
performance over the single-best system, which is
shown by the automatic evaluation scores and the
output examples. Despite of the encouraging results,
there is still room to improve our system, such as the
tuning in the phrase-based translation and a better
language model in the combination.
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Abstract

This paper describes the system presented for
the English-Spanish translation task by the
collaboration between CEU-UCH and UPV
for 2011 WMT. A comparison of indepen-
dent phrase-based translation models interpo-
lation for each available training corpora were
tested, giving an improvement of 0.4 BLEU
points over the baseline. Output N -best lists
were rescored via a target Neural Network
Language Model. An improvement of one
BLEU point over the baseline was obtained
adding the two features, giving 31.5 BLEU
and 57.9 TER for the primary system, com-
puted over lowercased and detokenized out-
puts. The system was positioned second in the
final ranking.

1 Introduction

The goal of Statistical Machine Translation (SMT)
is to translate a sentence between two languages.
Giving the source language sentence f , it would be
translated to an equivalent target language sentence
e. The most extended formalization is done via log-
linear models (Papineni et al., 1998; Och and Ney,
2002) as follows:

ê = arg max
e

K∑
k=1

λkhk(f , e) (1)

where hk(f , e) is a score function representing an
important feature for the translation of f into e, K
is the number of models (or features) and λk are
the weights of the log-linear combination. Typically,

the weights λk are optimized during the tuning stage
with the use of a development set.

SMT systems rely on a bilingual sentence aligned
training corpus. These sentences are aligned at the
word level (Brown et al., 1993), and after that, dif-
ferent hk feature functions are trained. In some prac-
tical cases, the out-of-domain training data is larger
than the in-domain training data. In these cases the
target Language Model (LM) is composed of a lin-
ear interpolation of independent LMs, one for each
available training domain or corpus. Nevertheless,
the training of phrase-based translation models is an
open problem in these cases.

Some recent works (Resnik and Smith, 2003; Ya-
suda et al., ; Koehn and Schroeder, 2007; Matsoukas
et al., 2009; Foster et al., 2010; Sanchis-Trilles
and Casacuberta, 2010) related to corpus weight-
ing, make use of data selection, data weighting,
and translation model adaptation to overcome this
problem. In this work, we explore a simple cor-
pus weighting technique to interpolate any number
of different phrase tables. Two different approaches
are tested, obtaining similar performance. On the
one hand, a count-based smoothing technique that
applies a weight to the counting of phrases and lexi-
cal links depending on the relevance of each corpus.
On the other hand, a linear interpolation of indepen-
dent trained phrase tables.

Another important feature of this work is
the use of Neural Network Language Models
(NN LMs) (Bengio, 2008). This kind of LMs has
been successfully applied in some connectionist ap-
proaches to language modeling (Bengio et al., 2003;
Castro-Bleda and Prat, 2003; Schwenk et al., 2006;
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Schwenk, 2010). The advantage of these NN LMs is
the projection of words on a continuous space were
the probabilities of n-grams are learned. A Neural
Network (NN) is proposed to learn both the word
projections and the n-gram probabilities.

The presented system combines a standard, state-
of-the-art SMT system with a NN LM via log-linear
combination and N -best output re-scoring. We
chose to participate in the English-Spanish direction.

2 Translation models

A standard phrase-based translation model is com-
posed of the following five hk features:

• inverse phrase translation probability p(f |e)

• inverse lexical weighting l(f |e)

• direct phrase translation probability p(e|f)

• direct lexical weighting l(e|f)

• phrase penalty (always e = 2.718).

We rely only on the first four features. They
are computed from word alignments at the sentence
level, by counting over the alignments, and using the
inverse and direct lexical dictionaries. Given a pair
of phrases, f on the source language and e in the tar-
get language, the phrase translation probabilities are
computed by relative frequency as:

p(f |e) =
count(f, e)∑
e′ count(f, e′)

p(e|f) =
count(f, e)∑
f ′ count(f

′
, e)

Given a word f on the source language, and a
word e in the target language, the lexical translation
distribution is computed again by relative frequency
as:

w(f |e) =
count(f, e)∑
e′ count(f, e′)

w(e|f) =
count(f, e)∑
f ′ count(f ′, e)

Given the previous lexical translation distribution,
two phrase pairs f and e, and a, the word alignment
between the source word positions i = 1, . . . , n and
the target word positions j = 1, . . . ,m, the inverse
lexical weighting is computed as:

l(f |e) =

n∏
i=1

1

|{j|(i, j) ∈ a}|
∑

(i,j)∈a

w(fi|ej)

and the direct lexical weighting is computed as:

l(e|f) =

m∏
j=1

1

|{i|(i, j) ∈ a}|
∑

(i,j)∈a

w(ej |fi)

3 Weighting different translation models

The proposed modifications of the phrase-based
translation models are similar to (Foster et al., 2010;
Matsoukas et al., 2009), but in this case the weight-
ing is simpler and focused at the corpus level. If
we have T different training sets, we could define
βt as the weight of the set t, for 1 ≤ t ≤ T . The
word alignments are computed via Giza++ (Och and
Ney, 2003) over the concatenation of all the training
material available for the translation models (in this
case, Europarl, News-Commentary, and United Na-
tions). After that, we could recompute the lexical
translation distribution using the weights informa-
tion, and compute the phrase-based translation mod-
els taking into account these weights. The count
function will be redefined to take into account only
information of the corresponding training set.

3.1 Count smoothing

The weight βt is applied to the count function, in
order to modify the corpus effect on the probability
of each phrase pair alignment, and each word pair
alignment. First, we modify the lexical translation
distribution in this way:

w(f |e) =

∑
t βtcountt(f, e)∑

t βt
∑

e′ countt(f, e′)

w(e|f) =

∑
t βtcountt(f, e)∑

t βt
∑

f ′ countt(f ′, e)
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having a global lexical translation distribution for
the alignment between words. Second, we mod-
ify the phrase translation probabilities for each di-
rection, remaining without modification the lexical
weightings:

p(f |e) =

∑
t βtcountt(f, e)∑

t βt
∑

e′ countt(f, e′)

p(e|f) =

∑
t βtcountt(f, e)∑

t βt
∑

f
′ countt(f

′
, e)

When some phrase/word count is not found, count
is set to zero.

3.2 Linear interpolation
In this case, we compute independently the transla-
tion models for each training set. We have T mod-
els, one for each set. The final translation models are
obtained by means of a linear interpolation of each
independent translation model. If some phrase pair
is not found, the translation model is set to have zero
probability.

First, we redefine the lexical translation distribu-
tion. In this case we have w1, w2, . . . , wT lexical
dictionaries:

wt(f |e) =
countt(f, e)∑
e′ countt(f, e′)

wt(e|f) =
countt(f, e)∑
f ′ countt(f ′, e)

.

Then, we could compute the linear interpolation
of phrase translation probabilities as follows:

p(f |e) =
∑

t

βt
countt(f, e)∑
e′ countt(f, e′)

p(e|f) =
∑

t

βt
countt(f, e)∑
f

′ countt(f
′
, e)

And finally, the inverse lexical weighting is ob-
tained as:

l(f |e) =
∑

t

βt

n∏
i=1

1

|{j|(i, j) ∈ a}|
∑

(i,j)∈a

wt(fi|ej)

and the direct lexical weighting:

l(e|f) =
∑

t

βt

m∏
j=1

1

|{i|(i, j) ∈ a}|
∑

(i,j)∈a

wt(ej |fi).

4 Neural Network Language Models

In SMT the most useful language models are
n-grams (Bahl et al., 1983; Jelinek, 1997; Bahl et al.,
1983). They compute the probability of each word
given the context of the n− 1 previous words:

p(s1 . . . s|S|) ≈
|S|∏
i=1

p(si|si−n+1 . . . si−1) (2)

where S is the sequence of words for which we want
compute the probability, and si ∈ S, from a vocab-
ulary Ω.

A NN LM is a statistical LM which follows equa-
tion (2) as n-grams do, but where the probabilities
that appear in that expression are estimated with a
NN (Bengio et al., 2003; Castro-Bleda and Prat,
2003; Schwenk, 2007; Bengio, 2008). The model
naturally fits under the probabilistic interpretation
of the outputs of the NNs: if a NN, in this case a
MLP, is trained as a classifier, the outputs associated
to each class are estimations of the posterior proba-
bilities of the defined classes (Bishop, 1995).

The training set for a LM is a sequence
s1s2 . . . s|S| of words from a vocabulary Ω. In order
to train a NN to predict the next word given a history
of length n−1, each input word must be encoded. A
natural representation is a local encoding following
a “1-of-|Ω|” scheme. The problem of this encoding
for tasks with large vocabularies (as is typically the
case) is the huge size of the resulting NN. We have
solved this problem following the ideas of (Bengio
et al., 2003; Schwenk, 2007), learning a distributed
representation for each word. Figure 1 illustrates the
architecture of the feed-forward NN used to estimate
the NN LM.

This n-gram NN LM predicts the posterior proba-
bility of each word of the vocabulary given the n−1
previous words. A single forward pass of the MLP
gives p(ω|si−n+1 . . . si−1) for every word ω ∈ Ω.
After training the projection layer is replaced by a
table look-up.
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Figure 1: Architecture of the continuous space NN LM
during training. The input words are si−n+1, . . . , si−1

(in this example, the input words are si−3, si−2, and si−1

for a 4-gram). I , P , H , and O are the input, projection,
hidden, and output layer, respectively, of the MLP.

The major advantage of the connectionist ap-
proach is the automatic smoothing performed by
the neural network estimators. This smoothing is
done via a continuous space representation of the
input words. Learning the probability of n-grams,
together with their representation in a continuous
space (Bengio et al., 2003), is an appropriate ap-
proximation for large vocabulary tasks. However,
one of the drawbacks of such approach is the high
computational cost entailed whenever the NN LM
is computed directly, with no simplification what-
soever. For this reason, the vocabulary size will be
restricted in the experiments presented in this work.

5 Experiments

The baseline SMT system is built with the open-
source SMT toolkit Moses (Koehn et al., 2007), in
its standard setup. The decoder includes a log-linear
model comprising a phrase-based translation model,
a language model, a lexicalized distortion model
and word and phrase penalties. The weights of the
log-linear interpolation were optimized by means of
MERT (Och, 2003), using the News-Commentary
test set of the 2008 shared task as a development set.
The phrase-based translation model uses the con-

Table 1: Spanish corpora statistics. NC stands for
News-Commentary and UN for United Nations, while
|Ω| stands for vocabulary size, and M /K for mil-
lions/thousands of elements. All numbers are computed
with tokenized and lowercased data.

Set # Lines # Words |Ω|
NC v6 159K 4.44M 80K
News-Shuffled 9.17M 269M 596K
Europarl v6 1.94M 55M 177K
UN 6.22M 214M 579K

Total 21.93M 678M 1.03M

Table 2: Weights of different combination of phrase-
based translation models.

System Europarl NC UN
Smooth1 0.35 0.35 0.30
Smooth2 0.40 0.40 0.20
Smooth3 0.15 0.80 0.05
Linear 0.35 0.35 0.30

catenation of News-Commentary, United Nations,
and Europarl corpora, to estimate the four transla-
tion model features.

The baseline LM was a regular n-gram LM with
Kneser-Ney smoothing (Kneser and Ney, 1995) and
interpolation by means of the SRILM toolkit (Stol-
cke, 2002). Specifically, we trained a 6-gram LM
on United Nations, a 5-gram on Europarl and News-
Shuffled, and a 4-gram on News-Commentary. Once
these LMs had been built, they were interpolated
so as to maximize the perplexity of the News-
Commentary test set of the 2009 shared task. The fi-
nal model was pruned out using a threshold of 10−8.
This was done so according to preliminary research.

Three different weights for the count smooth-
ing technique described in section 3.1 were tested.
For the interpolation model of section 3.2, we se-
lect the weights minimizing the perplexity of the
corresponding three LMs (Europarl, NC, and UN)
over the News2008 set. Table 2 summarizes these
weights.

NN LM was trained with all the corpora described
in Table 1, using a weighted replacement algorithm
to modify the impact of each corpus in the training
algorithm. The weights were the same that for the
standard LM. In order to reduce the complexity of
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the model, the input vocabulary of the NN LM was
restricted using only words that appears more than
10 times in the corpora. The vocabulary is formed
by the 107 607 more frequent words, with two addi-
tional inputs: one to represent the words out of this
vocabulary, and another for the begin-of-sentence
cue. The output of the NN LM was restricted much
more, using only a shortlist (Schwenk, 2007) of the
10K more frequent words, plus the end-of-sentence
cue. The rest of words are collected by an additional
output in the neural network. When the probability
of an out-of-shortlist word is required, its probability
is computed multiplying this additional output acti-
vation by the unigram probability distribution of ev-
ery out-of-shortlist word. This implies that 10.7% of
the running words of the News2009 set, and 11.1%
of the running words of the News2011 official test
set, will be considered as out-of-shortlist words for
the NN LM.

A 6-gram NN LM was trained for this task, based
in previous works (Zamora-Martı́nez and Sanchis-
Trilles, 2010). Four NN LMs with different values
for the projection of each word (128, 192, 256, 320)
were linearly combined for the final NN LM. Each
NN LM had 320 units in the hidden layer. The com-
bination weights were computed maximizing the
perplexity over the News2009 set. The training pro-
cedure was conducted by means of the stochastic
back-propagation algorithm with weight decay, with
a replacement of 300K training samples and 200K
validation samples in each training epoch, select-
ing the random sample using a different distribution
weight for each corpus. The validation set was the
News2009 set. The networks were stopped after 99,
70, 53, and 42 epochs respectively (unfortunately,
without achieving convergence, due to the compe-
tition timings). This resulted in very few training
samples compared with the size of the training set:
29M in the best case, versus more than 500M of
the full set. The training of the NN LMs was ac-
complished with the April toolkit (España-Boquera
et al., 2007; Zamora-Martı́nez et al., 2009). The per-
plexity achieved by the 6-gram NN LM in the Span-
ish News2009 set was 281, versus 145 obtained with
the standard 6-gram language model with interpola-
tion and Kneser-Ney smoothing (Kneser and Ney,
1995).

The number of sentences in the N -best list was

Table 3: Main results of the experimentation

News2010 News2011
System BLEU TER BLEU TER
Baseline 29.2 60.0 30.5 58.9

Smooth1 29.3 59.9 − −
Smooth2 29.2 59.9 − −
Smooth3 29.5 59.6 30.9 58.5
+ NN LM 29.9 59.2 31.4 58.0

Linear 29.5 59.5 30.9 58.7
+ NN LM 30.2 58.8 31.5 57.9

set to 2 000 unique output sentences. Results can
be seen in Table 3. In order to assess the reliability
of such results, we computed pairwise improvement
intervals as described in (Koehn, 2004), by means
of bootstrapping with 1 000 bootstrap iterations and
at a 95% confidence level. Such confidence test re-
ported the improvements to be statistically signifi-
cant. A difference of more than 0.3 points of BLEU
is considered significant in the pairwise comparison.
The final results leads to 31.5 points of BLEU, posi-
tioning this system as second in the final classifica-
tion.

6 Conclusions and future work

The presented CEU-UPV system, using phrase
translation models combinations and NN LMs,
leads an improvement of 0.4 points of BLEU in the
two cases: the count smoothing approach (Smooth3
system) and the linear interpolation approach (Lin-
ear system). The incorporation of NN LMs in
both systems gets an additional improvement of
0.5 BLEU points for the Smooth3 system, and 0.6
BLEU points for the Linear system. The final result
for the primary system is 31.5 BLEU points.

The combination of translation models could be
enhanced optimizing the βt weights over the BLEU
score. Currently the weights are manually set for
the Smooth[1,2,3] systems, and fixed to the LM
weights for the Linear system. Nevertheless, both
approaches achieve similar results. Finally, it is im-
portant to emphasize that the use of NN LMs implies
an interesting improvement, though this year’s gain
is lower than that obtained by our 2010 system.1

1Note that the NN LMs didn’t achieve convergence due to
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Abstract
We describe our experiments with hier-
archical phrase-based machine translation
for the WMT 2011 Shared Task. We
trained a system for all 8 translation di-
rections between English on one side and
Czech, German, Spanish or French on
the other side, though we focused slightly
more on the English-to-Czech direction.
We provide a detailed description of our
configuration and data so the results are
replicable.

1 Introduction

With so many official languages, Europe is a par-
adise for machine translation research. One of the
largest bodies of electronically available parallel
texts is being nowadays generated by the European
Union and its institutions. At the same time, the
EU also provides motivation and boosts potential
market for machine translation outcomes.
Most of the major European languages belong

to one of the following three branches of the
Indo-European language family: Germanic, Ro-
mance or Slavic. Such relatedness is responsible
for many structural similarities in European lan-
guages, although significant differences still ex-
ist. Within the language portfolio selected for the
WMT shared task, English, French and Spanish
seem to be closer to each other than to the rest.
German, despite being genetically related to En-

glish, differs in many properties. Its word or-
der rules, shifting verbs from one end of the sen-
tence to the other, easily create long-distance de-
pendencies. Long German compound words are
notorious for increasing out-of-vocabulary rate,
which has led many researchers to devising un-
supervised compound-splitting techniques. Also,
uppercase/lowercase distinction is more important
because all German nouns start with an uppercase
letter by the rule.

Czech is a language with rich morphology (both
inflectional and derivational) and relatively free
word order. In fact, the predicate-argument struc-
ture, often encoded by fixed word order in English,
is usually captured by inflection (especially the
system of 7 grammatical cases) in Czech. While
the free word order of Czech is a problem when
translating to English (the text should be parsed
first in order to determine the syntactic functions
and the English word order), generating correct in-
flectional affixes is indeed a challenge for English-
to-Czech systems. Furthermore, the multitude
of possible Czech word forms (at least order of
magnitude higher than in English) makes the data
sparseness problem really severe, hindering both
directions.

There are numerous ways how these issues
could be addressed. For instance, parsing and
syntax-aware reordering of the source-language
sentences can help with the word order differ-
ences (same goal could be achieved by a reorder-
ing model or a synchronous context-free grammar
in a hierarchical system). Factored translation, a
secondary language model of morphological tags
or even a morphological generator are some of the
possible solutions to the poor-to-rich translation is-
sues.

Our goal is to run one system under as simi-
lar conditions as possible to all eight translation
directions, to compare their translation accuracies
and see why some directions are easier than others.
Future work will benefit from knowing what are
the special processing needs for a given language
pair. The current version of the system does not in-
clude really language-specific techniques: we nei-
ther split German compounds, nor do we address
the peculiarities of Czech mentioned above. Still,
comparability of the results is limited, as the qual-
ity and quantity of English-Czech data differs from
that of the other pairs.
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2 The Translation System

Our translation system belongs to the hierarchi-
cal phrase-based class (Chiang, 2007), i.e. phrase
pairs with nonterminals (rules of a synchronous
context-free grammar) are extracted from sym-
metrized word alignments and subsequently used
by the decoder. We use Joshua, a Java-based open-
source implementation of the hierarchical decoder
(Li et al., 2009), release 1.3.1

Word alignment was computed using the first
three steps of the train-factored-phrase-
model.perl script packed with Moses2 (Koehn et
al., 2007). This includes the usual combination of
word clustering using mkcls3 (Och, 1999), two-
way word alignment using GIZA++4 (Och and
Ney, 2003), and alignment symmetrization using
the grow-diag-final-and heuristic (Koehn et al.,
2003).
For language modeling we use the SRILM

toolkit5 (Stolcke, 2002) with modified Kneser-
Ney smoothing (Kneser and Ney, 1995; Chen and
Goodman, 1998).
We use the Z-MERT implementation of mini-

mum error rate training (Zaidan, 2009). The fol-
lowing settings have been used for Joshua and Z-
MERT (for the sake of reproducibility, we keep the
original names of the options; for their detailed ex-
planation please refer to the documentation avail-
able on-line at the Joshua project site). -ipi is the
number of intermediate initial points per Z-MERT
iteration.

• Grammar extraction:
maxPhraseSpan=10 maxPhraseLength=5
maxNonterminals=2 maxNontermi-
nalSpan=2 requireTightSpans=true
edgeXViolates=true sentenceIni-
tialX=true sentenceFinalX=true
ruleSampleSize=300

• Language model order: 6 (hexagram)

• Decoding: span_limit=10 fuzz1=0.1
fuzz2=0.1 max_n_items=30 rela-
tive_threshold=10.0 max_n_rules=50
rule_relative_threshold=10.0

1http://sourceforge.net/projects/joshua/
2http://www.statmt.org/moses/
3http://fjoch.com/mkcls.html
4http://fjoch.com/GIZA++.html
5http://www-speech.sri.com/projects/srilm/

• N-best decoding: use_unique_nbest=true
use_tree_nbest=false
add_combined_cost=true top_n=300

• Z-MERT: -m BLEU 4 closest -maxIt 5
-ipi 20

3 Data and Pre-processing Pipeline

We applied our system to all eight language pairs.
From the data point of view the experiments
were even more constrained than the organizers
of the shared task suggested. We used neither
the French/Spanish-English UN corpora nor the
109 French-English corpus. For 7 translation di-
rections we used the Europarl ver6 and News-
Commentary ver6 corpora6 for training. The target
side of the corporawas our only source ofmonolin-
gual data for training the language model. Table 1
shows the size of the training data.
For the English-Czech direction, we used

CzEng 0.9 (Bojar and Žabokrtský, 2009)7 as our
main parallel corpus. Following CzEng authors’
request, we did not use sections 8* and 9* reserved
for evaluation purposes.
In addition, we also used the EMEA corpus8

(Tiedemann, 2009).9
Czech was also the only language where we

used extra monolingual data for the language
model. It was the set provided by the organizers of
WMT 2010 (13,042,040 sentences, 210,507,305
tokens).
We use a slightly modified tokenization rules

compared to CzEng export format. Most notably,
we normalize English abbreviated negation and
auxiliary verbs (“couldn’t” → “could not”) and
attempt at normalizing quotation marks to distin-
guish between opening and closing one following
proper typesetting rules.
The rest of our pre-processing pipeline matches

the processing employed in CzEng (Bojar and
Žabokrtský, 2009).10 We use “supervised truecas-
ing”, meaning that we cast the case of the lemma
to the form, relying on our morphological analyz-
ers and taggers to identify proper names, all other

6Available for download at http://www.statmt.org/
wmt11/translation-task.html using the link “Parallel
corpus training data”.

7http://ufal.mff.cuni.cz/czeng/
8http://urd.let.rug.nl/tiedeman/OPUS/EMEA.php
9Unfortunately, the EMEA corpus is badly tokenized on

the Czech side with fractional numbers split into several to-
kens (e.g. “3, 14”). We attempted to reconstruct the original
detokenized form using a small set of regular expressions.
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Corpus SentPairs Tokens xx Tokens en
cs-en 583,124 13,224,596 15,397,742
de-en 1,857,087 48,834,569 51,243,594
es-en 1,903,562 54,488,621 52,369,658
fr-en 1,920,363 61,030,918 52,686,784
en-cs 7,543,152 79,057,403 89,018,033

Table 1: Number of sentence pairs and tokens for
every language pair in the parallel training cor-
pus. Languages are identified by their ISO 639
codes: cs = Czech, de =German, en = English, es =
Spanish, fr = French. The en-cs line describes the
CzEng + EMEA combined corpus, all other lines
correspond to the respective versions of EuroParl
+ News Commentary.

words are lowercased.
Note that in some cases the grammar extraction

algorithm in Joshua fails if the training corpus con-
tains sentences that are too long. Removing sen-
tences of 100 or more tokens (per advice by Joshua
developers) effectively healed all failures.11
The News Test 2008 data set12 (2051 sentences

in each language) was used as development data
for MERT. BLEU scores reported in this paper
were computed on the News Test 2011 set (3003
sentences each language). We do not use the News
Test 2009 and 2010.

4 Experiments

All BLEU scores were computed directly by
Joshua on the News Test 2011 set. Note that
they differ from what the official evaluation script
would report, due to different tokenization.

4.1 Baseline Experiments
The set of baseline experiments with all translation
directions involved running the system on lower-
cased News Commentary corpora. Word align-
ments were computed on lowercased 4-character
stems. A hexagram language model was trained
on the target side of the parallel corpus.
In the en-cs case, word alignments were com-

puted on lemmatized version of the parallel cor-
10Due to the subsequent processing, incl. parsing, the tok-

enization of English follows PennTreebenk style. The rather
unfortunate convention of treating hyphenated words as sin-
gle tokens increases our out-of-vocabulary rate.

11Table 1 presents statistics before removing the long sen-
tences.

12http://www.statmt.org/wmt11/translation-
task.html

pus. Hexagram language model was trained on
the monolingual data. Truecased data were used
for training, as described above; the BLEU score
of this experiment in Table 2 is computed on true-
cased system output.

Direction BLEUJ BLEUl BLEUt

en-cs 0.1274 0.141 0.123
en-de 0.1324 0.128 0.052
en-es 0.2756 0.274 0.221
en-fr 0.2727 0.212 0.174
cs-en 0.1782 0.178 0.137
de-en 0.1957 0.187 0.137
es-en 0.2630 0.255 0.197
fr-en 0.2471 0.248 0.193

Table 2: Lowercased BLEU scores of the baseline
experiments on News Test 2011 data: BLEUJ is
computed by the system, BLEUl is the official
evaluation by matrix.statmt.org (it differs be-
cause of different tokenization). BLEUt is offi-
cial truecased evaluation.

An interesting perspective on the models is pro-
vided by the feature weights optimized during
MERT. We can see in Table 3 that translation
models are trusted significantly more than lan-
guage models for the en-de, de-en and es-en di-
rections. In fact, the language model has a low rel-
ative weight in all language pairs but en-cs, which
was the only pair where we used a significant
amount of extra monolingual data. In the future,
we should probably use the Gigaword corpus for
the to-English directions.

Setup LM Pt0 Pt1 Pt2 WP

en-cs 1.0 1.04 0.84 −0.06 −1.19
en-de 1.0 2.60 0.57 0.47 −3.17
en-es 1.0 1.67 0.81 0.60 −2.96
en-fr 1.0 1.41 0.92 0.53 −2.80
cs-en 1.0 1.48 0.94 1.08 −4.55
de-en 1.0 2.28 1.11 0.34 −2.88
es-en 1.0 2.26 1.67 0.23 −0.84
fr-en 1.0 1.89 1.32 0.13 −0.04

Table 3: Feature weights are relative to the weight
of LM , the score by the language model. Then
there are the three translation features: Pt0 =
P (e|f), Pt1 = Plex(f |e) and Pt2 = Plex(e|f).
WP is the word penalty.
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4.2 Efficiency

The machines on which the experiments were con-
ducted are 64bit Intel Xeon dual core 2.8 GHz
CPUs with 32 GB RAM.
Word alignment of each parallel corpus was the

most resource-consuming subtask. It took between
12 and 48 hours, though it could be cut to one half
by running both GIZA++ directions in parallel.
The time needed for data preprocessing and train-
ing of the language model was negligible. Paral-
lelized grammar extraction took 19 processors for
about an hour. For decoding the test data were split
into 20 chunks that were processed in parallel. One
MERT iteration, including decoding, took from 30
minutes to 1 hour.
Training of large models requires some careful

engineering. The grammar extraction easily con-
sumes over 20 GB memory so it is important to
make sure Java really has access to it. The de-
coder must use the SWIG-linked SRILM library
because Java-based language modeling is too slow
and memory-consuming.

4.3 Supervised Truecasing

Our baseline experiments operated on lowercased
data, except for en-cs, where truecased word forms
were obtained using lemmas from morphological
annotation (note that guessing of the true case is
only needed for the sentence-initial token, other
words can just be left in their original form).
As contrastive runs we applied the supervised

truecasing to other directions as well. We used
the Morče tagger for English lemmatization, Tree-
Tagger for German and two simple rule-based ap-
proaches to Spanish and French lemmatization.
All these tools are embedded in the TectoMT anal-
ysis framework (Žabokrtský et al., 2008).
The results are in Table 4. BLEUt has increased

in all cases w.r.t. the baseline results.

4.4 Alignment on Lemmas

Once we are able to lemmatize all five languages
we can also experiment with word alignments
based on lemmas. Table 5 shows that the differ-
ences in BLEU are insignificant.

5 Conclusion

We have described the hierarchical phrase-based
SMT system we used for the WMT 2011 shared
task. We discussed experiments with large data

Direction BLEUJ BLEUl BLEUt

en-cs 0.1191 0.126 0.119
en-de 0.1337 0.131 0.127
en-es 0.2573 0.276 0.265
en-fr 0.2591 0.211 0.189
cs-en 0.1692 0.180 0.168
de-en 0.1885 0.191 0.178
es-en 0.2446 0.260 0.236
fr-en 0.2243 0.245 0.221

Table 4: Results of experiments with supervised
truecasing. Note that training on truecased corpus
slightly influenced even the lowercased BLEU (cf.
with Table 2). This is because probabilities of to-
kens that may appear both uppercased and lower-
cased (with different meanings) have changed, and
thus different translation may have been chosen.

Direction BLEUJ l4 BLEUJ lm

en-cs 0.1191 0.1193
en-de 0.1337 0.1318
en-es 0.2573 0.2590
en-fr 0.2591 0.2592
cs-en 0.1692 0.1690
de-en 0.1885 0.1892
es-en 0.2446 0.2452
fr-en 0.2243 0.2244

Table 5: Results of experiments with word align-
ment computed on different factors. BLEUJ l4 is
the score computed by Joshua on lowercased test
data for the original experiments (alignment based
on lowercased 4-character prefixes). BLEUJ lm
is the corresponding score for alignment based on
lemmas.

from the point of view of both the translation ac-
curacy and efficiency. We used moderately-sized
training data and took advantage from their ba-
sic linguistic annotation (lemmas). The truecasing
technique helped us to better target named entities.
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Abstract

In this paper, we propose that MT is an im-
portant technology in crisis events, something
that can and should be an integral part of a
rapid-response infrastructure. By integrating
MT services directly into a messaging infras-
tructure (whatever the type of messages being
serviced,e.g., text messages, Twitter feeds,
blog postings, etc.), MT can be used to pro-
vide first pass translations into a majority lan-
guage, which can be more effectively triaged
and then routed to the appropriate aid agen-
cies. If done right, MT can dramatically in-
crease the speed by which relief can be pro-
vided. To ensure that MT is a standard tool
in the arsenal of tools needed in crisis events,
we propose a preliminaryCrisis Cookbook,
the contents of which could be translated into
the relevant language(s) by volunteers imme-
diately after a crisis event occurs. The result-
ing data could then be made available to relief
groups on the ground, as well as to providers
of MT services. We also note that there
are significant contributions that our commu-
nity can make to relief efforts through con-
tinued work on our research, especially that
research which makes MT more viable for
under-resourced languages.

1 Introduction

The connected world contains approximately 5000
languages – at least that is how many languages you
could find at the other end of your phone right now.
However, the majority of these languages are under-
resourced, and they have few or no digital resources.
In the event of a sudden onset crisis, people will
immediately begin using their communication tech-
nologies – and their languages – to report their situ-
ations, request help, and seek out loved ones. Yet,
in the event that such a crisis occurs in a region
of the world where an under-resourced language is
spoken, delivery of support or aid could be affected

due to the inability to communicate. This was felt
most strongly in the wake of the January 12, 2010
earthquake in Haiti. Local emergency response ser-
vices were inoperable, but 70-80% of cell-towers
were quickly restored. With 83% of men and 67% of
women possessing cellphones, the nation remained
largely connected. People within Haiti were texting,
calling, and interacting with social media, primarily
in Haitian Kreyòl (Munro, 2011). Yet, most of the
aid that was being delivered to the country – initially,
soley by the American Military – was being deliv-
ered by groups that did not communicate in Kreyòl.
It was the first time that the world has seen a large-
scale sudden onset crisis in a region with productive
digital communications in an under-resourced lan-
guage, but it certainly will not be the last.

We strongly believe that MT is an important tech-
nology to facilitate communication in crisis situa-
tions, crucially since it can make content in a lan-
guage spoken or written by a local population ac-
cessible to those that do not know the language, in
particular aid agencies. Multiple groups saw MT
as a grand challenge in the Haitian crisis, and they
set to work to make MT available as soon as pos-
sible after the crisis. Within two weeks of the cri-
sis, the first two MT engines were built and were
available to those who needed them. We believe that
we can make MT available just as quickly in future
crises, and, with the right preparation, tightly inte-
grate MT into the communication infrastructure that
is deployed (e.g., the text messaging infrastructure).
The challenge is doing the work now to make this
vision possible.

In this paper, we describe the technologies that
came to play in the Haitian crisis, how Haitian
Kreyòl MT was developed, the problems of surprise
languages and low resource MT, and detail the re-
search and technologies, cast as a “Crisis MT Cook-
book”, that will be essential for MT to form a core
role in future crises. In Sections 2, 3, and 4 we dis-
cuss Mission 4636 and the technologies that came
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into play in Haiti and other recent crises, and the
role that technologies can and should play in future
crises. In Section 5, we discuss what made Haitian
Kreyòl a special case of a “surprise language”, and
how MT was developed for the language. In Sec-
tion 6, we review the NLP and MT research areas
that will likely net big returns for under-resourced
languages. In Section 7, we review the need for an
MT Crisis Cookbook, and what the data and infras-
tructural components of the Cookbook should be.
Finally, in Section 8 we review a sample crisis time-
line, and how a crisis might play out with all the
components of the Cookbook available. Section 9
wraps up the paper.

2 Mission 4636

In Haiti, crowdsourced translation enabled com-
munications between the Kreyòl-speaking Haitian
population and English-speaking emergency respon-
ders. A small group of international aid workers
established a phone-number,‘4636’1 , that people
were able to send text messages to for free within
Haiti. The actual translations were made by about
2000 Kreyòl2 and French speaking volunteers col-
laborating on an online microtasking platform that
they used to translate, categorize, identify missing
people and geolocate information on a map (Munro,
2010).3 After a month, this work was gradually
transferred to paid workers in Mirebalais, Haiti.
These messages, about 80,000 in total, were used
as part of the shared task for the2011 Workshop
on Machine Translation. About 3,000 of the mes-
sages had the categories and coordinates refined by a
third workforce working with the Ushahidi platform
out of Boston.4 They published this information on
an online crisis map and worked directly with the
main emergency responder, the American Military,
to identify actionable information.

1See the “Mission 4636” website at
http://www.mission4636.org for more information about
the organization and its efforts in Haiti.

2We use the term Kreyòl for the Creole spoken in Haiti to
differentiate it from other Creoles. This is also in concordwith
customary usage in Haiti.

3An author of this paper, Robert Munro, coordinated this
process and is a founding member and translation coordinator
for the Standby Task Force, which is discussed later in the paper.

4For more information on Ushahidi, see
http://www.ushahidi.org.

The strategy for translation was extremely effec-
tive - 80,000 messages equates to about 10 novels of
information, translated in real-time, lifting a burden
off people in Haiti. One high-ranking official de-
scribed the translation process as a “perfect match”
of social media and traditional emergency response
(Anderson, 2010).

To meet the scale of translation needs, machine
translation services were quickly shipped. A mem-
ber of Mission 4636 built a high-precision, low-
coverage dictionary-based system that was used by
a number of translators. A couple of days later,
the world’s first publically accessible Stastical Ma-
chine Translation (SMT) engine for Kreyòl was de-
veloped by Microsoft Research, with Google Re-
search following several days later with their own
engine.5 Although the statistical translation engines
were not used directly in the SMS translation ef-
fort, there is evidence they were used by those who
were involved in the relief effort, as determined by
blog postings and a review of translation logs show-
ing relief-centric translations. Although Kreyòl is
not a high traffic language—it was not expected that
it would be—about 5% of the traffic in the weeks
and the months following the earthquake appeared
to be relief-related, suggesting that machine transla-
tion was being used those who needed it most.6 Had
MT been integrated directly into the text messaging
infrastructure used in Haiti, this percentage would
have been significantly larger.

3 Translation and crisis response - a
quickly changing field

To establish a ready-workforce to aid information
processing in relief efforts an organization called the

5A rough timeline of these developments can
be seen in the commentary posted to the Lan-
guage Log website (see specifically the archive at:
http://languagelog.ldc.upenn.edu/nll/?p=2068).

6The logs output by Microsoft Translator’s engine were ex-
amined, and categorized roughly into broad categories describ-
ing the type of content. These categories were: Relief Related
(suspected), Colloquial or Common Expressions (which could,
in fact, have been relief related), Chat, and Unknown. The anal-
ysis was done by hand on a random sample of 200 messages
from the many thousands of messages received within a couple
of months of the quake. There were a large number of strings
that were difficult to categorize, including many partial strings,
and a bias against Relief Related when it was not clear. Thus,
the 5% estimate is likely a conservative one.
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Standby Task Forcewas established in late 2010. Its
founding members had worked together in the Haiti
and/or subsequent Pakistan response efforts. It cur-
rently has several hundred members who special-
ize in tasks like report mapping, verification, media
monitoring and translation. Of all the different tasks
that volunteers can perform, translation is theleast
transferable from one crisis to the next.

Following from the lessons learned in Haiti,
crowdsourced and machine translation have been
combined for a number of aid efforts: vote monitor-
ing for the referendem in Southern Sudan (Arabic);
a UN-led earthquake simulation in Colombia (Span-
ish); and for crisis mapping following the tsunami in
Japan (Japanese).

When information is immediately translated into
a high resource language it can be quickly triaged by
a greater number of people. The more time-intensive
task of manually correcting any mistranslations can
be performed in parallel. This workflow of combin-
ing machine and crowdsourced translation is largely
a succesful one and is likely to become common
practice in humanitarian information processing.

The combination of manual and machine-
translation was found to be effective across unpre-
dictable input:

“An email came into the Sudan Vote Mon-
itor platform in Indonesian - your plugin
did a good job of translating it into English
and Arabic”

Helena Puig Larrauri, volunteer for Sudan
Vote Monitor (P.C.)

But not without errors, especially across vital
phrases like location names:

“Names of neighborhoods such as Salitre
or Puerta al Llano were not recognized as
such and unnecessarily being translated.”

Marta Poblet, volunteer for Colombia
earthquake simulation (P.C.)

When the uprisings hit Libya in early 2011 the
United Nations did not have the capacity to col-
lect vital ground-truth data in the lead up to their
involvement. Information about refugee numbers
and needs were on web-accessible articles and so-
cial media, as were reports about the movements of

government and rebel troops and vunerable popula-
tions within the country. But there simply wasn’t the
workforce within the UN to aggregate and verify so
much information. This was the first time the United
Nations directly engaged a volunteer workforce for
large-scale information processing, requesting the
Standby Tasks Force’s deployment. It was also
the first time that so much information had come
from social media, a potentially large but unstruc-
tured data source, but it gave the UN a huge head-
start in their efforts (Verity, 2011). Crowdsourced
and machine translation were also combined here,
but in this case by directly engaging Arabic speak-
ers in media monitoring and by using reports from
Meedan.7

In a crisis, it will now be more common than not
that the volume of available digital information will
surpass the volume of information that aid-workers
can collect directly from the ground. This rapid
change is being quickly met by a rapid change in
cloud-based and automated solutions to language
processing, especially machine translation.

4 Translation and low-resource languages

We were fortunate that Arabic, Spanish and
Japanese are high resource languages for which
online machine translation services already exist.
Speakers of low resource languages cannot currently
benefit from this kind of translation service and yet
low resource languages are disproportionally spoken
by the world’s most vunerable populations. Over the
last 12 months many problems have been solved re-
garding the workflow of managing crisis data, but
one of the biggest remaining problems is the abil-
ity to quickly deploy machine-translation systems to
augment relief efforts.

While translation is not widely discussed aspect
of crisis response, it is “a perennial hidden issue”
(Disaster 2.0, 2011):

“Go and look at any evaluation from the
last ten or fifteen years. ‘Recommenda-
tion: make effective information available

7Meedanis an NGO that seeks to create greater understand-
ing between the Arabic and English speaking world by translat-
ing media reports and blogs between the languages, combining
quick machine-translation with corrections by a volunteercom-
munity.
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to the government and the population in
their own language.’ We didn’t do it . . . It
is a consistent thing across emergencies.”

Brendan McDonald, UN OCHA in (Dis-
aster 2.0, 2011)

Beyond the particular use case of small-to-
medium scale emergency information processing,
machine translation can also contribute to aid ef-
forts when the scale of information is beyond any
manual processing. In addition to the Libya deploy-
ment, a recent Red Cross survey (2010) found that
nearly half the respondents would use social media
to report emergencies. It simply would not be possi-
ble to translate all real-time reports when expressed
through social media, but translation into a high re-
source language could aid semi-automated methods
for discovering and prioritizing information.

There is, therefore, a great need to explore meth-
ods for rapid deployment of machine-translation
systems into minority languages. The questions that
we seek to address in this paper is how we as a com-
munity can prepare for the eventuality of the next
crisis, can draw from the lessons we learned in the
Haitian crisis, and might significantly impact the aid
effort in the next and future crises.

5 Surprise Languages: What Made Haiti
Different?

On January 19th, 2010, the Microsoft Research
Translator team received an e-mail from the field re-
questing that they develop an MT engine for Haitian
Kreyòl to assist in the relief effort. At the time, no
publically available MT engine existed for Kreyòl.
In less than five days, the Microsoft Translator site
was supporting the language. Given that it can take
weeks to months to develop an MT engine for a new
language, it would not seem possible that an engine
could be developed so quickly, especially for a low-
resource, minority language. The reasons this was
possible are varied, and are in some ways unique to
Kreyòl.

Haitian Kreyòl, as it turns out, has proven to be an
exceptional case for a surprise language. Unlike the
languages in Surprise Language Exercises of nearly
a decade ago (Oard, 2003; Oard and Och, 2003),
in which participants were given a month to collect

data and build language technologies for previously
unknown languages, including Machine Translation
systems, there was a surprising amount of data for
Kreyòl at the start of the Haitian crisis, and it be-
came available relatively quickly. Partly, this is due
to the growth of the Web, which has proven to be
a surpisingly diverse multi-lingual resource. But it
also stems crucially from work that had been done
in the past on Kreyòl, specifically, the work that was
done in the DIPLOMAT and NESPOLE! projects at
CMU (Frederking et al., 1997). It was possible to
assemble a reasonable sample of data for the lan-
guage in very short order (i.e., days). Further, since
the language itself is fairly reduced morphologically,
it is an easier target for SMT. In contrast, if one
were to sample a language at random from the set
of the 7,000 languages spoken on the earth, one is
more likely to find a language that is morpholog-
ically richer (e.g., fusional, aggutinating, polysyn-
thetic). Morphological richness compounds the data
sparsity problem, reducing the quality of the result-
ing SMT engines.

In other words, a combination of a simple
morphology combined with reasonably accessible
sources of data made the rapid deployment of MT
for Kreyòl far more likely. That is not to say
that there weren’t problems. First, Kreyòl is fairly
“young” as a written language8, and is still in the
early stages of orthographic standardization and nor-
malization (Allen, 1998). This has led to inconsis-
tencies in the orthography that increases data sparse-
ness and noise. Further, Kreyòl has multiple regis-
ters in its written form: a “high” register that uses
full forms for pronouns and a set of function words,
and a “low” register that corresponds more closely
to its spoken form, and is written with many con-
tractions. For example, the Kreyòl word for the first
person pronoun ismwen. It can be written asmwen
(the high register), or contracted tom’ (the low regis-
ter). The form can either be attached to the succeed-
ing word or written with a following space. Like-
wise, the first person possessive is alsomwenwhich
is written following the word that is possessed. This

8Although Haitian Kreyòl in written form goes back as far as
the late 18th century (see Lefebvre (1998) for material on some
of these texts), Kreyòl as a written language did not become
more commonplace until the 20th century, not achieving official
status in Haiti until 1961.
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can be written as’m, and can be attached to the word
or delimited by a space. Bothm’ and ’m appear in
some texts as justm. The same patterns hold for all
pronouns, and some function words as well. See Ta-
ble 1 for a list of these reductions.

Table 1: Sample Pronouns and Reductions
Pronoun Gloss Appears as
mwen I, me, mine m, ’m, m’
nou you (pl), us n, ’n, n’
ou you w, w’
li he, she, it l, l’, ’l

Additionally, writers of Kreyòl use a large num-
ber of abbreviated forms for common expressions, a
kind of shorthand. For example,avèncan be used to
representavèk nou, mandemcan be used formande
mwen, etc. Overall, the number of alternations and
multi-way ambiguities also increases the level of
noise and data sparsity.9

So, even with a morphologically reduced lan-
guage like Kreyòl, one has issues with data sparsity
beyond the mere lack of availability of data. This
compounds the low-data aspect of the language.
Adding in a multitude of morphological variants, as
one might encounter in a Turkic language, or worse,
in an Inuit language, would only make the problem
more severe. The big challenge for Crisis MT is not
only to deal with the data availability problem, but
once one has the data in hand, to deal with the re-
duction in the utility of that data caused by noise
and the multiplication of word forms. These pose
major challenges to our community, which can be
countered through additional research, a motivated
and active community, and scores of rapidly applied
heuristics and data repairs.

6 Research Areas to Counter Data
Sparsity

As noted, the major problems with low-resource MT
is the lack of data and various data issues that in-
crease the sparsity of data already in short supply.
What are the research challenges? How can we
make MT viable quickly for low-resource and si-
multaneously morphologically rich languages?

9For more details of the Haitian Kreyòl translation systems
developed at Microsoft Research, please see Lewis (2010).

The following constitutes a rough list of solu-
tions, many of which map to very interesting re-
search problems:

• Crowdsourcing – Beyond the use of crowd-
sourcing in the crisis context itself (e.g., to
translate or process text messages, much as
what was done by Mission 4636), novel tech-
niques for tapping the crowd could also be used
to add or repair data:

– Repairing and evaluation – In this sce-
nario, the crowd would be used to repair
data that is obviously noisy, evaluate prob-
lems with particular data points, or even
make simple determinations as to whether
the data in question is actually in the lan-
guage(s) of interest or too noisy to use.

– Translating content, generating new data –
Given crowd sourced, micro-tasking plat-
forms such as Amazon’s Mechanical Turk
and Crowdflower, one can now easily tap
the crowd to generate new data. The ma-
jor challenge will be identifying if speak-
ers of the target language(s) are available
on the desired platform, and if not, if they
could be motivated to particpate.10 Like-
wise, infrastructure and resources will be
needed to evaluate the quality of the re-
sulting translations (Zaidan and Callison-
Burch, 2011).

– Active Crowd Translation – This method
combines active learning with crowd-
sourcing for annotation of parallel data in
comparable resources, and can be used
to increase the amount of data that is
found (Ambati et al., 2011). Active learn-
ing might be applicable to other crowd-
sourcing tasks as well, such as being used
in crowdsourcing for translating content
or repairing translated content.

• Tapping non-traditional sources – Critical to
traditional approaches of SMT is parallel train-
ing data. Parallel data is difficult to impossible
to come by for a large number of the world’s

10Based on the results of an informal survey, there may be
speakers of a hundred or more languages on Mechanical Turk.
See http://www.junglelightspeed.com/amtlanguage/ for a list
of the languages that may be available on Turk.
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languages. Tapping non-traditional sources of
data can help increase the supply of ever valu-
able training data for a language:

– Mining comparable sources of data – min-
ing comparable data for parallel data has
a long history, including mining compara-
ble sources for named entities (Udupa et
al., 2009; Irvine et al., 2010; Hewavitha-
rana and Vogel, 2008; Hewavitharana and
Vogel, 2011), mining Wikipedia for paral-
lel content, including sentences (Smith et
al., 2010), and many more too numerous
to list. There is always room for improve-
ment and hybridization in this space, as
well as tapping additional sources of data,
such as the volumes of noisy comparable
data on the Web.

– Monolingual – More recent work has fo-
cused on mining monolingual sources of
data, treating MT as a decipherment prob-
lem (Ravi and Knight, 2011), rather than
a source-target mapping problem.

– Dictionary bootstraps and backoffs – De-
spite the absence of context, dictionar-
ies can be useful, especially for resolving
out-of-vocabulary items (OOVs). Many
bilingual dictionaries also contain exam-
ple sentences, which can be harvested and
used in training.

– Field data from linguists – Given that lin-
guists have variously studied a large per-
centage of the world’s languages, tapping
the supply of data that they have accu-
mulated could prove quite fruitful. Some
recent work tapping annotated bitexts (at
this time, for over 1,200 languages) pro-
duced by linguists may prove useful in
the future (Lewis and Xia, 2010), if for
nothing more than to provide information
about linguistic structure (e.g., morpho-
logical complexity or divergences, poten-
tial distortion rates, and structural diver-
gence (a la Fox (2002))). Engaging with
the documentary linguistic community
and providing tools to facilitate the col-
lection of data might produce additional
data, especially data where alignment is
assisted through human input (Monson et

al., 2008).

• Novel ways of countering data sparsity

– Systematizing data cleaning heuristics –
Undoubtedly, the same kinds of filtra-
tion and data cleaning heuristics used for
Kreyòl could prove useful for speeding
up the processing of data for new lan-
guages. Applying Machine Learning tech-
niques to data filtration and data cleaning
could aid and generalize the process, thus
decreasing overall latency from acquisi-
tion to training.

– Strategies to make the source look more
like the target (or vice versa) – A corol-
lary to data sparsity is faulty word align-
ment, where low frequency words fail to
get good alignments because there is not
enough data to reinforce fairly weak hy-
potheses, or where source-target distor-
tion is high. Both problems disfavor what
alignments do exist. If the source and tar-
get are reordered so that one side more
closely matches the other, or one side is
“enriched” to be more like the other, one
can reduce distortion related effects, and
might also counter the large number of
forms in morphologically rich languages
(e.g., (Yeniterzi and Oflazer, 2010; Gen-
zel, 2010), and many others).

• Strategies to systematically deal with complex
morphology – this is one on-going area of re-
search that could still net large returns, since,
even with some relatively high-data languages,
such as Finnish, data is made sparser due to the
multiplication of possible forms. There is too
long a literature to really do justice here, but
some recent work includes discrimitative lexi-
cons (Jeong et al., 2010), sub-word alignment
strategies (Bodrumlu et al., 2009), learning the
morphological variants in a language (Oflazer
and El-kahlout, 2007), using off-the-shelf mor-
phological tools,e.g., Morfessor11, etc.

• Use syntax or linguistic knowledge in the
translation task – By reducing the hypothe-
sis space for possible alignments, syntax-based

11http://www.cis.hut.fi/projects/morpho/
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approaches can do better in lower-data situa-
tions and can handle source-target discontinu-
ities better than straight phrase-based systems
(e.g., (Quirk and Menezes, 2006; Li et al.,
2010)).

7 The MT Crisis Cookbook

Given the relatively narrow domain context of Cri-
sis MT—generally the needed vocabulary and data
should be centered on relief work, medical in-
teractions, and communicating with the affected
populations—it may be possible to approach Crisis
MT as we would MT for any domain (e.g., news,
government, etc.). With enough data relevant to a
particular domain or sub-domain (e.g., earthquake,
tsunami, nuclear disaster, flooding, etc.), it would
be possible to build the relevant translation memo-
ries (TMs) and train highly domain-specific MT en-
gines to produce translations of reasonable quality
and utility. Even with highly inflected languages, a
domain-specific approach may get around many of
the data sparsity issues.

It is also crucial that no data be thrown out. Re-
lief specific content that was relevant to an earlier
crisis can certainly contribute to subsequent crises.
Among these data are difficult to replicate sources
of data, such as SMS messages. This data would
constitute a highly domain specific set of data which
would only grow over time.

7.1 Outline of the Cookbook

The recipe for the MT Crisis Cookbook consists of
two parts:

1. Thecontent that would be most useful in crisis
situations. This consists of relief-centric vocab-
ulary, phrases, sentences, and other material. It
should be in some common “source” language,
likely English (English is a reasonable “pivot”
in and out of many other languages, given the
ubiquity of English-to-X content).

2. The infrastructure to support relief workers,
aid agencies, and the affected population. As
made obvious in Haiti, an SMS messaging
infrastructure integrated into a crowd-sourced
translation infrastructure, proved to be crucial.
For future crises, this infrastructure should be

streamlined and have public MT APIs inte-
grated directly into it (to support first pass MT).

7.2 Cookbook Data

As noted in Section 5, one way to counter the data
sparsity problem is to build domain specific engines,
with a set of data ready-to-go in the event of a crisis.
This data, which would exist in English and possibly
other languages, would be translated into the target
language (if needed), distributed to to aid organiza-
tions (as needed), and used to train MT engines and
other language processing resources. The following
list constitutes a set of possible sources. It is by no
means complete (for instance, some resources spe-
cific to particular crisis types,e.g., floods, nuclear
disasters, etc. are not included), but it does repre-
sent a good central core of resources that should be
part of any Crisis Cookbook12 :

• Where There is No Doctor – This is one of the
most recognized and widely used and useful
references in under-resourced regions around
the world. The publisher of the text, the Hespe-
rian Foundation, has already had the text trans-
lated into 75 languages, and it is available in
PDF as a free download from their website.13

• CMU Medical Domain Phrases, Sentences,
and Glossary – Collected under the jointly
NSF/EU funded NESPOLE! and DIPLOMAT
projects (Frederking et al., 1997), this data con-
sists of common phrases and sentences that
would be useful in a crisis medical scenario,
and would be quite useful for training MT, as
it was for training the Kreyòl engines. Only the
English side of this data would be relevant to
future crises.

• Anonymized Crisis-related SMS Messages –
Relief-related SMS messages may be particu-
larly useful in future crises, since those col-
lected in a crisis scenario are likely to contain
content that transfers readily to similar crises.
A selected sample of the 80,000+ messages re-
sulting from the Haitian crisis could constitute

12Some of the resources listed here are under copyright.
There may need to be some negotiation with the copyright own-
ers to ensure that the texts can be used, and how they can be
used (e.g., to train MT, to be used in TMs, to be distributed in
hardcopy form, etc.).

13http://hesperian.org/
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a reasonable core of SMS messages that could
be added to over time.

• Red Cross Emergency Multilingual Phrase-
book – A small, but highly focused, set of
phrases and questions useful in an emergency
medical context. Available in multiple lan-
guages.

• Emergency and Crisis Communication Vocab-
ulary – An example bilingual set was prepared
by the Canadian Government in both French
and English14 , consisting of a small list of
“official” terms needed in crisis situations, and
their associated descriptions. Although the
terms on the Canadian site are translated and
defined only in English and French and have
a bias to the Canadian government nomecla-
ture, having such a list of terms from multi-
ple government agencies and their definitions
could prove useful for relief vocabulary as well
as for vocabulary needed for official announce-
ments.

• High Frequency Wikipedia Disaster Content
– This would consist of vocabulary that re-
curs across multiple related crisis pages on
wikipedia. The idea is to harvest those terms
that repeat across multiple pages of the same
“sub-domain” (e.g., those that cover events
with floods, earthquakes, nuclear disasters,
etc.), but document disasters in different lo-
cales, where cross-page repeated vocabulary is
favored (substracting out high-frequency vo-
cabulary that occurs elsewhere). This vocab-
ulary could be distilled automatically from a
set of relevant pages, and would likely contain
core vocabulary for specific crisis and disas-
ter contexts. For instance, shared vocabulary
between the Japanese, Indonesian, Pakistani,
and Haitian Earthquake pages might contain a
reasonable set of vocabulary relevant to earth-
quake crises as a whole.

7.3 Cookbook Infrastructure

The Cookbook infrastructure draws directly on what
was found to be useful in the Haitian Crisis. Here are
the infrastructural components we see as crucial:

14http://www.btb.gc.ca/publications/documents/crise-
crisis.pdf

• A crowd sourced microtasking infrastructure
to translate and route messages from the field.
This proved to be essential in Haiti. Hav-
ing such an infrastructure ready-to-go for fu-
ture crises would shave days off implementa-
tion and likely have profound effects on the ra-
pidity of the response.

• Integration of the APIs for the publically avail-
able MT services, such as Microsoft Transla-
tor and Google Translate, into the microtask-
ing and messaging infrastructure, enabling pro-
cessing of SMS messages, Twitter feeds, etc.
In this way, when any of these services deploy
MT for a given crisis language, the switch can
be flipped and first-pass can be MT activated at
a moment’s notice.

• A ready-to-go smart phone app that acts as a
crisis Translation Memory, which can be pop-
ulated with Cookbook content as it becomes
available. In this manner, rather than relying
on the distribution of paper copies of Cook-
book materials, relief workers on the ground
could just sync-up their mobile devices to get
the latest content. This is particularly impor-
tant in crisis locales where “data plan” access
is limited, and phones will thus not necessarily
have online access to cloud based resources on
a regular basis.

8 A Sample Crisis Timeline

The following timeline is only meant to demonstrate
what might be possible with the right infrastructure
in place and the community fully engaged. The
mantra of “every crisis is different” applies, and this
timeline should not be interpreted as a “cookbook”
for a future event. All place and entity names are
intended to add realism; there was no intention to
leave anyone in or out.

Day 0 – A massive earthquake hits the island nation
of Palladi.

Day 1 – The first aid organizations arrive on the is-
land with food and humanitarian aid, although
only the two major cities are directly accessi-
ble. Thousands of Palladians are not reach-
able by aid organizations, and the exact num-
bers that are affected and their locations are not
known.
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The native population of Palladians is nearly
80% monolingual. There is a dire need for Pal-
ladian interpreters, but also of translated Pal-
ladian content. Notified of the need for Pal-
ladian translations, MT community volunteers
begin efforts to collect and license data in Pal-
ladian. The relief community responds by ac-
tivating the crowd sourcing infrastructure used
in other relief scenarios. Researchers and disas-
ter response teams are notified at Microsoft Re-
search and Google Research of the critical need
for crisis content to be translated into Palladian.
Native Palladian speakers are being looked for
by all parties.

Day 2 – As with the Haitian crisis, a text messag-
ing infrastructure is put in place such that text
messages can be received from the population
and routed to a crowd of rapidly assembling
volunteers. Since there is some internet ac-
cess, including via mobile phones, twitter feeds
are monitored. Until messages start arriving, a
small crowd of Palladian speakers begin trans-
lating content into Palladian, focused specifi-
cally on the Cookbook and off-the-shelf SMS
content.

The first text messages start arriving by late af-
ternoon. These text messages are routed di-
rectly to the text messaging and microtasking
infrastructure. The small but growing crowd
of Palladian translators begin translating this
growing tide of messages.

Day 3 – The humanitarian information processing
community, with the support of many organiza-
tions and volunteers, releases the first sections
of the Crisis Cookbook. The Crisis Cookbook
is transmitted directly to aid organizations on
the ground in Palladi, and soft- and hard-copies
are distributed to aid workers as quickly as fea-
sible.

AT&T puts into place several cell towers with
satellite connectivity for areas that do not have
cell coverage. Within hours, text and twitter
messages from the field increase dramatically.

Day 4 – Microsoft and Google release the first ver-
sions of their Palladian-English translators,

with ready access via their public APIs. Since
the text messaging infrastructure already has
both APIs integrated directly into the micro-
tasking and message processing infrastructure,
both engines are activated immediately, and all
messages are translated first by one or the other
engine, and the MT’d content along with the
original message are handed to volunteers.15

Translations are repaired, and routed directly to
aid organizations, and to the Google and Mi-
crosoft teams (for retraining models).

Day 5 – Additional cookbook materials are trans-
lated. Researchers at Johns Hopkins locate a
stash of Palladian data at the Palladian Cen-
tral University. This data is posted at the CMU
site, and is immediately consumed by all par-
ties working on the MT problem.

Day 6 – Researchers at University of Edinburgh de-
velop a novel algorithm for dealing with Palla-
dian vowel harmony, which has been a major
problem with Palladian MT, since data sparsity
is exacerbated by the problem. The Edinburgh
researchers publish the algorithm immediately
to their Web site, and notify both Microsoft and
Google.

Day 10 – Armed with algorithmic improvements
and an increasing volume of data, machine
translated content is now achieving sufficient
quality to warrant passing it directly to aid or-
ganizations. Palladian volunteers now work
principally on the hard to translate cases (those
with high OOVs), and on post-response data
clean-up. The fruits of their labor result in iter-
ative improvements on the various MT engines
that have been deployed.

Day 11+ – The deployment of language technolo-
gies, specifically MT, in the Palladian crisis re-
sults in saving untold thousands of lives. The
lessons learned in the Palladian earthquake will
be applied to future crises, and the translated
content produced by volunteers will be added
to the cookbook for use in the next crisis.

15Determining which engine to send translations to is a prob-
lem that should be resolved in advance. A combination of either
random selection or on-the-fly OOV calculations could be used
to determine routing.
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9 Conclusion

In this paper, we propose that MT is an important
technology in crisis events, something that can and
should be an integral part of the rapid-response in-
frastructure. By integrating MT services directly
into a messaging infrastructure (whatever the type of
messages being serviced,e.g., text messages, Twit-
ter feeds, blog postings, etc.), MT can be used to
provide first pass translations into a majority lan-
guage, which can assist in triaging messages and
routing them to appropriate aid agencies. If done
right, MT can dramatically increase the speed by
which relief can be provided. To ensure that MT
is a standard tool in the arsenal of tools used in cri-
sis events, we propose a preliminaryCrisis Cook-
book, the data contents of which could be translated
into the relevant language(s) by volunteers imme-
diately after a crisis event takes place. The result-
ing data can then be made available to relief groups
on the ground, as well as to providers of MT ser-
vices. We also note that there are significant con-
tributions that our community can make to relief ef-
forts through continued work on our research, espe-
cially that research which makes MT more viable for
under-resourced languages.
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Abstract

A growing body of machine translation re-
search aims to exploit lexical patterns (e.g., n-
grams and phrase pairs) with gaps (Simard et
al., 2005; Chiang, 2005; Xiong et al., 2011).
Typically, these “gappy patterns” are discov-
ered using heuristics based on word align-
ments or local statistics such as mutual infor-
mation. In this paper, we develop generative
models of monolingual and parallel text that
build sentences using gappy patterns of arbi-
trary length and with arbitrarily many gaps.
We exploit Bayesian nonparametrics and col-
lapsed Gibbs sampling to discover salient pat-
terns in a corpus. We evaluate the patterns
qualitatively and also add them as features to
an MT system, reporting promising prelimi-
nary results.

1 Introduction

Beginning with the success of phrase-based transla-
tion models (Koehn et al., 2003), a trend arose of
modeling larger and increasingly complex structural
units in translation. One thread of work has focused
on the use of lexical patterns with gaps. Simard et
al. (2005) proposed using phrase pairs with gaps in a
phrase-based translation model, providing a heuris-
tic method to extract gappy phrase pairs from word-
aligned parallel corpora. The widely-used hierarchi-
cal phrase-based translation framework was intro-
duced by Chiang (2005) and also relies on a simple
heuristic for phrase pair extraction. On the mono-
lingual side, researchers have taken inspiration from
trigger-based language modeling for speech recog-
nition (Rosenfeld, 1996). Recently Xiong et al.
(2011) used monolingual trigger pairs to improve
handling of long-distance dependencies in machine
translation output.

All of this previous work used heuristics or local
statistical tests to extract patterns from corpora. In
this paper, we present probabilistic models that gen-
erate text using gappy patterns of arbitrary length
and with arbitrarily-many gaps. We exploit non-
parametric priors and use Bayesian inference to dis-
cover the most salient gappy patterns in monolin-
gual and parallel text. We first inspect these pat-
terns manually and discuss the categories of phe-
nomena that they capture. We also add them as
features in a discriminatively-trained phrase-based
MT system, using standard techniques to train their
weights (Arun and Koehn, 2007; Watanabe et al.,
2007) and incorporate them during decoding (Chi-
ang, 2007). We present experiments for Spanish-
English and Chinese-English translation, reporting
encouraging preliminary results.

2 Related Work

There is a rich history of trigger-based language
modeling in the speech recognition community, typ-
ically involving the use of statistical tests to discover
useful trigger-word pairs (Rosenfeld, 1996; Jelinek,
1997). Xiong et al. (2011) used Rosenfeld’s mutual
information procedure to discover trigger pairs and
added a single feature to a phrase-based MT system
that scores new words based on all potential trig-
gers from previous parts of the derivation. We are
not aware of prior work that uses generative model-
ing and Bayesian nonparametrics to discover these
same types of patterns automatically; doing so al-
lows us to discover larger patterns with more words
and gaps if they are warranted by the data.

In addition to the gappy phrase-based (Simard et
al., 2005) and hierarchical phrase-based (Chiang,
2005) models mentioned earlier, other researchers
have explored the use of bilingual gappy structures
for machine translation. Crego and Yvon (2009) and
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π(  ) = .
π(  ) = baltic states

it provides either too little or too much .
it 's neither particularly complicated nor novel .

nato must either say " yes " or " no " to the baltic states .
good scientific ideas formulated in bad english either die or get repackaged .

nato must either say " yes " or " no " to the baltic states .

π(  ) = either __ or

ππππππππππππ(  ) = either __ or

π(  ) = to the

π(  ) = " __ " __ " __ "π(  ) = must
π(  ) = yes __ no

π(  ) = sayπ(  ) = nato

Figure 1: A sentence from the news commentary cor-
pus, along with color assignments for the words and the
π function for each color.

Galley and Manning (2010) proposed ways of incor-
porating phrase pairs with gaps into standard left-to-
right decoding algorithms familiar to phrase-based
and N -gram-based MT; both used heuristics to ex-
tract phrase pairs. Bansal et al. (2011) presented a
model and training procedure for word alignment
that uses phrase pairs with gaps. They use a semi-
Markov model with an enlarged dynamic program-
ming state in order to represent alignment between
gappy phrases. Their model permits up to one gap
per phrase while our models permit an arbitrary
number.

3 Monolingual Pattern Models

We first present a model that generates a sentence as
a set of lexical items that we will refer to as gappy
patterns, or simply patterns. A pattern is defined as
a sequence containing elements of two types: words
and gaps. All patterns must obey the regular expres-
sion w+( w+)*, where w is a word and is a gap.
That is, patterns must begin and end with words and
may not contain consecutive gaps.

We assume that we have an n-word sentence
w1:n.1 We represent patterns in a sentence by as-
sociating each word with a color. To do so, we in-
troduce a vector of color assignment variables c1:n,
with one for each word. We represent a color Cj as
a set in terms of the ci variables: Cj = {i : ci = j}.
Each color corresponds to a pattern that is obtained
by concatenating its words from left to right in the
sentence, inserting gaps when necessary. We denote
the pattern for a color Cj by π(Cj); Figure 1 shows
examples of the correspondence between colors and
patterns.

The generative story for a single sentence follows:

1We use boldface lowercase letters to denote vectors (e.g.,
f ), denote entry i as fi, and denote the range from i to j as
f i:j .

1. Sample the number of words: n ∼ Poisson(β)

2. Sample the number of unique colors in the sen-
tence given n: m ∼ Uniform(1, n)

3. For each word index i = 1 . . . n, sample the color
of word i: ci ∼ Uniform(1,m). If any of the m
colors has no words, repeat this step.

4. For each color j = 1 . . .m, sample from a
multinomial distribution over patterns: wCj ∼
Mult(µ). If the words wCj are not consistent
with the color assignments, i.e., wrong number of
words or gaps, gaps not in the correct locations,
repeat this step.

Thus, the probability of generating number of words
n, words w1:n, color assignments c1:n, and number
of colors m is

p(w1:n, c1:n,m | β, µ)

=
1

Z

(
βn

n!
e−β

)(
1

n

)(
1

m

)n m∏
j=1

pµ(π(Cj))

(1)

where Z is a normalization constant required by the
potential repetition of sampling in the final two steps
of the generative story. Without Z, the model would
be deficient as we would waste probability mass on
internally inconsistent color assignments.

The core of the model is a single multinomial
distribution pµ(·) over patterns. We use a Dirich-
let process (DP) prior for this multinomial so that
we can model an unbounded set of patterns: µ ∼
DP(α, P0), where α is the concentration parameter
and P0 is the base distribution. The base distribution
includes a Poisson(ν) over the number of words in
the pattern, a uniform distribution (over word types
in the vocabulary) for each word, a uniform distri-
bution over the number of gaps given the number of
words, and a uniform distribution over the arrange-
ment of gaps given the numbers of gaps and words.2

Inference We use collapsed Gibbs sampling
for inference. Our goal is to obtain samples
from the posterior distribution p({c(i),m(i)}Si=1 |
{w(i)}Si=1, ν, α), where S is the total number of sen-
tences in the corpus and µ is marginalized out.3

2The number of ways of arranging y gaps among x words is
“(x− 1) choose y”.

3Since we assume the words are given, β is irrelevant.
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During each iteration of Gibbs sampling, we pro-
ceed through the corpus and sample a new value for
each ci variable conditioned on the values of all oth-
ers in the corpus. Them variables are determined by
the ci variables and therefore do not need to be sam-
pled directly. When sampling ci, we first remove
ci from the corpus (and its color if the color only
contained i). Where the remaining colors in the sen-
tence are numbered from 1 to m, there are m + 1
possibilities for ci: m for each of the existing colors
and one for choosing a new color.

Since choosing a new color corresponds to creat-
ing a new instance of the pattern π({i}), the proba-
bility of choosing a new color m+ 1 is proportional
to

#π({i}) + αP0(π({i}))
# + α

(2)

where #π is the count of pattern π in the rest of the
sentence and all other sentences in the corpus, and
# is the total count of all patterns in this same set.
The probability of choosing the existing color j (for
1 ≤ j ≤ m) is proportional to

#π(Cj∪{i}) + αP0(π(Cj ∪ {i}))
#π(Cj) + αP0(π(Cj))

(3)

where the denominator encodes the fact that the
move will cause an instance of the pattern for the
color Cj to be removed from the corpus as the new
pattern for Cj ∪ {i} is added.

We note that, even though these two types of
moves will result in different numbers of colors (m)
in the sentence, we do not have to include a term for
this in the sampler because we use a uniform dis-
tribution for m and therefore all (valid) numbers of
colors have the same probability. The normalization
constant Z in Equation 1 does not affect inference
because our sampler is designed to only consider
valid (i.e., internally consistent) settings for the c(i)

and m(i) variables.
This model makes few assumptions, using uni-

form distributions whenever possible. This simpli-
fies inference and causes the resulting lexicon to be
influenced primarily by the “rich-get-richer” effect
of the DP prior. Despite its simplicity, we will show
later that this model discovers patterns that capture
a variety of linguistic phenomena.

π(  ) = .
π(  ) = baltic states

it provides either too little or too much .
it 's neither particularly complicated nor novel .

nato must either say " yes " or " no " to the baltic states .
good scientific ideas formulated in bad english either die or get repackaged .

nato must either say " yes " or " no " to the baltic states .

la otan tiene que decir " sí " o " no " a los países bálticos .

π(  ) = either      or

ππππππππππππ(  ) = either __ or

π(  ) = to the

π(  ) =
"      "

π(  ) = must
π(  ) = yes __ no

π(  ) = sayπ(  ) = nato

π(  ) = nato
otan

π(  ) =
to the

13-12 15-13 16-15

o " " a

Figure 2: A Spanish-English sentence pair with the in-
tersection of automatic word alignments in each direc-
tion. Some source words accept the colors of target words
aligned to them while others (light gray) do not. Bilingual
patterns for a few colors are shown.

4 Bilingual Pattern Models

We now present a generative model for a sentence
pair that will enable us to discover bilingual pat-
terns. In this section we present one example of ex-
tending the previous model to be bilingual, but we
note that many other extensions are possible; indeed,
flexibility is one of the key advantages of working
within the framework of probabilistic modeling.

We assume that we are given sentence pairs and
one-to-one word alignments. That is, in addition to
an n-word target sentencew1:n, we assume we have
an n′-word source sentence w′1:n′ and word align-
ments a1:n′ where ai = j iff w′i is aligned to wj and
ai = 0 if w′i is aligned to null.

To model bilingual patterns, we distinguish
source colors from target colors. A target-language
word can only be colored with a target color, but
a source word can be colored with either a source
color or with the target color of the target word it
is aligned to (if any). We have m target colors as
before and now add m′ source colors. We intro-
duce additional random variables in the form of a
binary vector g of length n′ that indicates, for each
source word, whether or not it accepts the color of
its aligned target word. We introduce an additional
parameter γ for the probability that a source word
will accept the color of its aligned word. We fix its
value to 0.5 and do not learn it during inference. Fig-
ure 2 shows an example Spanish-English sentence
pair with automatic word alignments and color as-
signments. The bilingual patterns for a few target
colors are shown.

The generative story for a sentence pair follows:

1. Sample the numbers of words in the source and
target sentences: n′, n ∼ Poisson(β)
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2. Sample the numbers of source and target col-
ors given n′, n: m′ ∼ Uniform(1, n′),m ∼
Uniform(1, n)

3. Sample the alignment vector from any distribu-
tion that ensures links are 1-to-1:4 a1:n′ ∼ p(a)

4. For each target word index i = 1 . . . n, sample
the color of target word i from a uniform distribu-
tion over all target colors: ci ∼ Uniform(1,m).
While any of the m colors has no words, repeat
this step.

5. For each source word index i = 1 . . . n′:

1. Decide whether to use a source color or to use
the target color of the aligned target word: gi ∼
pγ(gi | ai)

2. If gi = 1, set c′i = cai ; otherwise, sample a
source color: c′i ∼ Uniform(1,m′)

6. If any source color has no words, repeat Step 5.

7. For each source color j = 1 . . .m′:

1. Sample from a multinomial over source pat-
terns: wC′

j
∼ Mult(µ′). While the words wC′

j

are not consistent with the color assignments,
repeat this step.

8. For each target color j = 1 . . .m:

1. Sample from a multinomial over bilingual pat-
terns: wCj ∼ Mult(µ). While the words wCj

are not consistent with the color assignments,
repeat this step.

The distribution pγ(gi | ai) is defined below:

pγ(gi = 1 | ai 6= −1) = γ

pγ(gi = 1 | ai = −1) = 0

where γ determines how frequently source tokens
will be added to target patterns.

The probability of generating target words w1:n,
source words w′1:n′ , alignments a1:n′ , target color
assignments c1:n, source color assignments c′1:n′ ,
color propagation variables g1:n′ , number of target

4Since we assume alignments are provided during inference,
it does not matter what distribution is used, so long as only 1-
to-1 links are permitted.

colors m, and number of source colors m′ is

1

Z
p(n)p(n′)p(m | n)p(m′ | n′)p(a1:n′)

×

(
n∏
i=1

p(ci | m)

)

×

(
n′∏
i=1

pγ(gi | ai)p(c′i | m′)I[gi==0]

)

×

 m′∏
j=1

p′µ(π(C ′j))

 m∏
j=1

pµ(π(Cj))


where Z again serves as a normalization constant to
prevent the model from leaking probability mass on
internally inconsistent configurations.

There are now two multinomial distributions over
patterns with parameter vectors µ and µ′. They both
use DP priors with identical concentration param-
eters α and differing base distributions P0 and P ′0.
The base distribution for source patterns, P ′0, takes
the same form as the base distribution for the model
described in §3.

For target patterns with aligned source words, P0

generates the target part of the pattern like the base
distribution in §3 and then generates the number
of aligned source words to each target word with
a Poisson(1) distribution; the number of aligned
source words can only be 0 or 1 when all word links
are 1-to-1. If it is 1, the base distribution generates
the aligned source word by sampling uniformly from
among all source types.

While there are connections between this model
and work on performing translation using phrase
pairs with gaps, the patterns we discover are not
guaranteed to be bilingual translation units. Rather,
they typically contain additional target-side words
that have no explicit correlate on the source side.
They can be used to assist an existing translation
model by helping to choose the best phrase trans-
lation for each source phrase. To define a genera-
tive model for phrase pairs with gaps, changes would
have to be made to the bilingual model we presented.

Inference As before, we use collapsed Gibbs sam-
pling for inference. Our goal is to obtain sam-
ples from the posterior p({〈c, c′, g,m,m′〉(i)}Si=1 |
{〈w,w′,a〉(i)}Si=1).
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We go through each sentence pair and sample new
color assignment variables for each word. For an
aligned word pair (w′i, wj), we sample a new value
for the tuple (gi, c

′
i, cj). The possible values for

cj include all target colors, including a new target
color. The possible values for gi are 0, in which case
c′i can be any of the source colors, including a new
source color, and 1, for which c′i must be cj . For an
unaligned target word wj , cj can be any target color,
including a new one, and for an unaligned source
word w′i, c

′
i can be any source color, including a new

one. The full equations for sampling can be easily
derived using the equations from §3.

5 Evaluation

We conducted evaluation to determine (1) what
types of phenomena are captured by the most prob-
able patterns discovered by our models, and (2)
whether including the patterns as features can im-
prove translation quality.

5.1 Qualitative Evaluation

5.1.1 Monolingual Model
Since inference is computationally expensive,

we used the 126K-sentence English news com-
mentary corpus provided for the WMT shared
tasks (Callison-Burch et al., 2010). We ran Gibbs
sampling for 600 iterations through the data, dis-
carding the first 300 samples for burn-in and com-
puting statistics of the patterns using the remaining
300 samples. Each iteration took approximately 3
minutes on a single 2.2GHz CPU. When looking pri-
marily at the most frequent patterns, we found that
this list did not vary much when only using half of
the data instead. We set ν = 3 and α = 100; we
found these hyperparameters to have only minor ef-
fects on the results.

Since many frequent patterns include the period
(.), we found it useful to constrain the model to treat
this token differently: we modify the base distribu-
tion so that it assigns zero probability to patterns
that contain a period along with other words and we
force each occurrence of a period to be alone in its
own pattern during initialization. We do not need to
change the inference procedure at all; with the mod-
ified base distribution and with no patterns including
a period with other words, the probability of creat-

" " as as " " " "
– – the of in why ?
( ) the is , the of
the of not only but from to
, , , it is that the between and
the ( ) of " " such as ,
both and not , but either or
the of and in , in but is
more than the of , " " the
- - what ? has been
, " " between and in , ,
the " " the of ’s an of

Table 1: Top-ranked gappy patterns from samples accord-
ing to p(π); patterns without gaps are omitted. The spe-
cial string “ ” represents a gap that can be filled by any
nonempty sequence of words.

ing a new illegal pattern during inference is always
zero (Eq. 3).

We also perform inference on a transformed ver-
sion of the corpus in which every word is replaced
with its hard word class obtained from Brown clus-
tering (Brown et al., 1992). One property of Brown
clusters is that each function word effectively re-
ceives its own class, as each ends up in a cluster in
which it occupies ≥95% of the token counts of all
types in the cluster. We call clusters that satisfy this
property singleton clusters.

To obtain Brown clusters for the source and tar-
get languages, we used code from Liang (2005).5

We used the data from the news commentary cor-
pus along with the first 500K sentences of the addi-
tional monolingual newswire data also provided for
the WMT shared tasks. We used 300 clusters, ig-
noring words that appeared only once in this corpus.
We did not use the hierarchical information from the
clusters but merely converted each cluster name into
a unique integer, using one additional integer for un-
known words.

We used the same values for ν and α as above
but ran Gibbs sampling for 1,300 iterations, again
using the last 300 for collecting statistics on pat-
terns. Judging by the number of color assignments
changed on each iteration, the sampler takes longer
to converge when run on word clusters than on
words. As above, we constrain the singleton word
cluster corresponding to the period to be alone dur-
ing both initialization and inference.

5http://www.cs.berkeley.edu/˜pliang/
software
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academy sciences regulators supervisors
beijing shanghai sine non
booms busts stalin mao
council advisers treasury secretary geithner
dominicans haitian sooner later
flemish walloons first foremost
gref program played role
heat droughts down road
humanitarian displaced freedom expression
karnofsky hassenfeld at disposal
kazakhstan kyrgyzstan take granted
portugal greece - -

Table 2: Gappy patterns with highest conditional proba-
bility p(π|w(π)).

– – whether or france germany
( ) around world he his
- - has been allow to
both and how ? for first time
not only but the ( ) china india
" " on basis what do
more than less than we our
either or on other hand over past
why ? at level prevent from
neither nor it is that in way
what ? not , but one another
rule law play role political economic

Table 3: Top-ranked gappy patterns according to
p(π)p(π|w(π)).

Pattern Ranking Statistics Several choices exist
for ranking patterns. The simplest is to take the pat-
tern count from the posterior samples, averaged over
all sampling iterations after burn-in. We refer to this
criterion as the marginal probability:

p(π) =
#π

#

where #π is the average count of the pattern across
the posterior samples and # is the count of all pat-
terns. The top-ranked gappy patterns under this cri-
terion are shown in Table 1. While many of these
patterns match our intuitions, there are also sev-
eral that are highly-ranked simply because their con-
stituent words are frequent.

Alternatively, we can rank patterns by the con-
ditional probability of the pattern given the words
that comprise it:

p(π|w(π)) =
#π

#w(π)

where w(π) returns the sequence of words in the
pattern π and #w(π) is the number of occurrences

of this sequence of words in the corpus that are com-
patible with pattern π. The ranking of patterns under
this criterion is shown in Table 2. This method fa-
vors precision but also causes very rare patterns to
be highly ranked.

To address this, we also consider a product-of-
experts model by simply multiplying together the
two probabilities, resulting in the ranking shown in
Table 3. This ranking is similar to that in Table 1
but penalizes patterns that are only ranked highly be-
cause they consist of common words. Table 4 shows
a manual grouping of these highly-ranked patterns
into several categories. We show both lexical and
Brown cluster patterns.6

It is common in both types of patterns to find
long-distance dependencies involving punctuation
near the top of the ranking. Among agreement pat-
terns, the lexical model finds relationships between
pronouns and their associated possessive adjectives
while the cluster model finds more general patterns
involving classes of nouns. Cluster patterns are more
likely to capture topicality within a sentence, while
the finer granularity of the lexical model is required
to identify constructions like those shown (verbs
triggering particular prepositions).

There are also many probable patterns without
gaps, shown at the bottom of Table 4. From these
patterns we can see that our models can also be used
to find collocations, but we note that these are dis-
covered in the context of the gappy patterns. That
is, due to the use of latent variables in our models
(the color assignments), there is a natural trading-off
effect whereby the gappy patterns encourage partic-
ular non-gappy patterns to be used, and vice versa.

5.1.2 Bilingual Model
We use the news commentary corpus for each lan-

guage and take the intersection of GIZA++ (Och
and Ney, 2003) word alignments in each direction,
thereby ensuring that they are 1-to-1 alignments. We
ran Gibbs sampling for 300 iterations, averaging pat-
tern counts from the last 200. We set α = 100,
λ = 3, and γ = 0.5. We ran the model in 3 con-
ditions: source words, target words; source clusters,
target clusters; and source clusters, target words. We

6We filter Brown cluster patterns in which every cluster is
a singleton, since these patterns are typically already accounted
for in the lexical patterns.
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Rank Gappy Lexical Patterns Rank Gappy Brown Cluster Patterns

Pu
nc

tu
at

io
n 1 -- -- 2 {what, why, whom, whatever} {?, !}

2 ( ) 6 {--, -, –} {--, -, –}
6 " " 28 {according, compared, subscribe, thanks, referring} to ,
9 why ? 178 {–, -, –} {even, especially, particularly, mostly, mainly} {–, -, –}
63 according to , 239 {obama, bush, clinton, mccain, brown} " "

A
gr

ee
m

en
t

26 he his 8 {people, things, americans, journalists, europeans} their
31 we our 12 we {our, my}
46 his his 21 {children, women, others, men, students} their
86 china its 23 {china, europe, america, russia, iran} ’s its
90 his he 43 {obama, bush, clinton, mccain, brown} his
99 you your 46 {our, my} {our, my}
136 leaders their 149 {people, things, americans, journalists, europeans} they
140 we ourselves 172 {president, bill, sen., king, senator} {obama, bush, clinton, mccain, brown} his
165 these are 180 {all, both, either} {countries, companies, banks, groups, issues}

C
on

ne
ct

iv
es

4 both and 5 {more, less} {more, less}
5 not only but 9 if , {will, would, could, should, might}
8 either or 19 {deal, plan, vote, decision, talks} {against, between, involving} and
10 neither nor 40 a {against, between, involving} and
13 whether or 45 {better, different, further, higher, lower} than
19 less than 50 {much, far, slightly, significantly, substantially} than
23 not , but 56 {yet, instead, perhaps, thus, neither} but
54 if then 68 not {only, necessarily} {also, hardly}
109 between and 98 as {much, far, slightly, significantly, substantially} as
192 relationship between and 131 is {more, less} than

To
pi

ca
lit

y

25 france germany 1 〈UNK〉 〈UNK〉
29 china india 15 {china, europe, . . .} ’s {system, crisis, program, recession, situation}
36 political economic 30 {health, security, defense, safety, intelligence} {health, . . .}
43 rich poor 47 {china, europe, . . .} {china, europe, . . .} {china, europe, . . .}
50 oil gas 62 {power, growth, interest, development} {10, 1, 20, 30, 2} {percent, %, p.m., a.m.}
62 billions dollars 72 in {iraq, washington, london, 2008, 2009} {iraq, washington, london, 2008, 2009}
96 economic social 73 the {end, cost, head, rules, average} of {prices, markets, services, problems, costs}
106 the us europe 113 {china, europe, . . .} ’s {economy, election, elections, population, investigation}
181 public private 119 {prices, markets, . . .} {oil, energy, tax, food, investment} {oil, energy, . . .}

Pr
ep

os
iti

on
s

14 around world 14 for {first, second, third, final, whole} {time, period, term, class, avenue}
18 on basis 17 in {last, next, 20th} {year, week, month, season, summer}
38 at time 51 at {end, cost, head, rules, average} of
42 in region 71 at {group, rate, leader, level, manager}
80 in manner 112 for {times, points, games, goals, reasons}
85 at expense 126 {over, around, across, behind, above} {country, company, region, nation, virus}
112 during period 190 {one, none} of {best, top, largest, main, biggest}

C
on

st
ru

ct
io

ns 33 prevent from
84 enable to
114 provide for
123 impose on
177 turn into

Non-Gappy Lexical Patterns Non-Gappy Brown Cluster Patterns
as well their own as {well, soon, quickly, seriously, slowly} as {rather, please} than
the united states prime minister the united {states, nations, airlines} {don, didn, doesn, isn, wasn} ’t
have been climate change {president, bill, sen., king, senator} {mr., mr, john, david, michael} {obama, bush, clinton, . . .}
rather than the bush administration {order, plans, needs, efforts, failed} to {make, take, give, keep, provide}
based on developing countries {will, would, could, should, might} not be {can, ’ll} be

Table 4: Gappy patterns manually divided into categories of long-distance dependencies. Patterns were ranked ac-
cording to p(π)p(π|w(π)) and manually selected from the top 300 to exemplify categories. Lower pane shows top
ranked non-gappy patterns. Clusters are shown as enough words to cover 95% of the token counts of the cluster, up to
a maximum of 5.

again ensured that the period and its word class re-
mained isolated in their own patterns for each con-
dition. We note that no source-side word order in-
formation is contained within these bilingual pat-
terns; aligned source words can be in any order in

the source sentence and the pattern will still match.
The most probable patterns included many mono-
lingual source-only and target-only patterns that are
similar to those shown in Table 4. There were also
many phrase pairs with gaps like those that are com-
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monly extracted by heuristics (Galley and Manning,
2010). Additionally we noted examples of source
words triggering more target-side information than
merely one word. There were several examples of
patterns that encouraged inclusion of the subject in
English when translating from Spanish, as Spanish
often drops the subject when it is clear from context,
e.g., “we are(estamos)”. Also, one probable pattern
for German-English was “the of the(des)” (des is
aligned to the final the). The German determiner
des is in the genitive case, so this pattern helps to
encourage its object to also be in the genitive case
when translated.

5.2 Quantitative Evaluation

We consider the Spanish-to-English (ES→EN)
translation task from the ACL-2010 Workshop on
Statistical Machine Translation (Callison-Burch et
al., 2010). We trained a Moses system (Koehn et al.,
2007) following the baseline training instructions for
the shared task.7 In particular, we performed word
alignment in each direction using GIZA++ (Och and
Ney, 2003), used the “grow-diag-final-and” heuristic
for symmetrization, and extracted phrase pairs up to
a maximum length of seven. After filtering sentence
pairs with one sentence longer than 50 words, we
ended up with 1.45M sentence pairs of Europarl data
and 91K sentence pairs of news commentary data.
Language models (N = 5) were estimated using the
SRI language modeling toolkit (Stolcke, 2002) with
modified Kneser-Ney smoothing (Chen and Good-
man, 1998). Language models were trained on the
target side of the parallel corpus as well as the first 5
million additional sentences from the extra English
monolingual newswire data provided for the shared
tasks. We used news-test2008 for tuning and
news-test2009 for testing.

We also consider Chinese-English (ZH→EN) and
followed a similar training procedure as above. We
used 303K sentence pairs from the FBIS corpus
(LDC2003E14) and segmented the Chinese data
using the Stanford Chinese segmenter in “CTB”
mode (Chang et al., 2008), giving us 7.9M Chi-
nese words and 9.4M English words. A trigram lan-
guage model was estimated using modified Kneser-
Ney smoothing from the English side of the parallel

7www.statmt.org/wmt10/baseline.html.

corpus concatenated with 200M words of randomly-
selected sentences from the Gigaword v4 corpus (ex-
cluding the NY Times and LA Times). We used
NIST MT03 for tuning and NIST MT05 for test-
ing. For evaluation, we used case-insensitive IBM
BLEU (Papineni et al., 2001).

5.2.1 Training and Decoding
Unlike n-gram language models, our models have

latent structure (the color assignments), making it
difficult to compute the probability of a translation
during decoding. We leave this problem for future
work and instead simply add a feature for each of
the most probable patterns discovered by our mod-
els. Each feature counts the number of occurrences
of its pattern in the translation.

We wish to add thousands of features to our
model, but the standard training algorithm – mini-
mum error rate training (MERT; Och, 2003) – can-
not handle large numbers of features. So, we lever-
age recent work on feature-rich training for MT us-
ing online discriminative learning algorithms. Our
training procedure is shown as Algorithm 1. We
find it convenient to notationally distinguish feature
weights for the standard Moses features (λ) from
weights for our pattern features (θ). We use h(e)
to denote the feature vector for translation e. The
function Bi(t) returns the sentence BLEU score for
translation t given reference ei (i.e., treating the sen-
tence pair as a corpus).8

MERT is run to convergence on the tuning set to
obtain weights for the standard Moses features (line
1). Phrase lattices (Ueffing et al., 2002) are gen-
erated for all source sentences in the tuning set us-
ing the trained weights λM (line 2). The lattices
are used within a modified version of the margin-
infused relaxed algorithm (MIRA; Crammer et al.,
2006) for structured max-margin learning (lines 5-
15). A k-best list is extracted from the current lattice
(line 7), then the translations on the k-best list with
the highest and lowest sentence-level BLEU scores
are found (lines 8 and 9). The step size is then com-
puted using the standard MIRA formula (lines 10-
11) and the update is made (line 12). The returned
weights are averaged over all updates.

This training procedure is inspired by several
8When computing sentence BLEU, we smooth by replacing

precisions of 0.0 with 0.01.
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Input: input sentences F = {fi}Ni=1, references
E = {ei}Ni=1, initial weights λ0, size of
k-best list k, MIRA max step size C, num.
iterations T

Output: learned weights: λM , 〈λ∗,θ∗〉
λM ← MERT (F , E, λ0);1

{`i}Ni=1 ← generateLattices (F , λM );2
λ← λM ; θ ← 0;3

〈λ̄, θ̄〉 ← 〈λ,θ〉;4
for iter ← 1 to T do5

for i← 1 to N do6
{tj}kj=1 ← Decode(`i, 〈λ,θ〉);7
e+ ← argmax1≤j≤k Bi(tj);8
e− ← argmin1≤j≤k Bi(tj);9

∆← max(0, 〈λ,θ〉> [h(e−)− h(e+)]10
+Bi(e

+)−Bi(e
−));

η ← min(C, ∆

‖h(e+)−h(e−)‖2
);11

θ ← θ + η [h(e+)− h(e−)];12

〈λ̄, θ̄〉 ← 〈λ̄, θ̄〉+ 〈λ,θ〉;13
end14

end15

〈λ∗,θ∗〉 ← 〈λ̄, θ̄〉 × 1
T×N+1 ;16

return λM , 〈λ∗,θ∗〉;17

Algorithm 1: Train

others that have been shown to be effective for
MT (Liang et al., 2006; Arun and Koehn, 2007;
Watanabe et al., 2007; Chiang et al., 2008). Though
not shown in the algorithm, in practice we store the
BLEU-best translation on each k-best list from all
previous iterations and use it as e+ if it has a higher
BLEU score than any on the k-best list on the cur-
rent iteration.

At decoding time, we follow a procedure similar
to training: we generate lattices for each source sen-
tence using Moses with its standard set of features
and using weights λM . We rescore the lattices us-
ing λ∗ and use cube pruning (Chiang, 2007; Huang
and Chiang, 2007) to incorporate the gappy pattern
features with weights θ∗. Cube pruning is necessary
because the pattern features may match anywhere in
the translation; thus they are non-local in the phrase
lattice and require approximate inference.

5.3 Training Algorithm Comparison

Before adding pattern features, we evaluate our
training algorithm by comparing it to MERT us-
ing the same standard Moses features. As the ini-

ES→EN ZH→EN
MERT 25.64 32.47
Alg. 1 25.85 32.33

Table 5: Comparing MERT to our training procedure. All
numbers are %BLEU.

tial weights λ0, we used the default Moses feature
weights. We used k = 100, C = 0.0001, and
T = 15. For the n-best list size used during cube
pruning during both training and decoding, we used
n = 100. There are several Moses parameters that
affect the scope of the search during decoding and
therefore the size of the phrase lattices. We used
default values for these except for the stack size pa-
rameter, for which we used 100. The resulting lat-
tices encode up to 1050 derivations for ES→EN and
1065 derivations for ZH→EN.

Table 5 shows test set %BLEU for each language
pair and training algorithm. Our procedure per-
forms comparably to MERT. Therefore we use it as
our baseline for subsequent experiments since it can
handle a large number of feature weights; this al-
lows us to observe the contribution of the additional
gappy pattern features more clearly.

5.4 Feature Preparation

We chose monolingual and bilingual pattern features
using the posterior samples obtained via the infer-
ence procedures described above. We ranked pat-
terns using the product-of-experts formula, removed
patterns consisting of only a single token, and added
the top 10K patterns from the lexical model and the
top 15K patterns from the Brown cluster model. For
simplicity of implementation, we skipped over pat-
terns with 3 or more gaps and patterns with 2 gaps
and more than 3 total words; this procedure skipped
fewer than 1% of the top patterns. For results with
bilingual pattern features, we added 15K pattern fea-
tures (5K word-word, 5K cluster-cluster, and 5K
cluster-word).

5.5 Results

The first set of results is shown in Table 6. The
first row is the same as in Table 5, the second
row adds monolingual pattern features, the third
adds bilingual pattern features, and the final row in-
cludes both sets. While gains are modest overall,
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ES→EN ZH→EN
Baseline 25.85 32.33
MONOPATS 25.84 32.81
BIPATS 25.92 32.68
MONOPATS + BIPATS 25.59 32.80

Table 6: Adding gappy pattern features. All numbers are
%BLEU.

Ranking %BLEU
Baseline N/A 32.33
MONOPATS p(π) 32.65
MONOPATS p(π|w(π)) 32.53
MONOPATS p(π)p(π|w(π)) 32.81
BIPATS p(π) 32.68
MONOPATS + BIPATS p(π) 32.78
MONOPATS + BIPATS p(π)p(π|w(π)) 32.80

Table 7: Comparing ways of ranking patterns from pos-
terior samples. Scores are on MT05 for ZH→EN transla-
tion.

the pattern features show an encouraging improve-
ment of 0.48 BLEU for ZH→EN. This is similar
to the improvement reported by Xiong et al. (2011)
(+0.4 BLEU when adding their trigger pair language
model). While bilingual patterns give an improve-
ment of 0.35 BLEU, using both monolingual and
bilingual features in the same model does not pro-
vide additional improvement over monolingual fea-
tures alone.

For ES→EN, the pattern features have only small
effects on BLEU; we suspect that the decreased
BLEU score for the full feature set is due to over-
fitting. It is unclear why the results differ for the two
language pairs. One possibility is the use of only
a single reference translation when tuning and test-
ing with ES→EN while four references were used
for ZH→EN. Another possibility is that our pattern
features are correcting some of the mid- to long-
range reorderings that are known to be problem-
atic for phrase-based modeling of ZH→EN transla-
tion. ES→EN exhibits less long-range reordering
and therefore may not benefit as much from our pat-
terns.

Table 7 shows additional ZH→EN results when
varying the method of ranking patterns. When us-
ing both sets of features, the “Ranking” column
contains the criterion for ranking monolingual pat-
terns; bilingual patterns are always ranked using

said that the however , the agence france presse
’s , ’s us iraq reported the
of million , likely said that and
added " - - rate percent
the {media, school, university, election, bank}

{made, established, given, taken, reached}
{said, stressed, stated, indicated, noted} that in
{meeting, report, conference, reports} {1, july, june, march, april}
{news, press, spokesman, reporter} {meeting, . . .} {1, july, . . .}
{news, press, spokesman, reporter} {1, july, june, march, april}
the {enterprises, companies, students, customers, others}

{enterprises, companies, students, customers, others}
{japan, russia, europe, 2003, 2004} {us, japanese, russian, u.s.}

Table 8: Selected features from the 15 most highly-
weighted lexical and cluster pattern features in the best
ZH→EN model.

p(π). The results show that ranking monolingual
patterns using the product-of-experts method results
in the highest BLEU scores, validating our intu-
itions from observing Tables 1-3. Table 8 shows the
most highly-weighted pattern features for the best
ZH→EN model.

6 Conclusion

We have presented generative models for monolin-
gual and bilingual gappy patterns. A qualitative
analysis shows that the models discover patterns
that match our intuitions in capturing linguistic phe-
nomena. Our experimental results show promise
for the ability of these patterns to improve trans-
lation for certain language pairs. A key advan-
tage of generative models is the ability to rapidly
develop and experiment with variations, especially
when using Gibbs sampling for inference. In order
to encourage modifications and extensions to these
models we have made our source code available at
www.ark.cs.cmu.edu/MT.
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Abstract

We provide a general algorithmic schema
for translation rule extraction and show that
several popular extraction methods (includ-
ing phrase pair extraction, hierarchical phrase
pair extraction, and GHKM extraction) can be
viewed as specific instances of this schema.
This work is primarily intended as a survey of
the dominant extraction paradigms, in which
we make explicit the close relationship be-
tween these approaches, and establish a lan-
guage for future hybridizations. This facili-
tates a generic and extensible implementation
of alignment-based extraction methods.

1 Introduction

The tradition of extracting translation rules from
aligned sentence pairs dates back more than a
decade. A prominent early example is phrase-based
extraction (Och et al., 1999).

Around the middle of the last decade, two ex-
traction paradigms were proposed for syntax-based
machine translation: the Hiero paradigm of (Chi-
ang, 2005) and the GHKM paradigm of (Galley et
al., 2004). From these papers followed two largely
independent lines of research, respectively dubbed
formally syntax-based machine translation (Chiang,
2007; Zollmann and Venugopal, 2006; Venugopal et
al., 2007; Lopez, 2007; Marton and Resnik, 2008;
Li et al., 2009; de Gispert et al., 2010) and linguis-
tically syntax-based machine translation (Galley et
al., 2006; Marcu et al., 2006; Liu et al., 2006; Huang
et al., 2006; Liu et al., 2007; Mi and Huang, 2008;
Zhang et al., 2008; Liu et al., 2009).

In this paper, we unify these strands of research
by showing how to express Hiero extraction, GHKM

extraction, and phrase-based extraction as instances
of a single master extraction method. Specifically,
we express each technique as a simple “program”
given to a generic “evaluator”. Table 1 summarizes
how to express several popular extraction methods
as “extraction programs.”

Besides providing a unifying survey of popular
alignment-based extraction methods, this work has
the practical benefit of facilitating the implementa-
tion of these methods. By specifying the appropri-
ate input program, the generic evaluator (coded, say,
as a Python module) can be used to execute any of
the extraction techniques in Table 1. New extraction
techniques and hybridizations of existing techniques
can be supported with minimal additional program-
ming.

2 Building Blocks

The family of extraction algorithms under consider-
ation share a common setup: they extract translation
rules from a sentence pair and an alignment. In this
section, we define these concepts.

2.1 Patterns and Sentences

Assume we have a global vocabulary of atomic sym-
bols, containing the reserved substitution symbol∇.
Define a pattern as a sequence of symbols. Define
the rank of a pattern as the count of its ∇ symbols.

Let ∇k , 〈
k︷ ︸︸ ︷

∇,∇, ...,∇〉.
We will typically use space-delimited quotations

to represent example patterns, e.g. “ne∇ pas” rather
than 〈ne,∇, pas〉. We will use the dot operator to
represent the concatenation of patterns, e.g. “il ne” ·
“va pas” = “il ne va pas”.
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Extraction Program
Method Primary Secondary Labeling

Protocol Protocol Protocol
PBMT (Och et al., 1999) RANKPP0 TRIVSPA TRIVLP
Hiero (Chiang, 2005) RANKPP∞ TRIVSPA TRIVLP
GHKM (Galley et al., 2004) MAPPPt TRIVSPA PMAPLPt
SAMT (Zollmann and Venugopal, 2006) RANKPP∞ TRIVSPA PMAPLPt̃
Forest GHKM (Mi and Huang, 2008) MAPPPT TRIVSPA PMAPLPT
Tree-to-Tree GHKM (Liu et al., 2009) MAPPPt MAPSPτ,A IMAPLP{t},{τ}
Forest-to-Forest GHKM (Liu et al., 2009) MAPPPT MAPSPT ,A IMAPLPT,T
Fuzzy Dual Syntax (Chiang, 2010) MAPPPt̃ MAPSPτ̃ ,A IMAPLP{t̃},{τ̃}

Table 1: Various rule extraction methods, expressed as extraction programs. Boldfaced methods are proven in this
paper; the rest are left as conjecture. Parameters: t, τ are spanmaps (see Section 3); t̃, τ̃ are fuzzy spanmaps (see
Section 7); T, T are sets of spanmaps (typically encoded as forests); A is an alignment (see Section 2).

We refer to a contiguous portion of a pattern with
a span, defined as either the null span φ , or a pair
[b, c] of positive integers such that b ≤ c. We will
treat span [b, c] as the implicit encoding of the set
{b, b+ 1, ..., c}, and employ set-theoretic operations
on spans, e.g. [3, 8] ∩ [6, 11] = [6, 8]. Note that the
null span encodes the empty set.

If a set I of positive integers is non-empty, then it
has a unique minimal enclosing span, defined by the
operator span(I) = [min(I),max(I)]. For instance,
span({1, 3, 4}) = [1, 4]. Define span({}) = φ.

Finally, define a sentence as a pattern of rank 0.

2.2 Alignments

An alignment is a triple 〈m,n,A〉, where m and n
are positive integers, and A is a set of ordered integer
pairs (i, j) such that 1 ≤ i ≤ m and 1 ≤ j ≤ n.

In Figure 1(a), we show a graphical depiction of
alignment 〈4, 6, {(1, 1), (2, 3), (4, 3), (3, 5)}〉. Ob-
serve that alignments have a primary side (top) and
a secondary side (bottom)1. For alignment A =
〈m,n,A〉, define |A|p = m and |A|s = n. A pri-
mary index (resp., secondary index) ofA is any pos-
itive integer less than or equal to |A|p (resp., |A|s).
A primary span (resp., secondary span) of A is any
span [b, c] such that 1 ≤ b ≤ c ≤ |A|p (resp., |A|s).

Define a A∼ α to mean that (a, α) ∈ A (in words,
we say that A aligns primary index a to secondary

1The terms primary and secondary allow us to be agnostic
about how the extracted rules are used in a translation system,
i.e. the primary side can refer to the source or target language.

[3,5]

[2,4][2,4]

1 2 3 4

2 3 4 51 6

1 2 3 4

2 3 4 51 6

1 2 3 4

2 3 4 51 6

(a)

(d)(c)

(b)

1 2 3 4

2 3 4 51 6

Figure 1: A demonstration of alignment terminology.
(a) An alignment is a relation between positive integer
sets. (b) The primary domain of the example alignment
is {1,2,3,4} and the secondary domain is {1,3,5}. (c)
The image of primary span [2,4] is {3,5}. (d) The mini-
mal projection of primary span [2,4] is [3,5]. Secondary
spans [2,5], [3,6], and [2,6] are also projections of pri-
mary span [2,4].

index α), and define a 6A∼ α to mean that (a, α) 6∈ A.

Define an aligned sentence pair as a triple
〈s, σ,A〉 where A is an alignment and s, σ are sen-
tences of length |A|p and |A|s, respectively.

Primary and Secondary Domain: The primary
domain of alignment A is the set of primary in-
dices that are aligned to some secondary index, i.e.
pdom(A) = {a|∃α s.t. a A∼ α}. Analogously,

define sdom(A) = {α|∃a s.t. a A∼ α}. For the
example alignment of Figure 1(b), pdom(A) =
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{1, 2, 3, 4} and sdom(A) = {1, 3, 5}.
Image: The image of a set I of primary indices

(denoted pimageA(I)) is the set of secondary in-
dices to which the primary indices of I align. In
Figure 1(c), for instance, the image of primary span
[2, 4] is the set {3, 5}. Formally, for a set I of pri-
mary indices of alignment A, define:

pimageA(I) = {α|∃a ∈ I s.t. (a, α) ∈ A}

Projection: The minimal projection of a set I of
primary indices (denoted pmprojA(I)) is the min-
imal enclosing span of the image of I . In other
words, pmprojA(I) = span(pimageA(I)). In Fig-
ure 1(d), for instance, the minimal projection of pri-
mary span [2, 4] is the secondary span [3, 5].

Consider Figure 1(d). We will also allow a more
relaxed type of projection, in which we allow the
broadening of the minimal projection to include un-
aligned secondary indices. In the example, sec-
ondary spans [2, 5], [3, 6], and [2, 6] (in addition
to the minimal projection [3, 5]) are all considered
projections of primary span [2, 4]. Formally, de-
fine pprojA([b, c]) as the set of superspans [β, γ]
of pmprojA([b, c]) such that [β, γ] ∩ sdom(A) ⊆
pmprojA([b, c]).

2.3 Rules
We define an unlabeled rule as a tuple 〈k, s∗, σ∗, π〉
where k is a nonnegative integer, s∗ and σ∗

are patterns of rank k, and π is a permuta-
tion of the sequence 〈1, 2, ..., k〉. Such rules
can be rewritten using a more standard Syn-
chronous Context-Free Grammar (SCFG) format,
e.g. 〈3, “le∇ ∇ de∇”, “∇ ’s ∇ ∇”, 〈3, 2, 1〉〉 can
be written: ∇ → 〈le∇1 ∇2 de ∇3,∇3 ’s∇2 ∇1〉.

A labeled rule is a pair 〈r, l〉, where r is an un-
labeled rule, and l is a “label”. The unlabeled rule
defines the essential structure of a rule. The label
gives us auxiliary information we can use as decod-
ing constraints or rule features. This deliberate mod-
ularization lets us unify sequence-based and tree-
based extraction methods.

Labels can take many forms. Two examples (de-
picted in Figure 2) are:

1. An SCFG label is a (k+ 1)-length sequence of
symbols.

DT NN JJ

NPB

NP

< NP, NN, JJ, NNP > 

IN NNP

PP

* *

NNP POS JJ

NP

*

NN

NP  < le NN1 JJ2 de NNP3 ,
NNP3 ’s JJ2 NN1 >

DT NN JJ

NPB

NP

IN NNP

PP

le de

NNP POS JJ

NP

‘s

NN

label labeled rule

Figure 2: An example SCFG label (top) and
STSG label (bottom) for unlabeled rule ∇ →
〈le ∇1 ∇2 de ∇3,∇3 ’s ∇2 ∇1〉.

2. An STSG label (from Synchronous Tree Sub-
stitution Grammar (Eisner, 2003)) is a pair of
trees.

STSG labels subsume SCFG labels. Thus STSG
extraction techniques can be used as SCFG extrac-
tion techniques by ignoring the extra hierarchical
structure of the STSG label. Due to space con-
straints, we will restrict our focus to SCFG labels.
When considering techniques originally formulated
to extract STSG rules (GHKM, for instance), we
will consider their SCFG equivalents.

3 A General Rule Extraction Schema

In this section, we develop a general algorithmic
schema for extracting rules from aligned sentence
pairs. We will do so by generalizing the GHKM al-
gorithm (Galley et al., 2004). The process goes as
follows:

• Repeatedly:

– Choose a “construction request,” which
consists of a “primary subrequest” (see
Figure 3a) and a “secondary subrequest”
(see Figure 3b).

– Construct the unlabeled rule correspond-
ing to this request (see Figure 3, bottom).

– Label the rule (see Figure 2).
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[1,4]
[4,4][1,1]

ne va pasil

he does not go

INDEX
SORT

1 4 2 3

▼ ▼ does not

[1,4]

[3,3][1,1]

[1,4]
[4,4][1,1]

ne va pasil

he does not go

▼ does not ▼

INDEX
SORT

1 3 2 4

▼ ▼ ne pas
▼ ne ▼ pas

INDEX
SORT

1 3

1 2
1  2

primary
pattern

secondary
pattern

permutation

(a) (b)

Figure 3: Extraction of the unlabeled rule ∇ → 〈∇1 does not∇2,∇1 ne∇2 pas〉. (a) Choose primary subre-
quest [1, 4]  [1, 1][4, 4]. (b) Choose secondary subrequest [1, 4]  [1, 1][3, 3]. (bottom) Construct the rule
∇ → 〈∇1 does not ∇2,∇1 ne∇2 pas〉.

3.1 Choose a Construction Request

The first step in the extraction process is to choose a
“construction request,” which directs the algorithm
about which unlabeled rule(s) we wish to construct.
A “construction request” consists of two “subre-
quests.”

Subrequests: A subrequest is a
nonempty sequence of non-null spans
〈[b0, c0], [b1, c1], ..., [bk, ck]〉 such that, for all
1 ≤ i < j ≤ k, [bi, ci] and [bj , cj ] are disjoint
proper2 subsets of [b0, c0]. If it also true that
ci < bj , for all 1 ≤ i < j ≤ k, then the subrequest
is called monotonic. We refer to k as the rank of the
subrequest.

We typically write subrequest
〈[b0, c0], [b1, c1], ..., [bk, ck]〉 using the notation:

2If unary rules are desired, i.e. rules of the form ∇ → ∇,
then this condition can be relaxed.

[b0, c0] [b1, c1]...[bk, ck]

or as [b0, c0] ε if k = 0.
For subrequest x = [b0, c0]  [b1, c1]...[bk, ck],

define:

covered(x) = ∪ki=1[bi, ci]

uncovered(x) = [b0, c0]\covered(x)

Primary Subrequests: Given an alignment A,
define the set frontier(A) as the set of primary spans
[b, c] of alignment A such that pmprojA([b, c])) is
nonempty and disjoint from pimageA([1, b − 1]) ∪
pimageA([c+ 1, |A|p]).3

3Our definition of the frontier property is an equivalent re-
expression of that given in (Galley et al., 2004). We reexpress
it in these terms in order to highlight the fact that the frontier
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Algorithm CONSTRUCTRULEs,σ,A(x, ξ):
if construction request 〈x, ξ〉 matches alignment A then
{u1, ..., up} = uncovered([b0, c0] [b1, c1]...[bk, ck])
{υ1, ..., υq} = uncovered([β0, γ0] [β1, γ1]...[βk, γk])

s∗ = INDEXSORT(〈b1, b2, ..., bk, u1, u2, ..., up〉, 〈
k︷ ︸︸ ︷

∇,∇, ...,∇, su1 , su2 , ..., sup〉)

σ∗ = INDEXSORT(〈β1, β2, ..., βk, υ1, υ2, ..., υq〉, 〈
k︷ ︸︸ ︷

∇,∇, ...,∇, συ1 , συ2 , ..., συq〉)
π = INDEXSORT(〈β1, β2, ..., βk〉, 〈1, 2, ..., k〉)
return {〈k, s∗, σ∗, π〉}

else
return {}

end if

Figure 4: Pseudocode for rule construction. Arguments: s = “s1 s2 ... sm” and σ = “σ1 σ2 ... σn” are sentences,
A = 〈m,n,A〉 is an alignment, x = [b0, c0] [b1, c1]...[bk, ck] and ξ = [β0, γ0] [β1, γ1]...[βk, γk] are subrequests.

Define preqs(A) as the set of monotonic subre-
quests whose spans are all in frontier(A). We refer
to members of preqs(A) as primary subrequests of
alignment A. Figure 3a shows a primary subrequest
of an example alignment.

Secondary Subrequests: Given a primary sub-
request x = [b0, c0]  [b1, c1]...[bk, ck] of align-
ment A, define sreqs(x,A) as the set of subrequests
[β0, γ0]  [β1, γ1]...[βk, γk] such that [βi, γi] ∈
pprojA([bi, ci]), for all 0 ≤ i ≤ k. We refer to
members of sreqs(x,A) as secondary subrequests
of primary subrequest x and alignmentA. Figure 3b
shows a secondary subrequest of the primary subre-
quest selected in Figure 3a.

Construction Requests: A construction request
is a pair of subrequests of equivalent rank. Con-
struction request 〈x, ξ〉 matches alignment A if x ∈
preqs(A) and ξ ∈ sreqs(x,A).

3.2 Construct the Unlabeled Rule
The basis of rule construction is the INDEXSORT

operator, which takes as input a sequence of
integers I = 〈i1, i2, ..., ik〉, and an equivalent-
length sequence of arbitrary values 〈v1, v2, ..., vk〉,
and returns a sequence 〈vj1 , vj2 , ..., vjk〉, where
〈j1, j2, ..., jk〉 is a permutation of sequence
I in ascending order. For instance, INDEX-
SORT(〈4, 1, 50, 2〉, 〈“a”, “b”, “c”, “d”〉) =

property is a property of the alignment alone. It is independent
of the auxiliary information that GHKM uses, in particular the
tree.

Primary Protocol RANKPPk:

{[b0, c0] [b1, c1]...[bj , cj ]

s.t. 1 ≤ b0 ≤ c0 and 0 ≤ j ≤ k}

Primary Protocol MAPPPt:

{[b0, c0] [b1, c1]...[bk, ck]

s.t. ∀0 ≤ i ≤ k [bi, ci] ∈ spans(t)}

Primary Protocol MAPPPT :⋃
t∈T

MAPPPt

Figure 5: Various primary protocols. Parameters: k is a
nonnegative integer; t is a spanmap; T is a set of span-
maps (typically encoded as a forest).

〈“b”, “d”, “a”, “c”〉. Note that the output of
INDEXSORT(I, V ) is nondeterministic if sequence
I has repetitions. In Figure 4, we show the pseu-
docode for rule construction. We show an example
construction in Figure 3 (bottom).

3.3 Label the Rule

Rule construction produces unlabeled rules. To label
these rules, we use a labeling protocol, defined as a
function that takes a construction request as input,
and returns a set of labels.

Figure 7 defines a number of general-purpose la-
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Secondary Protocol TRIVSPA(x):
return sreqs(x,A)

Secondary Protocol MAPSPτ,A(x):

{[β0, γ0] [β1, γ1]...[βk, γk] ∈ sreqs(x,A)

s.t. ∀0 ≤ i ≤ k : [βi, γi] ∈ spans(τ)}

Figure 6: Various secondary protocols. Parameters: τ
is a spanmap; A is an alignment; x = [b0, c0]  
[b1, c1]...[bk, ck] is a subrequest.

beling protocols. Some of these are driven by trees.
We will represent a tree as a spanmap, defined as
a function that maps spans to symbol sequences.
For instance, if a parse tree has constituent NP over
span [4, 7], then the corresponding spanmap t has
t([4, 7]) = 〈NP〉. We map spans to sequences in or-
der to accommodate unary chains in the parse tree.
Nonconstituent spans are mapped to the empty se-
quence. For spanmap t, let spans(t) be the set of
spans [b, c] for which t([b, c]) is a nonempty se-
quence.

4 Extraction Programs

In the previous section, we developed a general
technique for extracting labeled rules from aligned
sentence pairs. Note that this was not an algorithm,
but rather an algorithmic schema, as it left two ques-
tions unanswered:

1. What construction requests do we make?

2. What labeling protocol do we use?

We answer these questions with an extraction pro-
gram, defined as a triple 〈X ,Ξ,L〉, where:

• X is a set of subrequests, referred to as the pri-
mary protocol. It specifies the set of primary
subrequests that interest us. Figure 5 defines
some general-purpose primary protocols.

• Ξ maps every subrequest to a set of subre-
quests. We refer to Ξ as the secondary protocol.
It specifies the set of secondary subrequests that
interest us, given a particular primary subre-
quest. Figure 6 defines some general-purpose
secondary protocols.

Labeling Protocol TRIVLP(x, ξ):
return ∇k+1

Labeling Protocol PMAPLPt(x, ξ):

{〈l0, ..., lk〉 s.t. ∀0 ≤ i ≤ k : li ∈ t([bi, ci])}

Labeling Protocol PMAPLPT (x, ξ):⋃
t∈T

PMAPLPt(x, ξ)

Labeling Protocol SMAPLPτ (x, ξ):

{〈λ0, ..., λk〉 s.t. ∀0 ≤ i ≤ k : λi ∈ τ([βi, γi])}

Labeling Protocol SMAPLPT (x, ξ):⋃
τ∈T

SMAPLPτ (x, ξ)

Labeling Protocol IMAPLPT,T (x, ξ):

{〈(l0, λ0), ..., (lk, λk)〉
s.t. 〈l0, ..., lk〉 ∈ PMAPLPT (x, ξ)

and 〈λ0, ..., λk〉 ∈ SMAPLPT (x, ξ)}

Figure 7: Various labeling protocols. Parameters: t, τ are
spanmaps; T, T are sets of spanmaps; x = [b0, c0]  
[b1, c1]...[bk, ck] and ξ = [β0, γ0]  [β1, γ1]...[βk, γk]
are subrequests.

• L is a labeling protocol. Figure 7 defines some
general-purpose labeling protocols.

Figure 8 shows the pseudocode for an “evaluator”
that takes an extraction program (and an aligned sen-
tence pair) as input and returns a set of labeled rules.

4.1 The GHKM Extraction Program

As previously stated, we developed our extraction
schema by generalizing the GHKM algorithm (Gal-
ley et al., 2004). To recover GHKM as an instance
of this schema, use the following program:

EXTRACTs,σ,A(MAPPPt, TRIVSPA, PMAPLPt)

where t is a spanmap encoding a parse tree over the
primary sentence.
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Algorithm EXTRACTs,σ,A(X ,Ξ,L):
R = {}
for all subrequests x ∈ X do

for all subrequests ξ ∈ Ξ(x) do
U = CONSTRUCTRULEs,σ,A(x, ξ)
L = L(x, ξ)
R = R ∪ (U × L)

end for
end for
return R

Figure 8: Evaluator for extraction programs. Parameters:
〈s, σ,A〉 is an aligned sentence pair; X is a primary pro-
tocol; Ξ is a secondary protocol; L is a labeling protocol.

5 The Phrase Pair Extraction Program

In this section, we express phrase pair extraction
(Och et al., 1999) as an extraction program.

For primary span [b, c] and secondary span [β, γ]

of alignment A, let [b, c]
A∼ [β, γ] if the following

three conditions hold:

1. a A∼ α for some a ∈ [b, c] and α ∈ [β, γ]

2. a
A
6∼ α for all a ∈ [b, c] and α 6∈ [β, γ]

3. a
A
6∼ α for all a 6∈ [b, c] and α ∈ [β, γ]

Define the ruleset PBMT(s, σ,A) to be the set of la-
beled rules 〈r,∇1〉 such that:

• r = 〈0, “sb...sc”, “σβ...σγ”, ∅〉

• [b, c]
A∼ [β, γ]

We want to express PBMT(s, σ,A) as an extrac-
tion program. First we establish a useful lemma and
corollary.

Lemma 1. [b, c]
A∼ [β, γ] iff [b, c] ∈ frontier(A) and

[β, γ] ∈ pprojA([b, c]).

Proof. Let [b, c]c = [1, b− 1] ∪ [c+ 1, |A|p].

[b, c] ∈ frontier(A) and [β, γ] ∈ pprojA ([b, c])

(1)⇐⇒

{
pmprojA ([b, c]) ∩ pimageA ([b, c]c) = {}
[β, γ] ∈ pprojA ([b, c])

(2)⇐⇒

{
[β, γ] ∩ pimageA ([b, c]c) = {}
[β, γ] ∈ pprojA ([b, c])

(3)⇐⇒

{
[β, γ] ∩ pimageA ([b, c]c) = {}
pimageA ([b, c]) ⊆ [β, γ]

(4)⇐⇒

{
conditions 2 and 3 hold

[β, γ] 6= {}
(5)⇐⇒ conditions 1, 2 and 3 hold

Equivalence 1 holds by definition of frontier(A).
Equivalence 2 holds because [β, γ] differs from
pmprojA ([b, c]) only in unaligned indices. Equiv-
alence 3 holds because given the disjointness
from pimageA ([b, c]c), [β, γ] differs from
pimageA ([b, c]) only in unaligned indices. Equiva-
lences 4 and 5 are a restatement of conditions 2 and
3 plus the observation that empty spans can satisfy
conditions 2 and 3.

Corollary 2. Consider monotonic subrequest x =
[b0, c0]  [b1, c1]...[bk, ck] and arbitary subrequest
ξ = [β0, γ0]  [β1, γ1]...[βk, γk]. Construction

request 〈x, ξ〉 matches alignment A iff [bi, ci]
A∼

[βi, γi] for all 0 ≤ i ≤ k.

We are now ready to express the rule set
PBMT(s, σ,A) as an extraction program.

Theorem 3. PBMT(s, σ,A) =
EXTRACTs,σ,A(RANKPP0, TRIVSPA, TRIVLP)

Proof.

〈r, l〉 ∈ EXTs,σ,A(RANKPP0, TRIVSPA, TRIVLP)

(1)⇐⇒


x = [b, c] ε and ξ = [β, γ] ε

〈x, ξ〉 matches alignment A
{r} = CONSTRUCTRULEs,σ,A(x, ξ)

l = ∇1

(2)⇐⇒


x = [b, c] ε and ξ = [β, γ] ε

〈x, ξ〉 matches alignment A
r = 〈0, “sb...sc”, “σβ...σγ”, ∅〉
l = ∇1

(3)⇐⇒


[b, c]

A∼ [β, γ]

r = 〈0, “sb...sc”, “σβ...σγ”, ∅〉
l = ∇1

(4)⇐⇒ 〈r, l〉 ∈ PBMT(s, σ,A)
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Equivalence 1 holds by the definition of EXTRACT

and RANKPP0. Equivalence 2 holds by the pseu-
docode of CONSTRUCTRULE. Equivalence 3 holds
from Corollary 2. Equivalence 4 holds from the def-
inition of PBMT(s, σ,A).

6 The Hiero Extraction Program

In this section, we express the hierarchical phrase-
based extraction technique of (Chiang, 2007) as
an extraction program. Define HIERO0(s, σ,A) =
PBMT(s, σ,A). For positive integer k, define
HIEROk(s, σ,A) as the smallest superset of HI-
EROk−1(s, σ,A) satisfying the following condition:

• For any labeled rule 〈〈k − 1, s∗, σ∗, π〉,∇k〉 ∈
HIEROk−1(s, σ,A) such that:

1. s∗ = s∗1 · “sb...sc” · s∗2
2. σ∗ = σ∗1 · “σβ...σγ” · σ∗2
3. π = 〈π1, π2, ..., πk−1〉
4. s∗2 has rank 0.4

5. σ∗1 has rank j.

6. [b, c]
A∼ [β, γ]

it holds that labeled rule 〈r,∇k+1〉 is a member
of HIEROk(s, σ,A), where r is:

〈k, s∗1 · “∇” · s∗2, σ∗1 · “∇” · σ∗2,
〈π1, ..., πj , k, πj+1, ..., πk−1〉〉

Theorem 4. HIEROk(s, σ,A) =
EXTRACTs,σ,A(RANKPPk, TRIVSPA, TRIVLP)

Proof. By induction. Define ext(k) to mean
EXTRACTs,σ,A(RANKPPk, TRIVSPA, TRIVLP).
From Theorem 3, HIERO0(s, σ,A) = ext(0).
Assume that HIEROk−1(s, σ,A) = ext(k − 1) and
prove that HIEROk(s, σ,A)\HIEROk−1(s, σ,A) =
ext(k)\ext(k − 1).

〈r′, l′〉 ∈ ext(k)\ext(k − 1)

(1)⇐⇒



x′ = [b0, c0] [b1, c1]...[bk, ck]

ξ′ = [β0, γ0] [β1, γ1]...[βk, γk]

〈x′, ξ′〉 matches alignment A
{r′} = CONSTRUCTRULEs,σ,A(x′, ξ′)

l′ = ∇k+1

4This condition is not in the original definition. It is a cos-
metic addition, to enforce the consecutive ordering of variable
indices on the rule LHS.

(2)⇐⇒



x = [b0, c0] [b1, c1]...[bk−1, ck−1]

ξ = [β0, γ0] [β1, γ1]...[βk−1, γk−1]

{r} = CONSTRUCTRULEs,σ,A(x, ξ)

π = 〈π1, ..., πk−1〉

r =
〈k − 1,s∗1 · “sbk ...sck” · s∗2,

σ∗1 · “σβk
...σγk

” · σ∗2, π〉
s∗2 has rank 0 and σ∗1 has rank j

x′ = [b0, c0] [b1, c1]...[bk, ck]

ξ′ = [β0, γ0] [β1, γ1]...[βk, γk]

〈x′, ξ′〉 matches alignment A
π′ = 〈π1, ..., πj , k, πj+1, ..., πk−1〉
r′ = 〈k, s∗1 · “∇” · s∗2, σ∗1 · “∇” · σ∗2, π′〉
l′ = ∇k+1

(3)⇐⇒



π = 〈π1, ..., πk−1〉

r =
〈k − 1,s∗1 · “sbk ...sck” · s∗2,

σ∗1 · “σβk
...σγk

” · σ∗2, π〉
s∗2 has rank 0 and σ∗1 has rank j

〈r,∇k〉 ∈ HIEROk−1(s, σ,A)

π′ = 〈π1, ..., πj , k, πj+1, ..., πk−1〉
r′ = 〈k, s∗1 · “∇” · s∗2, σ∗1 · “∇” · σ∗2, π′〉

[bi, ci]
A∼ [βi, γi] for all 0 ≤ i ≤ k

l′ = ∇k+1

(4)⇐⇒ 〈r′, l′〉 ∈ HIEROk(s, σ,A)\HIEROk−1(s, σ,A)

Equivalence 1 holds by the definition of
ext(k)\ext(k − 1). Equivalence 2 holds by
the pseudocode of CONSTRUCTRULE. Equivalence
3 holds by the inductive hypothesis and Corol-
lary 2. Equivalence 4 holds by the definition of
HIEROk(s, σ,A)\HIEROk−1(s, σ,A).

7 Discussion

In this paper, we have created a framework that al-
lows us to express a desired rule extraction method
as a set of construction requests and a labeling pro-
tocol. This enables a modular, “mix-and-match” ap-
proach to rule extraction. In Table 1, we summa-
rize the results of this paper, as well as our conjec-
tured extraction programs for several other methods.
For instance, Syntax-Augmented Machine Transla-
tion (SAMT) (Zollmann and Venugopal, 2006) is a
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hybridization of Hiero and GHKM that uses the pri-
mary protocol of Hiero and the labeling protocol of
GHKM. To bridge the approaches, SAMT employs
a fuzzy version5 of the spanmap t that assigns a triv-
ial label to non-constituent primary spans:

t̃([b, c]) =

{
t([b, c]) if [b, c] ∈ spans(t)
〈∇〉 otherwise

Other approaches can be similarly expressed as
straightforward variants of the extraction programs
we have developed in this paper.

Although we have focused on idealized meth-
ods, this framework also allows a compact and pre-
cise characterization of practical restrictions of these
techniques. For instance, (Chiang, 2007) lists six
criteria that he uses in practice to restrict the gener-
ation of Hiero rules. His condition 4 (“Rules can
have at most two nonterminals.”) and condition 5
(“It is prohibited for nonterminals to be adjacent on
the French side.”) can be jointly captured by replac-
ing Hiero’s primary protocol with the following:

{[b0, c0] [b1, c1]...[bj , cj ] s.t. 1 ≤ b0 ≤ c0
0 ≤ j ≤ 2

b2 > c1 + 1}

His other conditions can be similarly captured with
appropriate changes to Hiero’s primary and sec-
ondary protocols.

This work is primarily intended as a survey of the
dominant translation rule extraction paradigms, in
which we make explicit the close relationship be-
tween these approaches, and establish a language for
future hybridizations. From a practical perspective,
we facilitate a generic and extensible implementa-
tion which supports a wide variety of existing meth-
ods, and which permits the precise expression of
practical extraction heuristics.

5This corresponds with the original formulation of Syntax
Augmented Machine Translation (Zollmann and Venugopal,
2006). More recent versions of SAMT adopt a more refined
“fuzzifier” that assigns hybrid labels to non-constituent primary
spans.
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Abstract

We present a novel approach for extracting
a minimal synchronous context-free grammar
(SCFG) for Hiero-style statistical machine
translation using a non-parametric Bayesian
framework. Our approach is designed to ex-
tract rules that are licensed by the word align-
ments and heuristically extracted phrase pairs.
Our Bayesian model limits the number of
SCFG rules extracted, by sampling from the
space of all possible hierarchical rules; addi-
tionally our informed prior based on the lex-
ical alignment probabilities biases the gram-
mar to extract high quality rules leading to im-
proved generalization and the automatic iden-
tification of commonly re-used rules. We
show that our Bayesian model is able to ex-
tract minimal set of hierarchical phrase rules
without impacting the translation quality as
measured by the BLEU score.

1 Introduction

Hierarchical phrase-based (Hiero) machine transla-
tion (Chiang, 2007) has attracted significant interest
within the Machine Translation community. It ex-
tends phrase-based translation by automatically in-
ferring a synchronous grammar from an aligned bi-
text. The synchronous context-free grammar links
non-terminals in source and target languages. De-
coding in such systems employ a modified CKY-
parser that is integrated with a language model.

The primary advantage of Hiero-style systems lie
in their unsupervised model of syntax for transla-
tion: allowing long-distance reordering and cap-
turing certain syntactic constructions, particularly
those that involve discontiguous phrases. It has
been demonstrated to be a successful framework
with comparable performance with other statisti-
cal frameworks and suitable for large-scale cor-
pora (Zollmann et al., 2008). However, one of the

major difficulties in Hiero-style systems has been on
learning a concise and general synchronous gram-
mar from the bitext.

While most of the research in Hiero-style sys-
tems is focused on the improving the decoder, and
in particular the link to the language model, compar-
atively few papers have considered the inference of
the probabilistic SCFG from the word alignments.
A majority of the systems employ the classic rule-
extraction algorithm (Chiang, 2007) which extracts
rules by replacing possible sub-spans (permitted by
the word alignments) with a non-terminal and then
using relative frequencies to estimate the probabilis-
tic synchronous context-free grammar. One of the
issues in building Hiero-style systems is in manag-
ing the size of the synchronous grammar. The origi-
nal approach extracts a larger number of rules when
compared to a phrase-based system on the same data
leading to practical issues in terms of memory re-
quirements and decoding speed.

Extremely large Hiero phrase tables may also lead
to statistical issues, where the probability mass has
to be shared by more rules: the probability p(e|f)
has to be shared by all the rules having the same
source side string f , leading to fragmentation and
resulting in many rules having very poor probability.

Approaches to improve the inference (the induc-
tion of the SCFG rules from the bitext) typically
follows two streams. One focusses on filtering the
extracted hierarchical rules either by removing re-
dundancy (He et al., 2009) or by filtering rules
based on certain patterns (Iglesias et al., 2009),
while the other stream is concerned about alterna-
tive approaches for learning the synchronous gram-
mar (Blunsom et al., 2008; Blunsom et al., 2009; de
Gispert et al., 2010). This paper falls under the lat-
ter category and we use a non-parametric Bayesian
approach for rule extraction for Hiero-style systems.
Our objective in this paper is to provide a principled
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rule extraction method using a Bayesian framework
that can extract the minimal SCFG rules without re-
ducing the BLEU score.

2 Motivation and Related Work

The large number of rules in Hiero-style systems
leads to slow decoding and increased memory re-
quirements. The heuristic rule extraction algo-
rithm (Chiang, 2007) introduces redundant mono-
tone composed rules (He et al., 2009) in the SCFG
grammar. The research on Hiero rule extraction falls
into two broad categories: i) rule reduction by elim-
inating a subset of rules extracted by the heuristic
approach and ii) alternate approaches for rule extrac-
tion.

There have been approaches to reduce the size of
Hiero phrase table, without significantly affecting
the translation quality. He et. al. (2009) proposed the
idea of discarding monotone composed rules from
the phrase table that can instead be obtained dynami-
cally by combining the minimal rules in the same or-
der. They achieve up to 70% reduction in the phrase
table by discarding these redundant rules, without
appreciable reduction in the performance as mea-
sured by BLEU. Empirically analyzing the effective-
ness of specific rule patterns, (Iglesias et al., 2009)
show that some patterns having over 95% of the to-
tal SCFG rules can be safely eliminated without any
reduction in the BLEU score.

Along a different track, some prior works have
employed alternate rule extraction approaches using
a Bayesian framework (DeNero et al., 2008; Blun-
som et al., 2008; Blunsom et al., 2009). (DeNero
et al., 2008) use a Maximum likelihood model of
learning phrase pairs (Marcu and Wong, 2002), but
use sampling to compute the expected counts of the
phrase pairs for the E-step. Other recent approaches
use Gibbs sampler for learning the SCFG by explor-
ing a fixed grammar having pre-defined rule tem-
plates (Blunsom et al., 2008) or by reasoning over
the space of derivations (Blunsom et al., 2009).

We differ from earlier Bayesian approaches in that
our model is guided by the word alignments to rea-
son over the space of the SCFG rules and this re-
stricts the search space of our model. We believe
the word alignments to encode information, useful
for identifying the good phrase-pairs. For example,

several attempts have been made to learn a phrasal
translation model directly from the bitext without
the word alignments (Marcu and Wong, 2002; DeN-
ero et al., 2008; Blunsom et al., 2008), but without
any clear breakthrough that can scale to larger cor-
pora.

Our model exploits the word alignment informa-
tion in the form of lexical alignment probability in
order to construct an informative prior over SCFG
rules and it moves away from a heuristic framework,
instead using a Bayesian non-parametric model to
infer a minimal, high-quality grammar from the
data.

3 Model

Our model is based on similar assumptions as the
original Hiero system. We assume that the bitext has
been word aligned, and that we can use that word
alignment to extract phrase pairs.

Given the word alignments and the heuristically
extracted phrase pairs Rp, our goal is to extract the
minimal set of hierarchical rules Rg that would best
explain Rp. This is achieved by inferring a distribu-
tion over the derivations for each phrase pair, where
the set of derivations collectively specify the gram-
mar. In the following, we denote the sequence of
derivations for the set of phrase pairs by r, which is
composed of grammar rules r. We will essentially
read off our learned grammar from the sequence of
derivations r.

Our non-parametric model reasons over the space
of the (hierarchical and terminal) rules and sam-
ples a set of rules by employing a prior based on
the alignment probability of the words in the phrase
pairs. We hypothesize that the resulting grammar
will be compact and also will explain the phrase
pairs better (the SCFG rules will maximize the like-
lihood of producing the entire set of observed phrase
pairs).

Using Bayes’ rule, the posterior over the deriva-
tions r given the phrase pairs Rp can be written as:

P (r|Rp) ∝ P (Rp|r)P (r) (1)

where P (Rp|r) is equal to one when the sequence
of rules r and phrase-pairs Rp are consistent, i.e. r
can be partitioned into derivations to compose the
set of phrase-pairs such that the derivations respect

534



the given word alignments; otherwise P (Rp|r) is
zero. The overall structure of the model is analo-
gous to the Bayesian model for inducing Tree Sub-
stitution Grammars proposed by Cohn et al. (2009).
Note that, our model extracts hierarchical rules for
the word-aligned phrase pairs and not for the sen-
tences.

Similar to the other Hiero-style systems, we use
two types of rules: terminal and hierarchical rules.
For each phrase-pair, our model either generates a
terminal rule by not segmenting the phrase-pair, or
decides to segment the phrase-pair and extract some
rules.

Though it is possible to segment phrase-pairs by
two (or more) non-overlapping spans, we propose
a simpler model in this paper and restrict the hierar-
chical rules to contain only one non-terminal (unlike
the case of classic Hiero-style grammars containing
two non-terminals). This simpler model, samples
the space of derivations and identifies a sub-span
for introducing the non-terminal, which can be ex-
pressed as terminal rules (it is not decomposed fur-
ther). Figure 1 shows an example phrase-pair with
the Viterbi-best word alignment and Figure 2 shows
two possible derivations for the same phrase-pair
with the non-terminals introduced at different sub-
spans. It can be seen that the sub-phrase correspond-
ing to the non-terminal spanX1 is directly written as
a terminal rule and is not decomposed further.

While the resulting model is slightly weaker than
the original Hiero grammar, it should be noted our
simpler model does allow reordering and discontigu-
ous alignments. For example our model includes
rules such as, X → (αX1β, α

′β′X1), which can
capture phrases like (not X1, ne X1 pas) in the case
of English-French translation. In terms of the re-
ordering, our model lies in between the hierarchi-
cal phrase-based and phrase-based models. To sum-
marize, the segmentation of each phrase-pair in our
model results in two rules: a hierarchical rule with
one nonterminal as well as a terminal rule.

More specifically, the generative process for gen-
erating a phrase pair x from the grammar rules
may have two steps as follows. In the first step,
the model decides on the type of the rule tx ∈
{TERMINAL,HIERARCHICAL} used to generate the
phrase-pair based on a Bernoulli distribution, having

a prior γ coming from a Beta distribution:

tx ∼ Bernoulli(γ)

γ ∼ Beta(lx, 0.5)

The lexical alignment probability lx controls the
tendency for extracting hierarchical rules from the
phrase-pair x. For a given phrase-pair, lx is com-
puted by taking the (geometric or arithmetic) aver-
age of the reverse and forward alignment probabil-
ities, which we explain later in this section. Inte-
grating out γ gives us the conditional probabilities
of choosing the rule type tx as:

p(tterm|x) ∝ nx
term + lx (2)

p(thier|x) ∝ nx
hier + 0.5 (3)

where nx
term and nx

hier denote the number of termi-
nal or hierarchical rules, among the rules extracted
so far from the phrase-pair x during the sampling.

In the second step, if the rule type tx =
HIERARCHICAL, the model generates the phrase-
pair by sampling from the hierarchical and terminal
rules. We use a Dirichlet Process (DP) to model the
generation of hierarchical rules r:

G ∼ DP (αh, P0(r))

r ∼ G

Integrating out the grammar G, the predictive dis-
tribution of a hierarchical rule rx for generating the
current phrase-pair (conditioned on the rules from
the rest of the phrase-pairs) is:

p(rx|r−x, αh, P0) ∝ n−x
rx

+ αhP0(rx) (4)

where n−x
rx

is the count of the rule rx in the rest of
the phrase-pairs that is represented by r−x, P0 is the
base measure, and αh is the concentration parameter
controlling the model’s preference towards using an
existing hierarchical rule from the cache or to create
a new rule sanctioned by the base distribution. We
use the lexical alignment probabilities of the compo-
nent rules as our base measure P0:

P0(r) =
[( ∏

(k,l)∈a

p(el|fk)
) 1

|a|

( ∏
(k,l)∈a

p(fk|el)
) 1

|a|
] 1

2 (5)
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octavo y noveno Fondos Europeos de Desarrollo para el ejercicio

Eighth and Ninth European Development Funds for the financial year

Figure 1: An example phrase-pair with Viterbi alignments

X → (Eighth and Ninth X1 for the financial year, octavo y noveno X1 para el ejercicio)

X → (European Development Funds, Fondos Europeos de Desarrollo)

X → (Eighth and Ninth X1, octavo y noveno X1)

X → (European Development Funds for the financial year,

Fondos Europeos de Desarrollo para el ejercicio)

Figure 2: Two possible derivations of the phrase-pair in Figure 1

where a is the set of alignments in the given sub-
span; if the sub-span has multiple Viterbi alignments
from different phrase-pairs, we consider the union of
all such alignments. DeNero et al. (2008) use a sim-
ilar prior- geometric mean of the forward and reverse
IBM-1 alignments. However, we use the product of
geometric means of the forward and reverse align-
ment scores. We also experimented with the arith-
metic mean of the lexical alignment probabilities.
The lexical prior lx in the first step can be defined
similarly. We found the particular combination of,
‘arithmetic mean’ for the lexical prior lx (in the first
step) and ‘geometric mean’ for the base distribution
P0 (in the second step) to work better, as we discuss
later in Section 5.

Assuming the heuristically extracted phrase pairs
to be the input to our inference algorithm, our
approach samples the space of rules to find the
best possible segmentation for the sentences as de-
fined by the cache and base distribution. We ex-
plore a subset of the space of rules being consid-
ered by (Blunsom et al., 2009) — i.e., only those
rules satisfying the word alignments and heuristi-
cally grown phrase alignments.

4 Inference

We train our model by using a Gibbs sampler – a
Markov Chain Monte Carlo (MCMC) method for

sampling one variable in the model, conditional to
the other variables. The sampling procedure is re-
peated for what is called a long Gibbs chain span-
ning several iterations, while the counts are collected
at fixed thin intervals in the chain. As is common in
the MCMC procedures, we ignore samples from a
fixed number of initial burn-in iterations, allowing
the model to move away from the initial bias. The
rules in the final sampler state at the end of the Gibbs
chain along with their counts averaged by the num-
ber of thin iterations become our translation model.

In our model, a sample for a given phrase pair
corresponds either to its terminal derivation or two
rules in a hierarchical derivation. The model sam-
ples a derivation from the space of derivations that
are consistent with the word alignments. In order
to achieve this, we need an efficient way to enumer-
ate the derivations for a phrase pair such that they
are consistent with the alignments. We use the lin-
ear time algorithm to maximally decompose a word-
aligned phrase pair, so as to encode it as a compact
alignment tree (Zhang et al., 2008).

f0 f1 f2 f3 f4

e0 e1 e2 e3 e4 e5

Figure 3: Example phrase pair with alignments.
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For a phrase-pair with a given alignment as shown
in Figure 3, Zhang et al. (2008) generalize theO(n+
K) time algorithm for computing all K common in-
tervals of two different permutations of length n.
The contiguous blocks of the alignment are cap-
tured as the nodes in the alignment tree and the tree
structure for the example phrase pair in Figure 3 is
shown in Figure 4. The italicized nodes form a left-
branching chain in the alignment tree and the sub-
spans of this chain also lead to alignment nodes that
are not explicitly captured in the tree (Please refer
to Zhang et al. (2008) for details). In our work, each
node in the tree (and also each sub-span in the left-
branching chain) corresponds to an aligned source-
target sub-span within the phrase-pair, and is a po-
tential site for introducing the non-terminal X to
generate hierarchical rules.

Given this alignment tree for a phrase pair, a
derivation can be obtained by introducing a non-
terminal at some node nd in the tree and re-writing
the span rooted at nd as a separate rule. As men-
tioned earlier, we compute the derivation probability
as a product of the probabilities of the component
rules, which are computed using the Equation 4.

We initialize the sampler by using our lexical
alignment prior and sampling from the distribution
of derivations as suggested by the priors. We found
this to perform better in practice, than a naive sam-
pler without an initializer.

At each iteration, the Gibbs sampler processes the
phrase pairs in random order. For each phrase pair
Rp, it visits the nodes in the corresponding align-
ment tree and computes the posterior probability of
the derivations and samples from this posterior dis-
tribution. To speedup the sampling, we store the
pre-computed alignment tree for the phrase pairs and
just recompute the derivation probabilities based on
the sampler state at every iteration. While the sam-
pler state is updated with the counts at each iteration,
we accumulate the counts only at fixed intervals in
the Gibbs chain. In applying the model for decoding,
we use the grammar from the final sampler state.

Since our model includes only one hyperparam-
eter αh, we tune its value manually by empirically
experimenting on a small set of initial phrase pairs.
We keep for future work the task of automatically
tuning for hyper-parameter values by sampling.

([0,5],[0,4])

([0,2],[0,2])

([0,1],[0,1])

([0,0],[0,0]) ([1,1],[1,1])

([2,2],[2,2])

([4,5],[3,4])

Figure 4: Decomposed alignment tree for the example
alignment in Fig. 3.

5 Experiments

We use the English-Spanish data from WMT-10
shared task for the experiments to evaluate the effec-
tiveness of our Bayesian rule extraction approach.
We used the entire shared task training set except
the UN data for training translation model and the
language model was trained with the same set and
an additional 2 million sentences from the UN data,
using SRILM toolkit with Knesser-Ney discounting.
We tuned the feature weights on the WMT-10 dev-
set using MERT (Och, 2003) and evaluate on the
test set by computing lower-cased BLEU score (Pa-
pineni et al., 2002) using the WMT-10 standard eval-
uation script.

We use Kriya – an in-house implementation of hi-
erarchical phrase-based translation written predom-
inantly in Python. Kriya supports the entire transla-
tion pipeline of SCFG rule extraction and decoding
with cube pruning (Huang and Chiang, 2007) and
LM integration (Chiang, 2007). We use the 7 fea-
tures (4 translation model features, extracted rules
penalty, word penalty and language model) as is typ-
ical in Hiero-style systems. For tuning the feature
weights, we have adapted the MERT implementa-
tion in Moses1 for use with Kriya as the decoder.

We started by training and evaluating the two
baseline systems using i) two non-terminals and
ii) one non-terminal, which were trained using the
conventional heuristic extraction approach. For the
baseline with one non-terminal, we modified the
heuristic rule extraction algorithm appropriately2.

1www.statmt.org/moses/
2Given an initial phrase pair, the algorithm would introduce

a non-terminal for each sub-span consistent with the alignments
and extract rules corresponding to each sub-span. The con-
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Experiment
# of rules filtered

for devset
(in millions)

BLEU

Baseline (w/ 2 non-terminals) 52.36 27.45
Baseline (w/ 1 non-terminal) 22.09 26.71
Pattern-based filtering† 18.78 24.61
1 non-terminal; monotone & non-monotone 10.36 24.17
1 non-terminal; non-monotone 3.62 23.99

Table 1: Kriya: Baseline and Filtering experiments. †: This is the initial rule set used in Iglesias et al. (2009) obtained
by greedy filtering. Rows 4 and 5 represents the filtering that uses single non-terminal rules with row 4 allowing
monotone rules in addition to the non-monotone (reordering) rules.

As part of the baseline methods to be applied to min-
imize the number of SCFG rules, We also wanted to
assess the effect of a simpler rule filtering, where
the idea is to filter the heuristically extracted rules
based on certain patterns. Our first baseline filtering
strategy uses the heuristic methods in Iglesias et al.
(2009) in order to minimize the number of rules3.
For the other baseline filtering experiments, we re-
tained only one non-terminal rules and then further
limited it by retaining only non-monotone one non-
terminal rules; in both cases the terminal rules were
retained.

Table 1 shows the results for baseline and the rule
filtering experiments. Restricting rule extraction to
just one non-terminal doesn’t affect the BLEU score
significantly and this justifies the simpler model
used in this paper. Secondly, we find significant re-
duction in the BLEU for the pattern-based filtering
strategy and this is because we only use the initial
rule set obtained by greedy filtering without aug-
menting it with other specific patterns. The other
two filtering methods reduced the BLEU further but
not significantly. The second column in the table
gives the number of SCFG rules filtered for the dev-
set, which is typically much less than the full set of
rules. We later use this to put in perspective the
effective reduction in the model size achieved by
our Bayesian model. We can ideally compare our
Bayesian rule extraction using Gibbs sampling with

straints relating to two non-terminals (such as, no adjacent non-
terminals in source side) does not apply for the one non-terminal
case.

3It should be noted that we didn’t use the augmentations to
the initial rule set (Iglesias et al., 2009) and our objective is to
find the impact of the filtering approaches.

the baselines and the filtering approaches. However,
running our Gibbs sampler on the full set of phrase
pairs demand sampling to be distributed, possibly
with approximation (?; ?), which we reserve for our
future work.

In this work, we focus on evaluating our Gibbs
sampler on reasonable sized set of phrase pairs with
corresponding baselines. We filter the initial phrase
pairs based on their frequency using three different
thresholds, viz. 20, 10 and 3- resulting in smaller
sets of initial phrase pairs because we throw out in-
frequent phrase pairs (the threshold-20 case is the
smallest initial set of phrase pairs). This allows us
to run our sampler as a stand-alone instance for the
three sets, obviating the need for distributed sam-
pling.

Table 2 shows the number of unique phrase pairs
in each set. While, the filtering reduces the number
of phrase pairs to a small fraction of the total phrase
pairs, it also increases the unknown words (OOV)
in the test set by a factor between 1.8 and 3. In or-
der to address this issue due to the OOV words, we
additionally added non-decomposable phrase pairs
having just one word at either source or target side,

Phrase-pairs set # of Unique
phrase-pairs

Testset
OOV

All phrase-pairs 110782174 1136
Threshold-20 292336 3735
Threshold-10 606590 3056
Threshold-3 2689855 2067

Table 2: Phrase-pair statistics for different frequency
threshold
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Experiment Threshold-20 Threshold-10 Threshold-3
Baseline (w/ 2 non-terminals) 24.30 25.96 26.34
Baseline (w/ 1 non-terminal) 24.00 25.90 26.83
Bayesian rule extraction 23.39 24.30 25.22

Table 3: BLEU scores: Heuristic vs Bayesian rule extraction

Experiment Rules Extracted (in millions) Reduction
Heuristic (1 nt) Bayesian

Threshold-20 1.93 (0.117) 1.86 (0.07) 3.57 (38.34)
Threshold-10 2.91 (1.09) 2.10 (0.28) 27.7 (73.95)
Threshold-3 7.46 (5.64) 2.45 (0.71) 67.17 (87.28)

Table 4: Model compression: Heuristic vs Bayesian rule extraction

Priors αh BLEU
Arith + Arith means 0.5 22.46
Arith + Geom means 0.5 23.39
Geom + Arith means 0.5 22.96
Arith + Geom means 0.5 22.83
Arith + Geom means 0.1 22.88
Arith + Geom means 0.2 22.97
Arith + Geom means 0.3 22.98
Arith + Geom means 0.4 22.69
Arith + Geom means 0.5 23.39
Arith + Geom means 0.6 22.89
Arith + Geom means 0.7 22.82
Arith + Geom means 0.8 22.82
Arith + Geom means 0.9 22.67

Table 5: Effect of different priors and αh on Threshold-
20 set. The two priors correspond to the lexical prior lx
in the first step and the base distribution P0 in the second
step.

as coverage rules. The coverage rules (about 1.8
million) were added separately to the SCFG rules
induced by both heuristic algorithm and Gibbs sam-
pler. This is justified because we only add the rules
that can not be decomposed further by both rule ex-
traction approaches. However, note that both ap-
proaches can independently induce rules that over-
lap with the coverage rules set and in such cases we
simply add the original corpus count to the counts
returned by the respective rule extraction method.

The Gibbs sampler considers the phrase pairs in
random order at each iteration and induces SCFG

rules by sampling a derivation for each phrase pair.
Given a phrase pair x with raw corpus frequency fx,
we simply scale the count for its sampled deriva-
tion r by its frequency fx. Alternately, we also ex-
perimented with independently sampling for each
instance of the phrase pair and found their perfor-
mances to be comparable. Sampling phrase pairs
once and then scaling the sampled derivation, help
us to speed up the sampling process. In our experi-
ments, we ran the Gibbs sampler for 2000 iterations
with a burn-in period of 200, collecting counts every
50 iterations. We set the concentration parameter αh

to be 0.5 based on our experiments detailed later in
this section.

The BLEU scores for the SCFG learned from the
Gibbs sampler are shown in Table 3. We first note
that, the threshold-20 set has lower baseline BLEU
than threshold-10 and threshold-3 sets, as can be ex-
pected because threshold-20 set uses a much smaller
subset of the full set of phrase pairs to extract hier-
archical rules. The Bayesian approach results in a
maximum BLEU score reduction of 1.6 for the sets
using thresholds 10 and 3, compared to the one non-
terminal baseline. The two non-terminal baseline is
also provided to place our results in perspective.

Table 4 shows the model size, including the cov-
erage rules for the two rule extraction approaches.
The number of extracted rules, excluding the cov-
erage rules are shown within the parenthesis. The
last column shows the reduction in the model size
for both with and without the coverage rules; yield-
ing a maximum absolute reduction of 67.17% for the
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threshold-3 phrase pairs set. It can be seen that the
number of rules are far fewer than the rules extracted
using the baseline heuristic methods for filtering de-
tailed in Table 1. Interestingly, we obtain a smaller
model size, even as we decrease the threshold to in-
clude more initial phrase pairs used as input to the
inference procedure, e.g. a 67.17% reduction over
the rules extracted from the threshold-3 phrase pairs
v.s. a 27.7% reduction for threshold-10.

These results show that our model is capable of
extracting high-value Hiero-style SCFG rules, albeit
with a reduction in the BLEU score. However, our
current approach offers scope for improvement in
several avenues, for example we can use annealing
to perturb the initial sampling iterations to encour-
age the Gibbs sampler to explore several derivations
for each phrase pair. Though this might result in
slightly large models than the current ones, we still
expect substantial reduction than the original Hiero
rule extraction. In future, we also plan to sample the
hyperparameter αh, instead of using a fixed value.

Table 5 shows the effect of different values of
the concentration parameter αh and the priors used
in the model. The order of priors in each setting
correspond to the prior used in deciding the rule-
type and identifying the non-terminal span for sam-
pling a derivation. We found the geometric mean to
work better in both cases. We further found that the
concentration parameter αh value 0.5 gives the best
BLEU score.

6 Conclusion and Future Work

We proposed a novel method for extracting mini-
mal set of hierarchical rules using non-parametric
Bayesian framework. We demonstrated substantial
reduction in the size of extracted grammar with the
best case reduction of 67.17%, as compared to the
heuristic approach, albeit with a slight reduction in
the BLEU scores.

We plan to extend our model to handle two non-
terminals to allow for better reordering. We also
plan to run our sampler on the full set of phrase
pairs using distributed sampling and our prelimi-
nary results in this direction are encouraging. Fi-
nally, we would like to directly sample from the
Viterbi aligned sentence pairs instead of relying on
the heuristically extracted phrase pairs. This can

be accomplished by using a model that is closer
to the Tree Substitution Grammar induction model
in (Cohn et al., 2009) but in our case the model
would infer a Hiero-style SCFG from word-aligned
sentence pairs.
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Abstract

A major weakness of extant statistical ma-
chine translation (SMT) systems is their lack
of a proper training procedure. Phrase extrac-
tion and scoring processes rely on a chain of
crude heuristics, a situation judged problem-
atic by many. In this paper, we recast the ma-
chine translation problem in the familiar terms
of a sequence labeling task, thereby enabling
the use of enriched feature sets and exact train-
ing and inference procedures. The tractabil-
ity of the whole enterprise is achieved through
an efficient implementation of the conditional
random fields (CRFs) model using a weighted
finite-state transducers library. This approach
is experimentally contrasted with several con-
ventional phrase-based systems.

1 Introduction

A weakness of existing phrase-based SMT systems,
that has been repeatedly highlighted, is their lack
of a proper training procedure. Attempts to de-
sign probabilistic models of phrase-to-phrase align-
ments (e.g. (Marcu and Wong, 2002)) have thus far
failed to overcome the related combinatorial prob-
lems (DeNero and Klein, 2008) and/or to yield im-
proved training heuristics (DeNero et al., 2006).

Phrase extraction and scoring thus rely on a chain
of heuristics see (Koehn et al., 2003), which evolve
phrase alignments from “symmetrized” word-to-
word alignments obtained with IBM models (Brown
et al., 1990) and the like (Liang et al., 2006b; Deng
and Byrne, 2006; Ganchev et al., 2008). Phrase
scoring is also mostly heuristic and relies on an op-

timized interpolation of several simple frequency-
based scores. Overall, the training procedure of
translation models within conventional phrase-based
(or hierarchical) systems is generally considered un-
satisfactory and the design of better estimation pro-
cedures remains an active research area (Wuebker et
al., 2010).

To overcome the NP-hard problems that derive
from the need to consider all possible permutations
of the source sentence, we make here a radical
simplification and consider training the translation
model given a fixed segmentation and reordering.
This idea is not new, and is one of the grounding
principle of n-gram-based approaches (Casacuberta
and Vidal, 2004; Mariño et al., 2006) in SMT. The
novelty here is that we will use this assumption to re-
cast machine translation (MT) in the familiar terms
of a sequence labeling task.

This reformulation allows us to make use of the
efficient training and inference tools that exists for
such tasks, most notably linear CRFs (Lafferty et
al., 2001; Sutton and McCallum, 2006). It also en-
ables to easily integrate linguistically informed (de-
scribing morphological or morpho-syntactical prop-
erties of phrases) and/or contextual features into the
translation model. In return, in addition to having
a better trained model, we also expect (i) to make
estimation less sensible to data sparsity issues and
(ii) to improve the ability of our system to make
the correct lexical choices based on the neighbor-
ing source words. As explained in Section 2, this
reformulation borrows much from the general ar-
chitecture of n-gram MT systems and implies to
solve several computational challenges. In our ap-
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proach, the tractability of the whole enterprise is
achieved through an efficient reimplementation of
CRFs using a public domain library for weighted
finite-state transducers (WFSTs) (see details in Sec-
tion 3). This approach is experimentally contrasted
with more conventional n-gram based and phrase-
based approaches on a standard benchmark in Sec-
tion 4, where we also evaluate the benefits of various
feature sets and training regimes. We finally relate
our new system with alternative proposals for train-
ing discriminatively SMT systems in Section 5, be-
fore drawing some lessons and discussing possible
extensions of this work.

The main contribution of this work are thus (i) a
detailed presentation of the CRF in translation in-
cluding all necessary implementation details and (ii)
an experimental study of various feature functions
and of various ways to integrate target side LM in-
formation.

2 MT as sequence labeling

In this section, we briefly review the n-gram based
approach to SMT, originally introduced in (Casacu-
berta and Vidal, 2004; Mariño et al., 2006), which
constitutes our starting point. We then describe our
new proposal, which, in essence, consists in replac-
ing the modeling of compound source-target trans-
lation units by a conditional model where the prob-
ability of each target side phrase is conditioned on
the source sentence.

2.1 The n-gram based approach in SMT
The n-gram based approach of (Mariño et al., 2006)
is a variation of the standard phrase-based model,
characterized by the peculiar form of the translation
model. In this approach, the translation model is
based on bilingual units called tuples. Tuples are
the analogous of phrase pairs, as they represent a
matching u = (e, f) between a source f and a tar-
get e word sequence. The probability of a sequence
of tuples is computed using a conventional n-gram
model as:

p(u1 . . . uI) =
I∏
i=1

p(ul|ui−1 . . . ui−n+1).

The probability of a sentence pair (f , e) is then ei-
ther recovered by marginalization, or approximated

by maximization, over all possible joint segmenta-
tions of f and e into tuples.

As for any n-gram model, the parameters are es-
timated using statistics collected in a training corpus
made of sequences of tuples derived from the par-
allel sentences in a two step process. First, a word
alignment is computed using a standard alignment
pipeline1 based on the IBM models. Source words
are then reordered so as to disentangle the align-
ment links and to synchronize the source and tar-
get texts. Special care has to be paid to non-aligned
source words, which have to be collapsed with their
neighbor words. A byproduct of this process is a de-
terministic joint segmentation of parallel sentences
into minimal bilingual units, the tuples, that consti-
tute the basic elements in the model. This process is
illustrated on Figure 1, where the unfolding process
enables the extraction of tuples such as: (demanda,
said ) or (de nouveau, again).

f : demanda de nouveau la femme voilée

e: the veiled dame said again

f̃ : la voilée femme demanda de nouveau

Figure 1: The tuple extraction process
The original (top) and reordered (bottom) French

sentence aligned with its translation.

At test time, the source text is reordered so as
to match the reordering implied by the disentangle-
ment procedure. Various proposals has been made
to perform such source side reordering (Collins et
al., 2005; Xia and McCord, 2004), or even learn-
ing reordering rules based on syntactic or morpho-
syntactic information (Crego and Mariño, 2007).
The latter approach amounts to accumulate reorder-
ing patterns during the training; test source sen-
tences are then non-deterministically reordered in
all possible ways yielding a word graph. This graph
is then monotonously decoded, where the score of
a translation hypothesis combines information from
the translation models as well as from other infor-
mation sources (lexicalized reordering model, target

1Here, using the MGIZA++ package (Gao and Vogel, 2008).
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side language model (LM), word and phrase penal-
ties, etc).

2.2 Translating with CRFs

A discriminative version of the n-gram approach
consists in modeling P (e|f) instead of P (e, f),
which can be efficiently performed with CRFs (Laf-
ferty et al., 2001; Sutton and McCallum, 2006). As-
suming matched sequences of observations (x =
xL1 ) and labels (y = yL1 ), CRFs express the con-
ditional probability of labels as:

P (yL1 |xL1 ) =
1

Z(xL1 ; θ)
exp(θTG(xL1 , y

L
1 )),

where θ is a parameter vector and G denotes a vec-
tor of feature functions testing various properties of
x and y. In the linear-chain CRF, each compo-
nent Gk(xI1, y

I
1) of G is decomposed as a sum of

local features: Gk(xI1, y
I
1) =

∑
i gk(x

I
1, yi−1, yi)2.

CRFs are trained by maximizing the (penalized) log-
likelihood of a corpus containing observations and
their labels.

In principle, the data used to train n-gram trans-
lation models provide all the necessary information
required to train a CRF3. It suffices to consider that
the alphabet of possible observations ranges over all
possible source side fragments, and that each tar-
get side of a tuple is a potential label. The model
thus defines the probability of a segmented target
ẽ = ẽI1 given the segmented and reordered source
sentence f̃ = f̃ I1 . To complete the model, one just
needs to define a distribution over source segmen-
tations P (f̃ |f). Given the deterministic relationship
between e and ẽ expressed by the “unsegmentation”
function φ which maps ẽ with e = φ(ẽ), we then
have:

P (e|f) =
∑

f̃ ,ee|φ(ee)=e

P (ẽ, f̃ |f)

=
∑

f̃ ,ee|φ(ee)=e

P (ẽ, |f̃ , f)P (f̃ |f)

=
∑

f̃ ,ee|φ(ee)=e

P (ẽ, |f̃)P (f̃ |f)

2Assuming first order dependencies.
3This is a significant difference with (Blunsom et al., 2008),

as we do not need to introduce latent variables during training.

In practice, we will only consider a restricted
number of possible segmentation/reorderings of the
source, denoted L(f), and compute the best transla-
tion e∗ as φ(ẽ∗), where:

ẽ∗ = arg maxee P (ẽ|f)

≈ arg max
f̃∈L(f),ee P (ẽ, |f̃ , f)P (f̃ |f) (1)

Even with these simplifying assumptions, this
approach raises several challenging computational
problems. First, training a CRF is quadratic in the
number of labels, of which we will have plenty (typ-
ically hundreds of thousands). A second issue is de-
coding: as we need to consider at test time a combi-
natorial number of possible source reorderings and
segmentations, we can no longer dispense with the
computation of the normalizer Z(f̃ ; θ) which is re-
quired to compute P (ẽ, f̃ |f) as P (f̃ |f)P (ẽ|f̃) and to
compare hypotheses associated with different values
of f̃ . We discuss our solutions to these problems in
the next section.

3 Implementation issues

3.1 Training

Basic training The main difficulties in training are
caused by the unusually large number of labels, each
of which corresponds to a (small) sequence of target
words. Hopefully, each observation (source side tu-
ple) occurs with a very small number of different
labels. A first simplification is thus to consider that
the set of possible “labels” ẽ for a source sequence
f̃ is limited to those that are seen in training: all
the other associations (f̃ , ẽ) are deemed impossible,
which amounts to setting the corresponding param-
eter value to −∞.

A second speed-up is to enforce sparsity in the
model, through the use of a `1 regularization term
(Tibshirani, 1996): on the one hand, this greatly re-
duces the memory usage; furthermore, sparse mod-
els are also prone to various optimization of the
forward-backward computations (Lavergne et al.,
2010). As discussed in (Ng, 2004; Turian et al.,
2007), this feature selection strategy is well suited
to the task at hand, where the number of possible
features is extremely large. Optimization is per-
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formed using the Rprop algorithm4 (Riedmiller and
Braun, 1993), which provides the memory efficiency
needed to cope with the very large feature sets con-
sidered here.

Training with a target language model One of
the main strength of the phrase-based “log-linear”
models is their ability to make use of powerful
target side language models trained on very large
amounts of monolingual texts. This ability is crucial
to achieve good performance and has to be preserved
no matter the difficulties that occur when one moves
away from conventional phrase-based systems (Chi-
ang, 2005; Huang and Chiang, 2007; Blunsom and
Osborne, 2008; Kääriäinen, 2009). It thus seems
appropriate to include a LM feature function in our
model or alternatively to define:

P (ẽ|f̃) =
1

Z(f̃ ; θ)
PLM (ẽ) exp(θTG(f̃ , ẽ)),

where PLM is the target language model and
Z(f̃ ; θ) =

∑ee PLM (ẽ) exp(θTG(f̃ , ẽ)). Imple-
menting this approach implies to deal with the lack
of synchronization between the units of the trans-
lation models, which are variable-length (possibly
empty) tuples, and the units of the language models,
which are plain words.

In practice, this extension is implemented by per-
forming training and inference over a graph whose
nodes are not only indexed by their position and the
left target context, but also by the required n-gram
(target) history. In most cases, for small values of
n such as considered in this study, the n-gram his-
tory can be deduced from the left target tuple. The
most problematic case is when the left target tuple
is NULL, which require to copy the history from the
previous states. As a consequence, for the values of
n considered here, the impact of this extension on
the total training time is limited.

Reference reachability A recurring problem for
discriminative training approaches is reference un-
reachability (Liang et al., 2006a): this happens when
the model cannot predict the reference translation,
which means in our case that the probability of the
reference cannot be computed. In our implementa-
tion, this only happens when the reference involves

4Adapted to handle a locally non-differentiable objective.

a tuple (f̃ ,ẽ) that is too rare to be included in the
model. As a practical workaround, when this hap-
pens for a given training sentence, we make sure
to “locally” augment the tuple dictionary with the
missing part of the reference, which is then removed
for processing the rest of the training corpus.

3.2 Inference
Our decoder is implemented as a cascade of
weighted finite-state transducers (WFSTs) using the
functionalities of the OpenFst library (Allauzen et
al., 2007). This library provides many basic opera-
tion for WFSTs, notably the left (π1) and right (π2)
projections as well as the composition operation (◦).
The related notions and algorithms are presented in
detail in (Mohri, 2009), to which we refer the reader.

In essence, our decoder is implemented of a finite-
state cascade involoving the following steps: (i)
source reordering and segmentation (ii) application
of the translation model and (optionally) (iii) com-
position with a target side language model, an ar-
chitecture that is closely related to the proposal of
(Kumar et al., 2006). A more precise account of
these various steps is given below, where we de-
scribe the main finite-state transducers involved in
our decoder:

• S, the acceptor for the source sentence f ;

• R, which implements segmentation and re-
ordering rules;

• T , the tuple dictionary, associating source side
sequences with possible translations based on
the inventory of tuples;

• F , the feature matcher, mapping each feature
with the corresponding parameter value;

Source reordering The computation of R mainly
follows the approach of (Crego and Mariño, 2007)
and uses a part-of-speech tagged version of the re-
ordered training data. Each reordering pattern seen
in training is generalized as a non-deterministic re-
ordering rule which expresses a possible rearrange-
ment of some subpart of the source sentence. Each
rule is implemented as an elementary finite-state
transducer, and the set of possible word reorderings
is computed as the composition of these transducers.
R is finally obtained by composing the result with a
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transducer computing all the possible segmentations
of its input into sequences of source side tuples5.

The output of S ◦ R are sequences of source side
tuples f̃ ; each path in this transducer is addition-
ally weighted with a simplistic n-tuple segmentation
model, estimated using the source side of the paral-
lel training corpus. Note that these scores are nor-
malized, so that the weight of each path labelled f̃ in
S ◦R is logP (f̃ |f).

The feature matcher F The feature matcher is
also implemented as a series of elementary weighted
transducers, each transducer being responsible for a
given class of feature functions. The simplest trans-
ducer in this family deals with the class of unigram
feature functions, ie. feature functions that only test
the current observation and label. It is represented
on the left part of Figure 3.2, where for the sake of
readability we only display one example for each
test pattern (here: an unconditional feature that al-
ways returns true for a given label, a test on the
source word, and a test on the source POS label).
As long as dependencies between source and/or tar-
get symbols remain local, they can be captured by
finite-state transducers such as the ones on the mid
and right part of Figure 3.2, which respectively com-
pute bigram target features, and joint bigram source
and target features.

The feature matcher F is computed as the com-
position of these elementary transducers, where we
only include source and target labels that can occur
given the current input sentence. Weights in F are
interpreted in the tropical semiring. exp(F ) is ob-
tained by replacing weights w in F with exp(w) in
the real semiring.

Decoding a word graph If the input segmentation
and reordering were deterministically set, meaning
that the automaton I = π1(S ◦ R ◦ T ) would only
contain one path, decoding would amount to finding
the best path in S ◦R ◦ T ◦F . However, we need to
compute:

arg maxee P (ẽ|f) = arg maxee
∑
f̃

P (ẽ, f̃ |f)

= arg maxee
∑
f̃

P (ẽ|f̃)P (f̃ |f).

5When none is found, we also consider a maximal segmen-
tation into isolated words.

This requires to compare model scores for mul-
tiple source segmentations and reorderings f̃ , hence
to compute P (f̃ |f) and P (ẽ|f̃), rather than just the
non-normalized value that is usually used in CRFs.

Computing the normalizer Z(f̃ ; θ) for all se-
quences in S ◦R is performed efficiently using stan-
dard finite-state operations as :

D = det(π1(π2(S ◦R) ◦ T ◦ exp(F ))).

In fact, determinization (in the real semiring) has the
effect of accumulating for each f̃ the corresponding
normalizer Z(f̃ ; θ). Replacing each weight w in D
by − log(w) and using the log semiring enables to
compute− log(Z(f̃ ; θ)). The best translation is then
obtained as: bestpath(π2(S◦R)◦−log(D)◦T ◦F )
in the tropical semiring.

Decoding and Rescoring with a target language
model An alternative manner of using a (large)
target side language model is to use it for rescoring
purposes. The consistent use of finite-state machines
and operations makes it fairly easy to include one
during decoding : it suffices to perform the search in
π2(S◦R)◦− log(D)◦T ◦F ◦L, where L represents
a n-gram language model. When combining several
models, notably a source segmentation model and/or
a target language model for rescoring, we have made
sure to rescale the (log)probabilities so as to balance
the language model scores with the CRF scores, and
to use a fixed word bonus to make hypotheses of dif-
ferent length more comparable. All these parameters
are tuned as part of the decoder development pro-
cess. It is finally noteworthy that, in our architecture,
alternative decoding strategies, such as MBR (Ku-
mar and Byrne, 2004) are also readily implemented.

4 Experiments

4.1 Corpora and metrics
For these experiments, we have used a medium size
training corpus, extracted from the datasets made
available for WMT 20116 evaluation campaign, and
have focused on one translation direction, from
French to English7.

Translation model training uses the entire News-
Commentary subpart of the WMT’2011 training

6statmt.org/wmt11
7Results in the other direction suggest similar conclusions.
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0

le : the/θle,the

DET : the/θDET,the

∗ : the/θthe 0 1

∗ : the/0

∗ : cat/θthe,cat

0 1

∗ : the/0

chat : cat/θchat,cat

Figure 2: Feature matchers. The star symbol (*) matches any possible observation.

French English
sent˙ token types token types

train 115 K 3 339 K 60 K 2 816 K 58 K
test 2008 2.0 K 55 K 9 K 49 K 8 K
test 2009 2.5 K 72 K 11 K 65 K 10 K
test 2010 2.5 K 69 K 10 K 61 K 9 K

Table 1: Corpora used for the experiments

data; for language models, we have considered two
approaches (i) a “large” bigram model highly opti-
mized using all the available monolingual data and
(ii) a “small” trigram language model trained on
just the English side of the NewsCommentary cor-
pus. The regularization parameters used in training
are tuned using the WMT 2009 test set; the various
parameters implied in the decoding are tuned (for
BLEU) on WMT 2008 test set; the internal tests re-
ported below are performed on the 2010 test lines
(see Table 1) using the best parameters found during
tuning. Various statistics regarding these corpora are
reproduced on Table 1.

All the training corpora were aligned using
MGIZA++ with standard parameters8, and pro-
cessed in the standard tuple extraction pipeline. The
development and test corpora were also processed
analogously. For the sake of comparison, we also
trained a standard n-gram-based and a Moses sys-
tem (Koehn et al., 2007) with default parameters
and a 3-gram target LM trained using only the tar-
get side of our parallel corpus. The development set
(test 2009) was used to tune these two systems. All
performance are measured using BLEU (Papineni et
al., 2002).

8As part of a much larger batch of texts.

4.2 Features
The baseline system is composed only of transla-
tion features [trs] and target bigram features [t2g].
The former correspond to functions of the form
gus,t(f̃ , ẽ, i) = I(f̃i = s ∧ ẽi = t), where s
and t respectively denote source and target phrases
and I() is the indicator function. These are also
generalized to part-of-speech and also to any pos-
sible source phrase, giving rise to features such as
gu∗,t = (f̃ , ẽ, i) = I(ẽi = t). Target bigram features
correspond to functions of the form gbt,t′(f̃ , ẽ, i) =
I(ẽi−1 = t∧ ẽi = t′). The last baseline feature is the
copy feature, which fires whenever the source and
target segments are identical.

Supplementary groups of features are considered
in further stages:

• suffix/prefix features [ix]. These features allow
to generalize baseline features on the source
side to fixed length prefixes and suffixes, thus
smoothing the parameters.

• context features [ctx]. These features are sim-
ilar to unigram features, but also test the left
source tuple and the corresponding part-of-
speech.

• segmentation features [seg]. These features are
meant to express a preference for longer tuples
and to regulate the number of target words per
source word. We consider the following feature
functions (|e| denotes the length of e):

– target length features :
gl∗,l(f̃ , ẽ, i) = I(|ẽi| = l)

– source-target length features :
gll,l′(f̃ , ẽ, i) = I(|f̃i| = l ∧ |ẽi| = l′)

– source-target length ratio :

gll(f̃ , ẽ, i) = I(round( |
efi|
|eei|) = l)
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Note that all these features are further condi-
tioned on the target label.

• reordering features [ord]. These features are
meant to model preferences for specific lo-
cal reordering patterns and take into account
neighbor source fragments in ẽ together with
the current label. Each source side segment
f̃i is made of some source words that, prior
to source reordering, were located at indices
i1 . . . il, so that f̃i = fi1 . . . fil . The high-
est (resp. lowest) index in this sequence is df̃ie
(resp. bf̃ic). The leftmost (resp. rightmost) in-
dex is [f̃i[ (resp. ]f̃i]).

Using these notations, our model includes the
following patterns:

– distortion features, measuring the gaps be-
tween consecutive source fragments :
gol,t(f̃ , ẽ, i)=I(∆(f̃i, ẽi)= l ∧ ẽi= t),
where ∆(f̃i, ẽi) ={
bf̃ic − df̃i−1e if (df̃i−1e ≤ bf̃ic)
df̃ie − bf̃i−1c otherwise .

– lexicalized reordering, identifying mono-
tone, swap and discontinuous configura-
tions (Tillman, 2004). The monotonous
test is defined as: gom(f̃ , ẽ, i) =
I(]ei−1] = [ei[); the swap and discon-
tinuous configurations are defined analo-
gously.

– ”gappiness” test : this feature is activated
whenever the source indices i1...il contain
one or several gaps.

4.3 Experiments and lessons learned
Training time The first lesson learned is that
training can be performed efficiently. Our baseline
system, which only contains trs and trg contains ap-
proximately 87 million features, out of which a lit-
tle bit more than 600K are selected. Adding up all
supplementary features raises the number of param-
eters to about 130M features, out of which 1.5M are
found useful. All these systems require between 3
and 5 hours to train9. These numbers are obtained
with a `1 penalty term ≈ 1, which offers a good bal-
ance between accuracy and sparsity.

9All experiments run on a server with 64G of memory and
two Xeon processors with 4 cores at 2.27 Ghz.

Test conditions In order to better assess the
strengths and weaknesses of our approach, we com-
pare several test settings: the most favorable con-
siders only one possible segmentation/reordering f̃
for each f , obtained through forced alignment with
the reference; we then consider the more challeng-
ing case where the reordering is fixed, but several
segmentations are considered; then the regular de-
coding task, where both segmentation and reorder-
ing are unknown and where the entire space of all
segmentations and reordering is searched. For each
condition, we also vary (i) the set of features used
and (ii) the target language model used, if any.
Wherever applicable, we also report contrasts with
n-gram-based systems subject to the same input and
comparable resources, varying the order of the tuple
language model, as well as with Moses. Results are
in Table 2.

dev test # feat.
decoding with optimal segmentation/reordering
CRF (trs,trg) 23.8 25.1 660K
CRF +ctx 24.1 25.4 1.5M
CRF +ix,ord,seg 24.3 25.6 1.5M
decoding with optimal reordering
n-gram (2g,3g) 20.6 24.1 755K
n-gram (3g,3g) 21.5 25.2 755K
CRF trs,trg - 22.8 660K
CRF +ctx - 23.1 1.5M
CRF +ix,ord,seg - 23.5 1.5M
regular decoding
Moses (3g) 21.2 20.5
n-gram (2g,3g) 20.6 20.2 755K
n-gram (3g,3g) 21.5 21.2 755K
CRF (trs,trg) - 18.3 660K
CRF +ctx - 18.8 1.5M
CRF +ix,ord,seg - 19.1 1.5M
CRF +ix,ord,seg+3g - 19.1 1.5M

Table 2: Translation performance

Extending the feature set As expected, the use
of increasingly complex feature sets seems benefi-
cial in all experimented conditions. It is noteworthy
that throwing in reordering and contextual features
is helping, even when decoding one single segmen-
tation and reordering. This is because these features
do not help to select the best input reordering, but
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help choose the best target phrase.

Searching a larger space Going from the sim-
pler to the more difficult conditions yields signif-
icant degradations in the model, as our best score
drops down from 25.6 to 23.5 (with known reorder-
ing) then to 19.1 (regular decoding). This is a clear
indication that our current segmentation/reordering
model is not delivering very useful scores. A similar
loss is incurred by the n-gram system, which loses
4 bleu points between the two conditions.

LM rescoring Our results to date with target side
language models have proven inconclusive, which
might explain why our best results remain between
one and two BLEU points behind the n-gram based
system using comparable information. Note also
that preliminary experiments with incorporating a
large bigram during training have also failed to date
to provide us with improvements over the baseline.

Summary In sum, the results accumulated during
this first round of experiments tend to show that our
CRF model is still underperforming the more es-
tablished baseline by approximately 1 to 1.5 BLEU
point, when provided with comparable resources.
Sources of improvements that have been clearly
identified is the scoring of reordering and segmen-
tations, and the use of a target language model in
training and/or decoding.

5 Related work

Discriminative learning approaches have proven
successful for many NLP tasks, notably thanks to
their ability to cope with flexible linguistic repre-
sentations and to accommodate potentially redun-
dant descriptions. This is especially appealing for
machine translation, where the mapping between
a source word or phrase and its target correlate(s)
seems to involve an large array of factors, such as its
morphology, its syntactic role, its meaning, its lexi-
cal context, etc. (see eg. (Och et al., 2004; Gimpel
and Smith, 2008; Chiang et al., 2009), for inspira-
tion regarding potentially useful features in SMT).

Discriminative learning requires (i) a parameter-
ized scoring function and (ii) a training objective.
The scoring function is usually assumed to be linear
and ranks candidate outputs y for input x accord-
ing to θTG(x, y), where θ is the parameter vector. θ

andG deterministically imply the input/output map-
ping as x → arg maxy θTG(x, y). Given a set of
training pairs {xi, yi, i = 1 . . . N}, parameters are
learned by optimizing some regularized loss func-
tion of θ, so as to make the inferred input/output
mapping faithfully replicate the observed instances.

Machine translation, like most NLP tasks, does
not easily lend itself to that approach, due to the
complexity of the input/output objects (word or la-
bel strings, parse trees, dependency structures, etc).
This complexity makes inference and learning in-
tractable, as both steps imply the resolution of
the arg max problem over a combinatorially large
space of candidates y. Structured learning tech-
niques (Bakir et al., 2007), developed over the last
decade, rely on decompositions of these objects into
sub-parts as part of a derivation process, and use
conditional independence assumptions between sub-
parts to render the learning and inference problem
tractable. For machine translation, this only pro-
vides part of the solution, as the training data only
contain pairs of word aligned sentences (f , e), but
lack the explicit derivation h from f to e that is re-
quired to train the model in a fully supervised way.

The approach of (Liang et al., 2006a) circumvents
the issue by assuming that the hidden derivation h
can be approximated through forced decoding. As-
suming that h is in fact observed as the optimal
(Viterbi) derivation h∗ from f to e given the cur-
rent parameter value10, it is straightforward to re-
cast the training of a phrase-based system as a stan-
dard structured learning problem, thus amenable to
training algorithms such as the averaged perceptron
of (Collins, 2002). This approximation is however
not genuine, and the choice of the most appropriate
derivation seems to raises intriguing issues (Watan-
abe et al., 2007; Chiang et al., 2008).

The authors of (Blunsom et al., 2008; Blunsom
and Osborne, 2008) consider models for which it is
computationally possible to marginalize out all pos-
sible derivations of a given translation. As demon-
strated in these papers, this approach is tractable
even when the derivation process is a based on syn-
chronous context-free grammars, rather that finite-
state devices. However, the computational cost as-

10If one actually exists in the model, thus raising the issue of
reference reachability, see discussion in Section 3.
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sociated with training and inference remains very
high, especially when using a target side language
model, which seems to preclude the application to
large-scale translation tasks11. The recent work of
(Dyer and Resnik, 2010) proceeds from a similar
vein: translation is however modeled as a two step
process, where a set of possible source reorderings,
represented as a parse forest, are associated with
possible target sentences, using, as we do, a finite-
state translation model. This translation model is
trained discriminatively by marginalizing out the
(unobserved) reordering variables; inference can be
performed effectively by intersecting the input parse
forest with a transducer representing translation op-
tions.

A third strategy is to consider a simpler class of
derivation process, which only partly describe the
mapping between f and e. This is, for instance,
the approach of (Bangalore et al., 2007), where a
simple bag-of-word representation of the target sen-
tence is computed using a battery of boolean clas-
sifiers (one for each target word). In this approach,
discriminative training is readily applicable, as the
required supervision is overtly present in example
source-target pairs (f , e); however, a complemen-
tary reshaping/reordering step is necessary to turn
the bag-of-word into a full-fledged translation. This
work was recently revisited in (Mauser et al., 2009),
where a conditional model predicting the presence
of each target phrase provides a supplementary score
for the standard “log-linear” model.

This line of research has been continued notably
in (Kääriäinen, 2009), which introduces an exponen-
tial model of bag of phrases (allowing some over-
lap), that enables to capture localized dependencies
between target words, while preserving (to some ex-
tend) the efficiency of training and inference. Su-
pervision is here indirectly provided by word align-
ment and correlated phrase extraction processes
implemented in conventional phrase-based systems
(Koehn et al., 2003). If this model seems to deliver
state-of-the-art performance on large-scale tasks, it
does so at a very high computational cost. More-
over, for lack of an internal modeling of reordering
processes, this approach, like the bag-of-word ap-

11For instance, the experiments reported in (Blunsom and Os-
borne, 2008) use the English-Chinese BTEC, where the average
sentence length is lesser than 10.

proach, seems only appropriate for language pairs
with similar or related word ordering.

The approach developed in this paper fills a gap
between the hierarchical model of (Blunsom et
al., 2008) and the phrase-based model (Kääriäinen,
2009), with whom we share several important as-
sumptions, such as the use of alignment information
to provide supervision, and the resort to a an “ex-
ternal”, albeit a more powerful, reordering compo-
nent. Using a finite-state model enables to process
reasonably large corpora, and gives some hopes as to
the scalability of the whole enterprise; it also makes
the integration of a target side language model much
easier than in hierarchical models.

6 Discussion and future work

In this paper, we have given detailed description of
an original phrase-based system implementing a dis-
criminative version of the n-gram model, where the
translation model probabilities are computed with
conditional random fields. We have showed how
to implement this approach using a memory effi-
cient implementation of the optimization algorithms
needed for training: in our approach, training a mid-
scale translation system with hundred of thousands
sentence pairs and millions of features only takes a
couple of hours on a standalone desktop machine.
Using `1 regularization has enabled to assess the
usefulness of various families of features.

We have also detailed a complete decoder im-
plemented as a pipeline of finite-state transducers,
which allows to efficiently combine several models,
to produce n-best lists and word lattices.

The results obtained in a series of preliminary ex-
periments show that our system is already deliver-
ing competitive translations, as acknowledged by a
comparison with two strong phrase-based baselines.
We have already started to implement various opti-
mizations and to experiment with somewhat larger
datasets (up to 500K sentence pairs) and larger fea-
ture sets, notably incorporating word sense disam-
biguation features: this work needs to be contin-
ued. In addition, we intend to explore a number
of extensions of this architecture, such as imple-
menting MBR decoding (Kumar and Byrne, 2004)
or adapting the translation model to new domains
and conditions, using, for instance, the proposal of
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(Daume III, 2007)12.
One positive side effect of experimenting with

new translation models is that they help reevalu-
ate the performance of the whole translation system
pipeline: in particular, discriminative training seems
to be more sensible to alignments errors than the cor-
responding n-gram system, which suggests to pay
more attention to possible errors in the training data;
we have also seen that the current reordering model
defines a too narrow search space and delivers in-
sufficiently discriminant scores: we will investigate
various ways to further improve the computation and
scoring of hypothetical source reorderings.

Acknowledgements

The authors wish to thank the reviewers for com-
ments and suggestions. This work was achieved as
part of the Quaero Programme, funded by OSEO,
French State agency for innovation.

References

Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wo-
jciech Skut, and Mehryar Mohri. 2007. OpenFst:
A general and efficient weighted finite-state trans-
ducer library. In Proceedings of the Ninth Interna-
tional Conference on Implementation and Application
of Automata, (CIAA 2007), volume 4783 of Lecture
Notes in Computer Science, pages 11–23. Springer.
http://www.openfst.org.

Gökhan Bakir, Thomas Hofmann, Bernhard Schölkopf,
Alexander J.Smola, Ben Taskar, and S.V.N. Vish-
wanathan. 2007. Predicting structured output. MIT
Press.

Srinivas Bangalore, Patrick Haffner, and Stephan Kan-
thak. 2007. Statistical machine translation through
global lexical selection and sentence reconstruction.
In Proceedings of the 45th Annual Meeting of the Asso-
ciation of Computational Linguistics, pages 152–159,
Prague, Czech Republic.

Phil Blunsom and Miles Osborne. 2008. Probabilistic
inference for machine translation. In Proceedings of
the 2008 Conference on Empirical Methods in Natu-
ral Language Processing, pages 215–223, Honolulu,
Hawaii.
12In a nutshell, this proposal amounts to having three dif-

ferent parameters for each feature; one parameter is trained
as usual; the other two parameters are updated conditionally,
depending whether the training instance comes from the in-
domain or from the out-domain training dataset.

Phil Blunsom, Trevor Cohn, and Miles Osborne. 2008.
A discriminative latent variable model for statistical
machine translation. In Proceedings of ACL-08: HLT,
pages 200–208, Columbus, Ohio.

Peter F. Brown, John Cocke, Stephen Della Pietra, Vin-
cent J. Della Pietra, Frederick Jelinek, John D. Laf-
ferty, Robert L. Mercer, and Paul S. Roossin. 1990. A
statistical approach to machine translation. Computa-
tional Linguistics, 16(2):79–85.

Francesco Casacuberta and Enrique Vidal. 2004. Ma-
chine translation with inferred stochastic finite-state
transducers. Computational Linguistics, 30(3):205–
225.

David Chiang, Yuval Marton, and Philip Resnik. 2008.
Online large-margin training of syntactic and struc-
tural translation features. In Proceedings of the 2008
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 224–233, Honolulu, Hawaii.

D. Chiang, K. Knight, and W. Wang. 2009. 11,001 new
features for statistical machine translation. In Pro-
ceedings of Human Language Technologies: The 2009
Annual Conference of the North American Chapter of
the Association for Computational Linguistics, pages
218–226. Association for Computational Linguistics.

David Chiang. 2005. A hierarchical phrase-based model
for statistical machine translation. In Proceedings of
the 43rd Annual Meeting of the Association for Com-
putational Linguistics (ACL’05), pages 263–270, Ann
Arbor, Michigan.

Michael Collins, Philipp Koehn, and Ivona Kucerova.
2005. Clause restructuring for statistical machine
translation. In Proceedings of the 43rd Annual Meet-
ing of the Association for Computational Linguistics
(ACL’05), pages 531–540, Ann Arbor, Michigan.

Michael Collins. 2002. Discriminative training meth-
ods for hidden markov models: Theory and experi-
ments with perceptron algorithms. In Proceedings of
the 2002 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1–8. Association for
Computational Linguistics, July.
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Bojar, Ondřej, 1, 92, 330, 426
Bonneau-Maynard, Hélène, 309
Burchardt, Aljoscha, 65, 99
Buschbeck, Bianka, 358
Buzek, Olivia, 399

Callison-Burch, Chris, 22, 478
Cancedda, Nicola, 250
Cao, Yuan, 171
Casacuberta, Francisco, 140
Castro-Bleda, Maria Jose, 490
Chen, Boxing, 71
Chodorow, Martin, 108
Clark, Jonathan H., 337
Cohn, Trevor, 123
Crego, Josep Maria, 309, 358, 542

Dagnelies, Arnaud, 405
Dahlmeier, Daniel, 78
Denkowski, Michael, 85

Dyer, Chris, 337

Eidelman, Vladimir, 344, 399
El Kholy, Ahmed, 237
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Madnani, Nitin, 108
Mansour, Saab, 405
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Popović, Maja, 65, 99, 104
Post, Matt, 478
Potet, Marion, 440
Prashant, Mathur, 372

R. Costa-jussà, Marta, 452
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